JP2011232232A - Manufacturing method of thermocouple and thermocouple - Google Patents

Manufacturing method of thermocouple and thermocouple Download PDF

Info

Publication number
JP2011232232A
JP2011232232A JP2010103862A JP2010103862A JP2011232232A JP 2011232232 A JP2011232232 A JP 2011232232A JP 2010103862 A JP2010103862 A JP 2010103862A JP 2010103862 A JP2010103862 A JP 2010103862A JP 2011232232 A JP2011232232 A JP 2011232232A
Authority
JP
Japan
Prior art keywords
thermocouple
electrodes
temperature
pair
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010103862A
Other languages
Japanese (ja)
Inventor
Yuichi Obara
裕一 小原
Takuzo Hagiwara
卓三 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON TECHNOVISION CO Ltd
Furukawa Electric Co Ltd
Original Assignee
NIHON TECHNOVISION CO Ltd
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON TECHNOVISION CO Ltd, Furukawa Electric Co Ltd filed Critical NIHON TECHNOVISION CO Ltd
Priority to JP2010103862A priority Critical patent/JP2011232232A/en
Publication of JP2011232232A publication Critical patent/JP2011232232A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a thermocouple capable of accurately measuring a temperature of a fine target member, and having an excellent manufacturability.SOLUTION: Electrodes 11a, 11b are held between thermocouple elements 3a, 3b in such a manner that a contact portion 9 is disposed approximately at a center of the electrode 11a, and an inserting direction into a holding portion of the thermocouple elements 3a, 3b comes on a relief part 15 side. Loads are continuously applied to the electrodes 11a, 11b in a direction of pushing the thermocouple elements 3a, 3b (in the directions of arrows A in the drawing) while the thermocouple elements 3a, 3b are being held between the electrodes 11a, 11b. For example, the loads may be applied by means of a spring, which is disposed behind the electrode 11a or the electrode 11b. A pulse current flows through the thermocouple elements 3a, 3b (the contact portion 9) held between the electrodes 11a, 11b. The pulse current energized between the electrodes 11a, 11b is gradually increased from a lower current side and is applied at several stages.

Description

本発明は、極小部位の温度を正確に測定することが可能な熱電対の製造方法等に関するものである。   The present invention relates to a thermocouple manufacturing method and the like capable of accurately measuring the temperature of a minimal part.

従来、種々の部品等の温度を測定するために、ゼーベック効果(熱起電力)を原理とする熱電対が使用されている。熱電対は、異種合金線の先端を接触あるいは接合させて、接触部あるいは接合部における起電力から温度を計測するものである。   Conventionally, thermocouples based on the Seebeck effect (thermoelectromotive force) have been used to measure the temperature of various components. The thermocouple measures the temperature from the electromotive force at the contact portion or the joined portion by contacting or joining the tips of different alloy wires.

一方、電子部品を基板等への搭載する場合には、半田等が用いられる。このような電子部品の接合には、通常、半田ペースト等を供給した後、電子部品を所定位置に配置し、リフロー炉を通して半田を溶融することで半田接合が行われる。近年では、環境問題から半田としては鉛フリー半田が用いられる。   On the other hand, when mounting an electronic component on a substrate or the like, solder or the like is used. For joining such electronic components, solder joining is usually performed by supplying a solder paste or the like, then placing the electronic components in a predetermined position, and melting the solder through a reflow furnace. In recent years, lead-free solder is used as solder due to environmental problems.

鉛フリー半田としては、例えばSn系の半田が用いられる。Sn系の半田は、通常220℃近辺で溶融するが、半田接合に際しては溶融した半田の流動性が問題となり、1〜2℃の温度誤差が接合不良等の原因となる場合がある。たとえば、Sn−Ag−Cu合金の半田の液相線温度は、217〜219℃である。この場合、半田づけ部の温度は半田の液相線温度よりも5〜10℃以上高めに設定される。一方で、実装部品の耐熱温度は240℃程度である。したがって、温度管理としては、従来のSn−Pb半田と比較して温度許容範囲が著しく狭い。すなわち、高精度な温度制御を行う上で、精度の良い温度測定が重要となっている。   For example, Sn-based solder is used as the lead-free solder. Sn-based solder usually melts around 220 ° C. However, the flowability of the melted solder becomes a problem during solder joining, and a temperature error of 1 to 2 ° C. may cause joint failure. For example, the liquidus temperature of the Sn—Ag—Cu alloy solder is 217 to 219 ° C. In this case, the temperature of the soldering part is set 5-10 ° C. higher than the liquidus temperature of the solder. On the other hand, the heat resistance temperature of the mounted component is about 240 ° C. Therefore, as temperature management, the allowable temperature range is significantly narrower than that of conventional Sn-Pb solder. That is, accurate temperature measurement is important for highly accurate temperature control.

通常、半田接合を行う部分の温度を計測するためには、前述した熱電対を被測定部に固定して、温度測定を行う。図9は、被測温部37に熱電対30を設置した状態を示す図である。熱電対30は、熱電対素線31a、31bの先端を電気的に接触させた状態で測温部33が形成される。測温部33は被測温部37に接触するように、固定部材35で固定される。測温部33では、被測温部37の温度によって熱起電力が生じ、この熱起電力を計測することで、被測温部37の温度を知ることができる。   Usually, in order to measure the temperature of the part to be soldered, the above-described thermocouple is fixed to the part to be measured and the temperature is measured. FIG. 9 is a diagram illustrating a state where the thermocouple 30 is installed in the temperature-measured part 37. In the thermocouple 30, the temperature measuring unit 33 is formed in a state where the tips of the thermocouple wires 31a and 31b are in electrical contact. The temperature measuring unit 33 is fixed by a fixing member 35 so as to contact the temperature measured unit 37. In the temperature measuring unit 33, a thermoelectromotive force is generated depending on the temperature of the temperature measuring unit 37, and the temperature of the temperature measuring unit 37 can be known by measuring the thermoelectromotive force.

測温部33を形成するための方法としては、熱電対素線31a、31bをねじることで接触させる方法や、ガス(アーク)溶接等によって溶接する方法、抵抗加熱により溶接する方法等が採られている。熱電対素線31a、31bをねじって接触させる方法は、接点が定まらず、正確な測定には適さない。一方、従来の溶接による方法では、図示したように、測温部33は、通常略球状に形成される。   As a method for forming the temperature measuring section 33, a method of contacting the thermocouple wires 31a and 31b by twisting, a method of welding by gas (arc) welding, a method of welding by resistance heating, or the like is adopted. ing. The method of twisting and contacting the thermocouple wires 31a and 31b is not suitable for accurate measurement because the contact points are not determined. On the other hand, in the conventional welding method, as shown in the figure, the temperature measuring portion 33 is usually formed in a substantially spherical shape.

しかし、このような形状の測温部33は、被測温部37との接触が点接触となるため、直接被測温部と接触していない浮いた状態になりやすく正確な測温が難しい傾向にある。さらに、リフロー炉内では、被測温部37よりも雰囲気温度が高くなるが、通常、熱電対はより高温部の温度の影響を受けるため、雰囲気温度の影響によって被測温部37の温度を正確に知ることが困難である。また、固定部材35の設置範囲が限られることが多く、固定部材35によって測温部33を完全に被覆することが困難である場合があり、この場合、雰囲気温度の影響を抑制することが困難である。したがって、より正確な測温が可能な熱電対が要求される。   However, since the temperature measuring unit 33 having such a shape is a point contact with the temperature measured unit 37, the temperature measuring unit 33 tends to be in a floating state that is not in direct contact with the temperature measured unit, and accurate temperature measurement is difficult. There is a tendency. Furthermore, in the reflow furnace, the ambient temperature is higher than that of the temperature-measuring part 37. However, since the thermocouple is usually influenced by the temperature of the higher-temperature part, the temperature of the temperature-measuring part 37 is affected by the influence of the atmosphere temperature. It is difficult to know accurately. In addition, the installation range of the fixing member 35 is often limited, and it may be difficult to completely cover the temperature measuring unit 33 with the fixing member 35. In this case, it is difficult to suppress the influence of the ambient temperature. It is. Therefore, a thermocouple capable of more accurate temperature measurement is required.

このような、熱電対としては、測温部を溶接で形成した後、圧延によって当該測温部を潰し、円盤状とした熱電対がある(特許文献1)。   As such a thermocouple, there is a thermocouple in which a temperature measuring part is formed by welding and then the temperature measuring part is crushed by rolling to form a disk (Patent Document 1).

