WO2019150907A1 - Mélange maître de fibres de cellulose, composition de résine contenant des fibres de cellulose, procédé de production de mélange maître de fibres de cellulose, procédé de production d'une composition de résine contenant des fibres de cellulose, et corps moulé d'une composition de résine contenant des fibres de cellulose - Google Patents

Mélange maître de fibres de cellulose, composition de résine contenant des fibres de cellulose, procédé de production de mélange maître de fibres de cellulose, procédé de production d'une composition de résine contenant des fibres de cellulose, et corps moulé d'une composition de résine contenant des fibres de cellulose Download PDF

Info

Publication number
WO2019150907A1
WO2019150907A1 PCT/JP2019/000535 JP2019000535W WO2019150907A1 WO 2019150907 A1 WO2019150907 A1 WO 2019150907A1 JP 2019000535 W JP2019000535 W JP 2019000535W WO 2019150907 A1 WO2019150907 A1 WO 2019150907A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin
parts
base resin
cellulose fiber
Prior art date
Application number
PCT/JP2019/000535
Other languages
English (en)
Japanese (ja)
Inventor
三宅 仁
秀樹 小出
Original Assignee
アイ-コンポロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018236892A external-priority patent/JP2019131792A/ja
Application filed by アイ-コンポロジー株式会社 filed Critical アイ-コンポロジー株式会社
Publication of WO2019150907A1 publication Critical patent/WO2019150907A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • the present invention relates to a cellulosic fiber master batch, a cellulosic fiber-containing resin composition, a production method thereof, and a molded body of the cellulosic fiber-containing resin composition.
  • the weight of cellulose nanofibers is about one fifth that of steel, but the weight of cellulose nanofibers is about five times that of steel, and the deformation of cellulose nanofibers due to heat is comparable to that of quartz glass.
  • Cellulose nanofibers are said to have numerous characteristics, such as few. If a system that enables mass production of cellulose nanofibers at low cost using trees as raw materials is in place, it can be blended into base resin instead of glass fiber and other inorganic fillers, so that it can be used for transportation equipment such as automobiles, OA / electrical electronics. It is expected to be widely used in various fields such as fields and building materials, and can contribute widely as lightweight and high-strength materials in industrial and consumer fields.
  • the invention according to the first feature is selected from the group consisting of (A) a cellulosic fiber and (B) a sharp melt crystalline resin material having a melting point of 40 ° C. or higher and 155 ° C. or lower, a lubricant, a dispersant, and a compatibilizer.
  • a cellulosic fiber masterbatch having a coating binding layer comprising the coating composition (B) on the surface of the (A) cellulose nanofiber.
  • the invention according to the second feature is selected from the group consisting of (A) cellulosic fibers and (B) a sharp melt crystalline resin material having a melting point of 40 ° C. or higher and 155 ° C. or lower, a lubricant, a dispersant, and a compatibilizing agent. And (C) a base resin having a melting point or softening point of 80 ° C. or higher and 250 ° C. or lower, and the surface of the (A) cellulosic fiber is formed on the surface of the (B) coating composition.
  • the (A) cellulosic fiber having the coating layer is dispersed in the (C) base resin, and the total of the (A) cellulosic fiber and the (C) base resin is obtained.
  • Cellulosic fiber-containing resin comprising 100 parts by mass of (A) 60 to 2 parts by mass of (A) cellulosic fibers and 40 to 98 parts by mass of (C) the base resin To provide a Narubut
  • the invention according to the fourth feature corresponds to a category difference from the invention according to the first feature
  • the invention according to the fifth feature corresponds to a category difference from the invention according to the second feature.
  • the amount of cellulose-based fibers in the base resin can be freely adjusted from a small amount to a large amount depending on the function required of the molded body. A system that can be selected can be simply provided.
  • the cellulosic fiber masterbatch (hereinafter also simply referred to as “masterbatch”) in this embodiment includes (A) a cellulosic fiber and (B) a specific coating composition, and (A) a cellulosic fiber. On the surface, a coating binder layer made of the coating composition (B) is provided.
  • the (A) cellulosic fiber is a long fiber obtained by subjecting a plant cellulosic material obtained from trees or the like and / or a plant cellulosic material (cotton, wood pulp, etc.) to chemical treatment and dissolution.
  • a fiber composed of a regenerated cellulosic material in the form of a fiber, and the fiber may contain components such as lignin and hemicellulose.
  • the cellulosic fibers are preferably natural cellulosic fibers.
  • CNF is acid-modified with maleic anhydride, alkenyl succinic acid, TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl), CNF is alkali-modified, CNF is octanoylated Moreover, the fiber etc. which esterified CNF are also known.
  • the average thickness of the cellulosic fiber is not particularly limited. When transparency is required, several nanometers are required. However, when high strength is required, the average thickness of the cellulosic fibers can be dispersed so that a larger amount of cellulosic fibers can be dispersed in the base resin.
  • the lower limit of the thickness is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
