WO2021045032A1 - Emitter and drip irrigation tube - Google Patents

Emitter and drip irrigation tube Download PDF

Info

Publication number
WO2021045032A1
WO2021045032A1 PCT/JP2020/033001 JP2020033001W WO2021045032A1 WO 2021045032 A1 WO2021045032 A1 WO 2021045032A1 JP 2020033001 W JP2020033001 W JP 2020033001W WO 2021045032 A1 WO2021045032 A1 WO 2021045032A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
emitter
irrigation liquid
hole
tube
Prior art date
Application number
PCT/JP2020/033001
Other languages
French (fr)
Japanese (ja)
Inventor
好貴 小野
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2021045032A1 publication Critical patent/WO2021045032A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the present invention relates to an emitter and a drip irrigation tube having the emitter.
  • the drip irrigation method has been known as one of the plant cultivation methods.
  • the drip irrigation method is a method in which a drip irrigation tube is placed on the soil in which a plant is planted, and an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • the drip irrigation method has attracted particular attention because it can minimize the consumption of irrigation liquid.
  • a drip irrigation tube usually has a tube having a plurality of through holes for discharging the irrigation liquid and a plurality of emitters (also referred to as “drippers") for discharging the irrigation liquid from each through hole. .. Further, as the type of the emitter, an emitter used by joining to the inner wall surface of the tube (see, for example, Patent Document 1) and an emitter used by piercing the tube from the outside are known.
  • FIG. 1 is a perspective view showing the configuration of an emitter 1 used by joining to the inner surface of a conduit, which is described in Patent Document 1.
  • the emitter 1 includes an intake port 3 for taking in the irrigation liquid, a discharge port 4 for discharging the irrigation liquid, and a flow path 2 connecting them.
  • the flow path 2 has a plurality of convex portions 5 that alternately project from both sides of the side surface of the flow path 2 in the flow direction of the irrigation liquid.
  • the emitter 1 is made of a plastic material.
  • the emitter 1 described in Patent Document 1 is used in a state where the surface on which the flow path 2 is formed is joined to the inner surface of the tube.
  • the drip irrigation tube using the emitter 1 described in Patent Document 1 can supply the irrigation liquid at a desired flow rate, and foreign matter such as sand grains and precipitates accumulates in the flow path 2 and becomes clogged. It is said that it can suppress irrigation.
  • the present invention has been made in view of this point, and an object of the present invention is to provide an emitter and a drip irrigation tube capable of suppressing the accumulation of foreign matter in the flow path.
  • the irrigation liquid in the tube is discharged to the discharge port.
  • It is an emitter for quantitatively discharging from the tube to the outside of the tube, and is arranged so as to face the discharge port and a water intake portion including a first through hole for taking in the irrigation liquid. It has a discharge part for discharging the liquid, a flow path for connecting the water intake part and the discharge part, and a flow path for flowing the irrigation liquid, and the flow path is taken in from the first through hole.
  • the emitter further has a second through hole that opens to the outside and the decompression flow path, and the irrigation flowing through the decompression flow path.
  • the flow direction of the liquid for irrigation and the flow direction of the liquid for irrigation flowing into the decompression flow path from the second through hole are non-parallel.
  • the drip irrigation tube of the present invention comprises a tube having a discharge port for discharging an irrigation liquid and an emitter according to the present invention joined at a position corresponding to the discharge port on the inner wall surface of the tube.
  • an emitter and a drip irrigation tube capable of suppressing the accumulation of foreign matter in the flow path.
  • FIG. 1 is a diagram showing a configuration of a conventional emitter.
  • FIG. 2 is a diagram showing a configuration of a drip irrigation tube according to the first embodiment.
  • 3A to 3C are diagrams showing the configuration of the emitter according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the emitter according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the emitter according to the first embodiment.
  • FIG. 6 is a diagram showing a configuration of a drip irrigation tube according to the second embodiment.
  • 7A to 7C are diagrams showing the configuration of the emitter according to the second embodiment.
  • FIG. 8 is a partially enlarged perspective view of the decompression flow path of the emitter according to the second embodiment.
  • 9A and 9B are cross-sectional views of the emitter according to the second embodiment.
  • 10A to 10C are partially enlarged views of the decompression flow path of the emitter according to the modified example.
  • 11A and 11B are partially enlarged views of the decompression flow path of the emitter according to the modified example.
  • FIG. 2 is a cross-sectional view of the drip irrigation tube 100 according to the first embodiment in the major axis direction. As shown in FIG. 2, the drip irrigation tube 100 has a tube 110 and an emitter 120.
  • the tube 110 is a pipe for flowing an irrigation liquid.
  • the material of the tube 110 is not particularly limited.
  • the material of the tube 110 is polyethylene.
  • a plurality of discharge ports 112 for discharging the irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110.
  • the diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm.
  • Emitters 120 (described later) are joined to positions corresponding to discharge ports 112 on the inner wall surface of the tube 110.
  • the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be arranged inside the tube 110.
  • FIG. 3A is a plan view of the emitter 120 according to the first embodiment
  • FIG. 3B is a bottom view of the emitter 120
  • FIG. 3C is a right side view of the emitter 120.
  • FIG. 4 is a cross-sectional view taken along the line AA shown in FIG. 3A.
  • FIG. 5 is a cross-sectional view taken along the line BB shown in FIG. 3A.
  • the emitter 120 is joined to the inner wall surface of the tube 110 through which the irrigation liquid is circulated, at a position corresponding to the discharge port 112 communicating with the inside and outside of the tube 110 (see FIG. 2). As shown in FIGS. 3A and 3B, the emitter 120 is arranged facing the water intake 130 including the first through hole 131 for taking in the irrigation liquid and the discharge port 112 of the drip irrigation tube 100. It has a discharge unit 140 for discharging the irrigation liquid, and a flow path 150 for connecting the water intake unit 130 and the discharge unit 140 and circulating the irrigation liquid taken in from the water intake unit 130 to the discharge unit 140.
  • the flow path 150 is a decompression flow path 151 for reducing the pressure of the irrigation liquid taken in from the first through hole 131, and a flow rate for adjusting the flow rate of the irrigation liquid decompressed in the decompression flow path 151. It has a reduction portion 160 and. Further, the emitter 120 further has a second through hole 152 that opens to the outside and the decompression flow path 151.
  • the “outside” means a space outside the emitter 120, and when the emitter 120 is joined to the inner wall surface of the tube 110, it means a space inside the tube 110 through which the irrigation liquid flows.
  • the emitter 120 is manufactured by accommodating the inner member 124 in the accommodating portion of the emitter main body 123.
  • the emitter body 123 includes a water intake unit 130 and a part of the flow path 150 (mainly the decompression flow path 151).
  • the inner member 124 includes a discharge portion 140 and a part of the flow path 150.
  • the flow rate reducing portion 160 is composed of a flow rate reducing recess 161 and a diaphragm 162 (described later) of the emitter body 123, a pedestal 163, a flow rate reducing through hole 164, and a connecting groove 165 of the inner member 124.
  • the water intake unit 130 is arranged on the surface 121 of the emitter 120 along the major axis direction.
  • the water intake unit 130 has a plurality of first through holes 131 and a water intake side screen unit 132. Further, in the present embodiment, the opening 153 of the second through hole 152 is also arranged in the water intake portion 130 (water intake side screen portion 132).
  • the first through hole 131 is formed on the bottom surface of the water intake recess 133.
  • the shape and number of the first through holes 131 are not particularly limited as long as the irrigation liquid taken into the water intake recess 133 can be taken into the emitter 120.
  • the first through hole 131 is two elongated holes formed on the bottom surface of the water intake recess 133 along the major axis direction of the emitter 120. Since each elongated hole is partially covered by a plurality of ridges 134, the first through hole 131 appears to be divided into a large number of through holes when viewed from the front side (see FIG. 3B). ).
  • the water intake side screen portion 132 prevents foreign matter in the irrigation liquid taken into the emitter 120 from entering the water intake recess 133.
  • the water intake side screen portion 132 is open to the inside of the tube 110 and has a water intake recess 133 and a plurality of ridges 134.
  • the water intake recess 133 is a recess formed on the surface 121 of the emitter.
  • the depth of the water intake recess 133 is not particularly limited, and is appropriately set depending on the size of the emitter 120.
  • a plurality of ridges 134 are formed on the bottom surface of the water intake recess 133, and a first through hole 131 is formed on the bottom surface of the water intake recess 133. Further, an opening 153 of the second through hole 152 is arranged on the bottom surface of the water intake recess 133 (see FIGS. 3A and 4).
  • the size of the opening 153 of the second through hole 152 arranged in the water intake recess 133 is particularly limited as long as the irrigation liquid can be taken in to the extent that foreign matter accumulated in the decompression flow path 151 can be removed. Not done. Further, the number and shape of the openings 153 of the second through hole 152 are also not particularly limited.
  • the plurality of ridges 134 are arranged on the bottom surface of the water intake recess 133.
  • the arrangement and number of the ridges 134 are not particularly limited as long as the water intake unit 130 can take in the irrigation liquid from the opening side of the water intake recess 133 and prevent foreign matter from entering the irrigation liquid.
  • the plurality of ridges 134 are arranged so that the long axis direction of the ridges 134 is along the short axis direction of the emitter 120.
  • the distance between the adjacent ridges 134 is not particularly limited as long as the above-mentioned function can be exhibited. Further, in FIG. 3A, as seen in the center of the water intake portion 130, the plurality of ridges 134 may be fused with each other.
  • the irrigation liquid that has flowed through the tube 110 is mainly taken into the emitter 120 from the first through hole 131 while the water intake side screen portion 132 prevents foreign matter from entering the water intake recess 133.
  • the irrigation liquid taken in from the first through hole 131 of the water intake unit 130 is guided to the decompression flow path 151.
  • the decompression flow path 151 reduces the pressure of the irrigation liquid taken in from the first through hole 131.
  • the decompression flow path 151 has a plurality of protrusions for reducing the pressure of the irrigation liquid.
  • the number and shape of the plurality of protrusions arranged in the decompression flow path 151 are not particularly limited as long as the pressure of the irrigation liquid taken in from the first through hole 131 can be reduced.
  • the decompression flow path 151 has a plurality of convex portions 155 that alternately project from two side surfaces 154 facing each other in the flow direction of the irrigation liquid (indicated by an arrow in FIG. 3B).
  • the opening 156 of the second through hole 152 is arranged in the decompression flow path 151 (see FIGS. 3B and 4).
  • the decompression flow path 151 is formed on the back surface 122 of the emitter 120 along the major axis direction of the emitter 120.
  • a flow rate reducing unit 160 is connected to the downstream end of the decompression flow path 151.
  • the decompression flow path 151 is formed by joining the back surface 122 of the emitter and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 130 flows to the flow rate reduction unit 160 through the decompression flow path 151.
  • the decompression flow path 151 has two side surfaces 154 facing each other and a bottom surface.
  • the "bottom surface of the decompression flow path 151" means a surface different from the two side surfaces 154 and facing the inner wall surface of the tube 110 when the emitter 120 is joined to the inner wall surface of the tube 110. ..
  • the two side surfaces 154 facing each other have a plurality of convex portions 155, respectively.
  • the convex portion 155 arranged on the side surface of one side surface 154 and the convex portion 155 arranged on the other side surface 154 indicate the flow direction of the irrigation liquid in the decompression flow path 151 (indicated by an arrow in FIG. 3B). ) Are alternately arranged (see FIG. 3B).
  • the shape of the convex portion 155 is not particularly limited, and may be a substantially square columnar shape or a substantially triangular columnar shape. From the viewpoint of making it difficult for foreign matter to be deposited in the decompression flow path 151, the shape of the convex portion 155 is preferably a substantially triangular columnar shape. Further, from the viewpoint of making it difficult for foreign matter to be deposited in the decompression flow path 151, the convex portion 155 is arranged so that its tip does not exceed the center line L of the decompression flow path 151 when viewed in a plan view. Is preferable (see FIG. 3B).
  • the opening 156 of the second through hole 152 is arranged in the decompression flow path 151.
  • the flow direction of the irrigation liquid flowing through the decompression flow path 151 is not parallel to the flow direction of the irrigation liquid flowing from the second through hole 152 into the decompression flow path 151.
  • the opening 156 of the second through hole 152 is arranged on the bottom surface of the decompression flow path 151.
  • the position of the opening 156 of the second through hole 152 is not particularly limited, but is preferably between two adjacent convex portions 155 protruding from one side surface 154 of the two side surface 154.
  • the opening 156 of the second through hole 152 is located between two convex portions 155 protruding from one side surface 154 in the flow direction of the irrigation liquid, and the other side surface of the two side surface 154. It is more preferable that the irrigation liquid is arranged on the upstream side in the flow direction of the irrigation liquid rather than the convex portion 155 protruding from the irrigation liquid.
  • the irrigation liquid taken in from the opening 153 on the intake portion 130 side of the second through hole 152 is guided to the opening 156 through the second through hole 152 (see FIGS. 3B and 4).
