JP2013214519A - Method of manufacturing joint structure - Google Patents
Method of manufacturing joint structure Download PDFInfo
- Publication number
- JP2013214519A JP2013214519A JP2013118079A JP2013118079A JP2013214519A JP 2013214519 A JP2013214519 A JP 2013214519A JP 2013118079 A JP2013118079 A JP 2013118079A JP 2013118079 A JP2013118079 A JP 2013118079A JP 2013214519 A JP2013214519 A JP 2013214519A
- Authority
- JP
- Japan
- Prior art keywords
- joint structure
- copper
- copper wire
- tin
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
Description
本発明は、良好な機械的品質が要求される接合部構造に関するものであり、特に樹脂絶縁体により被覆された銅製ワイヤと、この銅製ワイヤの周囲を囲むように配置された帯状の銅製端子とを熱かしめ接合した接合部の構造に関するものである。 The present invention relates to a joint structure that requires good mechanical quality, and in particular, a copper wire coated with a resin insulator, and a strip-shaped copper terminal disposed so as to surround the copper wire. It is related with the structure of the junction part which carried out the heat caulking joining.
モータやスピーカなどの結線工程や端子接合工程において、樹脂絶縁体により被覆された銅製ワイヤと、この銅製ワイヤの周囲を囲むように配置された帯状の銅製端子とを熱かしめして接合する接合部構造が使用されている。この熱かしめ接合には、ヒュージングといわれる工法が用いられる。被覆つき銅製ワイヤは、その表面が絶縁被覆されているために通常の抵抗溶接では溶接できない。そのため、銅製ワイヤの周囲に銅製端子を巻くようにかしめた上で、銅製端子を一対の電極で挟み込み、電極間に第1の電流、第2の電流を流して、加熱しながら加圧する。これにより、銅製ワイヤの被覆が溶けて芯線が剥き出しになり、銅製ワイヤと銅製端子とが直接接合される。このようなヒュージング工法においては、被覆除去作業が不要であり、ネジや接着剤などを使わないので、低コスト、高生産効率の接合方法として使用されている。 Bonding part that heats and joins a copper wire covered with a resin insulator and a strip-shaped copper terminal that surrounds the copper wire in the connection process and terminal bonding process of motors, speakers, etc. Structure is used. For this heat caulking, a method called fusing is used. The coated copper wire cannot be welded by ordinary resistance welding because its surface is insulated. Therefore, after crimping so that a copper terminal may be wound around a copper wire, a copper terminal is inserted | pinched with a pair of electrodes, a 1st electric current and a 2nd electric current are sent between electrodes, and it pressurizes, heating. Thereby, the coating of the copper wire is melted and the core wire is exposed, and the copper wire and the copper terminal are directly joined. In such a fusing method, no coating removal work is required, and no screws or adhesives are used. Therefore, the fusing method is used as a low cost and high production efficiency joining method.
従来、ヒュージング接合部の信頼性を確保するために、構造上、製造プロセス上の研究がなされてきた。たとえば、複数のワイヤをより線とし、複数のフックで接続する構成が特許文献1に提案されている。また端子の形状を切り欠き形状とし、端子やワイヤのつぶれ量が安定するような構造が、特許文献2に提案されている。 Conventionally, structural and manufacturing processes have been studied to ensure the reliability of the fusing joint. For example, Patent Document 1 proposes a configuration in which a plurality of wires are stranded and connected by a plurality of hooks. Further, Patent Document 2 proposes a structure in which the shape of the terminal is notched and the amount of collapse of the terminal and the wire is stabilized.
しかしながら、従来このような構造上の工夫は見られるものの、熱かしめ後の接合界面としてどのような状態が機械的、電気的に望ましく、信頼性が高いかに関する規定がなかった。先行技術の構造をもちいて接合を行ったとしても、接合界面の状態をコントロールしなければ、かならずしも信頼性が高い接合状態を得ることができない。 However, although such a structural device has been seen in the past, there has been no provision regarding what kind of state is desirable mechanically and electrically as a bonding interface after heat caulking and high reliability. Even if bonding is performed using the structure of the prior art, a highly reliable bonding state cannot be obtained unless the state of the bonding interface is controlled.
本発明は前記の課題を鑑みてなされたものであり、好適な機械的信頼性を有する、被覆つき銅製ワイヤと銅製端子を熱かしめ接合した接合部構造を提供することを目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a joint structure in which a coated copper wire and a copper terminal are joined by heat caulking and having suitable mechanical reliability.
上述した課題を解決し、目的を達成するために、本発明の接合部構造の製造方法は、樹脂絶縁体による被覆を施された棒状の銅製ワイヤに錫めっきが施された帯状の銅製端子をかしめて接合部構造をなす工程と、前記接合部構造を両側から2つの電極で挟みこんで電圧を印加することにより前記被覆を溶融除去する工程と、前記溶融除去する工程の後に、前記接合部構造を両側から2つの電極で押圧しつつ通電して、前記銅製ワイヤが初期の直径の55〜65%になるまで加圧する工程と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the manufacturing method of the joint structure of the present invention includes a strip-shaped copper terminal obtained by tin-plating a rod-shaped copper wire coated with a resin insulator. After the step of caulking to form a joint structure, the step of melting and removing the coating by sandwiching the joint structure between two electrodes from both sides and applying a voltage, and the step of melting and removing, the joint portion And a step of pressing the structure while pressing it with two electrodes from both sides to pressurize the copper wire to 55 to 65% of the initial diameter.
この発明に係る接合部構造によれば、機械的、電気的に好適で、信頼性が高い接合部構造とすることができる。 According to the joint structure according to the present invention, a joint structure that is mechanically and electrically suitable and has high reliability can be obtained.
以下、本発明にかかる接合部構造の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
[実施の形態]
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a joint structure according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[Embodiment]
図1は、本発明にかかる接合部構造の実施の形態を示す銅製ワイヤに巻かれてかしめられる銅製端子の様子を示す斜視図である。本実施の形態の接合部構造100は、加熱により溶融する被覆1bが施された長尺棒状の銅製ワイヤ(第1の接合部材)1と、錫めっきが施され銅製ワイヤ1に熱かしめされる長尺細長板状の銅製端子(第2の接合部材)2とを有している。銅製端子2は、端部をU字状に折り曲げられて銅製ワイヤ1の周囲を囲むようにして巻かれて銅製ワイヤ1にかしめられる。このような構造によって接合される銅製ワイヤ1と銅製端子2とから成る接合部構造100は、モータやスピーカなどの結線部や端子接合部に用いられる。 FIG. 1 is a perspective view showing a state of a copper terminal wound around a copper wire and showing an embodiment of the joint structure according to the present invention. In the joint structure 100 of the present embodiment, a long bar-shaped copper wire (first joining member) 1 provided with a coating 1b that melts by heating, and tin plating is applied to the copper wire 1 to be heat staked. It has a long thin plate-like copper terminal (second joining member) 2. The copper terminal 2 is wound around the copper wire 1 so that the end of the copper terminal 2 is bent into a U-shape and surrounds the copper wire 1. The joint structure 100 composed of the copper wire 1 and the copper terminal 2 joined by such a structure is used for connection parts and terminal joint parts such as motors and speakers.
