WO2021039624A1 - Emitter and drip irrigation tube - Google Patents
Emitter and drip irrigation tube Download PDFInfo
- Publication number
- WO2021039624A1 WO2021039624A1 PCT/JP2020/031602 JP2020031602W WO2021039624A1 WO 2021039624 A1 WO2021039624 A1 WO 2021039624A1 JP 2020031602 W JP2020031602 W JP 2020031602W WO 2021039624 A1 WO2021039624 A1 WO 2021039624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- irrigation liquid
- tube
- diaphragm
- pedestal
- flow path
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/02—Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/22—Improving land use; Improving water use or availability; Controlling erosion
Definitions
- the present invention relates to an emitter and a drip irrigation tube having the emitter.
- the drip irrigation method has been known as one of the plant cultivation methods.
- the drip irrigation method is a method in which a drip irrigation tube is placed on the soil in which a plant is planted, and an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
- an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
- the drip irrigation method has attracted particular attention because it can minimize the consumption of irrigation liquid.
- the drip irrigation tube is a tube in which a plurality of through holes for discharging the irrigation liquid are formed, and a plurality of emitters (“) for discharging the irrigation liquid from each through hole, which is joined to the inner wall surface of the tube. Also referred to as "dripper") (see, for example, Patent Document 1).
- Patent Document 1 describes an emitter having a box-shaped receiving member having an open upper surface, a film, and a cover member. Zigzag-shaped grooves are formed on the inner bottom surface of the receiving member and the inner surface of the cover member. A through hole is formed in the membrane at a position opposite to the inflow port of the cover member.
- the emitter described in Patent Document 1 arranges a film inside a receiving member and covers the film with a cover member to sandwich the film between the receiving member and the cover member.
- the inlet of the irrigation liquid is blocked by the membrane.
- the membrane is pushed by the irrigation liquid and the irrigation liquid flows into the emitter.
- the liquid that has flowed into the emitter is discharged to the outside of the emitter from the discharge port of the receiving member through the groove and the through hole.
- Foreign matter may be mixed in the irrigation liquid that circulates inside the emitter described in Patent Document 1.
- foreign matter may enter the inside of the emitter together with the irrigation liquid and be caught between the membrane and the discharge port.
- An emitter in which foreign matter is caught between the membrane and the discharge port has a problem that the irrigation liquid cannot be properly discharged.
- An object of the present invention is to provide an emitter and a drip irrigation tube that can restore the flow rate adjustment function even when a foreign substance is mixed in the irrigation liquid.
- the emitter according to the present invention is joined to a position corresponding to a discharge port communicating inside and outside the tube on the inner wall surface of a tube through which the irrigation liquid flows, and the irrigation liquid in the tube is quantitatively discharged from the discharge port.
- An emitter for discharging the irrigation liquid to the outside of the tube a water intake section for taking in the irrigation liquid, a decompression flow path communicating with the water intake section and flowing the irrigation liquid while depressurizing, and the decompression flow path.
- the irrigation liquid is communicated with the flow rate adjusting unit for adjusting the flow rate of the irrigation liquid taken in from the intake unit according to the pressure of the irrigation liquid in the tube, and the irrigation liquid is communicated with the flow rate adjusting unit.
- It has a discharge unit for discharging, and the flow rate adjusting unit is arranged in a non-contact manner facing the diaphragm and the diaphragm that receives pressure from the irrigation liquid flowing through the tube, and is used for irrigation in the tube.
- a pedestal configured so that the diaphragm under liquid pressure comes into close contact with the pedestal, a first communication hole that opens into the pedestal and connects to the discharge portion, and an outer peripheral portion of the pedestal and the pedestal formed in the pedestal.
- a communication groove that communicates with the first communication hole, a second communication hole that opens in the pedestal and connects to the discharge portion, and a flow path plug that is fixed to the diaphragm and closes the second communication hole.
- the second communication hole is the flow path plug.
- the irrigation liquid between the diaphragm and the pedestal is guided to the discharge portion through the first communication hole, and when the pressure difference is equal to or more than the predetermined value, the second communication hole is closed. Is opened by the deformation of the diaphragm and the movement of the flow path plug, and at least a part of the irrigation liquid between the diaphragm and the pedestal is discharged through the second communication hole. Guided to the club.
- the drip irrigation tube according to the present invention has a tube having a discharge port for discharging an irrigation liquid and an emitter according to the present invention joined at a position corresponding to the discharge port on the inner wall surface of the tube. ..
- an emitter and a drip irrigation tube that can restore the flow rate adjustment function even when a foreign substance is mixed in the irrigation liquid.
- FIG. 1 is a cross-sectional view of a drip irrigation tube according to the present invention.
- 2A and 2B are views showing the configuration of the emitter after accommodating the pedestal portion in the accommodating portion.
- 3A and 3B are other views showing the configuration of the emitter after accommodating the pedestal portion in the accommodating portion.
- 4A to 4C are views showing the configuration of the flow path plug.
- 5A and 5B are diagrams for explaining the operation of the diaphragm.
- 6A-C are other views for explaining the operation of the diaphragm.
- 7A to 7C are views showing the configuration of the flow path plug according to the first modification.
- 8A to 8C are diagrams showing the configuration of the flow path plug according to the second modification.
- 9A to 9C are views showing the configuration of the flow path plug according to the third modification.
- 10A to 10C are views showing the configuration of the flow path plug according to the modified example 4.
- FIG. 1 is a cross-sectional view of a drip irrigation tube 100 according to a first embodiment of the present invention.
- the drip irrigation tube 100 has a tube 110 and an emitter 120.
- the tube 110 is a pipe for flowing an irrigation liquid.
- irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof.
- the direction in which the irrigation liquid is circulated in the tube 110 is not particularly limited.
- the material of the tube 110 is not particularly limited. In this embodiment, the material of the tube 110 is polyethylene.
- a plurality of discharge ports 111 for discharging the irrigation liquid at intervals of 200 mm or more and 500 mm or less are formed on the tube wall of the tube 110 in the axial direction of the tube 110 (direction in which the irrigation liquid flows).
- the diameter of the opening of the discharge port 111 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 111 is 1.5 mm.
- Emitters 120 are joined to positions of the inner wall surface 112 corresponding to the discharge port 111.
- the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be arranged inside the tube 110 without leakage.
- the drip irrigation tube 100 is produced by joining the back surface 125 of the emitter 120 to the inner wall surface 112.
- the method of joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method of joining the tube 110 and the emitter 120 include welding of the resin material constituting the tube 110 or the emitter 120, and bonding with an adhesive.
- the discharge port 111 may be formed after joining the tube 110 and the emitter 120, or may be formed before joining.
- FIG. 2A and 2B and 3A and 3B are diagrams showing the configuration of the emitter 120 after the pedestal portion 122 is accommodated in the accommodating portion 135.
- FIG. 2A is a plan view of the emitter 120
- FIG. 2B is a bottom view
- 3A is a left side view
- FIG. 3B is a cross-sectional view taken along the line AA shown in FIG. 2A.
- 4A to 4C are views showing the configuration of the flow path plug 165.
- 4A is a front view of the flow path plug 165 fixed to the diaphragm 153
- FIG. 4B is a plan view
- FIG. 4C is a right side view.
- the emitter 120 is joined to the inner wall surface 112 of the tube 110 so as to cover the discharge port 111.
- the shape of the emitter 120 is not particularly limited as long as it can be brought into close contact with the inner wall surface 112 and cover the discharge port 111.
- the shape of the back surface 125 joined to the inner wall surface 112 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is a substantially circular arc convex toward the inner wall surface 112 so as to be along the inner wall surface 112.
- the plan-view shape of the emitter 120 is a substantially rectangular shape with four corners chamfered.
- the size of the emitter 120 is not particularly limited and is appropriately determined based on the desired amount of irrigation liquid discharged from the discharge port 111.
- the length of the emitter 120 in the long side direction is 19 mm
- the length in the short side direction is 8 mm
- the height is 2.7 mm.
- the emitter 120 is molded of an elastic material.
- materials for the emitter 120 include resins, elastomers and rubbers.
- resins include polyethylene and silicone.
- the flexibility of the emitter 120 can be adjusted by using an elastic material. Examples of methods for adjusting the flexibility of the emitter 120 include selecting an elastic resin and adjusting the mixing ratio of the elastic resin to a hard resin material.
- the index indicating the hardness of the material of the emitter 120 includes the durometer hardness specified in JIS K6253-3 (2012).
- the hardness of the material of the emitter 120 is about D60 in terms of durometer hardness.
- the durometer hardness includes type A, type D, type E, and the like, depending on the type of durometer used for measurement.
- the durometer hardness D60 is obtained.
- the durometer hardness is the hardest in type D, and becomes softer in the order of type A and type E.
- the effect of suppressing the deformation of the pedestal 161 is more exhibited in the material having the durometer hardness of D60 or less.
- the emitter 120 has an emitter body 121 and a pedestal portion 122 housed in the emitter body 121.
- the pedestal portion 122 is accommodated in the accommodating portion 135 of the emitter body 121 from the back surface 125 side facing the discharge port 111 before the emitter 120 is joined to the tube 110.
- the emitter body 121 and the pedestal portion 122 may be molded integrally or as separate bodies.
- the emitter body 121 and the pedestal portion 122 are integrally molded with the side surface 126 of the emitter body 121 and the side surface 126 of the pedestal portion 122 connected via a hinge portion.
- the boundary between the emitter body 121 and the hinge portion is cut, and the pedestal portion 122 in which the hinge portion remains is accommodated in the accommodating portion 135 of the emitter main body 121.
- the method of integrally molding the emitter body 121, the pedestal portion 122, and the hinge portion is not particularly limited. In the present embodiment, the emitter body 121, the pedestal portion 122, and the hinge portion are integrally molded by injection molding.
- the emitter body 121 includes a water intake portion 131, a first connection groove 132 serving as a first connection flow path 142, a pressure reducing groove 133 serving as a decompression flow path 143, and a second connection groove 134 serving as a second connection flow path 144.
- the flow rate adjusting portion 136 is formed by accommodating the pedestal portion 122 in the accommodating portion 135 of the emitter main body 121.
- a water intake portion 131 is open on the surface 124 of the emitter body 121.
- the back surface 125 of the emitter body 121 is open with a first connection groove 132, a pressure reducing groove 133, a second connection groove 134, and an accommodating portion 135.
- the first connection groove 132, the pressure reducing groove 133, and the second connection groove 134 become the first connection flow path 142, the pressure reduction flow path 143, and the second connection flow path 144, respectively. ..
- it is composed of a water intake section 131, a first connection flow path 142, a decompression flow path 143, a second connection flow path 144, a flow rate adjustment section 136, and a discharge section 137, and a flow path connecting the water intake section 131 and the discharge section 137. Is formed.
- This flow path allows the irrigation liquid to flow from the intake section 131 to the discharge section 137.
- the water intake unit 131 is arranged in a half region of the surface 124 of the emitter body 121.
- the number of water intake units 131 is not particularly limited. In this embodiment, one water intake unit 131 is arranged on one half surface of the emitter 120 in the long axis direction (FIG. 2A).
- the flow rate adjusting unit 136 is arranged in the region of the surface 124 where the water intake unit 131 is not arranged (FIG. 1).
- the water intake unit 131 has a water intake side screen unit 146 and a water intake through hole 147.
- the water intake side screen portion 146 prevents foreign substances (suspended substances) in the irrigation liquid taken into the emitter 120 from entering the water intake through hole 147.
- the water intake side screen portion 146 is open to the inside of the tube 110 and has a water intake recess 148 and ridges 149.
- the water intake recess 148 is a recess formed on the surface 124 of the emitter 120 substantially in the entire region of one half surface on which the diaphragm 153 is not arranged.
- the depth of the water intake recess 148 is not particularly limited, and is appropriately set depending on the size of the emitter 120.
- a ridge 149 is formed on the bottom surface of the water intake recess 148.
- a water intake through hole 147 is formed on the bottom surface of the water intake recess 148.
- the ridge 149 is arranged on the bottom surface of the water intake recess 148.
- the arrangement and number of the ridges 149 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 148 and the intrusion of suspended matter in the irrigation liquid can be prevented.
- the ridge 149 may be formed so that the width decreases from the surface 124 of the emitter 120 toward the bottom surface of the water intake recess 148, or the same from the surface 124 of the emitter 120 to the bottom surface of the water intake recess 148. It may be formed in a width.
- the water intake through hole 147 is formed on the bottom surface of the water intake recess 148.
- the shape and number of the water intake through holes 147 are not particularly limited as long as the irrigation liquid taken into the water intake recess 148 can be taken into the emitter body 121.
