JP6444124B2 - Emitter and drip irrigation tubes - Google Patents

Emitter and drip irrigation tubes Download PDF

Info

Publication number
JP6444124B2
JP6444124B2 JP2014206483A JP2014206483A JP6444124B2 JP 6444124 B2 JP6444124 B2 JP 6444124B2 JP 2014206483 A JP2014206483 A JP 2014206483A JP 2014206483 A JP2014206483 A JP 2014206483A JP 6444124 B2 JP6444124 B2 JP 6444124B2
Authority
JP
Japan
Prior art keywords
tube
emitter
irrigation liquid
flow path
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014206483A
Other languages
Japanese (ja)
Other versions
JP2016073236A (en
Inventor
昌宏 木立
昌宏 木立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014206483A priority Critical patent/JP6444124B2/en
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to PCT/JP2014/081154 priority patent/WO2015080116A1/en
Priority to CN201480064799.9A priority patent/CN105792637B/en
Priority to ES14866245T priority patent/ES2734213T3/en
Priority to EP14866245.5A priority patent/EP3075236B1/en
Priority to US15/037,966 priority patent/US10212896B2/en
Publication of JP2016073236A publication Critical patent/JP2016073236A/en
Priority to IL245827A priority patent/IL245827B/en
Application granted granted Critical
Publication of JP6444124B2 publication Critical patent/JP6444124B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)

Description

本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。   The present invention relates to an emitter and a drip irrigation tube having the emitter.

植物の栽培方法の一つに、点滴灌漑法が知られている。点滴灌漑法は、例えば、植物が植えられている土壌上に点滴灌漑用チューブを配置し、当該点滴灌漑用チューブから当該土壌へ、水や液体肥料などの灌漑用液体をゆっくりと供給する方法である。点滴灌漑法は、当該灌漑用液体の消費量を最少にすることが可能であり、近年、特に注目されている。   As one of the plant cultivation methods, drip irrigation is known. In the drip irrigation method, for example, a drip irrigation tube is placed on the soil where plants are planted, and water or liquid fertilizer is slowly supplied from the drip irrigation tube to the soil. is there. The drip irrigation method can minimize the consumption of the irrigation liquid, and has attracted particular attention in recent years.

上記点滴灌漑用チューブは、通常、チューブおよびエミッタ(「ドリッパ」とも言われる)を有する。エミッタは、通常、灌漑用液体が土壌に滴下される程度の設定された速度で、上記チューブ内の空間の灌漑用液体を土壌に供給する。エミッタには、チューブに外側から突き刺して使用されるエミッタと、チューブの内壁面に接合されているエミッタとが知られている。   Such drip irrigation tubes typically have a tube and an emitter (also referred to as a “dripper”). The emitter normally supplies the irrigation liquid in the space in the tube to the soil at a set speed at which the irrigation liquid is dripped onto the soil. Known emitters are an emitter that is used by piercing a tube from the outside, and an emitter that is joined to the inner wall surface of the tube.

後者のエミッタは、例えば、チューブ内の空間からエミッタに流入した液体をチューブの貫通孔に向けて減圧させながら流すための減圧流路を含む流路と、当該流路の、減圧された灌漑用液体が流れる部分の容積を上記空間の液体の圧力に応じて変えるダイヤフラム部とを有する。当該エミッタは、上記チューブの内壁面に接合される部品と、その上に配置される部品と、両部品の間に配置されるダイヤフラム部と、の三部品によって構成される。当該ダイヤフラム部は、シリコーンゴム膜のような、弾性を有する膜で構成される(例えば、特許文献1参照)。   The latter emitter includes, for example, a flow path including a pressure reducing flow path for flowing the liquid flowing into the emitter from the space in the tube while reducing the pressure toward the through hole of the tube, and the reduced pressure irrigation of the flow path. And a diaphragm portion that changes the volume of the portion in which the liquid flows in accordance with the pressure of the liquid in the space. The emitter is composed of three parts: a part joined to the inner wall surface of the tube, a part arranged on the part, and a diaphragm portion arranged between both parts. The said diaphragm part is comprised by the film | membrane which has elasticity like a silicone rubber film (for example, refer patent document 1).

上記エミッタは、チューブ内の空間の液体の圧力の変動に関わらず、灌漑用液体の吐出量のばらつきを抑えることができる。よって、上記エミッタは、複数の植物を均一に成長させる観点から有利である。   The emitter can suppress variations in the discharge amount of the irrigation liquid regardless of fluctuations in the pressure of the liquid in the space in the tube. Therefore, the emitter is advantageous from the viewpoint of uniformly growing a plurality of plants.

特開2010−46094号公報JP 2010-46094 A

上記エミッタは、三部品を組み立てることによって構成される。このため、上記エミッタでは、組み立ての誤差が生じることがある。特に、ダイヤフラム部に係る組み立ての誤差は、ダイヤフラム部の作動のばらつきを生じることがあり、灌漑用液体の吐出量のばらつきを生じることがある。   The emitter is constructed by assembling three parts. For this reason, an assembly error may occur in the emitter. In particular, an assembly error related to the diaphragm portion may cause variations in operation of the diaphragm portion, and may cause variations in the discharge amount of the irrigation liquid.

また、上記エミッタは、通常、ポリエチレンやポリプロピレンなどの安価な樹脂の成形品であるが、上記ダイヤフラム部には、シリコーンゴム膜などの、弾性を有する別のより高価な材料の部品が用いられる。このような別材料の部品の使用は、材料コストを抑える観点から検討の余地が残されている。   The emitter is usually a molded product of an inexpensive resin such as polyethylene or polypropylene, but a part of another more expensive material having elasticity, such as a silicone rubber film, is used for the diaphragm portion. The use of such parts of different materials leaves room for study from the viewpoint of reducing material costs.

さらに、点滴灌漑用チューブでは、一本のチューブに数百個程度のエミッタが配置されることがある。長い点滴灌漑用チューブでは、当該チューブへの液体の供給圧力を高くする必要が生じる。しかしながら、チューブ内の液体の圧力が十分に高まる前に、エミッタから液体が流出すると、チューブ内の液体の圧力が上昇しにくく、またエミッタにおける液体の吐出量が安定しないことがある。したがって、チューブ内の液体の圧力に応じた、エミッタにおける液体の吐出量の制御が求められている。   Furthermore, in a drip irrigation tube, several hundred emitters may be arranged in one tube. In a long drip irrigation tube, it is necessary to increase the supply pressure of the liquid to the tube. However, if the liquid flows out from the emitter before the pressure of the liquid in the tube is sufficiently increased, the pressure of the liquid in the tube is unlikely to rise, and the amount of liquid discharged from the emitter may not be stable. Therefore, there is a demand for control of the liquid discharge amount at the emitter according to the pressure of the liquid in the tube.

さらには、エミッタの材料コストおよび製造コストを抑える観点から、単一の安価な材料で、また、より少ない部品数で製造可能なエミッタが求められている。   Furthermore, from the viewpoint of reducing the material cost and manufacturing cost of the emitter, there is a demand for an emitter that can be manufactured with a single inexpensive material and with a smaller number of parts.

本発明は、灌漑用液体の吐出量を安定化することが可能であり、さらに、製造に係るコストのさらなる削減が可能なエミッタを提供することを第1の課題とする。
また、本発明は、当該エミッタを有する点滴灌漑用チューブを提供することを第2の課題とする。
It is a first object of the present invention to provide an emitter that can stabilize the discharge amount of irrigation liquid and that can further reduce manufacturing costs.
Moreover, this invention makes it the 2nd subject to provide the tube for drip irrigation which has the said emitter.

本発明は、灌漑用液体を流通させるチューブの内壁面の、前記チューブ内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に吐出するためのエミッタであって、前記チューブ内の前記灌漑用液体を取り入れるための取水部と、前記取水部から取り入れられた前記灌漑用液体の流量を調整するための取水量調整部と、前記取水量調整部から供給された前記灌漑用液体を減圧させながら流すための減圧流路と、前記減圧流路から供給された前記灌漑用液体の流量を、前記チューブ内の前記灌漑用液体の圧力に応じて制御するための吐出量調整部と、前記吐出量調整部で流量が制御された前記灌漑用液体が供給される、前記吐出口に面するべき吐出部と、を有し、前記取水量調整部は、前記エミッタ内における前記灌漑用液体の流路内の固定端から突出し、上流側の前記灌漑用液体の圧力を受けて下流側に開く弁体を含み、前記弁体は、前記固定端から突出する、可撓性を有する薄肉部と、前記薄肉部から延出する厚肉部とを有し、前記取水量調整部よりも上流側の前記灌漑用液体の圧力が設定値以上であるときに前記薄肉部が撓み、前記弁体が下流側に開く、エミッタ、を提供する。   The present invention is bonded to a position on the inner wall surface of the tube through which the irrigation liquid is circulated, corresponding to the discharge port communicating between the inside and the outside of the tube, and quantitatively discharges the irrigation liquid in the tube from the discharge port An intake for taking in the irrigation liquid in the tube, a water intake adjustment unit for adjusting the flow rate of the irrigation liquid taken from the water intake, and the water intake According to the pressure of the irrigation liquid in the tube, the reduced pressure channel for flowing the irrigation liquid supplied from the adjusting unit while reducing the pressure, and the flow rate of the irrigation liquid supplied from the reduced pressure channel A discharge amount adjusting unit for controlling the flow rate, and a discharge unit to be supplied to the irrigation liquid whose flow rate is controlled by the discharge amount adjusting unit, and facing the discharge port, and adjusting the water intake amount Part is said A valve body that protrudes from a fixed end in the flow path of the irrigation liquid in the mitter and opens to the downstream side under the pressure of the irrigation liquid on the upstream side, and the valve body protrudes from the fixed end; A thin-walled portion having flexibility and a thick-walled portion extending from the thin-walled portion, and the thin-walled portion when the pressure of the irrigation liquid upstream of the water intake amount adjusting portion is equal to or higher than a set value. Providing an emitter, the part of which deflects and the valve body opens downstream;

また、本発明は、灌漑用液体を流通させるチューブ内に前記チューブの外側から挿入されるべき、前記チューブ内の前記灌漑用液体を取り入れるための筒状の取水部と、前記取水部から取り入れられた前記灌漑用液体の流量を調整するための取水量調整部と、前記取水量調整部から供給された前記灌漑用液体を減圧させながら流すための減圧流路と、前記減圧流路から供給された前記灌漑用液体の流量を、前記チューブ内の前記灌漑用液体の圧力に応じて制御するための吐出量調整部と、前記吐出量調整部で流量が制御された前記灌漑用液体を前記チューブ外に吐出するための吐出部と、を有し、前記取水部の前記チューブに挿入される側の一端を先端、他端を基端としたときに、前記取水部の基端にフランジ部が配置され、前記フランジ部は、前記取水部の基端に配置されている第1円盤部と前記吐出部が配置される第2円盤部との合体によって構成され、かつ少なくとも前記減圧流路および前記吐出量調整部を含み、前記取水量調整部は、前記エミッタ内における前記灌漑用液体の流路内の固定端から突出し、前記取水量調整部よりも上流側の前記灌漑用液体の圧力を受けて下流側に開く弁体を含み、前記弁体は、前記固定端から突出する、可撓性を有する薄肉部と、前記薄肉部から延出する厚肉部とを有し、前記取水量調整部よりも上流側の前記灌漑用液体の圧力が設定値以上であるときに前記薄肉部が撓み、前記弁体が下流側に開く、エミッタ、を提供する。   Further, the present invention is a cylindrical water intake unit for taking in the irrigation liquid in the tube, which is to be inserted into the tube through which the irrigation liquid flows, from the outside of the tube, and is taken in from the water intake unit. A water intake amount adjusting unit for adjusting the flow rate of the irrigation liquid, a pressure reducing channel for flowing the irrigation liquid supplied from the water intake amount adjusting unit while reducing the pressure, and a pressure reducing channel supplied from the pressure reducing channel. A discharge amount adjusting unit for controlling the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube, and the irrigation liquid whose flow rate is controlled by the discharge amount adjusting unit being the tube A discharge portion for discharging to the outside, and when one end of the intake portion to be inserted into the tube is a distal end and the other end is a proximal end, a flange portion is provided at the proximal end of the intake portion. Arranged and said flange part The first disk part arranged at the base end of the water intake part and the second disk part where the discharge part is arranged, and including at least the decompression flow path and the discharge amount adjusting part, The water intake amount adjusting unit protrudes from a fixed end in the flow path of the irrigation liquid in the emitter, and receives a pressure of the irrigation liquid upstream from the water intake amount adjusting unit and opens to a downstream side The valve body includes a flexible thin-walled portion protruding from the fixed end and a thick-walled portion extending from the thin-walled portion, and the upstream side of the water intake amount adjusting portion. An emitter is provided in which when the pressure of the irrigation liquid is equal to or higher than a set value, the thin-walled portion bends and the valve element opens downstream.

さらに、本発明は、チューブと前記チューブに配置された前記のエミッタとを有する点滴灌漑用チューブ、を提供する。   Furthermore, the present invention provides a drip irrigation tube having a tube and the emitter disposed on the tube.

本発明に係るエミッタは、点滴灌漑用チューブ内の灌漑用液体の圧力に応じて、エミッタへの灌漑用液体の流入量を制御することから、エミッタにおける灌漑用液体の吐出量を安定化することができる。また、本発明に係るエミッタは、樹脂材料の射出成形による一部品または二部品で構成することが可能であるので、従来の三部品のエミッタに比べて、製造に係るコストをさらに削減することが可能である。   The emitter according to the present invention controls the inflow amount of the irrigation liquid to the emitter according to the pressure of the irrigation liquid in the drip irrigation tube, so that the discharge amount of the irrigation liquid at the emitter is stabilized. Can do. In addition, since the emitter according to the present invention can be composed of one or two parts by injection molding of a resin material, the manufacturing cost can be further reduced as compared with the conventional three-part emitter. Is possible.

図1Aは、本発明の実施の形態1に係る点滴灌漑用チューブの模式的な縦断面図であり、図1Bは、当該点滴灌漑用チューブの模式的な横断面図である。FIG. 1A is a schematic longitudinal sectional view of a drip irrigation tube according to Embodiment 1 of the present invention, and FIG. 1B is a schematic cross-sectional view of the drip irrigation tube. 図2Aは、実施の形態1に係るエミッタの平面、正面および側面を示す図であり、図2Bは、当該エミッタの底面、正面および側面を示す図である。FIG. 2A is a diagram illustrating a plane, a front surface, and a side surface of the emitter according to Embodiment 1, and FIG. 2B is a diagram illustrating a bottom surface, a front surface, and a side surface of the emitter. 図3Aは、実施の形態1に係るエミッタの平面図であり、図3Bは、当該エミッタの正面図であり、図3Cは、当該エミッタの側面図である。3A is a plan view of the emitter according to Embodiment 1, FIG. 3B is a front view of the emitter, and FIG. 3C is a side view of the emitter. また、図4Aは、実施の形態1に係るエミッタの底面図であり、図4Bは、当該エミッタの、図3A中のB−B線に沿っての断面図である。4A is a bottom view of the emitter according to Embodiment 1, and FIG. 4B is a cross-sectional view of the emitter along the line BB in FIG. 3A. 図5Aは、実施の形態1におけるエミッタ本体にフィルムが接合される前の成形品の平面、正面および側面を示す図であり、図5Bは、当該成形品の底面、正面および側面を示す図である。FIG. 5A is a diagram illustrating a plane, a front surface, and a side surface of the molded product before the film is bonded to the emitter body in Embodiment 1, and FIG. 5B is a diagram illustrating a bottom surface, a front surface, and a side surface of the molded product. is there. 図6Aは、実施の形態1におけるエミッタ本体にフィルムが接合される前の成形品の平面図であり、図6Bは、当該成形品の底面図である。FIG. 6A is a plan view of a molded product before the film is bonded to the emitter body in Embodiment 1, and FIG. 6B is a bottom view of the molded product. 図7Aは、実施の形態1に係る、チューブ内の灌漑用液体の圧力が設定値未満であるときのエミッタの、図6A中のD−D線に沿っての断面を拡大して示す図であり、図7Bは、チューブ内の灌漑用液体の圧力が設定値以上であるときの当該エミッタの、図6A中のD−D線に沿っての断面を拡大して示す図である。FIG. 7A is an enlarged view showing a cross section along the line DD in FIG. 6A of the emitter when the pressure of the irrigation liquid in the tube is less than the set value according to the first embodiment. FIG. 7B is an enlarged view showing a cross section along the line DD in FIG. 6A of the emitter when the pressure of the irrigation liquid in the tube is equal to or higher than a set value. 図8Aは、実施の形態1に係る、チューブ内の灌漑用液体の圧力が第1の設定値以上であるときのエミッタの、図4B中のA部を拡大して示す図であり、図8Bは、チューブ内の上記圧力が第1の設定値以上第2の設定値未満であるときの当該エミッタの上記A部を拡大して示す図であり、図8Cは、チューブ内の上記圧力が第2の設定値以上であるときの上記エミッタの上記A部を拡大して示す図である。FIG. 8A is an enlarged view of the portion A in FIG. 4B of the emitter when the pressure of the irrigation liquid in the tube is equal to or higher than the first set value according to the first embodiment. FIG. 8C is an enlarged view showing the A portion of the emitter when the pressure in the tube is equal to or greater than a first set value and less than a second set value. FIG. It is a figure which expands and shows the said A part of the said emitter when it is more than the setting value of 2. FIG. 本発明の実施の形態2に係る点滴灌漑用チューブの模式的な断面図である。It is typical sectional drawing of the tube for drip irrigation which concerns on Embodiment 2 of this invention. 図10Aは、実施の形態2に係るエミッタの平面図であり、図10Bは、当該エミッタの正面図であり、図10Cは、当該エミッタの底面図であり、図10Dは、当該エミッタの側面図である。10A is a plan view of an emitter according to Embodiment 2, FIG. 10B is a front view of the emitter, FIG. 10C is a bottom view of the emitter, and FIG. 10D is a side view of the emitter. It is. 図11Aは、実施の形態2に係るエミッタの、図10A中のA−A線に沿っての断面図であり、図11Bは、当該エミッタの、図10A中のB−B線に沿っての断面図である。11A is a cross-sectional view of the emitter according to Embodiment 2 along the line AA in FIG. 10A, and FIG. 11B shows the emitter along the line BB in FIG. 10A. It is sectional drawing. 図12Aは、実施の形態2における第1部品の平面図であり、図12Bは、当該第1部品の正面図であり、図12Cは、当該第1部品の底面図であり、図12Dは、当該第1部品の側面図である。FIG. 12A is a plan view of the first component in Embodiment 2, FIG. 12B is a front view of the first component, FIG. 12C is a bottom view of the first component, and FIG. It is a side view of the first part. 図13Aは、実施の形態2における第1部品の、図12A中のA−A線に沿っての断面図であり、図13Bは、当該第1部品の、図12A中のB−B線に沿っての断面図である。13A is a cross-sectional view of the first component according to Embodiment 2 along the line AA in FIG. 12A, and FIG. 13B is a cross-sectional view of the first component along the line BB in FIG. 12A. It is sectional drawing along. 図14Aは、実施の形態2における第2部品の平面図であり、図14Bは、当該第2部品の正面図であり、図14Cは、当該第2部品の底面図であり、図14Dは、当該第2部品の側面図であり、図14Eは、当該第2部品の、図14A中のA−A線に沿っての断面図である。FIG. 14A is a plan view of the second component in Embodiment 2, FIG. 14B is a front view of the second component, FIG. 14C is a bottom view of the second component, and FIG. FIG. 14E is a side view of the second component, and FIG. 14E is a cross-sectional view of the second component along the line AA in FIG. 14A. 図15Aは、実施の形態2に係る、チューブ内の灌漑用液体の圧力が設定値未満であるときのエミッタの、図10A中のD−D線に沿っての断面を拡大して示す図であり、図15Bは、チューブ内の灌漑用液体の圧力が設定値以上であるときの当該エミッタの、図10A中のD−D線に沿っての断面を拡大して示す図である。FIG. 15A is an enlarged view showing a cross section taken along line DD in FIG. 10A of the emitter when the pressure of the irrigation liquid in the tube is less than a set value according to the second embodiment. FIG. 15B is an enlarged view showing a cross section taken along line DD in FIG. 10A of the emitter when the pressure of the irrigation liquid in the tube is equal to or higher than a set value. 図16Aは、チューブ内の灌漑用液体の圧力が第1の設定値以上であるときの図12A中のA部の状態を模式的に示す図であり、図16Bは、チューブ内の灌漑用液体の圧力が第1の設定値以上第2の設定値未満であるときの図11A中のA部の状態を模式的に示す図であり、図16Cは、チューブ内の灌漑用液体の圧力が第2の設定値以上であるときの図11A中のA部の状態を模式的に示す図である。FIG. 16A is a diagram schematically illustrating the state of part A in FIG. 12A when the pressure of the irrigation liquid in the tube is equal to or higher than the first set value, and FIG. 16B is a diagram illustrating the irrigation liquid in the tube. FIG. 16C is a diagram schematically showing the state of part A in FIG. 11A when the pressure of the irrigation liquid is less than the first set value and less than the second set value, and FIG. It is a figure which shows typically the state of the A section in FIG. 11A when it is more than the setting value of 2. FIG. 図17Aは、実施の形態2に係るエミッタの吐出部の第1変形例を模式的に示す図であり、図17Bは、当該吐出部の第2変形例を模式的に示す図である。FIG. 17A is a diagram schematically illustrating a first modification of the discharge section of the emitter according to Embodiment 2, and FIG. 17B is a diagram schematically illustrating a second modification of the discharge section.