特開2003−344178号公報JP 2003-344178 A

しかし、特許文献1のような熱電対は、溶接後に圧延を行うため、圧延によって測温部自体の大きさが大きくなるという問題がある。このため、微細な被測温部の測温が困難である。また、圧延工程を別途要するため、製造工数が増加する。また、溶接後の溶接状態は完全に同一ではなく、このため適切な圧延条件が毎回同一とは限られない。このため、圧延時に、測温部の破断や亀裂の発生などが起こる恐れがある。また、素線径よりも薄くなるように圧延を行った場合、素線の一部が圧延により破断する恐れもある。   However, since a thermocouple like patent document 1 rolls after welding, there exists a problem that the magnitude | size of the temperature measuring part itself becomes large by rolling. For this reason, it is difficult to measure the temperature of the minute temperature-measured part. Moreover, since a rolling process is required separately, a manufacturing man-hour increases. In addition, the welded state after welding is not completely the same, and therefore appropriate rolling conditions are not always the same. For this reason, at the time of rolling, there exists a possibility that the fracture | rupture of a temperature measuring part, generation | occurrence | production of a crack, etc. may occur. In addition, when rolling is performed so as to be thinner than the strand diameter, part of the strand may be broken by rolling.

本発明は、このような問題に鑑みてなされたもので、微細な被測温部を正確に測温可能であり、製造性にも優れた熱電対の製造方法等を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a thermocouple manufacturing method and the like that can accurately measure a minute temperature-measured portion and is excellent in manufacturability. To do.

前述した目的を達成するため、第1の発明は、測温部に平面部を有する熱電対の製造方法であって、一対の熱電対素線の先端近傍を接触させ、前記熱電対素線同士の接触部を一対の電極で挟み込み、前記一対の電極によって前記接触部に荷重を負荷しつつ、前記一対の電極の間にパルス電流を複数回通電し、前記接触部を加圧しながら溶接することを特徴とする熱電対の製造方法である。   In order to achieve the above-described object, the first invention is a method of manufacturing a thermocouple having a flat surface portion in a temperature measuring part, wherein the vicinity of the tip of a pair of thermocouple wires is brought into contact with each other, The contact portion is sandwiched between a pair of electrodes, a load is applied to the contact portion by the pair of electrodes, a pulse current is passed between the pair of electrodes, and welding is performed while pressurizing the contact portion. A method of manufacturing a thermocouple characterized by the following.

前記パルス電流は、段階的に電流値が高くなるように各段階で一パルス以上の電流を複数段階通電することが望ましい。   It is desirable that the pulse current is applied in multiple stages with a current of one pulse or more at each stage so that the current value increases stepwise.

前記パルス電流の最終段階前の段階において、前記接触部を仮止めし、前記パルス電流の最終段階において前記接触部における全断面を溶接してもよい。   In the stage before the final stage of the pulse current, the contact part may be temporarily fixed, and in the final stage of the pulse current, the entire cross section of the contact part may be welded.

前記接触部に荷重を負荷する際の前記一対の電極の間の間隙が、前記熱電対素線の線径と略同等よりも狭くならないように制御されてもよい。また、前記一対の熱電対素線を、前記一対の電極の挟持方向に対して略垂直な方向に併設して接触させ、前記接触部に荷重を負荷する前記一対の電極の間の間隙が前記熱電対素線の線径よりも狭くなるように制御されてもよい。   The gap between the pair of electrodes when a load is applied to the contact portion may be controlled so as not to become narrower than the wire diameter of the thermocouple element. Further, the pair of thermocouple wires are brought into contact with each other in a direction substantially perpendicular to the sandwiching direction of the pair of electrodes, and a gap between the pair of electrodes that applies a load to the contact portion is the You may control so that it may become narrower than the wire diameter of a thermocouple strand.

前記一対の電極の一方の側の電極は、前記接触部に対して十分に広い平面部を有する平面電極で、他方の側の電極の少なくとも一方の側面にはテーパ形状等の幅狭の状態が形成されて先端部が縮径しており、前記他方の側の電極の端縁部の少なくとも一部には曲線状(例えば、断面円弧状)の逃げ部が形成されている。   The electrode on one side of the pair of electrodes is a plane electrode having a plane portion sufficiently wide with respect to the contact portion, and a narrow state such as a tapered shape is formed on at least one side surface of the electrode on the other side. The tip portion is formed to have a reduced diameter, and at least a part of the edge portion of the electrode on the other side is formed with a relief portion having a curved shape (for example, a circular arc shape in cross section).

前記熱電対素線を前記一対の電極に挟みこむ際に、前記熱電対素線が前記逃げ部に位置するように、前記接触部を前記一対の電極の間に配置する。   When the thermocouple element is sandwiched between the pair of electrodes, the contact portion is disposed between the pair of electrodes so that the thermocouple element is positioned at the escape portion.

第1の発明によれば、一対の電極で荷重を付与しながらパルス電流を複数回通電することで、測温部に微細な平面部を有する熱電対を容易に製造することができる。特に、複数回のパルス電流を通電して抵抗加熱溶接を行うことで、溶接条件の制御が容易であり、熱電対素線の成分や電極への設置状態などによる溶接条件ばらつきの影響に伴う過熱溶断等を防止することができる。   According to 1st invention, the thermocouple which has a fine plane part in a temperature measurement part can be easily manufactured by supplying a pulse current several times, providing a load with a pair of electrodes. In particular, resistance heating welding is performed by applying multiple pulse currents, making it easy to control the welding conditions, and overheating due to the effects of variations in welding conditions due to components of the thermocouple wire and the state of installation on the electrodes. Fusing and the like can be prevented.

また、電極間に荷重が付与されるため、溶接時に溶融部が押しつぶされて平面部を容易に形成することができる。また、パルス電流による溶接と過重負荷が同時であるため、接続部の溶融開始と同時に接続部を潰すことが可能であるため、接続部を過剰に溶融することがなく、測温部が過剰に大きくなることを防止することができる。   In addition, since a load is applied between the electrodes, the melted portion is crushed during welding, and a flat portion can be easily formed. In addition, since welding by pulse current and heavy load are simultaneously performed, it is possible to crush the connection part at the same time as the melting of the connection part starts, so the connection part does not melt excessively and the temperature measuring part is excessive. It can be prevented from becoming large.

また、パルス電流を段階的に電流値が高くなるように付与することで、接続部の過熱が防止でき、溶接条件のばらつき等の影響を抑制することができる。特に、このようにすることで、例えば所定の電流でのパルス電流負荷時に、熱電対素線表面のみを部分溶融させて仮止めを行うことができ、次にやや高い電流でのパルス電流負荷時に、熱電対素線の断面の一部分を溶融させ、この際に電極間の荷重によって接続部の形状を平面への加工が開始され、さらにパルス電流値を上げることで、完全に熱電対素線同士を溶接することができる。したがって、過剰な溶融や溶融不足が生じにくい。   Further, by applying the pulse current so that the current value increases stepwise, overheating of the connecting portion can be prevented, and the influence of variations in welding conditions and the like can be suppressed. In particular, by doing so, for example, when a pulse current is loaded at a predetermined current, only the surface of the thermocouple wire can be partially melted and temporarily fixed, and then at a pulse current load at a slightly higher current. In this case, a part of the cross section of the thermocouple wire is melted, and at this time, the processing of the connection part into a flat surface is started by the load between the electrodes, and the pulse current value is further increased, so that the thermocouple wires are completely Can be welded. Therefore, it is difficult to cause excessive melting or insufficient melting.

また、接続部を平面状にする際に、接続部の厚さが、熱電対素線の径と略同等となるように制御されれば、接続部を過剰に押し潰すことによる、断線や接続不良等を防止でき、また、熱電対素線自体を押しつぶすこともない。   Also, when the connecting portion is made flat, if the thickness of the connecting portion is controlled to be approximately the same as the diameter of the thermocouple strand, disconnection or connection by excessively crushing the connecting portion Defects can be prevented and the thermocouple wires themselves are not crushed.

