WO2019150819A1 - Magnetic heat pump device - Google Patents

Magnetic heat pump device Download PDF

Info

Publication number
WO2019150819A1
WO2019150819A1 PCT/JP2018/046914 JP2018046914W WO2019150819A1 WO 2019150819 A1 WO2019150819 A1 WO 2019150819A1 JP 2018046914 W JP2018046914 W JP 2018046914W WO 2019150819 A1 WO2019150819 A1 WO 2019150819A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
axial direction
permanent magnet
built
central axis
Prior art date
Application number
PCT/JP2018/046914
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 山口
相哲 ▲裴▼
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2019150819A1 publication Critical patent/WO2019150819A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetic heat pump apparatus using a magnetocaloric effect.
  • Patent Document 1 As a technique of the magnetic heat pump apparatus using the magnetocaloric effect, there is a technique described in Patent Document 1, for example.
  • the technique described in Patent Document 1 is formed using a permanent magnet rotatably arranged, a magnetic material, a material container surrounding the outer periphery of the permanent magnet, and a ferromagnetic material such as SUS, A frame body (yoke) for accommodating the material container is provided. Then, by rotating the permanent magnet inside the container accommodated in the frame, the magnetic material is excited and demagnetized between the permanent magnet and the yoke, and the direction in which the heat exchange medium flows at the timing of excitation and demagnetization is changed. By switching, heat and cold are obtained.
  • the flow of magnetic flux passes through the magnetic material from the permanent magnet and is folded back by the yoke.
  • the flow returns to the permanent magnet after passing through.
  • the magnetic circuit through which the magnetic flux flows is formed by the permanent magnet, the magnetic material, and the yoke, so that the flow of the magnetic flux is not concentrated and the magnetic flux density obtained per mass of the permanent magnet is reduced.
  • the present invention has been made paying attention to the above-described problems, and an object thereof is to provide a magnetic heat pump device capable of improving the magnetic flux density obtained per mass of a permanent magnet.
  • one aspect of the present invention is a magnetic heat pump device including a built-in yoke that is a ferromagnetic material, a plurality of permanent magnets, and a material container that is made of resin.
  • the built-in yoke is a ferromagnetic body, is rotatable around the central axis of the rotating shaft, and has a plurality of accommodating portions formed in a U-shape that opens to the outer peripheral side of the rotating shaft when viewed from the axial direction of the central shaft.
  • Each permanent magnet is housed in a plurality of housing portions and is in contact with the built-in yoke, and the magnetization direction of the N pole and the S pole is parallel to the direction perpendicular to the axial direction of the central axis.
  • the material container is disposed so as to surround the outer periphery of the built-in yoke, and contains a magnetic material therein.
  • surfaces having different polarities of the permanent magnets are in contact with the pair of inner wall surfaces forming the housing portion.
  • the accommodating portion has a protruding portion that is a portion closer to the material container than the permanent magnet.
  • the magnetic flux flows from the north pole of the permanent magnet to the projecting portion of the contact portion with the north pole of the housing portion, the magnetic material housed in the material container, and the housing portion.
  • the flow reaches the S pole of the permanent magnet through the protruding portions of the contact portion with the S pole in order.
  • a magnetic circuit can be formed by a permanent magnet, a magnetic material, and a built-in yoke, and the flow of magnetic flux can be concentrated to improve the magnetic flux density obtained per mass of the permanent magnet. It becomes possible to provide a magnetic heat pump device.
  • the first embodiment shown below exemplifies a configuration for embodying the technical idea of the present invention
  • the technical idea of the present invention is the material of the component parts, their shapes, The structure, arrangement, etc. are not specified below.
  • the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • the directions of “left and right” and “up and down” in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention.
  • “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course it becomes.
  • the magnetic heat pump device 1 includes a main body portion 2, two communication hole plates 4, two rotating disks 6, two end face plates 8, a circulation pump 10, and a heat radiation side heat exchange. And an endothermic heat exchanger 14.
  • the main-body part 2 is simplified and illustrated.
  • the main body 2 includes a single built-in yoke 26, a plurality of permanent magnets 20, a plurality of material containers 22, a plurality of spacers 28, and a single main body container 30.
  • FIG. 2 is a view of the main body 2 viewed from the direction in which the main body 2, the communication hole plate 4, the rotating disk 6, and the end face plate 8 are arranged.
  • FIG.1 and FIG.2 only the material container 22 is shown with sectional drawing for description.
  • the two communication hole plates 4 are respectively fixed to two openings of the main body 2. Thereby, the two communication hole plates 4 block the opening of the main body 2.
  • Each communication hole plate 4 is formed with a plurality of communication holes 40 communicating with the main body 2.
  • the plurality of communication holes 40 include, for example, a plurality of outer peripheral side communication holes 40 a disposed on the outer peripheral side of the communication hole plate 4 and a plurality of inner peripheral side communication holes 40 b disposed on the inner peripheral side of the communication hole plate 4. Composed.
  • the outer end side communication hole 40 a and the inner peripheral side communication hole 40 b are respectively attached to open ends of the in-container pipe 16 that is a pipe disposed inside the material container 22.
  • the in-container piping 16 is arranged in pairs for one material container 22. One open end of the two in-container pipes 16 is attached to the outer peripheral side communication hole 40a. The other open end of the two in-container pipes 16 is attached to the inner peripheral side communication hole 40b.
  • FIG. 1 for the sake of explanation, only the in-container pipes 16 arranged inside the two material containers 22 among the plurality of material containers 22, that is, only four in-container pipes 16 are illustrated. Yes.
  • the in-container piping 16 is not shown inside the material container 22 for the sake of explanation.
  • the state in which the open ends of the in-container piping 16 are attached to the outer peripheral side communication hole 40 a and the inner peripheral side communication hole 40 b is represented by an image.
  • the number of the communicating holes 40 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
  • the two rotating disks 6 are respectively arranged to face the opening of the main body 2 with the communication hole plate 4 interposed therebetween, and are in contact with the communication hole plate 4.
  • Each rotating disk 6 rotates in synchronization with the permanent magnet 20.
  • Each rotary disk 6 has a plurality of notches 60 opened as valve ports.
  • the plurality of notches 60 include, for example, a plurality of outer periphery-side notches 60 a disposed on the outer peripheral side of the rotating disk 6 and a plurality of inner periphery-side notches 60 b disposed on the inner peripheral side of the rotating disk 6.
  • Both the outer peripheral side notch 60a and the inner peripheral side notch 60b are formed in a slit shape extending along the circumferential direction of the rotating disk 6, and the outer peripheral side notch 60a and the inner peripheral side notch 60b The supply control of the working fluid is performed.
  • the number of the notches 60 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
  • the two end face plates 8 are arranged to face the opening of the main body 2 with the rotating disk 6 and the communication hole plate 4 interposed therebetween, and are in contact with the rotating disk 6.
  • Each end face plate 8 is connected to an outer peripheral side pipe 80a and an inner peripheral side pipe 80b. As described above, the main body 2, the communication hole plate 4 and the end face plate 8 do not rotate, and only the rotating disk 6 rotates in synchronization with the permanent magnet 20.
  • the discharge side of the circulation pump 10 communicates with an outer peripheral side pipe 80a connected to the end face plate 8a.
  • the end face plate 8a is one of the two end face plates 8 (left end face plate in FIG. 1).
  • the inlet of the heat radiation side heat exchanger 12 communicates with the inner peripheral side pipe 80b connected to the end face plate 8a.
  • the outlet of the heat radiation side heat exchanger 12 communicates with the suction side of the circulation pump 10 through a pipe.
  • the inlet of the heat absorption side heat exchanger 14 communicates with the outer peripheral side pipe 80a connected to the end face plate 8b.
  • the end face plate 8b is the other of the two end face plates 8 (the right end face plate in FIG. 1).
  • the outlet of the heat absorption side heat exchanger 14 communicates with the inner peripheral side pipe 80b connected to the end face plate 8b.
  • the built-in yoke 26 is formed using a metal material such as SUS, and is a ferromagnetic material.
  • the built-in yoke 26 includes one rotating plate portion 50, a plurality of outer plate portions 52, and a plurality of divided plate portions 54.
  • the rotating plate part 50 is formed in a plate shape and is fixed to the rotating shaft 32.
  • the rotating shaft 32 is rotated by a motor (not shown).
  • illustration of the rotating shaft 32 is abbreviate
  • the outer plate portion 52 is formed in a plate shape, and one of both end portions viewed from the axial direction of the rotating shaft 32 is one of the long sides of the rotating plate portion 50 viewed from the axial direction of the rotating shaft 32. , Continuous with one end. The other end of the outer plate 52 extends in the direction toward the material container 22.
  • the built-in yoke 26 includes four outer plate portions 52 will be described as an example.
  • two outer plate portions 52a and 52b are each one of the long sides of the rotating plate portion 50 as viewed from the axial direction of the rotating shaft 32 (the upper length in FIG. 2). It is continuous with the end on the different side.
  • the remaining two outer plate portions 52c and 52d among the four outer plate portions 52 are the other of the long sides of the rotating plate portion 50 when viewed from the axial direction of the rotating shaft 32 (in FIG. 2, It is continuous with the end on the different side of the lower long side.
  • the divided plate portion 54 is formed in a plate shape, and one of both end portions viewed from the axial direction of the rotating shaft 32 is the long side of the rotating plate portion 50 viewed from the axial direction of the rotating shaft 32. Is continuous with the center. Accordingly, the divided plate portion 54 is disposed at an intermediate position between the two outer plate portions 52 that are continuous with the long side of the rotary plate portion 50 when viewed from the axial direction of the rotary shaft 32. The other of the two end portions of the dividing plate portion 54 extends in the direction toward the material container 22. Further, the distance between the other end of the divided plate portion 54 and the material container 22 is equal to the distance between the other end of the outer plate 52 and the material container 22.
  • the built-in yoke 26 includes two divided plate portions 54
  • One of the two divided plate portions 54 is arranged between the outer plate portion 52a and the outer plate portion 52b.
  • the other divided plate portion 54b of the two divided plate portions 54 is disposed between the outer plate portion 52c and the outer plate portion 52d.
  • a U-shaped accommodating portion 56 that opens to the outer peripheral side of the shaft 32 is formed.
  • the accommodating portion 56a is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52a, and the divided plate portion 54a.
  • the accommodating portion 56b is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52b, and the divided plate portion 54a.
  • the accommodating portion 56c is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52c, and the divided plate portion 54b.
  • the accommodating portion 56d is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52d, and the divided plate portion 54b.
  • the two accommodating portions 56a to 56d are arranged along a direction parallel to the direction orthogonal to the axial direction of the central axis CS when viewed from the axial direction of the central axis CS.
  • the two accommodating portions 56c and the accommodating portion 56d are along a direction parallel to a direction orthogonal to the axial direction of the central axis CS when viewed from the axial direction of the central axis CS. It is arranged.
  • the built-in yoke 26 is rotatable around the central axis CS of the rotary shaft 32 and is formed in a plurality of U-shapes that open to the outer peripheral side of the rotary shaft 32 when viewed from the axial direction of the central shaft CS.
  • the housing portion 56 is provided.
  • the built-in yoke 26 has four accommodating portions 56a to 56d arranged at an equal distance from the central axis CS when viewed from the axial direction of the central axis CS. Further, when viewed from the axial direction of the rotating shaft 32, the central axis CS and the center of gravity of the built-in yoke 26 overlap.
  • each of the plurality of permanent magnets 20 is accommodated in the accommodating portion 56 and is in contact with the built-in yoke 26.
  • the permanent magnet 20 accommodated in the accommodating portion 56 is attached to the built-in yoke 26 using an adhesive or the like.
  • the permanent magnet 20 accommodated in one accommodating part 56 is formed of one magnet.
  • the built-in yoke 26 since the built-in yoke 26 has four accommodating portions 56a to 56d, a case where the number of permanent magnets 20 is four will be described.
  • the permanent magnet 20 housed in the housing portion 56a may be referred to as “permanent magnet 20a”
  • the permanent magnet 20 housed in the housing portion 56b may be referred to as “permanent magnet 20b”.
  • the permanent magnet 20 accommodated in the accommodating portion 56c may be indicated as “permanent magnet 20c”
  • the permanent magnet 20 accommodated in the accommodating portion 56d may be indicated as “permanent magnet 20d”.
  • the shape of the permanent magnet 20 is square (rectangular) when viewed from the axial direction of the rotating shaft 32. All the permanent magnets 20a to 20d have the same shape.
  • the permanent magnet 20 has a pair of N and S poles, and the magnetization direction of the N and S poles is in a direction perpendicular to the axial direction of the central axis CS.
  • the N pole is illustrated as “N”
  • the S pole is illustrated as “S”.
  • the surface of the permanent magnet 20a having the N pole is in contact with the surface of the divided plate portion 54a facing the outer plate portion 52a, and the surface of the permanent magnet 20a having the S pole is the surface of the outer plate portion 52a.
  • the surface of the permanent magnet 20b whose polarity is the N pole is in contact with the surface facing the outer plate portion 52b of the divided plate portion 54a
  • the surface of the permanent magnet 20b whose polarity is the S pole is the outer plate portion. 52b is in contact with the surface facing the divided plate portion 54a.
