WO2019151167A1 - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
WO2019151167A1
WO2019151167A1 PCT/JP2019/002627 JP2019002627W WO2019151167A1 WO 2019151167 A1 WO2019151167 A1 WO 2019151167A1 JP 2019002627 W JP2019002627 W JP 2019002627W WO 2019151167 A1 WO2019151167 A1 WO 2019151167A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer tube
pair
temperature measuring
insulating material
tip
Prior art date
Application number
PCT/JP2019/002627
Other languages
French (fr)
Japanese (ja)
Inventor
元樹 佐藤
真典 辻村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019151167A1 publication Critical patent/WO2019151167A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia

Definitions

  • the present disclosure relates to a temperature sensor that measures the temperature of a measurement target gas in a measurement environment.
  • thermocouple type temperature sensor having a pair of thermocouple wires is used, for example, to measure the temperature of exhaust gas flowing in the exhaust pipe of a vehicle.
  • the pair of thermocouple wires are fixed in the outer tube in an insulated state by an insulating material such as magnesium oxide or aluminum oxide.
  • the thermocouple type temperature sensor includes a grounding type in which the temperature measuring contact is grounded to the tip of the outer tube, and a non-grounded type in which the temperature measuring contact is not grounded to the tip of the outer tube. When responsiveness is mainly required, a grounded type is used, and when noise resistance is mainly required, a non-grounded type is used.
  • the tips of the pair of thermocouple wires and the temperature measuring contact are coated with a conductive material having high hardness.
  • tip part and temperature measuring contact of a pair of thermocouple strand covered with coating are embed
  • thermocouple type temperature sensor In the conventional temperature sensor including the sheathed thermocouple of Patent Document 1, the position where the temperature measuring contact is arranged is not devised when forming a non-grounded thermocouple type temperature sensor.
  • a non-grounded thermocouple type temperature sensor since the temperature measuring contact is not in contact with the outer tube, it takes time until the temperature of the temperature measuring contact reaches the temperature of the measurement target gas. The reason for this is that the heat transfer path from the gas to be measured to the temperature measuring contact is formed at a position closer to the tip of the outer tube and is measured via a gas phase such as air at the tip of the outer tube. This is because heat is transferred to the hot junction.
  • the inventors' diligent research has revealed that the responsiveness of the temperature sensor can be remarkably improved by bringing the proximal end of the temperature measuring contact as close as possible to the distal end surface of the insulating material.
  • the reason for this is that the heat transfer path from the gas to be measured to the temperature measuring contact is formed at the position on the proximal end side of the temperature measuring contact, and does not pass through the gas phase as much as possible, but through a pair of thermocouple wires. It was found that this was because heat was transferred to the temperature measuring junction.
  • thermocouple temperature sensor in order to improve the responsiveness of a non-grounded thermocouple temperature sensor, it is important to properly set the shortest distance between the base end of the temperature measuring contact and the front end surface of the insulating material. I understood.
  • thermocouple type temperature sensor that is an ungrounded type.
  • One aspect of the present disclosure includes a pair of thermocouple wires made of different metal materials; A temperature measuring junction in which the tips of the pair of thermocouple wires are combined; An outer tube made of a metal material and containing the temperature measuring contact in the tip or in the tip cover attached to the tip, An insulating material that is made of an insulating material, is disposed in the outer tube, insulates the pair of thermocouple wires from the outer tube, and fixes the pair of thermocouple wires to the outer tube; With The temperature measuring contact is disposed in the gas phase in the tip of the outer tube or in the tip cover, In the axial direction along the central axis of the outer tube, the shortest distance from the base end of the temperature measuring contact point to the front end surface of the insulating material is in the temperature sensor in the range of 0 to 0.7 mm.
  • thermocouple type temperature sensor of the one aspect is a non-grounding type in which the temperature measuring contact is disposed outside the insulating material and in the gas phase in the distal end portion of the outer tube or the distal end cover.
  • the shortest distance in the axial direction from the proximal end of the temperature measuring contact to the distal end surface of the insulating material is set within a range of 0 to 0.7 mm.
  • thermocouple type temperature sensor can be improved.
  • the temperature measuring contact When the shortest distance exceeds 0.7 mm, the temperature measuring contact is separated from the insulating material, and it becomes difficult to improve the responsiveness of the temperature sensor.
  • thermocouple type temperature sensor which is a non-grounded type.
  • each component is not limited only to the content of embodiment.
  • FIG. 1 is a cross-sectional view illustrating a main part of a temperature sensor according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating a temperature sensor according to the embodiment.
  • FIG. 3 is a cross-sectional view showing the periphery of the temperature measuring contact according to the embodiment.
  • 4 is a cross-sectional view taken along the line IV-IV in FIG. 1 according to the embodiment.
  • FIG. 5 is a cross-sectional view illustrating a main part of another temperature sensor according to the embodiment.
  • FIG. 6 is a cross-sectional view showing the periphery of the base end portion of another outer tube according to the embodiment.
  • FIG. 7 is a cross-sectional view showing the periphery of the base end portion of another outer tube according to the embodiment.
  • FIG. 8 is a cross-sectional view showing the periphery of another temperature measuring contact according to the embodiment.
  • FIG. 9 is a cross-sectional view showing a process of forming a temperature measuring contact according to the embodiment.
  • FIG. 10 is a cross-sectional view showing a process of forming another temperature measuring contact according to the embodiment.
  • FIG. 11 is a perspective view showing a tablet for glass sealing material according to the embodiment.
  • FIG. 12 is a flowchart illustrating a manufacturing method of the sheath thermocouple constituting the temperature sensor according to the embodiment.
  • FIG. 13 is an explanatory diagram showing a prepared sheath pin in the manufacturing process of the sheath thermocouple according to the embodiment.
  • FIG. 14 is an explanatory diagram illustrating a state in which the insulating material at the base end portion of the sheath pin is scraped out in the manufacturing process of the sheath thermocouple according to the embodiment.
  • FIG. 15 is an explanatory diagram showing a state in which a temperature measuring contact is formed at the distal ends of a pair of thermocouple wires in the manufacturing process of the sheath thermocouple according to the embodiment.
  • FIG. 13 is an explanatory diagram showing a prepared sheath pin in the manufacturing process of the sheath thermocouple according to the embodiment.
  • FIG. 14 is an explanatory diagram illustrating a state in which the insulating material at the base end portion of the sheath pin is scrape
  • FIG. 16 is an explanatory diagram showing a manufacturing process of the sheath thermocouple according to the embodiment, in which a distal end cover is attached to the distal end portion of the outer tube and a tablet is disposed at the proximal end portion of the outer tube.
  • FIG. 17 is an explanatory diagram illustrating another thermocouple manufacturing process according to the embodiment, in which a pair of thermocouple wires are inserted into the outer tube.
  • FIG. 18 is an explanatory diagram showing a state in which a glass sealing material is filled in the proximal end portion of the outer tube in the manufacturing process of another thermocouple according to the embodiment.
  • FIG. 19 is an explanatory diagram showing a state in which an outer tube is filled with an insulating material in another thermocouple manufacturing process according to the embodiment.
  • FIG. 20 is an explanatory diagram illustrating another thermocouple manufacturing process according to the embodiment in a state in which a temperature measuring contact is formed at the distal ends of a pair of thermocouple wires.
  • FIG. 21 is a cross-sectional view showing the main part of the temperature sensor according to the comparative embodiment.
  • FIG. 22 is a graph showing the relationship between the shortest distance and the 63% response time for the confirmation test.
  • the temperature sensor 1 of this embodiment includes a pair of thermocouple wires 2, a temperature measuring contact 3, an outer tube 4, a tip cover 42, an insulating material 5, and a glass sealing material 6. .
  • Each of the pair of thermocouple wires 2 is composed of different metal materials.
  • the temperature measuring contact 3 is formed by joining the tips of a pair of thermocouple wires 2.
  • the outer tube 4 is made of a metal material, and the temperature measuring contact 3 is accommodated in a tip cover 42 attached to the tip portion 401.
  • the tip cover 42 is attached to the outer periphery of the tip of the outer tube 4 and closes the tip side X1 of the outer tube 4.
  • the insulating material 5 is made of an insulating material and is disposed in the outer tube 4, and insulates the pair of thermocouple wires 2 from the outer tube 4, thereby connecting the pair of thermocouple wires 2 to the outer tube. 4 is fixed.
  • the temperature measuring contact 3 is disposed in the gas phase K in the tip cover 42 at the tip 401 of the outer tube 4.
  • the shortest distance L from the base end 301 of the temperature measuring contact 3 to the front end surface 501 of the insulating material 5 is in the range of 0 to 0.7 mm.
  • the tip end side X ⁇ b> 1 is provided with a temperature measuring contact 3 with respect to the outer tube 4 in the axial direction X along the central axis of the outer tube 4. It means the side that was given.
  • the base end side X2 refers to a side opposite to the front end side X1 in the axial direction X.
  • the temperature sensor 1 is a vehicle-mounted one, and is used to measure the temperature of fluid flowing in an intake pipe or an exhaust pipe of an internal combustion engine (engine) in an automobile.
  • the temperature sensor 1 of the present embodiment is disposed in the exhaust pipe 15 and is used to measure the temperature of exhaust gas as the measurement target gas G in the measurement environment that flows through the exhaust pipe 15.
  • the temperature of the exhaust gas is used when the control device (electronic control unit) 8 performs combustion control of the internal combustion engine.
  • the temperature of exhaust gas can be utilized, for example, in order to detect the temperature of the exhaust purification catalyst arranged in the exhaust pipe.
  • the temperature sensor 1 can also be arrange
  • the pair of thermocouple wires 2, the outer tube 4, and the insulating material 5 of the present embodiment are those integrally formed as a sheath pin 12.
  • the main part of the temperature sensor 1 is formed as a sheath thermocouple 11 by a pair of thermocouple wires 2, a temperature measuring contact 3, an outer tube 4, an insulating material 5 and a glass sealing material 6.
  • FIG. 4 shows a cross section orthogonal to the axial direction X of the sheath thermocouple 11 and the sheath pin 12.
  • the temperature sensor 1 includes a first housing 71 and a second housing 72 that hold the sheath thermocouple 11 on the inner peripheral side, a proximal end cover 73 attached to the second housing 72, and a base And a bush 74 held in the end cover 73.
  • the first housing 71 is attached to the outer periphery of the outer tube 4, and the second housing 72 is attached to the outer periphery of the first housing 71.
  • the second housing 72 is attached to an attachment hole provided in the exhaust pipe 15.
  • the bush 74 holds the terminal fitting 75 connected to the pair of thermocouple wires 2.
  • the outer tube 4 is also called a sheath tube or a metal sheath, and is made of a metal material such as stainless steel (SUS, NCA) or Ni-base heat-resistant alloy (NCF). As shown in FIG. 13, the outer tube 4 uses the outer tube of a sheath pin 12 having a cylindrical shape.
  • the distal end portion 401 of the outer tube 4 is closed with a metal material. As shown in FIG. 1, the distal end portion 401 of the outer tube 4 of this embodiment is closed by a distal end cover 42 attached to the outer periphery of the distal end portion 401 of the cylindrical portion 41. As shown in FIG.
  • the distal end portion 401 of the outer tube 4 may be closed by a lid portion 42 ⁇ / b> A provided continuously from the distal end portion 401 of the cylindrical portion 41.
  • the lid portion 42 ⁇ / b> A can be configured by a metal piece welded to the tip of the cylindrical portion 41 of the outer tube 4.
  • the outer tube 4 of the present embodiment includes a cylindrical portion 41 having a cylindrical shape, and a tip cover 42 attached to the outer periphery of the tip of the cylindrical portion 41.
  • the tip cover 42 is joined to the tip outer periphery of the cylindrical portion 41 by welding.
  • the front cover 42 has a cover base end 421 mounted on the outer periphery of the front end of the cylindrical portion 41 and an inner diameter smaller than the inner diameter of the cover base end 421 located on the front end side X1 from the cover base end 421.
  • a cover tip portion 422 having the same.
  • a curved bottom is formed at the tip of the cover tip 422.
  • the length of the cover front end portion 422 of the front end cover 42 in the axial direction X can be changed as appropriate.
  • a holder 43 for placing the tablet 60 for the glass sealing material 6 can be attached to the base end portion 402 of the outer tube 4.
  • the holder 43 has a funnel shape and has an upper opening 431 having an inner diameter larger than the outer diameter of the outer tube 4.
  • the holder 43 is used to fill the glass material melted by the tablet 60 into the proximal end portion 402 of the outer tube 4.
  • the holder 43 can be press-fitted into the outer periphery of the base end portion 402 of the outer tube 4, and can be caulked and fixed or welded to the outer periphery of the base end portion 402 of the outer tube 4.
  • the size of the tablet 60 arranged in the holder 43 can be made larger than the case where it is arranged in the proximal end portion 402 of the outer tube 4. And when the tablet 60 arrange
  • the glass sealing material 6 can be filled in the holder 43 to seal the base end portion 402 of the outer tube 4.
  • the inner diameter of the holder 43 can be set larger than the inner diameter of the outer tube 4.
  • the glass sealing material 6 is more preferably filled up to the maximum diameter portion of the holder 43. In this case, a higher compression effect can be obtained, and the high airtightness of the outer tube 4 can be more effectively ensured.
  • the inner diameter of the outer tube 4 in this embodiment is in the range of ⁇ 1.5 to 10.0 mm. If the inner diameter of the outer tube 4 is smaller than ⁇ 1.5 mm, it may be difficult to obtain a compression effect from the base end portion 402 of the outer tube 4 to the glass sealing material 6.
  • the compression effect means that when the heated outer tube 4 and the glass sealing material 6 are cooled, the stress is zero at the glass transition point, and the linear expansion coefficient of the outer tube 4 is that of the glass sealing material 6.
  • the linear expansion coefficient of the outer tube 4 is that of the glass sealing material 6.
  • compressive stress is applied from the outer tube 4 to the glass sealing material 6 in a temperature environment below the glass transition point, and the sealing performance (sealing performance) by the glass sealing material 6 is increased. That means.
  • the sheath thermocouple 11 is increased in size, which may adversely affect the responsiveness, mountability, etc. of the temperature sensor 1.
  • the inner diameter of the outer tube 4 is smaller than ⁇ 1.5 mm, the strength of the outer tube 4 is lowered, for example, the temperature sensor 1 is damaged due to vibration caused by the vehicle on which the temperature sensor 1 is mounted, or the thermocouple There is a possibility that the insulation distance between the strands 2 becomes small, and the thermocouple strands 2 break down. However, if these problems can be improved, it is considered that the inner diameter of the outer tube 4 can be reduced to about 1 mm.
  • thermocouple wires 2 The pair of thermocouple wires 2 are made of different metal materials in order to generate a so-called Seebeck effect.
  • the pair of thermocouple strands 2 in this embodiment constitutes an N type thermocouple (sheath thermocouple 11). With this configuration, it is easy to increase the temperature measurement range by the temperature sensor 1.
  • the temperature sensor 1 of this embodiment can measure the temperature of the high temperature measurement target gas G of 1000 ° C. or higher.
  • the + leg of the thermocouple wire 2 is made of niclosil, which is an alloy mainly composed of Ni (nickel), Cr (chromium), and Si (silicon).
  • The-leg of the thermocouple wire 2 is made of nycil which is an alloy mainly composed of Ni (nickel) and Si (silicon).
  • the pair of thermocouple wires 2 may constitute various types of thermocouples other than the N type.
  • the pair of thermocouple wires 2 constitutes a K-type thermocouple whose + leg is made of chromel whose main component is Ni and Cr, and whose ⁇ leg is made of alumel whose main component is Ni, Al, or Si. It may be a thing.
  • the diameter of the pair of thermocouple wires 2 is in the range of ⁇ 0.01 to 2.0 mm.
  • the diameters of the pair of thermocouple wires 2 in this embodiment are equal to each other.
  • the diameter of the + leg thermocouple element 2 and the diameter of the ⁇ leg thermocouple element 2 may be different from each other. It is difficult to make the diameter of the thermocouple wire 2 less than ⁇ 0.01 mm from the viewpoint of manufacturing and strength.