また、一方の電極の形状が、側面にテーパ部を有して縮径し、端縁部の一部に断面曲線状の逃げ部(例えばR部)が形成されることで、集中電流の流れ込みが防止される。特に、逃げ部側に熱電対素線が位置するように、電極間に熱電対素線を配置することで、熱電対素線の溶断を防止することができる。この曲線状の逃げ部は、必ずしも円弧状と限る必要はなく、集中電流を緩和できるものであればどのような曲線でも良い。端縁部の逃げ部を除く幅は、熱電対素線径の10倍以下に設定されることが望ましい。このようにすることにより、溶接部の溶接後の形状(測温部)を安定させることができる。   In addition, the shape of one of the electrodes has a tapered portion on the side surface and is reduced in diameter, and a relief portion having a curved cross section (for example, an R portion) is formed at a part of the edge portion, so that a concentrated current flows in. Is prevented. In particular, the thermocouple element can be prevented from being melted by arranging the thermocouple element between the electrodes so that the thermocouple element is positioned on the escape portion side. The curved relief portion is not necessarily limited to the arc shape, and may be any curve as long as the concentrated current can be reduced. It is desirable that the width of the end edge portion excluding the relief portion is set to 10 times or less of the thermocouple wire diameter. By doing in this way, the shape (temperature measuring part) after welding of a welding part can be stabilized.

第2の発明は、第1の発明にかかる熱電対の製造方法を用いて製造され、測温部に平面部を有することを特徴とする熱電対である。   2nd invention is manufactured using the manufacturing method of the thermocouple concerning 1st invention, and has a plane part in a temperature measurement part, It is a thermocouple characterized by the above-mentioned.

前記熱電対の測温部の厚さが熱電対素線の線径と略同じであり、前記測温部の幅が、前記熱電対素線の線径の2倍以下であってもよい。   The thickness of the temperature measuring portion of the thermocouple may be substantially the same as the wire diameter of the thermocouple wire, and the width of the temperature measuring portion may be not more than twice the wire diameter of the thermocouple wire.

第2の発明によれば、微細な平面部を有するため、微小な被測温部に対しても正確に温度を測定することができる。すなわち、測温部が微細な被測温部の形状に沿って面接触することによって、固定部材が介在することのない被測温部との直接的な微細接触点を確実に確保することができるため、少ない固定部材で(小さな固定部材範囲で)均一な固定状態を得ることができる。測温の応答時間が短いため、被測定部の微細な温度変化に精度よく追従することもできる。測温部が浮き上がって露出すこともないため、誤差要因である雰囲気温度の影響も受けにくい。   According to the second aspect of the invention, since the fine plane portion is provided, the temperature can be accurately measured even for a minute temperature-measured portion. That is, it is possible to reliably ensure a direct fine contact point with the temperature-measured part without the fixing member interposed by the surface-contact of the temperature-measured part along the shape of the minute temperature-measured part. Therefore, a uniform fixing state can be obtained with a small number of fixing members (within a small fixing member range). Since the response time of the temperature measurement is short, it is possible to accurately follow a minute temperature change of the measured portion. Since the temperature measuring unit is not lifted and exposed, it is not easily affected by the ambient temperature, which is an error factor.

測温部の厚さが熱電対素線の線径と略同一であることはまた、被測温部に設置した際に、測温部が浮き上がったりすることもなく、また、熱電対素線が潰されることによる断線等の恐れもない。また、この場合、測温部の幅が熱電対素線の線径の2倍程度(線径以上)であれば、微小な被測温部へも設置するのに好都合であり、2倍以下であればより微小な被測温部にも適用可能である。   The thickness of the temperature measuring part is almost the same as the wire diameter of the thermocouple wire. The temperature measuring part is not lifted when it is installed in the temperature measured part. There is no fear of disconnection due to crushing. Also, in this case, if the width of the temperature measuring part is about twice the wire diameter of the thermocouple element (more than the wire diameter), it is convenient to install in a minute temperature-measured part, and not more than twice If so, the present invention can be applied to a smaller temperature-measured part.

本発明によれば、微細な被測温部を正確に測温可能であり、製造性にも優れた熱電対の製造方法等を提供することができる。   According to the present invention, it is possible to provide a thermocouple manufacturing method and the like that can accurately measure a minute temperature-measured portion and that are excellent in manufacturability.

熱電対1を示す図であり、(a)は平面図、(b)は正面図。It is a figure which shows the thermocouple 1, (a) is a top view, (b) is a front view. 熱電対1の製造工程を示す図。The figure which shows the manufacturing process of the thermocouple 1. FIG. 熱電対1の製造工程を示す図で、(a)は電極11a、11bの正面図、(b)は電極を透視した平面図。It is a figure which shows the manufacturing process of the thermocouple 1, (a) is a front view of electrode 11a, 11b, (b) is the top view which saw through the electrode. パルス電流の負荷状態を示す図。The figure which shows the load state of a pulse current. 測温部5の形状を示す図で、(a)は平面図、(b)は正面図。It is a figure which shows the shape of the temperature measuring part 5, (a) is a top view, (b) is a front view. 熱電対素線3a、3bの他の接触方法を示す図。The figure which shows the other contact method of the thermocouple strand 3a, 3b. 電子部品17aを示す図で、(a)は平面図、(b)は正面図、(c)は(b)のB部拡大図であり、熱電対1を接続端子19に設置した状態を示す図。It is a figure which shows the electronic component 17a, (a) is a top view, (b) is a front view, (c) is the B section enlarged view of (b), and shows the state which installed the thermocouple 1 in the connection terminal 19 Figure. 電子部品17bを示す図。The figure which shows the electronic component 17b. 従来の熱電対30を示す図。The figure which shows the conventional thermocouple 30. FIG.

以下、本発明の実施の形態にかかる熱電対1について説明する。図1は、熱電対1を示す図で、図1(a)は熱電対1の平面図、図1(b)は正面図である。熱電対1は、主に一対の熱電対素線3a、3b、被覆部7、測温部5等から構成される。なお、熱電対1は、図示を省略した起電力測定器と接続されて用いられる。   Hereinafter, the thermocouple 1 according to the embodiment of the present invention will be described. FIG. 1 is a diagram showing a thermocouple 1, FIG. 1 (a) is a plan view of the thermocouple 1, and FIG. 1 (b) is a front view. The thermocouple 1 is mainly composed of a pair of thermocouple wires 3a and 3b, a covering portion 7, a temperature measuring portion 5 and the like. The thermocouple 1 is used by being connected to an electromotive force measuring device (not shown).

熱電対素線3a、3bは、熱電対の種類に応じて適宜選択されるが、例えば、一方の熱電対素線3aをクロメル線(Crを10%含むNi−Cr合金)とし、他方の熱電対素線3bとしてアルメル線(Al、Mnを含むNi合金)を適用したKタイプ熱電対が使用できる。   The thermocouple wires 3a and 3b are appropriately selected according to the type of thermocouple. For example, one thermocouple wire 3a is a chromel wire (Ni—Cr alloy containing 10% Cr) and the other thermocouple is selected. A K-type thermocouple to which an alumel wire (Ni alloy containing Al and Mn) is applied as the pair of wires 3b can be used.

なお、熱電対素線が要因となる測温誤差をできるだけ小さくするためには、JIS規格におけるクラス1の規定品やANSI規格(米国規格協会:American National Standards Institute)の特別規定品(SLE規格品)を用いることが望ましく、また、製品固有のばらつきに対して選別された熱電対素線を用いてもよい。   In addition, in order to minimize the temperature measurement error caused by the thermocouple wire, JIS standard class 1 product or ANSI standard (American National Standards Institute) special product (SLE standard product) ), And a thermocouple wire selected for product-specific variations may be used.

熱電対素線3a、3bの径は略同一である。なお、熱電対素線3a、3bの線径としては、測定対象部の大きさに応じて設定されるが、小型化が進む電子部品等の微細接続部の温度を正確に測定するためには、例えば、0.08mm〜0.2mm程度のものが適用可能である。   The diameters of the thermocouple wires 3a and 3b are substantially the same. The wire diameters of the thermocouple wires 3a and 3b are set according to the size of the measurement target part, but in order to accurately measure the temperature of the fine connection part such as an electronic component that is being miniaturized. For example, about 0.08 mm to 0.2 mm can be applied.

被覆部7は、熱電対素線の絶縁や機械的な強度向上のために用いられる。被覆部7としては、耐熱温度等に応じて選択され、フッ化樹脂やガラス繊維等を用いることができる。   The covering portion 7 is used to insulate the thermocouple wire and improve the mechanical strength. The covering portion 7 is selected according to the heat resistant temperature or the like, and a fluororesin, glass fiber, or the like can be used.

測温部5は、熱電対素線3a、3bが接触する部位であり、熱起電力が生じる部位である。すなわち、測温部5が測温対象物の温度を計測する部位となる。   The temperature measuring unit 5 is a part where the thermocouple wires 3a and 3b come into contact with each other, and a part where thermoelectromotive force is generated. That is, the temperature measuring unit 5 is a part for measuring the temperature of the temperature measurement object.