  • the flow rate reducing unit 160 is connected to the downstream end of the decompression flow path 151, and sends the irrigation liquid to the discharge unit 140 while reducing the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube 110. ..
  • the configuration of the flow rate reducing unit 160 is not particularly limited as long as it can exhibit the above-mentioned functions.
  • the flow rate reducing portion 160 includes a flow rate reducing recess 161, a diaphragm 162, a pedestal 163, a flow rate reducing through hole 164, a connecting groove 165, and a pedestal support portion. It has 166 and.
  • the flow rate reducing recess 161 and the diaphragm 162 are provided in the emitter body 123, and the pedestal 163, the flow rate reducing through hole 164, the connecting groove 165, and the pedestal support portion 166 are provided in the inner member 124.
  • the diaphragm 162 and the pedestal 163 face each other, and the flow rate reducing portion 160 is configured.
  • the flow rate of the irrigation liquid is controlled by deforming the diaphragm 162 according to the pressure of the irrigation liquid in the tube 110.
  • the flow rate reduction recess 161 is a recess connected to the downstream end of the decompression flow path 151.
  • a diaphragm 162 is arranged between the flow rate reducing recess 161 and the space inside the tube 110. Therefore, the irrigation liquid that has flowed into the flow rate reducing recess 161 does not flow out into the tube 110.
  • the pedestal 163 is arranged so as to face the diaphragm 162.
  • the flow rate reduction through hole 164 has an opening in the pedestal 163, and is provided so as to communicate the flow rate reduction recess 161 and the discharge portion 140.
  • the diaphragm 162 is arranged so as not to contact the pedestal 163 when the pressure in the tube 110 is low, and to bend and contact the pedestal 163 when the pressure in the tube 110 is high.
  • the opening on the pedestal 163 side of the flow rate reducing through hole 164 is arranged at a position where the diaphragm 162 is closed when it comes into contact with the pedestal 163.
  • the connecting groove 165 is formed in the pedestal 163 so that the irrigation liquid in the flow rate reducing recess 161 can flow into the flow rate reducing through hole 164 even if the diaphragm 162 closes the opening of the flow rate reducing through hole 164. It is a groove that has been made.
  • the pedestal support portion 166 is arranged on the back side of the pedestal 163 and comes into contact with the inner wall surface of the tube 110 when the emitter 120 is joined to the inner wall surface of the tube 110.
  • the pedestal support portion 166 supports the pedestal 163 so that the pedestal 163 does not bend even if the diaphragm 162 presses the pedestal 163.
  • the discharge portion 140 is a recess arranged on the back surface 122 of the emitter 120, and is connected to the downstream end of the flow rate reduction portion 160.
  • the emitter 120 is joined to the inner wall surface of the tube 110 so that the discharge portion 140 faces the discharge port 112 of the tube 110 (see FIG. 2).
  • the discharge unit 140 sends the irrigation liquid whose flow rate is controlled by the flow rate reduction unit 160 to the discharge port 112 of the tube 110.
  • the configuration of the discharge unit 140 is not particularly limited as long as it can exhibit the above-mentioned functions.
  • the plan-view shape of the discharge unit 140 is not particularly limited, and is, for example, a substantially rectangular shape.
  • the emitter 120 may be made of a flexible material or a non-flexible material. Since the diaphragm 162 is preferably flexible, the emitter body 123 including the diaphragm 162 is preferably made of a flexible material. Examples of materials constituting the emitter 120 include high-density polyethylene, polypropylene, polystyrene, polyacetal and the like. In this embodiment, the material constituting the emitter 120 is, for example, high density polyethylene.
  • the irrigation liquid is sent into the tube 110.
  • irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof.
  • the pressure of the irrigation liquid sent to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged. ..
  • the irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake 130. Specifically, the irrigation liquid in the tube 110 enters the water intake recess 133 through the gap between the adjacent protrusions 134 and passes through the first through hole 131. At this time, since the water intake unit 130 has a water intake side screen unit 132 (gap between adjacent ridges 134), foreign matter in the irrigation liquid can be removed to some extent.
  • the irrigation liquid taken in from the water intake unit 130 reaches the flow rate reduction unit 160 after being decompressed in the decompression flow path 151. Further, the irrigation liquid taken in from the opening 153 on the intake portion 130 side of the second through hole 152 flows into the decompression flow path 151 through the second through hole 152. As a result, clogging due to foreign matter in the decompression flow path 151 can be suppressed.
  • the flow rate of the irrigation liquid is controlled by deforming the diaphragm 162 and changing the distance between the diaphragm 162 and the pedestal 163 according to the pressure of the irrigation liquid in the tube 110.
  • the irrigation liquid that has flowed from the flow rate reducing unit 160 into the discharge unit 140 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
  • the irrigation liquid flows directly from the second through hole 152 into the decompression flow path 151, so that the flow of the irrigation liquid in the decompression flow path 151 becomes complicated. , It is possible to suppress the accumulation of foreign matter in the decompression flow path 151 (particularly, the region between the two convex portions 155 where foreign matter is likely to accumulate). Therefore, the emitter 120 according to the present embodiment can be used for a long period of time without flushing by flowing a high-pressure water stream through the decompression flow path 151.
  • the irrigation liquid is taken into the emitter 120 not only from the first through hole 131 but also from the second through hole 152, the number and size of the first through holes 131 are increased. It can also be made smaller.
  • the opening 153 on the outer side of the second through hole 152 is arranged in the water intake portion 130
  • the position of the opening 153 of the second through hole 152 is determined.
  • the opening 153 of the second through hole 152 may be arranged in a region other than the intake portion 130 of the front surface 121 of the emitter 120, or on the side surface of the emitter 120 (a surface other than the front surface 121 and the back surface 122). It may be arranged.
  • the emitter 200 according to the second embodiment is different from the emitter 120 according to the first embodiment only in the position of the second through hole 210 that opens to the outside and the decompression flow path 151. Therefore, the same configuration as that of the emitter 120 according to the first embodiment is designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 6 is a cross-sectional view of the drip irrigation tube 100 according to the second embodiment in the major axis direction. As shown in FIG. 6, the drip irrigation tube 100 has a tube 110 and an emitter 200.
  • FIG. 7A is a plan view of the emitter 200 according to the present embodiment
  • FIG. 7B is a bottom view of the emitter 200
  • FIG. 7C is a right side view of the emitter 200.
  • FIG. 8 is a partially enlarged perspective view of the decompression flow path 151.
  • 9A is a cross-sectional view taken along the line CC of FIG. 7A
  • FIG. 9B is a cross-sectional view taken along the line DD of FIG. 7A.
  • the emitter 200 is joined to the inner wall surface of the tube 110 through which the irrigation liquid is circulated, at a position corresponding to the discharge port 112 communicating with the inside and outside of the tube 110 (see FIG. 6). As shown in FIGS. 7A and 7B, the emitter 200 is arranged to face the water intake 130 including the first through hole 131 for taking in the irrigation liquid and the discharge port 112 of the drip irrigation tube 100. It has a discharge unit 140 for discharging the irrigation liquid, and a flow path 150 for connecting the water intake unit 130 and the discharge unit 140 and circulating the irrigation liquid taken in from the water intake unit 130 to the discharge unit 140.
  • the flow path 150 is a decompression flow path 151 for reducing the pressure of the irrigation liquid taken in from the first through hole 131, and a flow rate for adjusting the flow rate of the irrigation liquid decompressed in the decompression flow path 151. It has a reduction portion 160 and. Further, the emitter 200 further has a second through hole 210 that opens to the outside and the decompression flow path 151.
  • the emitter 200 is also manufactured by accommodating the inner member 124 in the accommodating portion of the emitter main body 123.
  • the emitter body 123 includes a water intake unit 130 and a part of the flow path 150 (mainly the decompression flow path 151).
  • the inner member 124 includes a discharge portion 140 and a part of the flow path 150.
  • the flow rate reducing portion 160 is composed of a flow rate reducing recess 161 and a diaphragm 162 (described later) of the emitter body 123, a pedestal 163, a flow rate reducing through hole 164, and a connecting groove 165 of the inner member 124.
  • the water intake unit 130 is arranged on the surface 220 of the emitter 200 along the major axis direction.
  • the water intake unit 130 has a plurality of first through holes 131 and a water intake side screen unit 132. Further, in the present embodiment, the opening portion 211 of the second through hole 210 is also arranged in the water intake portion 130 (water intake side screen portion 132).
  • the size of the opening 211 of the second through hole 210 is not particularly limited as long as the irrigation liquid can be taken in to the extent that foreign matter accumulated in the decompression flow path 151 can be removed. Further, the number and shape of the openings 211 of the second through hole 210 are also not particularly limited.
  • the decompression flow path 151 has a plurality of convex portions 155 that alternately project from two side surfaces facing each other in the flow direction of the irrigation liquid (indicated by an arrow in FIG. 7B), and is formed from the first through hole 131. Reduce the pressure of the irrigation liquid taken in.
  • the opening 212 of the second through hole 210 is arranged in the decompression flow path 151 (see FIGS. 8, 9A and 9B).
  • the decompression flow path 151 is formed on the back surface 230 of the emitter 200 along the major axis direction of the emitter 200.
  • a flow rate reducing unit 160 is connected to the downstream end of the decompression flow path 151.
  • the decompression flow path 151 is formed by joining the back surface 230 of the emitter and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 130 flows to the flow rate reduction unit 160 through the decompression flow path 151.
  • the decompression flow path 151 has two side surfaces 154 facing each other and a bottom surface.
  • the two side surfaces 154 facing each other have a plurality of convex portions 155, respectively.
  • the convex portion 155 arranged on one side surface 154 and the convex portion 155 arranged on the other side surface 154 are in the flow direction of the irrigation liquid in the decompression flow path 151 (indicated by an arrow in FIG. 7B). They are arranged alternately (see FIG. 7B).
  • the opening 212 of the second through hole 210 is arranged in the decompression flow path 151.
  • the flow direction of the irrigation liquid flowing through the decompression flow path 151 is not parallel to the flow direction of the irrigation liquid flowing from the second through hole 210 into the decompression flow path 151.
  • the opening 212 of the second through hole 210 is arranged on the surface of the convex portion 155.
  • the position of the opening 212 of the second through hole 210 is not particularly limited, but is preferably between two adjacent convex portions 155 protruding from one side surface 154 of the two side surfaces 154.
  • the opening 212 of the second through hole 210 is located between two convex portions 155 protruding from one side surface 154 in the flow direction of the irrigation liquid, and the other side surface of the two side surface 154. It is more preferable that the irrigation liquid is arranged on the upstream side in the flow direction of the irrigation liquid rather than the convex portion 155 protruding from the irrigation liquid. That is, as shown in FIG. 8, it is preferable that the opening 212 of the second through hole 210 is arranged on the surface of the convex portion 155 facing the downstream side.
  • the opening 212 of the second through hole 210 is arranged in the vicinity of the base end portion of the convex portion 155 on the surface of the convex portion 155.
  • the irrigation liquid taken in from the opening 211 on the intake portion 130 side of the second through hole 210 is guided to the opening 212 through the second through hole 210 (see FIG. 9B).
  • the emitter 200 according to the present embodiment also has the same effect as the emitter 100 according to the first embodiment.
  • the emitters 120 and 200 having the decompression flow path 151 having a plurality of convex portions 155 alternately protruding from the two side surfaces 154 facing each other have been described, but the emitter according to the present invention includes the emitters 120 and 200.
  • the configuration of the decompression flow path 151 is not particularly limited as long as the pressure of the irrigation liquid taken in from the first through hole 131 can be depressurized.
  • FIGS. 11A and 11B are diagrams showing a modified example of the decompression flow path 151.
  • 10A and 10B are partially enlarged bottom views of the decompression flow path 151 of the emitter according to the modified example, and FIG.
  • 10C is a partially enlarged cross section of the decompression flow path 151 of the emitter according to the modified example of FIG. 10B. It is a figure. 11A and 11B are partially enlarged bottom views of the decompression flow path 151 of the emitter according to the modified example.
  • the decompression flow path 151 may have a plurality of columnar convex portions 155 protruding from the bottom surface 157 toward the inner wall surface of the tube 110.
  • a plurality of prismatic convex portions 155 may be provided so as to project from the bottom surface 157 of the decompression flow path 151 toward the inner wall surface of the tube 110.
  • it may have a pair of convex portions 155 projecting from two side surfaces 154 facing each other so as to face each other.
  • FIG. 11A it may have a pair of convex portions 155 projecting from two side surfaces 154 facing each other so as to face each other.
  • the decompression flow path 151 may have a plurality of pairs of convex portions 155 projecting from two side surfaces 154 facing each other so as to face each other. Also in the decompression flow path 151 shown in FIGS. 10A to 10C and 11A and 11B, an opening (not shown) of the second through hole is arranged at a place where foreign matter that has entered the flow path is likely to accumulate.
  • an emitter and a drip irrigation tube capable of suppressing the accumulation of foreign matter in the flow path.