以下、本発明に係る実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

[実施の形態1]
図1Aは、本発明の実施の形態1に係る点滴灌漑用チューブの模式的な縦断面図であり、図1Bは、当該点滴灌漑用チューブの模式的な横断面図である。点滴灌漑用チューブ100は、チューブ110と、エミッタ120とによって構成されている。チューブ110は、例えばポリエチレン製である。
[Embodiment 1]
FIG. 1A is a schematic longitudinal sectional view of a drip irrigation tube according to Embodiment 1 of the present invention, and FIG. 1B is a schematic cross-sectional view of the drip irrigation tube. The drip irrigation tube 100 includes a tube 110 and an emitter 120. The tube 110 is made of, for example, polyethylene.

エミッタ120は、チューブ110の軸方向に所定の間隔(例えば200〜500mm)で配置されている。それぞれのエミッタ120は、チューブ110の内壁面に接合されている。エミッタ120は、チューブ110に密着しやすい形状に形成されている。たとえば、エミッタ120のXZ面で切断された断面における、チューブ110の内壁面に接合する面(後述する第2の表面)の形状は、送水時のチューブ110の内壁面に沿うように、チューブ110の内壁面に向けて突き出た略円弧形状となっている。エミッタ120は、チューブ110の吐出口130を覆う位置に配置されている。なお、X方向は、チューブ110の軸方向またはエミッタ120の長手方向を示し、Y方向は、エミッタ120の短手(幅)方向を示し、Z方向は、エミッタ120の高さ方向を示している。   The emitters 120 are arranged in the axial direction of the tube 110 at a predetermined interval (for example, 200 to 500 mm). Each emitter 120 is joined to the inner wall surface of the tube 110. The emitter 120 is formed in a shape that can easily adhere to the tube 110. For example, the shape of the surface (second surface to be described later) joined to the inner wall surface of the tube 110 in the cross section cut by the XZ plane of the emitter 120 is such that the tube 110 is along the inner wall surface of the tube 110 at the time of water supply. It has a substantially arc shape protruding toward the inner wall surface. The emitter 120 is disposed at a position covering the discharge port 130 of the tube 110. The X direction indicates the axial direction of the tube 110 or the longitudinal direction of the emitter 120, the Y direction indicates the short (width) direction of the emitter 120, and the Z direction indicates the height direction of the emitter 120. .

吐出口130は、チューブ110の管壁を貫通する孔である。吐出口130の孔径は、例えば1.5mmである。なお、矢印Fは、チューブ110内における灌漑用液体が流れる方向を示している。   The discharge port 130 is a hole that penetrates the tube wall of the tube 110. The hole diameter of the discharge port 130 is, for example, 1.5 mm. An arrow F indicates the direction in which the irrigation liquid flows in the tube 110.

図2Aは、エミッタ120の平面、正面および側面を示す図であり、図2Bは、エミッタ120の底面、正面および側面を示す図である。また、図3Aは、エミッタ120の平面図であり、図3Bは、エミッタ120の正面図であり、図3Cは、エミッタ120の側面図である。また、図4Aは、エミッタ120の底面図であり、図4Bは、エミッタ120の、図3A中のB−B線に沿っての断面図である。   FIG. 2A is a diagram illustrating a plane, a front surface, and a side surface of the emitter 120, and FIG. 2B is a diagram illustrating a bottom surface, a front surface, and a side surface of the emitter 120. 3A is a plan view of the emitter 120, FIG. 3B is a front view of the emitter 120, and FIG. 3C is a side view of the emitter 120. 4A is a bottom view of the emitter 120, and FIG. 4B is a cross-sectional view of the emitter 120 along the line BB in FIG. 3A.

エミッタ120は、図2A、図2Bに示されるように、筐体様の外形を有する。エミッタ120の平面形状(Z方向に沿って見た形状)は、各角が丸く面取りされてなる略矩形であり、エミッタ120の側面形状(X方向に沿って見た形状)は、前述したように、半円とそれに連なる矩形とからなる形状(ベル型)である。たとえば、エミッタ120のX方向の長さは26mmであり、Y方向の長さは10mmであり、Z方向の長さは2.5mmである。   As shown in FIGS. 2A and 2B, the emitter 120 has a housing-like outer shape. The planar shape (the shape viewed along the Z direction) of the emitter 120 is a substantially rectangular shape with each corner rounded and chamfered, and the side surface shape (the shape viewed along the X direction) of the emitter 120 is as described above. Furthermore, it is a shape (bell shape) consisting of a semicircle and a rectangle connected to it. For example, the length of the emitter 120 in the X direction is 26 mm, the length in the Y direction is 10 mm, and the length in the Z direction is 2.5 mm.

エミッタ120は、チューブ110の内壁面に接合されるエミッタ本体200と、エミッタ本体200に接合されたフィルム300とを有する。先に、フィルム300について説明する。   The emitter 120 includes an emitter main body 200 bonded to the inner wall surface of the tube 110 and a film 300 bonded to the emitter main body 200. First, the film 300 will be described.

フィルム300は、スリット301、ダイヤフラム部302および位置決め孔303を有する。スリット301は、X方向に沿う細長の開口である。フィルム300における後述する突条213に重なる位置に、三本のスリット301が並列に配置されている。フィルム300の厚さは、例えば0.5mmである。   The film 300 has a slit 301, a diaphragm portion 302, and a positioning hole 303. The slit 301 is an elongated opening along the X direction. Three slits 301 are arranged in parallel at a position in the film 300 that overlaps a protrusion 213 described later. The thickness of the film 300 is, for example, 0.5 mm.

ダイヤフラム部302は、フィルム300における、後述する凹部231および凸部232に重なるべき部分である。ダイヤフラム部302の厚さは、フィルム300の他の部分と同じであり、その平面形状は円形である。なお、ダイヤフラム部302の厚さは、後述する圧力に対する変形量に基づいて、例えばコンピュータシミュレーションや試作品による実験などによって決めることができる。   Diaphragm portion 302 is a portion of film 300 that should overlap with concave portions 231 and convex portions 232 described later. The thickness of the diaphragm part 302 is the same as the other part of the film 300, and its planar shape is circular. Note that the thickness of the diaphragm 302 can be determined by, for example, computer simulation or a prototype experiment based on the amount of deformation with respect to pressure, which will be described later.

位置決め孔303は、フィルム300を貫通する、平面形状が円形の2つの孔であり、例えばフィルム300の一対角線上の、一対の向かい合う角のそれぞれに対応する位置に配置されている。   The positioning holes 303 are two holes that pass through the film 300 and have a circular planar shape, and are arranged at positions corresponding to, for example, a pair of opposing corners on a diagonal line of the film 300.

次いで、エミッタ本体200について説明する。図5Aは、エミッタ本体200にフィルム300が接合される前の成形品の平面、正面および側面を示す図であり、図5Bは、当該成形品の底面、正面および側面を示す図である。また、図6Aは、上記成形品の平面図であり、図6Bは、当該成形品の底面図である。   Next, the emitter body 200 will be described. FIG. 5A is a diagram illustrating a plane, a front surface, and a side surface of the molded product before the film 300 is bonded to the emitter body 200, and FIG. 5B is a diagram illustrating a bottom surface, a front surface, and a side surface of the molded product. FIG. 6A is a plan view of the molded product, and FIG. 6B is a bottom view of the molded product.

エミッタ本体200は、図5A、図5Bに示されるように、第1の表面201および第2の表面202を有する。第1の表面201は、フィルム300と接合する、Z方向における一方の面である。第2の表面202は、チューブ110の内壁面と接合する、Z方向における他方の面である。第1の表面201は、平面であり、第2の表面202は、略半円筒形状の非平面である。   The emitter body 200 has a first surface 201 and a second surface 202 as shown in FIGS. 5A and 5B. The first surface 201 is one surface in the Z direction that is bonded to the film 300. The second surface 202 is the other surface in the Z direction that is joined to the inner wall surface of the tube 110. The first surface 201 is a flat surface, and the second surface 202 is a non-flat surface having a substantially semicylindrical shape.

エミッタ本体200は、図5A、図6A、図6Bに示されるように、ヒンジ部304を介してフィルム300と一体的に配置されている。ヒンジ部304は、エミッタ本体200の、Y方向における第1の表面201側の一側縁に配置されている。ヒンジ部304は、例えば、フィルム300と同じ厚さを有し、エミッタ本体200およびフィルム300と一体的に成形された、幅0.5mmの部分である。   As shown in FIGS. 5A, 6A, and 6B, the emitter body 200 is disposed integrally with the film 300 via a hinge portion 304. The hinge portion 304 is disposed on one side edge of the emitter body 200 on the first surface 201 side in the Y direction. The hinge portion 304 is, for example, a portion having a width of 0.5 mm that has the same thickness as the film 300 and is integrally formed with the emitter body 200 and the film 300.

エミッタ本体200は、図5Aおよび図5Bに示されるように、凹部211と、凹部211内に配置されている突条213と、凹部211の底面に形成された弁体214および固定部215と、第2の表面202から弁体214および固定部215に至る凹部216と、を有する。なお、スリット301、凹部211および突条213は、取水部を構成する。弁体214および固定部215は、取水量調整部を構成する。   As shown in FIGS. 5A and 5B, the emitter body 200 includes a recess 211, a protrusion 213 disposed in the recess 211, a valve body 214 and a fixing portion 215 formed on the bottom surface of the recess 211, And a recess 216 extending from the second surface 202 to the valve body 214 and the fixing portion 215. In addition, the slit 301, the recessed part 211, and the protrusion 213 comprise a water intake part. The valve body 214 and the fixing part 215 constitute a water intake amount adjusting part.

凹部211の平面形状は、矩形とその一辺に連なる半円形とからなるベル形であり、第1の表面201からの凹部211の深さは、例えば0.5mmである。当該ベル形の半円形部の直径は、例えば6mmである。   The planar shape of the recess 211 is a bell shape consisting of a rectangle and a semicircle connected to one side thereof, and the depth of the recess 211 from the first surface 201 is, for example, 0.5 mm. The bell-shaped semicircular portion has a diameter of, for example, 6 mm.

突条213は、凹部211の平面形状における矩形部に配置されている、その長手方向をY方向とする細長の並列する三本の凸部である。突条213の凹部211の底面から突条213の突端面までの高さは、例えば0.5mmである。X方向における突条213間または突条213と凹部211の壁面との間には隙間があり、また、Y方向における突条213の端部と凹部211の壁面との間にも隙間がある。突条213は、XZ面で切断された断面の形状が、図4Bに示されるように、突端部よりも基端部の方が幅狭となるように形成されている。すなわち、X方向における突条213間または突条213と凹部211の壁面との間の隙間は、凹部211の深さ方向に漸次大きくなっている。凹部211の底面に対して突条213の壁面がなす角度は、例えば80〜84°である。このように、突条213は、凹部211内においていわゆるウェッジワイヤー構造を構築している。   The ridges 213 are three elongated protrusions arranged in parallel in the Y direction in the longitudinal direction, which are arranged in a rectangular portion in the planar shape of the recess 211. The height from the bottom surface of the recess 211 of the protrusion 213 to the protrusion end surface of the protrusion 213 is, for example, 0.5 mm. There is a gap between the ridges 213 in the X direction or between the ridge 213 and the wall surface of the recess 211, and there is also a gap between the end of the ridge 213 and the wall surface of the recess 211 in the Y direction. As shown in FIG. 4B, the protrusion 213 is formed such that the cross-sectional shape cut along the XZ plane is narrower at the base end than at the protrusion. That is, the gap between the protrusions 213 in the X direction or between the protrusions 213 and the wall surface of the recess 211 is gradually increased in the depth direction of the recess 211. The angle formed by the wall surface of the protrusion 213 with respect to the bottom surface of the recess 211 is, for example, 80 to 84 °. Thus, the protrusion 213 constructs a so-called wedge wire structure in the recess 211.

弁体214および固定部215は、いずれもその平面形状が円形を四分割にしてなる扇形であり、円周方向に沿って交互に配置されている。固定部215の形態は、平板であり、その一方の面は、凹部211の底面と同一平面を構成している。弁体214は、その円弧部が固定端、半径が自由端となっており、凹部211の底面から固定部215の厚さ分だけ窪んだ位置に配置されている。すなわち、弁体214の上流側の自由端縁は、固定部215の下流側の自由端縁に接している。弁体214および固定部215は、いずれの上記自由端もが平面視したときにX方向またはY方向に対して45°で交差する位置に配置されている。   Each of the valve body 214 and the fixing portion 215 has a sector shape in which the planar shape is a circular shape divided into four parts, and is arranged alternately along the circumferential direction. The form of the fixing portion 215 is a flat plate, and one surface thereof forms the same plane as the bottom surface of the recess 211. The valve body 214 has a circular arc portion as a fixed end and a radius as a free end, and is disposed at a position recessed from the bottom surface of the concave portion 211 by the thickness of the fixed portion 215. That is, the upstream free edge of the valve body 214 is in contact with the downstream free edge of the fixing portion 215. The valve body 214 and the fixed portion 215 are arranged at a position where any of the free ends intersects the X direction or the Y direction at 45 ° when viewed in plan.

弁体214は、図6Bに示されるように、上記固定端から延出する、可撓性を有する薄肉部2141と、薄肉部2141から延出する厚肉部2142とによって構成されている。薄肉部2141は、固定端となる円弧から均一な、固定部215に比べて十分に薄い厚さを有している。   As shown in FIG. 6B, the valve body 214 includes a flexible thin-walled portion 2141 extending from the fixed end and a thick-walled portion 2142 extending from the thin-walled portion 2141. The thin portion 2141 has a thickness that is uniform from the arc serving as the fixed end and is sufficiently thinner than the fixed portion 215.

厚肉部2142は、弁体214の下流側に肉厚な部分である。厚肉部2142は、例えば凹部216に向けて突出する略三角錐形状を有している。厚肉部2142の底面形状は、弁体214における上記扇形の中心を一頂点とする直角二等辺三角形であり、上記自由端から下流側に起立する二壁面と、上記直角三角形の斜辺から下流側へ斜めに延びる斜面とを有する。薄肉部2141と厚肉部2142との平面形状における境界は、一直線となっている。厚肉部2142の頂部は、例えば、エミッタ120がチューブ110に接合されたときのチューブ110の内壁面から厚肉部2142までの距離が0.5mm程度となるように、わずかに切り欠かれている。   The thick part 2142 is a thick part on the downstream side of the valve body 214. The thick portion 2142 has, for example, a substantially triangular pyramid shape protruding toward the recess 216. The bottom surface shape of the thick portion 2142 is a right isosceles triangle with the center of the fan shape in the valve body 214 as one apex, two wall surfaces standing downstream from the free end, and a downstream side from the oblique side of the right triangle. And an inclined surface extending obliquely. The boundary in the planar shape of the thin part 2141 and the thick part 2142 is a straight line. The top part of the thick part 2142 is slightly cut away so that, for example, the distance from the inner wall surface of the tube 110 to the thick part 2142 is about 0.5 mm when the emitter 120 is joined to the tube 110. Yes.