測温部5は、表裏面(熱電対素線3a、3bを水平方向に配設した場合における鉛直方向の両面)が略平面となる。例えば、測温部5の形状は、図1のような素線配置で溶接した場合は、平面図において(平面部形状が)略矩形状となるが、その他の形状に溶接したものでも良い。なお、X字状に熱電対素線3a、3bを重ねる際の互いのクロスする角度を変化させることで、測温部5の平面部の形状を略正方形とすることもできる。このように角度と電流値の調整により、測温部の大きさや形状を適宜設計できる。この時測温部の断面形状は、側面中央部が僅かに外側に広がった略矩形状になる。測温部5の平面部を被測温部に密着させることで、測温部5は、被測温部の熱に直ちに応答して熱起電力を発生し、この熱起電力を測定することで被測温部の温度を測定することができる。この際、測温部5は極めて微細であるため熱容量が小さく、被測温部と面接触するため、熱応答性が極めて高く、正確な温度測定を行うことができる。   The temperature measuring unit 5 has a substantially flat front and back surfaces (both surfaces in the vertical direction when the thermocouple wires 3a and 3b are disposed in the horizontal direction). For example, the shape of the temperature measuring unit 5 is a substantially rectangular shape (the shape of the plane part) in the plan view when it is welded in a wire arrangement as shown in FIG. 1, but may be welded to other shapes. In addition, the shape of the flat part of the temperature measuring part 5 can also be made into a substantially square shape by changing the crossing angle at the time of superimposing the thermocouple strands 3a and 3b in X shape. Thus, by adjusting the angle and the current value, the size and shape of the temperature measuring unit can be appropriately designed. At this time, the cross-sectional shape of the temperature measuring unit is a substantially rectangular shape with the central portion of the side surface slightly spread outward. The temperature measuring unit 5 generates a thermoelectromotive force immediately in response to the heat of the temperature-measuring unit and measures the thermoelectromotive force by bringing the flat surface portion of the temperature-measuring unit 5 into close contact with the temperature-measuring portion. Can measure the temperature of the temperature-measuring part. At this time, since the temperature measuring unit 5 is very fine, the heat capacity is small, and since the temperature measuring unit 5 is in surface contact with the temperature measured unit, the thermal response is extremely high and accurate temperature measurement can be performed.

次に、熱電対1の製造方法について説明する。図2は熱電対1の製造工程を示す図である。まず、図2(a)に示すように、熱電対素線3a、3bそれぞれの先端部の被覆部7を除去し、必要に応じて油成分の汚れ等を除去し、熱電対素線3a、3bのそれぞれの先端が略同一方向に向くように略平行に配置する。   Next, a method for manufacturing the thermocouple 1 will be described. FIG. 2 is a diagram showing a manufacturing process of the thermocouple 1. First, as shown in FIG. 2 (a), the covering portion 7 at the tip of each of the thermocouple wires 3a and 3b is removed, and dirt and the like of oil components are removed as necessary, and the thermocouple wires 3a, 3b is arranged substantially in parallel so that the respective tips thereof are directed in substantially the same direction.

次に、図2(b)に示すように、熱電対素線3a、3bの先端部近傍が互いに重なるようにX字型にクロスさせる。この際、互いに重なり合う部位(X字における交点近傍)には、熱電対素線3a、3bが互いに接触する接触部9が形成される。   Next, as shown in FIG. 2B, the thermocouple strands 3a and 3b are crossed in an X shape so that the vicinity of the tips overlaps each other. At this time, a contact portion 9 where the thermocouple wires 3a and 3b come into contact with each other is formed at a portion where they overlap each other (near the intersection in the X-shape).

図3は、X字型に接触部9が形成された熱電対素線3a、3bを電極に挟み込んだ状態を示す図で、図3(a)は正面図、図3(b)は平面図(電極11aを透視した図)である。図3(a)に示すように、電極11a、11bは互いに対向するように設けられ、熱電対素線3a、3bを挟み込む対向面が略平行な平面で構成される。熱電対素線3a、3bは、電極11a、11b方向(図中上下)X字型に重ねられた状態で電極間に挟み込まれる。したがって、この状態における電極11a、11b間の間隙は、熱電対素線3a(3b)の線径の2倍程度となる。   FIGS. 3A and 3B are diagrams showing a state in which the thermocouple wires 3a and 3b each having an X-shaped contact portion 9 are sandwiched between electrodes, FIG. 3A is a front view, and FIG. 3B is a plan view. It is the figure which saw through the electrode 11a. As shown in FIG. 3A, the electrodes 11a and 11b are provided so as to oppose each other, and the opposing surfaces sandwiching the thermocouple wires 3a and 3b are constituted by substantially parallel planes. The thermocouple wires 3a and 3b are sandwiched between the electrodes in a state where they are stacked in an X shape in the direction of the electrodes 11a and 11b (up and down in the drawing). Therefore, the gap between the electrodes 11a and 11b in this state is about twice the diameter of the thermocouple wire 3a (3b).

電極11bは、接合する熱電対素線3a、3bの接合部の大きさに対して十分な領域の平面を有し、熱電対素線の位置合わせ、仮押さえのためのテーブルの役目も兼ねる。電極11aは、上方から熱電対素線3a、3b(接触部9)を挟み込む。電極11aは、側面の少なくとも一部にテーパ部13(幅狭部)が形成される。すなわち、電極11aは先端が先端部に向かって徐々に縮径する。尚、本発明において、縮径するとは、単に直径を意味するのではなく、電極の特定方向における幅が縮小することを意味するものとする。なお、電極11aにおける熱電対素線3a、3bの矩形の2辺の両端に円弧の一部を組み合わせた形状をした挟持面(熱電対素線3a、3bとの接触面であって図中下面)は、電極11bに対して略平行であり、電極11bの挟持面よりも面積が小さい。電極11aの挟持面の狭幅方向の長さは、熱電対素線3a、3bの接続部の大きさ(溶接後の測温部の幅方向の大きさに略相当)の10倍以下であることが望ましく、更に望ましくは5倍以下である。電極11aの挟持面の面積が広すぎると、電流が接合部以外に分散して流れてしまい、また、熱電対素線のセッティングの状態、接触部および溶接部の位置合わせ、通電時放電状態、および溶接状態の視認性が悪くなるためである。   The electrode 11b has a plane having a sufficient area with respect to the size of the joined portion of the thermocouple wires 3a and 3b to be joined, and also serves as a table for positioning and temporarily holding the thermocouple wires. The electrode 11a sandwiches the thermocouple wires 3a and 3b (contact portion 9) from above. The electrode 11a has a tapered portion 13 (narrow portion) formed on at least a part of the side surface. That is, the diameter of the electrode 11a is gradually reduced toward the tip. In the present invention, reducing the diameter does not simply mean the diameter, but means that the width of the electrode in a specific direction is reduced. In addition, a sandwiching surface (a contact surface with the thermocouple wires 3a and 3b, which is a contact surface with the thermocouple wires 3a and 3b, and a lower surface in the drawing) in which both ends of two rectangular sides of the thermocouple wires 3a and 3b in the electrode 11a are combined. ) Is substantially parallel to the electrode 11b and has a smaller area than the clamping surface of the electrode 11b. The length of the clamping surface of the electrode 11a in the narrow width direction is not more than 10 times the size of the connection portion of the thermocouple wires 3a and 3b (substantially equivalent to the size in the width direction of the temperature measuring portion after welding). Desirably, it is more desirably 5 times or less. If the area of the clamping surface of the electrode 11a is too large, the current flows in a distributed manner other than the joint, and the setting state of the thermocouple element, the alignment of the contact part and the welded part, the discharge state during energization, This is because the visibility of the welded state deteriorates.

熱電対素線として0.13mmφのものを接合する際には、電極11aとしては、例えば4mmφ程度の円柱状素材を用いた棒状電極で、例えば、挟持面がテーパ部13により徐々に縮径して構成され、挟持面の幅は1.5〜2.5mm程度とすればよい。すなわち、電極11aの先端部の幅は、電極11aの基部における直径の35〜65%程度とすれば良い。ここで、テーパ部13は対向して対称に同一形状で形成されることが望ましいが、対向する2つのテーパのテーパ角度が異なって形成されても良い。この場合には、電極11aの基部の形状も対象となるため、熱電対素線のセッティング時の位置合わせがしやすいが、テーパ角度を異なって形成して、電極11aの基部の形状を、後述する図6のように非対称に形成しても良い。   When joining a thermocouple element having a diameter of 0.13 mmφ, the electrode 11 a is a rod-shaped electrode using a cylindrical material of about 4 mmφ, for example, and the holding surface is gradually reduced in diameter by the tapered portion 13. The width of the clamping surface may be about 1.5 to 2.5 mm. That is, the width of the tip of the electrode 11a may be about 35 to 65% of the diameter at the base of the electrode 11a. Here, it is desirable that the taper portions 13 are symmetrically formed in the same shape symmetrically, but the taper angles of the two tapers facing each other may be formed differently. In this case, since the shape of the base portion of the electrode 11a is also an object, positioning at the time of setting the thermocouple wire is easy. However, the shape of the base portion of the electrode 11a is described later by forming the taper angle differently. Alternatively, it may be formed asymmetrically as shown in FIG.