Abstract

This emitter has: a water intake part comprising a first through hole for introducing an irrigation liquid; a discharge part which is disposed to face a discharge port and discharges the irrigation liquid; and a flow path which connects the water intake part and the discharge part and through which the irrigation liquid flows. The flow path comprises, in the direction of the flow of the irrigation liquid, a pressure reducing flow path for reducing the pressure of the irrigation liquid introduced through the first through hole. The emitter further has a second through hole opening to the outside and to the pressure reducing flow path. The direction of the flow of the irrigation liquid flowing in the pressure reducing flow path is not parallel to the direction of the flow of the irrigation liquid flowing into the pressure reducing flow path from the second through hole.

Description

エミッタおよび点滴灌漑用チューブEmitter and drip irrigation tubes
 本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。 The present invention relates to an emitter and a drip irrigation tube having the emitter.
 以前から、植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料などの灌漑用液体を滴下する方法である。近年、点滴灌漑法は、灌漑用液体の消費量を最小限にすることが可能であるため、特に注目されている。 For some time, the drip irrigation method has been known as one of the plant cultivation methods. The drip irrigation method is a method in which a drip irrigation tube is placed on the soil in which a plant is planted, and an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil. In recent years, the drip irrigation method has attracted particular attention because it can minimize the consumption of irrigation liquid.
 点滴灌漑用チューブは、通常、灌漑用液体が吐出される複数の貫通孔が形成されたチューブと、各貫通孔から灌漑用液体を吐出するための複数のエミッタ(「ドリッパ」ともいう)を有する。また、エミッタの種類としては、チューブの内壁面に接合して使用されるエミッタ(例えば、特許文献1参照)と、チューブに外側から突き刺して使用されるエミッタとが知られている。 A drip irrigation tube usually has a tube having a plurality of through holes for discharging the irrigation liquid and a plurality of emitters (also referred to as "drippers") for discharging the irrigation liquid from each through hole. .. Further, as the type of the emitter, an emitter used by joining to the inner wall surface of the tube (see, for example, Patent Document 1) and an emitter used by piercing the tube from the outside are known.
 図1は、特許文献1に記載されている、導管の内面に接合して使用されるエミッタ1の構成を示す斜視図である。図1に示されるように、エミッタ1は、灌漑用液体を取り入れるための取水口3と、灌漑用液体を排出するための吐出口4と、これらを繋ぐ流路2とを含む。流路2は、灌漑用液体の流れ方向に、流路2の側面の両側から交互に突出している複数の凸部5を有する。なお、エミッタ1は、プラスチック材料で構成されている。 FIG. 1 is a perspective view showing the configuration of an emitter 1 used by joining to the inner surface of a conduit, which is described in Patent Document 1. As shown in FIG. 1, the emitter 1 includes an intake port 3 for taking in the irrigation liquid, a discharge port 4 for discharging the irrigation liquid, and a flow path 2 connecting them. The flow path 2 has a plurality of convex portions 5 that alternately project from both sides of the side surface of the flow path 2 in the flow direction of the irrigation liquid. The emitter 1 is made of a plastic material.
 特許文献1に記載のエミッタ1は、流路2が形成されている面がチューブの内面に接合された状態で使用される。特許文献1に記載のエミッタ1を使用した点滴灌漑用チューブは、所望の流量で灌漑用液体を供給することができるとともに、流路2内に砂粒や沈殿物などの異物が堆積して、詰まるのを抑制することができるとされている。 The emitter 1 described in Patent Document 1 is used in a state where the surface on which the flow path 2 is formed is joined to the inner surface of the tube. The drip irrigation tube using the emitter 1 described in Patent Document 1 can supply the irrigation liquid at a desired flow rate, and foreign matter such as sand grains and precipitates accumulates in the flow path 2 and becomes clogged. It is said that it can suppress irrigation.
特開平5-276841号公報Japanese Unexamined Patent Publication No. 5-276841
 しかしながら、特許文献1に記載のエミッタ1では、流路2内において隣接する凸部5同士の間などに異物が堆積することがあり、依然として、異物の堆積による目詰まりを生じることがあった。 However, in the emitter 1 described in Patent Document 1, foreign matter may be accumulated between adjacent convex portions 5 in the flow path 2, and clogging may still occur due to the accumulation of the foreign matter.
 一般的に、流路に堆積した異物を除去する方法として、流路内に高圧水流を付与する方法(フラッシング)がある。しかしながら、特許文献1に記載のエミッタ1に高圧水流を付与しても、流路に堆積した異物を十分には除去することができなかった。 Generally, as a method of removing foreign matter accumulated in the flow path, there is a method (flushing) of applying a high-pressure water flow in the flow path. However, even if a high-pressure water stream is applied to the emitter 1 described in Patent Document 1, the foreign matter accumulated in the flow path cannot be sufficiently removed.
 本発明は、かかる点に鑑みてなされたものであり、流路内に異物が堆積することを抑制できるエミッタおよび点滴灌漑用チューブを提供することを目的とする。 The present invention has been made in view of this point, and an object of the present invention is to provide an emitter and a drip irrigation tube capable of suppressing the accumulation of foreign matter in the flow path.
 本発明のエミッタは、灌漑用液体を流通させるチューブの内壁面の、前記チューブの内外を連通する吐出口に対応する位置に接合されたときに、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、前記灌漑用液体を取り入れるための第1の貫通孔を含む取水部と、前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させるための流路と、を有し、前記流路は、前記第1の貫通孔から取り入れられた前記灌漑用液体の圧力を減圧させるための減圧流路を含み、前記エミッタは、外部と前記減圧流路とに開口する第2の貫通孔をさらに有し、前記減圧流路を流れる前記灌漑用液体の流れ方向と、前記第2の貫通孔から前記減圧流路内に流れ込む前記灌漑用液体の流れ方向とは、非平行である。 When the emitter of the present invention is joined to a position on the inner wall surface of a tube through which an irrigation liquid flows, which corresponds to a discharge port communicating with the inside and outside of the tube, the irrigation liquid in the tube is discharged to the discharge port. It is an emitter for quantitatively discharging from the tube to the outside of the tube, and is arranged so as to face the discharge port and a water intake portion including a first through hole for taking in the irrigation liquid. It has a discharge part for discharging the liquid, a flow path for connecting the water intake part and the discharge part, and a flow path for flowing the irrigation liquid, and the flow path is taken in from the first through hole. Including a decompression flow path for reducing the pressure of the irrigation liquid, the emitter further has a second through hole that opens to the outside and the decompression flow path, and the irrigation flowing through the decompression flow path. The flow direction of the liquid for irrigation and the flow direction of the liquid for irrigation flowing into the decompression flow path from the second through hole are non-parallel.
 また、本発明の点滴灌漑用チューブは、灌漑用液体を吐出する吐出口を有するチューブと、前記チューブの内壁面の前記吐出口に対応する位置に接合された、本発明に係るエミッタと、を有する。 Further, the drip irrigation tube of the present invention comprises a tube having a discharge port for discharging an irrigation liquid and an emitter according to the present invention joined at a position corresponding to the discharge port on the inner wall surface of the tube. Have.
 本発明によれば、流路内に異物が堆積することを抑制できるエミッタおよび点滴灌漑用チューブを提供することできる。 According to the present invention, it is possible to provide an emitter and a drip irrigation tube capable of suppressing the accumulation of foreign matter in the flow path.
図1は、従来のエミッタの構成を示す図である。FIG. 1 is a diagram showing a configuration of a conventional emitter. 図2は、実施の形態1に係る点滴灌漑用チューブの構成を示す図である。FIG. 2 is a diagram showing a configuration of a drip irrigation tube according to the first embodiment. 図3A~3Cは、本実施の形態1に係るエミッタの構成を示す図である。3A to 3C are diagrams showing the configuration of the emitter according to the first embodiment. 図4は、実施の形態1に係るエミッタの断面図である。FIG. 4 is a cross-sectional view of the emitter according to the first embodiment. 図5は、実施の形態1に係るエミッタの断面図である。FIG. 5 is a cross-sectional view of the emitter according to the first embodiment. 図6は、実施の形態2に係る点滴灌漑用チューブの構成を示す図である。FIG. 6 is a diagram showing a configuration of a drip irrigation tube according to the second embodiment. 図7A~7Cは、実施の形態2に係るエミッタの構成を示す図である。7A to 7C are diagrams showing the configuration of the emitter according to the second embodiment. 図8は、実施の形態2に係るエミッタの減圧流路の部分拡大斜視図である。FIG. 8 is a partially enlarged perspective view of the decompression flow path of the emitter according to the second embodiment. 図9Aおよび9Bは、実施の形態2に係るエミッタの断面図である。9A and 9B are cross-sectional views of the emitter according to the second embodiment. 図10A~10Cは、変形例に係るエミッタの減圧流路の部分拡大図である。10A to 10C are partially enlarged views of the decompression flow path of the emitter according to the modified example. 図11Aおよび11Bは、変形例に係るエミッタの減圧流路の部分拡大図である。11A and 11B are partially enlarged views of the decompression flow path of the emitter according to the modified example.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [実施の形態1]
 (点滴灌漑用チューブの構成)
 図2は、実施の形態1に係る点滴灌漑用チューブ100の長軸方向における断面図である。図2に示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。
[Embodiment 1]
(Construction of drip irrigation tube)
FIG. 2 is a cross-sectional view of the drip irrigation tube 100 according to the first embodiment in the major axis direction. As shown in FIG. 2, the drip irrigation tube 100 has a tube 110 and an emitter 120.
 チューブ110は、灌漑用液体を流すための管である。チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。チューブ110の管壁には、チューブ110の軸方向において所定の間隔(例えば、200~500mm)で灌漑用液体を吐出するための複数の吐出口112が形成されている。吐出口112の開口部の直径は、灌漑用液体を吐出することができれば特に限定されない。本実施の形態では、吐出口112の開口部の直径は、1.5mmである。チューブ110の内壁面の吐出口112に対応する位置には、エミッタ120(後述)がそれぞれ接合される。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を配置することができれば特に限定されない。 The tube 110 is a pipe for flowing an irrigation liquid. The material of the tube 110 is not particularly limited. In this embodiment, the material of the tube 110 is polyethylene. A plurality of discharge ports 112 for discharging the irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110. The diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm. Emitters 120 (described later) are joined to positions corresponding to discharge ports 112 on the inner wall surface of the tube 110. The cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be arranged inside the tube 110.
 (エミッタの構成)
 図3Aは、実施の形態1に係るエミッタ120の平面図であり、図3Bは、エミッタ120の底面図であり、図3Cは、エミッタ120の右側面図である。図4は、図3Aに示されるA-A線の断面図である。図5は、図3Aに示されるB-B線の断面図である。
(Emitter configuration)
3A is a plan view of the emitter 120 according to the first embodiment, FIG. 3B is a bottom view of the emitter 120, and FIG. 3C is a right side view of the emitter 120. FIG. 4 is a cross-sectional view taken along the line AA shown in FIG. 3A. FIG. 5 is a cross-sectional view taken along the line BB shown in FIG. 3A.
 エミッタ120は、灌漑用液体を流通させるチューブ110の内壁面の、チューブ110の内外を連通する吐出口112に対応する位置に接合される(図2参照)。図3Aおよび3Bに示されるように、エミッタ120は、灌漑用液体を取り入れるための第1の貫通孔131を含む取水部130と、点滴灌漑用チューブ100の吐出口112に面して配置され、灌漑用液体を吐出するための吐出部140と、取水部130と吐出部140とを繋ぎ、取水部130から取り込んだ灌漑用液体を吐出部140まで流通させるための流路150と、を有する。流路150は、第1の貫通孔131から取り入れられた灌漑用液体の圧力を減圧させるための減圧流路151と、減圧流路151で減圧された灌漑用液体の流量を調整するための流量減少部160と、を有する。また、エミッタ120は、外部と減圧流路151とに開口する第2の貫通孔152をさらに有する。ここで、「外部」とは、エミッタ120外の空間を意味し、エミッタ120がチューブ110の内壁面に接合されている場合は灌漑用液体が流通しているチューブ110内の空間を意味する。 The emitter 120 is joined to the inner wall surface of the tube 110 through which the irrigation liquid is circulated, at a position corresponding to the discharge port 112 communicating with the inside and outside of the tube 110 (see FIG. 2). As shown in FIGS. 3A and 3B, the emitter 120 is arranged facing the water intake 130 including the first through hole 131 for taking in the irrigation liquid and the discharge port 112 of the drip irrigation tube 100. It has a discharge unit 140 for discharging the irrigation liquid, and a flow path 150 for connecting the water intake unit 130 and the discharge unit 140 and circulating the irrigation liquid taken in from the water intake unit 130 to the discharge unit 140. The flow path 150 is a decompression flow path 151 for reducing the pressure of the irrigation liquid taken in from the first through hole 131, and a flow rate for adjusting the flow rate of the irrigation liquid decompressed in the decompression flow path 151. It has a reduction portion 160 and. Further, the emitter 120 further has a second through hole 152 that opens to the outside and the decompression flow path 151. Here, the “outside” means a space outside the emitter 120, and when the emitter 120 is joined to the inner wall surface of the tube 110, it means a space inside the tube 110 through which the irrigation liquid flows.