図2は、銅製端子2が銅製ワイヤ1の周囲に巻かれてかしめられる手順を示す図1の矢印A方向から見た模式図である。図3は、接合部構造100が加圧されるとともに電圧が印加され第1の電流が流れる様子を示す模式図である。図4は、接合部構造100にさらに加圧されて銅製端子2が銅製ワイヤ1にかしめられるとともに電圧が印加され第2の電流が流れる様子を示す模式図である。銅製ワイヤ1は、銅製のワイヤ芯線1aが、ポリイミド或いはポリウレタンなどの樹脂絶縁体により被覆されて構成されている。一方、銅製端子2は、帯状の芯材に錫めっきが施されて構成されている。このような構成の接合部構造100においては、銅製ワイヤ1は、その表面が被覆1bにより絶縁されているために通常の抵抗溶接では溶接することができない。そのため、背景技術にて述べたように銅製ワイヤ1と銅製端子2とを熱かしめするヒュージングといわれる工法が使用される。この工法においては、図2に示すように、銅製ワイヤ1に銅製端子2をかしめた後、加熱しながら加圧する。 FIG. 2 is a schematic view seen from the direction of arrow A in FIG. 1 showing a procedure in which the copper terminal 2 is wound around the copper wire 1 and caulked. FIG. 3 is a schematic diagram showing a state in which a first current flows when a voltage is applied while the junction structure 100 is pressurized. FIG. 4 is a schematic view showing a state in which a second current flows when a voltage is applied while the copper terminal 2 is crimped to the copper wire 1 by being further pressurized to the joint structure 100. The copper wire 1 is configured by covering a copper wire core 1a with a resin insulator such as polyimide or polyurethane. On the other hand, the copper terminal 2 is configured by tin-plating a strip-shaped core material. In the joint structure 100 having such a configuration, the copper wire 1 cannot be welded by normal resistance welding because the surface thereof is insulated by the coating 1b. Therefore, as described in the background art, a method called fusing that heats the copper wire 1 and the copper terminal 2 is used. In this method, as shown in FIG. 2, after crimping a copper terminal 2 on a copper wire 1, the pressure is applied while heating.
上記工法は2工程に分かれる。まず、最初の工程については、図3に示すように、銅製ワイヤ1に銅製端子2をかしめた接合部構造100を、2つの電極30,30で挟み込み、両電極30,30間に電源20からの電圧を印加する。このとき、まず、図3中矢印Bで示すように所望の電流(第1の電流)が流れる。すると、この第1の電流によるジュール熱で銅製ワイヤ1の被覆1bが溶融する。これにより、被覆1bが除去されて、ワイヤ芯線1aが剥き出しになり、ワイヤ芯線1aと銅製端子2とが直接接触する。 The above construction method is divided into two steps. First, as shown in FIG. 3, as shown in FIG. 3, a joint structure 100 in which a copper terminal 2 is crimped on a copper wire 1 is sandwiched between two electrodes 30, 30, and a power source 20 is connected between both electrodes 30, 30. Apply a voltage of. At this time, first, a desired current (first current) flows as shown by an arrow B in FIG. Then, the coating 1b of the copper wire 1 is melted by Joule heat generated by the first current. Thereby, the coating 1b is removed, the wire core wire 1a is exposed, and the wire core wire 1a and the copper terminal 2 are in direct contact.
次の工程については、図4に示すように、銅製ワイヤ1の被覆1bが除去された接合部構造100に対して、2つの電極30,30で両側部からさらに押圧する。この加圧により、銅製ワイヤ1及び銅製端子2がつぶれ、銅製ワイヤ1と銅製端子2とが密着する。このとき、銅製ワイヤ1と銅製端子2との間に図4中矢印Cで示すように所望の電流(第2の電流)が流れる。すると、この第2の電流によるジュール熱で銅製ワイヤ1と銅製端子2との接合界面の拡散が促進する。 About the next process, as shown in FIG. 4, it presses further from both sides with the two electrodes 30 and 30 with respect to the junction structure 100 from which the coating 1b of the copper wire 1 was removed. By this pressurization, the copper wire 1 and the copper terminal 2 are crushed, and the copper wire 1 and the copper terminal 2 are brought into close contact with each other. At this time, a desired current (second current) flows between the copper wire 1 and the copper terminal 2 as indicated by an arrow C in FIG. Then, the diffusion of the bonding interface between the copper wire 1 and the copper terminal 2 is promoted by the Joule heat generated by the second current.
そして、本実施の形態の接合部構造100は、熱かしめ接合後の銅製ワイヤ1と銅製端子2の界面の錫組成比が、界面の垂直方向の距離で積分した積分値で、0.25〜4.95原子パーセント・マイクロメートルである。この特徴により、本実施の形態の接合部構造100は、好適な機械的信頼性を有する。 And the junction part structure 100 of this Embodiment is an integrated value which the tin composition ratio of the interface of the copper wire 1 and the copper terminal 2 after heat caulking joining integrated with the distance of the orthogonal | vertical direction of the interface. 4.95 atomic percent micrometer. Due to this feature, the joint structure 100 according to the present embodiment has suitable mechanical reliability.
たとえば、モータのリード線や、コイル巻線に用いる銅製ワイヤ1の場合、直径は0.2〜2.0ミリメートル程度であり、銅製端子2の板厚は0.4〜3.0ミリメートル程度である。また、主に銅製端子2の防錆を目的にめっきされた錫の膜厚は1〜5マイクロメートル程度である。 For example, in the case of a copper wire 1 used for a motor lead wire or coil winding, the diameter is about 0.2 to 2.0 mm, and the thickness of the copper terminal 2 is about 0.4 to 3.0 mm. is there. Moreover, the film thickness of tin plated mainly for the purpose of preventing rust of the copper terminal 2 is about 1 to 5 micrometers.