電極11aの端縁部の少なくとも一部(挟持面と側面との縁部の少なくとも一部)には、逃げ部15が形成される。逃げ部15は、断面円弧状のR形状を有する部位である。すなわち、逃げ部15では、挟持面と側面とがなだらかに接続される。なお、逃げ部は例えば0.5mm程度の曲率半径程度であれば良い。   An escape portion 15 is formed on at least a part of the end edge of the electrode 11a (at least a part of the edge between the sandwiching surface and the side surface). The escape portion 15 is a portion having an R shape with a circular arc cross section. That is, in the escape portion 15, the clamping surface and the side surface are gently connected. In addition, the escape part should just be about a curvature radius of about 0.5 mm, for example.

なお、熱電対素線3a、3bを電極11a、11bで挟み込む際には、接触部9が電極11a(挟持面)の略中央に来るように設置し、さらに、熱電対素線3a、3bの挟持部への挿入方向が逃げ部15側となるように配置する。すなわち、熱電対素線3a、3bの根本側(図中右側であって、先端側とは逆側)が位置する電極11aの端縁部(電極11aの図中右側)には逃げ部15が形成される。熱電対素線3a、3bは、なだらかな端縁部である逃げ部15と接触するため、集中電流によって熱電対素線3a、3bが断線することを防止することができる。   When the thermocouple strands 3a and 3b are sandwiched between the electrodes 11a and 11b, the contact portion 9 is installed so as to be substantially at the center of the electrode 11a (clamping surface), and further, the thermocouple strands 3a and 3b It arrange | positions so that the insertion direction to a clamping part may become the escape part 15 side. That is, the escape portion 15 is provided at the edge portion (right side of the electrode 11a in the drawing) of the electrode 11a where the base side of the thermocouple wires 3a and 3b (right side in the drawing and opposite to the tip side) is located. It is formed. Since the thermocouple wires 3a and 3b come into contact with the relief portion 15 that is a gentle edge, it is possible to prevent the thermocouple wires 3a and 3b from being disconnected by a concentrated current.

電極11a、11bは、熱電対素線3a、3bを挟み込んだ状態で、熱電対素線3a、3bを押しつぶす方向(図中矢印A方向)に連続的に荷重が負荷される。たとえば、電極11aまたは電極11bの後方にばねを配置して、ばねによって荷重を付加してもよい。荷重としては、例えば2kgf程度である。   The electrodes 11a and 11b are continuously loaded in the direction in which the thermocouple wires 3a and 3b are crushed (in the direction of arrow A in the figure) with the thermocouple wires 3a and 3b sandwiched therebetween. For example, a spring may be arranged behind the electrode 11a or the electrode 11b and a load may be applied by the spring. For example, the load is about 2 kgf.

図4は、電極11a、11bに流される電流を示す概念図である。電極11a、11bの間に挟まれる熱電対素線3a、3b(接触部9)には、複数回のパルス電流が流される。パルス電流としては、例えば、50Hzの交流の1Hz分をパルス電流発生用の電力としてコンデンサ等に蓄電し、コンデンサに蓄積された電力の1Hz分の一部の電力を取り出してパルス電流として取り出して供給することにより発生させればよい。この場合、例えば1パルスの通電時間は1/50秒以下となる。   FIG. 4 is a conceptual diagram showing currents flowing through the electrodes 11a and 11b. A plurality of pulse currents flow through the thermocouple wires 3a and 3b (contact portion 9) sandwiched between the electrodes 11a and 11b. As the pulse current, for example, 1 Hz of 50 Hz alternating current is stored in a capacitor or the like as power for generating a pulse current, and a part of the power of 1 Hz of the power stored in the capacitor is extracted and supplied as a pulse current. Can be generated by doing so. In this case, for example, the energization time of one pulse is 1/50 second or less.

電極11a、11b間に通電されるパルス電流は、低電流側から徐々に段階的に電流が上げられて複数回負荷される。パルス電流の段階としては、溶接機の最大電流を略10等分して、10段階に電流を変化させるようにしてもよく、または、さらに細かく段階を変化させるようにしてもよい。
たとえば、図4(a)のように、最大電流の450Aの溶接機に対して、1段階(図中S1)を3Aとし、段階1(3A)から段階n(図中Sn)(3nA)までのパルス電流を流しても良いが、通常は、図4(b)のように、各段階において複数回ずつパルス電流を流すこともできる。また、上記の図4(a)、図4(b)を複合することもでき、パルス電流を電流値の各段階において少なくとも1回以上通電することができる。
The pulse current supplied between the electrodes 11a and 11b is gradually increased from the low current side and loaded multiple times. As the stage of the pulse current, the maximum current of the welding machine may be divided into about 10 equal parts, and the current may be changed to 10 stages, or the stage may be changed more finely.
For example, as shown in FIG. 4A, for a welding machine with a maximum current of 450 A, one stage (S 1 in the figure) is set to 3 A, and from stage 1 (3 A) to stage n (Sn in the figure) (3 nA) However, normally, as shown in FIG. 4B, it is also possible to flow the pulse current multiple times at each stage. 4A and 4B can be combined, and the pulse current can be applied at least once at each stage of the current value.

通電条件としては、熱電対素線の材質や線径等に応じて適宜設定されるが、例えば、0.2mmφのアルメル−クロメル線を用いた場合には、電流値が100ボルト商用電源の電極短絡時実効450Aの通電量に対して、サイリスタ位相制御方式の1サイクルを100%とした場合の40%レベルの通電量以上では溶断するため、電流値を最大電流の10%レベルの第1段階から最大電流の35%レベルの第4段階までに設定して、所定時間段階的に複数回づつ流して、熱電対素線の溶接状況を確認しながら溶接を行う。この場合、必要に応じて、段階5(最大電流の40%レベル)の電流を繰り返し2〜3回流して完全に溶接を行ってもよい。ここで、サイリスタ位相制御方式での通電は、最大電流値に対する電流調整つまみの目盛り位置と電流の大きさの関係は必ずしも直線状にはならない。また、溶接時の電流値は当然、溶接する素線径よっても異なる。   The energization conditions are set as appropriate according to the material, wire diameter, etc. of the thermocouple element. For example, when an alumel-chromel wire of 0.2 mmφ is used, the current value is an electrode of a commercial power supply of 100 volts. The current value is 10% level of the maximum current because the current value is 10% of the maximum current, because the current value is 40% level or more when the cycle of the thyristor phase control method is 100% with respect to the current amount of 450A effective at short circuit. To the fourth stage at the 35% level of the maximum current, and a plurality of times in a predetermined time step so that welding is performed while checking the welding state of the thermocouple wire. In this case, if necessary, the welding may be completely performed by repeatedly applying the current of Step 5 (40% level of the maximum current) 2 to 3 times. Here, in energization by the thyristor phase control method, the relationship between the scale position of the current adjustment knob and the current magnitude with respect to the maximum current value is not necessarily linear. Also, the current value during welding naturally varies depending on the diameter of the wire to be welded.

そこで、例えば0.13mmφのアルメル−クロメル線を用いる場合には、電流値が25%レベル以上では溶断するため、それより、低い電流値で溶接するが、溶接機の最大電流の約20%をこの場合の最大電流値に設定して、例えば、電流値を最大電流の10%レベルの第1段階から最大電流の20%レベルの第4段階に分けて、段階的に複数回づつ流して、熱電対素線の溶接状況を確認しながら溶接を行う。   Therefore, for example, when an alumel-chromel wire of 0.13 mmφ is used, it melts at a current value of 25% or higher, so welding is performed at a lower current value, but about 20% of the maximum current of the welder is reduced. In this case, the maximum current value is set, for example, the current value is divided into a first stage at a level of 10% of the maximum current and a fourth stage at a level of 20% of the maximum current, and the current value is made to flow multiple times step by step. Welding while checking the welding status of the thermocouple wires.