  • the sheath thermocouple 11 becomes large, which may adversely affect the responsiveness, mountability, and the like of the temperature sensor 1.
  • the diameter of the thermocouple wire 2 of this embodiment is ⁇ 0.37 mm.
  • the shortest distance L in the axial direction X from the proximal end 301 of the temperature measuring contact 3 to the distal end surface 501 of the insulating material 5 is 0.7 mm or less, which is not more than twice the average diameter of the pair of thermocouple wires 2. Is set.
  • the pair of thermocouple wires 2 are inserted in the outer tube 4 in a state parallel to each other.
  • the pair of thermocouple wires 2 protrudes from the base end portion 402 of the outer tube 4 and is drawn from the outer tube 4 to the base end side X2.
  • the pair of thermocouple wires 2 is connected to an external control device 8 via a terminal fitting 75 and a lead wire 76 provided in the temperature sensor 1.
  • the control device 8 can be a sensor control device (SCU) connected to an engine control device (ECU).
  • the control device 8 can also be constructed in an engine control device.
  • the temperature measuring contact 3 is also called a heat contact and is formed into a ball shape by fusing the metal material constituting the + leg of the pair of thermocouple wires 2 and the metal material constituting the ⁇ leg. .
  • the temperature measuring tip 10 of the temperature sensor 1 is formed by the temperature measuring contact 3 and the tip cover 42 positioned around the temperature measuring contact 3.
  • a pair of thermocouple wires 2 of the temperature sensor 1 is connected to an amplifier in the control device 8 via a terminal fitting 75, a lead wire 76, etc., thereby forming a circuit for measuring temperature.
  • a reference contact located on the opposite side to the temperature measuring contact 3 in the pair of thermocouple wires 2 is formed in the control device 8. A temperature difference between the temperature measuring contact 3 and the reference contact generates an electromotive force in the pair of thermocouple wires 2.
  • the temperature measuring contact 3 of this embodiment is arranged in the gas phase K in the tip cover 42 attached to the tip 401 of the outer tube 4.
  • the distal end portion 201 and the temperature measuring contact 3 of the pair of thermocouple wires 2 are disposed at a position protruding from the distal end opening 411 of the cylindrical portion 41 of the outer tube 4 toward the distal end side X1.
  • the amount by which the pair of thermocouple wires 2 protrude from the distal end portion 401 of the outer tube 4 is made as small as possible, and the temperature measuring contact 3 is positioned as close as possible to the distal end surface 501 of the insulating material 5.
  • the base end 301 of the temperature measuring contact 3 may be disposed at a position in contact with the front end surface 501 of the insulating material 5.
  • the base end 301 of the temperature measuring contact 3 is connected to the tip surface 501 of the insulating material 5. It is hard to say that they are always in contact.
  • the “position where the base end 301 of the temperature measuring contact 3 is in contact with the front end surface 501 of the insulating material 5” is not only the case where the base end 301 of the temperature measuring contact 3 is in contact with the front end surface 501 of the insulating material 5.
  • the case where the base end 301 of the temperature measuring contact 3 is equal to being in contact with the front end surface 501 of the insulating material 5 is also included.
  • the base end 301 of the temperature measuring contact 3 is included in a position where it contacts the front end surface 501 of the insulating material 5.
  • the temperature measuring contact 3 is preferably formed in a shape as close to a spherical shape as possible. However, it is difficult to form the temperature measuring contact 3 in a true spherical shape. Further, the temperature measuring contact 3 is preferably formed as small as possible in order to improve the responsiveness of temperature measurement by the temperature sensor 1. On the other hand, since the temperature measuring contact 3 is formed by fusion of the tip portions 201 of the pair of thermocouple wires 2, it is difficult to form the temperature measuring contact 3 less than twice the diameter of the thermocouple wires 2.
  • the maximum diameter of the temperature measuring junction 3 of this embodiment is not less than 2 times and not more than 3 times the average diameter of the pair of thermocouple wires 2. With this configuration, the temperature measuring contact 3 can be formed as small as possible to ensure the responsiveness of the temperature sensor 1.
  • the “maximum diameter of the temperature measuring contact 3” refers to the length of the longest straight line passing through the temperature measuring contact 3.
  • the temperature measuring contact 3 may have various shapes such as a flat spherical shape, a crushed spherical shape, a long spherical shape, and an ellipsoid in addition to a substantially spherical shape.
  • the temperature measuring contact 3 of this embodiment has an ellipsoid shape that is slightly longer in the direction orthogonal to the axial direction X.
  • the maximum diameter of the temperature measuring contact 3 is measured as the maximum diameter in the direction orthogonal to the axial direction X.
  • the diameters of the pair of thermocouple wires 2 in this embodiment are equal to each other.
  • the average diameter of the pair of thermocouple wires 2 is the diameter of one of the thermocouple wires 2.
  • the average diameter of the pair of thermocouple strands 2 is the diameter of the + legged thermocouple strand 2 and the ⁇ legged thermocouple strand. The average value with the diameter of 2.
  • the temperature measuring contact 3 When the maximum diameter of the temperature measuring contact 3 exceeds three times the average diameter of the pair of thermocouple wires 2, the temperature measuring contact 3 is large, and the heat capacity may affect the response of the temperature sensor 1 to deteriorate. There is.
  • the tip portions 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5 can be deformed so as to approach each other.
  • the tip portions 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5 approach each other in the axial direction X from a state parallel to the axial direction X.
  • a bent portion 23 that bends in an orthogonal state can be formed. The bent portions 23 may overlap each other. Then, the temperature measuring contact 3 can be formed by melting the bent portions 23 with a laser or the like.
  • the tip portion 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5 includes an inclined portion 24 inclined to approach each other, and an inclined portion 24 of the inclined portion 24.
  • a facing portion 25 that faces each other on the distal end side X1 can be formed. Then, the facing portions 25 can be melted with a laser or the like to form the temperature measuring contact 3.
  • the insulating material 5 is composed of a metal oxide powder such as magnesium oxide (MgO) or aluminum oxide (Al 2 O 3 ).
  • MgO magnesium oxide
  • Al 2 O 3 aluminum oxide
  • a gap between the inner periphery of the outer tube 4 and the outer periphery of the pair of thermocouple wires 2 is filled with powder of the insulating material 5.
  • a gap is formed between the powders of the insulating material 5.
  • the powder of the insulating material 5 is compressed when molding to reduce the diameter of the sheath pin 12 is performed.
  • the pair of thermocouple wires 2 is held in the outer tube 4 by the powder of the insulating material 5.
  • the outer tube 4 and the insulating material 5 are formed using a sheath pin 12. Therefore, the distal end surface 501 of the insulating material 5 is not necessarily in the same position as the distal end surface of the cylindrical portion 41 of the outer tube 4 depending on the situation when the sheath pin 12 is cut. As shown in FIG. 3, it is also assumed that the distal end surface 501 of the insulating material 5 is slightly depressed from the distal end opening 411 of the cylindrical portion 41 toward the proximal end X2.
  • the distal end surface 501 of the insulating material 5 of this embodiment is in the range of 0 to 0.3 mm from the distal end opening 411 of the cylindrical portion 41 to the proximal end side X2.
  • the distance from the front end surface 501 of the insulating material 5 to the front end opening 411 of the cylindrical portion 41 is indicated by a symbol M.
  • the center surface of the distal end surface 501 of the insulating material 5 may be located on the most proximal side X2.
  • the shortest distance L from the base end 301 of the temperature measuring contact 3 to the front end surface 501 of the insulating material 5 is along the axial direction X from the base end 301 of the temperature measuring contact 3 to the center position of the front end surface 501 of the insulating material 5. It can be calculated as a distance.
  • the glass sealing material 6 is made of Bi glass containing Bi (bismuth) or Pb glass containing Pb (lead).
  • Bi-based glass is mainly composed of Bi 2 O 3 (bismuth oxide) and contains other oxides.
  • Other oxides include B 2 O 3 , SrO, ZnO, BaO and the like.
  • Pb-based glass contains PbO (lead oxide) as a main component and contains other oxides and the like.
  • Other oxides include B 2 O 3 , SrO, ZnO, SiO 2 and the like.
  • the glass encapsulant 6 is formed by using a glass tablet 60 formed in a solid state, and melting and solidifying the tablet 60. As shown in FIG. 11, the tablet 60 has a size that can be inserted into the inner periphery of the base end portion 402 of the outer tube 4 or the inner periphery of the holder 43.
  • the tablet 60 has two insertion holes 601 through which the pair of thermocouple wires 2 can be inserted.
  • the glass sealing material 6 is formed by using a glass tablet 60 formed in a solid state and solidifying after the tablet 60 is melted.
  • the tablet 60 has a size that can be inserted into the inner periphery of the proximal end portion 402 of the outer tube 4 and has two insertion holes 601 through which the pair of thermocouple wires 2 can be inserted.
  • a sheath pin 12 is prepared in which a pair of thermocouple wires 2 are held by an insulating material 5 in the outer tube 4 (step S1 in FIG. 12).
  • a pair of thermocouple wires 2 protrude from both ends of the distal end side X1 and the proximal end side X2.
  • step S2 in a state where the pair of thermocouple wires 2 and the outer tube 4 are maintained, the insulating material 5 at the base end portion of the sheath pin 12 is scraped out (step S2). At this time, the insulating material 5 can be scraped off by performing shot blasting or the like. Further, a space 403 after the insulating material 5 is scraped out is formed in the base end portion 402 of the outer tube 4.
  • the tip portions 201 of the pair of thermocouple wires 2 protruding from the tip portions of the sheath pin 12 are faced to each other and melted using a laser or the like, and the tip portions 201 are joined to each other.
  • the temperature measuring contact 3 is formed (step S3).
  • Step S4 the tip cover 42 is attached to the tip 401 of the outer tube 4 of the sheath pin 12, and the tip cover 42 is caulked and welded to fix it to the tip 401 of the outer tube 4.
  • steps S3 and S4 may be performed before step S2.
  • step S4 when the tip cover 42 is fixed to the tip portion 401 of the outer tube 4, an air layer may be formed between the outer tube 4 and the tip cover 42.
  • This air layer is preferably eliminated when caulking, and the absence of the air layer can realize higher responsiveness of the temperature sensor 1. This is because, when the temperature of the measurement target gas G is transmitted to the outer tube 4, if there is an air layer with low thermal conductivity, the heat transfer is blocked by the air layer.
  • the tablet 60 for forming the glass sealing material 6 is disposed in the space 403 of the base end portion 402 of the outer tube 4 (step S5).
  • the base end portions 202 of the pair of thermocouple wires 2 protruding from the base end portion 402 of the outer tube 4 are inserted into the insertion holes 601 of the tablet 60.
  • the base end portion 402 of the outer tube 4 and the tablet 60 are heated to melt the tablet 60 (step S6).
  • the melted tablet 60 is cooled and solidified to become the glass sealing material 6.
  • pipe 4 is sealed with the glass sealing material 6, and the inside of the outer tube
  • the sheath thermocouple 11 as the main part of the temperature sensor 1 is manufactured.
  • thermocouple 11 can be manufactured without using the sheath pin 12 as follows. First, as shown in FIG. 17, a pair of thermocouple wires 2 are inserted into the inner periphery of the outer tube 4. Next, as shown in FIG. 18, the glass sealing material 6 is filled into the base end portion 402 of the outer tube 4 using the tablet 60. Next, as shown in FIG. 19, the direction of the outer tube 4 is changed so that the glass sealing material 6 is positioned on the lower side, and the insulating material 5 is filled above the glass sealing material 6 in the outer tube 4. . Next, as shown in FIG. 20, the tip portions 201 of the pair of thermocouple wires 2 are fused to form the temperature measuring contact 3. After that, the thermocouple 11 can be manufactured by attaching the tip cover 42 to the tip portion 401 of the outer tube 4.
  • the thermocouple type temperature sensor 1 of this embodiment is a non-grounding type in which the temperature measuring contact 3 is disposed outside the insulating material 5 and in the gas phase K in the tip cover 42 at the tip 401 of the outer tube 4. belongs to.
  • the thermocouple type temperature sensor 1 which is a non-grounding type the shortest distance L in the axial direction X from the proximal end 301 of the temperature measuring contact 3 to the distal end surface 501 of the insulating material 5 is in the range of 0 to 0.7 mm. Is set in.
  • the temperature measuring contact 3 can be arranged outside the insulating material 5 and at a position as close as possible to the insulating material 5.
  • a heat transfer path H between the measurement target gas G and the temperature measuring contact 3 can be formed at the position of the base end side X ⁇ b> 2 of the temperature measuring contact 3.
  • the heat transfer from the measurement target gas G to the temperature measurement contact 3 passes through the outer tube 4 and the pair of thermocouple wires 2.
  • the pair of thermocouple wires 2 and the outside are connected from the temperature measuring contact 3 at the position of the base end side X2 of the temperature measuring contact 3. Heat can be released to the outside of the temperature sensor 1 via the tube 4.
  • the responsiveness of the thermocouple type temperature sensor 1 which is a non-grounding type can be improved.
  • the shortest distance L is in the range of 0 to 0.7 mm, in other words, the shortest distance L is not more than twice the average diameter of the pair of thermocouple wires 2, the tip surface of the insulating material 5
  • the protruding amount of the tip portion 201 of the pair of thermocouple wires 2 and the temperature measuring contact 3 protruding from 501 can be minimized.
  • tip part 201 of the pair of thermocouple strand 2 which protrudes from the front end surface 501 of the insulating material 5, and the temperature measuring contact 3 can be improved.
  • the temperature measuring contact 3 When the shortest distance L exceeds 0.7 mm, the temperature measuring contact 3 is separated from the insulating material 5 and it becomes difficult to improve the responsiveness of the temperature sensor 1. In addition, the pair of thermocouple wires 2 and the temperature measuring contact 3 protruding from the distal end surface 501 of the insulating material 5 may easily vibrate.
  • thermocouple type temperature sensor 1 which is a non-grounding type
  • the temperature measuring contact 3 is not grounded (not in contact) to the tip cover 42 by a filler or the like.
  • the linear expansion coefficients of the tip cover 42, the filler, the temperature measuring contact 3, etc. are different from each other at the tip 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5. Heat stress hardly acts.
  • thermocouple type temperature sensor 1 which is a non-grounding type
  • the temperature measuring contact 3 does not come into contact with the surroundings but floats in the gas phase K in the tip cover 42.
  • the responsiveness is not excellent.
  • the temperature sensor 1 of the present embodiment improves the demerit that is not excellent in responsiveness while taking advantage of the low thermal stress of the non-grounding type temperature sensor 1.
  • a temperature sensor 1 with improved responsiveness while suppressing the occurrence of thermal stress is provided.
  • the shortest distance L from the proximal end 301 of the temperature measuring contact 3 to the distal end surface 501 of the insulating material 5 is set within a range of 0 to 0.7 mm. Then, by forming the heat transfer path H between the measurement target gas G and the temperature measuring contact 3 so as to pass through the tip portions 201 of the pair of thermocouple wires 2, the responsiveness of the temperature sensor 1 is improved. Improved.
  • the sheath thermocouple 9 of the conventional non-grounding type temperature sensor in the sheath thermocouple 9 of the conventional non-grounding type temperature sensor, the shortest distance Lx from the base end 301 of the temperature measuring contact 3 to the front end surface 501 of the insulating material 5. was more than 0.7 mm apart. Therefore, the heat transfer path I between the measurement target gas G and the temperature measuring contact 3 is formed via the tip cover 42 and the gas phase K in the tip cover 42. As a result, while the temperature sensor 1 can be protected from thermal stress, the responsiveness of the temperature sensor 1 cannot be improved.
  • the temperature sensor 1 of the present embodiment can greatly improve the responsiveness while being a simple device such as disposing the temperature measuring contact 3 as close as possible to the tip surface 501 of the insulating material 5.
  • the result of measuring the 63% response time is shown in FIG.
  • the 63% response time greatly changes around the vicinity where the shortest distance L is 0.7 mm.
  • the 63% response time is as short as 4 seconds, and when the shortest distance L is over 0.7 mm, the 63% response time is as long as 8 seconds. It was. Therefore, according to the temperature sensor 1 of the present embodiment in which the shortest distance L is set to 0.7 mm or less, it is a demerit while taking advantage of the strong resistance to thermal stress of the thermocouple type temperature sensor 1 which is a non-ground type. Responsiveness can be improved.