- the water intake through hole 147 is two elongated holes formed along the long axis direction of the bottom surface of the water intake recess 148. Since the elongated hole is covered with a plurality of ridges 149, one water intake through hole 147 appears to be divided into a large number of through holes when viewed from the surface 124 side.
- the irrigation liquid that has flowed through the tube 110 is taken into the emitter 120 while the intake side screen portion 146 prevents foreign matter (suspended matter) from entering the intake through hole 147.
- the first connection groove 132 (first connection flow path 142) connects the water intake through hole 147 (water intake portion 131) and the decompression groove 133 (decompression flow path 143).
- the first connection groove 132 is formed along the outer edge of the back surface 125 of the emitter 120.
- a pressure reducing groove 133 is connected to one end of the first connecting groove 132.
- the decompression groove 133 (decompression flow path 143) connects the first connection groove 132 (first connection flow path 142) and the second connection groove 134 (second connection flow path 144).
- the decompression groove 133 (decompression flow path 143) reduces the pressure of the irrigation liquid taken in from the water intake unit 131, and guides the irrigation liquid to the flow rate adjusting unit 136.
- the pressure reducing groove 133 is arranged along the long axis direction at one end of the back surface 125 in the short axis direction. The upstream end of the pressure reducing groove 133 is connected to the first connecting groove 132, and the second connecting groove 134 communicating with the flow rate adjusting unit 136 is connected to the downstream end.
- the shape of the pressure reducing groove 133 is not particularly limited as long as it can exhibit the above-mentioned functions.
- the plan view shape of the pressure reducing groove 133 is a zigzag shape.
- convex portions 139 having a substantially triangular prism shape protruding from the inner side surface are alternately arranged along the direction in which the irrigation liquid flows.
- the convex portion 139 is arranged so that the tip thereof does not exceed the central axis of the pressure reducing groove 133 when viewed in a plan view.
- the second connection groove 134 (second connection flow path 144) connects the decompression groove 133 (decompression flow path 143) and the flow rate adjusting unit 136.
- the second connection groove 134 is a groove formed linearly along the long axis direction of the emitter 120 on the back surface 125 side of the emitter 120.
- the upstream end of the second connection groove 134 is connected to the pressure reducing groove 133, and the downstream end of the second connection groove 134 is connected to the flow rate adjusting unit 136 (accommodation unit 135).
- the second connection flow path 144 is formed by the second connection groove 134 and the inner wall surface 112 of the tube 110.
- the irrigation liquid decompressed by the decompression flow path 143 flows to the flow rate adjusting unit 136 through the second connection flow path 144.
- the flow rate adjusting unit 136 adjusts the flow rate of the flowing irrigation liquid.
- the flow rate adjusting unit 136 is arranged in a region where the water intake unit 131 of the emitter 120 is not arranged.
- the flow rate adjusting unit 136 includes a diaphragm 153, a pedestal 161, a first communication hole 162, a communication groove 163, a second communication hole 164, and a flow path plug 165.
- the flow rate adjusting unit 136 is formed by accommodating the pedestal portion 122 in the accommodating portion 135.
- the accommodating portion 135 is a substantially rectangular parallelepiped concave portion.
- the accommodating portion 135 accommodates the pedestal portion 122 (see FIG. 1) in order to adjust the amount of the irrigation liquid flowing from the second connecting flow path 144 discharged from the discharge port 111 of the tube 110.
- the pedestal 161 is a region where the diaphragm 153 deformed by the pressure of the irrigation liquid comes into contact.
- the shape of the pedestal 161 is not particularly limited.
- the shape of the pedestal 161 may be a curved surface or a flat surface. In the present embodiment, the shape of the pedestal 161 is a flat surface.
- the pedestal 161 is formed with a first communication hole 162 and a second communication hole 164. A notch groove is formed in a part of the plane on which the pedestal 161 is arranged.
- the notch groove is used to properly guide the irrigation liquid from the second connecting flow path 144 into the space separated by the accommodating portion 135, the diaphragm 153 and the pedestal 161.
- the shape of the notch groove is not particularly limited as long as the above function can be exhibited.
- the notch groove is formed in a straight line.
- the first communication hole 162 is used to discharge the irrigation liquid that has flowed into the space between the diaphragm 153 and the pedestal portion 122 from the decompression flow path 143 toward the discharge port 111.
- the first communication hole 162 opens in the central portion of the pedestal 161.
- the size of the opening of the first communication hole 162 is not particularly limited and can be set as appropriate.
- the connecting groove 163 is a groove for guiding the irrigation liquid to the first communication hole 162 even when the diaphragm 153 is in contact with the pedestal 161.
- One end of the communication groove 163 communicates with the first communication hole 162.
- the other end of the connecting groove 163 is arranged on the outer peripheral portion of the pedestal 161.
- the second communication hole 164 is used to discharge the irrigation liquid to the discharge port 111 when the irrigation liquid is not properly discharged to the discharge port 111 through the first communication hole 162.
- the second communication hole 164 opens to the pedestal 161 along with the first communication hole 162.
- the size of the opening of the second communication hole 164 is also not particularly limited and can be set as appropriate.
- the second communication hole 164 has a cylindrical shape.
- the flow path plug 165 opens and closes the second communication hole 164 according to the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161. Specifically, the flow path plug 165 is the second when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is equal to or more than a predetermined value.
- the communication hole 164 is opened, and when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is less than a predetermined value, the second communication hole 164 is opened. Block.
- the base end of the flow path plug 165 is fixed to the diaphragm 153.
- the shape of the flow path plug 165 is not particularly limited as long as it can exhibit the above-mentioned functions.
- the flow path plug 165 has a small diameter portion 171 and a large diameter portion 172.
- the small diameter portion 171 is a portion on the base end side fixed to the diaphragm 153.
- the small diameter portion 171 is inside the second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is equal to or more than a predetermined value.
- the small diameter portion 171 has a second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is less than a predetermined value. It is located outside of.
- the cross-sectional shape of the small diameter portion 171 in the direction orthogonal to the axial direction is not particularly limited and is appropriately set.
- the large diameter portion 172 is a portion connected to the tip of the small diameter portion 171.
- the large diameter portion 172 is outside the second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is equal to or more than a predetermined value.
- the large diameter portion 172 has a second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is less than a predetermined value. It is located inside the irrigation hole 164 and closes the second communication hole 164.
- the shape of the large diameter portion 172 is not particularly limited. In the present embodiment, the shape of the large diameter portion 172 is a cylindrical shape.
- the large diameter portion 172 may be arranged so that the distance from the tube 110 becomes constant when the flow path plug 165 moves to the outside of the second communication hole 164, or comes into contact with the tube 110. It may be. Thereby, the flow rate of the irrigation liquid flowing through the second communication hole 164 can be adjusted.
- a flow rate adjusting unit 136 for adjusting the flow rate of the irrigation liquid discharged from the first communication hole 162 of the emitter 120 (pedestal 161) is configured according to the pressure of the liquid for irrigation.
- the plan view shape of the diaphragm 153 is a circular shape.
- the diaphragm 153 is integrally molded with other configurations of the emitter body 121 (water intake portion 131, first connection flow path 142, decompression flow path 143, second connection flow path 144).
- the diaphragm 153 is flexible because it is integrally molded with other configurations of the emitter body 121.
- the diaphragm 153 deforms toward the pedestal 161 due to the pressure of the irrigation liquid in the tube 110 in a state where the emitter 120 is joined to the inner wall surface 112 of the tube 110.
- the emitter body 121 and the pedestal portion 122 are manufactured in a state of being connected via a hinge portion.
- the hinge portion connects the emitter body 121 and the pedestal portion 122 at the time of manufacturing the emitter 120.
- the shape and size of the hinge portion can be appropriately set within a range in which the above-mentioned functions can be exhibited.
- the hinge portion is connected to the side surface 126 continuous with the back surface 125.
- the hinge portions may be arranged on the side surfaces located at both ends in the major axis direction (in the direction in which the irrigation liquid flows) of the emitter body 121, or on the side surfaces 126 located at both ends in the minor axis direction of the emitter body 121. It may be arranged. From the viewpoint of not obstructing the flow of the irrigation liquid, the hinge portion is preferably connected to the side surface 126 on the upstream side or the downstream side in the direction in which the irrigation liquid flows.
- the hinge portion may be bent when the pedestal portion 122 is accommodated in the accommodating portion 135, or may be separated from the emitter body 121 and the pedestal 161. In this embodiment, the hinge portion is cut from the emitter body 121.
- the hinge portion is housed in a groove 151 formed in the back surface 125 of the emitter body 121.
- the back surface 125 of the emitter 120 is appropriately joined to the inner wall surface 112 of the tube 110 in a state where the hinge portion is housed in the groove 151 formed in the back surface 125 of the emitter body 121.
- the groove 151 accommodates a hinge portion that has been cut when the pedestal portion 122 is accommodated in the accommodating portion 135.
- the shape of the groove 151 is not particularly limited as long as it can accommodate the hinge portion and the irrigation liquid does not leak out.
- the groove 151 is formed to be slightly smaller than the hinge portion.
- the discharge unit 137 temporarily stores the irrigation liquid.
- the irrigation liquid that has reached the discharge unit 137 is discharged to the outside from the discharge port 111.
- 5A and 5A and 6A to 6C are diagrams for explaining the operation of the diaphragm 153.
- the pressure of the irrigation liquid is not applied to the diaphragm 153, so that the diaphragm 153 is not deformed.
- the pressure of the irrigation liquid in the tube 110 begins to rise, and the diaphragm 153 begins to deform.
- the pressure of the irrigation liquid is relatively low, the deformation of the diaphragm 153 is relatively small and the diaphragm 153 does not contact the pedestal 161.
- the irrigation liquid flowing from the second connection flow path 144 into the space between the diaphragm 153 and the pedestal 161 is discharged from the first communication hole 162. It is discharged to 137.
- the large diameter portion 172 of the flow path plug 165 is pushed out of the second communication hole 164, and the small diameter portion 171 is located inside the second communication hole 164, so that the accommodating portion 135 and the pedestal portion 122 The enclosed space and the discharge unit 137 communicate with each other.
- the irrigation liquid is discharged toward the discharge unit 137 through the second communication hole 164 together with the first communication hole 162 whose flow rate is reduced. That is, when the pressure difference is equal to or greater than a predetermined value, the second communication hole 164 is opened, and at least a part of the irrigation liquid between the diaphragm 153 and the pedestal 161 passes through the second communication hole 164 and is discharged. Guided to 137.
- the emitter 120 according to the present embodiment removes the foreign matter F and the irrigation liquid even when the discharge of the irrigation liquid is stopped once due to the foreign matter F mixed in the emitter 120. Emissions can be resumed immediately. Further, in the emitter 120 according to the present embodiment, even when the pressure of the irrigation liquid flowing through the tube 110 becomes excessive and the diaphragm 153 is significantly deformed toward the pedestal 161, the first communication hole 162 and the second communication hole 162 The flow rate adjusting function can be restored by discharging the irrigation liquid from the communication hole 164.
- FIGS. 7A to 7C are views showing the configuration of the flow path plug 265 according to the first modification.
- 7A is a front view of the flow path plug 265 fixed to the diaphragm 153
- FIG. 7B is a plan view
- FIG. 7C is a right side view.
- the flow path plug 265 As shown in FIGS. 7A to 7C, the base end of the flow path plug 265 is fixed to the diaphragm 153.
- the flow path plug 265 according to the first modification has a small diameter portion 271 and a large diameter portion 172.
- the small diameter portion 271 is a portion on the base end side fixed to the diaphragm 153.
- the cross-sectional shape of the small diameter portion 271 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle. The cut part is the same size from the base end to the tip side.
- the large diameter portion 172 is a portion connected to the tip of the small diameter portion 271. In this modification, the shape of the large diameter portion 172 is a cylindrical shape.
- FIGS. 8A to 8C are diagrams showing the configuration of the flow path plug 365 according to the second modification.
- 8A is a front view of the flow path plug 365 fixed to the diaphragm 153
- FIG. 8B is a plan view
- FIG. 8C is a right side view.
- the flow path plug 365 As shown in FIGS. 8A to 8C, the base end of the flow path plug 365 is fixed to the diaphragm 153.
- the flow path plug 365 according to the second modification has a small diameter portion 371 and a large diameter portion 172.
- the small diameter portion 371 is a portion on the base end side fixed to the diaphragm 153.
- the cross-sectional shape of the small diameter portion 371 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle. The cut portion is formed so that its width becomes smaller and its depth becomes deeper from the base end toward the tip end side.
- the large diameter portion 172 is a portion connected to the tip of the small diameter portion 371.
- the shape of the large diameter portion 172 is a cylindrical shape.
- FIGS. 9A to 9C are views showing the configuration of the flow path plug 465 according to the third modification.