  • the surface of the permanent magnet 20c having the N pole is in contact with the surface of the divided plate portion 54b facing the outer plate portion 52c, and the surface of the permanent magnet 20c having the S pole is the outer plate portion. 52c is in contact with the surface facing the divided plate portion 54b.
  • the surface of the permanent magnet 20d having the N pole is in contact with the surface facing the outer plate portion 52d of the divided plate portion 54b, and the surface of the permanent magnet 20d having the S pole is the outer plate portion. It is in contact with the surface facing the split plate portion 54b of 52d. Therefore, the two permanent magnets 20 arranged along the direction parallel to the direction orthogonal to the axial direction of the central axis CS and accommodated in the adjacent two accommodating portions 56 are the N pole surface and the S pole surface. Are facing each other.
  • the distance between the permanent magnet 20 a and the material container 22 is longer than the distance between the divided plate portion 54 a and the material container 22 and the distance between the outer plate portion 52 a and the material container 22.
  • the accommodating part 56a has the two protrusion parts 36a which are parts closer to the material container 22 than the permanent magnet 20a by the division
  • the distance between the permanent magnet 20 b and the material container 22 is longer than the distance between the divided plate portion 54 a and the material container 22 and the distance between the outer plate portion 52 b and the material container 22.
  • the accommodating part 56b has the two protrusion parts 36b which are parts closer to the material container 22 than the permanent magnet 20b by the division
  • the distance between the permanent magnet 20 c and the material container 22 is longer than the distance between the divided plate portion 54 b and the material container 22 and the distance between the outer plate portion 52 c and the material container 22.
  • the accommodating part 56c has the two protrusion parts 36c which are parts closer to the material container 22 than the permanent magnet 20c by the division
  • the distance between the permanent magnet 20 d and the material container 22 is longer than the distance between the divided plate portion 54 b and the material container 22 and the distance between the outer plate portion 52 d and the material container 22.
  • the accommodating part 56d has the two protrusion parts 36d which are parts closer to the material container 22 than the permanent magnet 20d by the division
  • the distance between the other end of the divided plate portion 54 and the material container 22 is equal to the distance between the other end of the outer plate 52 and the material container 22. For this reason, the distances between all the protruding portions 36 and the material containers 22 are the same as seen from the axial direction of the central axis CS.
  • the distance (gap) between each protruding portion 36 and the material container 22 is set according to the magnetic flux density required for the magnetic heat pump device 1, for example.
  • the permanent magnet 20 is set according to a value that can avoid contact between each protruding portion 36 and the material container 22 caused by swinging of the rotation shaft 32 when the permanent magnet 20 is rotated. .
  • the plurality of material containers 22 are made of resin (for example, made of ABS resin), and a magnetic material 34 is accommodated therein.
  • the plurality of material containers 22 are arranged along the circumferential direction of the rotating shaft 32 so as to surround the outer periphery of the built-in yoke 26. Adjacent material containers 22 are in contact with each other.
  • the in-container piping 16 shown in FIG. 1 is disposed so as to pass through the magnetic material 34. In FIG. Illustration of the piping 16 is omitted.
  • the spacer 28 is made of resin (for example, made of ABS resin). Further, each spacer 28 is disposed at a position closer to the material container 22 than the permanent magnet 20 in the accommodating portion 56, and is in contact with the permanent magnet 20. Each spacer 28 is attached to the built-in yoke 26 using an adhesive or the like.
  • the spacer 28a disposed in the accommodating portion 56a is disposed between the two protruding portions 36a.
  • the spacer 28 a is formed in a shape such that the distance from the material container 22 does not become shorter than the distance between the protruding portion 36 a and the material container 22.
  • the spacer 28b disposed in the accommodating portion 56b is disposed between the two protruding portions 36b.
  • the spacer 28 b is formed in a shape such that the distance from the material container 22 does not become shorter than the distance from the protruding portion 36 b to the material container 22.
  • the spacer 28c disposed in the accommodating portion 56c is disposed between the two protruding portions 36c.
  • the spacer 28 c is formed in a shape such that the distance from the material container 22 does not become shorter than the distance between the protruding portion 36 c and the material container 22.
  • the spacer 28d disposed in the accommodating portion 56d is disposed between the two protruding portions 36d.
  • the spacer 28d is formed in a shape such that the distance from the material container 22 does not become shorter than the distance between the protruding portion 36d and the material container 22.
  • the main body container 30 is made of resin (for example, made of ABS resin).
  • the main body container 30 has a cylindrical shape.
  • the axial direction of the main body container 30 is parallel to the axial direction of the rotation shaft 32.
  • a built-in yoke 26 Inside the main body container 30, a built-in yoke 26, a permanent magnet 20, a material container 22, and a spacer 28 are accommodated.
  • the magnitude of the magnetic field applied to the plurality of material containers 22c arranged at a position different from the phase of the permanent magnet 20 and the built-in yoke 26 at 0 ° is reduced, it is accommodated in the material container 22c.
  • the magnetic material 34 is demagnetized and the temperature is lowered.
  • FIG. 3 for the purpose of explanation, two selected material containers 22 out of a plurality of material containers 22 arranged at a position different from the phase of the permanent magnet 20 and the built-in yoke 26 at 0 ° are shown. Only the material container 22c is illustrated.
  • the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a are communicated.
  • the medium for example, water
  • the in-container piping 16 arranged inside the material container 22c is passed.
  • the medium is moved to the heat absorption side heat exchanger 14 through the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a in this order.
  • the medium moved to the heat absorption side heat exchanger 14 is passed through the inner peripheral side pipe 80b, the inner peripheral side cutout 60b, and the inner peripheral side communication hole 40b in this order, and the material container 22a and the material container 22b.
  • the in-container piping 16 arranged inside is passed. Further, the medium is moved to the heat radiation side heat exchanger 12 through the inner circumference side communication hole 40b, the inner circumference side cutout 60b, and the inner circumference side pipe 80b in this order. Then, the medium moved to the heat radiation side heat exchanger 12 is moved to the suction side of the circulation pump 10 through the pipe.
  • the medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like).
  • the medium that has moved to the heat absorption side heat exchanger 14 absorbs heat from an object to be cooled (not shown) that contacts the heat absorption side heat exchanger 14 to cool the object to be cooled.
  • the cooled medium absorbs heat from the object to be cooled by the heat absorption side heat exchanger 14 by dissipating heat to the material container 22c containing the magnetic material 34 that has been demagnetized and the temperature is lowered. Further, the medium that has cooled the object to be cooled is absorbed in the material container 22a and the material container 22b by absorbing heat from the material container 22a and the material container 22b that contain the magnetic material 34 that has been excited to increase the temperature. The magnetic material 34 is cooled and moved to the heat radiation side heat exchanger 12. The medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like).
  • the magnetization directions of the N pole and the S pole are orthogonal to the axial direction of the central axis CS, respectively.
  • 4 permanent magnets 20a to 20d are accommodated.
  • the pair of inner wall surfaces forming the accommodating portion 56 are in contact with surfaces having different polarities of the permanent magnet 20, and the accommodating portion 56 is made of a material more than the permanent magnet 20.
  • a protruding portion 36 that is a portion close to the container 22 is provided. For this reason, when the magnetic material 34 accommodated in the material container 22 closest to the protruding portion 36 is excited, the magnetic flux flow MF does not pass through the main body container 30 as shown in FIG.
  • one of the magnetic flux flows MF starts from the N pole of the permanent magnet 20a in order from the divided plate portion 54a of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22a, and the outer plate portion 52a of the built-in yoke 26. Via, the flow reaches the south pole of the permanent magnet 20a.
  • one of the magnetic flux flows MF passes from the north pole of the permanent magnet 20b to the divided plate portion 54a of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22a, and the outer plate portion 52b of the built-in yoke 26. The flow reaches the south pole of the permanent magnet 20b through the order.
  • one of the magnetic flux flows MF starts from the N pole of the permanent magnet 20c, in order from the divided plate portion 54b of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22b, and the outer plate portion 52c of the built-in yoke 26. Via, the flow reaches the south pole of the permanent magnet 20c.
  • one of the magnetic flux flows MF passes from the north pole of the permanent magnet 20d to the divided plate portion 54b of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22b, and the outer plate portion 52d of the built-in yoke 26. The flow reaches the south pole of the permanent magnet 20d through the order.
  • the above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment, and the present invention may be applied to other forms than this embodiment. Various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
  • a protruding portion 36 that is a portion close to the container 22 is provided. Therefore, a magnetic circuit through which magnetic flux flows can be formed by the permanent magnet 20, the built-in yoke 26, and the magnetic material 34. As a result, it is possible to concentrate the flow of magnetic flux as compared with the case where the magnetic circuit is formed by the permanent magnet 20, the magnetic material 34, and the main body container 30. Thereby, it becomes possible to provide the magnetic heat pump device 1 capable of improving the magnetic flux density obtained per mass of the permanent magnet 20.
  • At least two of the plurality of accommodating portions 56 are arranged along a direction parallel to a direction orthogonal to the axial direction of the central axis CS when viewed from the axial direction of the central axis CS.
  • the two permanent magnets 20 arranged along the direction parallel to the direction orthogonal to the axial direction of the central axis CS and accommodated in the adjacent two accommodating portions 56 are composed of an N-pole surface and an S-pole. Faces each other.
  • the magnetic flux flow MF that flows from the N pole of the permanent magnet 20 to the S pole of the permanent magnet 20 via the built-in yoke 26 and the magnetic material 34 is accommodated in the two adjacent accommodating portions 56.
  • the two permanent magnets 20 can be efficiently generated.
  • the number of the permanent magnets 20 in which the N-pole surface and the S-pole surface are opposed to each other, and the housing portion 56 that houses the permanent magnets 20 in which the N-pole surface and the S-pole surface are opposed to each other It is possible to adjust the attraction force and the attraction force of the magnetic material 34 by adjusting the number of.
  • the built-in yoke 26 has four accommodating portions 56a to 56d arranged at an equal distance from the central axis CS when viewed from the axial direction of the central axis CS.
  • the main body container 30 that houses the permanent magnet 20 and the material container 22 is made of resin. For this reason, it becomes possible to reduce the eddy current which generate
  • FIG. As a result, compared to the configuration in which the main body container 30 is made of a ferromagnetic material, it becomes easier to obtain a low temperature, so that the capability of the magnetic heat pump device 1 can be improved.
  • the spacer 28 made of resin is disposed at a position closer to the material container 22 than the permanent magnet 20 in the housing portion 56.
  • All the permanent magnets 20a to 20d have the same shape. As a result, the permanent magnet 20 can be easily manufactured, and the cost can be reduced.
  • the central axis CS of the rotary shaft 32 and the center of gravity of the built-in yoke 26 overlap. As a result, compared with a configuration in which the center axis CS of the rotation shaft 32 and the center of gravity of the built-in yoke 26 are shifted, it is possible to reduce the swing generated when the permanent magnet 20 and the built-in yoke 26 rotate. The capability of the magnetic heat pump device 1 can be improved.
  • the configuration of the built-in yoke 26 is configured to include the four accommodating portions 56, but is not limited thereto. That is, for example, as shown in FIG. 4, the configuration of the built-in yoke 26 may be a configuration having two accommodating portions 56. Further, for example, as shown in FIG. 5, the configuration of the built-in yoke 26 may be a configuration having six accommodating portions 56.
  • the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32, but the present invention is not limited to this. That is, for example, as shown in FIG. 6, when viewed from the axial direction of the rotary shaft 32, the shape of the permanent magnet 20 is an arc-shaped side corresponding to the shape of the material container 22 at the side close to the material container 22. It is good also as a shape. In this case, the magnetic flux density can be improved as compared with the case where the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotating shaft 32.
  • the permanent magnet 20 accommodated in the one accommodating part 56 was formed with one magnet, it is not limited to this. That is, for example, a plurality of magnets may be combined to form the permanent magnet 20 that is accommodated in one accommodation portion 56. Further, the permanent magnet 20 may be formed by arranging a plurality of magnets in a Halbach array along the axial direction of the rotary shaft 32.
  • SYMBOLS 1 Magnetic heat pump apparatus, 2 ... Main-body part, 4 ... Communication hole plate, 6 ... Rotating disk, 8 ... End surface plate, 10 ... Circulation pump, 12 ... Heat radiation side heat exchanger, 14 ... Heat absorption side heat exchanger, 16 ... 20 ... Permanent magnet, 22 ... Material container, 26 ... Built-in yoke, 28 ... Spacer, 30 ... Main body container, 32 ... Rotating shaft, 34 ... Magnetic material, 36a ... Projection part, 36b ... Projection part, 40a ... Outer peripheral side communication Hole: 40b ... Inner peripheral side communication hole, 50 ... Rotating plate part, 52 ... Outer plate part, 54 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