Abstract

This temperature sensor (1) is provided with: a pair of thermocouple wires (2); a temperature measurement contact point (3) at which the tips of the pair of thermocouple wires are joined; an outer tube (4) that accommodates the temperature measurement contact point (3) inside a tip part (401); an insulating material (5) that insulates the pair of thermocouple wires (2) and the outer tube (4); and a glass sealing material (6) that is filled in a base end part (402) of the outer tube (4). The temperature measurement contact point (3) is disposed in a gas phase (K) inside the tip part (401) of the outer tube (4). In an axial direction (X) along the center axis line of the outer tube (4), the shortest distance (L) from a base end (301) of the temperature measurement contact point (3) to a tip surface (501) of the insulating material (5) is in the range of 0-0.7 mm.

Description

温度センサTemperature sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年1月31日に出願された日本の特許出願番号2018-015628号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-015628, filed on January 31, 2018, the contents of which are incorporated herein by reference.
 本開示は、測定環境下の測定対象ガスの温度を測定する温度センサに関する。 The present disclosure relates to a temperature sensor that measures the temperature of a measurement target gas in a measurement environment.
 一対の熱電対素線を有する熱電対式の温度センサは、例えば、車両の排気管内を流れる排ガスの温度を測定するために用いられる。一対の熱電対素線は、酸化マグネシウム、酸化アルミニウム等の絶縁材によって、絶縁された状態で外管内に固定されている。熱電対式の温度センサには、測温接点が外管の先端部に接地された接地型のもの、測温接点が外管の先端部に接地されていない非接地型のもの等がある。主に応答性が求められる場合には、接地型のものが用いられ、主に耐ノイズ性が求められる場合には、非接地型のものが用いられる。 A thermocouple type temperature sensor having a pair of thermocouple wires is used, for example, to measure the temperature of exhaust gas flowing in the exhaust pipe of a vehicle. The pair of thermocouple wires are fixed in the outer tube in an insulated state by an insulating material such as magnesium oxide or aluminum oxide. The thermocouple type temperature sensor includes a grounding type in which the temperature measuring contact is grounded to the tip of the outer tube, and a non-grounded type in which the temperature measuring contact is not grounded to the tip of the outer tube. When responsiveness is mainly required, a grounded type is used, and when noise resistance is mainly required, a non-grounded type is used.
 例えば、特許文献1のシース熱電対においては、一対の熱電対素線の先端部及び測温接点が、高硬度の導電性物質によってコーティングされている。そして、コーティングによって覆われた、一対の熱電対素線の先端部及び測温接点は、外管の先端部における絶縁材の粉末中に埋設されている。 For example, in the sheath thermocouple of Patent Document 1, the tips of the pair of thermocouple wires and the temperature measuring contact are coated with a conductive material having high hardness. And the front-end | tip part and temperature measuring contact of a pair of thermocouple strand covered with coating are embed | buried in the powder of the insulating material in the front-end | tip part of an outer tube | pipe.
特開2016-211855号公報JP 2016-2111855 A
 特許文献1のシース熱電対等を含む従来の温度センサにおいては、非接地型である熱電対式の温度センサを形成する際に、測温接点を配置する位置に工夫はなされていない。非接地型である熱電対式の温度センサにおいては、測温接点が外管に接触していないために、測温接点の温度が測定対象ガスの温度になるまでに時間が掛かりやすい。この理由は、測定対象ガスから測温接点への熱の移動経路が、外管の先端部におけるより先端側の位置に形成され、外管の先端部における空気等の気相を経由して測温接点に熱が伝わることに起因するためである。 In the conventional temperature sensor including the sheathed thermocouple of Patent Document 1, the position where the temperature measuring contact is arranged is not devised when forming a non-grounded thermocouple type temperature sensor. In a non-grounded thermocouple type temperature sensor, since the temperature measuring contact is not in contact with the outer tube, it takes time until the temperature of the temperature measuring contact reaches the temperature of the measurement target gas. The reason for this is that the heat transfer path from the gas to be measured to the temperature measuring contact is formed at a position closer to the tip of the outer tube and is measured via a gas phase such as air at the tip of the outer tube. This is because heat is transferred to the hot junction.
 一方、発明者らの鋭意研究によって、測温接点の基端を絶縁材の先端面に極力近づけることによって、温度センサの応答性を著しく改善できることが分かった。この理由は、測定対象ガスから測温接点への熱の移動経路が、測温接点の基端側の位置に形成され、気相をできるだけ経由せず、一対の熱電対素線を経由して測温接点に熱が伝わることに起因するためであることが分かった。 On the other hand, the inventors' diligent research has revealed that the responsiveness of the temperature sensor can be remarkably improved by bringing the proximal end of the temperature measuring contact as close as possible to the distal end surface of the insulating material. The reason for this is that the heat transfer path from the gas to be measured to the temperature measuring contact is formed at the position on the proximal end side of the temperature measuring contact, and does not pass through the gas phase as much as possible, but through a pair of thermocouple wires. It was found that this was because heat was transferred to the temperature measuring junction.
 従って、非接地型である熱電対式の温度センサの応答性を改善するためには、測温接点の基端と絶縁材の先端面との最短距離を適切に設定することが重要であることが分かった。 Therefore, in order to improve the responsiveness of a non-grounded thermocouple temperature sensor, it is important to properly set the shortest distance between the base end of the temperature measuring contact and the front end surface of the insulating material. I understood.
 本開示は、非接地型である熱電対式の温度センサの応答性を改善することができる温度センサを提供しようとして得られたものである。 This disclosure has been obtained in an attempt to provide a temperature sensor that can improve the responsiveness of a thermocouple type temperature sensor that is an ungrounded type.
 本開示の一態様は、互いに異なる金属材料から構成された一対の熱電対素線と、
 一対の前記熱電対素線の先端同士が合わさった測温接点と、
 金属材料から構成され、前記測温接点を先端部内又は前記先端部に装着された先端カバー内に収容する外管と、
 絶縁材料から構成され、前記外管内に配置されるとともに、一対の前記熱電対素線と前記外管とを絶縁して、一対の前記熱電対素線を前記外管に固定する絶縁材と、を備え、
 前記測温接点は、前記外管の前記先端部内又は前記先端カバー内の気相中に配置されており、
 前記外管の中心軸線に沿った軸方向において、前記測温接点の基端から前記絶縁材の先端面までの最短距離は、0~0.7mmの範囲内にある、温度センサにある。
One aspect of the present disclosure includes a pair of thermocouple wires made of different metal materials;
A temperature measuring junction in which the tips of the pair of thermocouple wires are combined;
An outer tube made of a metal material and containing the temperature measuring contact in the tip or in the tip cover attached to the tip,
An insulating material that is made of an insulating material, is disposed in the outer tube, insulates the pair of thermocouple wires from the outer tube, and fixes the pair of thermocouple wires to the outer tube; With
The temperature measuring contact is disposed in the gas phase in the tip of the outer tube or in the tip cover,
In the axial direction along the central axis of the outer tube, the shortest distance from the base end of the temperature measuring contact point to the front end surface of the insulating material is in the temperature sensor in the range of 0 to 0.7 mm.
 前記一態様の熱電対式の温度センサは、測温接点が、絶縁材の外部であって外管の先端部内又は先端カバー内の気相中に配置された非接地型のものである。そして、非接地型である熱電対式の温度センサにおいて、測温接点の基端から絶縁材の先端面までの軸方向における最短距離を、0~0.7mmの範囲内に設定している。これにより、測温接点を、絶縁材の外部であって絶縁材に極力近い位置に配置することができる。 The thermocouple type temperature sensor of the one aspect is a non-grounding type in which the temperature measuring contact is disposed outside the insulating material and in the gas phase in the distal end portion of the outer tube or the distal end cover. In the non-grounded thermocouple type temperature sensor, the shortest distance in the axial direction from the proximal end of the temperature measuring contact to the distal end surface of the insulating material is set within a range of 0 to 0.7 mm. As a result, the temperature measuring contact can be arranged outside the insulating material and at a position as close as possible to the insulating material.
 そのため、測定対象ガスから測温接点への熱の移動経路を、測温接点の基端側の位置に形成することができる。そして、測定対象ガスから測温接点への熱の伝達は、外管及び一対の熱電対素線を経由して行うことができ、気相をほとんど経由せずに行うことができる。この結果、非接地型である熱電対式の温度センサの応答性を改善することができる。 Therefore, a heat transfer path from the measurement target gas to the temperature measuring contact can be formed at the position on the base end side of the temperature measuring contact. Then, heat can be transferred from the measurement target gas to the temperature measuring contact through the outer tube and the pair of thermocouple wires, and can be performed with little through the gas phase. As a result, the responsiveness of the non-grounded thermocouple type temperature sensor can be improved.
 最短距離が0.7mmを超える場合には、測温接点が絶縁材から離れ、温度センサの応答性を改善することが難しくなる。 When the shortest distance exceeds 0.7 mm, the temperature measuring contact is separated from the insulating material, and it becomes difficult to improve the responsiveness of the temperature sensor.
 それ故、前記一態様の温度センサによれば、非接地型である熱電対式の温度センサの応答性を改善することができる。 Therefore, according to the temperature sensor of the one aspect, it is possible to improve the responsiveness of the thermocouple type temperature sensor which is a non-grounded type.
 なお、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。 In addition, although the code | symbol of the parenthesis of each component shown in 1 aspect of this indication shows the correspondence with the code | symbol in the figure in embodiment, each component is not limited only to the content of embodiment.
 本開示についての目的、特徴、利点等は、添付の図面を参照する後記の詳細な記述によって、より明確になる。本開示の図面を以下に示す。
図1は、実施形態にかかる、温度センサの主要部を示す断面図である。 図2は、実施形態にかかる、温度センサを示す断面図である。 図3は、実施形態にかかる、測温接点の周辺を示す断面図である。 図4は、実施形態にかかる、図1のIV-IV断面図である。 図5は、実施形態にかかる、他の温度センサの主要部を示す断面図である。 図6は、実施形態にかかる、他の外管の基端部の周辺を示す断面図である。 図7は、実施形態にかかる、他の外管の基端部の周辺を示す断面図である。 図8は、実施形態にかかる、他の測温接点の周辺を示す断面図である。 図9は、実施形態にかかる、測温接点の形成過程を示す断面図である。 図10は、実施形態にかかる、他の測温接点の形成過程を示す断面図である。 図11は、実施形態にかかる、ガラス封止材用のタブレットを示す斜視図である。 図12は、実施形態にかかる、温度センサを構成するシース熱電対の製造方法を示すフローチャートである。 図13は、実施形態にかかる、シース熱電対の製造過程であって、準備したシースピンを示す説明図である。 図14は、実施形態にかかる、シース熱電対の製造過程であって、シースピンの基端部における絶縁材を掻き出した状態を示す説明図である。 図15は、実施形態にかかる、シース熱電対の製造過程であって、一対の熱電対素線の先端部に測温接点を形成した状態を示す説明図である。 図16は、実施形態にかかる、シース熱電対の製造過程であって、外管の先端部に先端カバーを装着し、外管の基端部にタブレットを配置した状態を示す説明図である。 図17は、実施形態にかかる、他の熱電対の製造過程であって、外管内に一対の熱電対素線を挿通した状態を示す説明図である。 図18は、実施形態にかかる、他の熱電対の製造過程であって、外管の基端部内にガラス封止材を充填した状態を示す説明図である。 図19は、実施形態にかかる、他の熱電対の製造過程であって、外管内に絶縁材を充填した状態を示す説明図である。 図20は、実施形態にかかる、他の熱電対の製造過程であって、一対の熱電対素線の先端部に測温接点を形成した状態を示す説明図である。 図21は、比較形態にかかる、温度センサの主要部を示す断面図である。 図22は、確認試験にかかる、最短距離と63%応答時間との関係を示すグラフである。
The objectives, features, advantages, and the like of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawings of the present disclosure are shown below.