  • the upper limit of the average thickness of the cellulosic fibers is preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the resin pellet having low specific gravity and high rigidity can be provided when blended with the base resin, the upper limit of the average thickness of the cellulosic fibers is more preferably 1 ⁇ m or less, and is preferably 500 nm or less. Even more preferably, it is particularly preferably 200 nm or less, and most preferably 100 nm or less.
  • the sharp melt crystalline resin material has a mass average molecular weight (Mw) of 8,000 or more, and a half-value width (Wm) of a melting endothermic peak measured using a differential thermal scanning calorimeter (DSC). ) Refers to a resin material having a temperature of 10 ° C. or lower.
  • the mass average molecular weight (Mw) is a polystyrene equivalent mass average molecular weight (Mw) by GPC (gel permeation chromatography).
  • the mass average molecular weight (Mw) of the sharp melt crystalline resin material is 8,000 or more, preferably 10,000 or more. If the mass average molecular weight (Mw) is too small, there is a possibility of bleeding out at the use temperature in the final resin composition, which is not preferable.
  • the half-value width (Wm) of the melting endothermic peak of the sharp melt crystalline resin material when measured using a differential thermal scanning calorimeter (DSC) is 10 ° C. or less, preferably 8 ° C. or less. If the half-value (Wm) is excessive, a low molecular weight component is contained, which is not preferable.
  • the lower limit of the melting point (Tm) of the sharp melt crystalline resin material is 40 ° C. or higher.
  • the lower limit is more preferably 40 ° C. or higher, and further preferably 60 ° C. or higher. If the melting point is too low, it will affect the use limit temperature of the final composition.
  • the sharp melt crystalline resin material is hard at room temperature and can provide a masterbatch with reduced stickiness.
  • the upper limit of the melting point (Tm) of the sharp melt crystalline resin material is 155 ° C. or less.
  • the upper limit is more preferably 120 ° C. or less, and further preferably 100 ° C. or less. If the melting point is too high, the dispersion operability during mixing will be affected.
  • the melting point (Tm) is 100 ° C. or lower, the sharp melt crystalline resin material is heated in various granulators or melted by the heat of generated steam, and can exhibit the properties as a binder relatively easily. .
  • Paraffin which is a conventional low-melting-point material, has low stability at high temperatures, so the resulting masterbatch may be colored, smoked, or ignited due to deterioration at high temperatures when blended with a thermoplastic resin. There is. In addition, these conventional low melting point materials are easily sticky, may bleed, and may deteriorate physical properties.
  • the melting point (Tm) is measured as follows. Using a differential scanning calorimeter (DSC), observed from a melting endotherm curve obtained by holding the sample at ⁇ 30 ° C. for 5 minutes in a nitrogen atmosphere and then increasing the temperature to 190 ° C. at 10 ° C./min. It has a melting point (TmD) defined as the peak top of the maximum peak, and after holding at 190 ° C. for 5 minutes, it was lowered to ⁇ 30 ° C. at a rate of 5 ° C./minute, and after holding at ⁇ 30 ° C. for 5 minutes The peak top observed from the melting endothermic curve obtained by raising the temperature to 190 ° C.
  • DSC differential scanning calorimeter
  • Tm melting point
  • shoulder peaks may be observed in the second temperature rising process for measuring the melting point (Tm), but one peak is observed as a sharp melt crystalline resin material. It is preferable.
  • One peak means that there is no absorption seen as other peaks or shoulders.
  • the side chain crystalline polymer is also called a comb polymer, and is a polymer having a side chain composed of aliphatic and / or aromatic with respect to a skeleton (main chain) composed of an organic structure, It is characterized by being a structure that can enter a crystal structure.
  • Side-chain crystalline polymers have been found to melt or disperse very finely in various base resins at a certain temperature or higher, and can suppress bleeding at high temperatures, so that the final composition can be used practically. The maximum temperature can be increased. Further, the melt viscosity at a high temperature exceeding the melting point is low, and the kneading with the base resin is easy.
  • the side chain crystalline polymer is preferably a powder at normal temperature (0 ° C. to 35 ° C.).
  • the side chain crystalline polymer is hard at normal temperature and can be easily powdered by pulverization.
  • the particle size of the powder is not particularly limited, but it is preferable that coarse particles are not contained, and the maximum particle size contained in the powder is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and even more preferably 300 ⁇ m or less. Note that the maximum grain system is a value calculated from the size of the eye through which the powder passes the vibrating screen.
  • side chain crystalline polymer examples include side chain crystalline polymers such as ⁇ -olefin polymers, alkyl acrylate polymers, alkyl methacrylate polymers, alkyl ethylene oxide polymers, polysiloxane polymers, and acrylamide polymers.
  • side chain crystalline polymers such as ⁇ -olefin polymers, alkyl acrylate polymers, alkyl methacrylate polymers, alkyl ethylene oxide polymers, polysiloxane polymers, and acrylamide polymers.
  • ⁇ -olefin polymers obtained by polymerizing ⁇ -olefins, which are inexpensive and readily available, particularly higher ⁇ -olefin polymers are preferred.