[Problem] To provide a magnetic heat pump device with which it is possible to improve magnetic flux density obtained per permanent-magnet mass. [Solution] A magnetic heat pump device 1 comprises: a built-in yoke 26 of a ferromagnetic body which is rotatable about a center axis CS of a rotary shaft 32 and which has a plurality of U-shaped storage sections 56 that open to the outer peripheral side of the rotary shaft 32 when seen from the axial direction of the center axis CS; a plurality of permanent magnets 20 which are stored in the respective storage sections 56 and contact the built-in yoke 26, the magnetization direction of the N pole and S pole of the permanent magnets being parallel to a direction orthogonal to the axial direction of the center axis CS; and a material container 22 made of resin which surrounds the outer periphery of the built-in yoke 26 and stores a magnetic material 34. When seen from the axial direction of the center axis CS, different-polarity surfaces of the permanent magnets 20 respectively contact the pairs of inner wall surfaces forming the storage sections 56, and the storage sections 56 have protruding portions 36 which are closer to the material container 22 than the permanent magnets 20.

Description

磁気ヒートポンプ装置Magnetic heat pump device
 本発明は、磁気熱量効果を用いた磁気ヒートポンプ装置に関する。 The present invention relates to a magnetic heat pump apparatus using a magnetocaloric effect.
 磁気熱量効果を用いた磁気ヒートポンプ装置の技術としては、例えば、特許文献1に記載されている技術がある。
 特許文献1に記載されている技術は、回転可能に配置した永久磁石と、磁性材料を収容しており、永久磁石の外周を取り囲む材料容器と、SUS等の強磁性体を用いて形成され、材料容器を収容する枠体(ヨーク)を備える。そして、枠体に収容された容器の内部で永久磁石を回転させることで、永久磁石とヨークとの間で磁性材料を励磁及び消磁させ、励磁及び消磁を行うタイミングで熱交換媒体が流れる方向を切り替えることで、温熱及び冷熱を得る。
As a technique of the magnetic heat pump apparatus using the magnetocaloric effect, there is a technique described in Patent Document 1, for example.
The technique described in Patent Document 1 is formed using a permanent magnet rotatably arranged, a magnetic material, a material container surrounding the outer periphery of the permanent magnet, and a ferromagnetic material such as SUS, A frame body (yoke) for accommodating the material container is provided. Then, by rotating the permanent magnet inside the container accommodated in the frame, the magnetic material is excited and demagnetized between the permanent magnet and the yoke, and the direction in which the heat exchange medium flows at the timing of excitation and demagnetization is changed. By switching, heat and cold are obtained.
特開2013-204984号公報JP 2013-204984 A
 しかしながら、特許文献1に記載されている技術のように、強磁性体を用いてヨークを形成した構成では、磁束の流れが、永久磁石から磁性材料を通過してヨークで折り返し、再度、磁性材料を通過して永久磁石へ戻る流れとなる。このため、磁束が流れる磁気回路が、永久磁石と、磁性材料と、ヨークにより形成されることとなり、磁束の流れが集中せず、永久磁石の質量あたりに得られる磁束密度が低くなるという問題点がある。
 本発明は、上記のような問題点に着目してなされたもので、永久磁石の質量あたりに得られる磁束密度を向上させることが可能な、磁気ヒートポンプ装置を提供することを目的とする。
However, in the configuration in which the yoke is formed using a ferromagnetic material as in the technique described in Patent Document 1, the flow of magnetic flux passes through the magnetic material from the permanent magnet and is folded back by the yoke. The flow returns to the permanent magnet after passing through. For this reason, the magnetic circuit through which the magnetic flux flows is formed by the permanent magnet, the magnetic material, and the yoke, so that the flow of the magnetic flux is not concentrated and the magnetic flux density obtained per mass of the permanent magnet is reduced. There is.
The present invention has been made paying attention to the above-described problems, and an object thereof is to provide a magnetic heat pump device capable of improving the magnetic flux density obtained per mass of a permanent magnet.
 上記課題を解決するために、本発明の一態様は、強磁性体である内蔵ヨークと、複数の永久磁石と、樹脂製である材料容器とを備える磁気ヒートポンプ装置である。内蔵ヨークは、強磁性体であり、回転軸の中心軸周りに回転可能であり、且つ中心軸の軸方向から見て回転軸の外周側へ開口するコの字形に形成された複数の収容部を有する。各永久磁石は、複数の収容部に収容されて内蔵ヨークと接触し、且つN極及びS極の着磁方向が中心軸の軸方向と直交する方向と平行である。材料容器は、内蔵ヨークの外周を包囲するように配置され、且つ内部に磁性材料を収容している。また、中心軸の軸方向から見て、収容部を形成する一対の内壁面に、永久磁石の極性が異なる面がそれぞれ接触している。さらに、収容部は、永久磁石よりも材料容器に近い部分である突出部分を有する。 In order to solve the above-described problems, one aspect of the present invention is a magnetic heat pump device including a built-in yoke that is a ferromagnetic material, a plurality of permanent magnets, and a material container that is made of resin. The built-in yoke is a ferromagnetic body, is rotatable around the central axis of the rotating shaft, and has a plurality of accommodating portions formed in a U-shape that opens to the outer peripheral side of the rotating shaft when viewed from the axial direction of the central shaft. Have Each permanent magnet is housed in a plurality of housing portions and is in contact with the built-in yoke, and the magnetization direction of the N pole and the S pole is parallel to the direction perpendicular to the axial direction of the central axis. The material container is disposed so as to surround the outer periphery of the built-in yoke, and contains a magnetic material therein. In addition, as viewed from the axial direction of the central axis, surfaces having different polarities of the permanent magnets are in contact with the pair of inner wall surfaces forming the housing portion. Furthermore, the accommodating portion has a protruding portion that is a portion closer to the material container than the permanent magnet.
 本発明の一態様によれば、磁束の流れが、永久磁石のN極から、収容部のN極との接触部分が有する突出部分と、材料容器に収容されている磁性材料と、収容部のS極との接触部分が有する突出部分とを順に経由して、永久磁石のS極へ至る流れとなる。
 これにより、磁気回路を、永久磁石と、磁性材料と、内蔵ヨークにより形成することが可能となり、磁束の流れを集中させて、永久磁石の質量あたりに得られる磁束密度を向上させることが可能な、磁気ヒートポンプ装置を提供することが可能となる。
According to one aspect of the present invention, the magnetic flux flows from the north pole of the permanent magnet to the projecting portion of the contact portion with the north pole of the housing portion, the magnetic material housed in the material container, and the housing portion. The flow reaches the S pole of the permanent magnet through the protruding portions of the contact portion with the S pole in order.
As a result, a magnetic circuit can be formed by a permanent magnet, a magnetic material, and a built-in yoke, and the flow of magnetic flux can be concentrated to improve the magnetic flux density obtained per mass of the permanent magnet. It becomes possible to provide a magnetic heat pump device.
本発明の第一実施形態における磁気ヒートポンプ装置の構成を表す分解図である。It is an exploded view showing the structure of the magnetic heat pump apparatus in 1st embodiment of this invention. 本体部の構成を表す図である。It is a figure showing the structure of a main-body part. 本発明の第一実施形態における磁気ヒートポンプ装置を用いて行う動作を表す図である。It is a figure showing the operation | movement performed using the magnetic heat pump apparatus in 1st embodiment of this invention. 本体部の変形例を表す図である。It is a figure showing the modification of a main-body part. 本体部の変形例を表す図である。It is a figure showing the modification of a main-body part. 本体部の変形例を表す図である。It is a figure showing the modification of a main-body part.
 図面を参照して、本発明の第一実施形態を以下において説明する。以下の説明で参照する図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、厚さと平面寸法との関係や、各層の厚さの比率等は、現実のものとは異なることに留意すべきである。したがって、具体的な厚さや寸法は、以下の説明を参酌して判断すべきものである。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 A first embodiment of the present invention will be described below with reference to the drawings. In the description of the drawings referred to in the following description, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and it should be noted that the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that the drawings include portions having different dimensional relationships and ratios.
 さらに、以下に示す第一実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質や、それらの形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることが可能である。また、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」になり、「右」が「左」になることは勿論である。 Furthermore, the first embodiment shown below exemplifies a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention is the material of the component parts, their shapes, The structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims. Further, the directions of “left and right” and “up and down” in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention. Thus, for example, if the paper is rotated 90 degrees, “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course it becomes.
(第一実施形態)
 以下、本発明の第一実施形態について、図面を参照しつつ説明する。
(構成)
 図1中に表すように、磁気ヒートポンプ装置1は、本体部2と、二つの連通孔プレート4と、二つの回転ディスク6と、二つの端面プレート8と、循環ポンプ10と、放熱側熱交換器12と、吸熱側熱交換器14を備える。なお、図1中では、本体部2を簡略化して図示する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
(Constitution)
As shown in FIG. 1, the magnetic heat pump device 1 includes a main body portion 2, two communication hole plates 4, two rotating disks 6, two end face plates 8, a circulation pump 10, and a heat radiation side heat exchange. And an endothermic heat exchanger 14. In addition, in FIG. 1, the main-body part 2 is simplified and illustrated.
 本体部2は、図2中に示すように、一つの内蔵ヨーク26と、複数の永久磁石20と、複数の材料容器22と、複数のスペーサ28と、一つの本体容器30を備える。なお、本体部2の詳細な構成は、後述する。なお、図2は、本体部2を、本体部2と、連通孔プレート4と、回転ディスク6と、端面プレート8とを配列した方向から見た図である。また、図1及び図2中では、説明のために、材料容器22のみを、断面図で図示している。
 二つの連通孔プレート4は、それぞれ、本体部2が有する二箇所の開口部に固定されている。これにより、二つの連通孔プレート4は、本体部2の開口部を閉塞している。
 また、各連通孔プレート4には、本体部2と連通する複数の連通孔40が形成されている。
As shown in FIG. 2, the main body 2 includes a single built-in yoke 26, a plurality of permanent magnets 20, a plurality of material containers 22, a plurality of spacers 28, and a single main body container 30. The detailed configuration of the main body 2 will be described later. FIG. 2 is a view of the main body 2 viewed from the direction in which the main body 2, the communication hole plate 4, the rotating disk 6, and the end face plate 8 are arranged. Moreover, in FIG.1 and FIG.2, only the material container 22 is shown with sectional drawing for description.
The two communication hole plates 4 are respectively fixed to two openings of the main body 2. Thereby, the two communication hole plates 4 block the opening of the main body 2.
Each communication hole plate 4 is formed with a plurality of communication holes 40 communicating with the main body 2.
 複数の連通孔40は、例えば、連通孔プレート4の外周側に配置された複数の外周側連通孔40aと、連通孔プレート4の内周側に配置された複数の内周側連通孔40bにより構成される。
 外周側連通孔40aと内周側連通孔40bには、それぞれ、材料容器22の内部に配置された配管である容器内配管16の開口端が取り付けられている。容器内配管16は、一 つの材料容器22に対し、二本一組で配置されている。二本の容器内配管16のうち一方の開口端は、外周側連通孔40aに取り付けられている。二本の容器内配管16のうち他方の開口端は、内周側連通孔40bに取り付けられている。
The plurality of communication holes 40 include, for example, a plurality of outer peripheral side communication holes 40 a disposed on the outer peripheral side of the communication hole plate 4 and a plurality of inner peripheral side communication holes 40 b disposed on the inner peripheral side of the communication hole plate 4. Composed.
The outer end side communication hole 40 a and the inner peripheral side communication hole 40 b are respectively attached to open ends of the in-container pipe 16 that is a pipe disposed inside the material container 22. The in-container piping 16 is arranged in pairs for one material container 22. One open end of the two in-container pipes 16 is attached to the outer peripheral side communication hole 40a. The other open end of the two in-container pipes 16 is attached to the inner peripheral side communication hole 40b.
 なお、図1中では、説明のために、複数の材料容器22のうち、二つの材料容器22の内部に配置された容器内配管16、すなわち、四本の容器内配管16のみを図示している。また、図1中では、説明のために、材料容器22の内部には、容器内配管16を図示していない。また、図1中では、説明のために、容器内配管16の開口端が、外周側連通孔40a及び内周側連通孔40bに取り付けられている状態を、イメージで表している。
 また、図1中に図示した連通孔40の数は、一例であり、第一実施形態の磁気ヒートポンプ装置1が備える実際の数と、必ずしも一致するものではない。
In FIG. 1, for the sake of explanation, only the in-container pipes 16 arranged inside the two material containers 22 among the plurality of material containers 22, that is, only four in-container pipes 16 are illustrated. Yes. In FIG. 1, the in-container piping 16 is not shown inside the material container 22 for the sake of explanation. Further, in FIG. 1, for the sake of explanation, the state in which the open ends of the in-container piping 16 are attached to the outer peripheral side communication hole 40 a and the inner peripheral side communication hole 40 b is represented by an image.
Moreover, the number of the communicating holes 40 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
 二つの回転ディスク6は、それぞれ、連通孔プレート4を間に挟んで、本体部2の開口部と対向して配置されており、連通孔プレート4と接触している。
 また、各回転ディスク6は、永久磁石20と同期して回転する。
 また、各回転ディスク6には、複数の切欠き60が弁のポートとして開口している。
 複数の切欠き60は、例えば、回転ディスク6の外周側に配置された複数の外周側切欠き60aと、回転ディスク6の内周側に配置された複数の内周側切欠き60bにより構成される。
The two rotating disks 6 are respectively arranged to face the opening of the main body 2 with the communication hole plate 4 interposed therebetween, and are in contact with the communication hole plate 4.
Each rotating disk 6 rotates in synchronization with the permanent magnet 20.
Each rotary disk 6 has a plurality of notches 60 opened as valve ports.
The plurality of notches 60 include, for example, a plurality of outer periphery-side notches 60 a disposed on the outer peripheral side of the rotating disk 6 and a plurality of inner periphery-side notches 60 b disposed on the inner peripheral side of the rotating disk 6. The
 外周側切欠き60a及び内周側切欠き60bは、共に、回転ディスク6の周方向に沿って延びるスリット状に形成されており、外周側切欠き60a及び内周側切欠き60bを介して、作業流体の供給制御が行われる構成となっている。
 また、図1中に図示した切欠き60の数は、一例であり、第一実施形態の磁気ヒートポンプ装置1が備える実際の数と、必ずしも一致するものではない。
 二つの端面プレート8は、それぞれ、回転ディスク6及び連通孔プレート4を間に挟んで、本体部2の開口部と対向して配置されており、回転ディスク6と接触している。
Both the outer peripheral side notch 60a and the inner peripheral side notch 60b are formed in a slit shape extending along the circumferential direction of the rotating disk 6, and the outer peripheral side notch 60a and the inner peripheral side notch 60b The supply control of the working fluid is performed.