銅製ワイヤ1及び銅製端子2の寸法や、被覆材料の融点、熱伝導係数などの違いによって、上記のような所望の界面状態(界面組成)を得るためには、接合時の通電加熱量を電流値や通電時間で調整する必要がある。これらのパラメータ値はそれぞれのプロセスで最適化される必要がある。しかしながら、重要な点は、接合後に接合界面の組成がどのように仕上がっているかであり、上記所望の錫組成比が得られておれば、部材の寸法や被覆材料の種類、及び通電加熱のための接合条件は特に実施の形態に限定されるものではない。 In order to obtain the desired interface state (interface composition) as described above depending on the dimensions of the copper wire 1 and the copper terminal 2, the melting point of the coating material, the thermal conductivity coefficient, etc., the current-carrying heating amount at the time of bonding is determined by the current. It is necessary to adjust the value and energization time. These parameter values need to be optimized in each process. However, the important point is how the composition of the joining interface is finished after joining, and if the desired tin composition ratio is obtained, the dimensions of the member, the type of coating material, and the current heating The joining conditions are not particularly limited to the embodiment.
以下に具体的な実施例に基づき比較例も交えてその構成及び効果に関して説明する。
[実施例1]
The configuration and effects will be described below with reference to specific examples and comparative examples.
[Example 1]
図5は、実施例1の接合部構造の接合部断面の電子顕微鏡写真の図である。図5において、銅製ワイヤ1は接合前には樹脂絶縁体の被覆が施されていたが、接合後は被覆が溶融、気化され、銅製端子2と銅製ワイヤ1の接合界面Dは金属同士が直接接合していることが分かる。 FIG. 5 is an electron micrograph of a cross-section of the joint portion of the joint structure of Example 1. In FIG. 5, the copper wire 1 was coated with a resin insulator before bonding, but after bonding, the coating was melted and vaporized, and the bonding interface D between the copper terminal 2 and the copper wire 1 was made directly between metals. It can be seen that they are joined.
図5における接合界面Dの組成を以下のようにして計測した。サンプル101の断面を包埋研磨、及び導電処理(金スパッタ)し、サブミクロンオーダの微小領域を計測できるオージェ電子分光分析法(AES:AugerElectronSpectroscopy)で主成分の銅および錫の組成線分析を行った。なお、この組成線分析は、図5に破線で四角く囲う領域(界面の長手方向中央部位置)Eを計測箇所とし、矢印Fで示す計測方向(界面を垂直に横切る方向)により行った。計測箇所は、銅製ワイヤ1の長径中心から決定した。 The composition of the bonding interface D in FIG. 5 was measured as follows. The cross section of sample 101 is embedded and polished, and conductive treatment (gold sputtering) is performed, and the composition line analysis of the main components copper and tin is performed by Auger Electron Spectroscopy (AES), which can measure a sub-micron micro area. It was. The composition line analysis was performed in the measurement direction (direction perpendicular to the interface) indicated by an arrow F with the region E (longitudinal center position of the interface) E enclosed by a broken line in FIG. The measurement location was determined from the center of the long diameter of the copper wire 1.
図6は、実施例1の接合界面の錫の組成を示す図である。図6において、縦軸は錫の組成比(単位:原子パーセント)を示し、横軸は界面を横切る方向の距離(単位:μm)を示す。本実施例においては、図6に示される、界面の中央部位置の錫の組成比(組成分布)Gに着目した。AES計測装置はULVAC-PHI製SMART-200を用い、AESの計測条件は一次入射電子15kV−10nA、エッチングレート約6nm/分で実施した。 6 is a view showing the composition of tin at the bonding interface in Example 1. FIG. In FIG. 6, the vertical axis represents the tin composition ratio (unit: atomic percent), and the horizontal axis represents the distance across the interface (unit: μm). In this example, attention was focused on the composition ratio (composition distribution) G of tin at the center position of the interface shown in FIG. The AES measurement apparatus used was SMART-200 manufactured by ULVAC-PHI, and the AES measurement conditions were primary incident electrons of 15 kV-10 nA and an etching rate of about 6 nm / min.
図6に示す錫の組成分布Gを、界面を横切る方向の距離で積分した量(積分値)Hを求め、これを積分組成値と定義し、接合界面における錫の残存量の指標とした。図6の組成の積分値Hは3.53(単位:原子パーセント・μm、以下同じ)であった。 An amount (integrated value) H obtained by integrating the tin composition distribution G shown in FIG. 6 by the distance in the direction across the interface was determined and defined as an integrated composition value, which was used as an index of the remaining amount of tin at the bonding interface. The integrated value H of the composition in FIG. 6 was 3.53 (unit: atomic percent · μm, the same applies hereinafter).
本実施例のサンプル101は、実施の形態の図1及び図2で示す手順により、以下のような材料及び接合プロセスによって作製した。まず、表面に錫めっき(厚さ約3μm)が施された銅を母材とする銅製端子(板厚1mm)2をU字型に曲げ、その内側に、銅をワイヤ芯線1aとするエナメルの被覆つき銅製ワイヤ(直径φ1.2mm)1を配置した。そして、この銅製ワイヤ1の外面より、成形用のジグ(図示せず)で機械的にかしめて予備成形した。 The sample 101 of this example was manufactured by the following material and bonding process according to the procedure shown in FIGS. 1 and 2 of the embodiment. First, a copper terminal (plate thickness 1 mm) 2 having copper as a base material with tin plating (thickness of about 3 μm) on the surface is bent into a U-shape, and copper is used as the wire core wire 1a on the inner side. A coated copper wire (diameter φ 1.2 mm) 1 was placed. And from the outer surface of the copper wire 1, it was preliminarily formed by mechanically caulking with a forming jig (not shown).