このように、段階的にパルス電流を付与する理由は以下のとおりである。通常、電極間へ通電すると、熱電対素線の抵抗によってジュール熱が発生する。この熱によって熱電対素線が溶融して接合される。ここで、通電を連続して行うと、熱電対素線の温度が急激に上昇し、溶融が一気に進行する。このため、溶断の恐れがあり、また、広範囲にわたって溶融部が形成されることとなる。   The reason why the pulse current is applied step by step is as follows. Usually, when electricity is passed between the electrodes, Joule heat is generated by the resistance of the thermocouple wire. The thermocouple strand is melted and joined by this heat. Here, when energization is continuously performed, the temperature of the thermocouple wire rapidly increases, and melting proceeds at a stretch. For this reason, there exists a possibility of a fusing and a fusion | melting part will be formed over a wide range.

一方、パルス電流とすることで、熱電対素線が完全に溶融するだけの熱量が生じないように、1パルスごとの電流を付与することで、溶接状態をより細かく制御することが可能である。この際、電流を徐々に上げることで、予熱段階〜仮止め段階〜一部溶融段階〜完全溶接段階までを、1または複数の段階に分けて制御することも可能である。このため、一気に溶融部が形成されず、溶断の恐れもない。また、溶融を段階的に行うため、溶融範囲が過剰に大きくなったり、溶融形状が制御できなくなることを防止できる。   On the other hand, by using a pulse current, it is possible to control the welding state more finely by applying a current for each pulse so as not to generate a heat quantity enough to completely melt the thermocouple wire. . At this time, by gradually increasing the current, it is possible to control the preheating stage to the temporary fixing stage to the partial melting stage to the complete welding stage in one or a plurality of stages. For this reason, a fusion | melting part is not formed at a stretch, and there is also no fear of fusing. Moreover, since melting is performed in stages, it is possible to prevent the melting range from becoming excessively large and the molten shape from being uncontrollable.

たとえば、図4において、S1の通電により熱電対素線の余熱がおこなわれ、S2において熱電対素線の表面のみが溶融して仮止めがなされ、Snにおいて熱電対素線の部分溶接または全断面の溶接が行われるように制御することができる。このようなパルス電流条件は、あらかじめ、使用する熱電対素線等に対して実験等で定めておき、製造時には、溶接状態を見ながらパルス電流の付与条件を調整すれば良い。この際、電流がパルスであるため、過剰な発熱を防止することができる。   For example, in FIG. 4, the remaining heat of the thermocouple wire is generated by energization of S1, only the surface of the thermocouple wire is melted and temporarily fixed in S2, and partial welding or full cross section of the thermocouple wire is performed in Sn. Can be controlled to be performed. Such a pulse current condition may be determined in advance by experiments or the like with respect to the thermocouple element to be used, and the pulse current application condition may be adjusted while manufacturing while watching the welding state. At this time, since the current is a pulse, excessive heat generation can be prevented.

なお、前述の通り、パルス電流が付与される際にも、電極11a、11b間には連続して荷重が付与される。したがって、熱電対素線3a、3bの一部が溶融され始めると、溶融部が押しつぶされる。   As described above, when a pulse current is applied, a load is continuously applied between the electrodes 11a and 11b. Accordingly, when a part of the thermocouple wires 3a and 3b starts to melt, the melted portion is crushed.

図5は、熱電対素線3a、3bの溶接が完了した状態を示す図であり、図5(a)は平面図(電極11a透視図)、図5(b)は正面図である。溶接が完了すると、測温部5の先端の余長部16は除去される。図5(b)は余長部16が除去された状態を示す図である。   FIG. 5 is a diagram showing a state where welding of the thermocouple wires 3a and 3b is completed. FIG. 5 (a) is a plan view (a perspective view of the electrode 11a), and FIG. 5 (b) is a front view. When the welding is completed, the extra length portion 16 at the tip of the temperature measuring unit 5 is removed. FIG. 5B is a diagram showing a state where the extra length portion 16 is removed.

熱電対素線3a、3bの接触部は、パルス電流により徐々に溶融しながら電極11a、11bによって押しつぶされる。したがって、電極11a、11b間の間隙は、熱電対素線3a(3b)の線径の2倍程度から、徐々に狭くなる。一方、電極11a、11b間の厚みは、熱電対素線3a(3b)の線径よりも狭くならないように制御される。たとえば、熱電対素線の線径と略同厚さの絶縁性スペーサを電極11a、11b間に設置しておき、それ以上は電極間の距離が狭くならないように制限される。   The contact portions of the thermocouple wires 3a and 3b are crushed by the electrodes 11a and 11b while being gradually melted by the pulse current. Therefore, the gap between the electrodes 11a and 11b gradually decreases from about twice the wire diameter of the thermocouple element 3a (3b). On the other hand, the thickness between the electrodes 11a and 11b is controlled so as not to be narrower than the wire diameter of the thermocouple element 3a (3b). For example, an insulating spacer having a thickness substantially the same as the diameter of the thermocouple wire is placed between the electrodes 11a and 11b, and the distance between the electrodes is limited so as not to be narrowed.

したがって、図5(b)に示すように、溶接された測温部5の厚さTは、熱電対素線3a(3b)の線径と略同一である。なお、測温部5の幅Wおよび長さLは、熱電対素線3a(3b)の線径の2倍程度とする。大きくしすぎると、微小な被測温部への設置が困難となるためである。以上の方法により、熱電対1が形成される。   Therefore, as shown in FIG. 5B, the thickness T of the welded temperature measuring section 5 is substantially the same as the wire diameter of the thermocouple element 3a (3b). The width W and the length L of the temperature measuring unit 5 are about twice the diameter of the thermocouple strand 3a (3b). This is because if it is too large, it will be difficult to install in a minute temperature-measured part. The thermocouple 1 is formed by the above method.

図6は、電極11a、11b間へ設置する際の、熱電対素線3a、3b同士の接触方法の他の形態を示す図である。前述したように、X字状に接触させる方法に代えて、図6(a)に示すように、電極11a、11bの挟持方向に対して垂直な方向に熱電対素線3a、3bの側面同士をI字状に併設して接触させて接触部9を形成してもよい。   FIG. 6 is a diagram showing another embodiment of a method of contacting the thermocouple wires 3a and 3b when installed between the electrodes 11a and 11b. As described above, instead of the X-shaped contact method, as shown in FIG. 6A, the side surfaces of the thermocouple wires 3a, 3b are perpendicular to the clamping direction of the electrodes 11a, 11b. The contact portion 9 may be formed by contacting the I in an I shape.

また、図6(b)に示すように、電極11a、11bの挟持方向に対して垂直な方向に併設し、熱電対素線3a、3bの端面同士を突き合わせて接触させ略C字状とし、接触部9を形成してもよい。図6(a)、図6(b)の場合、それぞれ熱電対素線3a(3b)の側面あるいは端面を突き合わせて接触させるが、上下に対向させないため、溶接後の接点の高さは素線径よりも低く、溶接部は加圧力により平面部形状を矩形状にすることができ、このときの断面形状は、断面の側面中央が僅かに外側に広がった形状の断面となる。また、図示しないが、図6(a)、図6(b)のように位置合わせを行なうことは、X字型溶接の場合と比較して、位置合わせが難しいため、先端部の位置部を仮止め溶接するとか、軽く捻り接触させた後に溶接したりすることもできる。これらの場合においても測温部平面を矩形状にすることができる。以上のように、接触面双方が溶融して素線径より若干薄い接点となるが、これらの場合にも同様の溶接接点が形成できる。さらに、C型接触の場合でも、先端を極僅かに潰して、潰した部分を重ねて溶接することも可能である。この場合でも、平面部が略矩形状である溶接接点が得られる。なお、熱電対素線の端部を重ねて溶接する場合には、重ねられる熱電対素線が完全に同一線上に重ねられなくてもよく、それぞれの軸線方向が多少の角度となるように重ねられてもよい。   Further, as shown in FIG. 6 (b), it is provided side by side in a direction perpendicular to the sandwiching direction of the electrodes 11a and 11b, and the end faces of the thermocouple wires 3a and 3b are brought into contact with each other to be substantially C-shaped, The contact portion 9 may be formed. In the case of FIG. 6A and FIG. 6B, the side surface or end surface of the thermocouple element 3a (3b) is abutted and brought into contact with each other. It is lower than the diameter, and the welded portion can be formed into a rectangular shape by applying pressure, and the cross-sectional shape at this time is a cross-section having a shape in which the center of the side surface of the cross-section slightly extends outward. Although not shown in the drawing, positioning as shown in FIGS. 6 (a) and 6 (b) is difficult compared with the case of X-shaped welding. It is also possible to perform welding by temporarily fixing or welding after lightly twisting contact. Also in these cases, the temperature measuring unit plane can be rectangular. As described above, both contact surfaces are melted to form contacts that are slightly thinner than the wire diameter. In these cases, similar weld contacts can be formed. Further, even in the case of C-type contact, it is also possible to smash the tip very slightly and to overlap and weld the crushed portions. Even in this case, a welding contact having a substantially rectangular plane portion is obtained. In addition, when the end portions of thermocouple wires are overlapped and welded, the thermocouple wires to be overlapped do not have to be completely overlapped on the same line, and are overlapped so that the respective axial directions are at a slight angle. May be.