Moreover, the number of the notches 60 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
The two end face plates 8 are arranged to face the opening of the main body 2 with the rotating disk 6 and the communication hole plate 4 interposed therebetween, and are in contact with the rotating disk 6.
 また、各端面プレート8には、それぞれ、外周側配管80a及び内周側配管80bが接続されている。
 以上により、本体部2と、連通孔プレート4及び端面プレート8は回転せず、回転ディスク6のみが、永久磁石20と同期して回転する構成となっている。
 循環ポンプ10の吐出側は、端面プレート8aに接続されている外周側配管80aと連通している。なお、端面プレート8aは、二つの端面プレート8のうち一方(図1中では、左側の端面プレート)である。
Each end face plate 8 is connected to an outer peripheral side pipe 80a and an inner peripheral side pipe 80b.
As described above, the main body 2, the communication hole plate 4 and the end face plate 8 do not rotate, and only the rotating disk 6 rotates in synchronization with the permanent magnet 20.
The discharge side of the circulation pump 10 communicates with an outer peripheral side pipe 80a connected to the end face plate 8a. The end face plate 8a is one of the two end face plates 8 (left end face plate in FIG. 1).
 放熱側熱交換器12の入口は、端面プレート8aに接続されている内周側配管80bと連通している。
 放熱側熱交換器12の出口は、配管を介して、循環ポンプ10の吸入側と連通している。
 吸熱側熱交換器14の入口は、端面プレート8bに接続されている外周側配管80aと連通している。なお、端面プレート8bは、二つの端面プレート8のうち他方(図1中では、右側の端面プレート)である。
 吸熱側熱交換器14の出口は、端面プレート8bに接続されている内周側配管80bと連通している。
The inlet of the heat radiation side heat exchanger 12 communicates with the inner peripheral side pipe 80b connected to the end face plate 8a.
The outlet of the heat radiation side heat exchanger 12 communicates with the suction side of the circulation pump 10 through a pipe.
The inlet of the heat absorption side heat exchanger 14 communicates with the outer peripheral side pipe 80a connected to the end face plate 8b. The end face plate 8b is the other of the two end face plates 8 (the right end face plate in FIG. 1).
The outlet of the heat absorption side heat exchanger 14 communicates with the inner peripheral side pipe 80b connected to the end face plate 8b.
(内蔵ヨーク)
 内蔵ヨーク26は、例えば、SUS等の金属材料を用いて形成されており、強磁性体である。
 内蔵ヨーク26は、一つの回転板部50と、複数の外板部52と、複数の分割板部54を備えている。
 回転板部50は、板状に形成されており、回転軸32に固定されている。回転軸32は、図外のモータにより回転する。なお、図1中では、説明のために、回転軸32の図示を省略している。
 具体的には、回転軸32の軸方向から見て、回転板部50の重心には、回転軸32の中心軸CSが貫通している。
(Built-in yoke)
The built-in yoke 26 is formed using a metal material such as SUS, and is a ferromagnetic material.
The built-in yoke 26 includes one rotating plate portion 50, a plurality of outer plate portions 52, and a plurality of divided plate portions 54.
The rotating plate part 50 is formed in a plate shape and is fixed to the rotating shaft 32. The rotating shaft 32 is rotated by a motor (not shown). In addition, in FIG. 1, illustration of the rotating shaft 32 is abbreviate | omitted for description.
Specifically, when viewed from the axial direction of the rotating shaft 32, the center axis CS of the rotating shaft 32 passes through the center of gravity of the rotating plate portion 50.
 外板部52は、板状に形成されており、回転軸32の軸方向から見た両端部のうち一方が、回転軸32の軸方向から見て、回転板部50が有する長辺のうち、一つの端部と連続している。外板部52の両端部のうち他方は、材料容器22へ向かう方向へ伸びている。
 第一実施形態では、一例として、内蔵ヨーク26が、四つの外板部52を備えている場合について説明する。
 四つの外板部52のうち二つの外板部52a,52bは、それぞれ、回転軸32の軸方向から見て、回転板部50が有する長辺のうち一方(図2中では、上側の長辺)の異なる側の端部と連続している。また、四つの外板部52のうち残り二つの外板部52c,52dは、それぞれ、回転軸32の軸方向から見て、回転板部50が有する長辺のうち他方(図2中では、下側の長辺)の異なる側の端部と連続している。
The outer plate portion 52 is formed in a plate shape, and one of both end portions viewed from the axial direction of the rotating shaft 32 is one of the long sides of the rotating plate portion 50 viewed from the axial direction of the rotating shaft 32. , Continuous with one end. The other end of the outer plate 52 extends in the direction toward the material container 22.
In the first embodiment, a case where the built-in yoke 26 includes four outer plate portions 52 will be described as an example.
Of the four outer plate portions 52, two outer plate portions 52a and 52b are each one of the long sides of the rotating plate portion 50 as viewed from the axial direction of the rotating shaft 32 (the upper length in FIG. 2). It is continuous with the end on the different side. Further, the remaining two outer plate portions 52c and 52d among the four outer plate portions 52 are the other of the long sides of the rotating plate portion 50 when viewed from the axial direction of the rotating shaft 32 (in FIG. 2, It is continuous with the end on the different side of the lower long side.
 分割板部54は、板状に形成されており、回転軸32の軸方向から見た両端部のうち一方が、回転軸32の軸方向から見て、回転板部50が有する長辺のうち、中心と連続している。したがって、分割板部54は、回転軸32の軸方向から見て、回転板部50が有する長辺と連続している二つの外板部52の中間位置に配置されている。
 分割板部54の両端部のうち他方は、材料容器22へ向かう方向へ伸びている。
 また、分割板部54の両端部のうち他方と材料容器22との距離は、外板部52の両端部のうち他方と材料容器22との距離と等しい。
The divided plate portion 54 is formed in a plate shape, and one of both end portions viewed from the axial direction of the rotating shaft 32 is the long side of the rotating plate portion 50 viewed from the axial direction of the rotating shaft 32. Is continuous with the center. Accordingly, the divided plate portion 54 is disposed at an intermediate position between the two outer plate portions 52 that are continuous with the long side of the rotary plate portion 50 when viewed from the axial direction of the rotary shaft 32.
The other of the two end portions of the dividing plate portion 54 extends in the direction toward the material container 22.
Further, the distance between the other end of the divided plate portion 54 and the material container 22 is equal to the distance between the other end of the outer plate 52 and the material container 22.
 第一実施形態では、一例として、内蔵ヨーク26が、二つの分割板部54を備えている場合について説明する。
 二つの分割板部54のうち一方の分割板部54aは、外板部52aと外板部52bとの間に配置されている。また、二つの分割板部54のうち他方の分割板部54bは、外板部52cと外板部52dとの間に配置されている。
 また、回転軸32の軸方向から見て、回転板部50と、一つの外板部52と、一つの分割板部54で囲まれた領域は、中心軸CSの軸方向から見て、回転軸32の外周側へ開口するコの字形の収容部56を形成している。
In the first embodiment, a case where the built-in yoke 26 includes two divided plate portions 54 will be described as an example.
One of the two divided plate portions 54 is arranged between the outer plate portion 52a and the outer plate portion 52b. The other divided plate portion 54b of the two divided plate portions 54 is disposed between the outer plate portion 52c and the outer plate portion 52d.
Further, when viewed from the axial direction of the rotating shaft 32, the region surrounded by the rotating plate portion 50, one outer plate portion 52, and one divided plate portion 54 is rotated when viewed from the axial direction of the central axis CS. A U-shaped accommodating portion 56 that opens to the outer peripheral side of the shaft 32 is formed.
 第一実施形態では、一例として、内蔵ヨーク26が、四つの収容部56a~56dを有している場合について説明する。
 収容部56aは、回転板部50と、外板部52aと、分割板部54aで囲まれた領域によって形成されている。収容部56bは、回転板部50と、外板部52bと、分割板部54aで囲まれた領域によって形成されている。収容部56cは、回転板部50と、外板部52cと、分割板部54bで囲まれた領域によって形成されている。収容部56dは、回転板部50と、外板部52dと、分割板部54bで囲まれた領域によって形成されている。
 したがって、四つの収容部56a~56dのうち二つの収容部56a及び収容部56bは、中心軸CSの軸方向から見て、中心軸CSの軸方向と直交する方向と平行な向きに沿って配列されている。同様に、四つの収容部56a~56dのうち二つの収容部56c及び収容部56dは、中心軸CSの軸方向から見て、中心軸CSの軸方向と直交する方向と平行な向きに沿って配列されている。
In the first embodiment, as an example, a case where the built-in yoke 26 has four accommodating portions 56a to 56d will be described.
The accommodating portion 56a is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52a, and the divided plate portion 54a. The accommodating portion 56b is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52b, and the divided plate portion 54a. The accommodating portion 56c is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52c, and the divided plate portion 54b. The accommodating portion 56d is formed by a region surrounded by the rotating plate portion 50, the outer plate portion 52d, and the divided plate portion 54b.
Accordingly, of the four accommodating portions 56a to 56d, the two accommodating portions 56a and the accommodating portion 56b are arranged along a direction parallel to the direction orthogonal to the axial direction of the central axis CS when viewed from the axial direction of the central axis CS. Has been. Similarly, of the four accommodating portions 56a to 56d, the two accommodating portions 56c and the accommodating portion 56d are along a direction parallel to a direction orthogonal to the axial direction of the central axis CS when viewed from the axial direction of the central axis CS. It is arranged.
 以上により、内蔵ヨーク26は、回転軸32の中心軸CS周りに回転可能であり、且つ中心軸CSの軸方向から見て、回転軸32の外周側へ開口するコの字形に形成された複数の収容部56を有する。
 また、内蔵ヨーク26は、中心軸CSの軸方向から見て、中心軸CSから等しい距離に配置された四つの収容部56a~56dを有する。
 また、回転軸32の軸方向から見て、中心軸CSと、内蔵ヨーク26の重心とは、重なっている。
As described above, the built-in yoke 26 is rotatable around the central axis CS of the rotary shaft 32 and is formed in a plurality of U-shapes that open to the outer peripheral side of the rotary shaft 32 when viewed from the axial direction of the central shaft CS. The housing portion 56 is provided.
Further, the built-in yoke 26 has four accommodating portions 56a to 56d arranged at an equal distance from the central axis CS when viewed from the axial direction of the central axis CS.
Further, when viewed from the axial direction of the rotating shaft 32, the central axis CS and the center of gravity of the built-in yoke 26 overlap.
(永久磁石)
 複数の永久磁石20は、それぞれ、収容部56に収容されて、内蔵ヨーク26と接触している。なお、収容部56に収容された永久磁石20は、接着剤等を用いて、内蔵ヨーク26に取り付けられている。また、一つの収容部56に収容する永久磁石20は、一つの磁石により形成されている。
 第一実施形態では、内蔵ヨーク26が、四つの収容部56a~56dを有しているため、永久磁石20の数を、四つとした場合について説明する。なお、以降の説明では、収容部56aに収容されている永久磁石20を「永久磁石20a」と示し、収容部56bに収容されている永久磁石20を「永久磁石20b」と示す場合がある。同様に、収容部56cに収容されている永久磁石20を「永久磁石20c」と示し、収容部56dに収容されている永久磁石20を「永久磁石20d」と示す場合がある。
(permanent magnet)
Each of the plurality of permanent magnets 20 is accommodated in the accommodating portion 56 and is in contact with the built-in yoke 26. Note that the permanent magnet 20 accommodated in the accommodating portion 56 is attached to the built-in yoke 26 using an adhesive or the like. Moreover, the permanent magnet 20 accommodated in one accommodating part 56 is formed of one magnet.
In the first embodiment, since the built-in yoke 26 has four accommodating portions 56a to 56d, a case where the number of permanent magnets 20 is four will be described. In the following description, the permanent magnet 20 housed in the housing portion 56a may be referred to as “permanent magnet 20a”, and the permanent magnet 20 housed in the housing portion 56b may be referred to as “permanent magnet 20b”. Similarly, the permanent magnet 20 accommodated in the accommodating portion 56c may be indicated as “permanent magnet 20c”, and the permanent magnet 20 accommodated in the accommodating portion 56d may be indicated as “permanent magnet 20d”.
 永久磁石20の形状は、図2中に示すように、回転軸32の軸方向から見て、方形(長方形)である。また、全ての永久磁石20a~20dは、同一の形状である。
 また、永久磁石20は、一組のN極及びS極を有しており、N極及びS極の着磁方向が、中心軸CSの軸方向と直交する方向を向いている。なお、図2中には、N極を「N」と図示し、S極を「S」と図示する。
 永久磁石20aの極性がN極である面は、分割板部54aの外板部52aと対向する面に接触しており、永久磁石20aの極性がS極である面は、外板部52aの分割板部54aと対向する面に接触している。また、永久磁石20bの極性がN極である面は、分割板部54aの外板部52bと対向する面に接触しており、永久磁石20bの極性がS極である面は、外板部52bの分割板部54aと対向する面に接触している。
As shown in FIG. 2, the shape of the permanent magnet 20 is square (rectangular) when viewed from the axial direction of the rotating shaft 32. All the permanent magnets 20a to 20d have the same shape.
The permanent magnet 20 has a pair of N and S poles, and the magnetization direction of the N and S poles is in a direction perpendicular to the axial direction of the central axis CS. In FIG. 2, the N pole is illustrated as “N”, and the S pole is illustrated as “S”.
The surface of the permanent magnet 20a having the N pole is in contact with the surface of the divided plate portion 54a facing the outer plate portion 52a, and the surface of the permanent magnet 20a having the S pole is the surface of the outer plate portion 52a. It is in contact with the surface facing the dividing plate portion 54a. Further, the surface of the permanent magnet 20b whose polarity is the N pole is in contact with the surface facing the outer plate portion 52b of the divided plate portion 54a, and the surface of the permanent magnet 20b whose polarity is the S pole is the outer plate portion. 52b is in contact with the surface facing the divided plate portion 54a.
 さらに、永久磁石20cの極性がN極である面は、分割板部54bの外板部52cと対向する面に接触しており、永久磁石20cの極性がS極である面は、外板部52cの分割板部54bと対向する面に接触している。また、永久磁石20dの極性がN極である面は、分割板部54bの外板部52dと対向する面に接触しており、永久磁石20dの極性がS極である面は、外板部52dの分割板部54bと対向する面に接触している。
 したがって、中心軸CSの軸方向と直交する方向と平行な向きに沿って配列され、且つ隣り合う二つの収容部56に収容された二つの永久磁石20は、N極の面とS極の面とが互いに対向している。
Furthermore, the surface of the permanent magnet 20c having the N pole is in contact with the surface of the divided plate portion 54b facing the outer plate portion 52c, and the surface of the permanent magnet 20c having the S pole is the outer plate portion. 52c is in contact with the surface facing the divided plate portion 54b. Further, the surface of the permanent magnet 20d having the N pole is in contact with the surface facing the outer plate portion 52d of the divided plate portion 54b, and the surface of the permanent magnet 20d having the S pole is the outer plate portion. It is in contact with the surface facing the split plate portion 54b of 52d.
Therefore, the two permanent magnets 20 arranged along the direction parallel to the direction orthogonal to the axial direction of the central axis CS and accommodated in the adjacent two accommodating portions 56 are the N pole surface and the S pole surface. Are facing each other.
 また、永久磁石20aと材料容器22との距離は、分割板部54aと材料容器22との距離及び外板部52aと材料容器22との距離よりも長い。これにより、収容部56aは、分割板部54a及び外板部52aにより、永久磁石20aよりも材料容器22に近い部分である二つの突出部分36aを有する。