次に、実施の形態の図3及び図4に示したように銅製端子2の外面部両側から、通電用電極30(タングステン製)を約350Nの力で押し当てるとともに、図7のプロファイルで第1の電流I1及び第2の電流I2を通電し、銅製ワイヤ1のつぶれ量が初期の直径の約60%(1.2mm×0.6=0.72mm)になるように電極を位置制御しながら加圧した。通電終了後、通電用電極30による加圧を保持したまま、通電用電極30を水冷しながら十分低い温度(Cu-Snの共晶温度227℃以下)まで冷却した。通電終了後からの冷却時間は500msであった。 Next, as shown in FIGS. 3 and 4 of the embodiment, the current-carrying electrode 30 (made of tungsten) is pressed with a force of about 350 N from both sides of the outer surface portion of the copper terminal 2, and the profile of FIG. 1 current I1 and 2nd current I2 are applied, and the position of the electrode is controlled so that the collapse amount of the copper wire 1 is about 60% of the initial diameter (1.2 mm × 0.6 = 0.72 mm). The pressure was applied. After the energization was completed, the energization electrode 30 was cooled to a sufficiently low temperature (Cu—Sn eutectic temperature of 227 ° C. or lower) while water-cooling the energization electrode 30 while maintaining the pressure applied by the energization electrode 30. The cooling time after the end of energization was 500 ms.
サンプル101の引張試験は、以下のように行った。銅製ワイヤ1と銅製端子2で成るサンプル101を図9のように配置し、サンプル下端部をワイヤ下部把持用チャック202に固定し、上端部を固定治具204に係合させ、固定治具204を上方に移動するように付勢して、サンプル101に引張荷重を与えた。引張試験装置は島津製作所製オートグラフDCS-25Tを用い、引張速度は20mm/分で実施した。以上の方法により、サンプル101の接合部構造が破断するまで荷重を与え、図10に示すような振動劣化前の荷重-変位特性(初期の応力−変位特性)41を得た。ここで、荷重の最大値を引張強度40と定義した。 The tensile test of the sample 101 was performed as follows. A sample 101 composed of the copper wire 1 and the copper terminal 2 is arranged as shown in FIG. 9, the lower end portion of the sample is fixed to the wire lower gripping chuck 202, and the upper end portion is engaged with the fixing jig 204. The sample 101 was urged to move upward, and a tensile load was applied to the sample 101. As the tensile test apparatus, Shimadzu Autograph DCS-25T was used, and the tensile speed was 20 mm / min. By the above method, a load was applied until the joint structure of the sample 101 was broken, and a load-displacement characteristic (initial stress-displacement characteristic) 41 before vibration deterioration as shown in FIG. 10 was obtained. Here, the maximum value of the load was defined as a tensile strength of 40.
次に、振動劣化前の引張試験を実施したサンプル101と同等のサンプルに後述の方法で振動負荷を与え、その後、引張試験を行って、荷重-変位特性(振動劣化後の応力−変位特性)42を得た。本実施例のサンプルでは、振動劣化前後で荷重-変位特性に大きな変化はなく、また当然のことながら、振動負荷を与えている最中での接合界面D(図8)や端子根元部J(図8)の銅製ワイヤ1の破断もなかった。このようなことから、製品が市場に出て振動、衝撃の外乱を受けた場合においても、出荷時と同等の良好な接合品質が得られていることが予想される。 Next, a vibration load is applied to a sample equivalent to the sample 101 subjected to the tensile test before vibration deterioration by the method described later, and then a tensile test is performed to determine load-displacement characteristics (stress-displacement characteristics after vibration deterioration). 42 was obtained. In the sample of this example, there is no significant change in the load-displacement characteristic before and after the vibration deterioration, and, of course, the joint interface D (FIG. 8) and the terminal base J ( There was no breakage of the copper wire 1 in FIG. For this reason, even when the product is put on the market and is subjected to vibration and shock disturbances, it is expected that good bonding quality equivalent to that at the time of shipment is obtained.
錫めっき厚さのばらつき(1〜5μm)を加味してn=24の繰り返しを実施した場合でも、錫組成積分値の範囲は2.64ないし4.95であった。これらのいずれのサンプルも前記代表サンプルと同様の機械的品質が得られた。 Even when the variation of tin plating thickness (1 to 5 μm) was taken into account and n = 24 was repeated, the range of the tin composition integrated value was 2.64 to 4.95. All of these samples had the same mechanical quality as the representative sample.
[比較例1]
以下、比較例との対照により実施例1の効果を説明する。一般的に、導体の銅製ワイヤ1と銅製端子2とを接合する場合には、初期強度を得るために、界面が錫と銅、あるいは銅と銅の金属結合となるような状態が好ましい。たとえば、特許文献3(特開平11−176552)では、銅製端子2のめっき材の錫と銅製ワイヤ1の銅が通電下での加熱拡散より金属的に結合しており、強度の低下を防ぐ構造としている。
[Comparative Example 1]
Hereinafter, the effect of Example 1 is demonstrated by contrast with a comparative example. Generally, when joining the copper wire 1 and the copper terminal 2 of a conductor, in order to obtain initial strength, the state where an interface becomes a metal bond of tin and copper or copper and copper is preferable. For example, in Patent Document 3 (Japanese Patent Application Laid-Open No. 11-176552), a structure in which the tin of the copper terminal 2 and the copper of the copper wire 1 are metallicly bonded by heat diffusion under current conduction to prevent a decrease in strength. It is said.
しかしこのような過剰に通電加熱を行い、銅製ワイヤ1を過剰につぶしてしまうような接合部構造は、市場で振動、衝撃の外乱をうけたときに、特に端子根元部J(図8)で破断しやすくなってしまい、信頼性が著しく低下することがわかった。 However, such a joint structure that excessively energizes and heats and crushes the copper wire 1 excessively, especially when subjected to vibration and shock disturbance in the market, especially at the terminal base J (FIG. 8). It turned out that it became easy to fracture | rupture and it turned out that reliability falls remarkably.
本比較例1の接合部構造をもつ製品が市場に出て、外部から振動・衝撃を受ける状態を模擬するために、図11のように、サンプル101の銅製端子2にばね定数k、質量mのイナーシャを取り付け、サンプル101の下端を加振器206に固定し、外部から矢印Lのように加振して、振動負荷を与える。加振条件は、加振加速度8G、加振時間5分、加振周波数はサンプル101とイナーシャからなる系の固有値と一致させた。 In order to simulate a state in which a product having the joint structure of this comparative example 1 is put on the market and receives vibration and impact from the outside, a spring constant k and mass m are applied to the copper terminal 2 of the sample 101 as shown in FIG. The lower end of the sample 101 is fixed to the vibrator 206, and is vibrated as indicated by an arrow L from the outside to give a vibration load. The vibration conditions were a vibration acceleration of 8G, a vibration time of 5 minutes, and a vibration frequency matched with the eigenvalue of the system composed of the sample 101 and inertia.