- 9A is a front view of the flow path plug 465 fixed to the diaphragm 153
- FIG. 9B is a plan view
- FIG. 9C is a right side view.
- the flow path plug 465 As shown in FIGS. 9A to 9C, the base end of the flow path plug 465 is fixed to the diaphragm 153.
- the flow path plug 465 according to the third modification has a small diameter portion 471 and a large diameter portion 172.
- the small diameter portion 471 is a portion on the base end side fixed to the diaphragm 153.
- the cross-sectional shape of the small diameter portion 471 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle. The cut portion is formed so that its width becomes wider and its depth becomes shallower from the proximal end toward the distal end side.
- the large diameter portion 172 is a portion connected to the tip of the small diameter portion 471.
- the shape of the large diameter portion 172 is a cylindrical shape.
- FIGS. 10A to 10C are views showing the configuration of the flow path plug 565 according to the modified example 4.
- 10A is a front view of the flow path plug 565 fixed to the diaphragm 153
- FIG. 10B is a plan view
- FIG. 10C is a right side view.
- the base end of the flow path plug 565 is fixed to the diaphragm 153.
- the flow path plug 565 according to the modified example 4 has a small diameter portion 571 and a large diameter portion 172.
- the small diameter portion 571 is a portion on the base end side fixed to the diaphragm 153.
- the cross-sectional shape of the small diameter portion 571 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle.
- the cut portion has a proximal end side portion having the same width and the same depth, and a distal end side portion wider than the proximal end side portion.
- the large diameter portion 172 is a portion connected to the tip of the small diameter portion 571.
- the shape of the large diameter portion 172 is a cylindrical shape.
- the emitter having the flow path plugs 265, 365, 465, 565 according to the modified examples 1 to 4 has the same effect as the emitter 120 according to the first embodiment.
- the present invention it is possible to provide an emitter capable of recovering the flow rate adjusting function even if the flow path of the emitter is blocked by a foreign substance. Therefore, it is expected that emitters will be widely used in technical fields that require long-term dripping, such as drip irrigation and durability tests, and that the technical fields will be further developed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Environmental Sciences (AREA)
- Nozzles (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
An emitter has a water intake part, a reduced-pressure flow path, a flow rate adjustment part, and a discharge part. The flow rate adjustment part includes a diaphragm, a pedestal, a first connecting hole, a communication groove, a second connecting hole, and a flow path stopper. When the pressure difference between the pressure of irrigation liquid flowing in a tube, and the pressure of the irrigation liquid between the diaphragm and the pedestal, is less than a prescribed value, the second connecting hole is closed by the flow path stopper, and the irrigation liquid between the diaphragm and the pedestal is guided through the first connecting hole to the discharge part. When the pressure difference is greater than or equal to the prescribed value, the second connecting hole is opened by the diaphragm deforming and the flow path stopper moving, and at least a part of the irrigation liquid between the diaphragm and the pedestal is guided through the second connecting hole to the discharge part.
Description
本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。
The present invention relates to an emitter and a drip irrigation tube having the emitter.
以前から、植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料等の灌漑用液体を滴下する方法である。近年、点滴灌漑法は、灌漑用液体の消費量を最小限にすることが可能であるため、特に注目されている。
For some time, the drip irrigation method has been known as one of the plant cultivation methods. The drip irrigation method is a method in which a drip irrigation tube is placed on the soil in which a plant is planted, and an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil. In recent years, the drip irrigation method has attracted particular attention because it can minimize the consumption of irrigation liquid.
点滴灌漑用チューブは、灌漑用液体が吐出される複数の貫通孔が形成されたチューブと、当該チューブの内壁面に接合され、各貫通孔から灌漑用液体を吐出するための複数のエミッタ(「ドリッパ」ともいう)とを有する(例えば、特許文献1参照)。
The drip irrigation tube is a tube in which a plurality of through holes for discharging the irrigation liquid are formed, and a plurality of emitters (“) for discharging the irrigation liquid from each through hole, which is joined to the inner wall surface of the tube. Also referred to as "dripper") (see, for example, Patent Document 1).
特許文献1には、上面が開放された箱状の受け入れ部材と、膜と、カバー部材とを有するエミッタが記載されている。受け入れ部材の内底面と、カバー部材の内面とには、ジグザグ形状の溝が形成されている。膜には、カバー部材の流入口と反対側の位置に貫通孔が形成されている。特許文献1に記載のエミッタは、受け入れ部材の内部に膜を配置し、カバー部材で蓋をすることで、膜を受け入れ部材およびカバー部材で挟み込む。
Patent Document 1 describes an emitter having a box-shaped receiving member having an open upper surface, a film, and a cover member. Zigzag-shaped grooves are formed on the inner bottom surface of the receiving member and the inner surface of the cover member. A through hole is formed in the membrane at a position opposite to the inflow port of the cover member. The emitter described in Patent Document 1 arranges a film inside a receiving member and covers the film with a cover member to sandwich the film between the receiving member and the cover member.
灌漑用液体の水圧が膜に加わっていない場合には、灌漑用液体の流入口は、膜によって塞がれている。膜に加わる灌漑用液体の水圧が所定値になると、膜が灌漑用液体に押されて灌漑用液体がエミッタの内部に流れ込む。エミッタの内部に流れ込んだ液体は、溝および貫通孔を通って、受け入れ部材の吐出口からエミッタの外部に吐出される。
When the water pressure of the irrigation liquid is not applied to the membrane, the inlet of the irrigation liquid is blocked by the membrane. When the water pressure of the irrigation liquid applied to the membrane reaches a predetermined value, the membrane is pushed by the irrigation liquid and the irrigation liquid flows into the emitter. The liquid that has flowed into the emitter is discharged to the outside of the emitter from the discharge port of the receiving member through the groove and the through hole.
特許文献1に記載のエミッタの内部を流通する灌漑用液体には、異物が混入していることがある。この場合、灌漑用液体とともに、異物がエミッタの内部に侵入し、膜と吐出口の間に挟まってしまうことがある。膜と吐出口の間に異物が挟み込まれてしまったエミッタは、灌漑用液体が適切に吐出されなくなるという問題がある。
Foreign matter may be mixed in the irrigation liquid that circulates inside the emitter described in Patent Document 1. In this case, foreign matter may enter the inside of the emitter together with the irrigation liquid and be caught between the membrane and the discharge port. An emitter in which foreign matter is caught between the membrane and the discharge port has a problem that the irrigation liquid cannot be properly discharged.
本発明の目的は、灌漑用液体に異物が混入した場合であっても、流量調整機能を回復できるエミッタおよび点滴灌漑用チューブを提供することである。
An object of the present invention is to provide an emitter and a drip irrigation tube that can restore the flow rate adjustment function even when a foreign substance is mixed in the irrigation liquid.
本発明に係るエミッタは、灌漑用液体を流通させるチューブの内壁面において前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、灌漑用液体を取り入れるための取水部と、前記取水部に連通し、灌漑用液体を減圧させながら流通させる減圧流路と、前記減圧流路に連通し、前記チューブ内の灌漑用液体の圧力に応じて、前記取水部から取り入れられた灌漑用液体の流量を調整するための流量調整部と、前記流量調整部に連通し、灌漑用液体を吐出するための吐出部と、を有し、前記流量調整部は、前記チューブを流れる灌漑用液体により圧力を受けるダイヤフラムと、前記ダイヤフラムに面して非接触に配置され、前記チューブ内の灌漑用液体の圧力を受けた前記ダイヤフラムが密着するように構成されている台座と、前記台座に開口し、前記吐出部に繋がる第1連通孔と、前記台座に形成され、前記台座の外周部と前記第1連通孔とを連通する連絡溝と、前記台座に開口し、前記吐出部に繋がる第2連通孔と、前記ダイヤフラムに固定され、前記第2連通孔を閉塞するための流路栓と、を含み、前記チューブを流れる灌漑用液体の圧力と、前記ダイヤフラムと前記台座との間の灌漑用液体の圧力との圧力差が所定値未満の場合、前記第2連通孔は、前記流路栓により閉塞され、かつ前記ダイヤフラムと前記台座との間の灌漑用液体は、前記第1連通孔を通って前記吐出部に導かれ、前記圧力差が前記所定値以上の場合、前記第2連通孔は、前記ダイヤフラムが変形して前記流路栓が移動することにより開放され、かつ前記ダイヤフラムと前記台座との間の灌漑用液体の少なくとも一部は、前記第2連通孔を通って、前記吐出部に導かれる。
The emitter according to the present invention is joined to a position corresponding to a discharge port communicating inside and outside the tube on the inner wall surface of a tube through which the irrigation liquid flows, and the irrigation liquid in the tube is quantitatively discharged from the discharge port. An emitter for discharging the irrigation liquid to the outside of the tube, a water intake section for taking in the irrigation liquid, a decompression flow path communicating with the water intake section and flowing the irrigation liquid while depressurizing, and the decompression flow path. The irrigation liquid is communicated with the flow rate adjusting unit for adjusting the flow rate of the irrigation liquid taken in from the intake unit according to the pressure of the irrigation liquid in the tube, and the irrigation liquid is communicated with the flow rate adjusting unit. It has a discharge unit for discharging, and the flow rate adjusting unit is arranged in a non-contact manner facing the diaphragm and the diaphragm that receives pressure from the irrigation liquid flowing through the tube, and is used for irrigation in the tube. A pedestal configured so that the diaphragm under liquid pressure comes into close contact with the pedestal, a first communication hole that opens into the pedestal and connects to the discharge portion, and an outer peripheral portion of the pedestal and the pedestal formed in the pedestal. A communication groove that communicates with the first communication hole, a second communication hole that opens in the pedestal and connects to the discharge portion, and a flow path plug that is fixed to the diaphragm and closes the second communication hole. When the pressure difference between the pressure of the irrigation liquid flowing through the tube and the pressure of the irrigation liquid between the diaphragm and the pedestal is less than a predetermined value, the second communication hole is the flow path plug. The irrigation liquid between the diaphragm and the pedestal is guided to the discharge portion through the first communication hole, and when the pressure difference is equal to or more than the predetermined value, the second communication hole is closed. Is opened by the deformation of the diaphragm and the movement of the flow path plug, and at least a part of the irrigation liquid between the diaphragm and the pedestal is discharged through the second communication hole. Guided to the club.
本発明に係る点滴灌漑用チューブは、灌漑用液体を吐出する吐出口を有するチューブと、前記チューブの内壁面の前記吐出口に対応する位置に接合された、本発明に係るエミッタと、を有する。
The drip irrigation tube according to the present invention has a tube having a discharge port for discharging an irrigation liquid and an emitter according to the present invention joined at a position corresponding to the discharge port on the inner wall surface of the tube. ..
本発明によれば、灌漑用液体に異物が混入した場合であっても、流量調整機能を回復できるエミッタおよび点滴灌漑用チューブを提供できる。
According to the present invention, it is possible to provide an emitter and a drip irrigation tube that can restore the flow rate adjustment function even when a foreign substance is mixed in the irrigation liquid.
以下、本発明における実施の形態について、図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(点滴灌漑用チューブおよびエミッタの構成)
図1は、本発明の実施の形態1に係る点滴灌漑用チューブ100の断面図である。 (Composition of drip irrigation tube and emitter)
FIG. 1 is a cross-sectional view of adrip irrigation tube 100 according to a first embodiment of the present invention.
図1は、本発明の実施の形態1に係る点滴灌漑用チューブ100の断面図である。 (Composition of drip irrigation tube and emitter)
FIG. 1 is a cross-sectional view of a
図1に示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。
As shown in FIG. 1, the drip irrigation tube 100 has a tube 110 and an emitter 120.
チューブ110は、灌漑用液体を流すための管である。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。チューブ110において、灌漑用液体を流通させる方向については、特に限定されない。また、チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。
The tube 110 is a pipe for flowing an irrigation liquid. Examples of irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof. The direction in which the irrigation liquid is circulated in the tube 110 is not particularly limited. The material of the tube 110 is not particularly limited. In this embodiment, the material of the tube 110 is polyethylene.
チューブ110の管壁には、チューブ110の軸方向(灌漑用液体が流通する方向)において、例えば、200mm以上500mm以下の間隔で灌漑用液体を吐出するための複数の吐出口111が形成されている。吐出口111の開口部の直径は、灌漑用液体を吐出できれば特に限定されない。本実施の形態では、吐出口111の開口部の直径は、1.5mmである。内壁面112の吐出口111に対応する位置には、エミッタ120がそれぞれ接合されている。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を液漏れなく配置できれば特に限定されない。
A plurality of discharge ports 111 for discharging the irrigation liquid at intervals of 200 mm or more and 500 mm or less are formed on the tube wall of the tube 110 in the axial direction of the tube 110 (direction in which the irrigation liquid flows). There is. The diameter of the opening of the discharge port 111 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 111 is 1.5 mm. Emitters 120 are joined to positions of the inner wall surface 112 corresponding to the discharge port 111. The cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be arranged inside the tube 110 without leakage.