 本実施の形態に係るエミッタ120は、エミッタ本体123の収容部に内側部材124を収容することで製造される。エミッタ本体123は、取水部130および流路150の一部(主として減圧流路151)を含む。内側部材124は、吐出部140および流路150の一部を含む。流量減少部160は、エミッタ本体123の流量減少用凹部161およびダイヤフラム162(後述)と、台座163、流量減少用貫通孔164および内側部材124の連絡溝165により構成される。 The emitter 120 according to the present embodiment is manufactured by accommodating the inner member 124 in the accommodating portion of the emitter main body 123. The emitter body 123 includes a water intake unit 130 and a part of the flow path 150 (mainly the decompression flow path 151). The inner member 124 includes a discharge portion 140 and a part of the flow path 150. The flow rate reducing portion 160 is composed of a flow rate reducing recess 161 and a diaphragm 162 (described later) of the emitter body 123, a pedestal 163, a flow rate reducing through hole 164, and a connecting groove 165 of the inner member 124.
 取水部130は、エミッタ120の表面121に長軸方向に沿って配置されている。取水部130は、複数の第1の貫通孔131、取水側スクリーン部132を有する。また、本実施の形態では、取水部130(取水側スクリーン部132)には、第2の貫通孔152の開口部153も配置されている。 The water intake unit 130 is arranged on the surface 121 of the emitter 120 along the major axis direction. The water intake unit 130 has a plurality of first through holes 131 and a water intake side screen unit 132. Further, in the present embodiment, the opening 153 of the second through hole 152 is also arranged in the water intake portion 130 (water intake side screen portion 132).
 第1の貫通孔131は、取水用凹部133の底面に形成されている。第1の貫通孔131の形状および数は、取水用凹部133の内部に取り込まれた灌漑用液体をエミッタ120内に取り込むことができれば、特に限定されない。本実施の形態では、第1の貫通孔131は、取水用凹部133の底面に、エミッタ120の長軸方向に沿って形成された2つの長孔である。それぞれの長孔は、複数の凸条134により部分的に覆われているため、表側から見た場合、第1の貫通孔131は、多数の貫通孔に分かれているように見える(図3B参照)。 The first through hole 131 is formed on the bottom surface of the water intake recess 133. The shape and number of the first through holes 131 are not particularly limited as long as the irrigation liquid taken into the water intake recess 133 can be taken into the emitter 120. In the present embodiment, the first through hole 131 is two elongated holes formed on the bottom surface of the water intake recess 133 along the major axis direction of the emitter 120. Since each elongated hole is partially covered by a plurality of ridges 134, the first through hole 131 appears to be divided into a large number of through holes when viewed from the front side (see FIG. 3B). ).
 取水側スクリーン部132は、エミッタ120に取り入れられる灌漑用液体中の異物が取水用凹部133内に侵入することを防止する。取水側スクリーン部132は、チューブ110内に対して開口しており、取水用凹部133および複数の凸条134を有する。 The water intake side screen portion 132 prevents foreign matter in the irrigation liquid taken into the emitter 120 from entering the water intake recess 133. The water intake side screen portion 132 is open to the inside of the tube 110 and has a water intake recess 133 and a plurality of ridges 134.
 取水用凹部133は、エミッタの表面121に形成されている凹部である。取水用凹部133の深さは、特に限定されず、エミッタ120の大きさによって適宜設定される。取水用凹部133の底面上には、複数の凸条134が形成されており、取水用凹部133の底面には、第1の貫通孔131が形成されている。また、取水用凹部133の底面には、第2の貫通孔152の開口部153が配置されている(図3Aおよび図4参照)。 The water intake recess 133 is a recess formed on the surface 121 of the emitter. The depth of the water intake recess 133 is not particularly limited, and is appropriately set depending on the size of the emitter 120. A plurality of ridges 134 are formed on the bottom surface of the water intake recess 133, and a first through hole 131 is formed on the bottom surface of the water intake recess 133. Further, an opening 153 of the second through hole 152 is arranged on the bottom surface of the water intake recess 133 (see FIGS. 3A and 4).
 取水用凹部133に配置されている、第2の貫通孔152の開口部153の大きさは、減圧流路151内において堆積した異物を除去できる程度に灌漑用液体を取り込むことができれば、特に限定されない。また、第2の貫通孔152の開口部153の数および形状も、特に限定されない。 The size of the opening 153 of the second through hole 152 arranged in the water intake recess 133 is particularly limited as long as the irrigation liquid can be taken in to the extent that foreign matter accumulated in the decompression flow path 151 can be removed. Not done. Further, the number and shape of the openings 153 of the second through hole 152 are also not particularly limited.
 複数の凸条134は、取水用凹部133の底面上に配置されている。凸条134の配置および数は、取水部130が取水用凹部133の開口部側から灌漑用液体を取り入れつつ、灌漑用液体中の異物の侵入を防止することができれば特に限定されない。本実施の形態では、複数の凸条134は、凸条134の長軸方向がエミッタ120の短軸方向に沿うように配列されている。隣接する凸条134間の間隔は、前述の機能を発揮することができれば特に限定されない。また、図3Aにおいて、取水部130の中央で見られるように、複数の凸条134は、互いに融合していてもよい。 The plurality of ridges 134 are arranged on the bottom surface of the water intake recess 133. The arrangement and number of the ridges 134 are not particularly limited as long as the water intake unit 130 can take in the irrigation liquid from the opening side of the water intake recess 133 and prevent foreign matter from entering the irrigation liquid. In the present embodiment, the plurality of ridges 134 are arranged so that the long axis direction of the ridges 134 is along the short axis direction of the emitter 120. The distance between the adjacent ridges 134 is not particularly limited as long as the above-mentioned function can be exhibited. Further, in FIG. 3A, as seen in the center of the water intake portion 130, the plurality of ridges 134 may be fused with each other.
 チューブ110内を流れてきた灌漑用液体は、取水側スクリーン部132によって異物が取水用凹部133内に侵入することが防止されつつ、主として第1の貫通孔131からエミッタ120内に取り込まれる。取水部130の第1の貫通孔131から取り込まれた灌漑用液体は、減圧流路151に導かれる。 The irrigation liquid that has flowed through the tube 110 is mainly taken into the emitter 120 from the first through hole 131 while the water intake side screen portion 132 prevents foreign matter from entering the water intake recess 133. The irrigation liquid taken in from the first through hole 131 of the water intake unit 130 is guided to the decompression flow path 151.
 減圧流路151は、第1の貫通孔131から取り入れられた灌漑用液体の圧力を減圧させる。たとえば、減圧流路151は、灌漑用液体の圧力を減圧させるための複数の凸部を有する。減圧流路151に配置される複数の凸部の数および形状は、第1の貫通孔131から取り入れられた灌漑用液体の圧力を減圧させることができれば、特に限定されない。 The decompression flow path 151 reduces the pressure of the irrigation liquid taken in from the first through hole 131. For example, the decompression flow path 151 has a plurality of protrusions for reducing the pressure of the irrigation liquid. The number and shape of the plurality of protrusions arranged in the decompression flow path 151 are not particularly limited as long as the pressure of the irrigation liquid taken in from the first through hole 131 can be reduced.
 本実施の形態では、減圧流路151は、灌漑用液体の流れ方向(図3Bにおいて矢印で示す)において、互いに対向する2つの側面154から交互に突出している複数の凸部155を有する。減圧流路151には、第2の貫通孔152の開口部156が配置されている(図3Bおよび図4参照)。 In the present embodiment, the decompression flow path 151 has a plurality of convex portions 155 that alternately project from two side surfaces 154 facing each other in the flow direction of the irrigation liquid (indicated by an arrow in FIG. 3B). The opening 156 of the second through hole 152 is arranged in the decompression flow path 151 (see FIGS. 3B and 4).
 本実施の形態では、減圧流路151は、エミッタ120の裏面122において、エミッタ120の長軸方向に沿って形成されている。減圧流路151の下流端には、流量減少部160が接続されている。減圧流路151は、エミッタの裏面122とチューブ110の内壁面とが接合されることにより形成される。取水部130から取り込まれた灌漑用液体は、減圧流路151を通って、流量減少部160に流れる。 In the present embodiment, the decompression flow path 151 is formed on the back surface 122 of the emitter 120 along the major axis direction of the emitter 120. A flow rate reducing unit 160 is connected to the downstream end of the decompression flow path 151. The decompression flow path 151 is formed by joining the back surface 122 of the emitter and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 130 flows to the flow rate reduction unit 160 through the decompression flow path 151.
 減圧流路151は、互いに対向する2つの側面154と、底面とを有する。ここで「減圧流路151の底面」とは、2つの側面154とは異なる面であって、エミッタ120をチューブ110の内壁面に接合したときにチューブ110の内壁面と対向する面を意味する。互いに対向する2つの側面154は、それぞれ複数の凸部155を有する。そして、一方の側面154の側面に配置された凸部155と、他方の側面154に配置された凸部155とが、減圧流路151内における灌漑用液体の流れ方向(図3Bにおいて矢印で示す)において交互に配置されている(図3B参照)。 The decompression flow path 151 has two side surfaces 154 facing each other and a bottom surface. Here, the "bottom surface of the decompression flow path 151" means a surface different from the two side surfaces 154 and facing the inner wall surface of the tube 110 when the emitter 120 is joined to the inner wall surface of the tube 110. .. The two side surfaces 154 facing each other have a plurality of convex portions 155, respectively. The convex portion 155 arranged on the side surface of one side surface 154 and the convex portion 155 arranged on the other side surface 154 indicate the flow direction of the irrigation liquid in the decompression flow path 151 (indicated by an arrow in FIG. 3B). ) Are alternately arranged (see FIG. 3B).
 凸部155の形状は、特に限定されず、略四角柱状であってもよいし、略三角柱状であってもよい。減圧流路151内に異物を堆積させにくくする観点では、凸部155の形状は、略三角柱状であることが好ましい。また、減圧流路151内に異物を堆積させにくくする観点では、凸部155は、平面視されたときに、その先端が減圧流路151の中心線Lを越えないように配置されていることが好ましい(図3B参照)。 The shape of the convex portion 155 is not particularly limited, and may be a substantially square columnar shape or a substantially triangular columnar shape. From the viewpoint of making it difficult for foreign matter to be deposited in the decompression flow path 151, the shape of the convex portion 155 is preferably a substantially triangular columnar shape. Further, from the viewpoint of making it difficult for foreign matter to be deposited in the decompression flow path 151, the convex portion 155 is arranged so that its tip does not exceed the center line L of the decompression flow path 151 when viewed in a plan view. Is preferable (see FIG. 3B).
 減圧流路151には、第2の貫通孔152の開口部156が配置されている。第2の貫通孔152は、減圧流路151を流れる灌漑用液体の流れ方向と、第2の貫通孔152から減圧流路151内に流れ込む灌漑用液体の流れ方向とが非平行となるように配置されている。本実施の形態では、第2の貫通孔152の開口部156は、減圧流路151の底面に配置されている。第2の貫通孔152の開口部156の位置は、特に限定されないが、2つの側面154のうちの一方の側面154から突出している互いに隣接する2つの凸部155の間であることが好ましい。また、第2の貫通孔152の開口部156は、灌漑用液体の流れ方向において一方の側面154から突出している2つの凸部155の間に位置する、2つの側面154のうちの他方の側面から突出している凸部155よりも、灌漑用液体の流れ方向において上流側に配置されていることがより好ましい。開口部156には、第2の貫通孔152の取水部130側の開口部153から取り込まれた灌漑用液体が、第2の貫通孔152を介して導かれる(図3Bおよび図4参照)。開口部156から減圧流路151内に灌漑用液体を導くことにより、減圧流路151内に異物が堆積することを抑制することができる。 The opening 156 of the second through hole 152 is arranged in the decompression flow path 151. In the second through hole 152, the flow direction of the irrigation liquid flowing through the decompression flow path 151 is not parallel to the flow direction of the irrigation liquid flowing from the second through hole 152 into the decompression flow path 151. Have been placed. In the present embodiment, the opening 156 of the second through hole 152 is arranged on the bottom surface of the decompression flow path 151. The position of the opening 156 of the second through hole 152 is not particularly limited, but is preferably between two adjacent convex portions 155 protruding from one side surface 154 of the two side surface 154. Further, the opening 156 of the second through hole 152 is located between two convex portions 155 protruding from one side surface 154 in the flow direction of the irrigation liquid, and the other side surface of the two side surface 154. It is more preferable that the irrigation liquid is arranged on the upstream side in the flow direction of the irrigation liquid rather than the convex portion 155 protruding from the irrigation liquid. The irrigation liquid taken in from the opening 153 on the intake portion 130 side of the second through hole 152 is guided to the opening 156 through the second through hole 152 (see FIGS. 3B and 4). By guiding the irrigation liquid from the opening 156 into the decompression flow path 151, it is possible to suppress the accumulation of foreign matter in the decompression flow path 151.