凹部216は、図5Bに示されるように、その平面形状は凹部211の上記ベル形における半円形と同じ直径の円形であり、その底部が弁体214および固定部215で構成されている。   As shown in FIG. 5B, the planar shape of the recess 216 is a circle having the same diameter as the semicircular shape of the bell shape of the recess 211, and the bottom thereof is configured by the valve body 214 and the fixing portion 215.

また、エミッタ本体200は、図5B、図6Bに示されるように、凹部221を有する。凹部221は、第2の表面202に、X方向に沿って延出する溝である。凹部221は、その一端で凹部216に連通し、その平面形状は略矩形である。第2の表面202からの凹部221の深さは、例えば0.5mmである。凹部221は、減圧流路部222および孔223を含む。   Further, the emitter body 200 has a recess 221 as shown in FIGS. 5B and 6B. The recess 221 is a groove extending along the X direction on the second surface 202. The concave portion 221 communicates with the concave portion 216 at one end thereof, and the planar shape thereof is substantially rectangular. The depth of the recess 221 from the second surface 202 is, for example, 0.5 mm. The recess 221 includes a reduced pressure channel portion 222 and a hole 223.

減圧流路部222は、その平面形状がジグザグ形状の溝に形成されている部分である。当該ジグザグ形状は、凹部221の側面から突出する略三角柱形状の凸部が凹部221の長手方向(X方向)に沿って交互に配置されてなる。当該凸部は、平面視したときに、当該凸部の突端が凹部221の中心軸を超えないように配置されている。減圧流路部222の深さは、例えば0.5mmであり、減圧流路部222の流路の幅(図4A中のW)は、例えば0.5mmである。   The decompression flow path part 222 is a part in which the planar shape is formed in a zigzag groove. The zigzag shape includes convex portions having a substantially triangular prism shape protruding from the side surface of the concave portion 221 and are alternately arranged along the longitudinal direction (X direction) of the concave portion 221. The convex portion is arranged so that the protruding end of the convex portion does not exceed the central axis of the concave portion 221 when viewed in plan. The depth of the decompression flow path portion 222 is, for example, 0.5 mm, and the width of the flow path of the decompression flow path portion 222 (W in FIG. 4A) is, for example, 0.5 mm.

孔223は、凹部221の他端部に開口し、エミッタ本体200を貫通している。   The hole 223 opens at the other end of the recess 221 and penetrates the emitter body 200.

また、エミッタ本体200は、図5A、図6Aに示されるように、凹部231、凸部232、端面233、孔234および溝235を含む。ダイヤフラム部302、凸部232、端面233、孔234および溝235は、吐出量調整部を構成する。   The emitter body 200 includes a recess 231, a protrusion 232, an end surface 233, a hole 234, and a groove 235, as shown in FIGS. 5A and 6A. Diaphragm part 302, convex part 232, end face 233, hole 234 and groove 235 constitute a discharge amount adjusting part.

凹部231は、第1の表面201に開口する有底の凹部である。凹部231の平面形状は円形であり、凹部231の底には孔234が開口している。当該円形の直径は、例えば6mmであり、第1の表面201からの凹部231の深さは、例えば2mmである。   The recess 231 is a bottomed recess that opens to the first surface 201. The planar shape of the recess 231 is circular, and a hole 234 is opened at the bottom of the recess 231. The circular diameter is 6 mm, for example, and the depth of the recess 231 from the first surface 201 is 2 mm, for example.

凸部232は、凹部231の底の中央部から起立している厚肉の略円筒体である。凸部232の高さは、凹部231の深さよりも小さい。たとえば、第1の表面201から凸部232までのZ方向における距離は、0.25mmである。   The convex portion 232 is a thick, substantially cylindrical body that stands up from the center of the bottom of the concave portion 231. The height of the convex part 232 is smaller than the depth of the concave part 231. For example, the distance in the Z direction from the first surface 201 to the convex portion 232 is 0.25 mm.

端面233は、凸部232の突端面である。端面233の平面形状は、円形であり、その直径は、例えば3mmである。端面233は、XY平面に平行な外環部2331と、外環部2331の内周縁から端面233の中心部に向けて第2の表面202側に傾斜する傾斜面2332とを含む(図8A)。   The end surface 233 is a protruding end surface of the convex portion 232. The planar shape of the end surface 233 is circular, and the diameter thereof is, for example, 3 mm. The end surface 233 includes an outer ring portion 2331 that is parallel to the XY plane, and an inclined surface 2332 that is inclined from the inner peripheral edge of the outer ring portion 2331 toward the center of the end surface 233 toward the second surface 202 (FIG. 8A). .

傾斜面2332は、第1の表面201側に対してわずかに窪んだ曲面である。傾斜面2332は、凹部231のその中心軸を含む断面における凹部231の開口端縁に接する仮想の曲線と重なるように形成されている。当該仮想の曲線とは、チューブ110内の灌漑用液体が設定値以上の圧力を受けたときにダイヤフラム部302が上記断面において描く曲線を含む(図8A、図8C)。当該曲線は、例えば、曲率半径Rが12mmの曲線である。このように、傾斜面2332は、ダイヤフラム部302が着座可能な弁座部となっている。   The inclined surface 2332 is a curved surface that is slightly recessed with respect to the first surface 201 side. The inclined surface 2332 is formed so as to overlap with an imaginary curve in contact with the opening edge of the recess 231 in the cross section including the central axis of the recess 231. The virtual curve includes a curve drawn by the diaphragm 302 in the cross section when the irrigation liquid in the tube 110 receives a pressure equal to or higher than a set value (FIGS. 8A and 8C). The curve is, for example, a curve having a radius of curvature R of 12 mm. Thus, the inclined surface 2332 is a valve seat portion on which the diaphragm portion 302 can be seated.

孔234は、端面233の中心に開口し、エミッタ本体200を貫通している。孔234は、Z方向に沿って、端面233側から凹部241側に向けて径が漸増するテーパ状の孔である。孔234の端面233側の開口は、凹部241側の開口よりも小さく、孔234の端面233側の孔径は、例えば1mmである。   The hole 234 opens at the center of the end surface 233 and penetrates the emitter body 200. The hole 234 is a tapered hole whose diameter gradually increases from the end surface 233 side toward the concave portion 241 side along the Z direction. The opening on the end surface 233 side of the hole 234 is smaller than the opening on the concave portion 241 side, and the hole diameter on the end surface 233 side of the hole 234 is, for example, 1 mm.

溝235は、端面233に形成されており、端面233の外周縁から孔234に至る。すなわち、溝235は、凹部231と孔234とを連通する。溝235の数は、一本でもそれ以上でもよい。たとえば、溝235の幅は2mmであり、溝235の深さは0.05mmである。   The groove 235 is formed in the end surface 233 and extends from the outer peripheral edge of the end surface 233 to the hole 234. That is, the groove 235 communicates the recess 231 and the hole 234. The number of grooves 235 may be one or more. For example, the width of the groove 235 is 2 mm, and the depth of the groove 235 is 0.05 mm.

また、エミッタ本体200は、図5B、図6Bに示されるように、凹部241および突条242を有する。凹部241は、吐出口130に面すべき吐出部となっている。   Moreover, the emitter main body 200 has the recessed part 241 and the protrusion 242 as FIG. 5B and FIG. 6B show. The concave portion 241 is a discharge portion that should face the discharge port 130.

凹部241の平面形状は、略矩形である。より詳しくは、凹部241の平面形状は、X方向における凹部221側の第1の部分2411と、より深い第2の部分2412と、第1の部分2411と第2の部分2412とを繋げる傾斜部2413と、第1の部分2411の凹部221側の端縁に開口している孔234と、が合体した形状となっている。このように、凹部241の平面形状は、矩形の一辺に孔234による半円が接続した形状になっている。第1の部分2411および第2の部分2412のいずれの平面形状も略矩形である。傾斜部2413の、第2の部分2412の底面に対する傾斜角は、例えば60°である。   The planar shape of the recess 241 is substantially rectangular. More specifically, the planar shape of the concave portion 241 is an inclined portion that connects the first portion 2411 on the concave portion 221 side in the X direction, the deeper second portion 2412, and the first portion 2411 and the second portion 2412. 2413 and the hole 234 opened to the edge of the first portion 2411 on the concave portion 221 side are combined. Thus, the planar shape of the recess 241 is a shape in which a semicircle by the hole 234 is connected to one side of the rectangle. Both the planar shapes of the first portion 2411 and the second portion 2412 are substantially rectangular. The inclination angle of the inclined portion 2413 with respect to the bottom surface of the second portion 2412 is, for example, 60 °.

突条242は、第1の部分2411に、傾斜部2413との境界に沿って配置されている。また、突条242の高さは、第1の部分2411の深さと同じである。X方向において、突条242は、孔234とは離れている。また、Y方向において、突条242の長さは、第1の部分2411の長さよりも短く、突条242の両端は、いずれも第1の部分2411の内壁面から離れている。このように、突条242は、X方向に沿って第2の部分2412側から見たときに、孔234に完全に重なるように配置されている。   The ridge 242 is disposed on the first portion 2411 along the boundary with the inclined portion 2413. Further, the height of the protrusion 242 is the same as the depth of the first portion 2411. The protrusion 242 is separated from the hole 234 in the X direction. In the Y direction, the length of the protrusion 242 is shorter than the length of the first portion 2411, and both ends of the protrusion 242 are separated from the inner wall surface of the first portion 2411. Thus, the protrusion 242 is disposed so as to completely overlap the hole 234 when viewed from the second portion 2412 side along the X direction.

また、エミッタ本体200は、図5A、図6Aに示されるように、第1の表面201から突出する凸部251と、図5B、図6Bに示されるように、第2の表面202に開口する凹部252とを有する。   Further, the emitter body 200 opens to the second surface 202 as shown in FIGS. 5B and 6B and the convex portion 251 protruding from the first surface 201 as shown in FIGS. 5A and 6A. And a recess 252.

凸部251の平面形状は円形であり、フィルム300の位置決め孔303に嵌合する大きさを有する。凸部251は、位置決め孔303に対応する位置にそれぞれ配置されている。   The planar shape of the convex portion 251 is circular, and has a size that fits into the positioning hole 303 of the film 300. The convex portions 251 are respectively arranged at positions corresponding to the positioning holes 303.

凹部252は、X方向における凹部216と凹部241との間であって、Y方向における凹部221とエミッタ本体200の側縁との間の位置に、それぞれ配置されている。   The recess 252 is disposed between the recess 216 and the recess 241 in the X direction and at a position between the recess 221 and the side edge of the emitter body 200 in the Y direction.

エミッタ本体200およびフィルム300は、いずれも、可撓性を有する一種類の材料、例えばポリプロピレン、で成形されている。当該材料の例には、樹脂およびゴムが含まれ、当該樹脂の例には、ポリエチレンおよびシリコーンが含まれる。エミッタ本体200およびフィルム300の可撓性は、弾性を有する樹脂材料の使用によって調整することが可能であり、例えば、弾性を有する樹脂の種類や、硬質の樹脂材料に対する、弾性を有する樹脂材料の混合比、などによって調整することが可能である。エミッタ本体200およびフィルム300の一体成形品は、例えば、射出成形によって製造することが可能である。   The emitter body 200 and the film 300 are both formed of one kind of flexible material, for example, polypropylene. Examples of the material include a resin and rubber, and examples of the resin include polyethylene and silicone. The flexibility of the emitter body 200 and the film 300 can be adjusted by using an elastic resin material. For example, the elasticity of a resin material having elasticity relative to the type of resin having elasticity or a hard resin material can be adjusted. It is possible to adjust by the mixing ratio. The integrally molded product of the emitter body 200 and the film 300 can be manufactured by, for example, injection molding.

エミッタ120は、フィルム300を、ヒンジ部304を軸に回動させ、エミッタ本体200の第1の表面201に接合することにより構成される。たとえば、フィルム300は、エミッタ本体200またはフィルム300を構成する樹脂材料の溶着や、接着剤による接着、エミッタ本体200へのフィルム300の圧着などによってエミッタ本体200に接合される。フィルム300を第1の表面201に接合することにより、凹部231はダイヤフラム部302によって水密に塞がれ、エミッタ120中の灌漑用液体の流路の一部となる。こうして、凹部211から凹部241に至る一連の上記流路が形成される。なお、ヒンジ部304は、そのまま残されていてもよいし、切断により取り除かれてもよい。   The emitter 120 is configured by rotating the film 300 around the hinge portion 304 and joining the film 300 to the first surface 201 of the emitter body 200. For example, the film 300 is bonded to the emitter main body 200 by welding the emitter main body 200 or a resin material constituting the film 300, bonding with an adhesive, pressing the film 300 to the emitter main body 200, or the like. By bonding the film 300 to the first surface 201, the recess 231 is watertightly closed by the diaphragm portion 302 and becomes a part of the flow path of the irrigation liquid in the emitter 120. In this way, a series of the flow paths from the recess 211 to the recess 241 is formed. The hinge part 304 may be left as it is, or may be removed by cutting.

点滴灌漑用チューブ100は、エミッタ120をその第2の表面202でチューブ110の内壁面に接合することによって構成される。エミッタ120も、例えば、エミッタ本体200またはチューブ110を構成する樹脂材料の溶着や、接着剤による接着、エミッタ本体200のチューブ110への圧着などによってチューブ110の内壁面に接合される。吐出口130は、エミッタ120における第2の部分2412に開口するように形成される。吐出口130は、通常は、チューブ110へのエミッタ120の接合後に形成されるが、接合前に形成されてもよい。   The drip irrigation tube 100 is configured by joining the emitter 120 to the inner wall surface of the tube 110 at the second surface 202 thereof. The emitter 120 is also bonded to the inner wall surface of the tube 110 by, for example, welding of a resin material constituting the emitter body 200 or the tube 110, adhesion with an adhesive, and pressure bonding of the emitter body 200 to the tube 110. The discharge port 130 is formed so as to open to the second portion 2412 of the emitter 120. The discharge port 130 is usually formed after the emitter 120 is bonded to the tube 110, but may be formed before the bonding.

次に、エミッタ120における灌漑用液体の流れを説明する。まず、チューブ110内に灌漑用液体として、例えば水が供給される。なお、当該灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。点滴灌漑用チューブ100への水の供給は、チューブ100およびエミッタ120の破損を防止するため、水圧が0.1MPaを超えない範囲で行われる。チューブ110内の水は、フィルム300のスリット301を通り、凹部211と突条213との隙間を通る。   Next, the flow of irrigation liquid in the emitter 120 will be described. First, for example, water is supplied as an irrigation liquid into the tube 110. Examples of the irrigation liquid include water, liquid fertilizer, agricultural chemicals, and a mixture thereof. The supply of water to the drip irrigation tube 100 is performed in a range where the water pressure does not exceed 0.1 MPa in order to prevent the tube 100 and the emitter 120 from being damaged. The water in the tube 110 passes through the slit 301 of the film 300 and passes through the gap between the recess 211 and the protrusion 213.

スリット301の長手方向と突条213の長手方向は、互いに交差していることから、凹部211のチューブ110に対する開口部が点在するとともに各開口の面積が小さい。よって、チューブ110内の水中の浮遊物の凹部211への侵入が抑制される。また、突条213は、いわゆるウェッジワイヤー構造を構築していることから、凹部211内に流入した水の圧力損失が抑制される。   Since the longitudinal direction of the slit 301 and the longitudinal direction of the ridge 213 intersect each other, the openings of the recesses 211 with respect to the tube 110 are dotted and the area of each opening is small. Therefore, the penetration | invasion to the recessed part 211 of the suspended matter in the water in the tube 110 is suppressed. Moreover, since the protrusion 213 constructs a so-called wedge wire structure, the pressure loss of the water flowing into the recess 211 is suppressed.

凹部211内の水は、凹部211内の弁体214および固定部215の位置に到達する。図7Aは、チューブ110内の水の圧力が設定値未満であるときのエミッタ120の、図6A中のD−D線に沿っての断面を拡大して示す図であり、図7Bは、チューブ110内の水の圧力が設定値以上であるときのエミッタ120の、図6A中のD−D線に沿っての断面を拡大して示す図である。図7A、7B中の矢印は、水の流れを表している。   The water in the recess 211 reaches the position of the valve body 214 and the fixed portion 215 in the recess 211. FIG. 7A is an enlarged view showing a cross section taken along the line DD in FIG. 6A of the emitter 120 when the pressure of water in the tube 110 is less than a set value, and FIG. It is a figure which expands and shows the cross section along the DD line in FIG. 6A of the emitter 120 when the pressure of the water in 110 is more than a setting value. The arrows in FIGS. 7A and 7B represent the flow of water.

凹部211内の水は、弁体214および固定部215を、凹部211側から凹部216側にむけて押圧する。凹部211内の水圧が設定値(例えば0.005MPa)未満であると、図7Aに示されるように、弁体214および固定部215は、いずれも凹部216側には撓まず、水の流路は、弁体214および固定部215によって閉じられる。   The water in the recessed portion 211 presses the valve body 214 and the fixing portion 215 from the recessed portion 211 side toward the recessed portion 216 side. When the water pressure in the concave portion 211 is less than a set value (for example, 0.005 MPa), as shown in FIG. 7A, the valve body 214 and the fixing portion 215 do not bend toward the concave portion 216, and the water flow path. Is closed by the valve body 214 and the fixing portion 215.