  • Alkyl acrylate polymers and alkyl methacrylate polymers are prone to hydrolysis and deteriorate over time due to heat, so they have low storage stability.
  • a side chain crystalline polymer can be used individually by 1 type or in combination of 2 or more types.
  • the side chain crystalline polymer contains a higher ⁇ -olefin having 10 or more carbon atoms
  • the side chain crystallinity of the side chain crystalline polymer is increased, so that a change in crystallinity during melting and crystallization is increased, resulting in high production.
  • An additive masterbatch having graininess can be obtained.
  • the number of carbon atoms of the higher ⁇ -olefin is more preferably 12 or more, further preferably 12 or more and 50 or less, and particularly preferably 14 or more and 30 or less.
  • the content of the higher ⁇ -olefin unit is 50 mol% or more, the side chain crystallinity of the side chain crystalline polymer increases, so that the change in crystallinity during melting and crystallization increases, resulting in high granulation.
  • An additive masterbatch having properties can be obtained.
  • the content of the higher ⁇ -olefin unit is more preferably 70 mol% or more, further preferably 90 mol% or more, and particularly preferably 100 mol%.
  • Dispersing agent various kinds generally used as an emulsifier can be used.
  • the emulsifier include general dispersion / emulsifiers such as nonionic surfactants and anionic surfactants, and reactive emulsifiers having an ethylenically unsaturated group in the molecule.
  • Anionic surfactants include fatty acid salts, alkyl sulfate esters, alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, alkyl phosphates, polyoxyethylene alkyl sulfates. , Naphthalenesulfonic acid formalin condensate, special polycarboxylic acid type polymer surfactant, polyoxyethylene alkyl phosphate, and the like.
  • thermoplastic resin With regard to the compatibility between the thermoplastic resin and the cellulose component or lignin component, it is well known that a maleic anhydride-modified polymer is particularly effective as a compatibilizing agent.
  • the compounding quantity of a coating composition is not specifically limited, In order to be able to coat
  • the amount is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, further preferably 3 parts by mass or more, and still more preferably 5 parts by mass or more.
  • the compounding quantity of (B) coating composition shall be a value when it calculates with solid content.
  • the primary masterbatch may contain additives in addition to (A) the cellulosic fiber and (B) the coating composition.
  • the master batch is (A) a cellulosic fiber, (B) a coating composition, an additive as necessary, and water, warm water or hot water as necessary. It can be obtained by mixing using a kneader, an extruder, an extrusion pelletizer, a disc beret or the like. The obtained pellet-like or powdery mixture may be used as it is as a compound for mixing the base resin, but may be further melt-kneaded with an extruder or a pelletizer to be pelletized.
  • the cellulose nanofiber-containing resin composition in the present embodiment includes (C) a specific base resin in addition to the various components described in the “Masterbatch” section. And (A) cellulosic fiber which has a coating layer is disperse
  • thermosetting resin any of a thermoplastic resin, a thermosetting resin, or rubber may be used.
  • a thermosetting resin it can be kneaded into a monomer or oligomer before curing.
  • rubber it can be kneaded into an uncrosslinked polymer.
  • Examples of rubbers include natural rubber, and examples of synthetic rubbers include isoprene, butadiene, styrene butadiene, chloroprene, nitrile, polyisobutylene, ethylene propylene, chlorosulfonated PE, acrylic, fluorine, urethane, and silicone rubber. It is done.
  • bio-derived resins such as plants can be used for these, and in that case, the bioavailability can be further improved.
  • the color of the resin pellets obtained by blending the base resin can be colored by using the colorant of each color pigment (such as titanium oxide), and the resin pellets were molded. Later molded bodies can be colored.
  • each color pigment such as titanium oxide
  • the composite resin pellets thus obtained alone or in combination with other base resins can be used for injection molding machines, extrusion molding machines, blow molding machines, inflation molding machines, sheet molding machines, hot press molding machines, compressed air (vacuum / pressurizing).
  • a compact can be produced using a conventionally known molding machine such as a pressure molding machine.
  • the molded body may be manufactured by reducing the ratio of (A) the cellulose fiber-based material and increasing the ratio of (C) the base resin.
  • dumbbell-shaped test pieces according to JIS K 7161 were also moldable.
  • Test Example 4 Dispersion of cellulose nanofiber (CNF) in polyamide 11 resin ⁇ Preparation of sample> [Example 10] Cellulose nanofiber (CNF) content: 30% by mass polyamide 11 resin pellets [Cellulose nanofiber (CNF) content: production of 30% by mass polyamide 11 resin pellets] After drying the CNF primary master batch pellet 2 obtained by [Production of CNF primary master batch 2] in Example 8 with a vacuum dryer, 100 parts by mass of CNF master batch pellets and 167 parts by mass of polyamide 11 resin dried with hot air (Product name: Rilsan BMNO, manufactured by Arkema Co., Ltd.) was kneaded in a small lab plast mill twin screw extruder set at 210 ° C. to obtain a nylon 11 resin pellet having a cellulose nanofiber content of 30% by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