点滴灌漑用チューブ100は、エミッタ120の裏面125を内壁面112に接合することによって作製される。チューブ110とエミッタ120との接合方法は、特に限定されない。チューブ110とエミッタ120との接合方法の例には、チューブ110またはエミッタ120を構成する樹脂材料の溶着、接着剤による接着が含まれる。吐出口111は、チューブ110とエミッタ120とを接合した後に形成されてもよいし、接合前に形成されてもよい。
The drip irrigation tube 100 is produced by joining the back surface 125 of the emitter 120 to the inner wall surface 112. The method of joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method of joining the tube 110 and the emitter 120 include welding of the resin material constituting the tube 110 or the emitter 120, and bonding with an adhesive. The discharge port 111 may be formed after joining the tube 110 and the emitter 120, or may be formed before joining.
図2A、Bおよび図3A、Bは、台座部122を収容部135に収容した後のエミッタ120の構成を示す図である。図2Aは、エミッタ120の平面図であり、図2Bは、底面図である。図3Aは、左側面図であり、図3Bは、図2Aに示されるA-A線の断面図である。図4A~Cは、流路栓165の構成を示す図である。図4Aは、ダイヤフラム153に固定された流路栓165の正面図であり、図4Bは、平面図であり、図4Cは、右側面図である。
2A and 2B and 3A and 3B are diagrams showing the configuration of the emitter 120 after the pedestal portion 122 is accommodated in the accommodating portion 135. FIG. 2A is a plan view of the emitter 120, and FIG. 2B is a bottom view. 3A is a left side view, and FIG. 3B is a cross-sectional view taken along the line AA shown in FIG. 2A. 4A to 4C are views showing the configuration of the flow path plug 165. 4A is a front view of the flow path plug 165 fixed to the diaphragm 153, FIG. 4B is a plan view, and FIG. 4C is a right side view.
図1に示されるように、エミッタ120は、吐出口111を覆うようにチューブ110の内壁面112に接合されている。エミッタ120の形状は、内壁面112に密着して、吐出口111を覆うことができれば特に限定されない。本実施の形態では、チューブ110の軸方向に垂直なエミッタ120の断面における、内壁面112に接合する裏面125の形状は、内壁面112に沿うように、内壁面112に向かって凸の略円弧形状である。エミッタ120の平面視形状は、図2Aに示されるように、四隅がR面取りされた略矩形状である。エミッタ120の大きさは、特に限定されず、吐出口111から吐出される灌漑用液体の所望の量に基づいて、適宜決定される。本実施の形態では、エミッタ120の長辺方向の長さは19mmであり、短辺方向の長さは8mmであり、高さは2.7mmである。
As shown in FIG. 1, the emitter 120 is joined to the inner wall surface 112 of the tube 110 so as to cover the discharge port 111. The shape of the emitter 120 is not particularly limited as long as it can be brought into close contact with the inner wall surface 112 and cover the discharge port 111. In the present embodiment, the shape of the back surface 125 joined to the inner wall surface 112 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is a substantially circular arc convex toward the inner wall surface 112 so as to be along the inner wall surface 112. The shape. As shown in FIG. 2A, the plan-view shape of the emitter 120 is a substantially rectangular shape with four corners chamfered. The size of the emitter 120 is not particularly limited and is appropriately determined based on the desired amount of irrigation liquid discharged from the discharge port 111. In the present embodiment, the length of the emitter 120 in the long side direction is 19 mm, the length in the short side direction is 8 mm, and the height is 2.7 mm.
本実施の形態において、エミッタ120は、弾性を有する材料で成形されている。エミッタ120の材料の例には、樹脂、エラストマーおよびゴムが含まれる。樹脂の例には、ポリエチレンおよびシリコーンが含まれる。エミッタ120の可撓性は、弾性を有する材料の使用によって調整できる。エミッタ120の可撓性の調整方法の例には、弾性を有する樹脂の選択、硬質の樹脂材料に対する弾性を有する樹脂の混合比の調整が含まれる。エミッタ120の材料の硬度を示す指標としては、JIS K6253-3(2012年)において規定されているデュロメータ硬さが含まれる。エミッタ120の材料の硬さは、デュロメータ硬さで表すと、D60程度である。なお、デュロメータ硬さは、測定に使用するデュロメータの種類によって、タイプA、タイプD、およびタイプEなどがある。例えば、タイプDデュロメータを使用して硬さ60を示した場合、デュロメータ硬さD60となる。そして、デュロメータ硬さは、各タイプにおける数値が同じ場合、タイプDが最も硬く、タイプA、タイプEの順に柔らかくなる。本実施の形態では、デュロメータ硬さがD60以下である材料において、台座161の変形抑制の効果がより発現する。
In the present embodiment, the emitter 120 is molded of an elastic material. Examples of materials for the emitter 120 include resins, elastomers and rubbers. Examples of resins include polyethylene and silicone. The flexibility of the emitter 120 can be adjusted by using an elastic material. Examples of methods for adjusting the flexibility of the emitter 120 include selecting an elastic resin and adjusting the mixing ratio of the elastic resin to a hard resin material. The index indicating the hardness of the material of the emitter 120 includes the durometer hardness specified in JIS K6253-3 (2012). The hardness of the material of the emitter 120 is about D60 in terms of durometer hardness. The durometer hardness includes type A, type D, type E, and the like, depending on the type of durometer used for measurement. For example, when the hardness 60 is shown using a type D durometer, the durometer hardness D60 is obtained. When the numerical value of each type is the same, the durometer hardness is the hardest in type D, and becomes softer in the order of type A and type E. In the present embodiment, the effect of suppressing the deformation of the pedestal 161 is more exhibited in the material having the durometer hardness of D60 or less.
図1、図2A、Bおよび図3A、Bに示されるように、エミッタ120は、エミッタ本体121と、エミッタ本体121に収容される台座部122とを有する。台座部122は、エミッタ120がチューブ110に接合される前に、吐出口111と対向する裏面125側から、エミッタ本体121の収容部135に収容される。エミッタ本体121および台座部122は、一体として成形されてもよいし、別体として成形されてもよい。本実施の形態では、エミッタ本体121および台座部122は、エミッタ本体121の側面126と台座部122の側面126とがヒンジ部を介して接続された状態で一体として成形される。そして、エミッタ本体121とヒンジ部との境界を切断し、エミッタ本体121の収容部135にヒンジ部が残っている台座部122が収容される。エミッタ本体121と、台座部122と、ヒンジ部とを一体として成形する方法は、特に限定されない。本実施の形態では、エミッタ本体121と、台座部122と、ヒンジ部とは、射出成形により一体として成形されている。
As shown in FIGS. 1, 2A and 2B and 3A and 3B, the emitter 120 has an emitter body 121 and a pedestal portion 122 housed in the emitter body 121. The pedestal portion 122 is accommodated in the accommodating portion 135 of the emitter body 121 from the back surface 125 side facing the discharge port 111 before the emitter 120 is joined to the tube 110. The emitter body 121 and the pedestal portion 122 may be molded integrally or as separate bodies. In the present embodiment, the emitter body 121 and the pedestal portion 122 are integrally molded with the side surface 126 of the emitter body 121 and the side surface 126 of the pedestal portion 122 connected via a hinge portion. Then, the boundary between the emitter body 121 and the hinge portion is cut, and the pedestal portion 122 in which the hinge portion remains is accommodated in the accommodating portion 135 of the emitter main body 121. The method of integrally molding the emitter body 121, the pedestal portion 122, and the hinge portion is not particularly limited. In the present embodiment, the emitter body 121, the pedestal portion 122, and the hinge portion are integrally molded by injection molding.
エミッタ本体121は、取水部131と、第1接続流路142となる第1接続溝132と、減圧流路143となる減圧溝133と、第2接続流路144となる第2接続溝134と、流量調整部136とを有する。エミッタ本体121の収容部135に台座部122が収容されることによって、流量調整部136が形成される。エミッタ本体121の表面124には、取水部131が開口している。一方、エミッタ本体121の裏面125には、第1接続溝132、減圧溝133、第2接続溝134および収容部135が開口している。
The emitter body 121 includes a water intake portion 131, a first connection groove 132 serving as a first connection flow path 142, a pressure reducing groove 133 serving as a decompression flow path 143, and a second connection groove 134 serving as a second connection flow path 144. , With a flow rate adjusting unit 136. The flow rate adjusting portion 136 is formed by accommodating the pedestal portion 122 in the accommodating portion 135 of the emitter main body 121. A water intake portion 131 is open on the surface 124 of the emitter body 121. On the other hand, the back surface 125 of the emitter body 121 is open with a first connection groove 132, a pressure reducing groove 133, a second connection groove 134, and an accommodating portion 135.
エミッタ120がチューブ110に接合されることにより、第1接続溝132、減圧溝133および第2接続溝134は、それぞれ第1接続流路142、減圧流路143および第2接続流路144となる。これにより、取水部131、第1接続流路142、減圧流路143、第2接続流路144、流量調整部136および吐出部137によって構成され、取水部131と吐出部137とを繋ぐ流路が形成される。この流路は、取水部131から吐出部137まで灌漑用液体を流通させる。
By joining the emitter 120 to the tube 110, the first connection groove 132, the pressure reducing groove 133, and the second connection groove 134 become the first connection flow path 142, the pressure reduction flow path 143, and the second connection flow path 144, respectively. .. As a result, it is composed of a water intake section 131, a first connection flow path 142, a decompression flow path 143, a second connection flow path 144, a flow rate adjustment section 136, and a discharge section 137, and a flow path connecting the water intake section 131 and the discharge section 137. Is formed. This flow path allows the irrigation liquid to flow from the intake section 131 to the discharge section 137.
取水部131は、エミッタ本体121の表面124の半分の領域に配置されている。取水部131の数は、特に限定されない。本実施の形態では、1つの取水部131が、エミッタ120の長軸方向の一方の半面に配置されている(図2A)。取水部131が配置されていない表面124の領域には、流量調整部136が配置されている(図1)。取水部131は、取水側スクリーン部146および取水用貫通孔147を有する。
The water intake unit 131 is arranged in a half region of the surface 124 of the emitter body 121. The number of water intake units 131 is not particularly limited. In this embodiment, one water intake unit 131 is arranged on one half surface of the emitter 120 in the long axis direction (FIG. 2A). The flow rate adjusting unit 136 is arranged in the region of the surface 124 where the water intake unit 131 is not arranged (FIG. 1). The water intake unit 131 has a water intake side screen unit 146 and a water intake through hole 147.
取水側スクリーン部146は、エミッタ120に取り入れられる灌漑用液体中の異物(浮遊物)が取水用貫通孔147内に侵入することを防止する。取水側スクリーン部146は、チューブ110内に対して開口しており、取水用凹部148および凸条149を有する。
The water intake side screen portion 146 prevents foreign substances (suspended substances) in the irrigation liquid taken into the emitter 120 from entering the water intake through hole 147. The water intake side screen portion 146 is open to the inside of the tube 110 and has a water intake recess 148 and ridges 149.
取水用凹部148は、エミッタ120の表面124において、ダイヤフラム153が配置されていない一方の半面の領域のほぼ全体に形成された凹部である。取水用凹部148の深さは特に限定されず、エミッタ120の大きさによって適宜設定される。取水用凹部148の底面上には凸条149が形成されている。また、取水用凹部148の底面には取水用貫通孔147が形成されている。
The water intake recess 148 is a recess formed on the surface 124 of the emitter 120 substantially in the entire region of one half surface on which the diaphragm 153 is not arranged. The depth of the water intake recess 148 is not particularly limited, and is appropriately set depending on the size of the emitter 120. A ridge 149 is formed on the bottom surface of the water intake recess 148. Further, a water intake through hole 147 is formed on the bottom surface of the water intake recess 148.
凸条149は、取水用凹部148の底面上に配置されている。凸条149の配置および数は、取水用凹部148の開口部側から灌漑用液体を取り入れつつ、灌漑用液体中の浮遊物の侵入を防止できれば特に限定されない。また、凸条149は、エミッタ120の表面124から取水用凹部148の底面に向かうにつれて幅が小さくなるように形成されていてもよいし、エミッタ120の表面124から取水用凹部148の底面まで同じ幅に形成されていてもよい。
The ridge 149 is arranged on the bottom surface of the water intake recess 148. The arrangement and number of the ridges 149 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 148 and the intrusion of suspended matter in the irrigation liquid can be prevented. Further, the ridge 149 may be formed so that the width decreases from the surface 124 of the emitter 120 toward the bottom surface of the water intake recess 148, or the same from the surface 124 of the emitter 120 to the bottom surface of the water intake recess 148. It may be formed in a width.