FIG. 1 is a cross-sectional view illustrating a main part of a temperature sensor according to an embodiment. FIG. 2 is a cross-sectional view illustrating a temperature sensor according to the embodiment. FIG. 3 is a cross-sectional view showing the periphery of the temperature measuring contact according to the embodiment. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1 according to the embodiment. FIG. 5 is a cross-sectional view illustrating a main part of another temperature sensor according to the embodiment. FIG. 6 is a cross-sectional view showing the periphery of the base end portion of another outer tube according to the embodiment. FIG. 7 is a cross-sectional view showing the periphery of the base end portion of another outer tube according to the embodiment. FIG. 8 is a cross-sectional view showing the periphery of another temperature measuring contact according to the embodiment. FIG. 9 is a cross-sectional view showing a process of forming a temperature measuring contact according to the embodiment. FIG. 10 is a cross-sectional view showing a process of forming another temperature measuring contact according to the embodiment. FIG. 11 is a perspective view showing a tablet for glass sealing material according to the embodiment. FIG. 12 is a flowchart illustrating a manufacturing method of the sheath thermocouple constituting the temperature sensor according to the embodiment. FIG. 13 is an explanatory diagram showing a prepared sheath pin in the manufacturing process of the sheath thermocouple according to the embodiment. FIG. 14 is an explanatory diagram illustrating a state in which the insulating material at the base end portion of the sheath pin is scraped out in the manufacturing process of the sheath thermocouple according to the embodiment. FIG. 15 is an explanatory diagram showing a state in which a temperature measuring contact is formed at the distal ends of a pair of thermocouple wires in the manufacturing process of the sheath thermocouple according to the embodiment. FIG. 16 is an explanatory diagram showing a manufacturing process of the sheath thermocouple according to the embodiment, in which a distal end cover is attached to the distal end portion of the outer tube and a tablet is disposed at the proximal end portion of the outer tube. FIG. 17 is an explanatory diagram illustrating another thermocouple manufacturing process according to the embodiment, in which a pair of thermocouple wires are inserted into the outer tube. FIG. 18 is an explanatory diagram showing a state in which a glass sealing material is filled in the proximal end portion of the outer tube in the manufacturing process of another thermocouple according to the embodiment. FIG. 19 is an explanatory diagram showing a state in which an outer tube is filled with an insulating material in another thermocouple manufacturing process according to the embodiment. FIG. 20 is an explanatory diagram illustrating another thermocouple manufacturing process according to the embodiment in a state in which a temperature measuring contact is formed at the distal ends of a pair of thermocouple wires. FIG. 21 is a cross-sectional view showing the main part of the temperature sensor according to the comparative embodiment. FIG. 22 is a graph showing the relationship between the shortest distance and the 63% response time for the confirmation test.
 前述した温度センサにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態>
 本形態の温度センサ1は、図1及び図2に示すように、一対の熱電対素線2、測温接点3、外管4、先端カバー42、絶縁材5及びガラス封止材6を備える。一対の熱電対素線2のそれぞれは、互いに異なる金属材料から構成されている。測温接点3は、一対の熱電対素線2の先端同士が接合されたものである。外管4は、金属材料から構成されており、測温接点3を先端部401に装着された先端カバー42内に収容している。先端カバー42は、外管4の先端外周部に装着されており、外管4の先端側X1を閉塞している。
A preferred embodiment of the above-described temperature sensor will be described with reference to the drawings.
<Embodiment>
As shown in FIGS. 1 and 2, the temperature sensor 1 of this embodiment includes a pair of thermocouple wires 2, a temperature measuring contact 3, an outer tube 4, a tip cover 42, an insulating material 5, and a glass sealing material 6. . Each of the pair of thermocouple wires 2 is composed of different metal materials. The temperature measuring contact 3 is formed by joining the tips of a pair of thermocouple wires 2. The outer tube 4 is made of a metal material, and the temperature measuring contact 3 is accommodated in a tip cover 42 attached to the tip portion 401. The tip cover 42 is attached to the outer periphery of the tip of the outer tube 4 and closes the tip side X1 of the outer tube 4.
 絶縁材5は、絶縁材料から構成されており、外管4内に配置されるとともに、一対の熱電対素線2と外管4とを絶縁して、一対の熱電対素線2を外管4に固定している。図3に示すように、測温接点3は、外管4の先端部401における先端カバー42内の気相K中に配置されている。外管4の中心軸線に沿った軸方向Xにおいて、測温接点3の基端301から絶縁材5の先端面501までの最短距離Lは、0~0.7mmの範囲内にある。 The insulating material 5 is made of an insulating material and is disposed in the outer tube 4, and insulates the pair of thermocouple wires 2 from the outer tube 4, thereby connecting the pair of thermocouple wires 2 to the outer tube. 4 is fixed. As shown in FIG. 3, the temperature measuring contact 3 is disposed in the gas phase K in the tip cover 42 at the tip 401 of the outer tube 4. In the axial direction X along the central axis of the outer tube 4, the shortest distance L from the base end 301 of the temperature measuring contact 3 to the front end surface 501 of the insulating material 5 is in the range of 0 to 0.7 mm.
 図1及び図2に示すように、本形態の温度センサ1において、先端側X1とは、外管4の中心軸線に沿った軸方向Xにおいて、外管4に対して測温接点3が設けられた側のことをいう。基端側X2とは、軸方向Xにおける先端側X1とは反対側のことをいう。 As shown in FIGS. 1 and 2, in the temperature sensor 1 of the present embodiment, the tip end side X <b> 1 is provided with a temperature measuring contact 3 with respect to the outer tube 4 in the axial direction X along the central axis of the outer tube 4. It means the side that was given. The base end side X2 refers to a side opposite to the front end side X1 in the axial direction X.
 以下に、本形態の温度センサ1について詳説する。
(温度センサ1)
 図2に示すように、温度センサ1は、車載用のものであり、自動車における内燃機関(エンジン)の吸気管内又は排気管内を流れる流体の温度を測定するために使用される。本形態の温度センサ1は、排気管15に配置され、排気管15内を流れる、測定環境下の測定対象ガスGとしての排ガスの温度を測定するために用いられる。排ガスの温度は、制御装置(電子制御ユニット)8によって内燃機関の燃焼制御を行う際に利用される。また、排ガスの温度は、例えば、排気管に配置された排気浄化触媒の温度を検知するために利用することができる。また、温度センサ1は、例えば、排気管内の排ガスを吸気管へ再循環させる排気再循環経路の吸気管に配置することもできる。
Hereinafter, the temperature sensor 1 of this embodiment will be described in detail.
(Temperature sensor 1)
As shown in FIG. 2, the temperature sensor 1 is a vehicle-mounted one, and is used to measure the temperature of fluid flowing in an intake pipe or an exhaust pipe of an internal combustion engine (engine) in an automobile. The temperature sensor 1 of the present embodiment is disposed in the exhaust pipe 15 and is used to measure the temperature of exhaust gas as the measurement target gas G in the measurement environment that flows through the exhaust pipe 15. The temperature of the exhaust gas is used when the control device (electronic control unit) 8 performs combustion control of the internal combustion engine. Moreover, the temperature of exhaust gas can be utilized, for example, in order to detect the temperature of the exhaust purification catalyst arranged in the exhaust pipe. Moreover, the temperature sensor 1 can also be arrange | positioned at the intake pipe of the exhaust gas recirculation path | route which recirculates the exhaust gas in an exhaust pipe to an intake pipe, for example.
 図13に示すように、本形態の一対の熱電対素線2、外管4及び絶縁材5は、シースピン12として一体的に成形されたものを利用したものである。温度センサ1の主要部は、一対の熱電対素線2、測温接点3、外管4、絶縁材5及びガラス封止材6によってシース熱電対11として形成される。図4には、シース熱電対11及びシースピン12の軸方向Xに直交する断面を示す。 As shown in FIG. 13, the pair of thermocouple wires 2, the outer tube 4, and the insulating material 5 of the present embodiment are those integrally formed as a sheath pin 12. The main part of the temperature sensor 1 is formed as a sheath thermocouple 11 by a pair of thermocouple wires 2, a temperature measuring contact 3, an outer tube 4, an insulating material 5 and a glass sealing material 6. FIG. 4 shows a cross section orthogonal to the axial direction X of the sheath thermocouple 11 and the sheath pin 12.
 図2に示すように、温度センサ1は、シース熱電対11を内周側に保持する第1ハウジング71及び第2ハウジング72と、第2ハウジング72に取り付けられた基端側カバー73と、基端側カバー73内に保持されたブッシュ74とを更に備える。第1ハウジング71は、外管4の外周に装着されており、第2ハウジング72は、第1ハウジング71の外周に装着されている。第2ハウジング72は、排気管15に設けられた取付孔に取り付けられる。また、ブッシュ74は、一対の熱電対素線2に接続された端子金具75を保持する。 As shown in FIG. 2, the temperature sensor 1 includes a first housing 71 and a second housing 72 that hold the sheath thermocouple 11 on the inner peripheral side, a proximal end cover 73 attached to the second housing 72, and a base And a bush 74 held in the end cover 73. The first housing 71 is attached to the outer periphery of the outer tube 4, and the second housing 72 is attached to the outer periphery of the first housing 71. The second housing 72 is attached to an attachment hole provided in the exhaust pipe 15. The bush 74 holds the terminal fitting 75 connected to the pair of thermocouple wires 2.
(外管4)
 外管4は、シース管又は金属シースとも呼ばれ、ステンレス(SUS、NCA)、Ni基耐熱合金(NCF)等の金属材料によって構成されている。図13に示すように、外管4は、円筒形状を有するシースピン12の外管を利用したものである。外管4の先端部401は、金属材料によって閉塞されている。本形態の外管4の先端部401は、図1に示すように、円筒部41の先端部401の外周に装着された先端カバー42によって閉塞されている。外管4の先端部401は、図5に示すように、円筒部41の先端部401から連続して設けられた蓋部42Aによって閉塞されていてもよい。蓋部42Aは、外管4の円筒部41の先端に溶接された金属片によって構成することができる。
(Outer tube 4)
The outer tube 4 is also called a sheath tube or a metal sheath, and is made of a metal material such as stainless steel (SUS, NCA) or Ni-base heat-resistant alloy (NCF). As shown in FIG. 13, the outer tube 4 uses the outer tube of a sheath pin 12 having a cylindrical shape. The distal end portion 401 of the outer tube 4 is closed with a metal material. As shown in FIG. 1, the distal end portion 401 of the outer tube 4 of this embodiment is closed by a distal end cover 42 attached to the outer periphery of the distal end portion 401 of the cylindrical portion 41. As shown in FIG. 5, the distal end portion 401 of the outer tube 4 may be closed by a lid portion 42 </ b> A provided continuously from the distal end portion 401 of the cylindrical portion 41. The lid portion 42 </ b> A can be configured by a metal piece welded to the tip of the cylindrical portion 41 of the outer tube 4.
 図1に示すように、本形態の外管4は、円筒形状を有する円筒部41と、円筒部41の先端外周部に装着された先端カバー42とを有する。先端カバー42は、円筒部41の先端外周部に溶接によって接合されている。先端カバー42は、円筒部41の先端外周部に装着されたカバー基端部421と、カバー基端部421よりも先端側X1に位置して、カバー基端部421の内径よりも小さな内径を有するカバー先端部422とを有する。カバー先端部422の先端位置には、曲面状の底部が形成されている。先端カバー42のカバー先端部422の軸方向Xの長さは、適宜変更することができる。 As shown in FIG. 1, the outer tube 4 of the present embodiment includes a cylindrical portion 41 having a cylindrical shape, and a tip cover 42 attached to the outer periphery of the tip of the cylindrical portion 41. The tip cover 42 is joined to the tip outer periphery of the cylindrical portion 41 by welding. The front cover 42 has a cover base end 421 mounted on the outer periphery of the front end of the cylindrical portion 41 and an inner diameter smaller than the inner diameter of the cover base end 421 located on the front end side X1 from the cover base end 421. And a cover tip portion 422 having the same. A curved bottom is formed at the tip of the cover tip 422. The length of the cover front end portion 422 of the front end cover 42 in the axial direction X can be changed as appropriate.
 図6に示すように、外管4の基端部402には、ガラス封止材6用のタブレット60を配置するためのホルダ43を装着することができる。ホルダ43は、漏斗形状を有し、外管4の外径よりも大きな内径の上方開口部431を有している。ホルダ43は、タブレット60が溶融したガラス材料を、外管4の基端部402内へ充填するために用いられる。ホルダ43は、外管4の基端部402の外周に圧入させることができ、外管4の基端部402の外周にかしめ固定又は溶接することもできる。 As shown in FIG. 6, a holder 43 for placing the tablet 60 for the glass sealing material 6 can be attached to the base end portion 402 of the outer tube 4. The holder 43 has a funnel shape and has an upper opening 431 having an inner diameter larger than the outer diameter of the outer tube 4. The holder 43 is used to fill the glass material melted by the tablet 60 into the proximal end portion 402 of the outer tube 4. The holder 43 can be press-fitted into the outer periphery of the base end portion 402 of the outer tube 4, and can be caulked and fixed or welded to the outer periphery of the base end portion 402 of the outer tube 4.
 ホルダ43内に配置するタブレット60のサイズは、外管4の基端部402内に配置する場合よりも大きくすることができる。そして、ホルダ43内に配置されたタブレット60がガラス材料として溶融したときには、このガラス材料は、ホルダ43内から外管4の基端部402内へ流れ込むことができる。これにより、多くのガラス材料を溶融させることができ、外管4の基端部402内へ十分なガラス材料を供給することができる。そのため、ガラス封止材6によって外管4内を、より効果的に封止することができる。 The size of the tablet 60 arranged in the holder 43 can be made larger than the case where it is arranged in the proximal end portion 402 of the outer tube 4. And when the tablet 60 arrange | positioned in the holder 43 fuse | melts as a glass material, this glass material can flow in into the base end part 402 of the outer tube | pipe 4 from the holder 43. FIG. Thereby, a lot of glass material can be melted, and sufficient glass material can be supplied into the base end portion 402 of the outer tube 4. Therefore, the inside of the outer tube 4 can be more effectively sealed by the glass sealing material 6.