 流量減少部160は、減圧流路151の下流端に接続されており、チューブ110内の灌漑用液体の圧力に応じて灌漑用液体の流量を減少させつつ、灌漑用液体を吐出部140に送る。流量減少部160の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、図5に示すように、流量減少部160は、流量減少用凹部161と、ダイヤフラム162と、台座163と、流量減少用貫通孔164と、連絡溝165と、台座支持部166と、を有する。流量減少用凹部161およびダイヤフラム162は、エミッタ本体123に設けられており、台座163、流量減少用貫通孔164、連絡溝165および台座支持部166は、内側部材124に設けられている。エミッタ本体123の収容部に内側部材124を収容することで、ダイヤフラム162と台座163とが対向し、流量減少部160が構成される。流量減少部160では、チューブ110内の灌漑用液体の圧力に応じて、ダイヤフラム162が変形することで灌漑用液体の流量が制御される。 The flow rate reducing unit 160 is connected to the downstream end of the decompression flow path 151, and sends the irrigation liquid to the discharge unit 140 while reducing the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube 110. .. The configuration of the flow rate reducing unit 160 is not particularly limited as long as it can exhibit the above-mentioned functions. In the present embodiment, as shown in FIG. 5, the flow rate reducing portion 160 includes a flow rate reducing recess 161, a diaphragm 162, a pedestal 163, a flow rate reducing through hole 164, a connecting groove 165, and a pedestal support portion. It has 166 and. The flow rate reducing recess 161 and the diaphragm 162 are provided in the emitter body 123, and the pedestal 163, the flow rate reducing through hole 164, the connecting groove 165, and the pedestal support portion 166 are provided in the inner member 124. By accommodating the inner member 124 in the accommodating portion of the emitter body 123, the diaphragm 162 and the pedestal 163 face each other, and the flow rate reducing portion 160 is configured. In the flow rate reducing unit 160, the flow rate of the irrigation liquid is controlled by deforming the diaphragm 162 according to the pressure of the irrigation liquid in the tube 110.
 流量減少用凹部161は、減圧流路151の下流端に接続されている凹部である。流量減少用凹部161とチューブ110内の空間との間に、ダイヤフラム162が配置されている。したがって、流量減少用凹部161内に流れてきた灌漑用液体は、チューブ110内に流出しない。台座163は、ダイヤフラム162と対向するように配置されている。流量減少用貫通孔164は、台座163に開口部を有し、流量減少用凹部161と吐出部140とを連通するように設けられている。ダイヤフラム162は、チューブ110内の圧力が低い場合は台座163に接触しないように、かつチューブ110内の圧力が高い場合は撓んで台座163に接触するように配置されている。流量減少用貫通孔164の台座163側の開口部は、ダイヤフラム162が台座163に接触したときに塞がれる位置に配置されている。連絡溝165は、ダイヤフラム162が流量減少用貫通孔164の開口部を塞いでいても流量減少用凹部161内の灌漑用液体が流量減少用貫通孔164に流れることができるように台座163に形成された溝である。連絡溝165の一方の端部は、流量減少用貫通孔164に接続されており、他方の端部は、チューブ110内の圧力が高い場合であってもダイヤフラム162が接触できない台座163の領域に配置されている。台座支持部166は、台座163の裏側に配置されており、エミッタ120をチューブ110の内壁面に接合したときにチューブ110の内壁面に当接する。台座支持部166は、ダイヤフラム162が台座163を押圧しても台座163が撓まないように台座163を支持する。 The flow rate reduction recess 161 is a recess connected to the downstream end of the decompression flow path 151. A diaphragm 162 is arranged between the flow rate reducing recess 161 and the space inside the tube 110. Therefore, the irrigation liquid that has flowed into the flow rate reducing recess 161 does not flow out into the tube 110. The pedestal 163 is arranged so as to face the diaphragm 162. The flow rate reduction through hole 164 has an opening in the pedestal 163, and is provided so as to communicate the flow rate reduction recess 161 and the discharge portion 140. The diaphragm 162 is arranged so as not to contact the pedestal 163 when the pressure in the tube 110 is low, and to bend and contact the pedestal 163 when the pressure in the tube 110 is high. The opening on the pedestal 163 side of the flow rate reducing through hole 164 is arranged at a position where the diaphragm 162 is closed when it comes into contact with the pedestal 163. The connecting groove 165 is formed in the pedestal 163 so that the irrigation liquid in the flow rate reducing recess 161 can flow into the flow rate reducing through hole 164 even if the diaphragm 162 closes the opening of the flow rate reducing through hole 164. It is a groove that has been made. One end of the connecting groove 165 is connected to a flow rate reduction through hole 164, and the other end is in the region of the pedestal 163 that the diaphragm 162 cannot contact even when the pressure in the tube 110 is high. Have been placed. The pedestal support portion 166 is arranged on the back side of the pedestal 163 and comes into contact with the inner wall surface of the tube 110 when the emitter 120 is joined to the inner wall surface of the tube 110. The pedestal support portion 166 supports the pedestal 163 so that the pedestal 163 does not bend even if the diaphragm 162 presses the pedestal 163.
 吐出部140は、エミッタ120の裏面122に配置された凹部であり、流量減少部160の下流端に接続されている。エミッタ120は、吐出部140がチューブ110の吐出口112に対向するようにチューブ110の内壁面に接合される(図2参照)。吐出部140は、流量減少部160において流量を制御された灌漑用液体をチューブ110の吐出口112に送る。吐出部140の構成は、前述の機能を発揮することができれば、特に限定されない。また、吐出部140の平面視形状は、特に限定されず、例えば略矩形である。 The discharge portion 140 is a recess arranged on the back surface 122 of the emitter 120, and is connected to the downstream end of the flow rate reduction portion 160. The emitter 120 is joined to the inner wall surface of the tube 110 so that the discharge portion 140 faces the discharge port 112 of the tube 110 (see FIG. 2). The discharge unit 140 sends the irrigation liquid whose flow rate is controlled by the flow rate reduction unit 160 to the discharge port 112 of the tube 110. The configuration of the discharge unit 140 is not particularly limited as long as it can exhibit the above-mentioned functions. The plan-view shape of the discharge unit 140 is not particularly limited, and is, for example, a substantially rectangular shape.
 エミッタ120は、可撓性を有する材料で構成されてもよいし、可撓性を有しない材料で構成されてもよい。ダイヤフラム162は、可撓性を有していることが好ましいことから、ダイヤフラム162を含むエミッタ本体123は、可撓性を有する材料で構成されていることが好ましい。エミッタ120を構成する材料の例には、高密度ポリエチレン、ポリプロピレン、ポリスチレン、ポリアセタールなどが含まれる。本実施の形態では、エミッタ120を構成する材料は、例えば、高密度ポリエチレンである。 The emitter 120 may be made of a flexible material or a non-flexible material. Since the diaphragm 162 is preferably flexible, the emitter body 123 including the diaphragm 162 is preferably made of a flexible material. Examples of materials constituting the emitter 120 include high-density polyethylene, polypropylene, polystyrene, polyacetal and the like. In this embodiment, the material constituting the emitter 120 is, for example, high density polyethylene.
 (点滴灌漑用チューブおよびエミッタの動作)
 次に、点滴灌漑用チューブ100の動作について説明する。まず、チューブ110内に灌漑用液体が送液される。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。点滴灌漑用チューブ100へ送液される灌漑用液体の圧力は、簡易に点滴灌漑法を導入できるように、またチューブ110およびエミッタ120の破損を防止するため、0.1MPa以下であることが好ましい。チューブ110内の灌漑用液体は、取水部130からエミッタ120内に取り込まれる。具体的には、チューブ110内の灌漑用液体は、隣接する凸条134間の隙間から取水用凹部133に入り込み、第1の貫通孔131を通過する。このとき、取水部130は、取水側スクリーン部132(隣接する凸条134間の隙間)を有しているため、灌漑用液体中の異物をある程度除去することができる。
(Operation of drip irrigation tube and emitter)
Next, the operation of the drip irrigation tube 100 will be described. First, the irrigation liquid is sent into the tube 110. Examples of irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof. The pressure of the irrigation liquid sent to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged. .. The irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake 130. Specifically, the irrigation liquid in the tube 110 enters the water intake recess 133 through the gap between the adjacent protrusions 134 and passes through the first through hole 131. At this time, since the water intake unit 130 has a water intake side screen unit 132 (gap between adjacent ridges 134), foreign matter in the irrigation liquid can be removed to some extent.
 取水部130から取り込まれた灌漑用液体は、減圧流路151で減圧された上で流量減少部160に到達する。また、第2の貫通孔152の取水部130側の開口部153から取り込まれた灌漑用液体が、第2の貫通孔152を介して、減圧流路151に流れ込む。これにより、減圧流路151内における異物による目詰まりを抑制することができる。流量減少部160では、チューブ110内の灌漑用液体の圧力に応じて、ダイヤフラム162が変形してダイヤフラム162と台座163との間隔が変化することで灌漑用液体の流量が制御される。流量減少部160から吐出部140に流れ込んだ灌漑用液体は、チューブ110の吐出口112からチューブ110外に吐出される。 The irrigation liquid taken in from the water intake unit 130 reaches the flow rate reduction unit 160 after being decompressed in the decompression flow path 151. Further, the irrigation liquid taken in from the opening 153 on the intake portion 130 side of the second through hole 152 flows into the decompression flow path 151 through the second through hole 152. As a result, clogging due to foreign matter in the decompression flow path 151 can be suppressed. In the flow rate reducing unit 160, the flow rate of the irrigation liquid is controlled by deforming the diaphragm 162 and changing the distance between the diaphragm 162 and the pedestal 163 according to the pressure of the irrigation liquid in the tube 110. The irrigation liquid that has flowed from the flow rate reducing unit 160 into the discharge unit 140 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
 (効果)
 以上のように、本実施の形態に係るエミッタ120では、第2の貫通孔152から減圧流路151に直接灌漑用液体が流れ込むので、減圧流路151内における灌漑用液体の流れが複雑になり、減圧流路151内(特に2つの凸部155の間の異物が堆積しやすい領域)に異物が堆積することを抑制できる。したがって、本実施の形態に係るエミッタ120は、減圧流路151に高圧水流を流してフラッシングを行わなくても、長期間使用することができる。
(effect)
As described above, in the emitter 120 according to the present embodiment, the irrigation liquid flows directly from the second through hole 152 into the decompression flow path 151, so that the flow of the irrigation liquid in the decompression flow path 151 becomes complicated. , It is possible to suppress the accumulation of foreign matter in the decompression flow path 151 (particularly, the region between the two convex portions 155 where foreign matter is likely to accumulate). Therefore, the emitter 120 according to the present embodiment can be used for a long period of time without flushing by flowing a high-pressure water stream through the decompression flow path 151.
 また、本実施の形態に係るエミッタ120では、第1の貫通孔131だけでなく第2の貫通孔152からもエミッタ120内に灌漑用液体を取り込むため、第1の貫通孔131の数および大きさを小さくすることもできる。 Further, in the emitter 120 according to the present embodiment, since the irrigation liquid is taken into the emitter 120 not only from the first through hole 131 but also from the second through hole 152, the number and size of the first through holes 131 are increased. It can also be made smaller.
 なお、本実施の形態では、第2の貫通孔152の外部側の開口部153が取水部130に配置されている例について説明したが、第2の貫通孔152の開口部153の位置は、これに限定されない。たとえば、第2の貫通孔152の開口部153は、エミッタ120の表面121の取水部130以外の領域に配置されていてもよいし、エミッタ120の側面(表面121および裏面122以外の面)に配置されていてもよい。 In the present embodiment, an example in which the opening 153 on the outer side of the second through hole 152 is arranged in the water intake portion 130 has been described, but the position of the opening 153 of the second through hole 152 is determined. Not limited to this. For example, the opening 153 of the second through hole 152 may be arranged in a region other than the intake portion 130 of the front surface 121 of the emitter 120, or on the side surface of the emitter 120 (a surface other than the front surface 121 and the back surface 122). It may be arranged.
 [実施の形態2]
 (点滴灌漑用チューブの構成)
 実施の形態2に係るエミッタ200は、外部と減圧流路151とに開口する第2の貫通孔210の位置のみが実施の形態1に係るエミッタ120と異なる。そこで、実施の形態1に係るエミッタ120と同一の構成については、同一の符号を付して、その説明を省略する。
[Embodiment 2]
(Construction of drip irrigation tube)
The emitter 200 according to the second embodiment is different from the emitter 120 according to the first embodiment only in the position of the second through hole 210 that opens to the outside and the decompression flow path 151. Therefore, the same configuration as that of the emitter 120 according to the first embodiment is designated by the same reference numerals, and the description thereof will be omitted.
 図6は、実施の形態2に係る点滴灌漑用チューブ100の長軸方向における断面図である。図6に示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ200を有する。 FIG. 6 is a cross-sectional view of the drip irrigation tube 100 according to the second embodiment in the major axis direction. As shown in FIG. 6, the drip irrigation tube 100 has a tube 110 and an emitter 200.
 (エミッタの構成)
 図7Aは、本実施の形態に係るエミッタ200の平面図であり、図7Bは、エミッタ200の底面図であり、図7Cは、エミッタ200の右側面図である。図8は、減圧流路151の部分拡大斜視図である。図9Aは、図7AのC-C線の断面図であり、図9Bは、図7AのD-D線の断面図である。
(Emitter configuration)
7A is a plan view of the emitter 200 according to the present embodiment, FIG. 7B is a bottom view of the emitter 200, and FIG. 7C is a right side view of the emitter 200. FIG. 8 is a partially enlarged perspective view of the decompression flow path 151. 9A is a cross-sectional view taken along the line CC of FIG. 7A, and FIG. 9B is a cross-sectional view taken along the line DD of FIG. 7A.