L'invention concerne une composition de résine dans laquelle une grande quantité de fibres de cellulose est dispersée par rapport à une résine de base. Selon l'invention, un mélange maître de fibres de cellulose contient : (A) des fibres de cellulose; et (B) au moins une composition de revêtement choisie dans le groupe constitué par des matériaux de résine cristalline à point exact de fusion compris entre 40°C et 155°C (inclus), des lubrifiants et des dispersants; et ce mélange maître de fibres de cellulose forme un comprimé de mélange maître présentant une couche de liaison de revêtement formée à partir de la composition de revêtement (B) sur les surfaces des fibres de cellulose (A). De plus, un comprimé de résine contient (C) une résine de base à point de fusion ou point de ramollissement compris entre 80°C et 250°C (inclus) en sus du mélange maître; et le comprimé de résine contient entre 60 parties en masse et 2 parties en masse des fibres de cellulose (A), et entre 40 parties en masse et 98 parties en masse de la résine de base (C), lorsque la totalité des fibres de cellulose (A) et de la résine de base (C) constitue 100 parties en masse.
PCT/JP2019/000535 2018-02-02 2019-01-10 Mélange maître de fibres de cellulose, composition de résine contenant des fibres de cellulose, procédé de production de mélange maître de fibres de cellulose, procédé de production d'une composition de résine contenant des fibres de cellulose, et corps moulé d'une composition de résine contenant des fibres de cellulose WO2019150907A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018017054 2018-02-02
JP2018-017054 2018-02-02
JP2018236892A JP2019131792A (ja) 2018-02-02 2018-12-19 セルロース系繊維マスターバッチ、セルロース系繊維含有樹脂組成物、及びこれらの製造方法、並びにセルロース系繊維含有樹脂組成物の成形体
JP2018-236892 2018-12-19