図12は、比較例1の接合部構造の接合部断面の電子顕微鏡写真の図である。図13は、比較例1の接合界面の錫の組成を示す図である。図12に示すような接合部構造108においては、接合界面の強固な金属接合を得るために、銅製ワイヤ1は初期の直径の50%以下にまで押しつぶされており、端子根元部J(図8)のワイヤ径もそれにともなって細くなっている。図13に示されるように、本比較例1の構造を示す組成では、錫が接合部から機械的に押し出されたり、拡散したりして、まったく検出されない(錫組成積分値0.00)。このような接合部構造108においては、上記実施例1と同様な振動負荷を与えている最中に端子根元部J(図8)で銅製ワイヤ1が破断した。破断は完全な不良品であるのでサンプルの引張試験は省略した。 12 is an electron micrograph of a cross section of the joint portion of the joint structure of Comparative Example 1. FIG. FIG. 13 is a view showing the composition of tin at the bonding interface in Comparative Example 1. In the joint structure 108 as shown in FIG. 12, in order to obtain a strong metal joint at the joint interface, the copper wire 1 is crushed to 50% or less of the initial diameter, and the terminal base portion J (FIG. 8). ) Wire diameter has also been reduced accordingly. As shown in FIG. 13, in the composition showing the structure of this comparative example 1, tin is mechanically pushed out or diffused from the joint, and is not detected at all (tin composition integral value 0.00). In such a joint structure 108, the copper wire 1 was broken at the terminal root portion J (FIG. 8) during application of the same vibration load as in Example 1. Since the fracture was a completely defective product, the tensile test of the sample was omitted.
錫めっき厚さのばらつき(1〜5μm)を加味してn=24の繰り返しを実施した場合でも、錫組成積分値の範囲は0.00ないし0.10であった。これらのいずれのサンプルも前記代表サンプルと同様、振動負荷を与えている最中に端子根元部J(図8)で破断した。このように、好適な接合状態とは、初期の強度が大きいだけでなく、振動・衝撃の外乱による影響を加味したものでなければならない。また逆に、通電加熱が不十分であり、また熱かしめが不十分で接合強度が十分に得られていない場合は、市場で振動、衝撃の外乱をうけたときに、特に接合界面D(図8)で破断しやすくなってしまい、信頼性が著しく低下することがわかった。 Even when the variation of tin plating thickness (1 to 5 μm) was taken into consideration and n = 24 was repeated, the range of the tin composition integral value was 0.00 to 0.10. All of these samples were broken at the terminal base J (FIG. 8) during application of the vibration load in the same manner as the representative sample. As described above, a suitable bonded state must not only have a high initial strength, but also take into account the effects of vibration and shock disturbances. On the contrary, when the current heating is insufficient and the heat caulking is insufficient and the joint strength is not sufficiently obtained, the joint interface D (see FIG. It was found that in 8) the fracture was easily caused and the reliability was remarkably lowered.
[比較例2]
図14は、比較例2の接合部構造の接合部断面の電子顕微鏡写真の図である。図15は、比較例2の接合界面の錫の組成を示す図である。図14に示すような接合部構造109においては、通電加熱量が不足しており、銅製ワイヤ1は初期の直径の70%程度しかつぶれていない。図15に示されるように、本比較例2の構造を示す組成では、錫組成積分値が、比較的多く検出されている(錫組成積分値9.25)。このような接合部構造109においては、上記実施例1と同様の振動負荷を与えている最中に接合界面D(図8)で破断した。破断は完全な不良品であるのでサンプルの引張試験は省略した。
[Comparative Example 2]
FIG. 14 is an electron micrograph of a cross section of a joint portion of the joint structure of Comparative Example 2. FIG. 15 is a view showing the composition of tin at the bonding interface in Comparative Example 2. In the joint structure 109 as shown in FIG. 14, the energization heating amount is insufficient, and the copper wire 1 is crushed only about 70% of the initial diameter. As shown in FIG. 15, in the composition showing the structure of the present comparative example 2, a relatively large number of tin composition integral values are detected (tin composition integral value 9.25). Such a joint structure 109 was broken at the joint interface D (FIG. 8) while applying the same vibration load as in Example 1. Since the fracture was a completely defective product, the tensile test of the sample was omitted.
錫めっき厚さのばらつき(1〜5μm)を加味してn=24の繰り返しを実施した場合でも、錫組成積分値の範囲は6.48ないし11.1であった。これらのいずれのサンプルも前記代表サンプルと同様、振動負荷を与えている最中に接合界面D(図8)で破断した。 Even when n = 24 was repeated in consideration of the variation in tin plating thickness (1 to 5 μm), the range of the tin composition integral value was 6.48 to 11.1. All of these samples, like the representative sample, fractured at the bonding interface D (FIG. 8) while applying a vibration load.
なお、上記特許文献3では、信頼性の評価として熱サイクル試験を実施しているが、端子とワイヤの母材(いずれも銅)が同一の場合には、接合界面には線膨張係数の差異による機械的な負荷はかからないため、接合部そのものの機械強度の評価として適していない。 In Patent Document 3, a thermal cycle test is carried out as an evaluation of reliability. However, when the base material of the terminal and the wire (both are copper) are the same, there is a difference in linear expansion coefficient at the joint interface. Therefore, it is not suitable for evaluating the mechanical strength of the joint itself.
さらに、上記特許文献3では、信頼性の指標として接合部の電気抵抗を測定しているが、電気的導通は、界面がただ接触している場合でも得られるため、判別の感度、精度が低く信頼性の指標としては不適切である。ワイヤの被覆が完全に溶けており、金属同士が機械的強度をもって接合されていれば、十分低い電気抵抗で電気的導通は得られているので、電気抵抗に変わる指標として、機械的強度での評価を実施した。すなわち、比較例1,2のように完全な破断をともなわないサンプルについては、振動劣化前と振動劣化後のサンプルについて引張試験を行うことにより、振動劣化前後の強度低下の有無をみることで優劣を評価したのである。 Furthermore, in Patent Document 3, the electrical resistance of the joint is measured as a reliability index. However, since electrical continuity can be obtained even when the interface is merely in contact, the sensitivity and accuracy of discrimination are low. It is inappropriate as an index of reliability. If the wire coating is completely melted and the metals are bonded with mechanical strength, electrical continuity is obtained with a sufficiently low electrical resistance. Evaluation was performed. That is, for samples that do not have a complete break as in Comparative Examples 1 and 2, by performing a tensile test on the samples before and after vibration degradation, it is superior or inferior by seeing whether there is a decrease in strength before and after vibration degradation. Was evaluated.