 エミッタ200は、灌漑用液体を流通させるチューブ110の内壁面の、チューブ110の内外を連通する吐出口112に対応する位置に接合される(図6参照)。図7Aおよび7Bに示されるように、エミッタ200は、灌漑用液体を取り入れるための第1の貫通孔131を含む取水部130と、点滴灌漑用チューブ100の吐出口112に面して配置され、灌漑用液体を吐出するための吐出部140と、取水部130と吐出部140とを繋ぎ、取水部130から取り込んだ灌漑用液体を吐出部140まで流通させるための流路150と、を有する。流路150は、第1の貫通孔131から取り入れられた灌漑用液体の圧力を減圧させるための減圧流路151と、減圧流路151で減圧された灌漑用液体の流量を調整するための流量減少部160と、を有する。また、エミッタ200は、外部と減圧流路151とに開口する第2の貫通孔210をさらに有する。 The emitter 200 is joined to the inner wall surface of the tube 110 through which the irrigation liquid is circulated, at a position corresponding to the discharge port 112 communicating with the inside and outside of the tube 110 (see FIG. 6). As shown in FIGS. 7A and 7B, the emitter 200 is arranged to face the water intake 130 including the first through hole 131 for taking in the irrigation liquid and the discharge port 112 of the drip irrigation tube 100. It has a discharge unit 140 for discharging the irrigation liquid, and a flow path 150 for connecting the water intake unit 130 and the discharge unit 140 and circulating the irrigation liquid taken in from the water intake unit 130 to the discharge unit 140. The flow path 150 is a decompression flow path 151 for reducing the pressure of the irrigation liquid taken in from the first through hole 131, and a flow rate for adjusting the flow rate of the irrigation liquid decompressed in the decompression flow path 151. It has a reduction portion 160 and. Further, the emitter 200 further has a second through hole 210 that opens to the outside and the decompression flow path 151.
 本実施の形態に係るエミッタ200も、エミッタ本体123の収容部に内側部材124を収容することで製造される。エミッタ本体123は、取水部130および流路150の一部(主として減圧流路151)を含む。内側部材124は、吐出部140および流路150の一部を含む。流量減少部160は、エミッタ本体123の流量減少用凹部161およびダイヤフラム162(後述)と、台座163、流量減少用貫通孔164および内側部材124の連絡溝165により構成される。 The emitter 200 according to the present embodiment is also manufactured by accommodating the inner member 124 in the accommodating portion of the emitter main body 123. The emitter body 123 includes a water intake unit 130 and a part of the flow path 150 (mainly the decompression flow path 151). The inner member 124 includes a discharge portion 140 and a part of the flow path 150. The flow rate reducing portion 160 is composed of a flow rate reducing recess 161 and a diaphragm 162 (described later) of the emitter body 123, a pedestal 163, a flow rate reducing through hole 164, and a connecting groove 165 of the inner member 124.
 取水部130は、エミッタ200の表面220に長軸方向に沿って配置されている。取水部130は、複数の第1の貫通孔131、取水側スクリーン部132を有する。また、本実施の形態では、取水部130(取水側スクリーン部132)には、第2の貫通孔210の開口部211も配置されている。 The water intake unit 130 is arranged on the surface 220 of the emitter 200 along the major axis direction. The water intake unit 130 has a plurality of first through holes 131 and a water intake side screen unit 132. Further, in the present embodiment, the opening portion 211 of the second through hole 210 is also arranged in the water intake portion 130 (water intake side screen portion 132).
 第2の貫通孔210の開口部211の大きさは、減圧流路151内において堆積した異物を除去できる程度に灌漑用液体を取り込むことができれば、特に限定されない。また、第2の貫通孔210の開口部211の数および形状も、特に限定されない。 The size of the opening 211 of the second through hole 210 is not particularly limited as long as the irrigation liquid can be taken in to the extent that foreign matter accumulated in the decompression flow path 151 can be removed. Further, the number and shape of the openings 211 of the second through hole 210 are also not particularly limited.
 減圧流路151は、灌漑用液体の流れ方向(図7Bにおいて矢印で示す)において、互いに対向する2つの側面から交互に突出している複数の凸部155を有し、第1の貫通孔131から取り入れられた灌漑用液体の圧力を減圧させる。減圧流路151には、第2の貫通孔210の開口部212が配置されている(図8、図9Aおよび9B参照)。 The decompression flow path 151 has a plurality of convex portions 155 that alternately project from two side surfaces facing each other in the flow direction of the irrigation liquid (indicated by an arrow in FIG. 7B), and is formed from the first through hole 131. Reduce the pressure of the irrigation liquid taken in. The opening 212 of the second through hole 210 is arranged in the decompression flow path 151 (see FIGS. 8, 9A and 9B).
 本実施の形態においても、減圧流路151は、エミッタ200の裏面230において、エミッタ200の長軸方向に沿って形成されている。減圧流路151の下流端には、流量減少部160が接続されている。減圧流路151は、エミッタの裏面230とチューブ110の内壁面とが接合されることにより形成される。取水部130から取り込まれた灌漑用液体は、減圧流路151を通って、流量減少部160に流れる。 Also in this embodiment, the decompression flow path 151 is formed on the back surface 230 of the emitter 200 along the major axis direction of the emitter 200. A flow rate reducing unit 160 is connected to the downstream end of the decompression flow path 151. The decompression flow path 151 is formed by joining the back surface 230 of the emitter and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 130 flows to the flow rate reduction unit 160 through the decompression flow path 151.
 減圧流路151は、互いに対向する2つの側面154と、底面とを有する。互いに対向する2つの側面154は、それぞれ複数の凸部155を有する。そして、一方の側面154に配置された凸部155と、他方の側面154に配置された凸部155とが、減圧流路151内における灌漑用液体の流れ方向(図7Bにおいて矢印で示す)において交互に配置されている(図7B参照)。 The decompression flow path 151 has two side surfaces 154 facing each other and a bottom surface. The two side surfaces 154 facing each other have a plurality of convex portions 155, respectively. Then, the convex portion 155 arranged on one side surface 154 and the convex portion 155 arranged on the other side surface 154 are in the flow direction of the irrigation liquid in the decompression flow path 151 (indicated by an arrow in FIG. 7B). They are arranged alternately (see FIG. 7B).
 減圧流路151には、第2の貫通孔210の開口部212が配置されている。第2の貫通孔210は、減圧流路151を流れる灌漑用液体の流れ方向と、第2の貫通孔210から減圧流路151内に流れ込む灌漑用液体の流れ方向とが非平行となるように配置されている。本実施の形態では、第2の貫通孔210の開口部212は、凸部155の表面に配置されている。第2の貫通孔210の開口部212の位置は、特に限定されないが、2つの側面154のうちの一方の側面154から突出している互いに隣接する2つの凸部155の間であることが好ましい。また、第2の貫通孔210の開口部212は、灌漑用液体の流れ方向において一方の側面154から突出している2つの凸部155の間に位置する、2つの側面154のうちの他方の側面から突出している凸部155よりも、灌漑用液体の流れ方向において上流側に配置されていることがより好ましい。すなわち、図8に示すように、第2の貫通孔210の開口部212は、凸部155の表面のうち、下流側に面する面に配置されていることが好ましい。また、本実施の形態では、第2の貫通孔210の開口部212は、凸部155の表面のうち、凸部155の基端部近傍に配置されていることが好ましい。開口部212には、第2の貫通孔210の取水部130側の開口部211から取り込まれた灌漑用液体が、第2の貫通孔210を介して導かれる(図9B参照)。開口部212から減圧流路151内に灌漑用液体を導くことにより、減圧流路151路内に異物が堆積することを抑制することができる。 The opening 212 of the second through hole 210 is arranged in the decompression flow path 151. In the second through hole 210, the flow direction of the irrigation liquid flowing through the decompression flow path 151 is not parallel to the flow direction of the irrigation liquid flowing from the second through hole 210 into the decompression flow path 151. Have been placed. In the present embodiment, the opening 212 of the second through hole 210 is arranged on the surface of the convex portion 155. The position of the opening 212 of the second through hole 210 is not particularly limited, but is preferably between two adjacent convex portions 155 protruding from one side surface 154 of the two side surfaces 154. Further, the opening 212 of the second through hole 210 is located between two convex portions 155 protruding from one side surface 154 in the flow direction of the irrigation liquid, and the other side surface of the two side surface 154. It is more preferable that the irrigation liquid is arranged on the upstream side in the flow direction of the irrigation liquid rather than the convex portion 155 protruding from the irrigation liquid. That is, as shown in FIG. 8, it is preferable that the opening 212 of the second through hole 210 is arranged on the surface of the convex portion 155 facing the downstream side. Further, in the present embodiment, it is preferable that the opening 212 of the second through hole 210 is arranged in the vicinity of the base end portion of the convex portion 155 on the surface of the convex portion 155. The irrigation liquid taken in from the opening 211 on the intake portion 130 side of the second through hole 210 is guided to the opening 212 through the second through hole 210 (see FIG. 9B). By guiding the irrigation liquid from the opening 212 into the decompression channel 151, it is possible to suppress the accumulation of foreign matter in the decompression channel 151.
 (効果)
 本実施の形態に係るエミッタ200も、実施の形態1に係るエミッタ100と同様の効果を有する。
(effect)
The emitter 200 according to the present embodiment also has the same effect as the emitter 100 according to the first embodiment.
 [変形例]
 上記各実施の形態では、互いに対向する2つの側面154から交互に突出している複数の凸部155を有する減圧流路151を有するエミッタ120、200について説明したが、本発明に係るエミッタはこれに限定されない。たとえば、減圧流路151の構成は、第1の貫通孔131から取り入れられた灌漑用液体の圧力を減圧させることができれば特に限定されない。図10A~10C、図11Aおよび11Bは、減圧流路151の変形例を示す図である。図10Aおよび10Bは、変形例に係るエミッタの減圧流路151の部分拡大底面図であり、図10Cは、図10Bの変形例に係るエミッタの減圧流路151のE-E線の部分拡大断面図である。図11Aおよび11Bは、変形例に係るエミッタの減圧流路151の部分拡大底面図である。
[Modification example]
In each of the above embodiments, the emitters 120 and 200 having the decompression flow path 151 having a plurality of convex portions 155 alternately protruding from the two side surfaces 154 facing each other have been described, but the emitter according to the present invention includes the emitters 120 and 200. Not limited. For example, the configuration of the decompression flow path 151 is not particularly limited as long as the pressure of the irrigation liquid taken in from the first through hole 131 can be depressurized. 10A to 10C, FIGS. 11A and 11B are diagrams showing a modified example of the decompression flow path 151. 10A and 10B are partially enlarged bottom views of the decompression flow path 151 of the emitter according to the modified example, and FIG. 10C is a partially enlarged cross section of the decompression flow path 151 of the emitter according to the modified example of FIG. 10B. It is a figure. 11A and 11B are partially enlarged bottom views of the decompression flow path 151 of the emitter according to the modified example.
 図10Aに示されるように、減圧流路151は、底面157からチューブ110の内壁面に向かって突出する複数の円柱状の凸部155を有していてもよい。また、図10Bおよび10Cに示されるように、減圧流路151の底面157からチューブ110の内壁面に向かって突出する複数の角柱状の凸部155を有していてもよい。また、図11Aに示されるように、互いに対向する2つの側面154から互いに対向するように突出する一対の凸部155を有していてもよい。また、図11Bに示されるように、減圧流路151は、互いに対向する2つの側面154から互いに対向するように突出する複数対の凸部155を有していてもよい。図10A~図10Cおよび図11Aおよび11Bに示される減圧流路151においても、流路内に侵入した異物が堆積しやすい場所に第2の貫通孔の開口部(不図示)が配置される。 As shown in FIG. 10A, the decompression flow path 151 may have a plurality of columnar convex portions 155 protruding from the bottom surface 157 toward the inner wall surface of the tube 110. Further, as shown in FIGS. 10B and 10C, a plurality of prismatic convex portions 155 may be provided so as to project from the bottom surface 157 of the decompression flow path 151 toward the inner wall surface of the tube 110. Further, as shown in FIG. 11A, it may have a pair of convex portions 155 projecting from two side surfaces 154 facing each other so as to face each other. Further, as shown in FIG. 11B, the decompression flow path 151 may have a plurality of pairs of convex portions 155 projecting from two side surfaces 154 facing each other so as to face each other. Also in the decompression flow path 151 shown in FIGS. 10A to 10C and 11A and 11B, an opening (not shown) of the second through hole is arranged at a place where foreign matter that has entered the flow path is likely to accumulate.
 本出願は、2019年9月4日出願の特願2019-161473に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-161473 filed on September 4, 2019. All the contents described in the application specification and drawings are incorporated in the specification of the present application.
 本発明によれば、流路内に異物が堆積することを抑制することができるエミッタおよび点滴灌漑用チューブを提供することができる。これにより、点滴灌漑や耐久試験などの、長期の滴下を要する技術分野への上記エミッタの普及および当該技術分野のさらなる発展が期待される。 According to the present invention, it is possible to provide an emitter and a drip irrigation tube capable of suppressing the accumulation of foreign matter in the flow path. As a result, it is expected that the above-mentioned emitter will be widely used in technical fields that require long-term dripping, such as drip irrigation and durability tests, and further development of the technical fields will be expected.
 100 点滴灌漑用チューブ
 110 チューブ
 112 吐出口
 120、200 エミッタ
 121、220 表面
 122、230 裏面
 123 エミッタ本体
 124 内側部材
 130 取水部
 131 第1の貫通孔
 132 取水側スクリーン部
 133 取水用凹部
 134 凸条
 140 吐出部
 150 流路
 151 減圧流路
 152、210 第2の貫通孔
 153、211 第2の貫通孔の開口部(取水部側)
 154 側面
 155 凸部
 156、212 第2の貫通孔の開口部(減圧流路側)
 157 減圧流路の底面
 160 流量減少部
 161 流量減少用凹部
 162 ダイヤフラム
 163 台座
 164 流量減少用貫通孔
 165 連絡溝
 166 台座支持部
100 Drip irrigation tube 110 Tube 112 Discharge port 120, 200 Emitter 121, 220 Front surface 122, 230 Back surface 123 Emitter body 124 Inner member 130 Intake part 131 First through hole 132 Intake side screen part 133 Intake recess 134 Convex 140 Discharge part 150 Flow path 151 Decompression flow path 152, 210 Second through hole 153, 211 Opening of second through hole (water intake side)
154 Side surface 155 Convex part 156, 212 Opening of second through hole (decompression flow path side)
157 Bottom of decompression flow path 160 Flow rate reduction part 161 Flow rate reduction recess 162 Diaphragm 163 Pedestal 164 Flow rate reduction through hole 165 Communication groove 166 Pedestal support part