 また、図7に示すように、ホルダ43を用いる場合には、ガラス封止材6はホルダ43内に充填して、外管4の基端部402を封止することもできる。この場合、ホルダ43の内径は外管4の内径より大きく設定することができる。そして、ホルダ43内にガラス封止材6を充填することによって、より高いコンプレッション効果を得ることが可能となり、外管4内の高気密性を確保することができる。また、この場合には、シースピン12の基端部(シース管4の基端部402)から絶縁材5を掻き出す手間を省くことも可能である。ガラス封止材6はホルダ43の最大径部まで充填することがより好ましい。この場合、さらに高いコンプレッション効果を得ることが可能となり、外管4の高気密性をより効果的に確保することができる。 As shown in FIG. 7, when the holder 43 is used, the glass sealing material 6 can be filled in the holder 43 to seal the base end portion 402 of the outer tube 4. In this case, the inner diameter of the holder 43 can be set larger than the inner diameter of the outer tube 4. And by filling the glass sealing material 6 in the holder 43, it becomes possible to obtain a higher compression effect and to ensure high airtightness in the outer tube 4. In this case, it is also possible to save the trouble of scraping the insulating material 5 from the base end portion of the sheath pin 12 (base end portion 402 of the sheath tube 4). The glass sealing material 6 is more preferably filled up to the maximum diameter portion of the holder 43. In this case, a higher compression effect can be obtained, and the high airtightness of the outer tube 4 can be more effectively ensured.
 本形態の外管4の内径は、φ1.5~10.0mmの範囲内にある。外管4の内径がφ1.5mmよりも小さくなると、外管4の基端部402からガラス封止材6へのコンプレッション効果が得られにくくなるおそれがある。コンプレッション効果とは、加熱された外管4及びガラス封止材6が冷却されるときに、ガラス転移点を応力がゼロである点とし、外管4の線膨張係数がガラス封止材6の線膨張係数よりも大きいことによって、ガラス転移点以下の温度環境において外管4からガラス封止材6へ圧縮応力を作用させ、ガラス封止材6による封止性能(シール性能)が高まる効果のことをいう。外管4の内径がφ10.0mmよりも大きい場合には、シース熱電対11が大型化し、温度センサ1の応答性、搭載性等に悪影響を及ぼすおそれがある。 The inner diameter of the outer tube 4 in this embodiment is in the range of φ1.5 to 10.0 mm. If the inner diameter of the outer tube 4 is smaller than φ1.5 mm, it may be difficult to obtain a compression effect from the base end portion 402 of the outer tube 4 to the glass sealing material 6. The compression effect means that when the heated outer tube 4 and the glass sealing material 6 are cooled, the stress is zero at the glass transition point, and the linear expansion coefficient of the outer tube 4 is that of the glass sealing material 6. By being larger than the linear expansion coefficient, compressive stress is applied from the outer tube 4 to the glass sealing material 6 in a temperature environment below the glass transition point, and the sealing performance (sealing performance) by the glass sealing material 6 is increased. That means. When the inner diameter of the outer tube 4 is larger than φ10.0 mm, the sheath thermocouple 11 is increased in size, which may adversely affect the responsiveness, mountability, etc. of the temperature sensor 1.
 また、外管4の内径がφ1.5mmよりも小さくなると、外管4の強度が低くなって、例えば温度センサ1が搭載された車両による振動で温度センサ1が破損したり、また、熱電対素線2間の絶縁距離が小さくなって、熱電対素線2が絶縁破壊するおそれがある。ただし、これらの問題を改善できれば、外管4の内径は、φ1mm程度に細くすることも可能であると考える。 Further, when the inner diameter of the outer tube 4 is smaller than φ1.5 mm, the strength of the outer tube 4 is lowered, for example, the temperature sensor 1 is damaged due to vibration caused by the vehicle on which the temperature sensor 1 is mounted, or the thermocouple There is a possibility that the insulation distance between the strands 2 becomes small, and the thermocouple strands 2 break down. However, if these problems can be improved, it is considered that the inner diameter of the outer tube 4 can be reduced to about 1 mm.
(一対の熱電対素線2)
 一対の熱電対素線2は、いわゆるゼーベック効果を生じさせるために、互いに異なる金属材料によって構成されている。本形態の一対の熱電対素線2は、Nタイプの熱電対(シース熱電対11)を構成するものである。この構成により、温度センサ1による測温範囲を高くすることが容易である。本形態の温度センサ1は、1000℃以上の高温の測定対象ガスGの温度を測定可能である。熱電対素線2の+脚は、Ni(ニッケル)、Cr(クロム)、Si(シリコン)を主成分とする合金であるナイクロシルからなる。熱電対素線2の-脚は、Ni(ニッケル)、Si(シリコン)を主成分とする合金であるナイシルからなる。
(A pair of thermocouple wires 2)
The pair of thermocouple wires 2 are made of different metal materials in order to generate a so-called Seebeck effect. The pair of thermocouple strands 2 in this embodiment constitutes an N type thermocouple (sheath thermocouple 11). With this configuration, it is easy to increase the temperature measurement range by the temperature sensor 1. The temperature sensor 1 of this embodiment can measure the temperature of the high temperature measurement target gas G of 1000 ° C. or higher. The + leg of the thermocouple wire 2 is made of niclosil, which is an alloy mainly composed of Ni (nickel), Cr (chromium), and Si (silicon). The-leg of the thermocouple wire 2 is made of nycil which is an alloy mainly composed of Ni (nickel) and Si (silicon).
 なお、一対の熱電対素線2は、Nタイプ以外にも、種々のタイプの熱電対を構成するものとしてもよい。例えば、一対の熱電対素線2は、+脚がNi及びCrを主成分とするクロメルからなり、-脚がNi、Al、Siを主成分とするアルメルからなるKタイプの熱電対を構成するものとしてもよい。 The pair of thermocouple wires 2 may constitute various types of thermocouples other than the N type. For example, the pair of thermocouple wires 2 constitutes a K-type thermocouple whose + leg is made of chromel whose main component is Ni and Cr, and whose − leg is made of alumel whose main component is Ni, Al, or Si. It may be a thing.
 一対の熱電対素線2の直径は、φ0.01~2.0mmの範囲内にある。本形態の一対の熱電対素線2の直径は、互いに等しい。+脚の熱電対素線2の直径と-脚の熱電対素線2の直径とは互いに異なっていてもよい。熱電対素線2の直径は、製造上及び強度上の観点からφ0.01mm未満にすることは難しい。また、熱電対素線2の直径がφ2.0mm超過になると、シース熱電対11が大型化し、温度センサ1の応答性、搭載性等に悪影響を与えるおそれがある。 The diameter of the pair of thermocouple wires 2 is in the range of φ0.01 to 2.0 mm. The diameters of the pair of thermocouple wires 2 in this embodiment are equal to each other. The diameter of the + leg thermocouple element 2 and the diameter of the − leg thermocouple element 2 may be different from each other. It is difficult to make the diameter of the thermocouple wire 2 less than φ0.01 mm from the viewpoint of manufacturing and strength. Moreover, when the diameter of the thermocouple wire 2 exceeds φ2.0 mm, the sheath thermocouple 11 becomes large, which may adversely affect the responsiveness, mountability, and the like of the temperature sensor 1.
 なお、一例として、本形態の熱電対素線2の直径は、φ0.37mmである。そして、測温接点3の基端301から絶縁材5の先端面501までの軸方向Xの最短距離Lは、一対の熱電対素線2の平均直径の2倍以下としての0.7mm以下に設定されている。 As an example, the diameter of the thermocouple wire 2 of this embodiment is φ0.37 mm. The shortest distance L in the axial direction X from the proximal end 301 of the temperature measuring contact 3 to the distal end surface 501 of the insulating material 5 is 0.7 mm or less, which is not more than twice the average diameter of the pair of thermocouple wires 2. Is set.
 図2に示すように、一対の熱電対素線2は、外管4内において互いに平行な状態で挿通されている。一対の熱電対素線2は、外管4の基端部402から突出し、外管4から基端側X2に引き出されている。一対の熱電対素線2は、温度センサ1に設けられた端子金具75及びリード線76を介して、外部の制御装置8に接続される。制御装置8は、エンジン制御装置(ECU)に接続されたセンサ制御装置(SCU)とすることができる。また、制御装置8は、エンジン制御装置に構築することもできる。 As shown in FIG. 2, the pair of thermocouple wires 2 are inserted in the outer tube 4 in a state parallel to each other. The pair of thermocouple wires 2 protrudes from the base end portion 402 of the outer tube 4 and is drawn from the outer tube 4 to the base end side X2. The pair of thermocouple wires 2 is connected to an external control device 8 via a terminal fitting 75 and a lead wire 76 provided in the temperature sensor 1. The control device 8 can be a sensor control device (SCU) connected to an engine control device (ECU). The control device 8 can also be constructed in an engine control device.
(測温接点3)
 測温接点3は、熱接点とも呼ばれ、一対の熱電対素線2の+脚を構成する金属材料と、-脚を構成する金属材料とが融合して玉状に形成されたものである。測温接点3及び測温接点3の周辺に位置する先端カバー42等によって、温度センサ1の測温先端部10が形成される。温度センサ1の一対の熱電対素線2が端子金具75、リード線76等を介して制御装置8内のアンプに接続されることにより、温度を測定するための回路が形成される。一対の熱電対素線2における、測温接点3とは反対側に位置する基準接点は、制御装置8内に形成されている。測温接点3と基準接点との温度差が、一対の熱電対素線2に起電力を生じさせる。
(Temperature contact 3)
The temperature measuring contact 3 is also called a heat contact and is formed into a ball shape by fusing the metal material constituting the + leg of the pair of thermocouple wires 2 and the metal material constituting the − leg. . The temperature measuring tip 10 of the temperature sensor 1 is formed by the temperature measuring contact 3 and the tip cover 42 positioned around the temperature measuring contact 3. A pair of thermocouple wires 2 of the temperature sensor 1 is connected to an amplifier in the control device 8 via a terminal fitting 75, a lead wire 76, etc., thereby forming a circuit for measuring temperature. A reference contact located on the opposite side to the temperature measuring contact 3 in the pair of thermocouple wires 2 is formed in the control device 8. A temperature difference between the temperature measuring contact 3 and the reference contact generates an electromotive force in the pair of thermocouple wires 2.
 図1に示すように、本形態の測温接点3は、外管4の先端部401に装着された先端カバー42内の気相K中に配置されている。一対の熱電対素線2の先端部201及び測温接点3は、外管4の円筒部41の先端開口部411から先端側X1に突出した位置に配置されている。 As shown in FIG. 1, the temperature measuring contact 3 of this embodiment is arranged in the gas phase K in the tip cover 42 attached to the tip 401 of the outer tube 4. The distal end portion 201 and the temperature measuring contact 3 of the pair of thermocouple wires 2 are disposed at a position protruding from the distal end opening 411 of the cylindrical portion 41 of the outer tube 4 toward the distal end side X1.
 本形態の温度センサ1においては、一対の熱電対素線2が外管4の先端部401から突出する量を極力小さくし、測温接点3を絶縁材5の先端面501に極力近い位置に形成している。図8に示すように、測温接点3の基端301は、絶縁材5の先端面501に接触する位置に配置されていてもよい。この構成により、測温接点3を絶縁材5によって支えることができ、絶縁材5の先端面501から突出する測温接点3及び一対の熱電対素線2の先端部201の耐振性を高めることができる。 In the temperature sensor 1 of this embodiment, the amount by which the pair of thermocouple wires 2 protrude from the distal end portion 401 of the outer tube 4 is made as small as possible, and the temperature measuring contact 3 is positioned as close as possible to the distal end surface 501 of the insulating material 5. Forming. As shown in FIG. 8, the base end 301 of the temperature measuring contact 3 may be disposed at a position in contact with the front end surface 501 of the insulating material 5. With this configuration, the temperature measuring contact 3 can be supported by the insulating material 5, and the vibration resistance of the temperature measuring contact 3 protruding from the tip surface 501 of the insulating material 5 and the tip portion 201 of the pair of thermocouple wires 2 is improved. Can do.
 ここで、測温接点3は、一対の熱電対素線2の先端部201同士を融合させて形成するものであるため、測温接点3の基端301は、絶縁材5の先端面501に必ず接触しているとは言いにくい。「測温接点3の基端301が絶縁材5の先端面501に接触する位置」とは、測温接点3の基端301が絶縁材5の先端面501に接触している場合だけでなく、測温接点3の基端301が絶縁材5の先端面501に接触しているに等しい場合も含む。最短距離Lが0~0.2mmの範囲内にある場合は、測温接点3の基端301が絶縁材5の先端面501に接触する位置に含まれることとする。 Here, since the temperature measuring contact 3 is formed by fusing the tip portions 201 of the pair of thermocouple wires 2, the base end 301 of the temperature measuring contact 3 is connected to the tip surface 501 of the insulating material 5. It is hard to say that they are always in contact. The “position where the base end 301 of the temperature measuring contact 3 is in contact with the front end surface 501 of the insulating material 5” is not only the case where the base end 301 of the temperature measuring contact 3 is in contact with the front end surface 501 of the insulating material 5. In addition, the case where the base end 301 of the temperature measuring contact 3 is equal to being in contact with the front end surface 501 of the insulating material 5 is also included. When the shortest distance L is in the range of 0 to 0.2 mm, the base end 301 of the temperature measuring contact 3 is included in a position where it contacts the front end surface 501 of the insulating material 5.
 測温接点3は、できるだけ球形状に近い形状に形成することが好ましい。ただし、測温接点3を真球形状に形成することは難しい。また、測温接点3は、温度センサ1による温度の測定の応答性を高めるためには、できるだけ小さく形成することが好ましい。一方、測温接点3は、一対の熱電対素線2の先端部201同士の融合によって形成されるため、熱電対素線2の直径の2倍未満に形成することは難しい。 The temperature measuring contact 3 is preferably formed in a shape as close to a spherical shape as possible. However, it is difficult to form the temperature measuring contact 3 in a true spherical shape. Further, the temperature measuring contact 3 is preferably formed as small as possible in order to improve the responsiveness of temperature measurement by the temperature sensor 1. On the other hand, since the temperature measuring contact 3 is formed by fusion of the tip portions 201 of the pair of thermocouple wires 2, it is difficult to form the temperature measuring contact 3 less than twice the diameter of the thermocouple wires 2.