次に、熱電対の使用方法について説明する。図7は、電子部品17aを示す図であり、図7(a)は平面図、図7(b)は正面図である。電子部品17aは、いわゆるQFP(Quad Flat Package)であり、四方に複数の接続端子19が形成される。接続端子19は、基板等に対してそれぞれ半田接合される。ここで、接続端子19の幅w1としては、例えば、0.2〜0.25mm程度である。   Next, a method for using a thermocouple will be described. 7A and 7B are diagrams showing the electronic component 17a, where FIG. 7A is a plan view and FIG. 7B is a front view. The electronic component 17a is a so-called QFP (Quad Flat Package), and a plurality of connection terminals 19 are formed on four sides. The connection terminals 19 are soldered to the substrate or the like. Here, the width w1 of the connection terminal 19 is, for example, about 0.2 to 0.25 mm.

図7(c)は図7(b)のB部拡大図である。熱電対1は、半田温度を計測、制御するため、例えば接続端子19に直接設置される。被測温部23(接続端子19の測温対象部位)上には、測温部5の平面部が接触するように配置され、固定部材21で被覆固定される。固定部材21としては、耐熱接着テープ、ペースト状の樹脂やAgペーストなどが用いられる。固定部材21としては、測定時に熱電対を固定でき、また、容易に熱電対が撤去でき、雰囲気温度等の影響を抑制することができればよい。   FIG.7 (c) is the B section enlarged view of FIG.7 (b). For example, the thermocouple 1 is directly installed on the connection terminal 19 in order to measure and control the solder temperature. On the temperature measurement part 23 (temperature measurement object part of the connection terminal 19), it arrange | positions so that the plane part of the temperature measurement part 5 may contact, and the covering member is fixed by the fixing member 21. As the fixing member 21, a heat resistant adhesive tape, a paste-like resin, an Ag paste, or the like is used. The fixing member 21 only needs to be able to fix the thermocouple during measurement, easily remove the thermocouple, and suppress the influence of the ambient temperature and the like.

測温部5は、熱電対素線3a(3b)の線径の2倍程度の幅(長さ)であるため、例えば、0.08〜0,13mmφの熱電対素線を用いれば、概ね0.16〜0.26mm程度の大きさである。したがって、微細な接続端子19上にも設置が可能であり、隣り合う他の接続端子等に短絡することもない。   Since the temperature measuring unit 5 has a width (length) about twice the wire diameter of the thermocouple wire 3a (3b), for example, if a thermocouple wire of 0.08 to 0,13 mmφ is used, The size is about 0.16 to 0.26 mm. Therefore, it can be installed on the fine connection terminals 19 and is not short-circuited to other adjacent connection terminals.

図8は、同様にBGA(Ball Grid Array)である電子部品17bを示す図である。電子部品17bの下面には、複数の半田ボール25が形成される。半田ボール25の幅w2は、0.2〜0.3mm程度である。したがって、このような半田ボール25に対しても、熱電対1の測温部5は十分に小さく、確実に測温することができる。   FIG. 8 is a diagram showing an electronic component 17b that is also a BGA (Ball Grid Array). A plurality of solder balls 25 are formed on the lower surface of the electronic component 17b. The width w2 of the solder ball 25 is about 0.2 to 0.3 mm. Therefore, the temperature measuring part 5 of the thermocouple 1 is sufficiently small even with respect to such a solder ball 25, and the temperature can be reliably measured.

以上、本実施の形態によれば、平面が形成される微小な測温部を有する熱電対を容易に得ることができる。また、溶接と押しつぶしを同時に行うため、工程が簡潔であり、パルス電流による溶接と相まって、測温部5を極めて微小に形成することができる。また、確実に平面部を有する測温部を形成可能である。   As described above, according to the present embodiment, it is possible to easily obtain a thermocouple having a minute temperature measuring unit on which a plane is formed. Moreover, since welding and crushing are performed simultaneously, the process is simple, and the temperature measuring unit 5 can be formed very minutely in combination with welding by a pulse current. Further, it is possible to reliably form a temperature measuring part having a flat part.

測温部5は、厚さが熱電対素線と略同等であるため、被測温部に設置した際に、測温部の浮き上がりがない。また、測温部は微小であるため熱容量も小さく、さらに面接触するために、熱の応答性に優れ、固定部材等により容易に被覆することができるため、雰囲気の影響も受けにくい。このため、従来の熱電対精度(±2℃)に対して±1℃程度の高精度な測温が可能である。   Since the temperature measuring unit 5 is substantially the same in thickness as the thermocouple wire, the temperature measuring unit does not rise when installed in the temperature measured unit. In addition, since the temperature measuring unit is minute, the heat capacity is small, and furthermore, since it is in surface contact, it has excellent heat responsiveness and can be easily covered with a fixing member or the like, so that it is hardly affected by the atmosphere. For this reason, high-precision temperature measurement of about ± 1 ° C. is possible with respect to the conventional thermocouple accuracy (± 2 ° C.).

また。電極の先端が縮径するように形成されることで、被溶接部位への通電を最小限に抑え、さらに、被接合部である熱電対素線との接触部に逃げ部を形成することで、集中電流の流れ込みを抑制することができる。このため、熱電対素線の溶断等を防止することができる。   Also. By forming the tip of the electrode to have a reduced diameter, it is possible to minimize energization to the welded part and to form a relief part at the contact part with the thermocouple wire that is the joined part , The flow of concentrated current can be suppressed. For this reason, the fusion | melting etc. of a thermocouple strand can be prevented.

また、電極先端が縮径するため、熱電対素線の溶接状態を容易に視認できる。このため、例えば、熱電対素線の余長部等を目視で確認しながら、パルス電流を通電し、余長部が動いた時点を溶接時と判断することもできる。   In addition, since the tip of the electrode is reduced in diameter, the welding state of the thermocouple wire can be easily visually confirmed. For this reason, for example, it is also possible to determine that the welding time is the time when the surplus length portion is moved by applying a pulse current while visually confirming the surplus length portion or the like of the thermocouple wire.

以上のように、微細かつ平面を有する測温部によって、微細な電子部品の半田条件(温度)をより正確に把握することができ、温度条件による電子部品の半田不良等を防止することができる。特に、加圧しながらパルス電流を負荷するため測温部の体積および形状の制御が容易であり、また、測温部の平面が略矩形であるため、測温部と被測温部との接触面積が同一であれば、円形に対して、測温部の全幅(全長)を小さくすることができ、より微細な被測温部に対応可能である。   As described above, the soldering condition (temperature) of the minute electronic component can be grasped more accurately by the temperature measuring unit having a fine and flat surface, and the defective soldering of the electronic component due to the temperature condition can be prevented. . In particular, it is easy to control the volume and shape of the temperature measuring unit because a pulse current is applied while applying pressure. Also, since the temperature measuring unit has a substantially rectangular plane, the temperature measuring unit and the temperature measuring unit are in contact with each other. If the area is the same, the entire width (full length) of the temperature measuring unit can be reduced with respect to the circular shape, and it is possible to deal with a finer temperature-measured unit.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

たとえば、パルス電流の各段階は、常に一定電流幅で上昇させる必要はなく、段階ごとに上げ幅を変化させてもよい。また、所定段階において、同一電流値で複数回のパルス電流を付与してもよい。一定電流を連続して流す場合と比較して、パルス電流とすることで、急激な加熱および溶融を防止することができ、溶融状態を制御することができる。なお、本発明は、Kタイプ熱電対のみならず、他の種類であるEタイプやJタイプ、Tタイプなどいずれの熱電対の種類にも適用可能であることは言うまでもない。   For example, each step of the pulse current need not always be increased at a constant current width, and the increase width may be changed for each step. In addition, at a predetermined stage, a plurality of pulse currents may be applied with the same current value. Compared with the case where a constant current is continuously supplied, by using a pulse current, rapid heating and melting can be prevented, and the melting state can be controlled. Needless to say, the present invention can be applied not only to K type thermocouples but also to other types of thermocouples such as E type, J type, and T type.