 同様に、永久磁石20bと材料容器22との距離は、分割板部54aと材料容器22との距離及び外板部52bと材料容器22との距離よりも長い。これにより、収容部56bは、分割板部54a及び外板部52bにより、永久磁石20bよりも材料容器22に近い部分である二つの突出部分36bを有する。
Further, the distance between the permanent magnet 20 a and the material container 22 is longer than the distance between the divided plate portion 54 a and the material container 22 and the distance between the outer plate portion 52 a and the material container 22. Thereby, the accommodating part 56a has the two protrusion parts 36a which are parts closer to the material container 22 than the permanent magnet 20a by the division | segmentation board part 54a and the outer-plate part 52a.
Similarly, the distance between the permanent magnet 20 b and the material container 22 is longer than the distance between the divided plate portion 54 a and the material container 22 and the distance between the outer plate portion 52 b and the material container 22. Thereby, the accommodating part 56b has the two protrusion parts 36b which are parts closer to the material container 22 than the permanent magnet 20b by the division | segmentation board part 54a and the outer-plate part 52b.
 また、永久磁石20cと材料容器22との距離は、分割板部54bと材料容器22との距離及び外板部52cと材料容器22との距離よりも長い。これにより、収容部56cは、分割板部54b及び外板部52cにより、永久磁石20cよりも材料容器22に近い部分である二つの突出部分36cを有する。
 同様に、永久磁石20dと材料容器22との距離は、分割板部54bと材料容器22との距離及び外板部52dと材料容器22との距離よりも長い。これにより、収容部56dは、分割板部54b及び外板部52dにより、永久磁石20dよりも材料容器22に近い部分である二つの突出部分36dを有する。
Further, the distance between the permanent magnet 20 c and the material container 22 is longer than the distance between the divided plate portion 54 b and the material container 22 and the distance between the outer plate portion 52 c and the material container 22. Thereby, the accommodating part 56c has the two protrusion parts 36c which are parts closer to the material container 22 than the permanent magnet 20c by the division | segmentation board part 54b and the outer-plate part 52c.
Similarly, the distance between the permanent magnet 20 d and the material container 22 is longer than the distance between the divided plate portion 54 b and the material container 22 and the distance between the outer plate portion 52 d and the material container 22. Thereby, the accommodating part 56d has the two protrusion parts 36d which are parts closer to the material container 22 than the permanent magnet 20d by the division | segmentation board part 54b and the outer-plate part 52d.
 上述したように、分割板部54の両端部のうち他方と材料容器22との距離は、外板部52の両端部のうち他方と材料容器22との距離と等しい。このため、中心軸CSの軸方向から見て、全ての突出部分36と材料容器22との距離が等しい。
 各突出部分36と材料容器22との距離(隙間)は、例えば、磁気ヒートポンプ装置1に要求される磁束密度に応じて設定する。これに加え、例えば、永久磁石20を回転させた際に回転軸32の揺動等によって発生する、各突出部分36と材料容器22との接触を回避することが可能な値に応じて設定する。
As described above, the distance between the other end of the divided plate portion 54 and the material container 22 is equal to the distance between the other end of the outer plate 52 and the material container 22. For this reason, the distances between all the protruding portions 36 and the material containers 22 are the same as seen from the axial direction of the central axis CS.
The distance (gap) between each protruding portion 36 and the material container 22 is set according to the magnetic flux density required for the magnetic heat pump device 1, for example. In addition to this, for example, the permanent magnet 20 is set according to a value that can avoid contact between each protruding portion 36 and the material container 22 caused by swinging of the rotation shaft 32 when the permanent magnet 20 is rotated. .
(材料容器)
 複数の材料容器22は、樹脂製(例えば、ABS樹脂製)であり、内部に磁性材料34が収容されている。
 また、複数の材料容器22は、内蔵ヨーク26の外周を包囲するように、回転軸32の周方向に沿って配置されている。隣り合う材料容器22は、互いに接触している。
 なお、材料容器22の内部には、磁性材料34の中を通過するように、図1中に示した容器内配管16が配置されているが、図2中では、説明のために、容器内配管16の図示を省略している。
(Material container)
The plurality of material containers 22 are made of resin (for example, made of ABS resin), and a magnetic material 34 is accommodated therein.
The plurality of material containers 22 are arranged along the circumferential direction of the rotating shaft 32 so as to surround the outer periphery of the built-in yoke 26. Adjacent material containers 22 are in contact with each other.
In addition, in the material container 22, the in-container piping 16 shown in FIG. 1 is disposed so as to pass through the magnetic material 34. In FIG. Illustration of the piping 16 is omitted.
(スペーサ)
 スペーサ28は、樹脂製(例えば、ABS樹脂製)である。
 また、各スペーサ28は、収容部56内の永久磁石20よりも材料容器22に近い位置に配置されており、永久磁石20と接触している。また、各スペーサ28は、接着剤等を用いて、内蔵ヨーク26に取り付けられている。
 収容部56a内に配置されたスペーサ28aは、二つの突出部分36aの間に配置されている。また、スペーサ28aは、材料容器22との距離が、突出部分36aと材料容器22との距離よりも短くならない形状に形成されている。収容部56b内に配置されたスペーサ28bは、二つの突出部分36bの間に配置されている。また、スペーサ28bは、材料容器22との距離が、突出部分36bと材料容器22との距離よりも短くならない形状に形成されている。収容部56c内に配置されたスペーサ28cは、二つの突出部分36cの間に配置されている。また、スペーサ28cは、材料容器22との距離が、突出部分36cと材料容器22との距離よりも短くならない形状に形成されている。収容部56d内に配置されたスペーサ28dは、二つの突出部分36dの間に配置されている。また、スペーサ28dは、材料容器22との距離が、突出部分36dと材料容器22との距離よりも短くならない形状に形成されている。
(Spacer)
The spacer 28 is made of resin (for example, made of ABS resin).
Further, each spacer 28 is disposed at a position closer to the material container 22 than the permanent magnet 20 in the accommodating portion 56, and is in contact with the permanent magnet 20. Each spacer 28 is attached to the built-in yoke 26 using an adhesive or the like.
The spacer 28a disposed in the accommodating portion 56a is disposed between the two protruding portions 36a. The spacer 28 a is formed in a shape such that the distance from the material container 22 does not become shorter than the distance between the protruding portion 36 a and the material container 22. The spacer 28b disposed in the accommodating portion 56b is disposed between the two protruding portions 36b. The spacer 28 b is formed in a shape such that the distance from the material container 22 does not become shorter than the distance from the protruding portion 36 b to the material container 22. The spacer 28c disposed in the accommodating portion 56c is disposed between the two protruding portions 36c. The spacer 28 c is formed in a shape such that the distance from the material container 22 does not become shorter than the distance between the protruding portion 36 c and the material container 22. The spacer 28d disposed in the accommodating portion 56d is disposed between the two protruding portions 36d. The spacer 28d is formed in a shape such that the distance from the material container 22 does not become shorter than the distance between the protruding portion 36d and the material container 22.
(本体容器)
 本体容器30は、樹脂製(例えば、ABS樹脂製)である。
 本体容器30の形状は、円筒状である。また、本体容器30の軸方向は、回転軸32の軸方向と平行である。
 本体容器30の内部には、内蔵ヨーク26と、永久磁石20と、材料容器22と、スペーサ28が収容されている。
(Main body container)
The main body container 30 is made of resin (for example, made of ABS resin).
The main body container 30 has a cylindrical shape. The axial direction of the main body container 30 is parallel to the axial direction of the rotation shaft 32.
Inside the main body container 30, a built-in yoke 26, a permanent magnet 20, a material container 22, and a spacer 28 are accommodated.
(動作)
 図1及び図2を参照しつつ、図3を用いて、第一実施形態の動作の一例を説明する。
 磁気ヒートポンプ装置1の使用時において、図3中に示すように、永久磁石20及び内蔵ヨーク26の位置が0°の位置である状態では、材料容器22a及び材料容器22bに印加される磁場の大きさが増大する。これにより、材料容器22a及び材料容器22bに収容されている磁性材料34が励磁されて、温度が上昇する。なお、材料容器22aは、突出部分36a及び突出部分36bに最も近い材料容器22である。また、材料容器22bは、突出部分36c及び突出部分36dに最も近い材料容器22である。
(Operation)
An example of the operation of the first embodiment will be described with reference to FIGS. 1 and 2 and FIG.
When the magnetic heat pump device 1 is used, as shown in FIG. 3, the magnitude of the magnetic field applied to the material container 22a and the material container 22b when the position of the permanent magnet 20 and the built-in yoke 26 is 0 °. Increases. Thereby, the magnetic material 34 accommodated in the material container 22a and the material container 22b is excited, and the temperature rises. The material container 22a is the material container 22 closest to the protruding portion 36a and the protruding portion 36b. The material container 22b is the material container 22 closest to the protruding portion 36c and the protruding portion 36d.
 一方、0°の位置である永久磁石20及び内蔵ヨーク26と位相が異なる位置に配置された、複数の材料容器22cに印加される磁場の大きさは減少するため、材料容器22cに収容されている磁性材料34が消磁されて、温度が低下する。なお、図3中では、説明のために、0°の位置である永久磁石20及び内蔵ヨーク26と位相が異なる位置に配置された、複数の材料容器22のうち、選択した二つの材料容器22のみを、材料容器22cと図示している。 On the other hand, since the magnitude of the magnetic field applied to the plurality of material containers 22c arranged at a position different from the phase of the permanent magnet 20 and the built-in yoke 26 at 0 ° is reduced, it is accommodated in the material container 22c. The magnetic material 34 is demagnetized and the temperature is lowered. In FIG. 3, for the purpose of explanation, two selected material containers 22 out of a plurality of material containers 22 arranged at a position different from the phase of the permanent magnet 20 and the built-in yoke 26 at 0 ° are shown. Only the material container 22c is illustrated.
 また、永久磁石20及び内蔵ヨーク26の位置が0°の位置である状態では、例えば、外周側連通孔40aと、外周側切欠き60aと、外周側配管80aを連通させる。
 そして、循環ポンプ10を作動させることにより、媒体(例えば、水)を、循環ポンプ10の吐出側から、外周側配管80aと、外周側切欠き60a及び外周側連通孔40aを順に経由させて、材料容器22cの内部に配置した容器内配管16を通過させる。さらに、媒体を、外周側連通孔40a、外周側切欠き60a及び外周側配管80aを順に経由させて、吸熱側熱交換器14へ移動させる。
Further, in a state where the positions of the permanent magnet 20 and the built-in yoke 26 are 0 °, for example, the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a are communicated.
Then, by operating the circulation pump 10, the medium (for example, water) is passed from the discharge side of the circulation pump 10 through the outer peripheral side pipe 80a, the outer peripheral side notch 60a, and the outer peripheral side communication hole 40a in this order. The in-container piping 16 arranged inside the material container 22c is passed. Further, the medium is moved to the heat absorption side heat exchanger 14 through the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a in this order.
 次に、吸熱側熱交換器14へ移動させた媒体を、内周側配管80bと、内周側切欠き60b及び内周側連通孔40bを順に経由させて、材料容器22a及び材料容器22bの内部に配置した容器内配管16を通過させる。さらに、媒体を、内周側連通孔40b、内周側切欠き60b及び内周側配管80bを順に経由させて、放熱側熱交換器12へ移動させる。そして、放熱側熱交換器12へ移動させた媒体を、配管を介して、循環ポンプ10の吸入側へ移動させる。
 上述した経路で媒体を循環させる際に、放熱側熱交換器12に移動した媒体は、仕事分の熱量を外部(外気等)に放出する。一方、吸熱側熱交換器14に移動した媒体は、吸熱側熱交換器14に接触する被冷却体(図示せず)から吸熱して被冷却体を冷却する。
Next, the medium moved to the heat absorption side heat exchanger 14 is passed through the inner peripheral side pipe 80b, the inner peripheral side cutout 60b, and the inner peripheral side communication hole 40b in this order, and the material container 22a and the material container 22b. The in-container piping 16 arranged inside is passed. Further, the medium is moved to the heat radiation side heat exchanger 12 through the inner circumference side communication hole 40b, the inner circumference side cutout 60b, and the inner circumference side pipe 80b in this order. Then, the medium moved to the heat radiation side heat exchanger 12 is moved to the suction side of the circulation pump 10 through the pipe.
When the medium is circulated through the above-described path, the medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like). On the other hand, the medium that has moved to the heat absorption side heat exchanger 14 absorbs heat from an object to be cooled (not shown) that contacts the heat absorption side heat exchanger 14 to cool the object to be cooled.
 したがって、消磁されて温度が低下した磁性材料34を収容している材料容器22cに放熱することで、冷却された媒体は、吸熱側熱交換器14で被冷却体から吸熱する。また、被冷却体を冷却した媒体は、励磁されて温度が上昇した磁性材料34を収容している材料容器22a及び材料容器22bから吸熱することで、材料容器22a及び材料容器22bに収容されている磁性材料34を冷却し、放熱側熱交換器12へ移動する。放熱側熱交換器12へ移動した媒体は、仕事分の熱量を外部(外気等)に放出する。 Therefore, the cooled medium absorbs heat from the object to be cooled by the heat absorption side heat exchanger 14 by dissipating heat to the material container 22c containing the magnetic material 34 that has been demagnetized and the temperature is lowered. Further, the medium that has cooled the object to be cooled is absorbed in the material container 22a and the material container 22b by absorbing heat from the material container 22a and the material container 22b that contain the magnetic material 34 that has been excited to increase the temperature. The magnetic material 34 is cooled and moved to the heat radiation side heat exchanger 12. The medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like).
 ここで、第一実施形態では、強磁性体である内蔵ヨーク26が有する四つの収容部56a~56dに、それぞれ、N極及びS極の着磁方向が中心軸CSの軸方向と直交する方向と平行な四つの永久磁石20a~20dが収容されている。これに加え、中心軸CSの軸方向から見て、収容部56を形成する一対の内壁面に、永久磁石20の極性が異なる面がそれぞれ接触し、収容部56が、永久磁石20よりも材料容器22に近い部分である突出部分36を有する。
 このため、突出部分36に最も近い材料容器22に収容されている磁性材料34が励磁されると、図3中に示すように、磁束の流れMFが、本体容器30を経由しない流れとなる。
Here, in the first embodiment, in the four accommodating portions 56a to 56d of the built-in yoke 26 that is a ferromagnetic material, the magnetization directions of the N pole and the S pole are orthogonal to the axial direction of the central axis CS, respectively. 4 permanent magnets 20a to 20d are accommodated. In addition to this, when viewed from the axial direction of the central axis CS, the pair of inner wall surfaces forming the accommodating portion 56 are in contact with surfaces having different polarities of the permanent magnet 20, and the accommodating portion 56 is made of a material more than the permanent magnet 20. A protruding portion 36 that is a portion close to the container 22 is provided.
For this reason, when the magnetic material 34 accommodated in the material container 22 closest to the protruding portion 36 is excited, the magnetic flux flow MF does not pass through the main body container 30 as shown in FIG.