 本形態の測温接点3の最大径は、一対の熱電対素線2の平均直径の2倍以上3倍以下である。この構成により、測温接点3をできるだけ小さく形成して、温度センサ1の応答性を確保することができる。「測温接点3の最大径」とは、測温接点3を貫通する最も長い直線の長さのことをいう。測温接点3は、略球形状の他、扁平した球形状、潰れた球形状、長球形状、楕円体等の種々の形状を有していてもよい。本形態の測温接点3は、軸方向Xに直交する方向に若干長い楕円体形状を有する。そして、測温接点3の最大径は、軸方向Xに直交する方向の最大径として測定される。 The maximum diameter of the temperature measuring junction 3 of this embodiment is not less than 2 times and not more than 3 times the average diameter of the pair of thermocouple wires 2. With this configuration, the temperature measuring contact 3 can be formed as small as possible to ensure the responsiveness of the temperature sensor 1. The “maximum diameter of the temperature measuring contact 3” refers to the length of the longest straight line passing through the temperature measuring contact 3. The temperature measuring contact 3 may have various shapes such as a flat spherical shape, a crushed spherical shape, a long spherical shape, and an ellipsoid in addition to a substantially spherical shape. The temperature measuring contact 3 of this embodiment has an ellipsoid shape that is slightly longer in the direction orthogonal to the axial direction X. The maximum diameter of the temperature measuring contact 3 is measured as the maximum diameter in the direction orthogonal to the axial direction X.
 本形態の一対の熱電対素線2の直径は、互いに等しい。そして、一対の熱電対素線2の平均直径は、いずれかの熱電対素線2の直径となる。一方、一対の熱電対素線2の直径が互いに異なっている場合には、一対の熱電対素線2の平均直径は、+脚の熱電対素線2の直径と-脚の熱電対素線2の直径との平均値とする。 The diameters of the pair of thermocouple wires 2 in this embodiment are equal to each other. The average diameter of the pair of thermocouple wires 2 is the diameter of one of the thermocouple wires 2. On the other hand, when the diameters of the pair of thermocouple strands 2 are different from each other, the average diameter of the pair of thermocouple strands 2 is the diameter of the + legged thermocouple strand 2 and the −legged thermocouple strand. The average value with the diameter of 2.
 測温接点3の最大径が一対の熱電対素線2の平均直径の3倍を超える場合には、測温接点3が大きく、その熱容量が影響して温度センサ1の応答性が悪化するおそれがある。 When the maximum diameter of the temperature measuring contact 3 exceeds three times the average diameter of the pair of thermocouple wires 2, the temperature measuring contact 3 is large, and the heat capacity may affect the response of the temperature sensor 1 to deteriorate. There is.
 測温接点3を形成する際には、絶縁材5の先端面501から突出する一対の熱電対素線2の先端部201を、互いに接近させるよう変形させることができる。例えば、図9に示すように、絶縁材5の先端面501から突出する一対の熱電対素線2の先端部201には、軸方向Xに平行な状態から、互いに接近して軸方向Xに直交する状態に屈曲する屈曲部位23を形成することができる。屈曲部位23同士は、互いに重なりあっていてもよい。そして、レーザー等によって屈曲部位23同士を溶融させて、測温接点3を形成することができる。 When forming the temperature measuring contact 3, the tip portions 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5 can be deformed so as to approach each other. For example, as shown in FIG. 9, the tip portions 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5 approach each other in the axial direction X from a state parallel to the axial direction X. A bent portion 23 that bends in an orthogonal state can be formed. The bent portions 23 may overlap each other. Then, the temperature measuring contact 3 can be formed by melting the bent portions 23 with a laser or the like.
 また、例えば、図10に示すように、絶縁材5の先端面501から突出する一対の熱電対素線2の先端部201には、互いに接近するよう傾斜する傾斜部位24と、傾斜部位24の先端側X1において互いに対面する対面部位25とを形成することができる。そして、レーザー等によって対面部位25同士を溶融させて、測温接点3を形成することができる。 Further, for example, as shown in FIG. 10, the tip portion 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5 includes an inclined portion 24 inclined to approach each other, and an inclined portion 24 of the inclined portion 24. A facing portion 25 that faces each other on the distal end side X1 can be formed. Then, the facing portions 25 can be melted with a laser or the like to form the temperature measuring contact 3.
(絶縁材5)
 絶縁材5は、酸化マグネシウム(MgO)、酸化アルミニウム(Al23)等の金属酸化物の粉末によって構成されている。外管4の内周と一対の熱電対素線2の外周との隙間には、絶縁材5の粉末が充填されている。絶縁材5の粉末同士の間には、空隙が形成されている。絶縁材5の粉末は、シースピン12の直径を小さくする成形が行われる際に圧縮されている。そして、絶縁材5の粉末によって、一対の熱電対素線2が外管4内に保持されている。
(Insulating material 5)
The insulating material 5 is composed of a metal oxide powder such as magnesium oxide (MgO) or aluminum oxide (Al 2 O 3 ). A gap between the inner periphery of the outer tube 4 and the outer periphery of the pair of thermocouple wires 2 is filled with powder of the insulating material 5. A gap is formed between the powders of the insulating material 5. The powder of the insulating material 5 is compressed when molding to reduce the diameter of the sheath pin 12 is performed. The pair of thermocouple wires 2 is held in the outer tube 4 by the powder of the insulating material 5.
 外管4及び絶縁材5は、シースピン12を利用して形成されている。そのため、シースピン12を切断加工したときの状況等により、絶縁材5の先端面501は、外管4の円筒部41の先端面と必ずしも同じ位置にあるとは限らない。図3に示すように、絶縁材5の先端面501は、円筒部41の先端開口部411から基端側X2へ若干窪んだ位置にあることも想定される。 The outer tube 4 and the insulating material 5 are formed using a sheath pin 12. Therefore, the distal end surface 501 of the insulating material 5 is not necessarily in the same position as the distal end surface of the cylindrical portion 41 of the outer tube 4 depending on the situation when the sheath pin 12 is cut. As shown in FIG. 3, it is also assumed that the distal end surface 501 of the insulating material 5 is slightly depressed from the distal end opening 411 of the cylindrical portion 41 toward the proximal end X2.
 本形態の絶縁材5の先端面501は、円筒部41の先端開口部411から基端側X2へ0~0.3mmの範囲内にある。図3において、絶縁材5の先端面501から円筒部41の先端開口部411までの距離を符号Mによって示す。この構成により、測温接点3が外管4の内周側にできるだけ入り込まないようにし、測温接点3の形成を容易にすることができる。絶縁材5の先端面501は、その中心位置が最も基端側X2に位置していてもよい。測温接点3の基端301から絶縁材5の先端面501までの最短距離Lは、測温接点3の基端301から絶縁材5の先端面501の中心位置までの軸方向Xに沿った距離として求めることができる。 The distal end surface 501 of the insulating material 5 of this embodiment is in the range of 0 to 0.3 mm from the distal end opening 411 of the cylindrical portion 41 to the proximal end side X2. In FIG. 3, the distance from the front end surface 501 of the insulating material 5 to the front end opening 411 of the cylindrical portion 41 is indicated by a symbol M. With this configuration, the temperature measuring contact 3 is prevented from entering the inner peripheral side of the outer tube 4 as much as possible, and the temperature measuring contact 3 can be easily formed. The center surface of the distal end surface 501 of the insulating material 5 may be located on the most proximal side X2. The shortest distance L from the base end 301 of the temperature measuring contact 3 to the front end surface 501 of the insulating material 5 is along the axial direction X from the base end 301 of the temperature measuring contact 3 to the center position of the front end surface 501 of the insulating material 5. It can be calculated as a distance.
(ガラス封止材6)
 図1に示すように、外管4の基端部402内には、外管4内を封止して外部と遮断するためのガラス封止材6が充填されている。そして、外管4内の測温接点3、一対の熱電対素線2及び絶縁材5には、外部の測定対象ガスG等が接触しないようになっており、外管4内へ酸素、水分等が入らないようにしている。ガラス封止材6は、Bi(ビスマス)を含有するBi系ガラス、又はPb(鉛)を含有するPb系ガラスによって構成されている。Bi系ガラスは、Bi23(酸化ビスマス)を主成分とし、他の酸化物等を含有するものである。他の酸化物には、B23、SrO、ZnO、BaO等がある。Pb系ガラスは、PbO(酸化鉛)を主成分とし、他の酸化物等を含有するものである。他の酸化物には、B23、SrO、ZnO、SiO2等がある。
(Glass sealing material 6)
As shown in FIG. 1, a glass sealing material 6 for sealing the inside of the outer tube 4 and blocking it from the outside is filled in the base end portion 402 of the outer tube 4. The temperature measuring contact 3, the pair of thermocouple wires 2, and the insulating material 5 in the outer tube 4 are not in contact with an external measurement target gas G or the like. And so on. The glass sealing material 6 is made of Bi glass containing Bi (bismuth) or Pb glass containing Pb (lead). Bi-based glass is mainly composed of Bi 2 O 3 (bismuth oxide) and contains other oxides. Other oxides include B 2 O 3 , SrO, ZnO, BaO and the like. Pb-based glass contains PbO (lead oxide) as a main component and contains other oxides and the like. Other oxides include B 2 O 3 , SrO, ZnO, SiO 2 and the like.
 ガラス封止材6は、固形状に形成されたガラスのタブレット60を用い、このタブレット60を溶融させた後に固化させて形成されたものである。図11に示すように、タブレット60は、外管4の基端部402の内周又はホルダ43の内周に挿入できる大きさを有する。また、タブレット60は、一対の熱電対素線2を挿通させることができる2つの挿通穴601を有する。 The glass encapsulant 6 is formed by using a glass tablet 60 formed in a solid state, and melting and solidifying the tablet 60. As shown in FIG. 11, the tablet 60 has a size that can be inserted into the inner periphery of the base end portion 402 of the outer tube 4 or the inner periphery of the holder 43. The tablet 60 has two insertion holes 601 through which the pair of thermocouple wires 2 can be inserted.
 ガラス封止材6は、固形状に形成されたガラスのタブレット60を用い、このタブレット60が溶融した後に固化して形成されたものである。タブレット60は、外管4の基端部402の内周に挿入できる大きさであって、一対の熱電対素線2を挿通させることができる2つの挿通穴601を有するものである。 The glass sealing material 6 is formed by using a glass tablet 60 formed in a solid state and solidifying after the tablet 60 is melted. The tablet 60 has a size that can be inserted into the inner periphery of the proximal end portion 402 of the outer tube 4 and has two insertion holes 601 through which the pair of thermocouple wires 2 can be inserted.
(製造方法)
 次に、本形態の温度センサ1の主要部としてのシース熱電対11を製造する方法について、図12のフローチャートを参照して説明する。
 まず、外管4内に一対の熱電対素線2が絶縁材5によって保持されたシースピン12を準備する(図12のステップS1)。シースピン12においては、図13に示すように、一対の熱電対素線2が先端側X1及び基端側X2の両端から突出している。
(Production method)
Next, a method for manufacturing the sheath thermocouple 11 as the main part of the temperature sensor 1 of the present embodiment will be described with reference to the flowchart of FIG.
First, a sheath pin 12 is prepared in which a pair of thermocouple wires 2 are held by an insulating material 5 in the outer tube 4 (step S1 in FIG. 12). In the sheath pin 12, as shown in FIG. 13, a pair of thermocouple wires 2 protrude from both ends of the distal end side X1 and the proximal end side X2.
 次いで、図14に示すように、一対の熱電対素線2及び外管4が維持された状態で、シースピン12の基端部における絶縁材5を掻き出す(ステップS2)。このとき、絶縁材5は、ショットブラスト加工等を行って掻き出すことができる。また、外管4の基端部402には、絶縁材5が掻き出された後の空間403が形成される。次いで、図15に示すように、シースピン12の先端部から突出する、一対の熱電対素線2の先端部201同士を対面させるとともにレーザー等を用いて溶融させ、先端部201同士を接合して測温接点3を形成する(ステップS3)。 Next, as shown in FIG. 14, in a state where the pair of thermocouple wires 2 and the outer tube 4 are maintained, the insulating material 5 at the base end portion of the sheath pin 12 is scraped out (step S2). At this time, the insulating material 5 can be scraped off by performing shot blasting or the like. Further, a space 403 after the insulating material 5 is scraped out is formed in the base end portion 402 of the outer tube 4. Next, as shown in FIG. 15, the tip portions 201 of the pair of thermocouple wires 2 protruding from the tip portions of the sheath pin 12 are faced to each other and melted using a laser or the like, and the tip portions 201 are joined to each other. The temperature measuring contact 3 is formed (step S3).
 次いで、図16に示すように、シースピン12の外管4の先端部401に、先端カバー42を装着し、先端カバー42を、かしめ、溶接等を行って外管4の先端部401に固定する(ステップS4)。なお、ステップS2を行う前に、ステップS3及びS4を行ってもよい。 Next, as shown in FIG. 16, the tip cover 42 is attached to the tip 401 of the outer tube 4 of the sheath pin 12, and the tip cover 42 is caulked and welded to fix it to the tip 401 of the outer tube 4. (Step S4). Note that steps S3 and S4 may be performed before step S2.
 また、ステップS4においては、先端カバー42を外管4の先端部401に固定するときには、外管4と先端カバー42との間に空気層ができることがある。この空気層は、かしめを行う際になくすことが好ましく、空気層がないことにより、温度センサ1のより高い応答性を実現することができる。この理由は、測定対象ガスGの温度が外管4へ伝わる際に、熱伝導率の低い空気層があると、この空気層によって熱の移動が遮断されてしまうためである。 In step S4, when the tip cover 42 is fixed to the tip portion 401 of the outer tube 4, an air layer may be formed between the outer tube 4 and the tip cover 42. This air layer is preferably eliminated when caulking, and the absence of the air layer can realize higher responsiveness of the temperature sensor 1. This is because, when the temperature of the measurement target gas G is transmitted to the outer tube 4, if there is an air layer with low thermal conductivity, the heat transfer is blocked by the air layer.