Publications (1)

Publication Number Publication Date
WO2019150907A1 true WO2019150907A1 (fr) 2019-08-08

Family

ID=67479076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000535 WO2019150907A1 (fr) 2018-02-02 2019-01-10 Mélange maître de fibres de cellulose, composition de résine contenant des fibres de cellulose, procédé de production de mélange maître de fibres de cellulose, procédé de production d'une composition de résine contenant des fibres de cellulose, et corps moulé d'une composition de résine contenant des fibres de cellulose

Country Status (1)

Country Link
WO (1) WO2019150907A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111073141A (zh) * 2019-12-24 2020-04-28 贵州贵安精准医学研究院股份有限公司 一种烟草纤维素母粒制作方法及应用
JPWO2021125251A1 (fr) * 2019-12-18 2021-06-24
WO2023095762A1 (fr) * 2021-11-25 2023-06-01 住友林業株式会社 Procédé de production d'une composition mixte

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257242A (ja) * 2005-03-16 2006-09-28 Idemitsu Kosan Co Ltd 樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物の成形体
JP2007039592A (ja) * 2005-08-04 2007-02-15 Idemitsu Kosan Co Ltd 複合樹脂組成物
JP2014101423A (ja) * 2012-11-19 2014-06-05 Idemitsu Kosan Co Ltd 添加剤マスターバッチ
JP2017122177A (ja) * 2016-01-07 2017-07-13 大王製紙株式会社 熱可塑性樹脂組成物
WO2017169494A1 (fr) * 2016-03-30 2017-10-05 出光ライオンコンポジット株式会社 Composition de résine thermoplastique ignifuge
JP2018062581A (ja) * 2016-10-13 2018-04-19 出光ライオンコンポジット株式会社 樹脂組成物及びそれを用いて作製された成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257242A (ja) * 2005-03-16 2006-09-28 Idemitsu Kosan Co Ltd 樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物の成形体
JP2007039592A (ja) * 2005-08-04 2007-02-15 Idemitsu Kosan Co Ltd 複合樹脂組成物
JP2014101423A (ja) * 2012-11-19 2014-06-05 Idemitsu Kosan Co Ltd 添加剤マスターバッチ
JP2017122177A (ja) * 2016-01-07 2017-07-13 大王製紙株式会社 熱可塑性樹脂組成物
WO2017169494A1 (fr) * 2016-03-30 2017-10-05 出光ライオンコンポジット株式会社 Composition de résine thermoplastique ignifuge
JP2018062581A (ja) * 2016-10-13 2018-04-19 出光ライオンコンポジット株式会社 樹脂組成物及びそれを用いて作製された成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"a-olefin derivative [ online", HOKOKU CORPORATION, 7 May 2015 (2015-05-07), Retrieved from the Internet <URL:http://www.hokoku-corp.co.jp/product/olefin_hsc.html> [retrieved on 20190320] *
"Research and development of highly functional green members for automobiles by cellulose nanofiber reinforcement", 2010-2012 PERFORMANCE REPORT, February 2013 (2013-02-01), pages 39 - 42 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021125251A1 (fr) * 2019-12-18 2021-06-24
WO2021125251A1 (fr) * 2019-12-18 2021-06-24 Dic株式会社 Composition de résine, article moulé, et procédés de fabrication associés
CN114829506A (zh) * 2019-12-18 2022-07-29 Dic株式会社 树脂组合物、成型品、母料和它们的制造方法
JP7201104B2 (ja) 2019-12-18 2023-01-10 Dic株式会社 樹脂組成物、成形品、マスターバッチおよびそれらの製造方法
CN114829506B (zh) * 2019-12-18 2023-10-13 Dic株式会社 树脂组合物、成型品、母料和它们的制造方法
CN111073141A (zh) * 2019-12-24 2020-04-28 贵州贵安精准医学研究院股份有限公司 一种烟草纤维素母粒制作方法及应用
WO2023095762A1 (fr) * 2021-11-25 2023-06-01 住友林業株式会社 Procédé de production d'une composition mixte