 すなわち、磁束の流れMFのうち一つが、永久磁石20aのN極から、内蔵ヨーク26の分割板部54a、材料容器22aに収容されている磁性材料34、内蔵ヨーク26の外板部52aを順に経由して、永久磁石20aのS極へ至る流れとなる。同様に、磁束の流れMFのうち一つが、永久磁石20bのN極から、内蔵ヨーク26の分割板部54a、材料容器22aに収容されている磁性材料34、内蔵ヨーク26の外板部52bを順に経由して、永久磁石20bのS極へ至る流れとなる。
 また、磁束の流れMFのうち一つが、永久磁石20cのN極から、内蔵ヨーク26の分割板部54b、材料容器22bに収容されている磁性材料34、内蔵ヨーク26の外板部52cを順に経由して、永久磁石20cのS極へ至る流れとなる。同様に、磁束の流れMFのうち一つが、永久磁石20dのN極から、内蔵ヨーク26の分割板部54b、材料容器22bに収容されている磁性材料34、内蔵ヨーク26の外板部52dを順に経由して、永久磁石20dのS極へ至る流れとなる。
That is, one of the magnetic flux flows MF starts from the N pole of the permanent magnet 20a in order from the divided plate portion 54a of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22a, and the outer plate portion 52a of the built-in yoke 26. Via, the flow reaches the south pole of the permanent magnet 20a. Similarly, one of the magnetic flux flows MF passes from the north pole of the permanent magnet 20b to the divided plate portion 54a of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22a, and the outer plate portion 52b of the built-in yoke 26. The flow reaches the south pole of the permanent magnet 20b through the order.
Further, one of the magnetic flux flows MF starts from the N pole of the permanent magnet 20c, in order from the divided plate portion 54b of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22b, and the outer plate portion 52c of the built-in yoke 26. Via, the flow reaches the south pole of the permanent magnet 20c. Similarly, one of the magnetic flux flows MF passes from the north pole of the permanent magnet 20d to the divided plate portion 54b of the built-in yoke 26, the magnetic material 34 accommodated in the material container 22b, and the outer plate portion 52d of the built-in yoke 26. The flow reaches the south pole of the permanent magnet 20d through the order.
 これにより、磁束が流れる磁気回路を、永久磁石20と、内蔵ヨーク26と、磁性材料34により形成することが可能となる。
 したがって、磁気回路が、永久磁石20と、磁性材料34と、本体容器30により形成される場合と比較して、磁束の流れを集中させることが可能となり、永久磁石20の質量あたりに得られる磁束密度を向上させることが可能となる。
 なお、上述した第一実施形態は、本発明の一例であり、本発明は、上述した第一実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
Thereby, a magnetic circuit through which magnetic flux flows can be formed by the permanent magnet 20, the built-in yoke 26, and the magnetic material 34.
Therefore, compared with the case where a magnetic circuit is formed with the permanent magnet 20, the magnetic material 34, and the main body container 30, it becomes possible to concentrate the flow of magnetic flux, and the magnetic flux obtained per mass of the permanent magnet 20 is obtained. The density can be improved.
The above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment, and the present invention may be applied to other forms than this embodiment. Various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
(第一実施形態の効果)
 第一実施形態の磁気ヒートポンプ装置1であれば、以下に記載する効果を奏することが可能となる。
(1)強磁性体である内蔵ヨーク26が有する複数の収容部56に、それぞれ、N極及びS極の着磁方向が中心軸CSの軸方向と直交する方向と平行な複数の永久磁石20が収容されている。これに加え、中心軸CSの軸方向から見て、収容部56を形成する一対の内壁面に、永久磁石20の極性が異なる面がそれぞれ接触し、収容部56が、永久磁石20よりも材料容器22に近い部分である突出部分36を有する。
 このため、磁束が流れる磁気回路を、永久磁石20と、内蔵ヨーク26と、磁性材料34により形成することが可能となる。
 その結果、磁気回路が、永久磁石20と、磁性材料34と、本体容器30により形成される場合と比較して、磁束の流れを集中させることが可能となる。これにより、永久磁石20の質量あたりに得られる磁束密度を向上させることが可能な、磁気ヒートポンプ装置1を提供することが可能となる。
(Effects of the first embodiment)
If it is the magnetic heat pump apparatus 1 of 1st embodiment, it will become possible to show the effect described below.
(1) A plurality of permanent magnets 20 in which the magnetization directions of the N pole and the S pole are parallel to the direction perpendicular to the axial direction of the central axis CS, respectively, in the plurality of receiving portions 56 included in the built-in yoke 26 that is a ferromagnetic body. Is housed. In addition to this, when viewed from the axial direction of the central axis CS, the pair of inner wall surfaces forming the accommodating portion 56 are in contact with surfaces having different polarities of the permanent magnet 20, and the accommodating portion 56 is made of a material more than the permanent magnet 20. A protruding portion 36 that is a portion close to the container 22 is provided.
Therefore, a magnetic circuit through which magnetic flux flows can be formed by the permanent magnet 20, the built-in yoke 26, and the magnetic material 34.
As a result, it is possible to concentrate the flow of magnetic flux as compared with the case where the magnetic circuit is formed by the permanent magnet 20, the magnetic material 34, and the main body container 30. Thereby, it becomes possible to provide the magnetic heat pump device 1 capable of improving the magnetic flux density obtained per mass of the permanent magnet 20.
(2)複数の収容部56のうち少なくとも二つは、中心軸CSの軸方向から見て、中心軸CSの軸方向と直交する方向と平行な向きに沿って配列されている。これに加え、中心軸CSの軸方向と直交する方向と平行な向きに沿って配列され、且つ隣り合う二つの収容部56に収容された二つの永久磁石20は、N極の面とS極の面とが互いに対向している。
 その結果、永久磁石20のN極から、内蔵ヨーク26及び磁性材料34を経由して、永久磁石20のS極へ至る流れとなる磁束の流れMFを、隣り合う二つの収容部56に収容された二つの永久磁石20から、効率的に発生させることが可能となる。
 また、N極の面とS極の面とが互いに対向している永久磁石20の数と、N極の面とS極の面とが互いに対向している永久磁石20を収容する収容部56の数を調整することで、磁性材料34の吸着力と吸引力を調整することが可能となる。
(2) At least two of the plurality of accommodating portions 56 are arranged along a direction parallel to a direction orthogonal to the axial direction of the central axis CS when viewed from the axial direction of the central axis CS. In addition, the two permanent magnets 20 arranged along the direction parallel to the direction orthogonal to the axial direction of the central axis CS and accommodated in the adjacent two accommodating portions 56 are composed of an N-pole surface and an S-pole. Faces each other.
As a result, the magnetic flux flow MF that flows from the N pole of the permanent magnet 20 to the S pole of the permanent magnet 20 via the built-in yoke 26 and the magnetic material 34 is accommodated in the two adjacent accommodating portions 56. The two permanent magnets 20 can be efficiently generated.
In addition, the number of the permanent magnets 20 in which the N-pole surface and the S-pole surface are opposed to each other, and the housing portion 56 that houses the permanent magnets 20 in which the N-pole surface and the S-pole surface are opposed to each other. It is possible to adjust the attraction force and the attraction force of the magnetic material 34 by adjusting the number of.
(3)内蔵ヨーク26が、中心軸CSの軸方向から見て中心軸CSから等しい距離に配置された四つの収容部56a~56dを有する。
 その結果、中心軸CSを起点として、四つの永久磁石20a~20dが等しい距離に配置されるため、磁束の流れMFを均等な流れとすることが可能となり、四つの永久磁石20a~20dから、磁束密度を均等に得ることが可能となる。
(3) The built-in yoke 26 has four accommodating portions 56a to 56d arranged at an equal distance from the central axis CS when viewed from the axial direction of the central axis CS.
As a result, since the four permanent magnets 20a to 20d are arranged at equal distances starting from the central axis CS, the flow of magnetic flux MF can be made uniform, and from the four permanent magnets 20a to 20d, It becomes possible to obtain the magnetic flux density evenly.
(4)中心軸CSの軸方向から見て、全ての突出部分36と材料容器22との距離が等しい。
 このため、全ての永久磁石20(永久磁石20a~20d)に対し、永久磁石20のN極から、内蔵ヨーク26及び磁性材料34を経由して、永久磁石20のS極へ至る流れとなる磁束の流れMFを均等な流れとすることが可能となる。
 その結果、全ての永久磁石20から、磁束密度を均等に得ることが可能となる。
(4) The distances between all the protruding portions 36 and the material containers 22 are the same as viewed from the axial direction of the central axis CS.
Therefore, for all the permanent magnets 20 (permanent magnets 20a to 20d), the magnetic flux that flows from the north pole of the permanent magnet 20 to the south pole of the permanent magnet 20 via the built-in yoke 26 and the magnetic material 34. The flow MF can be made uniform.
As a result, the magnetic flux density can be obtained uniformly from all the permanent magnets 20.
(5)永久磁石20及び材料容器22を収容する本体容器30が、樹脂製である。
 このため、本体部2の最外層を形成する本体容器30に発生する渦電流を低減させることが可能となり、本体容器30の発熱を抑制することが可能となる。
 その結果、本体容器30が強磁性体である構成と比較して、低温が得やすくなるため、磁気ヒートポンプ装置1の能力を向上させることが可能となる。
(5) The main body container 30 that houses the permanent magnet 20 and the material container 22 is made of resin.
For this reason, it becomes possible to reduce the eddy current which generate | occur | produces in the main body container 30 which forms the outermost layer of the main-body part 2, and it becomes possible to suppress the heat_generation | fever of the main body container 30. FIG.
As a result, compared to the configuration in which the main body container 30 is made of a ferromagnetic material, it becomes easier to obtain a low temperature, so that the capability of the magnetic heat pump device 1 can be improved.
(6)収容部56内の永久磁石20よりも材料容器22に近い位置に、樹脂製であるスペーサ28を配置する。
 その結果、内蔵ヨーク26が有する突出部分36同士の接触を防止して、磁束の流れを正常化することが可能となる。
 また、永久磁石20及び内蔵ヨーク26の回転時に発生する空気抵抗を低減させることが可能となり、磁気ヒートポンプ装置1の能力を向上させることが可能となる。
 さらに、永久磁石20及び内蔵ヨーク26の回転時に発生する風切り音を抑制することが可能となり、磁気ヒートポンプ装置1の静粛性を向上させることが可能となる。
(6) The spacer 28 made of resin is disposed at a position closer to the material container 22 than the permanent magnet 20 in the housing portion 56.
As a result, it is possible to normalize the flow of magnetic flux by preventing the protruding portions 36 of the built-in yoke 26 from contacting each other.
In addition, air resistance generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be reduced, and the capability of the magnetic heat pump device 1 can be improved.
Furthermore, wind noise generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be suppressed, and the quietness of the magnetic heat pump device 1 can be improved.
(7)全ての永久磁石20a~20dが、同一の形状である。
 その結果、永久磁石20の製造が容易となり、コストを低減させることが可能となる。(8)回転軸32の軸方向から見て、回転軸32の中心軸CSと、内蔵ヨーク26の重心とが重なっている。
 その結果、回転軸32の中心軸CSと、内蔵ヨーク26の重心とがずれている構成と比較して、永久磁石20及び内蔵ヨーク26の回転時に発生する揺動を低減させることが可能となり、磁気ヒートポンプ装置1の能力を向上させることが可能となる。
(7) All the permanent magnets 20a to 20d have the same shape.
As a result, the permanent magnet 20 can be easily manufactured, and the cost can be reduced. (8) When viewed from the axial direction of the rotary shaft 32, the central axis CS of the rotary shaft 32 and the center of gravity of the built-in yoke 26 overlap.
As a result, compared with a configuration in which the center axis CS of the rotation shaft 32 and the center of gravity of the built-in yoke 26 are shifted, it is possible to reduce the swing generated when the permanent magnet 20 and the built-in yoke 26 rotate. The capability of the magnetic heat pump device 1 can be improved.
(第一実施形態の変形例)
(1)第一実施形態では、内蔵ヨーク26の構成を、四つの収容部56を有する構成としたが、これに限定するものではない。
 すなわち、例えば、図4中に示すように、内蔵ヨーク26の構成を、二つの収容部56を有する構成としてもよい。また、例えば、図5中に示すように、内蔵ヨーク26の構成を、六つの収容部56を有する構成としてもよい。
(Modification of the first embodiment)
(1) In the first embodiment, the configuration of the built-in yoke 26 is configured to include the four accommodating portions 56, but is not limited thereto.
That is, for example, as shown in FIG. 4, the configuration of the built-in yoke 26 may be a configuration having two accommodating portions 56. Further, for example, as shown in FIG. 5, the configuration of the built-in yoke 26 may be a configuration having six accommodating portions 56.
(2)第一実施形態では、永久磁石20を、回転軸32の軸方向から見て、方形に形成したが、これに限定するものではない。
 すなわち、例えば、図6中に示すように、回転軸32の軸方向から見て、永久磁石20の形状を、材料容器22と近い辺を材料容器22の形状に対応する円弧状の辺とした形状としてもよい。
 この場合、永久磁石20を、回転軸32の軸方向から見て方形に形成した場合と比較して、磁束密度を向上させることが可能となる。
(2) In the first embodiment, the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32, but the present invention is not limited to this.
That is, for example, as shown in FIG. 6, when viewed from the axial direction of the rotary shaft 32, the shape of the permanent magnet 20 is an arc-shaped side corresponding to the shape of the material container 22 at the side close to the material container 22. It is good also as a shape.
In this case, the magnetic flux density can be improved as compared with the case where the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotating shaft 32.
(3)第一実施形態では、一つの収容部56に収容する永久磁石20を、一つの磁石により形成したが、これに限定するものではない。
 すなわち、例えば、複数の磁石を組み合わせて、一つの収容部56に収容する永久磁石20を形成してもよい。また、回転軸32の軸方向に沿って、複数の磁石をハルバッハ配列することで、永久磁石20を形成してもよい。
(3) In 1st embodiment, although the permanent magnet 20 accommodated in the one accommodating part 56 was formed with one magnet, it is not limited to this.
That is, for example, a plurality of magnets may be combined to form the permanent magnet 20 that is accommodated in one accommodation portion 56. Further, the permanent magnet 20 may be formed by arranging a plurality of magnets in a Halbach array along the axial direction of the rotary shaft 32.
 1…磁気ヒートポンプ装置、2…本体部、4…連通孔プレート、6…回転ディスク、8…端面プレート、10…循環ポンプ、12…放熱側熱交換器、14…吸熱側熱交換器、16…、20…永久磁石、22…材料容器、26…内蔵ヨーク、28…スペーサ、30…本体容器、32…回転軸、34…磁性材料、36a…突出部分、36b…突出部分、40a…外周側連通孔、40b…内周側連通孔、50…回転板部、52…外板部、54…分割板部、56…収容部、60a…外周側切欠き、60b…内周側切欠き、80a…外周側配管、80b…内周側配管、CS…中心軸、MF…磁束の流れ DESCRIPTION OF SYMBOLS 1 ... Magnetic heat pump apparatus, 2 ... Main-body part, 4 ... Communication hole plate, 6 ... Rotating disk, 8 ... End surface plate, 10 ... Circulation pump, 12 ... Heat radiation side heat exchanger, 14 ... Heat absorption side heat exchanger, 16 ... 20 ... Permanent magnet, 22 ... Material container, 26 ... Built-in yoke, 28 ... Spacer, 30 ... Main body container, 32 ... Rotating shaft, 34 ... Magnetic material, 36a ... Projection part, 36b ... Projection part, 40a ... Outer peripheral side communication Hole: 40b ... Inner peripheral side communication hole, 50 ... Rotating plate part, 52 ... Outer plate part, 54 ... Divided plate part, 56 ... Storage part, 60a ... Outer peripheral side notch, 60b ... Inner peripheral side notch, 80a ... Outer peripheral side pipe, 80b ... Inner peripheral side pipe, CS ... Center axis, MF ... Flow of magnetic flux