 次いで、同図に示すように、外管4の基端部402の空間403内に、ガラス封止材6を形成するためのタブレット60を配置する(ステップS5)。このとき、外管4の基端部402から突出する一対の熱電対素線2の基端部202を、タブレット60の挿通穴601に挿通させる。次いで、外管4の基端部402及びタブレット60を加熱し、タブレット60を溶融させる(ステップS6)。 Next, as shown in the figure, the tablet 60 for forming the glass sealing material 6 is disposed in the space 403 of the base end portion 402 of the outer tube 4 (step S5). At this time, the base end portions 202 of the pair of thermocouple wires 2 protruding from the base end portion 402 of the outer tube 4 are inserted into the insertion holes 601 of the tablet 60. Next, the base end portion 402 of the outer tube 4 and the tablet 60 are heated to melt the tablet 60 (step S6).
 次いで、タブレット60等の加熱を終了した後には、溶融したタブレット60が冷やされて固化してガラス封止材6となる。そして、外管4の基端部402がガラス封止材6によって封止され、外管4内がガラス封止材6によって外部と遮断される。こうして、温度センサ1の主要部としてのシース熱電対11が製造される。 Next, after the heating of the tablet 60 or the like is completed, the melted tablet 60 is cooled and solidified to become the glass sealing material 6. And the base end part 402 of the outer tube | pipe 4 is sealed with the glass sealing material 6, and the inside of the outer tube | pipe 4 is interrupted | blocked by the glass sealing material 6 with the exterior. Thus, the sheath thermocouple 11 as the main part of the temperature sensor 1 is manufactured.
(他の製造方法)
 また、熱電対11は、次のようにシースピン12を用いずに製造することもできる。まず、図17に示すように、外管4の内周に一対の熱電対素線2を挿通する。次いで、図18に示すように、外管4の基端部402内にタブレット60を用いてガラス封止材6を充填する。次いで、図19に示すように、ガラス封止材6が下側に位置するように外管4の向きを変え、外管4内のガラス封止材6の上方に、絶縁材5を充填する。次いで、図20に示すように、一対の熱電対素線2の先端部201同士を融合させて、測温接点3を形成する。その後は、外管4の先端部401に先端カバー42を装着して、熱電対11を製造することができる。
(Other manufacturing methods)
Further, the thermocouple 11 can be manufactured without using the sheath pin 12 as follows. First, as shown in FIG. 17, a pair of thermocouple wires 2 are inserted into the inner periphery of the outer tube 4. Next, as shown in FIG. 18, the glass sealing material 6 is filled into the base end portion 402 of the outer tube 4 using the tablet 60. Next, as shown in FIG. 19, the direction of the outer tube 4 is changed so that the glass sealing material 6 is positioned on the lower side, and the insulating material 5 is filled above the glass sealing material 6 in the outer tube 4. . Next, as shown in FIG. 20, the tip portions 201 of the pair of thermocouple wires 2 are fused to form the temperature measuring contact 3. After that, the thermocouple 11 can be manufactured by attaching the tip cover 42 to the tip portion 401 of the outer tube 4.
(作用効果)
 本形態の熱電対式の温度センサ1は、測温接点3が、絶縁材5の外部であって外管4の先端部401における先端カバー42内の気相K中に配置された非接地型のものである。そして、非接地型である熱電対式の温度センサ1において、測温接点3の基端301から絶縁材5の先端面501までの軸方向Xにおける最短距離Lを、0~0.7mmの範囲内に設定している。これにより、測温接点3を、絶縁材5の外部であって絶縁材5に極力近い位置に配置することができる。
(Function and effect)
The thermocouple type temperature sensor 1 of this embodiment is a non-grounding type in which the temperature measuring contact 3 is disposed outside the insulating material 5 and in the gas phase K in the tip cover 42 at the tip 401 of the outer tube 4. belongs to. In the thermocouple type temperature sensor 1 which is a non-grounding type, the shortest distance L in the axial direction X from the proximal end 301 of the temperature measuring contact 3 to the distal end surface 501 of the insulating material 5 is in the range of 0 to 0.7 mm. Is set in. As a result, the temperature measuring contact 3 can be arranged outside the insulating material 5 and at a position as close as possible to the insulating material 5.
 そのため、図1に示すように、測定対象ガスGと測温接点3との間の熱の移動経路Hを、測温接点3の基端側X2の位置に形成することができる。そして、測定対象ガスGの温度が測温接点3の温度よりも高いときには、測定対象ガスGから測温接点3への熱の伝達は、外管4及び一対の熱電対素線2を経由して行うことができ、気相Kをほとんど経由せずに行うことができる。また、測温接点3の温度が測定対象ガスGの温度よりも高くなったときには、測温接点3の基端側X2の位置において、測温接点3から、一対の熱電対素線2及び外管4を経由して温度センサ1の外部へ熱を放出することができる。この結果、非接地型である熱電対式の温度センサ1の応答性を改善することができる。 Therefore, as shown in FIG. 1, a heat transfer path H between the measurement target gas G and the temperature measuring contact 3 can be formed at the position of the base end side X <b> 2 of the temperature measuring contact 3. When the temperature of the measurement target gas G is higher than the temperature of the temperature measuring contact 3, the heat transfer from the measurement target gas G to the temperature measurement contact 3 passes through the outer tube 4 and the pair of thermocouple wires 2. Can be carried out with little or no gas phase K. Further, when the temperature of the temperature measuring contact 3 becomes higher than the temperature of the measurement target gas G, the pair of thermocouple wires 2 and the outside are connected from the temperature measuring contact 3 at the position of the base end side X2 of the temperature measuring contact 3. Heat can be released to the outside of the temperature sensor 1 via the tube 4. As a result, the responsiveness of the thermocouple type temperature sensor 1 which is a non-grounding type can be improved.
 また、最短距離Lが0~0.7mmの範囲内にあること、言い換えれば、最短距離Lが一対の熱電対素線2の平均直径の2倍以下にあることにより、絶縁材5の先端面501から突出する一対の熱電対素線2の先端部201及び測温接点3の突出量を極力小さくすることができる。これにより、温度センサ1の使用時において、絶縁材5の先端面501から突出する一対の熱電対素線2の先端部201及び測温接点3の耐振性を向上させることができる。 Further, since the shortest distance L is in the range of 0 to 0.7 mm, in other words, the shortest distance L is not more than twice the average diameter of the pair of thermocouple wires 2, the tip surface of the insulating material 5 The protruding amount of the tip portion 201 of the pair of thermocouple wires 2 and the temperature measuring contact 3 protruding from 501 can be minimized. Thereby, at the time of use of the temperature sensor 1, the vibration resistance of the front-end | tip part 201 of the pair of thermocouple strand 2 which protrudes from the front end surface 501 of the insulating material 5, and the temperature measuring contact 3 can be improved.
 最短距離Lが0.7mmを超える場合には、測温接点3が絶縁材5から離れ、温度センサ1の応答性を改善することが難しくなる。また、絶縁材5の先端面501から突出する一対の熱電対素線2及び測温接点3が、振動しやすくなるおそれがある。 When the shortest distance L exceeds 0.7 mm, the temperature measuring contact 3 is separated from the insulating material 5 and it becomes difficult to improve the responsiveness of the temperature sensor 1. In addition, the pair of thermocouple wires 2 and the temperature measuring contact 3 protruding from the distal end surface 501 of the insulating material 5 may easily vibrate.
 非接地型である熱電対式の温度センサ1においては、測温接点3が先端カバー42にフィラー等によって接地されていない(接触していない)。これにより、絶縁材5の先端面501から突出する一対の熱電対素線2の先端部201等に、先端カバー42、フィラー、測温接点3等の相互の線膨張係数が異なることに起因する熱ストレスがほとんど作用しない。 In the thermocouple type temperature sensor 1 which is a non-grounding type, the temperature measuring contact 3 is not grounded (not in contact) to the tip cover 42 by a filler or the like. As a result, the linear expansion coefficients of the tip cover 42, the filler, the temperature measuring contact 3, etc. are different from each other at the tip 201 of the pair of thermocouple wires 2 protruding from the tip surface 501 of the insulating material 5. Heat stress hardly acts.
 しかし、非接地型である熱電対式の温度センサ1においては、測温接点3が周辺に接触せず、先端カバー42内の気相K中に浮かんでいることにより、一般的に温度センサ1の応答性は優れない。本形態の温度センサ1は、非接地型の温度センサ1の、熱ストレスが少ないメリットを生かしつつ、応答性に優れないデメリットを改善したものである。 However, in the thermocouple type temperature sensor 1 which is a non-grounding type, the temperature measuring contact 3 does not come into contact with the surroundings but floats in the gas phase K in the tip cover 42. The responsiveness is not excellent. The temperature sensor 1 of the present embodiment improves the demerit that is not excellent in responsiveness while taking advantage of the low thermal stress of the non-grounding type temperature sensor 1.
 すなわち、本形態においては、熱ストレスの発生を抑制しつつ、応答性が改善された温度センサ1を提供する。このために、測温接点3の基端301から絶縁材5の先端面501までの最短距離Lを0~0.7mmの範囲内に設定している。そして、測定対象ガスGと測温接点3との間の熱の移動経路Hを、一対の熱電対素線2の先端部201を経由するように形成することにより、温度センサ1の応答性が改善される。 That is, in this embodiment, a temperature sensor 1 with improved responsiveness while suppressing the occurrence of thermal stress is provided. For this purpose, the shortest distance L from the proximal end 301 of the temperature measuring contact 3 to the distal end surface 501 of the insulating material 5 is set within a range of 0 to 0.7 mm. Then, by forming the heat transfer path H between the measurement target gas G and the temperature measuring contact 3 so as to pass through the tip portions 201 of the pair of thermocouple wires 2, the responsiveness of the temperature sensor 1 is improved. Improved.
 一方、図21に示すように、比較形態として、従来の非接地型の温度センサのシース熱電対9においては、測温接点3の基端301から絶縁材5の先端面501までの最短距離Lxが0.7mmを超えて離れていた。そのため、測定対象ガスGと測温接点3との間の熱の移動経路Iは、先端カバー42及び先端カバー42内の気相Kを経由して形成される。この結果、温度センサ1を熱ストレスから保護できる一方、温度センサ1の応答性を良くすることができなかった。 On the other hand, as shown in FIG. 21, as a comparative form, in the sheath thermocouple 9 of the conventional non-grounding type temperature sensor, the shortest distance Lx from the base end 301 of the temperature measuring contact 3 to the front end surface 501 of the insulating material 5. Was more than 0.7 mm apart. Therefore, the heat transfer path I between the measurement target gas G and the temperature measuring contact 3 is formed via the tip cover 42 and the gas phase K in the tip cover 42. As a result, while the temperature sensor 1 can be protected from thermal stress, the responsiveness of the temperature sensor 1 cannot be improved.
 このように、本形態の温度センサ1は、絶縁材5の先端面501のできるだけ近くに測温接点3を配置するといった簡単な工夫でありながら、応答性を大きく改善できるものである。 Thus, the temperature sensor 1 of the present embodiment can greatly improve the responsiveness while being a simple device such as disposing the temperature measuring contact 3 as close as possible to the tip surface 501 of the insulating material 5.
(確認試験)
 本確認試験においては、温度センサ1の測温先端部10に接触する測定対象ガスGの温度を室温(25℃)から600℃に変化させたときの、温度センサ1の温度測定の応答性を確認した。この試験においては、最短距離Lを、0.7mm前後において適宜変化させた複数の温度センサ1のサンプルを準備した。また、この試験においては、温度センサ1の応答性として、測定対象ガスGの温度を室温(25℃)から600℃に変化させたときに、この測定対象ガスGの温度の変化を測定するために要する時間としての63%応答時間を測定した。63%応答時間は、センサ出力が、初期出力である25℃から最終出力である600℃までの温度変化量のうちの63%変化するまでの時間とした。
(Confirmation test)
In this confirmation test, the temperature measurement responsiveness of the temperature sensor 1 when the temperature of the measurement target gas G contacting the temperature measurement tip 10 of the temperature sensor 1 is changed from room temperature (25 ° C.) to 600 ° C. confirmed. In this test, a plurality of temperature sensor 1 samples were prepared in which the shortest distance L was appropriately changed around 0.7 mm. In this test, as a response of the temperature sensor 1, when the temperature of the measurement target gas G is changed from room temperature (25 ° C.) to 600 ° C., a change in the temperature of the measurement target gas G is measured. The 63% response time as the time required for the measurement was measured. The 63% response time was defined as the time required for the sensor output to change 63% of the amount of temperature change from 25 ° C. as the initial output to 600 ° C. as the final output.
 この63%応答時間を測定した結果を図22に示す。同図から分かるように、63%応答時間は、最短距離Lが0.7mmである付近を境界にして大きく変化している。最短距離Lが0.7mm以下である場合には、63%応答時間が4秒程度に短く、最短距離Lが0.7mm超過である場合には、63%応答時間が8秒程度に長くなった。それ故、最短距離Lを0.7mm以下に設定した本形態の温度センサ1によれば、非接地型である熱電対式の温度センサ1の、熱ストレスに強いメリットを生かしつつ、デメリットである応答性を改善することができる。 The result of measuring the 63% response time is shown in FIG. As can be seen from the figure, the 63% response time greatly changes around the vicinity where the shortest distance L is 0.7 mm. When the shortest distance L is 0.7 mm or less, the 63% response time is as short as 4 seconds, and when the shortest distance L is over 0.7 mm, the 63% response time is as long as 8 seconds. It was. Therefore, according to the temperature sensor 1 of the present embodiment in which the shortest distance L is set to 0.7 mm or less, it is a demerit while taking advantage of the strong resistance to thermal stress of the thermocouple type temperature sensor 1 which is a non-ground type. Responsiveness can be improved.
 本開示は、実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。 The present disclosure is not limited only to the embodiments, and further different embodiments can be configured without departing from the scope of the disclosure. In addition, the present disclosure includes various modifications, modifications within an equivalent range, and the like.