Claims (8)

  1.  灌漑用液体を流通させるチューブの内壁面の、前記チューブの内外を連通する吐出口に対応する位置に接合されたときに、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
     前記灌漑用液体を取り入れるための第1の貫通孔を含む取水部と、
     前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、
     前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させるための流路と、
     を有し、
     前記流路は、前記第1の貫通孔から取り入れられた前記灌漑用液体の圧力を減圧させるための減圧流路を含み、
     前記エミッタは、外部と前記減圧流路とに開口する第2の貫通孔をさらに有し、
     前記減圧流路を流れる前記灌漑用液体の流れ方向と、前記第2の貫通孔から前記減圧流路内に流れ込む前記灌漑用液体の流れ方向とは、非平行である、
     エミッタ。
    When the inner wall surface of the tube through which the irrigation liquid flows is joined at a position corresponding to the discharge port communicating the inside and outside of the tube, the irrigation liquid in the tube is quantitatively discharged from the discharge port. An emitter for discharging to the outside
    An intake part including a first through hole for taking in the irrigation liquid, and
    A discharge unit arranged facing the discharge port and for discharging the irrigation liquid,
    A flow path for connecting the water intake part and the discharge part and allowing the irrigation liquid to flow,
    Have,
    The flow path includes a decompression flow path for reducing the pressure of the irrigation liquid taken in from the first through hole.
    The emitter further has a second through hole that opens into the outside and the decompression flow path.
    The flow direction of the irrigation liquid flowing through the decompression flow path and the flow direction of the irrigation liquid flowing into the decompression flow path from the second through hole are non-parallel.
    Emitter.
  2.  前記減圧流路は、複数の凸部を有する、請求項1に記載のエミッタ。 The emitter according to claim 1, wherein the decompression flow path has a plurality of convex portions.
  3.  前記複数の凸部は、前記減圧流路の互いに対向する2つの側面から、前記減圧流路内における前記灌漑用液体の流れ方向において交互に突出している、請求項2に記載のエミッタ。 The emitter according to claim 2, wherein the plurality of convex portions alternately project from two opposite side surfaces of the decompression flow path in the flow direction of the irrigation liquid in the decompression flow path.
  4.  前記第2の貫通孔の前記減圧流路側の開口部は、前記2つの側面のうちの一方の側面から突出している互いに隣接する2つの前記凸部の間に配置されている、請求項3に記載のエミッタ。 3. The opening of the second through hole on the decompression flow path side is arranged between two adjacent convex portions protruding from one side surface of the two side surfaces. The emitter described.
  5.  前記第2の貫通孔の前記減圧流路側の開口部は、前記灌漑用液体の流れ方向において前記2つの凸部の間に位置する、前記2つの側面のうちの他方の側面から突出している前記凸部よりも、前記灌漑用液体の流れ方向において上流側に配置されている、請求項4に記載のエミッタ。 The opening on the decompression flow path side of the second through hole is located between the two convex portions in the flow direction of the irrigation liquid, and protrudes from the other side surface of the two side surfaces. The emitter according to claim 4, which is arranged upstream of the convex portion in the flow direction of the irrigation liquid.
  6.  前記第2の貫通孔の前記減圧流路側の開口部は、前記減圧流路の底面に配置されている、請求項1~5のいずれか一項に記載のエミッタ。 The emitter according to any one of claims 1 to 5, wherein the opening of the second through hole on the decompression flow path side is arranged on the bottom surface of the decompression flow path.
  7.  前記第2の貫通孔の前記減圧流路側の開口部は、前記凸部の表面に配置されている、請求項2~5のいずれか一項に記載のエミッタ。 The emitter according to any one of claims 2 to 5, wherein the opening of the second through hole on the decompression flow path side is arranged on the surface of the convex portion.
  8.  灌漑用液体を吐出する吐出口を有するチューブと、
     前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1~7のいずれか一項に記載のエミッタと、
     を有する、点滴灌漑用チューブ。
    A tube with a discharge port that discharges irrigation liquid,
    The emitter according to any one of claims 1 to 7, which is joined to a position corresponding to the discharge port on the inner wall surface of the tube.
    Have a drip irrigation tube.
PCT/JP2020/033001 2019-09-04 2020-09-01 Emitter and drip irrigation tube WO2021045032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-161473 2019-09-04
JP2019161473A JP2021036835A (en) 2019-09-04 2019-09-04 Emitter, and tube for drip irrigation