Claims (8)

  1.  回転軸の中心軸周りに回転可能であり、且つ前記中心軸の軸方向から見て前記回転軸の外周側へ開口するコの字形に形成された複数の収容部を有する内蔵ヨークと、
     前記複数の収容部に収容されて前記内蔵ヨークと接触し、且つN極及びS極の着磁方向が前記中心軸の軸方向と直交する方向と平行な複数の永久磁石と、
     前記内蔵ヨークの外周を包囲するように配置され、且つ内部に磁性材料を収容した材料容器と、を備え、
     前記中心軸の軸方向から見て、前記収容部を形成する一対の内壁面に、前記永久磁石の極性が異なる面がそれぞれ接触し、
     前記材料容器は、樹脂製であり、
     前記内蔵ヨークは、強磁性体であり、
     前記収容部は、前記永久磁石よりも前記材料容器に近い部分である突出部分を有することを特徴とする磁気ヒートポンプ装置。
    A built-in yoke that has a plurality of accommodating portions formed in a U-shape that is rotatable around the central axis of the rotary shaft and that opens to the outer peripheral side of the rotary shaft when viewed from the axial direction of the central shaft;
    A plurality of permanent magnets housed in the plurality of housing portions and in contact with the built-in yoke, and in which the magnetization directions of the N and S poles are parallel to a direction orthogonal to the axial direction of the central axis;
    A material container disposed so as to surround the outer periphery of the built-in yoke, and containing a magnetic material therein,
    When viewed from the axial direction of the central axis, a pair of inner wall surfaces forming the housing portion are in contact with surfaces having different polarities of the permanent magnet,
    The material container is made of resin,
    The built-in yoke is a ferromagnetic material,
    The magnetic heat pump device according to claim 1, wherein the housing portion has a protruding portion that is closer to the material container than the permanent magnet.
  2.  前記複数の収容部のうち少なくとも二つは、前記中心軸の軸方向から見て中心軸の軸方向と直交する方向と平行な向きに沿って配列され、
     前記中心軸の軸方向と直交する方向と平行な向きに沿って配列され、且つ隣り合う二つの前記収容部に収容された二つの前記永久磁石は、前記N極の面と前記S極の面とが互いに対向していることを特徴とする請求項1に記載した磁気ヒートポンプ装置。
    At least two of the plurality of accommodating portions are arranged along a direction parallel to a direction orthogonal to the axial direction of the central axis when viewed from the axial direction of the central axis,
    The two permanent magnets arranged along two directions parallel to the direction perpendicular to the axial direction of the central axis and housed in the two housing parts adjacent to each other are the surface of the N pole and the surface of the S pole. The magnetic heat pump device according to claim 1, wherein and are opposed to each other.
  3.  前記内蔵ヨークは、前記中心軸の軸方向から見て中心軸から等しい距離に配置された四つの前記収容部を有することを特徴とする請求項2に記載した磁気ヒートポンプ装置。 3. The magnetic heat pump device according to claim 2, wherein the built-in yoke has the four accommodating portions arranged at an equal distance from the central axis when viewed from the axial direction of the central axis.
  4.  前記中心軸の軸方向から見て、全ての前記突出部分と前記材料容器との距離が等しいことを特徴とする請求項1から請求項3のうちいずれか1項に記載した磁気ヒートポンプ装置。 The magnetic heat pump device according to any one of claims 1 to 3, wherein distances between all the protruding portions and the material container are equal when viewed in the axial direction of the central axis.
  5.  前記永久磁石及び前記材料容器を収容する本体容器をさらに備え、
     前記本体容器は、樹脂製であることを特徴とする請求項1から請求項4のうちいずれか1項に記載した磁気ヒートポンプ装置。
    A main body container for housing the permanent magnet and the material container;
    5. The magnetic heat pump device according to claim 1, wherein the main body container is made of a resin.
  6.  前記収容部内の前記永久磁石よりも前記材料容器に近い位置に配置されたスペーサをさらに備え、
     前記スペーサは、樹脂製であることを特徴とする請求項1から請求項5のうちいずれか1項に記載した磁気ヒートポンプ装置。
    A spacer disposed at a position closer to the material container than the permanent magnet in the housing portion;
    The magnetic heat pump device according to claim 1, wherein the spacer is made of resin.
  7.  前記複数の永久磁石は、同一の形状であることを特徴とする請求項1から請求項6のうちいずれか1項に記載した磁気ヒートポンプ装置。 The magnetic heat pump device according to any one of claims 1 to 6, wherein the plurality of permanent magnets have the same shape.
  8.  前記回転軸の軸方向から見て、前記中心軸と、前記内蔵ヨークの重心と、が重なっていることを特徴とする請求項1から請求項7のうちいずれか1項に記載した磁気ヒートポンプ装置。 8. The magnetic heat pump device according to claim 1, wherein the central axis and the center of gravity of the built-in yoke overlap each other when viewed from the axial direction of the rotating shaft. .
PCT/JP2018/046914 2018-01-31 2018-12-20 Magnetic heat pump device WO2019150819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015609A JP2019132553A (en) 2018-01-31 2018-01-31 Magnetic heat pump device
JP2018-015609 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150819A1 true WO2019150819A1 (en) 2019-08-08

Family

ID=67479191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046914 WO2019150819A1 (en) 2018-01-31 2018-12-20 Magnetic heat pump device

Country Status (2)

Country Link
JP (1) JP2019132553A (en)
WO (1) WO2019150819A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209949A1 (en) 2021-03-29 2022-10-06 ダイキン工業株式会社 Magnetic refrigeration device and refrigeration device
WO2022209610A1 (en) 2021-03-29 2022-10-06 ダイキン工業株式会社 Magnetic refrigeration device and refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120720A1 (en) * 2003-12-04 2005-06-09 Chih-Hsing Fang Reciprocating and rotary magnetic refrigeration apparatus
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
US20160238287A1 (en) * 2015-02-13 2016-08-18 General Electric Company Magnetic device for magneto caloric heat pump regenerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120720A1 (en) * 2003-12-04 2005-06-09 Chih-Hsing Fang Reciprocating and rotary magnetic refrigeration apparatus
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
US20160238287A1 (en) * 2015-02-13 2016-08-18 General Electric Company Magnetic device for magneto caloric heat pump regenerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209949A1 (en) 2021-03-29 2022-10-06 ダイキン工業株式会社 Magnetic refrigeration device and refrigeration device
WO2022209610A1 (en) 2021-03-29 2022-10-06 ダイキン工業株式会社 Magnetic refrigeration device and refrigeration device

Also Published As

Publication number Publication date
JP2019132553A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
KR101475369B1 (en) Rotary machine
JP5367258B2 (en) Rotating electric machine
JP5425732B2 (en) Magnetic refrigeration equipment
WO2015166772A1 (en) Dynamo-electric machine
WO2019150819A1 (en) Magnetic heat pump device
JP5602482B2 (en) Magnetic refrigeration equipment
JP6270213B2 (en) Electric motor
JP2010101576A (en) Rotary magnetic temperature regulation device
JP5957605B2 (en) Axial gap type rotating electrical machine
JP2012125088A (en) Electromechanical device, robot and wheel
JP2008051409A (en) Magnetic refrigerating device
JP2013183481A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2012235546A (en) Rotor and rotating electric machine
JP2014017980A (en) Rotary machine
JP6402739B2 (en) Rotating electric machine
JP2015180147A (en) axial gap type rotary electric machine
WO2019150817A1 (en) Magnetic heat pump device
JP2004254437A (en) Cooling device employing magnetic fluid
JP5816491B2 (en) Magnetic refrigeration equipment
JP2022114761A (en) motor cooling structure
JP6365516B2 (en) Stator and axial gap type rotating electric machine including the stator
JP2013135539A (en) Electric motor and laminate stator
JPH11243677A (en) Coaxial linear motor
CN113541340A (en) Axial gap motor
JP6137019B2 (en) Axial gap type rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903459

Country of ref document: EP

Kind code of ref document: A1