Claims (5)

  1.  互いに異なる金属材料から構成された一対の熱電対素線(2)と、
     一対の前記熱電対素線の先端同士が合わさった測温接点(3)と、
     金属材料から構成され、前記測温接点を先端部(401)内又は前記先端部に装着された先端カバー(42)内に収容する外管(4)と、
     絶縁材料から構成され、前記外管内に配置されるとともに、一対の前記熱電対素線と前記外管とを絶縁して、一対の前記熱電対素線を前記外管に固定する絶縁材(5)と、を備え、
     前記測温接点は、前記外管の前記先端部内又は前記先端カバー内の気相(K)中に配置されており、
     前記外管の中心軸線に沿った軸方向(X)において、前記測温接点の基端(301)から前記絶縁材の先端面(501)までの最短距離(L)は、0~0.7mmの範囲内にある、温度センサ(1)。
    A pair of thermocouple wires (2) made of different metal materials;
    A temperature measuring junction (3) in which the tips of the pair of thermocouple wires are combined;
    An outer tube (4) made of a metal material and accommodating the temperature measuring contact in the tip (401) or in a tip cover (42) attached to the tip;
    An insulating material (5) which is made of an insulating material and is disposed in the outer tube, insulates the pair of thermocouple wires from the outer tube, and fixes the pair of thermocouple wires to the outer tube. ) And
    The temperature measuring contact is disposed in the gas phase (K) in the tip of the outer tube or in the tip cover,
    In the axial direction (X) along the central axis of the outer tube, the shortest distance (L) from the base end (301) of the temperature measuring contact to the distal end surface (501) of the insulating material is 0 to 0.7 mm. A temperature sensor (1) in the range of
  2.  前記測温接点の前記基端は、前記絶縁材の前記先端面に接触する位置に配置されている、請求項1に記載の温度センサ。 The temperature sensor according to claim 1, wherein the base end of the temperature measuring contact is disposed at a position in contact with the distal end surface of the insulating material.
  3.  前記測温接点の最大径は、一対の前記熱電対素線の平均直径の3倍以下である、請求項1又は2に記載の温度センサ。 The temperature sensor according to claim 1 or 2, wherein a maximum diameter of the temperature measuring junction is three times or less of an average diameter of the pair of thermocouple wires.
  4.  前記外管は、円筒形状を有する円筒部(41)と、前記円筒部の先端外周部に装着された先端カバー(42)とを有し、
     前記絶縁材の前記先端面は、前記円筒部の先端開口部(411)から基端側へ0~0.3mmの範囲内にある、請求項1~3のいずれか1項に記載の温度センサ。
    The outer tube has a cylindrical portion (41) having a cylindrical shape, and a tip cover (42) attached to a tip outer peripheral portion of the cylindrical portion,
    The temperature sensor according to any one of claims 1 to 3, wherein the distal end surface of the insulating material is within a range of 0 to 0.3 mm from a distal end opening (411) of the cylindrical portion toward a proximal end side. .
  5.  前記最短距離は、一対の前記熱電対素線の平均直径の2倍以下である、請求項1~4のいずれか1項に記載の温度センサ。 The temperature sensor according to any one of claims 1 to 4, wherein the shortest distance is not more than twice an average diameter of the pair of thermocouple wires.
PCT/JP2019/002627 2018-01-31 2019-01-28 Temperature sensor WO2019151167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015628A JP2019132726A (en) 2018-01-31 2018-01-31 Temperature sensor
JP2018-015628 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151167A1 true WO2019151167A1 (en) 2019-08-08

Family

ID=67478156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002627 WO2019151167A1 (en) 2018-01-31 2019-01-28 Temperature sensor

Country Status (2)

Country Link
JP (1) JP2019132726A (en)
WO (1) WO2019151167A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427452A (en) * 1994-01-10 1995-06-27 Thiokol Corporation Rugged quick-response thermocouple for use in evaluating gas generants and gas generators
US20120201269A1 (en) * 2011-02-04 2012-08-09 Honeywell International Inc. Thermally isolated temperature sensor
US20150231868A1 (en) * 2012-09-17 2015-08-20 Tesona Gmbh & Co. Kg Method for pressing or welding the protective cover of a high temperature sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139180A (en) * 1998-03-27 2000-10-31 Vesuvius Crucible Company Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
JP2011232232A (en) * 2010-04-28 2011-11-17 Nihon Technovision Co Ltd Manufacturing method of thermocouple and thermocouple

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427452A (en) * 1994-01-10 1995-06-27 Thiokol Corporation Rugged quick-response thermocouple for use in evaluating gas generants and gas generators
US20120201269A1 (en) * 2011-02-04 2012-08-09 Honeywell International Inc. Thermally isolated temperature sensor
US20150231868A1 (en) * 2012-09-17 2015-08-20 Tesona Gmbh & Co. Kg Method for pressing or welding the protective cover of a high temperature sensor

Also Published As

Publication number Publication date
JP2019132726A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US11454551B2 (en) Temperature sensor and temperature measuring device
US7104685B2 (en) Temperature sensor with quick response
US9207130B2 (en) Sensor and method for manufacturing the same
US8177427B2 (en) Temperature sensor and method of producing the same
JP5155246B2 (en) Temperature sensor
EP2068137B1 (en) Temperature sensor
JP6265001B2 (en) Temperature sensor
JP5198934B2 (en) Temperature sensor
EP2075557B1 (en) Temperature sensor and method of producing the same
JP6992442B2 (en) Temperature sensor
US11237064B2 (en) Temperature sensor
US20150231868A1 (en) Method for pressing or welding the protective cover of a high temperature sensor
WO2019151167A1 (en) Temperature sensor
JP6888439B2 (en) Temperature sensor
JP2009300237A (en) Temperature sensor and method of manufacturing the same
JP7010027B2 (en) Temperature sensor and its manufacturing method
JP4059222B2 (en) Temperature sensor and method of manufacturing temperature sensor
JP5123344B2 (en) Temperature sensor
JP4143449B2 (en) Temperature sensor
JP2017015504A (en) Temperature sensor
JP3707018B2 (en) Temperature sensor manufacturing method and temperature sensor
JPS6219952Y2 (en)
WO2019122021A1 (en) High-temperature sensor with electrical insulator made of glass-ceramic
JPS6139330A (en) High temperature fuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19748306

Country of ref document: EP

Kind code of ref document: A1