凹部211内の水圧が設定値以上になると、図7Bに示されるように、薄肉部2141が固定部215よりも薄いことから、固定部215は撓まないが薄肉部2141のみが撓み、固定部215は凹部216側には開かないが弁体214のみが凹部216側に開く。こうして、弁体214および固定部215の間に隙間が形成され、凹部211内の水は、当該隙間を通って、凹部216に供給される。   When the water pressure in the recess 211 is equal to or higher than the set value, as shown in FIG. 7B, the thin portion 2141 is thinner than the fixed portion 215, so that the fixed portion 215 does not bend but only the thin portion 2141 is bent, and the fixed portion Although 215 does not open to the recessed part 216 side, only the valve body 214 opens to the recessed part 216 side. Thus, a gap is formed between the valve body 214 and the fixed portion 215, and the water in the recess 211 is supplied to the recess 216 through the gap.

凹部216内の水は、凹部221を通って減圧流路部222に供給される。減圧流路部222を流れる水は、減圧流路部222の平面形状(ジグザグ形状)によってもたらされる圧力損失によって減圧される。また、当該水中の浮遊物は、減圧流路部222の上記凸部間に発生する乱流に巻き込まれ、減圧流路部222に滞留する。このように減圧流路部222によって、上記水から浮遊物がさらに除去される。   The water in the recess 216 is supplied to the decompression flow path part 222 through the recess 221. The water flowing through the decompression flow path part 222 is decompressed by the pressure loss caused by the planar shape (zigzag shape) of the decompression flow path part 222. Further, the suspended matter in the water is caught in the turbulent flow generated between the convex portions of the decompression flow path portion 222 and stays in the decompression flow path portion 222. In this way, the suspended matter is further removed from the water by the decompression flow path section 222.

減圧流路部222を通り、減圧され、上記浮遊物が除去された水は、孔223を通って凹部241内に供給される。   The water that has been depressurized through the depressurizing flow path portion 222 and from which the suspended matter has been removed is supplied into the recess 241 through the hole 223.

ここで、図8Aは、チューブ110内の水圧が第1の設定値以上であるときの図4B中のA部を拡大して示す図であり、図8Bは、チューブ110内の水圧が第1の設定値以上第2の設定値未満であるときの上記A部を拡大して示す図であり、図8Cは、チューブ110内の水圧が第2の設定値以上であるときの上記A部を拡大して示す図である。   Here, FIG. 8A is an enlarged view showing a portion A in FIG. 4B when the water pressure in the tube 110 is equal to or higher than the first set value, and FIG. 8B shows the water pressure in the tube 110 being the first. FIG. 8C is an enlarged view of the A portion when the set value is less than the second set value and less than the second set value, and FIG. 8C shows the A portion when the water pressure in the tube 110 is greater than or equal to the second set value. FIG.

水は、凹部241内に満ちると、図8Aに示されるように、フィルム300および端面233の隙間を通って孔234に供給される。チューブ110内の水圧が第1の設定値(例えば0.02MPa)以上であれば、チューブ110内の水圧の上昇に応じて、上記取水部における水の流量も増加し、凹部231に供給される水の量も増える。   When the water fills the recess 241, the water is supplied to the hole 234 through the gap between the film 300 and the end surface 233, as shown in FIG. 8A. If the water pressure in the tube 110 is equal to or higher than a first set value (for example, 0.02 MPa), the flow rate of water in the water intake section increases as the water pressure in the tube 110 increases and is supplied to the recess 231. The amount of water also increases.

一方で、チューブ110内の水圧が第1の設定値以上になると、図8Bに示されるように、チューブ110内の水圧によってダイヤフラム部302が押されて凹部231側に撓む。このため、ダイヤフラム部302と端面233との間隔が狭くなる。たとえば、端面233からダイヤフラム部302までの距離は0.15mmになる。よって、端面233とダイヤフラム部302との隙間を流れる水の量が減少する。   On the other hand, when the water pressure in the tube 110 becomes equal to or higher than the first set value, the diaphragm portion 302 is pushed by the water pressure in the tube 110 and bent toward the concave portion 231 as shown in FIG. 8B. For this reason, the space | interval of the diaphragm part 302 and the end surface 233 becomes narrow. For example, the distance from the end surface 233 to the diaphragm portion 302 is 0.15 mm. Therefore, the amount of water flowing through the gap between the end surface 233 and the diaphragm portion 302 is reduced.

チューブ110内の灌漑用液体の圧力が第2の設定値(例えば0.05MPa)以上になると、図8Cに示されるように、ダイヤフラム部302は、凹部231側により押されてさらに撓み、傾斜面2332に密着する。孔234は、ダイヤフラム部302によって塞がれるが、その一方で、端面233は溝235を含むことから、溝235は、凹部231と孔234とを連通する。このため、凹部231内の水は、溝235を通って凹部231から孔234に供給される。このため、高水圧時には、孔234における水の流量は、溝235を通過可能な一定の流量に規制される。   When the pressure of the irrigation liquid in the tube 110 becomes equal to or higher than a second set value (for example, 0.05 MPa), as shown in FIG. 8C, the diaphragm portion 302 is further bent by being pressed by the concave portion 231 side. 2332. The hole 234 is closed by the diaphragm portion 302, while the end surface 233 includes the groove 235, so that the groove 235 communicates the recess 231 and the hole 234. For this reason, the water in the recess 231 is supplied from the recess 231 to the hole 234 through the groove 235. For this reason, at the time of high water pressure, the flow rate of water in the hole 234 is regulated to a constant flow rate that can pass through the groove 235.

孔234を通った水は、凹部241に供給される。すなわち、孔234を通った水は、まず第1の部分2411に供給され、凹部241の内壁面と突条242との隙間を通って第2の部分2412に供給される。第2の部分2412に供給された水は、第2の部分2412に開口する吐出口130を通って、チューブ110外に流出する。   The water that has passed through the hole 234 is supplied to the recess 241. That is, water that has passed through the hole 234 is first supplied to the first portion 2411, and then supplied to the second portion 2412 through the gap between the inner wall surface of the recess 241 and the protrusion 242. The water supplied to the second portion 2412 flows out of the tube 110 through the discharge port 130 opening in the second portion 2412.

なお、点滴灌漑用チューブ100を使用していると、植物の根が水を求めて吐出口130から凹部241内に侵入することが考えられる。このような異物の侵入は、突条242によって遮られる。よって、当該異物により孔234が塞がれることが防止される。   When the drip irrigation tube 100 is used, it is conceivable that the roots of the plant seek water and enter the recess 241 from the discharge port 130. Such intrusion of foreign matter is blocked by the protrusion 242. Therefore, the hole 234 is prevented from being blocked by the foreign matter.

上記の説明から明らかなように、エミッタ120は、チューブ110の内壁面の吐出口130に対応する位置に接合され、チューブ110内の灌漑用液体(水)を吐出口130から定量的に吐出するためのエミッタであって、チューブ100内の水を取り入れるための取水部と、当該取水部から取り入れられた水の流量を調整するための上記取水量調整部と、当該取水量調整部から供給された水を減圧させながら流すための減圧流路部222と、減圧流路部222から供給された水の流量を、チューブ110内の水圧に応じて制御するための吐出量調整部と、当該吐出量調整部で流量が制御された水が供給される、吐出口130に面するべき吐出部とを有し、上記取水量調整部は、エミッタ120内の流路内の固定端から突出し、上流側の水の圧力を受けて下流側に開く弁体214を含み、弁体214は、上記固定端から突出する、可撓性を有する薄肉部2141と、薄肉部2141から延出する厚肉部2142とを有する。そして、上記取水量調整部よりも上流側の水圧が設定値以上であるときに、薄肉部2141が撓み、弁体214が下流側に開く。   As is clear from the above description, the emitter 120 is joined to a position corresponding to the discharge port 130 on the inner wall surface of the tube 110, and quantitatively discharges the irrigation liquid (water) in the tube 110 from the discharge port 130. And an intake unit for taking in water in the tube 100, the above intake amount adjusting unit for adjusting the flow rate of water taken in from the intake unit, and the intake amount adjusting unit. A depressurizing flow path portion 222 for flowing the water while reducing the pressure, a discharge amount adjusting portion for controlling the flow rate of the water supplied from the depressurization flow path portion 222 according to the water pressure in the tube 110, and the discharge A discharge unit to be supplied to the discharge port 130 to which water whose flow rate is controlled by the amount adjustment unit is supplied. The intake amount adjustment unit protrudes from a fixed end in the flow path in the emitter 120 and is upstream. Side water The valve body 214 includes a valve body 214 that opens to the downstream side under pressure, and the valve body 214 has a flexible thin wall portion 2141 that protrudes from the fixed end and a thick wall portion 2142 that extends from the thin wall portion 2141. . When the water pressure on the upstream side of the water intake amount adjusting unit is equal to or higher than the set value, the thin-walled portion 2141 bends and the valve body 214 opens downstream.

このように、エミッタ120は、弁体214を有することから、チューブ110内の水圧が低いときに、エミッタ120内への水の流入を止めることができるので、吐出口130からの水の流出を止めることが可能である。よって、チューブ110内の圧力が十分にかつ速やかに高く維持され、チューブ110内の水の吐出量を安定化することができる。   Thus, since the emitter 120 has the valve body 214, when the water pressure in the tube 110 is low, the inflow of water into the emitter 120 can be stopped, so that the outflow of water from the discharge port 130 is prevented. It is possible to stop. Therefore, the pressure in the tube 110 is sufficiently and quickly maintained high, and the discharge amount of water in the tube 110 can be stabilized.

また、エミッタ本体200におけるエミッタ120の前述の構成要素は、エミッタ本体200に形成された凹部および貫通孔によって形成されていることから、これらの構成要素を備えるエミッタ本体200は、射出成形で一体的に作製することが可能である。よって、三部品からなる従来のエミッタに比べて、エミッタ120の製造に係るコストをさらに削減することができる。   In addition, since the above-described components of the emitter 120 in the emitter body 200 are formed by the recesses and through holes formed in the emitter body 200, the emitter body 200 including these components is integrally formed by injection molding. Can be produced. Therefore, the cost for manufacturing the emitter 120 can be further reduced as compared with a conventional emitter having three parts.

また、厚肉部2142と薄肉部2141の境界の平面形状が直線形状であり、厚肉部2142が弁体214の下流側に肉厚な部分であることは、弁体214を下流側に開きやすくし、弁体214を開閉させるための上記設定値をより小さく設定し、またはより精密に弁体214を開閉させる観点から、より一層効果的である。   Further, the planar shape of the boundary between the thick part 2142 and the thin part 2141 is a linear shape, and the thick part 2142 is a thick part on the downstream side of the valve body 214. This means that the valve body 214 is opened downstream. This is more effective from the viewpoint of facilitating and setting the set value for opening / closing the valve body 214 to be smaller or opening / closing the valve body 214 more precisely.

また、上記取水量調整部が、平面視したときに弁体214に隣接する位置に配置されている固定部215をさらに有し、弁体214および固定部215の平面形状がいずれも扇形であり、弁体214および固定部215が平面視したときに周方向に交互に配置されていることは、射出成形によるエミッタ本体200の生産性を高める観点から、より一層効果的である。   Further, the water intake amount adjusting portion further has a fixing portion 215 disposed at a position adjacent to the valve body 214 when viewed in plan, and the planar shapes of the valve body 214 and the fixing portion 215 are all fan-shaped. When the valve bodies 214 and the fixing portions 215 are alternately arranged in the circumferential direction when viewed in plan, it is more effective from the viewpoint of increasing the productivity of the emitter body 200 by injection molding.

また、エミッタ120が可撓性を有する一種類の材料で成形されており、フィルム300がエミッタ120の一部として一体的に成形されていることは、エミッタ本体200およびフィルム300の両方を射出成形で一部品として成形することを可能であるので、フィルム300の接合位置による製造誤差の防止、および、製造に係るコストのさらなる削減、の観点からより一層効果的である。   Further, the emitter 120 is formed of one kind of flexible material, and the film 300 is integrally formed as a part of the emitter 120. This means that both the emitter body 200 and the film 300 are injection molded. Therefore, it is more effective from the viewpoints of preventing manufacturing errors due to the bonding position of the film 300 and further reducing manufacturing costs.

また、上記吐出量調整部が、減圧流路部222よりも下流側の流路とチューブ110内部との連通を遮断する、可撓性を有するフィルム300と、減圧流路部222よりも下流側の流路に、フィルム300に面して非接触に配置され、フィルム300が密着可能な、フィルム300に対して窪んでいる端面233と、端面233に開口する、上記吐出部に繋がる孔234と、端面233に形成され、端面233よりも外側の流路と孔234とを連通する溝235とを有し、フィルム300が、チューブ110内の水圧が設定値以上であるときに端面233に密着することは、チューブ110内の水圧が高いときのエミッタ120から過剰に水が流出することを防止し、チューブ110内の水圧に依らずにエミッタ120から所期の量で安定して水を吐出させる観点からより一層効果的である。   In addition, the discharge amount adjusting section blocks the communication between the flow path downstream of the decompression flow path section 222 and the inside of the tube 110, and has a flexible film 300 and the downstream side of the decompression flow path section 222. An end surface 233 that is disposed in a non-contact manner facing the film 300 and can be in close contact with the film 300, and is recessed with respect to the film 300, and a hole 234 that opens to the end surface 233 and is connected to the discharge unit The film 300 has a groove 235 that is formed in the end surface 233 and communicates the flow path outside the end surface 233 and the hole 234, and the film 300 is in close contact with the end surface 233 when the water pressure in the tube 110 is equal to or higher than a set value. This prevents excessive outflow of water from the emitter 120 when the water pressure in the tube 110 is high, and stabilizes at a desired amount from the emitter 120 without depending on the water pressure in the tube 110. It is more effective in terms of discharging the water.

また、端面233が、チューブ110内の水圧によって変形したダイヤフラム部302が密着可能な傾斜面2332を含むことは、エミッタ120から所期の量で安定して水を吐出させる観点からさらに一層効果的である。   In addition, the fact that the end surface 233 includes the inclined surface 2332 to which the diaphragm portion 302 deformed by the water pressure in the tube 110 can closely contact is further effective from the viewpoint of stably discharging water from the emitter 120 in an intended amount. It is.

また、エミッタ120が、チューブ110内に対して開口する、スリット301と、スリット301に連通するとともにスリット301の長手方向に対して交差する方向に延出する、突条213間および突条213と凹部211の壁面との間の隙間である凹部と、によって構成されるスクリーン部を含むことは、チューブ110内からエミッタ120に取り入れられる水中の浮遊物を捕集し、エミッタ120中の水の、当該浮遊物に起因する流量の変動を防止する観点からより一層効果的である。   In addition, the emitter 120 is open to the inside of the tube 110, the slit 301, the ridge 213, and the ridge 213, which communicate with the slit 301 and extend in a direction intersecting the longitudinal direction of the slit 301, The inclusion of the screen portion constituted by the concave portion that is a gap between the wall surface of the concave portion 211 collects suspended matters in water taken into the emitter 120 from within the tube 110, This is even more effective from the viewpoint of preventing fluctuations in the flow rate caused by the suspended matter.

また、エミッタ本体200の第2の表面202におけるYZ平面での断面形状が略円弧状であることは、チューブ110の内壁面へのエミッタ120の接合強度を高める観点からより効果的である。   In addition, it is more effective from the viewpoint of increasing the bonding strength of the emitter 120 to the inner wall surface of the tube 110 that the cross-sectional shape in the YZ plane of the second surface 202 of the emitter body 200 is a substantially arc shape.

また、エミッタ本体200が凸部251を有することは、フィルム300を所期の位置に簡易かつ正確に接合し、生産性を高め、また製造誤差による品質のばらつきを抑制する観点から、より一層効果的である。   In addition, the emitter body 200 having the convex portion 251 is more effective from the viewpoint of simply and accurately joining the film 300 to the intended position, increasing productivity, and suppressing quality variations due to manufacturing errors. Is.

また、エミッタ本体200が凹部252(肉抜き穴)を有することは、エミッタ本体200の成形精度を高め、生産性を高め、また所期の品質を確保する観点から、より一層効果的である。   In addition, the emitter body 200 having the concave portion 252 (thickening hole) is more effective from the viewpoint of increasing the molding accuracy of the emitter body 200, increasing the productivity, and ensuring the desired quality.

また、弁体214および固定部215がいずれも扇型からなり、互いに隣り合い、かつ弁体214の上流側の自由端縁が固定部215の下流側の自由端縁に接するように弁体214および固定部215が配置されていることは、弁体214と固定部215との切断加工を要さないので射出成形のみによって弁体214および固定部215の両方を一度に成形する観点からより一層効果的である。   Further, the valve body 214 and the fixed portion 215 are both fan-shaped, adjacent to each other, and the upstream free end edge of the valve body 214 is in contact with the downstream free end edge of the fixed portion 215. Further, the fact that the fixing portion 215 is disposed does not require cutting of the valve body 214 and the fixing portion 215, so that both the valve body 214 and the fixing portion 215 are molded at a time only by injection molding. It is effective.

また、凹部241が、より上流側のより浅い第1の部分2411と、より下流側のより深い第2の部分2412とから構成されていることは、植物の根が吐出口130からさらに上流側へ侵入することを防止する観点から効果的であり、突条242が第1の部分2411にさらに配置されることは、上記の観点からより一層効果的である。   In addition, the concave portion 241 includes the shallower first portion 2411 on the upstream side and the deeper second portion 2412 on the downstream side. The root of the plant is further upstream from the discharge port 130. It is effective from the viewpoint of preventing intrusion into the ridge, and it is even more effective from the above viewpoint that the protrusion 242 is further disposed in the first portion 2411.

また、フィルム300が、平面視したときに凹部211内の突条213と交差するスリット301を有することは、エミッタ120内の流路の入口を小さな面積で簡易に多数形成するのに有効であり、また、チューブ110中の水の浮遊物のエミッタ120への侵入を防止する観点からより効果的である。   In addition, the film 300 having the slits 301 that intersect with the protrusions 213 in the concave portion 211 when viewed in plan is effective for easily forming a large number of inlets of the flow paths in the emitter 120 with a small area. Also, it is more effective from the viewpoint of preventing the floating matter in the tube 110 from entering the emitter 120.