Publications (1)

Publication Number Publication Date
WO2021045032A1 true WO2021045032A1 (en) 2021-03-11

Family

ID=74846759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033001 WO2021045032A1 (en) 2019-09-04 2020-09-01 Emitter and drip irrigation tube

Country Status (2)

Country Link
JP (1) JP2021036835A (en)
WO (1) WO2021045032A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041563A1 (en) * 2013-08-12 2015-02-12 Rain Bird Corporation Elastomeric emitter and methods relating to same
JP2019129784A (en) * 2018-02-01 2019-08-08 株式会社エンプラス Emitter and drip irrigation tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041563A1 (en) * 2013-08-12 2015-02-12 Rain Bird Corporation Elastomeric emitter and methods relating to same
JP2019129784A (en) * 2018-02-01 2019-08-08 株式会社エンプラス Emitter and drip irrigation tube

Also Published As

Publication number Publication date
JP2021036835A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6532763B2 (en) Emitter and drip irrigation tube
WO2017098858A1 (en) Emitter and drip irrigation tube
WO2016194603A1 (en) Emitter and drip irrigation tube
JP6577318B2 (en) Emitter and drip irrigation tubes
WO2016190168A1 (en) Emitter and drip irrigation tube
WO2016190167A1 (en) Emitter and drip irrigation tube
JP6577319B2 (en) Emitter and drip irrigation tubes
JP6667227B2 (en) Emitter and drip irrigation tube
US11064663B2 (en) Emitter and tube for drip irrigation
JP6783089B2 (en) Emitter and drip irrigation tube
WO2021045032A1 (en) Emitter and drip irrigation tube
WO2018021074A1 (en) Drip irrigation tube and drip irrigation system
JP6710602B2 (en) Emitter and drip irrigation tubes
JP6689634B2 (en) Emitter and drip irrigation tubes
WO2019151366A1 (en) Emitter and tube for drip irrigation
WO2019078180A1 (en) Emitter, and tube for drip irrigation
JP6831741B2 (en) Emitter and drip irrigation tubes
WO2019151367A1 (en) Emitter and drip irrigation tube
WO2021039624A1 (en) Emitter and drip irrigation tube
WO2016136695A1 (en) Emitter and drip irrigation tube
WO2019059186A1 (en) Emitter and drip irrigation tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859744

Country of ref document: EP

Kind code of ref document: A1