接合時の通電加熱量と錫の量の関係、通電加熱量と接合部の機械的な品質の関係は以下のように考えることができる。接合部の通電加熱による入熱量が不足した状態では、接合界面に絶縁被覆が残るため接合面積が十分でなかったり、接合界面での金属同士の相互拡散が不十分であったりして、接合界面の接合強度が十分に得られない。 The relationship between the amount of energization heating and the amount of tin at the time of joining, and the relationship between the amount of energization heating and the mechanical quality of the joint can be considered as follows. In the state where the heat input due to energization heating at the joint is insufficient, the insulation coating remains at the joint interface, so the joint area is not sufficient, or the mutual diffusion of metals at the joint interface is insufficient. The bonding strength is not sufficiently obtained.
通電過熱による入熱量の増加によって、1)十分に絶縁被覆が除去され、2)接合界面の錫の物理的な除去や拡散が促進され、界面中心位置の錫含有量が減少するとともに、3)ワイヤのつぶれが促進されることで導通接触面積が増大、接合界面の銅の相互拡散が促進する。これらは入熱量の増加にともない、接合界面での機械強度を向上させる要因となる。 The increase in heat input due to energization overheating 1) sufficiently removes the insulation coating, 2) promotes physical removal and diffusion of tin at the joint interface, reduces the tin content at the center of the interface, and 3) By accelerating the collapse of the wire, the conductive contact area is increased and the interdiffusion of copper at the bonding interface is promoted. These increase the mechanical strength at the joint interface as the heat input increases.
しかし、通電過熱による入熱量が上限を超えると、1)界面中心位置の錫はほぼ完全に除去され、2)同時にワイヤのつぶれが過剰となり端子根元部が細くなったり、3)ワイヤの溶融・再結晶成長促進による粒径増大や加工硬化が促進したりする。これらは端子根元部の疲労強度を低下させる要因となる。言い換えれば、接合界面中心の錫含有量と、接合部の機械的な品質は、通電加熱による入熱量という共通原因によって相関づけることができる。 However, if the amount of heat input due to energization overheating exceeds the upper limit, 1) tin at the center of the interface is almost completely removed, 2) the wire collapse becomes excessive at the same time, the terminal root becomes thin, and 3) Increase in particle size and work hardening by promoting recrystallization growth are promoted. These are factors that reduce the fatigue strength of the terminal base. In other words, the tin content at the center of the joint interface and the mechanical quality of the joint can be correlated by the common cause of heat input by energization heating.
以上のように、初期に端子にめっきされていた錫が、接合後にどの程度残っているかによって、接合部への通電加熱量の程度を知ることができ、ひいては接合部の機械的な品質を錫の残存量で規定することができることがわかった。
[実施例2]
As described above, it is possible to know the degree of energization and heating amount to the joint part according to how much tin initially plated on the terminal remains after joining, and as a result, the mechanical quality of the joint part can be determined. It was found that it can be defined by the remaining amount of.
[Example 2]
図16は、実施例2の接合界面の錫の組成を示す図である。図16に示す組成の組成積分値は1.80であった。本実施例は、以下の接合プロセスによって実現された。本実施例の接合部構造は、実施例1と同様の構成を成すものにおいて、通電用電極の加圧力を約460Nとし、図17のプロファイルで通電し、銅製ワイヤのつぶれ量が初期の直径の約60%(0.72mm)になるように電極を位置制御しながら加圧した。通電終了後、電極の加圧を保持したまま、電極を水冷しながら銅製端子が十分低い温度となるまで冷却した。その他の構成は実施例1と同様である。 FIG. 16 is a diagram showing the composition of tin at the bonding interface in Example 2. The composition integral value of the composition shown in FIG. 16 was 1.80. This example was realized by the following bonding process. The joint structure of the present embodiment has the same configuration as that of the first embodiment. The applied pressure of the energizing electrode is about 460 N, the energization is performed according to the profile of FIG. 17, and the collapse amount of the copper wire has the initial diameter. The electrode was pressed while controlling the position of the electrode so that it was about 60% (0.72 mm). After completion of energization, the electrode was cooled with water while cooling the electrode until the temperature of the copper terminal was sufficiently low. Other configurations are the same as those of the first embodiment.
本実施例における、振動劣化前後のサンプルの荷重-変位特性は図18のとおりであり、振動劣化前後の引張強度に大きな変化はなかった。振動劣化中の破断もなかった。錫めっき厚さにばらつき(1〜5μm)が存在する場合において、上記と同じ条件で24サンプル(n=24個の範囲)を分析した。その結果、錫組成積分値の範囲は1.25〜2.35であった。そしていずれのサンプルにおいても、前記代表サンプルと同様の機械的品質を得ることができた。
[実施例3]
The load-displacement characteristics of the sample before and after vibration deterioration in this example are as shown in FIG. 18, and there was no significant change in tensile strength before and after vibration deterioration. There was no breakage during vibration deterioration. 24 samples (n = 24 ranges) were analyzed under the same conditions as above when there was variation (1-5 μm) in tin plating thickness. As a result, the range of the tin composition integrated value was 1.25 to 2.35. In any sample, the same mechanical quality as that of the representative sample could be obtained.
[Example 3]
図19は、実施例3の接合界面の錫の組成を示す図である。図19に示す組成の組成積分値は1.72であった。本実施例は、以下の接合プロセスによって実現された。本実施例の接合部構造は、実施例1と同様の構成を成すものにおいて、通電用電極の加圧力を約350Nとし、図20のプロファイルで通電し、銅製ワイヤのつぶれ量が初期の直径の約60%になるように電極を位置制御しながら加圧した。通電終了後、電極の加圧を保持したまま、電極を水冷しながら銅製端子が十分低い温度となるまで冷却した。その他の構成は実施例1と同様である。 FIG. 19 is a view showing the composition of tin at the bonding interface of Example 3. The composition integral value of the composition shown in FIG. 19 was 1.72. This example was realized by the following bonding process. The joint structure of the present embodiment has the same configuration as that of the first embodiment. The applied pressure of the energizing electrode is about 350 N, and energization is performed according to the profile of FIG. 20, and the collapse amount of the copper wire has the initial diameter. Pressurization was performed while controlling the position of the electrode so as to be about 60%. After completion of energization, the electrode was cooled with water while cooling the electrode until the temperature of the copper terminal was sufficiently low. Other configurations are the same as those of the first embodiment.