1………熱電対
3a、3b………熱電対素線
5………測温部
7………被覆部
9………接触部
11a、11b………電極
13………テーパ部
15………逃げ部
16………余長部
17a、17b………電子部品
19………接続端子
21………固定部材
23………被測温部
25………半田ボール
30………熱電対
31a、31b………熱電対素線
33………測温部
35………固定部材
37………被測温部
1 ..... Thermocouple 3a, 3b ..... Thermocouple element 5 ..... Temperature measuring part 7 ..... Covering part 9 ..... Contact part 11a, 11b ..... Electrode 13 ....... Taper part 15 ... ... Escape part 16 ......... Excess length parts 17a, 17b ......... Electronic component 19 ......... Connection terminal 21 ......... Fixing member 23 ......... Temperature measured part 25 ......... Solder ball 30 ......... Thermoelectric Pairs 31a, 31b ......... thermocouple wire 33 ......... temperature measuring unit 35 ......... fixing member 37 ...... temperature-measured unit

Claims (9)

測温部に平面部を有する熱電対の製造方法であって、
一対の熱電対素線の先端近傍を接触させ、
前記熱電対素線同士の接触部を一対の電極で挟み込み、
前記一対の電極によって前記接触部に荷重を負荷しつつ、前記一対の電極の間にパルス電流を複数回通電し、前記接触部を加圧しながら溶接することを特徴とする熱電対の製造方法。
A method of manufacturing a thermocouple having a flat surface portion in a temperature measuring portion,
Contact the vicinity of the tip of a pair of thermocouple wires,
The contact portion between the thermocouple wires is sandwiched between a pair of electrodes,
A method of manufacturing a thermocouple, wherein a load is applied to the contact portion by the pair of electrodes, a pulse current is passed between the pair of electrodes a plurality of times, and the contact portion is welded while being pressed.
前記パルス電流は、段階的に電流値が高くなるように各段階で一パルス以上の電流を複数段階通電することを特徴とする請求項1記載の熱電対の製造方法。   2. The method of manufacturing a thermocouple according to claim 1, wherein a plurality of stages of currents of one pulse or more are applied in each stage so that the current value of the pulse current increases in stages. 前記パルス電流の最終段階前の段階において、前記接触部を仮止めし、前記パルス電流の最終段階において前記接触部における全断面を溶接することを特徴とする請求項2記載の熱電対の製造方法。   3. The method of manufacturing a thermocouple according to claim 2, wherein the contact portion is temporarily fixed before the final stage of the pulse current, and the entire cross section of the contact portion is welded at the final stage of the pulse current. . 前記接触部に荷重を負荷する前記一対の電極の間の間隙が、前記熱電対素線の線径と略同等よりも狭くならないように制御されることを特徴とする請求項1から請求項3のいずれかに記載の熱電対の製造方法。   The gap between the pair of electrodes for applying a load to the contact portion is controlled so as not to be narrower than the wire diameter of the thermocouple wire. The manufacturing method of the thermocouple in any one of. 前記一対の熱電対素線を、前記一対の電極の挟持方向に対して略垂直な方向に併設して接触させ、前記接触部に荷重を負荷する前記一対の電極の間の間隙が前記熱電対素線の線径よりも狭くなるように制御することを特徴とする請求項1から請求項3のいずれかに記載の熱電対の製造方法。   The pair of thermocouple wires are brought into contact with each other in a direction substantially perpendicular to the holding direction of the pair of electrodes, and a gap between the pair of electrodes that applies a load to the contact portion is the thermocouple. The method of manufacturing a thermocouple according to any one of claims 1 to 3, wherein control is performed so that the wire diameter is narrower than a wire diameter. 前記一対の電極の一方の側の電極は、前記接触部に対して十分に広い平面部を有する平面電極であり、他方の側の電極の少なくとも一方の側面は、先端に行くにつれて幅狭状となるように形成されており、前記他方の側の電極の端縁部の少なくとも一部には断面曲線状の逃げ部が形成されることを特徴とする請求項1から請求項5のいずれかに記載の熱電対の製造方法。   The electrode on one side of the pair of electrodes is a plane electrode having a plane portion that is sufficiently wide with respect to the contact portion, and at least one side surface of the electrode on the other side is narrower toward the tip. 6. The relief portion having a curved cross-section is formed in at least a part of the edge portion of the electrode on the other side. 6. The manufacturing method of the thermocouple of description. 前記熱電対素線を前記一対の電極に挟みこむ際に、前記熱電対素線が前記逃げ部に位置するように、前記接触部を前記一対の電極の間に配置することを特徴とする請求項6記載の熱電対の製造方法。   The contact portion is disposed between the pair of electrodes so that the thermocouple strand is positioned at the escape portion when the thermocouple strand is sandwiched between the pair of electrodes. Item 7. A method for manufacturing a thermocouple according to Item 6. 請求項1から請求項7のいずれかに記載の熱電対の製造方法を用いて製造され、測温部に平面部を有することを特徴とする熱電対。   A thermocouple manufactured using the method of manufacturing a thermocouple according to claim 1, wherein the thermometer has a flat surface portion. 前記熱電対の測温部の厚さが熱電対素線の線径と略同じであり、前記測温部の幅が、前記熱電対素線の線径の2倍以下であることを特徴とする請求項8記載の熱電対。   The thickness of the temperature measuring part of the thermocouple is substantially the same as the wire diameter of the thermocouple wire, and the width of the temperature measuring part is not more than twice the wire diameter of the thermocouple wire. The thermocouple according to claim 8.
JP2010103862A 2010-04-28 2010-04-28 Manufacturing method of thermocouple and thermocouple Pending JP2011232232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103862A JP2011232232A (en) 2010-04-28 2010-04-28 Manufacturing method of thermocouple and thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103862A JP2011232232A (en) 2010-04-28 2010-04-28 Manufacturing method of thermocouple and thermocouple

Publications (1)

Publication Number Publication Date
JP2011232232A true JP2011232232A (en) 2011-11-17

Family

ID=45321681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103862A Pending JP2011232232A (en) 2010-04-28 2010-04-28 Manufacturing method of thermocouple and thermocouple

Country Status (1)

Country Link
JP (1) JP2011232232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932069A (en) * 2019-03-20 2019-06-25 广州市圣高测控科技有限公司 A kind of refractory surfaces thermocouple structure
JP2019132726A (en) * 2018-01-31 2019-08-08 株式会社デンソー Temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132726A (en) * 2018-01-31 2019-08-08 株式会社デンソー Temperature sensor
CN109932069A (en) * 2019-03-20 2019-06-25 广州市圣高测控科技有限公司 A kind of refractory surfaces thermocouple structure

Similar Documents

Publication Publication Date Title
JP6217226B2 (en) Thermal mass flow meter, mass flow controller, and thermal mass flow meter manufacturing method
US20100085141A1 (en) Fuse for interrupting a voltage and/or current-carrying conductor in case of a thermal fault and method for producing the fuse
US20190143459A1 (en) Brazing gap spacing apparatus and method
TW201409517A (en) Fuse element for protective element and circuit protection element utilizing the same
US4003014A (en) Refractory resistance terminal
MX2014010010A (en) Method for carrying out solder connections in a technologically optimized manner.
JP2011232232A (en) Manufacturing method of thermocouple and thermocouple
JP2017062945A (en) Heater chip, joining device and joining method
JP3454055B2 (en) Connection structure and connection method of insulated wire
JP2008073728A (en) Joining method of metallic member
JP4224050B2 (en) Heater chip thermocouple mounting structure and thermocouple mounting method
JP6034710B2 (en) Electric wire fuse and method of manufacturing electric wire fuse
US20210379686A1 (en) Welding Method For Connecting A First Connector To A Second Connector, The Use Of The Welding Method, And A Welded Connection
JP2011070847A (en) Welding structure to bus bar and welding method to bus bar
WO2017022565A1 (en) Thermocouple mounting structure and thermocouple mounting method
JP6286176B2 (en) Manufacturing method of fuse fuse
JP2017228430A (en) Spark plug
JP2012058129A5 (en)
JP2012058129A (en) Contactor and method of manufacturing the same
JP2022146324A (en) Sleeve type electrode and joining method with use of sleeve type electrode
JP2010140672A (en) Joint structure
GB2239827A (en) Method for joining conductor parts of an electric switch component
JP2013214519A (en) Method of manufacturing joint structure
TW202045931A (en) Probe and manufacturing method thereof
JP5396304B2 (en) Manufacturing method of thermal fuse with resistance