なお、前述の効果を奏する範囲において、点滴灌漑用チューブ100またはエミッタ120の前述の構成要件の一部が変更されていてもよいし、また、点滴灌漑用チューブ100またはエミッタ120が他の構成要件をさらに有していてもよい。   In addition, in the range where the above-mentioned effect is produced, a part of the above-described constituent requirements of the drip irrigation tube 100 or the emitter 120 may be changed, and the drip irrigation tube 100 or the emitter 120 may be other constituent requirements. May further be included.

たとえば、チューブ110は、シームレスチューブであってもよいし、細長いシートを長手方向に沿って接合してなるチューブであってもよい。   For example, the tube 110 may be a seamless tube or a tube formed by joining elongated sheets along the longitudinal direction.

また、吐出口130は、上記シートの接合部に、チューブ110の内外を連通するように形成された隙間や、当該接合部で上記シートに挟まれた管などであってもよい。さらに、吐出口の軸方向における形状は、一直線状でなくてもよい。当該吐出口を有するチューブの例には、上記シートの表面に流路となる所期の形状の窪みが形成されており、上記シートの接合によって上記接合部に当該流路である上記吐出口が構成されるチューブ、が含まれる。   The discharge port 130 may be a gap formed so as to communicate the inside and outside of the tube 110 with the joint portion of the sheet, or a pipe sandwiched between the sheets at the joint portion. Further, the shape of the discharge port in the axial direction may not be a straight line. In the example of the tube having the discharge port, a depression having an intended shape to be a flow path is formed on the surface of the sheet, and the discharge port that is the flow path is formed in the bonded portion by joining the sheet. A constructed tube.

また、エミッタ120は、チューブ110における水の流れ方向の上流側に上記取水部が位置するように配置されているが、上記取水部が下流側に位置するように配置されてもよい。また、一本のチューブ110中の複数のエミッタの向きは、同じであっても異なっていてもよい。   Moreover, although the emitter 120 is arrange | positioned so that the said water intake part may be located in the upstream of the flow direction of the water in the tube 110, you may arrange | position so that the said water intake part may be located in the downstream. Further, the directions of the plurality of emitters in one tube 110 may be the same or different.

また、エミッタ本体200の樹脂材料とフィルム300の樹脂材料は、同じであっても異なっていてもよい。   Further, the resin material of the emitter body 200 and the resin material of the film 300 may be the same or different.

また、エミッタ本体200は、樹脂の射出成形によって一体的に成形されるが、エミッタ本体200を、第1の表面201側の部品と第2の表面202側の部品の二部品で構成してもよい。この場合、第1の表面201側の部品には、フィルム300が一体的に成形される。エミッタ本体200を上記のような二部品で構成することにより、上記減圧流路などの流路をエミッタ本体200の内部に配置することが可能となる。なお、当該二部品を、ヒンジ部を介して一体的に成形してもよい。   The emitter body 200 is integrally formed by resin injection molding, but the emitter body 200 may be composed of two parts, a part on the first surface 201 side and a part on the second surface 202 side. Good. In this case, the film 300 is integrally formed on the component on the first surface 201 side. By configuring the emitter body 200 with the two parts as described above, a flow path such as the decompression flow path can be disposed inside the emitter body 200. In addition, you may shape | mold the said 2 parts integrally through a hinge part.

また、上記スクリーン部は、並列する複数のスリット301と、スリット301の長手方向に交差する方向に延出する、並列する複数の上記凹部とによって構成されているが、スリット301および上記凹部の数は、いずれも一つであってもよい。また、上記スクリーン部は、ウェッジワイヤー構造を含んでいるが、当該構造を含んでいなくてもよい。たとえば、突条213は、凹部211の底から垂直に起立していてもよい。   In addition, the screen portion includes a plurality of parallel slits 301 and a plurality of parallel recesses extending in a direction intersecting the longitudinal direction of the slits 301. The number of the slits 301 and the recesses is the same. May be one. Moreover, although the said screen part contains the wedge wire structure, it does not need to contain the said structure. For example, the protrusion 213 may stand upright from the bottom of the recess 211.

また、上記取水量調整部は、弁体214と固定部215とによって構成されているが、弁体214と固定部215とが平面方向(周方向)において交互に配置されていなくてもよいし、あるいは、固定部215を含まず、弁体214のみから構成されていてもよい。また、弁体214は、設定された水圧以上で適度に開く弁体であればよく、たとえば均一な厚さの切片であってもよい。   Moreover, although the said water intake adjustment part is comprised by the valve body 214 and the fixing | fixed part 215, the valve body 214 and the fixing | fixed part 215 do not need to be arrange | positioned alternately in a plane direction (circumferential direction). Alternatively, the fixing portion 215 may not be included and the valve body 214 may be included. Moreover, the valve body 214 should just be a valve body which opens moderately more than the set water pressure, for example, may be a slice of uniform thickness.

また、減圧流路部222は、上記吐出量調整部に供給されるべき水の圧力を適度に下げることが可能であればよく、たとえば、その平面形状が直線状の流路であってもよいし、あるいは、チューブ110内の水圧に応じて流路面積が変わる流路であってもよい。また、上記のような減圧流路は、エミッタ本体200における、フィルム300によって覆われる第1の表面201上の溝であってもよい。   Moreover, the decompression flow path part 222 should just be able to reduce appropriately the pressure of the water which should be supplied to the said discharge amount adjustment part, for example, the planar shape may be a linear flow path. Alternatively, the flow path area may change depending on the water pressure in the tube 110. Further, the reduced pressure channel as described above may be a groove on the first surface 201 covered with the film 300 in the emitter body 200.

また、上記弁座部は、本実施の形態は、ダイヤフラム部302に密着可能な凹面部を形成している傾斜面2332であるが、孔234の周囲でダイヤフラム部302と密着可能な範囲において、他の適当な形態であってよく、例えば平面部であってもよい。   Further, in the present embodiment, the valve seat portion is an inclined surface 2332 that forms a concave surface portion that can be in close contact with the diaphragm portion 302, but in a range in which the valve seat portion can be in close contact with the diaphragm portion 302 around the hole 234, Other suitable forms may be used, for example, a flat portion.

また、上記吐出量調整部は、ダイヤフラム部302がエミッタ120中の流路(孔234)を直接開閉するが、エミッタ120中の流路を開閉自在に配置された蓋を、ダイヤフラム部302が当該蓋に接近、離間することによって開閉する構成であってもよい。このような吐出量調整部によっても、チューブ110中の水圧に応じた吐出量の適切な調整が可能である。   In the discharge amount adjusting unit, the diaphragm unit 302 directly opens and closes the flow path (hole 234) in the emitter 120, but the diaphragm unit 302 includes a lid arranged to open and close the flow path in the emitter 120. The structure which opens and closes by approaching and separating from a lid | cover may be sufficient. Also by such a discharge amount adjusting unit, it is possible to appropriately adjust the discharge amount according to the water pressure in the tube 110.

また、上記侵入防止部は、吐出口130から孔234への根などの侵入を遮ることが可能であれば、上記整流部材でなくてもよい。たとえば、上記侵入防止部は、上記整流部材と同じ位置に配置された格子やスクリーンなどであってもよいし、侵入した根を吐出口130から孔234とは反対側に誘導するように配置された邪魔板などであってもよい。   The intrusion prevention unit may not be the rectifying member as long as it can block the entry of roots and the like from the discharge port 130 into the hole 234. For example, the intrusion prevention unit may be a lattice or a screen arranged at the same position as the rectifying member, or is arranged so as to guide the invading root from the discharge port 130 to the side opposite to the hole 234. It may be a baffle plate.

なお、第2の表面202は、平面であってもよい。   Note that the second surface 202 may be a flat surface.

[実施の形態2]
本発明に係る第2の実施の形態を説明する。
[Embodiment 2]
A second embodiment according to the present invention will be described.

図9は、本発明の実施の形態2に係る点滴灌漑用チューブ500の模式的な断面図である。点滴灌漑用チューブ500は、チューブ110およびエミッタ620によって構成されている。チューブ110は、前述した実施の形態1と同様に構成されている。   FIG. 9 is a schematic cross-sectional view of a drip irrigation tube 500 according to Embodiment 2 of the present invention. The drip irrigation tube 500 includes a tube 110 and an emitter 620. The tube 110 is configured in the same manner as in the first embodiment.

図10Aは、エミッタ620の平面図であり、図10Bは、エミッタ620の正面図であり、図10Cは、エミッタ620の底面図であり、図10Dは、エミッタ620の側面図である。また、図11Aは、エミッタ620の、図10A中のA−A線に沿っての断面図であり、図11Bは、エミッタ620の、図10A中のB−B線に沿っての断面図である。   10A is a plan view of the emitter 620, FIG. 10B is a front view of the emitter 620, FIG. 10C is a bottom view of the emitter 620, and FIG. 10D is a side view of the emitter 620. 11A is a cross-sectional view of the emitter 620 along the line AA in FIG. 10A, and FIG. 11B is a cross-sectional view of the emitter 620 along the line BB in FIG. 10A. is there.

エミッタ620は、図10Bおよび図10Cに示されるように、取水部720、圧力伝達管725、フランジ部730および吐出部740を有する。ここで、Z方向は、取水部720の軸に沿う方向であり、エミッタ620がチューブ110に挿入される方向を含む。X方向は、Z方向に直交する一方向であり、Y方向は、Z方向およびX方向の両方に直交する方向である。   As shown in FIGS. 10B and 10C, the emitter 620 includes a water intake part 720, a pressure transmission pipe 725, a flange part 730, and a discharge part 740. Here, the Z direction is a direction along the axis of the water intake unit 720 and includes a direction in which the emitter 620 is inserted into the tube 110. The X direction is one direction orthogonal to the Z direction, and the Y direction is a direction orthogonal to both the Z direction and the X direction.

フランジ部730のZ方向に沿ってみた形状(平面形状)は、円形である。フランジ部730の外径は、例えば16mmである。取水部720は、図10Aおよび図10Bに示されるように、フランジ部730の平面形状の中央に配置されており、圧力伝達管725および吐出部740は、図10B、図10Cおよび図10Dに示されるように、フランジ部730の平面形状の中央からX方向にずれた位置に配置されている。   The shape (planar shape) seen along the Z direction of the flange portion 730 is a circle. The outer diameter of the flange portion 730 is, for example, 16 mm. As shown in FIGS. 10A and 10B, the water intake unit 720 is disposed at the center of the planar shape of the flange portion 730, and the pressure transmission pipe 725 and the discharge unit 740 are illustrated in FIGS. 10B, 10C, and 10D. As described above, the flange portion 730 is disposed at a position shifted in the X direction from the center of the planar shape.

フランジ部730は、取水部720および圧力伝達管725側の第1円盤部731と吐出部740側の第2円盤部732との合体によって構成されている。取水部720および圧力伝達管725は、第1円盤部731と一体的に成形されており、吐出部740は、第2円盤部732と一体的に成形されている。以後、取水部720、圧力伝達管725および第1円盤部731の一体成形物を「第1部品」とも言い、吐出部740と第2円盤部732との一体成形物を「第2部品」とも言う。   The flange portion 730 is configured by combining the first disk portion 731 on the water intake portion 720 and the pressure transmission pipe 725 side and the second disk portion 732 on the discharge portion 740 side. The water intake part 720 and the pressure transmission pipe 725 are formed integrally with the first disk part 731, and the discharge part 740 is formed integrally with the second disk part 732. Hereinafter, the integrally molded product of the water intake unit 720, the pressure transmission pipe 725, and the first disk portion 731 is also referred to as "first part", and the integrally molded product of the discharge unit 740 and the second disk portion 732 is also referred to as "second part". say.

取水部720は、図11Aおよび図11Bに示されるように、第1円盤部731の第1の表面7311から起立している筒状体である。取水部720の先端部には、返し721が形成されている。返し721は、取水部720の外周面からXY平面に沿って広がる径大部7211と、径大部7211から取水部720の先端に向けて外径が漸次減少するテーパ面7212とによって構成されている。たとえば、径大部7211の外径は3.2mmであり、テーパ面7212の先端の外径は2.6mmである。   As shown in FIGS. 11A and 11B, the water intake portion 720 is a cylindrical body that stands up from the first surface 7311 of the first disk portion 731. A barb 721 is formed at the tip of the water intake 720. The return 721 is configured by a large-diameter portion 7211 that extends from the outer peripheral surface of the water intake portion 720 along the XY plane, and a tapered surface 7212 whose outer diameter gradually decreases from the large-diameter portion 7211 toward the tip of the water intake portion 720. Yes. For example, the outer diameter of the large diameter portion 7211 is 3.2 mm, and the outer diameter of the tip of the tapered surface 7212 is 2.6 mm.

圧力伝達管725も、取水部720と同様に、図11Aおよび図11Bに示されるように、第1円盤部731の第1の表面7311から起立している筒状体である。圧力伝達管725の先端部にも、返し726が形成されている。返し726は、圧力伝達管725の外周面からXY平面に沿って広がる径大部7261と、径大部7261から圧力伝達管725の先端に向けて外径が漸次減少するテーパ面7262とによって構成されている。たとえば、径大部7261の外径は4mmであり、テーパ面7262の先端の外径は3.3mmである。   Similarly to the water intake part 720, the pressure transmission pipe 725 is a cylindrical body that stands up from the first surface 7311 of the first disk part 731 as shown in FIGS. 11A and 11B. A barb 726 is also formed at the tip of the pressure transmission tube 725. The return 726 includes a large-diameter portion 7261 that extends from the outer peripheral surface of the pressure transmission tube 725 along the XY plane, and a tapered surface 7262 whose outer diameter gradually decreases from the large-diameter portion 7261 toward the tip of the pressure transmission tube 725. Has been. For example, the outer diameter of the large diameter portion 7261 is 4 mm, and the outer diameter of the tip of the tapered surface 7262 is 3.3 mm.

図12Aは、上記第1部品の平面図であり、図12Bは、当該第1部品の正面図であり、図12Cは、当該第1部品の底面図であり、図12Dは、当該第1部品の側面図である。また、図13Aは、上記第1部品の、図12A中のA−A線に沿っての断面図であり、図13Bは、当該第1部品の、図12A中のB−B線に沿っての断面図である。   12A is a plan view of the first component, FIG. 12B is a front view of the first component, FIG. 12C is a bottom view of the first component, and FIG. 12D is the first component. FIG. FIG. 13A is a cross-sectional view of the first part taken along line AA in FIG. 12A, and FIG. 13B is a view of the first part taken along line BB in FIG. 12A. FIG.

第1円盤部731は、図12Aおよび図12Cに示されるように、第1の表面7311側に凹部7313を有し、Z方向において第1の表面7311とは反対側の第2の表面7312側に、突条7314、第1の凹部7315、減圧流路750、連絡流路760、第2の凹部7316および流量調節弁780を含む。流路調整弁780は、上記取水量調整部に相当する。   As shown in FIG. 12A and FIG. 12C, the first disk portion 731 has a recess 7313 on the first surface 7311 side, and is on the second surface 7312 side opposite to the first surface 7311 in the Z direction. In addition, a protrusion 7314, a first recess 7315, a decompression channel 750, a communication channel 760, a second recess 7316, and a flow rate adjustment valve 780 are included. The flow path adjustment valve 780 corresponds to the water intake amount adjustment unit.

凹部7313は、図13Aに示されるように、第1の表面7311に形成された凹部である。凹部7313の平面形状は、図12Aに示されるように、円形である。凹部7313の底は、後述するフィルム770となっている。凹部7313の直径は、例えば3mmであり、第1の表面7311からの凹部7313の深さは、例えば0.65mmである。圧力伝達管725は、凹部7313に連通している。   As shown in FIG. 13A, the recess 7313 is a recess formed in the first surface 7311. The planar shape of the recess 7313 is circular as shown in FIG. 12A. The bottom of the recess 7313 is a film 770 described later. The diameter of the recess 7313 is, for example, 3 mm, and the depth of the recess 7313 from the first surface 7311 is, for example, 0.65 mm. The pressure transmission tube 725 communicates with the recess 7313.

突条7314は、図12Cに示されるように、第2の表面7312の周縁部に配置されており、図13Aおよび図13Bに示されるように、第2の表面7312から突出している。第2の表面7312からの突条7314の高さは、例えば1mmである。   As shown in FIG. 12C, the protrusion 7314 is disposed on the peripheral edge of the second surface 7312, and protrudes from the second surface 7312 as shown in FIGS. 13A and 13B. The height of the protrusion 7314 from the second surface 7312 is, for example, 1 mm.

第1の凹部7315は、図12Cに示されるように、第2の表面7312の中央に形成されている。第1の凹部7315の平面形状は、円形である。第1の凹部7315は、取水部720の内部と連通しており、第1の凹部7315の径は、取水部720の内径よりもやや大きい。第2の表面7312からの第1の凹部7315の深さは、例えば0.5mmである。   The first recess 7315 is formed in the center of the second surface 7312 as shown in FIG. 12C. The planar shape of the first recess 7315 is a circle. The first recess 7315 communicates with the inside of the water intake unit 720, and the diameter of the first recess 7315 is slightly larger than the inner diameter of the water intake unit 720. The depth of the first recess 7315 from the second surface 7312 is, for example, 0.5 mm.

減圧流路750は、図13Bに示されるように、第2の表面7312に、溝として形成されている部分である。減圧流路750は、図12Cに示されるように、凹部7315と接続されており、第2の表面7312の径方向に沿って、第2の表面7312の周縁部に向けて延出している。減圧流路750の平面形状は、前述した減圧流路部222のそれと同様のジグザグ形状であり、減圧流路750の幅(図12C中のW)は、例えば0.45mmである。   The decompression flow path 750 is a portion formed as a groove on the second surface 7312 as shown in FIG. 13B. As illustrated in FIG. 12C, the decompression flow path 750 is connected to the recess 7315 and extends toward the peripheral portion of the second surface 7312 along the radial direction of the second surface 7312. The planar shape of the decompression flow path 750 is a zigzag shape similar to that of the decompression flow path section 222 described above, and the width (W in FIG. 12C) of the decompression flow path 750 is, for example, 0.45 mm.