本実施例における、振動劣化前後のサンプルの荷重-変位特性は図21のとおりであり、振動劣化前後の引張強度に大きな変化はなかった。振動劣化中の破断もなかった。錫めっき厚さにばらつき(1〜5μm)が存在する場合において、上記と同じ条件で24サンプル(n=24個の範囲)を分析した。その結果、錫組成積分値の範囲は1.54〜2.32であった。そしていずれのサンプルにおいても、前記代表サンプルと同様の機械的品質を得ることができた。
[実施例4]
The load-displacement characteristics of the sample before and after vibration deterioration in this example are as shown in FIG. 21, and there was no significant change in tensile strength before and after vibration deterioration. There was no breakage during vibration deterioration. 24 samples (n = 24 ranges) were analyzed under the same conditions as above when there was variation (1-5 μm) in tin plating thickness. As a result, the range of the tin composition integral value was 1.54 to 2.32. In any sample, the same mechanical quality as that of the representative sample could be obtained.
[Example 4]
図22は、実施例4の接合界面の錫の組成を示す図である。図22に示す組成の組成積分値は0.48であった。本実施例は、以下の接合プロセスによって実現された。本実施例の接合部構造は、実施例1と同様の構成を成すものにおいて、銅製ワイヤの直径をφ1.5mmとしたものである。通電用電極の加圧力を約350Nとし、図23のプロファイルで通電し、銅製ワイヤのつぶれ量が初期の直径の約55%になるように電極を位置制御しながら加圧した。通電終了後、電極の加圧を保持したまま、電極を水冷しながら銅製端子が十分低い温度となるまで冷却した。その他の構成は実施例1と同様である。 FIG. 22 is a diagram showing the composition of tin at the bonding interface of Example 4. The composition integral value of the composition shown in FIG. 22 was 0.48. This example was realized by the following bonding process. The joint structure of the present embodiment has the same configuration as that of the first embodiment, and the diameter of the copper wire is φ1.5 mm. The pressure applied to the energizing electrode was about 350 N, and energization was performed with the profile shown in FIG. 23, and the electrode was pressed while controlling the position of the electrode so that the amount of collapse of the copper wire was about 55% of the initial diameter. After completion of energization, the electrode was cooled with water while cooling the electrode until the temperature of the copper terminal was sufficiently low. Other configurations are the same as those of the first embodiment.
本実施例における、振動劣化前後のサンプルの荷重-変位特性は図24のとおりであり、振動劣化前後の引張強度に大きな変化はなかった。振動劣化中の破断もなかった。錫めっき厚さにばらつき(1〜5μm)が存在する場合において、上記と同じ条件で24サンプル(n=24個の範囲)を分析した。その結果、錫組成積分値の範囲は0.25〜0.62であった。そしていずれのサンプルにおいても、前記代表サンプルと同様の機械的品質を得ることができた。
[実施例5]
The load-displacement characteristics of the sample before and after vibration deterioration in this example are as shown in FIG. 24, and there was no significant change in tensile strength before and after vibration deterioration. There was no breakage during vibration deterioration. 24 samples (n = 24 ranges) were analyzed under the same conditions as above when there was variation (1-5 μm) in tin plating thickness. As a result, the range of the tin composition integral value was 0.25 to 0.62. In any sample, the same mechanical quality as that of the representative sample could be obtained.
[Example 5]
図25は、実施例5の接合界面の錫の組成を示す図である。図25に示す組成の組成積分値は0.57であった。本実施例は、以下の接合プロセスによって実現された。本実施例の接合部構造は、実施例1と同様の構成を成すものにおいて、銅製ワイヤの直径をφ1.0mmとしたものである。通電用電極の加圧力を約350Nとし、図26のプロファイルで通電し、銅製ワイヤのつぶれ量が初期の直径の約65%になるように電極を位置制御しながら加圧した。通電終了後、電極の加圧を保持したまま、電極を水冷しながら銅製端子が十分低い温度となるまで冷却した。その他の構成は実施例1と同様である。 FIG. 25 is a view showing the composition of tin at the bonding interface in Example 5. The composition integral value of the composition shown in FIG. 25 was 0.57. This example was realized by the following bonding process. The joint structure of the present embodiment has the same configuration as that of the first embodiment, and the diameter of the copper wire is φ1.0 mm. The pressure applied to the energizing electrode was about 350 N, and energization was performed with the profile shown in FIG. 26. The electrode was pressed while controlling the position of the electrode so that the amount of collapse of the copper wire was about 65% of the initial diameter. After completion of energization, the electrode was cooled with water while cooling the electrode until the temperature of the copper terminal was sufficiently low. Other configurations are the same as those of the first embodiment.
本実施例における、振動劣化前後のサンプルの荷重-変位特性は図27のとおりであり、振動劣化前後の引張強度に大きな変化はなかった。振動劣化中の破断もなかった。錫めっき厚さにばらつき(1〜5μm)が存在する場合において、上記と同じ条件で24サンプル(n=24個の範囲)を分析した。その結果、錫組成積分値の範囲は0.45〜0.86であった。そしていずれのサンプルにおいても、前記代表サンプルと同様の機械的品質を得ることができた。 The load-displacement characteristics of the sample before and after vibration deterioration in this example are as shown in FIG. 27, and there was no significant change in tensile strength before and after vibration deterioration. There was no breakage during vibration deterioration. 24 samples (n = 24 ranges) were analyzed under the same conditions as above when there was variation (1-5 μm) in tin plating thickness. As a result, the range of the tin composition integral value was 0.45 to 0.86. In any sample, the same mechanical quality as that of the representative sample could be obtained.
表1は、上記実施例1〜5および、比較例1、2における接合部の組成分布から積分組成値をまとめて比較したものである。表1によれば、好適な接合状態を有する錫の積分組成値の範囲は、下限(実施例4の下限0.25)と上限(実施例1の上限4.95)を有するものであることが分かった。そして、錫の積分組成値が下限を下回った場合は、振動劣化中の端子根元部ワイヤの破断を生じやすくなり、錫の積分組成値が上限を超えた場合は、振動劣化中の接合界面の破断が生じやすくなることがわかった。 Table 1 compares the integrated composition values from the composition distributions of the joints in Examples 1 to 5 and Comparative Examples 1 and 2 collectively. According to Table 1, the range of the integral composition value of tin having a suitable bonded state has a lower limit (lower limit 0.25 of Example 4) and an upper limit (upper limit 4.95 of Example 1). I understood. If the integral composition value of tin is below the lower limit, the terminal root wire during vibration deterioration is likely to break, and if the integral composition value of tin exceeds the upper limit, It was found that breakage tends to occur.
本発明の接合部構造は、良好な機械的品質が要求される接合部構造に適用されて好適なものであり、特に被覆つき銅製ワイヤと銅製端子とを熱かしめ接合した接合部構造に適用されて最適なものである。 The joint structure of the present invention is suitable for application to a joint structure that requires good mechanical quality, and is particularly applicable to a joint structure in which a coated copper wire and a copper terminal are joined by heat caulking. Is the best.
1 銅製ワイヤ(第1の接合部材)、1a ワイヤ芯線、1b 被覆(絶縁体)、2 銅製端子(第2の接合部材)、20 電源、30 通電用電極、40 引張強度、41 初期の応力-変位特性、42 振動劣化後の応力-変位特性、100 接合部構造(実施の形態1)、101 サンプル、108 接合部構造(比較例1)、109 接合部構造(比較例2)、202 ワイヤ下部把持用チャック、204 固定治具、206 加振器、I1 第1の電流、I2 第2の電流。 DESCRIPTION OF SYMBOLS 1 Copper wire (1st joining member), 1a Wire core wire, 1b Coating | cover (insulator), 2 Copper terminal (2nd joining member), 20 Power supply, 30 Current supply electrode, 40 Tensile strength, 41 Initial stress- Displacement characteristics, 42 Stress-displacement characteristics after vibration degradation, 100 Joint structure (Embodiment 1), 101 samples, 108 Joint structure (Comparative example 1), 109 Joint structure (Comparative example 2), 202 Lower part of wire Gripping chuck, 204 fixing jig, 206 vibrator, I1 first current, I2 second current.
Claims (2)
前記接合部構造を両側から2つの電極で挟みこんで電圧を印加することにより前記被覆を溶融除去する工程と、
前記溶融除去する工程の後に、前記接合部構造を両側から2つの電極で押圧しつつ通電して、前記銅製ワイヤが初期の直径の55〜65%になるまで加圧する工程と、
を備えた
ことを特徴とした接合部構造の製造方法。 A step of forming a joint structure by caulking a strip-shaped copper terminal plated with tin on a rod-shaped copper wire coated with a resin insulator;
Melting and removing the coating by sandwiching the joint structure between two electrodes from both sides and applying a voltage;
After the melting and removing step, applying the current while pressing the joint structure with two electrodes from both sides, and pressurizing until the copper wire is 55 to 65% of the initial diameter;
A method for manufacturing a joint structure, comprising:
ことを特徴とした請求項1に記載の接合部構造の製造方法。
The method for manufacturing a joint structure according to claim 1, wherein the resin insulator is one of polyimide and polyurethane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013118079A JP2013214519A (en) | 2013-06-04 | 2013-06-04 | Method of manufacturing joint structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013118079A JP2013214519A (en) | 2013-06-04 | 2013-06-04 | Method of manufacturing joint structure |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008313477A Division JP2010140672A (en) | 2008-12-09 | 2008-12-09 | Joint structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013214519A true JP2013214519A (en) | 2013-10-17 |
Family
ID=49587697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013118079A Pending JP2013214519A (en) | 2013-06-04 | 2013-06-04 | Method of manufacturing joint structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013214519A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015099693A (en) * | 2013-11-19 | 2015-05-28 | 矢崎総業株式会社 | Connecting terminal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3005065U (en) * | 1994-06-08 | 1994-12-06 | 住友電装株式会社 | Terminal fitting |
JP2003145274A (en) * | 2001-11-14 | 2003-05-20 | Toyota Industries Corp | Method for manufacturing thermocompression bonded terminal and thermocompression bonded terminal |
JP2005019046A (en) * | 2003-06-24 | 2005-01-20 | Matsushita Electric Ind Co Ltd | Connection method and device for hook terminal |
-
2013
- 2013-06-04 JP JP2013118079A patent/JP2013214519A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3005065U (en) * | 1994-06-08 | 1994-12-06 | 住友電装株式会社 | Terminal fitting |
JP2003145274A (en) * | 2001-11-14 | 2003-05-20 | Toyota Industries Corp | Method for manufacturing thermocompression bonded terminal and thermocompression bonded terminal |
JP2005019046A (en) * | 2003-06-24 | 2005-01-20 | Matsushita Electric Ind Co Ltd | Connection method and device for hook terminal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015099693A (en) * | 2013-11-19 | 2015-05-28 | 矢崎総業株式会社 | Connecting terminal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7160144B2 (en) | Superconducting equipment | |
JP5741502B2 (en) | Electric wire with terminal and manufacturing method thereof | |
US10505286B2 (en) | Sensor element and manufacturing method of sensor element | |
JP2016115525A (en) | Electric wire with terminal, and method of manufacturing the same | |
Cong et al. | Effect of heat input on failure mode and connection mechanism of parallel micro-gap resistance welding for copper wire | |
JP6636719B2 (en) | Wire connection terminal and method of joining wire to wire | |
WO2016017013A1 (en) | Method for joining terminal and electric wire and electric wire connection terminal | |
JP5989511B2 (en) | How to connect wires and terminals | |
JP2013214519A (en) | Method of manufacturing joint structure | |
JP3454055B2 (en) | Connection structure and connection method of insulated wire | |
JP2010140672A (en) | Joint structure | |
JP6185793B2 (en) | Terminal connection structure, manufacturing method and manufacturing apparatus thereof | |
JP2009178743A (en) | Method for connecting square covered wire | |
JP6812215B2 (en) | Manufacturing method and manufacturing equipment for terminal connection structure | |
JP6034710B2 (en) | Electric wire fuse and method of manufacturing electric wire fuse | |
US3489879A (en) | Thermoswaging method for fixing pins to ceramic wafers | |
JP2001307901A (en) | Surge-resistant thin resistor and connecting structure between its resistance wire and outside connecting electrode | |
JP6266545B2 (en) | Heating coil for induction heating, and induction heating cooker using the same | |
JP7128381B2 (en) | Electronic component, lead connection structure and lead connection method | |
JP5613097B2 (en) | Fusing method | |
JPH0982447A (en) | Electric wire connecting method | |
JP7016022B2 (en) | Terminal | |
JP2011232232A (en) | Manufacturing method of thermocouple and thermocouple | |
JP2014209412A (en) | Insulating coating removal method and insulating coating removal device | |
JP2014228459A (en) | Resistance measurement method of aluminum wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140701 |