Similar Documents

Publication Publication Date Title
JP2019131792A (ja) セルロース系繊維マスターバッチ、セルロース系繊維含有樹脂組成物、及びこれらの製造方法、並びにセルロース系繊維含有樹脂組成物の成形体
JP7305718B2 (ja) 木材パルプを含むセルロース複合材料および同セルロース複合材料を製造するプロセス
US10414880B2 (en) Renewable replacements for carbon black in composites and methods of making and using thereof
Martí‐Ferrer et al. Flour rice husk as filler in block copolymer polypropylene: Effect of different coupling agents
Peng et al. Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength
CA2900596C (fr) Materiau composite microstructure, son procede de fabrication, corps faconne realise dans ce materiau et applications correspondantes
Bettini et al. Investigation on the use of coir fiber as alternative reinforcement in polypropylene
Jordá-Vilaplana et al. Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers
WO2019150907A1 (fr) Mélange maître de fibres de cellulose, composition de résine contenant des fibres de cellulose, procédé de production de mélange maître de fibres de cellulose, procédé de production d&#39;une composition de résine contenant des fibres de cellulose, et corps moulé d&#39;une composition de résine contenant des fibres de cellulose
Castaño et al. Physical, chemical and mechanical properties of pehuen cellulosic husk and its pehuen-starch based composites
CN108070231A (zh) 植物纤维增强聚乳酸复合材料及其产品
Bahari et al. Thermal stability of processed PVC/bamboo blends: effect of compounding procedures
WO2016104634A1 (fr) Composition de résine thermoplastique et article moulé comprenant celle-ci
Mubarak Tensile and impact properties of microcrystalline cellulose nanoclay polypropylene composites
CN111019211A (zh) 一种改性高密度聚乙烯复合材料及其制备方法
Chitra et al. Studies on polypropylene bio composite with corn husk waste
CA2549844C (fr) Dispersion en phase solide et traitement de micro et nano-fibres cellulosiques en phase plastique pour la fabrication de produits bio-nanocomposites d&#39;interet commercial
CN107540935B (zh) 一种聚丙烯回收料组合物及其制备方法
US20210171738A1 (en) Cellulosic Composites Comprising Wood Pulp
CN102408601B (zh) 一种超宽幅茂金属聚乙烯棚膜树脂组合物及其制备方法
CN102924797A (zh) 耐候性聚乙烯农膜树脂组合物及其制备方法
CN105778267A (zh) 一种新型耐环境老化pp材料及其制备方法
KR20110007703A (ko) 폴리에틸렌/목분/점토 나노복합체
CN115521534B (zh) 一种聚丙烯组合物及其制备方法和应用
CN112480634B (zh) 一种表面硬度可调控聚碳酸酯合金复合材料和其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747809

Country of ref document: EP

Kind code of ref document: A1