連絡流路760は、図13Aおよび図13Bに示されるように、第2の表面7312に、溝として形成されている。図12Cに示されるように、連絡流路760の基端は、第2の表面7312の周縁部において、減圧流路750に接続されており、連絡流路760は、減圧流路750の延出方向に沿って延出している。連絡流路760の先端は、第1の凹部7315の近傍に至っているが、連絡流路760の先端部と第1の凹部7315とは連通していない。   The communication channel 760 is formed as a groove on the second surface 7312 as shown in FIGS. 13A and 13B. As shown in FIG. 12C, the proximal end of the communication channel 760 is connected to the decompression channel 750 at the peripheral edge of the second surface 7312, and the communication channel 760 extends from the decompression channel 750. It extends along the direction. The leading end of the communication channel 760 reaches the vicinity of the first recess 7315, but the leading end of the communication channel 760 and the first recess 7315 are not in communication.

第2の凹部7316は、図13Aに示されているように、第2の表面7312に形成された凹部である。第2の凹部7316は、図12Cに示されているように、連絡流路760の先端部に隣接しており、第2の凹部7316の平面形状は、矩形である。第2の凹部7316は、Z方向において、第1の表面7311側の凹部7313と重なっており、この重複部が薄肉のフィルム770となっている。したがって、フィルム770の平面形状は円形である。第2の表面7312からの第2の凹部7316の深さは、例えば0.2mmであり、フィルム770の厚さは、例えば0.15mmである。フィルム770の厚さは、後述する圧力に対する変形量に基づいて、例えばコンピュータシミュレーションや試作品による実験などによって決められる。   The second recess 7316 is a recess formed in the second surface 7312 as shown in FIG. 13A. The 2nd recessed part 7316 is adjacent to the front-end | tip part of the connection flow path 760, as FIG. 12C shows, and the planar shape of the 2nd recessed part 7316 is a rectangle. The second concave portion 7316 overlaps with the concave portion 7313 on the first surface 7311 side in the Z direction, and this overlapping portion is a thin film 770. Therefore, the planar shape of the film 770 is a circle. The depth of the second recess 7316 from the second surface 7312 is, for example, 0.2 mm, and the thickness of the film 770 is, for example, 0.15 mm. The thickness of the film 770 is determined by, for example, computer simulation or a prototype experiment based on the deformation amount with respect to the pressure described later.

流量調節弁780は、エミッタ120と同様に弁体および固定部によって構成されている。弁体781および固定部782は、いずれもその平面形状は円形を四分割にしてなる扇形であり、円周方向に沿って交互に配置されている。弁体781および固定部782は、いずれの上記自由端もが平面視したときにX方向またはY方向に対して45°で交差する位置に配置されている(図12C)。固定部782の形態は平板である。弁体781は、その円弧部が固定端、半径が自由端となっている。   The flow rate adjustment valve 780 is configured by a valve body and a fixed portion in the same manner as the emitter 120. Each of the valve body 781 and the fixing portion 782 has a fan shape formed by dividing a circular shape into four parts, and is alternately arranged along the circumferential direction. The valve body 781 and the fixing portion 782 are arranged at a position where any of the free ends intersects the X direction or the Y direction at 45 ° when viewed in plan (FIG. 12C). The form of the fixing portion 782 is a flat plate. The valve body 781 has a fixed end at the arc and a free end at the radius.

弁体781および固定部782は、弁体781の上流側の自由端縁が固定部782の下流側の自由端縁に接するように配置されている。弁体781は、上記固定端から延出する、可撓性を有する薄肉部7811と、薄肉部7811から延出する厚肉部7812とによって構成されている。薄肉部7811は、固定端となる円弧から均一な、固定部782に比べて十分に薄い厚さを有している(図15A、15B参照)。   The valve body 781 and the fixing portion 782 are arranged such that the upstream free end edge of the valve body 781 is in contact with the downstream free end edge of the fixing portion 782. The valve body 781 includes a flexible thin portion 7811 extending from the fixed end and a thick portion 7812 extending from the thin portion 7811. The thin portion 7811 has a thickness that is uniform from the arc serving as the fixed end and is sufficiently thinner than the fixed portion 782 (see FIGS. 15A and 15B).

厚肉部7812は、取水部の下流側に突出する肉厚の部分である。厚肉部7812は、例えば第1の凹部7315に向けて突出する略三角錐形状を有している。厚肉部7812の底面形状は、弁体781における上記扇形の中心を一頂点とする直角二等辺三角形であり(図13C)、上記自由端から垂直に起立する二壁面と、上記直角三角形の斜辺から斜めに延びる斜面とを有する(図15A、15B)。このように、薄肉部7811と厚肉部7812との平面形状における境界は、一直線となっている。厚肉部7812の頂部は、例えば、第2円盤部732の第2の表面7322から厚肉部7812までの距離が0.5mm程度となるように、わずかに切り欠かれている。   The thick portion 7812 is a thick portion that protrudes downstream of the intake portion. The thick part 7812 has, for example, a substantially triangular pyramid shape protruding toward the first recess 7315. The bottom surface shape of the thick portion 7812 is a right-angled isosceles triangle having the fan-shaped center of the valve body 781 as one apex (FIG. 13C), two wall surfaces that stand vertically from the free end, and a hypotenuse of the right-angle triangle. And an inclined surface extending obliquely from (FIGS. 15A and 15B). Thus, the boundary in the planar shape of the thin portion 7811 and the thick portion 7812 is a straight line. The top portion of the thick portion 7812 is slightly cut out so that, for example, the distance from the second surface 7322 of the second disk portion 732 to the thick portion 7812 is about 0.5 mm.

吐出部740は、図11Aに示されるように、第2円盤部732の第1の表面7321から起立している筒状体である。吐出部740の先端部にも、取水部720と同様に、返し741が形成されている。返し741は、吐出部740の外周面からXY平面に沿って広がる径大部7411と、径大部7411から吐出部740の先端に向けて外径が漸次減少するテーパ面7412とによって構成されている。たとえば、径大部7411の外径は5mmであり、テーパ面7412の先端の外径は4mmである。   As shown in FIG. 11A, the discharge part 740 is a cylindrical body that stands up from the first surface 7321 of the second disk part 732. Similar to the water intake unit 720, a barb 741 is also formed at the tip of the discharge unit 740. The return 741 includes a large-diameter portion 7411 that extends from the outer peripheral surface of the discharge portion 740 along the XY plane, and a tapered surface 7412 whose outer diameter gradually decreases from the large-diameter portion 7411 toward the tip of the discharge portion 740. Yes. For example, the outer diameter of the large diameter portion 7411 is 5 mm, and the outer diameter of the tip of the tapered surface 7412 is 4 mm.

図14Aは、上記第2部品の平面図であり、図14Bは、当該第2部品の正面図であり、図14Cは、当該第2部品の底面図であり、図14Dは、当該第2部品の側面図であり、図14Eは、当該第2部品の、図14A中のA−A線に沿っての断面図である。第2円盤部732は、凹条7324、弁座部810、孔820および溝830を含む。フィルム770、弁座部810、孔820および溝830は、上記吐出量調整部を構成する。   14A is a plan view of the second part, FIG. 14B is a front view of the second part, FIG. 14C is a bottom view of the second part, and FIG. 14D is the second part. FIG. 14E is a cross-sectional view of the second part taken along line AA in FIG. 14A. The second disk portion 732 includes a recess 7324, a valve seat portion 810, a hole 820 and a groove 830. The film 770, the valve seat portion 810, the hole 820, and the groove 830 constitute the discharge amount adjusting portion.

凹条7324は、図14Aに示されるように、Z方向において第1の表面7321とは反対側の第2の表面7322の周縁部に配置されており、図14Bおよび図14Dに示されるように、第2の表面7322から窪んでいる。第2の表面7322からの凹条7324の深さは、例えば1mmである。   As shown in FIG. 14A, the concave streak 7324 is disposed on the peripheral edge of the second surface 7322 opposite to the first surface 7321 in the Z direction, and as shown in FIG. 14B and FIG. 14D. , Recessed from the second surface 7322. The depth of the concave streak 7324 from the second surface 7322 is, for example, 1 mm.

弁座部810は、図11Aに示されるように、第2の表面7322の、フィルム770に対向する位置に形成された凹部である。弁座部810の平面形状は、図14Aに示されるように、円形である。弁座部810の径は、例えば1.8mmである。弁座部810は、第2の表面7322からわずかに窪んだ曲面で形成されており、フィルム770が圧力伝達管725内の灌漑用液体の設定値以上の圧力を受けて撓んだときに、弁座部810の少なくとも孔820を囲む部分にフィルム770が密着するように形成されている。   The valve seat part 810 is a recessed part formed in the position which opposes the film 770 of the 2nd surface 7322, as FIG. 11A shows. The planar shape of the valve seat 810 is circular as shown in FIG. 14A. The diameter of the valve seat portion 810 is, for example, 1.8 mm. The valve seat portion 810 is formed with a curved surface that is slightly depressed from the second surface 7322, and when the film 770 is bent by receiving a pressure equal to or higher than the set value of the irrigation liquid in the pressure transmission pipe 725, A film 770 is formed so as to be in close contact with a portion surrounding at least the hole 820 of the valve seat portion 810.

孔820は、図14Aに示されるように、弁座部810の中央部に開口している。孔820の弁座部810側の開口形状は、円形である。孔820は、図14Eに示されるように、第2円盤部732をZ方向に沿って貫通し、吐出部740の内部に繋がっている。孔820の弁座部810側の孔径は、例えば1mmであり、吐出部740側の開口よりも小さい。すなわち、孔820は、Z方向に沿って、弁座部810側から吐出部740側に向けて径が漸増するテーパ状の孔である。   As shown in FIG. 14A, the hole 820 opens at the center of the valve seat 810. The opening shape of the hole 820 on the valve seat portion 810 side is a circle. As shown in FIG. 14E, the hole 820 penetrates the second disk portion 732 along the Z direction and is connected to the inside of the discharge portion 740. The hole diameter of the hole 820 on the valve seat portion 810 side is, for example, 1 mm, and is smaller than the opening on the discharge portion 740 side. That is, the hole 820 is a tapered hole whose diameter gradually increases from the valve seat portion 810 side toward the discharge portion 740 side along the Z direction.

溝830は、図14Eに示されるように、弁座部810を含む第2の表面7322に、弁座部810をその径方向に沿って横断するように形成されている。エミッタ620では、溝830は、図11Aに示されるように、連絡流路760と孔820とを連通する。溝830の幅は、例えば0.2mmであり、第2の表面7322からの溝830の深さは、例えば0.05mmである(図16A〜16C参照)。   As shown in FIG. 14E, the groove 830 is formed on the second surface 7322 including the valve seat 810 so as to cross the valve seat 810 along the radial direction thereof. In the emitter 620, the groove 830 communicates the communication channel 760 and the hole 820 as shown in FIG. 11A. The width of the groove 830 is, for example, 0.2 mm, and the depth of the groove 830 from the second surface 7322 is, for example, 0.05 mm (see FIGS. 16A to 16C).

上記第1部品および第2部品、いずれも、前述の実施の形態1におけるエミッタ本体200と同様に、可撓性を有する一種類の樹脂材料(例えばポリプロピレン)で射出成形により一体的に成形されている。なお、上記第1部品および第2部品の材料の例には、樹脂およびゴムが含まれ、当該樹脂の例には、ポリエチレンおよびシリコーンが含まれる。当該材料の可撓性は、フィルム770に要する可撓性に応じて、樹脂材料の種類や二種以上の樹脂材料の混合などによって、適宜に調整される。   Each of the first component and the second component is integrally formed by injection molding with one kind of flexible resin material (for example, polypropylene), like the emitter body 200 in the first embodiment. Yes. Note that examples of the material of the first part and the second part include resin and rubber, and examples of the resin include polyethylene and silicone. The flexibility of the material is appropriately adjusted depending on the flexibility required for the film 770 by the type of the resin material or the mixing of two or more resin materials.

エミッタ620は、第1円盤部731の突条7314を、第2円盤部732の凹条7324に嵌合させて、第1円盤部731の第2の表面7312と第2円盤部732の第2の表面7322とを密着させることにより構成される(図11A、11B)。7312、7322は、樹脂材料の溶着や接着剤による接着、一方の他方への圧着などによってさらに接合されてもよい。   The emitter 620 is formed by fitting the protrusion 7314 of the first disk portion 731 to the recess 7324 of the second disk portion 732, and the second surface 7312 of the first disk portion 731 and the second surface of the second disk portion 732. It is comprised by making the surface 7322 closely_contact | adhere (FIG. 11A, 11B). 7312 and 7322 may be further joined by welding of a resin material, adhesion by an adhesive, pressure bonding to one of the other.

エミッタ620は、取水部720および圧力伝達管725をチューブ110の管壁に挿入することによって、チューブ110に取り付けられる(図9)。エミッタ620の取り付けは、取水部720および圧力伝達管725によってチューブ110の管壁を貫通して行ってもよいし、チューブ110の管壁に予め形成されていた挿入用の開口部に取水部720および圧力伝達管725を挿入して行ってもよい。前者は、エミッタ620を任意の配置でチューブ110に取り付けるのに好適であり、後者は、チューブ110からの灌漑用液体の漏れを防止するのに好適である。取水部720および圧力伝達管725がいずれも先端部に返しを有することから、チューブ110からのエミッタ620の抜け落ちが防止される。   The emitter 620 is attached to the tube 110 by inserting the water intake 720 and the pressure transmission tube 725 into the tube wall of the tube 110 (FIG. 9). The emitter 620 may be attached by penetrating the tube wall of the tube 110 by the water intake unit 720 and the pressure transmission pipe 725, or the water intake unit 720 in the opening for insertion formed in the tube wall of the tube 110 in advance. Alternatively, the pressure transmission pipe 725 may be inserted. The former is suitable for attaching the emitter 620 to the tube 110 in any arrangement, and the latter is suitable for preventing leakage of irrigation liquid from the tube 110. Since both the water intake unit 720 and the pressure transmission pipe 725 have a barb at the tip, the dropout of the emitter 620 from the tube 110 is prevented.

次に、エミッタ620における灌漑用液体(例えば水)の流れを説明する。   Next, the flow of irrigation liquid (for example, water) in the emitter 620 will be described.

点滴灌漑用チューブ500への水の供給は、チューブ110およびエミッタ620の破損を防止するため、水圧が0.1MPaを超えない範囲で行われる。チューブ110内に水が供給されると、水は、取水部720を通って流量調節弁780に到達し、また、圧力伝達管725内に充満する。   The supply of water to the drip irrigation tube 500 is performed in a range where the water pressure does not exceed 0.1 MPa in order to prevent the tube 110 and the emitter 620 from being damaged. When water is supplied into the tube 110, the water reaches the flow rate adjustment valve 780 through the water intake 720 and fills the pressure transmission pipe 725.

図15Aは、取水部720内の水の圧力が設定値未満であるときのエミッタ620の、図10A中のD−D線に沿っての断面を拡大して示す図であり、図15Bは、取水部720内の水の圧力が設定値以上であるときのエミッタ620の、図10A中のD−D線に沿っての断面を拡大して示す図である。図15A、15B中の矢印は、水の流れを表している。   FIG. 15A is an enlarged view of the cross section along the line DD in FIG. 10A of the emitter 620 when the water pressure in the water intake unit 720 is less than the set value, and FIG. It is a figure which expands and shows the cross section along the DD line in FIG. 10A of the emitter 620 when the pressure of the water in the water intake part 720 is more than a setting value. The arrows in FIGS. 15A and 15B represent the flow of water.

取水部720内の水は、弁体781および固定部782を、取水部720側から第1の凹部7315側にむけて押圧する。取水部720内の水圧が設定値(例えば0.005MPa)未満であると、図15Aに示されるように、弁体781および固定部782は、いずれも第1の凹部7315側には撓まず、水の流路は、弁体781および固定部782によって閉じられる。   The water in the water intake part 720 presses the valve body 781 and the fixing part 782 from the water intake part 720 side toward the first recess 7315 side. When the water pressure in the water intake portion 720 is less than a set value (for example, 0.005 MPa), as shown in FIG. 15A, neither the valve body 781 nor the fixed portion 782 is bent toward the first recess 7315 side. The water flow path is closed by the valve body 781 and the fixing portion 782.

取水部720内の水圧が設定値以上になると、図15Bに示されるように、薄肉部7811が固定部782よりも薄いことから、固定部782は撓まないが薄肉部7811のみが撓み、よって、固定部782は第1の凹部7315側には開かないが弁体781のみが第1の凹部7315側に開く。こうして、弁体781および固定部782の間に隙間が形成され、取水部720内の水は、当該隙間を通って、第1の凹部7315に供給される。   When the water pressure in the water intake portion 720 becomes equal to or higher than the set value, as shown in FIG. 15B, the thin portion 7811 is thinner than the fixed portion 782, so the fixed portion 782 does not bend but only the thin portion 7811 is bent. The fixing portion 782 does not open to the first recess 7315 side, but only the valve body 781 opens to the first recess 7315 side. Thus, a gap is formed between the valve body 781 and the fixed portion 782, and the water in the water intake portion 720 is supplied to the first recess 7315 through the gap.

このように、流量調節弁780は、水の圧力が上記設定値未満のときに水のエミッタ620内での流通を抑制する。このため、チューブ110への水の高圧での供給を迅速かつ安定に行うことが可能となるので、エミッタ620が流量調節弁780を有することは、例えば、より長い点滴灌漑用チューブ500を構成するのに好適である。   Thus, the flow rate control valve 780 suppresses the flow of water in the emitter 620 when the water pressure is less than the set value. For this reason, since it becomes possible to supply the tube 110 with water at a high pressure quickly and stably, the emitter 620 having the flow rate adjustment valve 780 constitutes, for example, a longer drip irrigation tube 500. It is suitable for.