取水用貫通孔147は、取水用凹部148の底面に形成されている。取水用貫通孔147の形状および数は、取水用凹部148の内部に取り込まれた灌漑用液体をエミッタ本体121内に取り込むことができれば特に限定されない。本実施の形態では、取水用貫通孔147は、取水用凹部148の底面の長軸方向に沿って形成された2つの長孔である。長孔は、複数の凸条149により覆われているため、表面124側から見た場合、1つの取水用貫通孔147は、多数の貫通孔に分かれているように見える。
The water intake through hole 147 is formed on the bottom surface of the water intake recess 148. The shape and number of the water intake through holes 147 are not particularly limited as long as the irrigation liquid taken into the water intake recess 148 can be taken into the emitter body 121. In the present embodiment, the water intake through hole 147 is two elongated holes formed along the long axis direction of the bottom surface of the water intake recess 148. Since the elongated hole is covered with a plurality of ridges 149, one water intake through hole 147 appears to be divided into a large number of through holes when viewed from the surface 124 side.
チューブ110内を流れてきた灌漑用液体は、取水側スクリーン部146によって異物(浮遊物)の取水用貫通孔147内への侵入が防止されつつ、エミッタ120内に取り込まれる。
The irrigation liquid that has flowed through the tube 110 is taken into the emitter 120 while the intake side screen portion 146 prevents foreign matter (suspended matter) from entering the intake through hole 147.
第1接続溝132(第1接続流路142)は、取水用貫通孔147(取水部131)と、減圧溝133(減圧流路143)とを接続する。第1接続溝132は、エミッタ120の裏面125の外縁部に沿って形成されている。第1接続溝132の一方の端部には、減圧溝133が接続されている。チューブ110およびエミッタ120が接合されることにより、第1接続溝132とチューブ110の内壁面112とにより、第1接続流路142が形成される。取水部131から取り込まれた灌漑用液体は、第1接続流路142を通って、減圧流路143に流れる。
The first connection groove 132 (first connection flow path 142) connects the water intake through hole 147 (water intake portion 131) and the decompression groove 133 (decompression flow path 143). The first connection groove 132 is formed along the outer edge of the back surface 125 of the emitter 120. A pressure reducing groove 133 is connected to one end of the first connecting groove 132. By joining the tube 110 and the emitter 120, the first connection flow path 142 is formed by the first connection groove 132 and the inner wall surface 112 of the tube 110. The irrigation liquid taken in from the water intake unit 131 flows to the decompression flow path 143 through the first connection flow path 142.
減圧溝133(減圧流路143)は、第1接続溝132(第1接続流路142)と、第2接続溝134(第2接続流路144)とを接続する。減圧溝133(減圧流路143)は、取水部131から取り入れられた灌漑用液体の圧力を減圧させて、当該灌漑用液体を流量調整部136に導く。減圧溝133は、裏面125の短軸方向の一方の端部に、長軸方向に沿って配置されている。減圧溝133の上流端は第1接続溝132に接続されており、下流端には流量調整部136に連通した第2接続溝134が接続されている。減圧溝133の形状は、前述の機能を発揮できれば特に限定されない。本実施の形態では、減圧溝133の平面視形状は、ジグザグ形状である。減圧溝133は、内側面から突出する略三角柱形状の凸部139が灌漑用液体の流れる方向に沿って交互に配置されている。凸部139は、平面視したときに、先端が減圧溝133の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることにより、減圧溝133とチューブ110の内壁面112により、減圧流路143が形成される。取水部131から取り込まれた灌漑用液体は、減圧流路143により減圧されて流量調整部136に導かれる。
The decompression groove 133 (decompression flow path 143) connects the first connection groove 132 (first connection flow path 142) and the second connection groove 134 (second connection flow path 144). The decompression groove 133 (decompression flow path 143) reduces the pressure of the irrigation liquid taken in from the water intake unit 131, and guides the irrigation liquid to the flow rate adjusting unit 136. The pressure reducing groove 133 is arranged along the long axis direction at one end of the back surface 125 in the short axis direction. The upstream end of the pressure reducing groove 133 is connected to the first connecting groove 132, and the second connecting groove 134 communicating with the flow rate adjusting unit 136 is connected to the downstream end. The shape of the pressure reducing groove 133 is not particularly limited as long as it can exhibit the above-mentioned functions. In the present embodiment, the plan view shape of the pressure reducing groove 133 is a zigzag shape. In the pressure reducing groove 133, convex portions 139 having a substantially triangular prism shape protruding from the inner side surface are alternately arranged along the direction in which the irrigation liquid flows. The convex portion 139 is arranged so that the tip thereof does not exceed the central axis of the pressure reducing groove 133 when viewed in a plan view. By joining the tube 110 and the emitter 120, the decompression flow path 143 is formed by the decompression groove 133 and the inner wall surface 112 of the tube 110. The irrigation liquid taken in from the water intake unit 131 is decompressed by the decompression flow path 143 and guided to the flow rate adjusting unit 136.
第2接続溝134(第2接続流路144)は、減圧溝133(減圧流路143)と、流量調整部136とを接続する。第2接続溝134は、エミッタ120の裏面125側においてエミッタ120の長軸方向に沿って直線状に形成された溝である。第2接続溝134の上流端は減圧溝133に接続されており、第2接続溝134の下流端は流量調整部136(収容部135)に接続されている。チューブ110とエミッタ120とが接合されることにより、第2接続溝134とチューブ110の内壁面112とによって、第2接続流路144が形成される。減圧流路143により減圧された灌漑用液体は、第2接続流路144を通って、流量調整部136に流れる。
The second connection groove 134 (second connection flow path 144) connects the decompression groove 133 (decompression flow path 143) and the flow rate adjusting unit 136. The second connection groove 134 is a groove formed linearly along the long axis direction of the emitter 120 on the back surface 125 side of the emitter 120. The upstream end of the second connection groove 134 is connected to the pressure reducing groove 133, and the downstream end of the second connection groove 134 is connected to the flow rate adjusting unit 136 (accommodation unit 135). By joining the tube 110 and the emitter 120, the second connection flow path 144 is formed by the second connection groove 134 and the inner wall surface 112 of the tube 110. The irrigation liquid decompressed by the decompression flow path 143 flows to the flow rate adjusting unit 136 through the second connection flow path 144.
流量調整部136は、流れてきた灌漑用液体の流量を調整する。流量調整部136は、エミッタ120の取水部131が配置されていない領域に配置されている。流量調整部136は、ダイヤフラム153と、台座161と、第1連通孔162と、連絡溝163と、第2連通孔164と、流路栓165とを含む。なお、本実施の形態では、前述したように、収容部135に台座部122が収容されることで流量調整部136が形成される。
The flow rate adjusting unit 136 adjusts the flow rate of the flowing irrigation liquid. The flow rate adjusting unit 136 is arranged in a region where the water intake unit 131 of the emitter 120 is not arranged. The flow rate adjusting unit 136 includes a diaphragm 153, a pedestal 161, a first communication hole 162, a communication groove 163, a second communication hole 164, and a flow path plug 165. In the present embodiment, as described above, the flow rate adjusting unit 136 is formed by accommodating the pedestal portion 122 in the accommodating portion 135.
収容部135は、略直方体状の凹部である。収容部135には、第2接続流路144から流れてきた灌漑用液体がチューブ110の吐出口111から吐出される量を調整するために台座部122(図1を参照)が収容される。
The accommodating portion 135 is a substantially rectangular parallelepiped concave portion. The accommodating portion 135 accommodates the pedestal portion 122 (see FIG. 1) in order to adjust the amount of the irrigation liquid flowing from the second connecting flow path 144 discharged from the discharge port 111 of the tube 110.
台座161は、灌漑用液体の圧力により変形したダイヤフラム153が接触する領域である。台座161の形状は、特に限定されない。台座161の形状は、曲面であってもよいし、平面であってもよい。本実施の形態では、台座161の形状は、平面である。台座161には、第1連通孔162および第2連通孔164が形成されている。台座161が配置された平面の一部には、切り欠き溝が形成されている。
The pedestal 161 is a region where the diaphragm 153 deformed by the pressure of the irrigation liquid comes into contact. The shape of the pedestal 161 is not particularly limited. The shape of the pedestal 161 may be a curved surface or a flat surface. In the present embodiment, the shape of the pedestal 161 is a flat surface. The pedestal 161 is formed with a first communication hole 162 and a second communication hole 164. A notch groove is formed in a part of the plane on which the pedestal 161 is arranged.
切り欠き溝は、収容部135、ダイヤフラム153および台座161により区切られた空間に第2接続流路144からの灌漑用液体を適切に導くために使用される。切り欠き溝の形状は、上記機能を発揮できれば、特に限定されない。本実施の形態では、切り欠き溝は、直線状に形成されている。
The notch groove is used to properly guide the irrigation liquid from the second connecting flow path 144 into the space separated by the accommodating portion 135, the diaphragm 153 and the pedestal 161. The shape of the notch groove is not particularly limited as long as the above function can be exhibited. In the present embodiment, the notch groove is formed in a straight line.
第1連通孔162は、減圧流路143からダイヤフラム153と台座部122との間の空間の内部に流入した灌漑用液体を吐出口111に向けて排出するために使用される。本実施の形態では、第1連通孔162は、台座161の中央部分に開口している。第1連通孔162の開口部の大きさも特に限定されず、適宜設定できる。
The first communication hole 162 is used to discharge the irrigation liquid that has flowed into the space between the diaphragm 153 and the pedestal portion 122 from the decompression flow path 143 toward the discharge port 111. In the present embodiment, the first communication hole 162 opens in the central portion of the pedestal 161. The size of the opening of the first communication hole 162 is not particularly limited and can be set as appropriate.
連絡溝163は、台座161にダイヤフラム153が接触した状態でも灌漑用液体を第1連通孔162に導くための溝である。連絡溝163の一方の端部は、第1連通孔162に連絡している。連絡溝163の他方の端部は、台座161の外周部に配置されている。
The connecting groove 163 is a groove for guiding the irrigation liquid to the first communication hole 162 even when the diaphragm 153 is in contact with the pedestal 161. One end of the communication groove 163 communicates with the first communication hole 162. The other end of the connecting groove 163 is arranged on the outer peripheral portion of the pedestal 161.
第2連通孔164は、灌漑用液体が第1連通孔162を経て吐出口111に向けて適切に排出されない場合に、灌漑用液体を吐出口111に排出するために使用される。本実施の形態では、第2連通孔164は、第1連通孔162と並んで、台座161に開口している。第2連通孔164の開口部の大きさも特に限定されず、適宜設定できる。本実施の形態では、第2連通孔164は、円筒形状である。
The second communication hole 164 is used to discharge the irrigation liquid to the discharge port 111 when the irrigation liquid is not properly discharged to the discharge port 111 through the first communication hole 162. In the present embodiment, the second communication hole 164 opens to the pedestal 161 along with the first communication hole 162. The size of the opening of the second communication hole 164 is also not particularly limited and can be set as appropriate. In the present embodiment, the second communication hole 164 has a cylindrical shape.
流路栓165は、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差に応じて、第2連通孔164を開放および閉塞する。具体的には、流路栓165は、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差が所定値以上の場合には第2連通孔164を開放し、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差が所定値未満の場合には第2連通孔164を閉塞する。
The flow path plug 165 opens and closes the second communication hole 164 according to the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161. Specifically, the flow path plug 165 is the second when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is equal to or more than a predetermined value. The communication hole 164 is opened, and when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is less than a predetermined value, the second communication hole 164 is opened. Block.
図4A~Cに示されるように、流路栓165の基端は、ダイヤフラム153に固定されている。流路栓165の形状は、前述の機能を発揮できれば特に限定されない。本実施の形態では、流路栓165は、細径部171と太径部172とを有する。細径部171は、ダイヤフラム153に固定された基端側の部分である。細径部171は、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差が所定値以上の状態では、第2連通孔164の内部に位置し、灌漑用液体の流路の一部となる。また、細径部171は、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差が所定値未満の状態では、第2連通孔164の外部に位置している。細径部171の軸方向に直交する方向における断面形状は、特に限定されず、適宜設定される。
As shown in FIGS. 4A to 4C, the base end of the flow path plug 165 is fixed to the diaphragm 153. The shape of the flow path plug 165 is not particularly limited as long as it can exhibit the above-mentioned functions. In the present embodiment, the flow path plug 165 has a small diameter portion 171 and a large diameter portion 172. The small diameter portion 171 is a portion on the base end side fixed to the diaphragm 153. The small diameter portion 171 is inside the second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is equal to or more than a predetermined value. It is located in and becomes part of the irrigation liquid flow path. Further, the small diameter portion 171 has a second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is less than a predetermined value. It is located outside of. The cross-sectional shape of the small diameter portion 171 in the direction orthogonal to the axial direction is not particularly limited and is appropriately set.
太径部172は、細径部171の先端に接続された部分である。太径部172は、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差が所定値以上の状態では、第2連通孔164の外部に位置する。また、太径部172は、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差が所定値未満の状態では、第2連通孔164の内部に位置し、第2連通孔164を閉塞する。太径部172の形状は、特に限定されない。本実施の形態では、太径部172の形状は、円筒形状である。
The large diameter portion 172 is a portion connected to the tip of the small diameter portion 171. The large diameter portion 172 is outside the second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is equal to or more than a predetermined value. Located in. Further, the large diameter portion 172 has a second communication hole 164 when the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 is less than a predetermined value. It is located inside the irrigation hole 164 and closes the second communication hole 164. The shape of the large diameter portion 172 is not particularly limited. In the present embodiment, the shape of the large diameter portion 172 is a cylindrical shape.
なお、太径部172は、流路栓165が第2連通孔164の外部に移動したときに、チューブ110との距離が一定となるように配置されていてもよいし、チューブ110に接触していてもよい。これにより、第2連通孔164を流通する灌漑用液体の流量を調整できる。
The large diameter portion 172 may be arranged so that the distance from the tube 110 becomes constant when the flow path plug 165 moves to the outside of the second communication hole 164, or comes into contact with the tube 110. It may be. Thereby, the flow rate of the irrigation liquid flowing through the second communication hole 164 can be adjusted.
図1に示されるように、エミッタ120がチューブ110の内壁面112に接合されたとき、収容部135に配置された台座部122と、台座161に対向したダイヤフラム153とによって、チューブ110内の灌漑用液体の圧力に応じて、エミッタ120(台座161)の第1連通孔162から吐出される灌漑用液体の流量を調整するための流量調整部136が構成される。本実施の形態では、ダイヤフラム153の平面視形状は、円形状である。本実施の形態において、ダイヤフラム153は、エミッタ本体121の他の構成(取水部131、第1接続流路142、減圧流路143、第2接続流路144)と一体に成形されている。
As shown in FIG. 1, when the emitter 120 is joined to the inner wall surface 112 of the tube 110, the pedestal portion 122 arranged in the accommodating portion 135 and the diaphragm 153 facing the pedestal 161 irrigate the inside of the tube 110. A flow rate adjusting unit 136 for adjusting the flow rate of the irrigation liquid discharged from the first communication hole 162 of the emitter 120 (pedestal 161) is configured according to the pressure of the liquid for irrigation. In the present embodiment, the plan view shape of the diaphragm 153 is a circular shape. In the present embodiment, the diaphragm 153 is integrally molded with other configurations of the emitter body 121 (water intake portion 131, first connection flow path 142, decompression flow path 143, second connection flow path 144).
ダイヤフラム153は、エミッタ本体121の他の構成と一体に成形されているため、可撓性を有する。ダイヤフラム153は、エミッタ120がチューブ110の内壁面112に接合された状態において、チューブ110内の灌漑用液体の圧力によって台座161へ向かって変形する。
The diaphragm 153 is flexible because it is integrally molded with other configurations of the emitter body 121. The diaphragm 153 deforms toward the pedestal 161 due to the pressure of the irrigation liquid in the tube 110 in a state where the emitter 120 is joined to the inner wall surface 112 of the tube 110.
本実施の形態では、前述したように、エミッタ本体121および台座部122がヒンジ部を介して接続された状態で製造される。ヒンジ部は、エミッタ120の製造時において、エミッタ本体121および台座部122を接続する。ヒンジ部の形状および大きさは、前述の機能を発揮できる範囲内において適宜に設定できる。本実施の形態では、ヒンジ部は、裏面125と連続した側面126に接続されている。ヒンジ部は、エミッタ本体121の長軸方向(灌漑用液体が流れる方向における)の両端に位置する側面に配置されていてもよいし、エミッタ本体121の短軸方向の両端に位置する側面126に配置されていてもよい。ヒンジ部は、灌漑用液体の流れを阻害しない観点から、灌漑用液体が流れる方向における上流側または下流側の側面126に接続されていることが好ましい。
In the present embodiment, as described above, the emitter body 121 and the pedestal portion 122 are manufactured in a state of being connected via a hinge portion. The hinge portion connects the emitter body 121 and the pedestal portion 122 at the time of manufacturing the emitter 120. The shape and size of the hinge portion can be appropriately set within a range in which the above-mentioned functions can be exhibited. In the present embodiment, the hinge portion is connected to the side surface 126 continuous with the back surface 125. The hinge portions may be arranged on the side surfaces located at both ends in the major axis direction (in the direction in which the irrigation liquid flows) of the emitter body 121, or on the side surfaces 126 located at both ends in the minor axis direction of the emitter body 121. It may be arranged. From the viewpoint of not obstructing the flow of the irrigation liquid, the hinge portion is preferably connected to the side surface 126 on the upstream side or the downstream side in the direction in which the irrigation liquid flows.
ヒンジ部は、台座部122を収容部135に収容するとき、折り曲げられもよいし、エミッタ本体121および台座161から切り離されてもよい。本実施の形態では、ヒンジ部は、エミッタ本体121から切断される。ヒンジ部は、エミッタ本体121の裏面125に形成された溝151に収容される。ヒンジ部がエミッタ本体121の裏面125に形成された溝151に収容された状態で、エミッタ120の裏面125がチューブ110の内壁面112に対して適切に接合される。
The hinge portion may be bent when the pedestal portion 122 is accommodated in the accommodating portion 135, or may be separated from the emitter body 121 and the pedestal 161. In this embodiment, the hinge portion is cut from the emitter body 121. The hinge portion is housed in a groove 151 formed in the back surface 125 of the emitter body 121. The back surface 125 of the emitter 120 is appropriately joined to the inner wall surface 112 of the tube 110 in a state where the hinge portion is housed in the groove 151 formed in the back surface 125 of the emitter body 121.
溝151は、台座部122を収容部135に収容する際に、切断されたヒンジ部が収容される。溝151の形状は、ヒンジ部を収容でき、かつ灌漑用液体が漏れ出さなければ特に限定されない。本実施の形態では、溝151は、ヒンジ部よりも僅かに小さく形成されている。エミッタ120をチューブ110に接合するときには、台座161を収容部135に収容するとともに、ヒンジ部を溝151に収容する。このとき、溝151はヒンジ部よりも僅かに小さく形成されているため、溝151に対してヒンジ部を圧入しながら収容する。
The groove 151 accommodates a hinge portion that has been cut when the pedestal portion 122 is accommodated in the accommodating portion 135. The shape of the groove 151 is not particularly limited as long as it can accommodate the hinge portion and the irrigation liquid does not leak out. In the present embodiment, the groove 151 is formed to be slightly smaller than the hinge portion. When the emitter 120 is joined to the tube 110, the pedestal 161 is housed in the housing portion 135 and the hinge portion is housed in the groove 151. At this time, since the groove 151 is formed to be slightly smaller than the hinge portion, the hinge portion is press-fitted into the groove 151 and accommodated.
吐出部137は、灌漑用液体を一時的に貯留する。吐出部137に到達した灌漑用液体は、吐出口111から外部に排出させる。
The discharge unit 137 temporarily stores the irrigation liquid. The irrigation liquid that has reached the discharge unit 137 is discharged to the outside from the discharge port 111.
ここで、チューブ110を流通する灌漑用液体の圧力に応じたダイヤフラム153の動作について説明する。図5A、Bおよび図6A~Cは、ダイヤフラム153の動作を説明するための図である。
Here, the operation of the diaphragm 153 according to the pressure of the irrigation liquid flowing through the tube 110 will be described. 5A and 5A and 6A to 6C are diagrams for explaining the operation of the diaphragm 153.
図5Aに示されるように、チューブ110の内部に灌漑用液体が送液される前は、ダイヤフラム153に灌漑用液体の圧力が加わらないため、ダイヤフラム153は変形していない。
As shown in FIG. 5A, before the irrigation liquid is sent into the tube 110, the pressure of the irrigation liquid is not applied to the diaphragm 153, so that the diaphragm 153 is not deformed.
チューブ110の内部に灌漑用液体が送液され始めると、チューブ110内の灌漑用液体の圧力が上昇し始め、ダイヤフラム153が変形し始める。灌漑用液体の圧力が比較的低い場合は、ダイヤフラム153の変形は比較的小さく、ダイヤフラム153は、台座161に接触しない。この状態では、台座161の第1連通孔162が閉塞されないため、第2接続流路144からダイヤフラム153と台座161の間の空間に流れてきた灌漑用液体は、第1連通孔162から吐出部137へ吐出される。
When the irrigation liquid begins to be sent to the inside of the tube 110, the pressure of the irrigation liquid in the tube 110 begins to rise, and the diaphragm 153 begins to deform. When the pressure of the irrigation liquid is relatively low, the deformation of the diaphragm 153 is relatively small and the diaphragm 153 does not contact the pedestal 161. In this state, since the first communication hole 162 of the pedestal 161 is not blocked, the irrigation liquid flowing from the second connection flow path 144 into the space between the diaphragm 153 and the pedestal 161 is discharged from the first communication hole 162. It is discharged to 137.
図5Bに示されるように、灌漑用液体の圧力が設定値を超えると、さらにダイヤフラム153の変形量が増大し、ダイヤフラム153が台座161と密着する。ただし、ダイヤフラム153が台座161に密着している場合であっても、連絡溝163は閉塞されない。そのため、第2接続流路144から空間に流れてきた灌漑用液体は、連絡溝163を流れて第1連通孔162から吐出部137へ吐出される。よって、ダイヤフラム153が台座161に密着している場合であっても、一定量以上の灌漑用液体が吐出部137へ吐出される。
As shown in FIG. 5B, when the pressure of the irrigation liquid exceeds the set value, the amount of deformation of the diaphragm 153 further increases, and the diaphragm 153 comes into close contact with the pedestal 161. However, even when the diaphragm 153 is in close contact with the pedestal 161 the connecting groove 163 is not closed. Therefore, the irrigation liquid that has flowed into the space from the second connection flow path 144 flows through the connecting groove 163 and is discharged from the first communication hole 162 to the discharge portion 137. Therefore, even when the diaphragm 153 is in close contact with the pedestal 161, a certain amount or more of the irrigation liquid is discharged to the discharge unit 137.
ここで、灌漑用液体内に浮遊した異物Fがエミッタ120の内部に侵入してくることがある。図6Aに示されるように、異物Fが連絡溝163に入り込むと、ダイヤフラム153により異物Fが台座161(連絡溝163)に押し付けられ、栓となり、連絡溝163および第1連通孔162を介した灌漑用液体の排出が停止する。
Here, foreign matter F suspended in the irrigation liquid may invade the inside of the emitter 120. As shown in FIG. 6A, when the foreign matter F enters the communication groove 163, the foreign matter F is pressed against the pedestal 161 (communication groove 163) by the diaphragm 153 to form a plug, and passes through the communication groove 163 and the first communication hole 162. The discharge of irrigation liquid stops.
図6Bに示されるように、灌漑用液体の排出が停止すると、チューブ110を流れる灌漑用液体の圧力と、ダイヤフラム153と台座161との間の灌漑用液体の圧力との圧力差が上昇する。このとき、ダイヤフラム153が台座161に向かってさらに変形し、流路栓165の太径部172が第2連通孔164の外部に押し出されるとともに、細径部171が第2連通孔164の内部に位置することで、収容部135および台座部122で囲まれた空間と、吐出部137とが連通する。これにより、灌漑用液体は、第2連通孔164を介して吐出部137に向けて排出される。
As shown in FIG. 6B, when the discharge of the irrigation liquid is stopped, the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the pressure of the irrigation liquid between the diaphragm 153 and the pedestal 161 increases. At this time, the diaphragm 153 is further deformed toward the pedestal 161, the large diameter portion 172 of the flow path plug 165 is pushed out of the second communication hole 164, and the small diameter portion 171 is inside the second communication hole 164. By locating, the space surrounded by the accommodating portion 135 and the pedestal portion 122 communicates with the discharging portion 137. As a result, the irrigation liquid is discharged toward the discharge unit 137 through the second communication hole 164.
図5Cに示されるように、灌漑用液体が第2連通孔164を介して吐出部137に向けて排出されると、収容部135および台座部122で囲まれた空間の内部圧力が上昇する。このとき、内部圧力の上昇に伴い、ダイヤフラム153が振動し、かつダイヤフラム153が台座161から離れるように移動する。これにより、第1貫通孔162含む流路の流れが回復し、異物Fが第1連通孔162を介して吐出部137から排出される。また、流路栓165の細径部171が第2連通孔164の外部に引き戻されるとともに、太径部172が第2連通孔164の内部に引き戻されることにより、第2連通孔164を経由した灌漑用液体の排出が停止する。
As shown in FIG. 5C, when the irrigation liquid is discharged toward the discharge portion 137 through the second communication hole 164, the internal pressure of the space surrounded by the accommodating portion 135 and the pedestal portion 122 increases. At this time, as the internal pressure rises, the diaphragm 153 vibrates and the diaphragm 153 moves away from the pedestal 161. As a result, the flow of the flow path including the first through hole 162 is restored, and the foreign matter F is discharged from the discharge unit 137 through the first communication hole 162. Further, the small diameter portion 171 of the flow path plug 165 is pulled back to the outside of the second communication hole 164, and the large diameter portion 172 is pulled back to the inside of the second communication hole 164, thereby passing through the second communication hole 164. The discharge of irrigation liquid stops.
第2連通孔164を介した灌漑用液体の排出が停止すると、再度、第1連通孔162を介した灌漑用液体の排出が開始される。
When the discharge of the irrigation liquid through the second communication hole 164 is stopped, the discharge of the irrigation liquid through the first communication hole 162 is started again.
上述の他にも、図5Bに示される状態よりさらに灌漑用液体の圧力が過剰となった場合、さらにダイヤフラム153の変形量が増大し、ダイヤフラム153が台座161と密着する領域が多くなる。この際、ダイヤフラム153が台座161に密着しているが、連絡溝163は閉塞されないため、第2接続流路144から空間に流れてきた灌漑用液体は、連絡溝163を流れて第1連通孔162から吐出部137へ吐出される。しかしながら、灌漑用液体が、連絡溝163を通る距離が長くなるため、流量が減少する。他方、流路栓165の太径部172が第2連通孔164の外部に押し出されるとともに、細径部171が第2連通孔164の内部に位置することで、収容部135および台座部122で囲まれた空間と、吐出部137とが連通する。これにより、灌漑用液体は、流量が減少した第1連通孔162とともに、第2連通孔164を介して吐出部137に向けて排出される。すなわち、圧力差が所定値以上の場合、第2連通孔164が開放され、かつダイヤフラム153と台座161との間の灌漑用液体の少なくとも一部は、第2連通孔164を通って、吐出部137に導かれる。
In addition to the above, when the pressure of the irrigation liquid is further excessive than in the state shown in FIG. 5B, the amount of deformation of the diaphragm 153 is further increased, and the area where the diaphragm 153 is in close contact with the pedestal 161 is increased. At this time, the diaphragm 153 is in close contact with the pedestal 161 but the connecting groove 163 is not blocked, so that the irrigation liquid flowing into the space from the second connecting flow path 144 flows through the connecting groove 163 and is the first communication hole. It is discharged from 162 to the discharge unit 137. However, the flow rate of the irrigation liquid decreases because the distance through the connecting groove 163 increases. On the other hand, the large diameter portion 172 of the flow path plug 165 is pushed out of the second communication hole 164, and the small diameter portion 171 is located inside the second communication hole 164, so that the accommodating portion 135 and the pedestal portion 122 The enclosed space and the discharge unit 137 communicate with each other. As a result, the irrigation liquid is discharged toward the discharge unit 137 through the second communication hole 164 together with the first communication hole 162 whose flow rate is reduced. That is, when the pressure difference is equal to or greater than a predetermined value, the second communication hole 164 is opened, and at least a part of the irrigation liquid between the diaphragm 153 and the pedestal 161 passes through the second communication hole 164 and is discharged. Guided to 137.
(効果)
以上のように、本実施の形態に係るエミッタ120は、エミッタ120の内部に混入した異物Fにより、灌漑用液体の排出が一度停止した場合であっても、異物Fを除去し灌漑用液体の排出を直ぐに再開できる。また、本実施の形態に係るエミッタ120は、チューブ110を流れる灌漑用液体の圧力が過剰となり、ダイヤフラム153が台座161に向かって大きく変形した場合であっても、第1連通孔162および第2連通孔164から灌漑用液体が排出されることで流量調整機能を回復できる。 (effect)
As described above, theemitter 120 according to the present embodiment removes the foreign matter F and the irrigation liquid even when the discharge of the irrigation liquid is stopped once due to the foreign matter F mixed in the emitter 120. Emissions can be resumed immediately. Further, in the emitter 120 according to the present embodiment, even when the pressure of the irrigation liquid flowing through the tube 110 becomes excessive and the diaphragm 153 is significantly deformed toward the pedestal 161, the first communication hole 162 and the second communication hole 162 The flow rate adjusting function can be restored by discharging the irrigation liquid from the communication hole 164.
以上のように、本実施の形態に係るエミッタ120は、エミッタ120の内部に混入した異物Fにより、灌漑用液体の排出が一度停止した場合であっても、異物Fを除去し灌漑用液体の排出を直ぐに再開できる。また、本実施の形態に係るエミッタ120は、チューブ110を流れる灌漑用液体の圧力が過剰となり、ダイヤフラム153が台座161に向かって大きく変形した場合であっても、第1連通孔162および第2連通孔164から灌漑用液体が排出されることで流量調整機能を回復できる。 (effect)
As described above, the
[変形例1]
次に、変形例1に係る流路栓265について説明する。図7A~Cは、変形例1に係る流路栓265の構成を示す図である。図7Aは、ダイヤフラム153に固定された流路栓265の正面図であり、図7Bは、平面図であり、図7Cは、右側面図である。 [Modification 1]
Next, the flow path plug 265 according to the first modification will be described. 7A to 7C are views showing the configuration of the flow path plug 265 according to the first modification. 7A is a front view of the flow path plug 265 fixed to thediaphragm 153, FIG. 7B is a plan view, and FIG. 7C is a right side view.
次に、変形例1に係る流路栓265について説明する。図7A~Cは、変形例1に係る流路栓265の構成を示す図である。図7Aは、ダイヤフラム153に固定された流路栓265の正面図であり、図7Bは、平面図であり、図7Cは、右側面図である。 [Modification 1]
Next, the flow path plug 265 according to the first modification will be described. 7A to 7C are views showing the configuration of the flow path plug 265 according to the first modification. 7A is a front view of the flow path plug 265 fixed to the
図7A~Cに示されるように、流路栓265の基端は、ダイヤフラム153に固定されている。変形例1に係る流路栓265は、細径部271と太径部172とを有する。
As shown in FIGS. 7A to 7C, the base end of the flow path plug 265 is fixed to the diaphragm 153. The flow path plug 265 according to the first modification has a small diameter portion 271 and a large diameter portion 172.
細径部271は、ダイヤフラム153に固定された基端側の部分である。本変形例では、細径部271の軸方向に直交する方向における断面形状は、円が矩形で切りかかれた形状である。切りかかれた部分は、基端から先端側まで同じ大きさである。太径部172は、細径部271の先端に接続された部分である。本変形例では、太径部172の形状は、円筒形状である。
The small diameter portion 271 is a portion on the base end side fixed to the diaphragm 153. In this modification, the cross-sectional shape of the small diameter portion 271 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle. The cut part is the same size from the base end to the tip side. The large diameter portion 172 is a portion connected to the tip of the small diameter portion 271. In this modification, the shape of the large diameter portion 172 is a cylindrical shape.
[変形例2]
次に、変形例2に係る流路栓365について説明する。図8A~Cは、変形例2に係る流路栓365の構成を示す図である。図8Aは、ダイヤフラム153に固定された流路栓365の正面図であり、図8Bは、平面図であり、図8Cは、右側面図である。 [Modification 2]
Next, the flow path plug 365 according to the second modification will be described. 8A to 8C are diagrams showing the configuration of the flow path plug 365 according to the second modification. 8A is a front view of the flow path plug 365 fixed to thediaphragm 153, FIG. 8B is a plan view, and FIG. 8C is a right side view.
次に、変形例2に係る流路栓365について説明する。図8A~Cは、変形例2に係る流路栓365の構成を示す図である。図8Aは、ダイヤフラム153に固定された流路栓365の正面図であり、図8Bは、平面図であり、図8Cは、右側面図である。 [Modification 2]
Next, the flow path plug 365 according to the second modification will be described. 8A to 8C are diagrams showing the configuration of the flow path plug 365 according to the second modification. 8A is a front view of the flow path plug 365 fixed to the
図8A~Cに示されるように、流路栓365の基端は、ダイヤフラム153に固定されている。変形例2に係る流路栓365は、細径部371と太径部172とを有する。
As shown in FIGS. 8A to 8C, the base end of the flow path plug 365 is fixed to the diaphragm 153. The flow path plug 365 according to the second modification has a small diameter portion 371 and a large diameter portion 172.
細径部371は、ダイヤフラム153に固定された基端側の部分である。本変形例では、細径部371の軸方向に直交する方向における断面形状は、円が矩形で切りかかれた形状である。切りかかれた部分は、基端から先端側に向かうにつれて、その幅が小さくなるように、かつその深さが深くなるように形成されている。太径部172は、細径部371の先端に接続された部分である。本変形例では、太径部172の形状は、円筒形状である。
The small diameter portion 371 is a portion on the base end side fixed to the diaphragm 153. In this modification, the cross-sectional shape of the small diameter portion 371 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle. The cut portion is formed so that its width becomes smaller and its depth becomes deeper from the base end toward the tip end side. The large diameter portion 172 is a portion connected to the tip of the small diameter portion 371. In this modification, the shape of the large diameter portion 172 is a cylindrical shape.
[変形例3]
次に、変形例3に係る流路栓465について説明する。図9A~Cは、変形例3に係る流路栓465の構成を示す図である。図9Aは、ダイヤフラム153に固定された流路栓465の正面図であり、図9Bは、平面図であり、図9Cは、右側面図である。 [Modification 3]
Next, the flow path plug 465 according to the modified example 3 will be described. 9A to 9C are views showing the configuration of the flow path plug 465 according to the third modification. 9A is a front view of the flow path plug 465 fixed to thediaphragm 153, FIG. 9B is a plan view, and FIG. 9C is a right side view.
次に、変形例3に係る流路栓465について説明する。図9A~Cは、変形例3に係る流路栓465の構成を示す図である。図9Aは、ダイヤフラム153に固定された流路栓465の正面図であり、図9Bは、平面図であり、図9Cは、右側面図である。 [Modification 3]
Next, the flow path plug 465 according to the modified example 3 will be described. 9A to 9C are views showing the configuration of the flow path plug 465 according to the third modification. 9A is a front view of the flow path plug 465 fixed to the
図9A~Cに示されるように、流路栓465の基端は、ダイヤフラム153に固定されている。変形例3に係る流路栓465は、細径部471と太径部172とを有する。
As shown in FIGS. 9A to 9C, the base end of the flow path plug 465 is fixed to the diaphragm 153. The flow path plug 465 according to the third modification has a small diameter portion 471 and a large diameter portion 172.
細径部471は、ダイヤフラム153に固定された基端側の部分である。本変形例では、細径部471の軸方向に直交する方向における断面形状は、円が矩形で切りかかれた形状である。切りかかれた部分は、基端から先端側に向かうにつれて、その幅が広くなるように、かつその深さが浅くなるように形成されている。太径部172は、細径部471の先端に接続された部分である。本変形例では、太径部172の形状は、円筒形状である。
The small diameter portion 471 is a portion on the base end side fixed to the diaphragm 153. In this modification, the cross-sectional shape of the small diameter portion 471 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle. The cut portion is formed so that its width becomes wider and its depth becomes shallower from the proximal end toward the distal end side. The large diameter portion 172 is a portion connected to the tip of the small diameter portion 471. In this modification, the shape of the large diameter portion 172 is a cylindrical shape.
[変形例4]
次に、変形例4に係る流路栓565について説明する。図10A~Cは、変形例4に係る流路栓565の構成を示す図である。図10Aは、ダイヤフラム153に固定された流路栓565の正面図であり、図10Bは、平面図であり、図10Cは、右側面図である。 [Modification example 4]
Next, the flow path plug 565 according to the modified example 4 will be described. 10A to 10C are views showing the configuration of the flow path plug 565 according to the modified example 4. 10A is a front view of the flow path plug 565 fixed to thediaphragm 153, FIG. 10B is a plan view, and FIG. 10C is a right side view.
次に、変形例4に係る流路栓565について説明する。図10A~Cは、変形例4に係る流路栓565の構成を示す図である。図10Aは、ダイヤフラム153に固定された流路栓565の正面図であり、図10Bは、平面図であり、図10Cは、右側面図である。 [Modification example 4]
Next, the flow path plug 565 according to the modified example 4 will be described. 10A to 10C are views showing the configuration of the flow path plug 565 according to the modified example 4. 10A is a front view of the flow path plug 565 fixed to the
図10A~Cに示されるように、流路栓565の基端は、ダイヤフラム153に固定されている。変形例4に係る流路栓565は、細径部571と太径部172とを有する。
As shown in FIGS. 10A to 10C, the base end of the flow path plug 565 is fixed to the diaphragm 153. The flow path plug 565 according to the modified example 4 has a small diameter portion 571 and a large diameter portion 172.
細径部571は、ダイヤフラム153に固定された基端側の部分である。本変形例では、細径部571の軸方向に直交する方向における断面形状は、円が矩形で切りかかれた形状である。切りかかれた部分は、同一幅および同一深さの基端側の部分と、基端側の部分よりも幅の広い先端側の部分とを有する。太径部172は、細径部571の先端に接続された部分である。本変形例では、太径部172の形状は、円筒形状である。
The small diameter portion 571 is a portion on the base end side fixed to the diaphragm 153. In this modification, the cross-sectional shape of the small diameter portion 571 in the direction orthogonal to the axial direction is a shape in which a circle is cut into a rectangle. The cut portion has a proximal end side portion having the same width and the same depth, and a distal end side portion wider than the proximal end side portion. The large diameter portion 172 is a portion connected to the tip of the small diameter portion 571. In this modification, the shape of the large diameter portion 172 is a cylindrical shape.
(効果)
以上のように、変形例1~4に係る流路栓265、365、465、565を有するエミッタは、実施の形態1に係るエミッタ120と同様の効果を有する。 (effect)
As described above, the emitter having the flow path plugs 265, 365, 465, 565 according to the modified examples 1 to 4 has the same effect as theemitter 120 according to the first embodiment.
以上のように、変形例1~4に係る流路栓265、365、465、565を有するエミッタは、実施の形態1に係るエミッタ120と同様の効果を有する。 (effect)
As described above, the emitter having the flow path plugs 265, 365, 465, 565 according to the modified examples 1 to 4 has the same effect as the
本出願は、2019年8月29日出願の特願2019-157106に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
This application claims priority based on Japanese Patent Application No. 2019-157106 filed on August 29, 2019. All the contents described in the application specification and drawings are incorporated herein by reference.
本発明によれば、エミッタの流路が異物により塞がれても流量調整機能を回復できるエミッタを提供できる。したがって、点滴灌漑や耐久試験等などの、長期の滴下を要する技術分野へのエミッタの普及および当該技術分野のさらなる発展が期待される。
According to the present invention, it is possible to provide an emitter capable of recovering the flow rate adjusting function even if the flow path of the emitter is blocked by a foreign substance. Therefore, it is expected that emitters will be widely used in technical fields that require long-term dripping, such as drip irrigation and durability tests, and that the technical fields will be further developed.
100 点滴灌漑用チューブ
110 チューブ
111 吐出口
112 内壁面
120 エミッタ
121 エミッタ本体
122 台座部
124 表面
125 裏面
126 側面
131 取水部
132 第1接続溝
133 減圧溝
134 第2接続溝
135 収容部
136 流量調整部
137 吐出部
139 凸部
142 第1接続流路
143 減圧流路
144 第2接続流路
146 取水側スクリーン部
147 取水用貫通孔
148 取水用凹部
149 凸条
151 溝
153 ダイヤフラム
161 台座
162 第1連通孔
163 連絡溝
164 第2連通孔
165、265、365、465、565 流路栓
171、271、371、471、571 細径部
172 太径部
F 異物 100Drip irrigation tube 110 Tube 111 Discharge port 112 Inner wall surface 120 Emitter 121 Emitter body 122 Pedestal part 124 Front surface 125 Back side 126 Side surface 131 Water intake part 132 First connection groove 133 Decompression groove 134 Second connection groove 135 Storage part 136 Flow rate adjustment part 137 Discharge part 139 Convex part 142 1st connection flow path 143 Decompression flow path 144 2nd connection flow path 146 Water intake side screen part 147 Water intake through hole 148 Water intake recess 149 Convex 151 groove 153 Diaphragm 161 Pedestal 162 1st communication hole 163 Communication groove 164 Second communication hole 165, 265, 365, 465, 565 Flow plug 171, 271, 371, 471, 571 Small diameter part 172 Large diameter part F Foreign matter
110 チューブ
111 吐出口
112 内壁面
120 エミッタ
121 エミッタ本体
122 台座部
124 表面
125 裏面
126 側面
131 取水部
132 第1接続溝
133 減圧溝
134 第2接続溝
135 収容部
136 流量調整部
137 吐出部
139 凸部
142 第1接続流路
143 減圧流路
144 第2接続流路
146 取水側スクリーン部
147 取水用貫通孔
148 取水用凹部
149 凸条
151 溝
153 ダイヤフラム
161 台座
162 第1連通孔
163 連絡溝
164 第2連通孔
165、265、365、465、565 流路栓
171、271、371、471、571 細径部
172 太径部
F 異物 100
Claims (3)
- 灌漑用液体を流通させるチューブの内壁面において前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
灌漑用液体を取り入れるための取水部と、
前記取水部に連通し、灌漑用液体を減圧させながら流通させる減圧流路と、
前記減圧流路に連通し、前記チューブ内の灌漑用液体の圧力に応じて、前記取水部から取り入れられた灌漑用液体の流量を調整するための流量調整部と、
前記流量調整部に連通し、灌漑用液体を吐出するための吐出部と、
を有し、
前記流量調整部は、
前記チューブを流れる灌漑用液体により圧力を受けるダイヤフラムと、
前記ダイヤフラムに面して非接触に配置され、前記チューブ内の灌漑用液体の圧力を受けた前記ダイヤフラムが密着するように構成されている台座と、
前記台座に開口し、前記吐出部に繋がる第1連通孔と、
前記台座に形成され、前記台座の外周部と前記第1連通孔とを連通する連絡溝と、
前記台座に開口し、前記吐出部に繋がる第2連通孔と、
前記ダイヤフラムに固定され、前記第2連通孔を閉塞するための流路栓と、
を含み、
前記チューブを流れる灌漑用液体の圧力と、前記ダイヤフラムと前記台座との間の灌漑用液体の圧力との圧力差が所定値未満の場合、前記第2連通孔は、前記流路栓により閉塞され、かつ前記ダイヤフラムと前記台座との間の灌漑用液体は、前記第1連通孔を通って前記吐出部に導かれ、
前記圧力差が前記所定値以上の場合、前記第2連通孔は、前記ダイヤフラムが変形して前記流路栓が移動することにより開放され、かつ前記ダイヤフラムと前記台座との間の灌漑用液体の少なくとも一部は、前記第2連通孔を通って、前記吐出部に導かれる、
エミッタ。 In order to quantitatively discharge the irrigation liquid in the tube to the outside of the tube from the discharge port, which is joined at a position corresponding to the discharge port communicating the inside and outside of the tube on the inner wall surface of the tube through which the irrigation liquid flows. Emitter of
Intake part for taking in irrigation liquid,
A decompression flow path that communicates with the water intake and circulates the irrigation liquid while decompressing it.
A flow rate adjusting unit that communicates with the decompression flow path and adjusts the flow rate of the irrigation liquid taken in from the intake unit according to the pressure of the irrigation liquid in the tube.
A discharge unit that communicates with the flow rate adjustment unit and discharges irrigation liquid,
Have,
The flow rate adjusting unit
A diaphragm that is pressured by the irrigation liquid flowing through the tube,
A pedestal that is arranged non-contact with the diaphragm and is configured to be in close contact with the diaphragm under the pressure of the irrigation liquid in the tube.
A first communication hole that opens in the pedestal and connects to the discharge portion,
A communication groove formed on the pedestal and communicating the outer peripheral portion of the pedestal with the first communication hole,
A second communication hole that opens in the pedestal and connects to the discharge portion,
A flow path plug fixed to the diaphragm and for closing the second communication hole,
Including
When the pressure difference between the pressure of the irrigation liquid flowing through the tube and the pressure of the irrigation liquid between the diaphragm and the pedestal is less than a predetermined value, the second communication hole is closed by the flow path plug. The irrigation liquid between the diaphragm and the pedestal is guided to the discharge portion through the first communication hole.
When the pressure difference is equal to or greater than the predetermined value, the second communication hole is opened by deforming the diaphragm and moving the flow path plug, and the irrigation liquid between the diaphragm and the pedestal. At least a part is guided to the discharge portion through the second communication hole.
Emitter. - 前記流路栓は、
前記第2連通孔を塞ぐように構成された太径部と、
前記太径部よりも前記ダイヤフラム側に配置され、前記第2連通孔を完全には塞がないように構成された細径部と、
を有する、
請求項1に記載のエミッタ。 The flow path plug
A large diameter portion configured to close the second communication hole, and
A small-diameter portion arranged on the diaphragm side of the large-diameter portion and configured so as not to completely block the second communication hole.
Have,
The emitter according to claim 1. - 灌漑用液体を吐出するための吐出口を有するチューブと、
前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1または請求項2に記載のエミッタと、
を有する、
点滴灌漑用チューブ。 A tube with a discharge port for discharging irrigation liquid,
The emitter according to claim 1 or 2, which is joined at a position corresponding to the discharge port on the inner wall surface of the tube.
Have,
Drip irrigation tube.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-157106 | 2019-08-29 | ||
JP2019157106A JP2021029228A (en) | 2019-08-29 | 2019-08-29 | Emitter and drip irrigation tube |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039624A1 true WO2021039624A1 (en) | 2021-03-04 |
Family
ID=74674170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031602 WO2021039624A1 (en) | 2019-08-29 | 2020-08-21 | Emitter and drip irrigation tube |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021029228A (en) |
WO (1) | WO2021039624A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017098858A1 (en) * | 2015-12-09 | 2017-06-15 | 株式会社エンプラス | Emitter and drip irrigation tube |
WO2018055977A1 (en) * | 2016-09-21 | 2018-03-29 | 株式会社エンプラス | Emitter and tube for drip irrigation |
WO2019078180A1 (en) * | 2017-10-18 | 2019-04-25 | 株式会社エンプラス | Emitter, and tube for drip irrigation |
-
2019
- 2019-08-29 JP JP2019157106A patent/JP2021029228A/en active Pending
-
2020
- 2020-08-21 WO PCT/JP2020/031602 patent/WO2021039624A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017098858A1 (en) * | 2015-12-09 | 2017-06-15 | 株式会社エンプラス | Emitter and drip irrigation tube |
WO2018055977A1 (en) * | 2016-09-21 | 2018-03-29 | 株式会社エンプラス | Emitter and tube for drip irrigation |
WO2019078180A1 (en) * | 2017-10-18 | 2019-04-25 | 株式会社エンプラス | Emitter, and tube for drip irrigation |
Also Published As
Publication number | Publication date |
---|---|
JP2021029228A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9980443B2 (en) | Emitter and drip irrigation tube | |
CN105916370B (en) | Emitter and drip irrigation pipe | |
JP6577319B2 (en) | Emitter and drip irrigation tubes | |
JP7349432B2 (en) | Emitters and drip irrigation tubing | |
WO2016190168A1 (en) | Emitter and drip irrigation tube | |
WO2015080116A1 (en) | Emitter, and tube for drip irrigation | |
JP7101045B2 (en) | Emitter and drip irrigation tube | |
US11064663B2 (en) | Emitter and tube for drip irrigation | |
JP2019129807A (en) | Emitter and tube for drip irrigation | |
WO2018025682A1 (en) | Emitter and drip-irrigation tube | |
WO2021039624A1 (en) | Emitter and drip irrigation tube | |
WO2021039623A1 (en) | Emitter and drip irrigation tube | |
WO2017159251A1 (en) | Emitter, and tube for drip irrigation | |
JP6710602B2 (en) | Emitter and drip irrigation tubes | |
JP6444124B2 (en) | Emitter and drip irrigation tubes | |
JP7036668B2 (en) | Emitter and drip irrigation tube | |
WO2020184419A1 (en) | Emitter and drip irrigation tube | |
JP6831738B2 (en) | Emitter and drip irrigation tubes | |
WO2021039831A1 (en) | Emitter and drip irrigation tube | |
JP6831741B2 (en) | Emitter and drip irrigation tubes | |
JP2018174789A (en) | Emitter and drip irrigation tube | |
WO2019151176A1 (en) | Emitter and drip irrigation tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20859374 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20859374 Country of ref document: EP Kind code of ref document: A1 |