第1の凹部7315中の水は、減圧流路750に供給される。減圧流路750を流れる水は、減圧流路750の平面形状(ジグザグ形状)によってもたらされる圧力損失によって減圧される。また、水中の浮遊物は、減圧流路750の上記凸部間に発生する乱流に巻き込まれ、減圧流路750に滞留する。このように減圧流路750によって、水から浮遊物がさらに除去される。   The water in the first recess 7315 is supplied to the decompression channel 750. The water flowing through the decompression channel 750 is decompressed by the pressure loss caused by the planar shape (zigzag shape) of the decompression channel 750. Further, the suspended matter in the water is caught in the turbulent flow generated between the convex portions of the decompression flow path 750 and stays in the decompression flow path 750. In this way, the suspended matter is further removed from the water by the decompression flow path 750.

減圧流路750を通り、減圧され、上記浮遊物が除去された水は、連絡流路760を通って、第2の凹部7316(フィルム770および弁座部810に挟まれた空間)に供給され、孔820を通過する。   The water that has been depressurized through the decompression flow path 750 and from which the suspended matter has been removed passes through the communication flow path 760 and is supplied to the second recess 7316 (the space sandwiched between the film 770 and the valve seat portion 810). Through the hole 820.

図16Aは、チューブ110内の水の圧力が第1の設定値以上であるときの図11A中のA部の状態を模式的に示す図であり、図16Bは、チューブ110内の水の圧力が第1の設定値以上第2の設定値未満であるときの図11A中のA部の状態を模式的に示す図であり、図16Cは、チューブ110内の水の圧力が第2の設定値以上であるときの図11A中のA部の状態を模式的に示す図である。   FIG. 16A is a diagram schematically illustrating the state of part A in FIG. 11A when the pressure of water in the tube 110 is equal to or higher than the first set value, and FIG. 16B is a pressure of water in the tube 110. FIG. 16C is a diagram schematically showing the state of part A in FIG. 11A when the value is equal to or more than the first set value and less than the second set value, and FIG. It is a figure which shows typically the state of the A section in FIG. 11A when it is more than a value.

チューブ110内の水の圧力が第1の設定値(例えば0.02MPa)以上であると、チューブ110内の水の圧力の上昇に応じて、取水部720からエミッタ620内に取り入れられる水の流量も増加し、第2の凹部7316に供給される水の量も増える。   When the water pressure in the tube 110 is equal to or higher than a first set value (for example, 0.02 MPa), the flow rate of water taken into the emitter 620 from the water intake unit 720 in accordance with an increase in the water pressure in the tube 110. And the amount of water supplied to the second recess 7316 also increases.

一方で、チューブ110内の水の圧力が第1の設定値以上第2の設定値未満では、図16Bに示されるように、フィルム770が圧力伝達管725内の水によって押されて撓む。圧力伝達管725の内部には、特段の圧力損失を生じさせる構造がないことから、圧力伝達管725内の水は、チューブ110内の水と実質的に同じ圧力を有する。このように、圧力伝達管725は、チューブ110内の水の圧力を、フィルム770の背面に伝達している。このため、フィルム770は、チューブ内の水の圧力で圧力伝達管725側から押され、フィルム770と弁座部810との間隔が狭くなる。たとえば、当該間隔は、0.25mmから0.15mmになる。よって、フィルム770と弁座部810との間を通過する水の量が減少し、吐出部740からの水の吐出量の増加が抑制される。   On the other hand, when the pressure of the water in the tube 110 is not less than the first set value and less than the second set value, the film 770 is pushed by the water in the pressure transmission tube 725 and bends as shown in FIG. 16B. Since there is no special pressure loss structure inside the pressure transmission pipe 725, the water in the pressure transmission pipe 725 has substantially the same pressure as the water in the tube 110. As described above, the pressure transmission pipe 725 transmits the pressure of water in the tube 110 to the back surface of the film 770. For this reason, the film 770 is pushed from the pressure transmission tube 725 side by the pressure of water in the tube, and the distance between the film 770 and the valve seat portion 810 is narrowed. For example, the interval is 0.25 mm to 0.15 mm. Therefore, the amount of water passing between the film 770 and the valve seat portion 810 is reduced, and an increase in the amount of water discharged from the discharge portion 740 is suppressed.

チューブ110内の水の圧力が第2の設定値(例えば0.05MPa)以上になると、図16Cに示されるように、フィルム770がチューブ110内の水に押されてさらに撓み、弁座部810に密着する。このように、フィルム770は、水の流通を規制する弁体として機能し、弁座部810は、弁座として機能する。しかしながら、フィルム770が弁座部810に密着しても、溝830は塞がれないことから、連絡流路760を通過した水は、溝830を通って孔820に供給される。よって、孔820を通過する水の量は、溝830を通過可能な流量に規制され、吐出部740からの水の吐出量は、実質的に一定となる。   When the pressure of water in the tube 110 becomes a second set value (for example, 0.05 MPa) or more, as shown in FIG. 16C, the film 770 is pushed by the water in the tube 110 and further bent, and the valve seat portion 810. Close contact with. Thus, the film 770 functions as a valve body that regulates the flow of water, and the valve seat portion 810 functions as a valve seat. However, even if the film 770 is in close contact with the valve seat 810, the groove 830 is not blocked, so that the water that has passed through the communication channel 760 is supplied to the hole 820 through the groove 830. Therefore, the amount of water passing through the hole 820 is regulated to a flow rate that can pass through the groove 830, and the discharge amount of water from the discharge unit 740 is substantially constant.

こうして、エミッタ620は、チューブ110内の水を定量的に吐出する。   Thus, the emitter 620 discharges the water in the tube 110 quantitatively.

上記の説明から明らかなように、エミッタ620は、水を流通させるチューブ110内にチューブ110の外側から挿入される、チューブ110内の水を取り入れるための筒状の取水部720と、取水部720から取り入れられた水の流量を調整するための流量調節弁780と、流量調節弁780から供給された水を減圧させながら流すための減圧流路750と、減圧流路750から供給される水の流量を、チューブ110内の水の圧力に応じて制御するための吐出量調整部と、当該吐出量調整部で流量が制御された水をチューブ110外に吐出するための吐出部740と、を有する。そして、取水部720のチューブ110に挿入される側の一端を先端、他端を基端としたときに、取水部720の基端にフランジ部730が配置される。フランジ部730は、取水部720の基端に配置されている第1円盤部731と吐出部740が配置される第2円盤部732との合体によって構成され、かつ少なくとも減圧流路750および上記吐出量調整部を含む。また、流量調整弁780は、エミッタ620内の流路内の固定端から突出し、流量調整弁780よりも上流側の水の圧力を受けて下流側に開く弁体781を含み、弁体781は、上記固定端から突出する、可撓性を有する薄肉部7811と、薄肉部7811から延出する厚肉部7812とを有する。そして、取水部720がチューブ110に挿入されることにより、エミッタ620がチューブ110に配置され、点滴灌漑用チューブ500が構成される。流量調整弁780では、取水部720内の水圧が設定値以上であるときに薄肉部7811が撓み、弁体781が下流側に開く。このため、エミッタ620は、チューブ110内の水圧が低いときにはエミッタ620内に水を流さず、設定値以上の圧力のときにエミッタ620内に水を流すので、エミッタ620からの水の吐出量を安定化することができる。   As apparent from the above description, the emitter 620 is inserted from the outside of the tube 110 into the tube 110 through which water flows, and has a cylindrical water intake portion 720 for taking in the water in the tube 110, and a water intake portion 720. The flow rate control valve 780 for adjusting the flow rate of the water taken in from, the pressure reduction channel 750 for flowing the water supplied from the flow rate control valve 780 while reducing the pressure, and the water supplied from the pressure reduction channel 750 A discharge amount adjusting unit for controlling the flow rate according to the pressure of water in the tube 110, and a discharge unit 740 for discharging water whose flow rate is controlled by the discharge amount adjusting unit to the outside of the tube 110. Have. And the flange part 730 is arrange | positioned at the base end of the water intake part 720 when the one end by the side of the water intake part 720 inserted in the tube 110 is made into a front end and the other end is made into a base end. The flange portion 730 is configured by a combination of the first disk portion 731 disposed at the base end of the water intake portion 720 and the second disk portion 732 where the discharge portion 740 is disposed, and at least the decompression flow path 750 and the discharge. Includes a quantity adjuster. The flow rate adjusting valve 780 includes a valve body 781 that protrudes from a fixed end in the flow path in the emitter 620 and opens to the downstream side under the pressure of water upstream of the flow rate adjusting valve 780. The flexible thin-walled portion 7811 protrudes from the fixed end, and the thick-walled portion 7812 extends from the thin-walled portion 7811. Then, when the water intake unit 720 is inserted into the tube 110, the emitter 620 is disposed in the tube 110, and the drip irrigation tube 500 is configured. In the flow rate adjusting valve 780, when the water pressure in the water intake portion 720 is equal to or higher than a set value, the thin portion 7811 bends and the valve body 781 opens downstream. For this reason, the emitter 620 does not flow water into the emitter 620 when the water pressure in the tube 110 is low, and flows water into the emitter 620 when the pressure is higher than the set value. Can be stabilized.

さらに、エミッタ620の前述の構成要素は、上記第1部品および第2部品における第1の表面および第2の表面に形成された溝、凹部および貫通孔によって形成されていることから、上記第1部品および第2部品のそれぞれを射出成形で一体的に作製することが可能である。よって、三部品からなる従来のエミッタに比べて、エミッタ620は、製造に係るコストのさらなる削減が可能である。   Furthermore, since the above-described components of the emitter 620 are formed by grooves, recesses, and through holes formed in the first surface and the second surface of the first component and the second component, the first component and the second component. Each of the part and the second part can be integrally manufactured by injection molding. Therefore, the emitter 620 can further reduce the manufacturing cost compared to the conventional emitter composed of three parts.

また、厚肉部7812と薄肉部7811の境界の平面形状が直線形状であり、厚肉部7812はその下流側が肉厚に形成されている部分であることは、弁体781を下流側に開きやすくし、弁体781を開閉させるための上記設定値をより小さく設定し、より精密に弁体781を開閉させる観点から、より一層効果的である。   Further, the planar shape of the boundary between the thick portion 7812 and the thin portion 7811 is a linear shape, and the thick portion 7812 is a portion where the downstream side is formed thick, which means that the valve body 781 is opened downstream. This is more effective from the viewpoint of facilitating the opening and closing of the valve body 781 by setting the set value for opening and closing the valve body 781 smaller.

また、圧力調整弁780が、平面視したときに弁体781に隣接する位置に配置されている固定部782をさらに有し、弁体781および固定部782の平面形状がいずれも扇形であり、弁体781および固定部782が平面視したときに周方向に交互に配置されていることは、射出成形による上記第1部品の生産性を高める観点から、より一層効果的である。   Further, the pressure regulating valve 780 further includes a fixing portion 782 disposed at a position adjacent to the valve body 781 when viewed in plan, and the planar shapes of the valve body 781 and the fixing portion 782 are both fan-shaped, It is more effective from the viewpoint of increasing the productivity of the first part by injection molding that the valve bodies 781 and the fixing portions 782 are alternately arranged in the circumferential direction when viewed in plan.

また、第1円盤部731が減圧流路750、圧力伝達管725およびフィルム770を含み、第2円盤部732が弁座部810、孔820および溝830を含むことは、より簡素な構造で上記第1部品および第2部品のそれぞれを構築することが可能であり、製造に係るコストのさらなる削減の観点からより一層効果的である。   In addition, the first disk portion 731 includes the decompression flow path 750, the pressure transmission pipe 725, and the film 770, and the second disk portion 732 includes the valve seat portion 810, the hole 820, and the groove 830. It is possible to construct each of the first part and the second part, which is more effective from the viewpoint of further reducing the manufacturing cost.

さらに、第1円盤部731および第2円盤部732が同じ材料で一体的に構成されていることは、エミッタ620を一部品で作製することを可能とすることから、製造に係るコストのさらなる削減の観点からさらに一層効果的である。   Furthermore, the fact that the first disk portion 731 and the second disk portion 732 are integrally formed of the same material enables the emitter 620 to be manufactured as a single component, thereby further reducing manufacturing costs. From the point of view, it is even more effective.

また、上記吐出量調整部が減圧流路750よりも下流側の流路に面して配置される、可撓性を有するフィルム770と、フィルム770の背面にチューブ110内の水の圧力を伝達するための圧力伝達部725と、減圧流路750よりも下流側の流路にフィルム770に面して非接触に配置され、フィルム770が密着可能な、フィルム770に対して窪んでいる弁座部810と、弁座部810に開口する、吐出部740に繋がる孔820と、弁座部810に形成され、弁座部820よりも外側の流路と孔820とを連通する溝830とを有し、フィルム770がチューブ110内の水の圧力が設定値以上であるときに弁座部810に密着することによって、チューブ110内の水圧が高いときのエミッタ620の水の吐出量を所期の量に抑え、チューブ110内の水圧の上昇に関わらずエミッタ620による水の吐出量を一定に保つことができ、エミッタ620の水の吐出量を安定化させる観点からより一層効果的である。   In addition, the discharge amount adjusting unit is disposed facing the flow path on the downstream side of the decompression flow path 750, and the film 770 having flexibility and the pressure of water in the tube 110 are transmitted to the back surface of the film 770. And a valve seat that is disposed in a non-contact manner facing the film 770 in a flow path downstream of the pressure reducing flow path 750 and can be in close contact with the film 770. A portion 810, a hole 820 that opens to the valve seat portion 810, and is connected to the discharge portion 740, and a groove 830 that is formed in the valve seat portion 810 and communicates the flow path outside the valve seat portion 820 and the hole 820. When the water pressure in the tube 110 is equal to or higher than the set value, the film 770 is in close contact with the valve seat 810 so that the amount of water discharged from the emitter 620 when the water pressure in the tube 110 is high is expected. The amount of , The discharge amount of water by the emitter 620 regardless rise in pressure in the tube 110 can be kept constant, it is more effective in terms of stabilizing the discharge amount of water of the emitter 620.

また、弁座部810が、チューブ110内の水圧によって変形したフィルム770が密着可能に形成されていることは、エミッタ620から所期の量で安定して水を吐出させる観点からさらに一層効果的である。   In addition, the fact that the valve seat 810 is formed so that the film 770 deformed by the water pressure in the tube 110 can be brought into close contact with the emitter 620 is more effective from the viewpoint of stably discharging water from the intended amount. It is.

前述の効果を奏する範囲において、点滴灌漑用チューブ500またはエミッタ620の前述の構成要件の一部が変更されていてもよいし、また、点滴灌漑用チューブ500またはエミッタ620が他の構成要件をさらに有していてもよい。   In the range in which the above-described effects can be obtained, some of the above-described configuration requirements of the drip irrigation tube 500 or the emitter 620 may be changed, and the drip irrigation tube 500 or the emitter 620 further includes other configuration requirements. You may have.

たとえば、吐出部740は、図17Aに示されるように、返し741を有していなくてもよいし、図17Bに示されるように、第2円盤部732の第1の表面7321に開口する開口部であってもよい。   For example, the discharge part 740 may not have the barb 741 as shown in FIG. 17A, and the opening that opens to the first surface 7321 of the second disk part 732 as shown in FIG. 17B. Part.

また、チューブ110は、シームレスチューブであってもよいし、細長いシートを長手方向に沿って接合してなるチューブであってもよいし、上記シートの接合部に、チューブ110の内外を連通するように形成された隙間や、当該接合部で上記シートに挟まれた管などを有するチューブであってもよい。   The tube 110 may be a seamless tube, may be a tube formed by joining elongated sheets along the longitudinal direction, or the inside and outside of the tube 110 communicate with the joint portion of the sheet. It may be a tube having a gap formed in the tube or a tube sandwiched between the sheets at the joint.

また、上記第1部品と第2部品を、これらと一体的に形成されるヒンジ部を介して回動可能かつ一体的に構成してもよい。この場合、エミッタ620の部品数をさらに少なくすることが、すなわちエミッタ620を一部品から作製することが可能となる。   Moreover, you may comprise the said 1st component and the 2nd component so that rotation is possible and integral via the hinge part formed integrally with these. In this case, the number of parts of the emitter 620 can be further reduced, that is, the emitter 620 can be manufactured from one part.

また、上記取水量調整部は、弁体781と固定部782とによって構成されているが、弁体781と固定部782とが平面方向(周方向)において交互に配置されていなくてもよいし、あるいは、固定部782を含まず、弁体781のみから構成されていてもよい。また、弁体781は、設定された水圧以上で適度に開く弁体であればよく、たとえば均一な厚さの切片であってもよい。   Moreover, although the said water intake adjustment part is comprised by the valve body 781 and the fixing | fixed part 782, the valve body 781 and the fixing | fixed part 782 do not need to be arrange | positioned alternately in a plane direction (circumferential direction). Alternatively, the fixed portion 782 may not be included and the valve body 781 alone may be included. Moreover, the valve body 781 should just be a valve body which opens moderately above the set water pressure, for example, may be a slice of uniform thickness.

また、減圧流路750は、上記吐出量調整部に供給されるべき水の圧力を適度に下げることが可能であればよく、たとえば、その平面形状が直線状の流路であってもよいし、あるいは、チューブ110内の水圧に応じて流路面積が変わる流路であってもよい。   Further, the decompression flow path 750 only needs to be able to moderately reduce the pressure of water to be supplied to the discharge amount adjusting unit. For example, the planar shape may be a straight flow path. Alternatively, the flow path area may be changed according to the water pressure in the tube 110.

また、弁座部810は、孔820の周囲でフィルム770と密着可能な範囲において他の適当な形態であってよく、例えば平面部であってもよい。   Further, the valve seat portion 810 may have another suitable form as long as the valve seat portion 810 can be in close contact with the film 770 around the hole 820, and may be, for example, a flat portion.

また、本実施の形態では、フィルム770がエミッタ620中の流路(孔820)を直接開閉するが、上記吐出量調整部は、エミッタ620中の流路を開閉自在に配置された蓋を、フィルム770が当該蓋に接近、離間することによって開閉する構成であってもよい。このような吐出量調整部によっても、チューブ110中の水圧に応じた吐出量の適切な調整が可能である。   Further, in this embodiment, the film 770 directly opens and closes the flow path (hole 820) in the emitter 620, but the discharge amount adjusting unit has a lid arranged to open and close the flow path in the emitter 620. The film 770 may be configured to open and close as it approaches and separates from the lid. Also by such a discharge amount adjusting unit, it is possible to appropriately adjust the discharge amount according to the water pressure in the tube 110.

また、エミッタ620は、圧力伝達管725に代えて、チューブ110内の水の圧力に応じたフィルム770の撓み量をフィルム770に伝達する他の手段、または、チューブ内の水の圧力を直接または間接的にフィルム770の背面に伝達可能な他の構成、を含んでいてもよい。   In addition, the emitter 620 replaces the pressure transmission pipe 725 with another means for transmitting the deflection amount of the film 770 according to the water pressure in the tube 110 to the film 770, or directly or directly applies the water pressure in the tube. Other configurations that can be indirectly transmitted to the back surface of the film 770 may be included.

また、流量調節弁780は、取水部720内に配置されていてもよい。   Further, the flow control valve 780 may be disposed in the water intake unit 720.

本発明によれば、滴下すべき液体の圧力によって適切な速度での当該液体の滴下が可能なエミッタを簡易に提供することが可能である。したがって、点滴灌漑や耐久試験などの、長期の滴下を要する技術分野への上記エミッタの普及および当該技術分野のさらなる発展が期待される。   According to the present invention, it is possible to easily provide an emitter capable of dropping the liquid at an appropriate speed depending on the pressure of the liquid to be dropped. Therefore, the spread of the emitter to technical fields that require long-term dripping, such as drip irrigation and durability tests, and further development of the technical field are expected.

100、500 点滴灌漑用チューブ
110 チューブ
120、620 エミッタ
130 吐出口
200 エミッタ本体
201、7311、7321 第1の表面
202、7312、7322 第2の表面
211、216、221、231、241、252、7313 凹部
213、242、7314 突条
214、781 弁体
215、782 固定部
222 減圧流路部
223、234、820 孔
232、251 凸部
233 端面
235、830 溝
300、770 フィルム
301 スリット
302 ダイヤフラム部
303 位置決め孔
720 取水部
721、726、741 返し
725 圧力伝達管
730 フランジ部
731 第1円盤部
732 第2円盤部
740 吐出部
750 減圧流路
760 連絡流路
780 流量調節弁
810 弁座部
2141、7811 薄肉部
2142、7812 厚肉部
2331 外環部
2332 傾斜面
2411 第1の部分
2412 第2の部分
2413 傾斜部
7211、7411、7261 径大部
7212、7412、7262 テーパ面
7315 第1の凹部
7316 第2の凹部
7324 凹条
100, 500 Drip irrigation tube 110 Tube 120, 620 Emitter 130 Discharge port 200 Emitter body 201, 7311, 7321 First surface 202, 7312, 7322 Second surface 211, 216, 221, 231, 241, 252, 7313 Recess 213, 242, 7314 Projection 214, 781 Valve body 215, 782 Fixing part 222 Decompression flow path part 223, 234, 820 Hole 232, 251 Protrusion part 233 End face 235, 830 Groove 300, 770 Film 301 Slit 302 Diaphragm part 303 Positioning hole 720 Water intake part 721, 726, 741 Return 725 Pressure transmission pipe 730 Flange part 731 1st disk part 732 2nd disk part 740 Discharge part 750 Decompression flow path 760 Communication flow path 780 Flow control valve 810 Valve seat part 2 41, 7811 Thin portion 2142, 7812 Thick portion 2331 Outer ring portion 2332 Inclined surface 2411 First portion 2412 Second portion 2413 Inclined portion 7211, 7411, 7261 Large diameter portion 7212, 7412, 7262 Tapered surface 7315 First Concave part 7316 Second concave part 7324 Concave line

Claims (12)

灌漑用液体を流通させるチューブの内壁面の、前記チューブ内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に吐出するためのエミッタであって、
前記チューブ内の前記灌漑用液体を取り入れるための取水部と、
前記取水部から取り入れられた前記灌漑用液体の流量を調整するための取水量調整部と、
前記取水量調整部から供給された前記灌漑用液体を減圧させながら流すための減圧流路と、
前記減圧流路から供給された前記灌漑用液体の流量を、前記チューブ内の前記灌漑用液体の圧力に応じて制御するための吐出量調整部と、
前記吐出量調整部で流量が制御された前記灌漑用液体が供給される、前記吐出口に面するべき吐出部と、を有し、
前記取水量調整部は、前記エミッタ内における前記灌漑用液体の流路内の固定端から突出し、上流側の前記灌漑用液体の圧力を受けて下流側に開く弁体を含み、
前記弁体は、前記固定端から突出する、可撓性を有する薄肉部と、前記薄肉部から延出する厚肉部とを有し、
前記取水量調整部よりも上流側の前記灌漑用液体の圧力が設定値以上であるときに前記薄肉部が撓み、前記弁体が下流側に開く、
エミッタ。
An emitter for quantitatively discharging the irrigation liquid in the tube from the discharge port, which is joined to a position corresponding to the discharge port communicating with the inside and outside of the tube on the inner wall surface of the tube through which the irrigation liquid flows. There,
A water intake for taking in the irrigation liquid in the tube;
A water intake amount adjusting unit for adjusting a flow rate of the irrigation liquid taken from the water intake unit;
A decompression flow path for flowing the irrigation liquid supplied from the water intake adjustment section while decompressing;
A discharge amount adjusting unit for controlling the flow rate of the irrigation liquid supplied from the decompression flow path according to the pressure of the irrigation liquid in the tube;
A discharge unit to be supplied to the discharge port, to which the irrigation liquid whose flow rate is controlled by the discharge amount adjusting unit is to be supplied, and
The water intake amount adjustment unit includes a valve body that protrudes from a fixed end in the flow path of the irrigation liquid in the emitter and opens to the downstream side under the pressure of the irrigation liquid on the upstream side,
The valve body has a flexible thin-walled portion protruding from the fixed end, and a thick-walled portion extending from the thin-walled portion,
When the pressure of the irrigation liquid upstream of the water intake amount adjustment unit is equal to or higher than a set value, the thin-walled portion bends and the valve body opens downstream.
Emitter.
前記厚肉部と前記薄肉部の境界の平面形状は、直線形状であり、
前記厚肉部は、前記弁体の下流側に肉厚な部分である、
請求項1に記載のエミッタ。
The planar shape of the boundary between the thick part and the thin part is a linear shape,
The thick part is a thick part on the downstream side of the valve body,
The emitter according to claim 1.
前記取水量調整部は、平面視したときに、前記弁体に隣接する位置に配置されている固定部をさらに有し、
前記弁体および前記固定部の平面形状は、いずれも扇形であり、
前記弁体および前記固定部は、平面視したときに周方向に交互に配置されている、
請求項1または2に記載のエミッタ。
The water intake amount adjusting unit further includes a fixing unit arranged at a position adjacent to the valve body when viewed in plan,
The planar shapes of the valve body and the fixed portion are both fan-shaped,
The valve body and the fixing portion are alternately arranged in the circumferential direction when viewed in plan,
The emitter according to claim 1 or 2.
前記吐出量調整部は、
前記減圧流路よりも下流側の流路と前記チューブ内部との連通を遮断するように配置されている、可撓性を有するフィルムと、
前記減圧流路よりも下流側の流路に、前記フィルムに面して非接触に配置され、前記フィルムが密着可能な、前記フィルムに対して窪んでいる弁座部と、
前記弁座部に開口する、前記吐出部に繋がる孔と、
前記弁座部に形成され、前記弁座部よりも外側の前記流路と前記孔とを連通する溝と、
を有し、
前記フィルムは、前記チューブ内の前記灌漑用液体の圧力が設定値以上であるときに前記弁座部に密着する、
請求項1〜のいずれか一項に記載のエミッタ。
The discharge amount adjusting unit is
A flexible film disposed so as to block communication between the flow path downstream of the decompression flow path and the inside of the tube;
A valve seat that is disposed in a non-contact manner facing the film and is in close contact with the flow path downstream of the decompression flow path, and is recessed with respect to the film,
A hole that opens in the valve seat portion and that leads to the discharge portion;
A groove that is formed in the valve seat portion and communicates the channel and the hole outside the valve seat portion;
Have
The film adheres to the valve seat when the pressure of the irrigation liquid in the tube is equal to or higher than a set value.
The emitter according to any one of claims 1 to 3 .
前記エミッタは、可撓性を有する一種類の材料で成形されており、The emitter is molded from one kind of flexible material,
前記フィルムは、前記エミッタの一部として一体的に成形されている、The film is integrally molded as part of the emitter,
請求項4に記載のエミッタ。The emitter according to claim 4.
灌漑用液体を流通させるチューブ内に前記チューブの外側から挿入されるべき、前記チューブ内の前記灌漑用液体を取り入れるための筒状の取水部と、
前記取水部から取り入れられた前記灌漑用液体の流量を調整するための取水量調整部と、
前記取水量調整部から供給された前記灌漑用液体を減圧させながら流すための減圧流路と、
前記減圧流路から供給された前記灌漑用液体の流量を、前記チューブ内の前記灌漑用液体の圧力に応じて制御するための吐出量調整部と、
前記吐出量調整部で流量が制御された前記灌漑用液体を前記チューブ外に吐出するための吐出部と、を有し、
前記取水部の前記チューブに挿入される側の一端を先端、他端を基端としたときに、前記取水部の基端にフランジ部が配置され、
前記フランジ部は、前記取水部の基端に配置されている第1円盤部と前記吐出部が配置される第2円盤部との合体によって構成され、かつ少なくとも前記減圧流路および前記吐出量調整部を含み、
前記取水量調整部は、前記エミッタ内における前記灌漑用液体の流路内の固定端から突出し、前記取水量調整部よりも上流側の前記灌漑用液体の圧力を受けて下流側に開く弁体を含み、
前記弁体は、前記固定端から突出する、可撓性を有する薄肉部と、前記薄肉部から延出する厚肉部とを有し、
前記取水量調整部よりも上流側の前記灌漑用液体の圧力が設定値以上であるときに前記薄肉部が撓み、前記弁体が下流側に開く、
エミッタ。
A cylindrical water intake for taking in the irrigation liquid in the tube, which should be inserted from the outside of the tube into the tube through which the irrigation liquid flows;
A water intake amount adjusting unit for adjusting a flow rate of the irrigation liquid taken from the water intake unit;
A decompression flow path for flowing the irrigation liquid supplied from the water intake adjustment section while decompressing;
A discharge amount adjusting unit for controlling the flow rate of the irrigation liquid supplied from the decompression flow path according to the pressure of the irrigation liquid in the tube;
A discharge unit for discharging the irrigation liquid whose flow rate is controlled by the discharge amount adjusting unit to the outside of the tube;
When one end of the water intake portion to be inserted into the tube is a distal end, and the other end is a proximal end, a flange portion is disposed at the proximal end of the intake portion,
The flange portion is formed by a combination of a first disk portion disposed at a proximal end of the water intake portion and a second disk portion where the discharge portion is disposed, and at least the pressure reducing flow path and the discharge amount adjustment Part
The water intake amount adjusting unit protrudes from a fixed end in the flow path of the irrigation liquid in the emitter, and receives a pressure of the irrigation liquid upstream from the water intake amount adjusting unit and opens to a downstream side Including
The valve body has a flexible thin-walled portion protruding from the fixed end, and a thick-walled portion extending from the thin-walled portion,
When the pressure of the irrigation liquid upstream of the water intake amount adjustment unit is equal to or higher than a set value, the thin-walled portion bends and the valve body opens downstream.
Emitter.
前記厚肉部と前記薄肉部の境界の平面形状は、直線形状であり、
前記厚肉部は、前記弁体の下流側に肉厚な部分である、
請求項6に記載のエミッタ。
The planar shape of the boundary between the thick part and the thin part is a linear shape,
The thick part is a thick part on the downstream side of the valve body,
The emitter according to claim 6.
前記取水量調整部は、平面視したときに、前記弁体に隣接する位置に配置されている固定部をさらに有し、
前記弁体および前記固定部の平面形状は、いずれも扇形であり、
前記弁体および前記固定部は、平面視したときに周方向に交互に配置されている、
請求項6または7に記載のエミッタ。
The water intake amount adjusting unit further includes a fixing unit arranged at a position adjacent to the valve body when viewed in plan,
The planar shapes of the valve body and the fixed portion are both fan-shaped,
The valve body and the fixing portion are alternately arranged in the circumferential direction when viewed in plan,
The emitter according to claim 6 or 7.
前記吐出量調整部は、
前記減圧流路よりも下流側の流路に面して配置される、可撓性を有するフィルムと、
前記フィルムの背面に前記チューブ内の前記灌漑用液体の圧力を伝達するための圧力伝達部と、
前記減圧流路よりも下流側の流路に前記フィルムに面して非接触に配置され、前記フィルムが密着可能な、前記フィルムに対して窪んでいる弁座部と、
前記弁座部に開口する、前記吐出部に繋がる孔と、
前記弁座部に形成され、前記弁座部よりも外側の前記流路と前記孔とを連通する溝と、
を有し、
前記フィルムは、前記チューブ内の前記灌漑用液体の圧力が設定値以上であるときに前記弁座部に密着する、
請求項6〜8のいずれか一項に記載のエミッタ。
The discharge amount adjusting unit is
A film having flexibility, disposed facing the flow path downstream of the decompression flow path;
A pressure transmission part for transmitting the pressure of the irrigation liquid in the tube to the back of the film;
A valve seat portion that is disposed in a non-contact manner facing the film in the flow path downstream of the decompression flow path, and that the film is in close contact with, and is recessed with respect to the film
A hole that opens in the valve seat portion and that leads to the discharge portion;
A groove that is formed in the valve seat portion and communicates the channel and the hole outside the valve seat portion;
Have
The film adheres to the valve seat when the pressure of the irrigation liquid in the tube is equal to or higher than a set value.
The emitter according to any one of claims 6 to 8.
前記第1円盤部は、前記減圧流路、前記圧力伝達部および前記フィルムを含み、前記第2円盤部は、前記弁座部、前記孔、前記溝を含む、請求項9に記載のエミッタ。   10. The emitter according to claim 9, wherein the first disk part includes the decompression flow path, the pressure transmission part, and the film, and the second disk part includes the valve seat part, the hole, and the groove. 前記第1円盤部および前記第2円盤部は、同じ材料で一体的に構成されている、請求項6〜10のいずれか一項に記載のエミッタ。   The emitter according to any one of claims 6 to 10, wherein the first disk part and the second disk part are integrally formed of the same material. チューブと、前記チューブに配置された請求項1〜11のいずれか一項に記載のエミッタとを有する、点滴灌漑用チューブ。   A drip irrigation tube comprising a tube and the emitter according to any one of claims 1 to 11 disposed on the tube.
JP2014206483A 2013-11-27 2014-10-07 Emitter and drip irrigation tubes Expired - Fee Related JP6444124B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014206483A JP6444124B2 (en) 2014-10-07 2014-10-07 Emitter and drip irrigation tubes
CN201480064799.9A CN105792637B (en) 2013-11-27 2014-11-26 Emitter and drip irrigation pipe
ES14866245T ES2734213T3 (en) 2013-11-27 2014-11-26 Emitter and tube for drip irrigation
EP14866245.5A EP3075236B1 (en) 2013-11-27 2014-11-26 Emitter, and tube for drip irrigation
PCT/JP2014/081154 WO2015080116A1 (en) 2013-11-27 2014-11-26 Emitter, and tube for drip irrigation
US15/037,966 US10212896B2 (en) 2013-11-27 2014-11-26 Emitter, and tube for drip irrigation
IL245827A IL245827B (en) 2013-11-27 2016-05-24 Emitter, and drip irrigation tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206483A JP6444124B2 (en) 2014-10-07 2014-10-07 Emitter and drip irrigation tubes

Publications (2)

Publication Number Publication Date
JP2016073236A JP2016073236A (en) 2016-05-12
JP6444124B2 true JP6444124B2 (en) 2018-12-26

Family

ID=55949290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206483A Expired - Fee Related JP6444124B2 (en) 2013-11-27 2014-10-07 Emitter and drip irrigation tubes

Country Status (1)

Country Link
JP (1) JP6444124B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014906A (en) * 2016-07-26 2018-02-01 株式会社エンプラス Drip irrigation tube and drip irrigation system
JP7101045B2 (en) * 2018-05-28 2022-07-14 株式会社エンプラス Emitter and drip irrigation tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL76553A (en) * 1985-10-03 1993-01-31 Naan Mech Works Drip irrigation apparatus
IL100749A (en) * 1992-01-24 1996-01-31 Plastro Gvat Regulated drip irrigation emitter with improved membrane
US5820029A (en) * 1997-03-04 1998-10-13 Rain Bird Sprinkler, Mfg. Corp. Drip irrigation emitter
IL122777A (en) * 1997-12-28 2003-12-10 Amir Cohen Valve controlled drip irrigation lines
US8511585B2 (en) * 2008-12-23 2013-08-20 Netafim, Ltd. Drip irrigation emitter

Also Published As

Publication number Publication date
JP2016073236A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2015080116A1 (en) Emitter, and tube for drip irrigation
JP6444313B2 (en) Emitter and drip irrigation tubes
JP6429796B2 (en) Emitter and drip irrigation tubes
WO2015080115A1 (en) Emitter and drip irrigation tube
JP6577367B2 (en) Emitter and drip irrigation tubes
WO2015080127A1 (en) Emitter and drip irrigation tube
JP6533158B2 (en) Emitter and drip irrigation tube
JP6417176B2 (en) Emitter and drip irrigation tubes
WO2015080119A1 (en) Emitter and drip irrigation tube
WO2016190168A1 (en) Emitter and drip irrigation tube
WO2016190167A1 (en) Emitter and drip irrigation tube
JP7101045B2 (en) Emitter and drip irrigation tube
JP6444124B2 (en) Emitter and drip irrigation tubes
JP6429577B2 (en) Emitter and drip irrigation tubes
JP6630472B2 (en) Emitter and drip irrigation tube
JP2021029222A (en) Emitter and drip irrigation tube
JP6831738B2 (en) Emitter and drip irrigation tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181127

R150 Certificate of patent or registration of utility model

Ref document number: 6444124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees