WO2019150817A1 - Magnetic heat pump device - Google Patents

Magnetic heat pump device Download PDF

Info

Publication number
WO2019150817A1
WO2019150817A1 PCT/JP2018/046912 JP2018046912W WO2019150817A1 WO 2019150817 A1 WO2019150817 A1 WO 2019150817A1 JP 2018046912 W JP2018046912 W JP 2018046912W WO 2019150817 A1 WO2019150817 A1 WO 2019150817A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
built
magnetic
yoke
heat pump
Prior art date
Application number
PCT/JP2018/046912
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 山口
相哲 ▲裴▼
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2019150817A1 publication Critical patent/WO2019150817A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetic heat pump apparatus using a magnetocaloric effect.
  • Patent Document 1 As a technique of the magnetic heat pump apparatus using the magnetocaloric effect, there is a technique described in Patent Document 1, for example.
  • the technique described in Patent Document 1 is formed using a permanent magnet rotatably arranged, a magnetic material, a material container surrounding the outer periphery of the permanent magnet, and a ferromagnetic material such as SUS, A frame body (yoke) for accommodating the material container is provided. Then, by rotating the permanent magnet inside the container accommodated in the frame, the magnetic material is excited and demagnetized between the permanent magnet and the yoke, and the direction in which the heat exchange medium flows at the timing of excitation and demagnetization is changed. By switching, heat and cold are obtained.
  • the flow of magnetic flux passes through the magnetic material from the permanent magnet and is folded back by the yoke.
  • the flow returns to the permanent magnet after passing through.
  • the magnetic circuit through which the magnetic flux flows is formed by the permanent magnet, the magnetic material, and the yoke, so that the flow of the magnetic flux is not concentrated and the magnetic flux density obtained per mass of the permanent magnet is reduced.
  • the present invention has been made paying attention to the above-described problems, and an object thereof is to provide a magnetic heat pump device capable of improving the magnetic flux density obtained per mass of a permanent magnet.
  • one aspect of the present invention is a magnetic heat pump device including a permanent magnet, a material container, and at least a pair of built-in yokes.
  • the permanent magnet is rotatable around the central axis of the rotation axis, and the magnetization direction of the N pole and the S pole is parallel to the direction orthogonal to the axial direction of the central axis.
  • the material container is made of resin, is disposed so as to surround the outer periphery of the permanent magnet, and contains a magnetic material therein.
  • the built-in yokes are in contact with the surfaces of the permanent magnets having different polarities, and are separated from each other.
  • the built-in yoke is a ferromagnetic body and has a portion closer to the material container than the permanent magnet.
  • the magnetic flux flows from the north pole of the permanent magnet to one of the pair of built-in yokes, the magnetic material accommodated in the material container, and the other of the pair of built-in yokes. It goes through the order and reaches the south pole of the permanent magnet.
  • the magnetic circuit can be formed by a permanent magnet, a magnetic material, and a pair of built-in yokes, and the magnetic flux flow can be concentrated to improve the magnetic flux density obtained per mass of the permanent magnet.
  • a possible magnetic heat pump device can be provided.
  • the first embodiment shown below exemplifies a configuration for embodying the technical idea of the present invention
  • the technical idea of the present invention is the material of the component parts, their shapes, The structure, arrangement, etc. are not specified below.
  • the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • the directions of “left and right” and “up and down” in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention.
  • “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course it becomes.
  • the magnetic heat pump device 1 includes a main body portion 2, two communication hole plates 4, two rotating disks 6, two end face plates 8, a circulation pump 10, and a heat radiation side heat exchange. And an endothermic heat exchanger 14.
  • the main-body part 2 is simplified and illustrated.
  • the main body 2 includes one permanent magnet 20, a plurality of material containers 22, a plurality of inter-material yokes 24, a pair of built-in yokes 26, a pair of spacers 28, and a single spacer.
  • a main body container 30 is provided. The detailed configuration of the main body 2 will be described later.
  • FIG. 2 is a view of the main body 2 viewed from the direction in which the main body 2, the communication hole plate 4, the rotating disk 6, and the end face plate 8 are arranged.
  • FIG.1 and FIG.2 only the material container 22 is shown with sectional drawing for description.
  • the two communication hole plates 4 are respectively fixed to two openings of the main body 2. Thereby, the two communication hole plates 4 block the opening of the main body 2.
  • Each communication hole plate 4 is formed with a plurality of communication holes 40 communicating with the main body 2.
  • the plurality of communication holes 40 include, for example, a plurality of outer peripheral side communication holes 40 a disposed on the outer peripheral side of the communication hole plate 4 and a plurality of inner peripheral side communication holes 40 b disposed on the inner peripheral side of the communication hole plate 4. Composed.
  • the outer end side communication hole 40 a and the inner peripheral side communication hole 40 b are respectively attached to open ends of the in-container pipe 16 that is a pipe disposed inside the material container 22.
  • the in-container pipes 16 are arranged in pairs for one material container 22. One open end of the two in-container pipes 16 is attached to the outer peripheral side communication hole 40a. The other open end of the two in-container pipes 16 is attached to the inner peripheral side communication hole 40b.
  • FIG. 1 for the sake of explanation, only the in-container pipes 16 arranged inside the two material containers 22 among the plurality of material containers 22, that is, only four in-container pipes 16 are illustrated. Yes.
  • the in-container piping 16 is not shown inside the material container 22 for the sake of explanation.
  • the state in which the open ends of the in-container piping 16 are attached to the outer peripheral side communication hole 40 a and the inner peripheral side communication hole 40 b is represented by an image.
  • the number of the communicating holes 40 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
  • the two rotating disks 6 are respectively arranged to face the opening of the main body 2 with the communication hole plate 4 interposed therebetween, and are in contact with the communication hole plate 4.
  • Each rotating disk 6 rotates in synchronization with the permanent magnet 20.
  • Each rotary disk 6 has a plurality of notches 60 opened as valve ports.
  • the plurality of notches 60 include, for example, a plurality of outer periphery-side notches 60 a disposed on the outer peripheral side of the rotating disk 6 and a plurality of inner periphery-side notches 60 b disposed on the inner peripheral side of the rotating disk 6.
  • Both the outer peripheral side notch 60a and the inner peripheral side notch 60b are formed in a slit shape extending along the circumferential direction of the rotating disk 6, and the outer peripheral side notch 60a and the inner peripheral side notch 60b The supply control of the working fluid is performed.
  • the number of the notches 60 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
  • the two end face plates 8 are arranged to face the opening of the main body 2 with the rotating disk 6 and the communication hole plate 4 interposed therebetween, and are in contact with the rotating disk 6.
  • Each end face plate 8 is connected to an outer peripheral side pipe 80a and an inner peripheral side pipe 80b. As described above, the main body 2, the communication hole plate 4 and the end face plate 8 do not rotate, and only the rotating disk 6 rotates in synchronization with the permanent magnet 20.
  • the discharge side of the circulation pump 10 communicates with an outer peripheral side pipe 80a connected to the end face plate 8a.
  • the end face plate 8a is one of the two end face plates 8 (left end face plate in FIG. 1).
  • the inlet of the heat radiation side heat exchanger 12 communicates with the inner peripheral side pipe 80b connected to the end face plate 8a.
  • the outlet of the heat radiation side heat exchanger 12 communicates with the suction side of the circulation pump 10 through a pipe.
  • the inlet of the heat absorption side heat exchanger 14 communicates with the outer peripheral side pipe 80a connected to the end face plate 8b.
  • the end face plate 8b is the other of the two end face plates 8 (the right end face plate in FIG. 1).
  • the outlet of the heat absorption side heat exchanger 14 communicates with the inner peripheral side pipe 80b connected to the end face plate 8b.
  • the permanent magnet 20 is fixed to the rotating shaft 32.
  • the rotating shaft 32 is rotated by a motor (not shown). Therefore, the permanent magnet 20 is formed to be rotatable around the central axis CS of the rotating shaft 32.
  • illustration of the rotating shaft 32 is abbreviate
  • the shape of the permanent magnet 20 is square (rectangular) when viewed from the axial direction of the rotating shaft 32. That is, the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32.
  • the permanent magnet 20 has a pair of N and S poles, and the magnetization direction of the N and S poles is parallel to the direction orthogonal to the axial direction of the central axis CS.
  • the N pole is illustrated as “N”
  • the S pole is illustrated as “S”.
  • the center of gravity of the permanent magnet 20 overlaps the central axis CS of the rotating shaft 32 when viewed from the axial direction of the rotating shaft 32. That is, when viewed from the axial direction of the rotating shaft 32, the center axis CS and the center of gravity of the permanent magnet 20 overlap.
  • the plurality of material containers 22 are made of resin (for example, made of ABS resin), and a magnetic material 34 is accommodated therein. Further, the plurality of material containers 22 are arranged at intervals along the circumferential direction of the rotation shaft 32 so as to surround the outer periphery of the permanent magnet 20.
  • the number of material containers 22 is an odd number. In the first embodiment, a case where the number of material containers 22 is 15 will be described as an example.
  • the material container 22 is formed in a square shape (square) when viewed from the axial direction of the rotation shaft 32. Although not particularly illustrated, each material container 22 is positioned by, for example, a protrusion provided on the surface of the communication hole plate 4 facing the main body 2.
  • the in-container piping 16 shown in FIG. 1 is arranged inside the material container 22 so as to pass through the magnetic material 34. In FIG. Illustration of the piping 16 is omitted.
  • the plurality of inter-material yokes 24 are respectively disposed between adjacent material containers 22. Specifically, each material yoke 24 is in contact with the adjacent material container 22.
  • the inter-material yoke 24 is formed using a metal material such as SUS, and is a ferromagnetic material.
  • the number of inter-material yokes 24 is an odd number that is the same as the number of material containers 22. In the first embodiment, as an example, since the number of material containers 22 is 15, a case where the number of inter-material yokes 24 is also 15 will be described. Therefore, the magnetic heat pump device 1 according to the first embodiment includes 15 pairs formed by a pair of adjacent material containers 22 and an inter-material yoke 24.
  • each material yoke 24 is formed in a trapezoidal shape when viewed from the axial direction of the rotary shaft 32.
  • each material yoke 24 is positioned by, for example, a protrusion provided on the surface of the communication hole plate 4 facing the main body 2 as in the material container 22.
  • the pair of built-in yokes 26 are both made of a metal material such as SUS, and are ferromagnetic.
  • the pair of built-in yokes 26 are in contact with the surface of the permanent magnet 20 whose polarity is the N pole and the surface of the permanent magnet 20 whose polarity is the S pole, and are separated from each other.
  • the built-in yoke 26 is attached to the permanent magnet 20 using an adhesive or the like.
  • each of the pair of built-in yokes 26 has a rectangular shape when viewed from the axial direction of the rotating shaft 32 among the permanent magnets 20 formed in a rectangular shape when viewed from the axial direction of the rotating shaft 32. The case where it contacts the surface which forms a long side is demonstrated.
  • the built-in yoke 26 that is in contact with the surface of the permanent magnet 20 that is N-pole is defined as the N-pole-side built-in yoke 26a.
  • the built-in yoke 26 that is in contact with the surface of the permanent magnet 20 having the south pole is defined as the south pole-side built-in yoke 26b.
  • the north pole side built-in yoke 26 a has two projecting portions 36 a that are closer to the material container 22 than the permanent magnet 20.
  • the S pole-side built-in yoke 26b has two projecting portions 36b that are closer to the material container 22 than the permanent magnet 20 as in the N-pole side built-in yoke 26a.
  • the distance (gap) between the protruding portion 36a and the protruding portion 36b and the material container 22 is set according to the magnetic flux density required for the magnetic heat pump device 1, for example. In addition to this, for example, according to a value capable of avoiding contact between the protruding portion 36a and the protruding portion 36b and the material container 22 caused by swinging of the rotating shaft 32 when the permanent magnet 20 is rotated.
  • the distance (interval) between the projecting portion 36a and the projecting portion 36b is such that the distance between the projecting portion 36a and the distance between the projecting portions 36b with respect to two inter-material yokes 24 adjacent to one material container 22 is equal to each other.
  • the distance and shape between the projecting portion 36a and the projecting portion 36b are set to a distance and shape that does not affect the flow of magnetic flux MF through the spacer 28.
  • the pair of spacers 28 are made of resin (for example, made of ABS resin). As shown in FIG. 2, the shape of the spacer 28 is square (rectangular) when viewed from the axial direction of the rotary shaft 32.
  • the pair of spacers 28 are both arranged between the pair of built-in yokes 26 (N-pole side built-in yoke 26a and S-pole side built-in yoke 26b). Each spacer 28 is attached to the built-in yoke 26 using an adhesive or the like.
  • both the pair of spacers 28 are formed in a shape in which the distance from the material container 22 does not become shorter than the distance between the protruding portion 36 a and the protruding portion 36 b and the material container 22.
  • the pair of spacers 28 are both in contact with the permanent magnet 20.
  • the main body container 30 is made of resin (for example, made of ABS resin).
  • the main body container 30 has a cylindrical shape.
  • the axial direction of the main body container 30 is parallel to the axial direction of the rotation shaft 32.
  • a permanent magnet 20 Inside the main body container 30, a permanent magnet 20, a material container 22, an inter-material yoke 24, a built-in yoke 26, and a spacer 28 are accommodated.
  • FIG. 3 An example of the operation of the first embodiment will be described with reference to FIGS. 1 and 2 and FIG.
  • the magnitude of the magnetic field applied to the material container 22a increases when the permanent magnet 20 and the built-in yoke 26 are at 0 °. .
  • the material container 22a is the material container 22 disposed between the inter-material yoke 24a closest to the protruding portion 36a and the inter-material yoke 24b closest to the protruding portion 36b.
  • the magnetic field applied to the plurality of material containers 22b disposed at positions different from the phases of the permanent magnet 20 and the built-in yoke 26 at 0 ° is reduced, the magnetic field is accommodated in the material container 22b.
  • the magnetic material 34 is demagnetized and the temperature is lowered.
  • FIG. 3 for the purpose of explanation, two selected material containers 22 out of a plurality of material containers 22 arranged at a position different from the phase of the permanent magnet 20 and the built-in yoke 26 at 0 ° are shown. Only the material container 22b is illustrated.
  • the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a are communicated.
  • the medium for example, water
  • the in-container piping 16 arranged inside the material container 22b is passed.
  • the medium is moved to the heat absorption side heat exchanger 14 through the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a in this order.
  • the medium moved to the heat absorption side heat exchanger 14 is arranged inside the material container 22a through the inner circumference side pipe 80b, the inner circumference side cutout 60b, and the inner circumference side communication hole 40b in this order.
  • the in-container piping 16 is passed. Further, the medium is moved to the heat radiation side heat exchanger 12 through the inner circumference side communication hole 40b, the inner circumference side cutout 60b, and the inner circumference side pipe 80b in this order. Then, the medium moved to the heat radiation side heat exchanger 12 is moved to the suction side of the circulation pump 10 through the pipe.
  • the medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like).
  • the medium that has moved to the heat absorption side heat exchanger 14 absorbs heat from an object to be cooled (not shown) that contacts the heat absorption side heat exchanger 14 to cool the object to be cooled.
  • the cooled medium absorbs heat from the object to be cooled by the heat absorption side heat exchanger 14 by dissipating heat to the material container 22b containing the magnetic material 34 that has been demagnetized and the temperature has decreased.
  • the medium that has cooled the object to be cooled absorbs heat from the material container 22a that contains the magnetic material 34 that has been excited to increase the temperature, thereby cooling the magnetic material 34 contained in the material container 22a. It moves to the heat radiation side heat exchanger 12.
  • the medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like).
  • the N-pole side built-in yoke 26a and the S-pole side built-in yoke 26b which are ferromagnetic materials, are in contact with the surfaces of the permanent magnet 20 having different polarities, and are separated from each other.
  • the N pole side built-in yoke 26 a has a protruding portion 36 a that is closer to the material container 22 than the permanent magnet 20, and the S pole side built-in yoke 26 b is closer to the material container 22 than the permanent magnet 20. It has the protrusion part 36b which is a part.
  • the flow of magnetic flux MF causes the main body container 30 to pass through as shown in FIG.
  • the flow does not go through. That is, the magnetic flux MF is changed from the N pole of the permanent magnet 20 to the N pole side built-in yoke 26a, the inter-material yoke 24a, the magnetic material 34 accommodated in the material container 22, the inter-material yoke 24b, and the S pole-side built-in yoke.
  • the flow reaches the south pole of the permanent magnet 20 through the 26b in order.
  • the magnetic circuit through which the magnetic flux flows can be formed by the permanent magnet 20, the magnetic material 34, the two inter-material yokes 24a and 24b, and the pair of built-in yokes 26a and 26b.
  • the above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment, and the present invention may be applied to other forms than this embodiment. Various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
  • the pair of built-in yokes 26a and 26b that are in contact with the surfaces of the permanent magnet 20 having different polarities and are separated from each other are ferromagnetic and are closer to the material container 22 than the permanent magnet 20 is. It has a certain protruding portion 36. Therefore, a magnetic circuit through which magnetic flux flows can be formed by the permanent magnet 20, the magnetic material 34, and the pair of built-in yokes 26a and 26b.
  • the material container 22 is a plurality of material containers 22 arranged at intervals along the circumferential direction of the rotation shaft 32, and a plurality of inter-material yokes 24 arranged between adjacent material containers 22 It is a ferromagnetic material. Therefore, the magnetic circuit through which the magnetic flux flows includes a permanent magnet 20, a magnetic material 34, two inter-material yokes 24a and 24b adjacent to the material container 22 containing the magnetic material 34, and a pair of built-in yokes 26a and 26b. Can be formed.
  • the shape of the material container 22 can be simplified as compared with the configuration in which the material container 22 is entirely in contact with the inner diameter surface of the main body container 30, and the shapes of the magnetic material 34 and the material container 22 can be changed. When changing, it is possible to improve the degree of freedom of design and the like.
  • the straight pipe type magnetic heat pump device 1 it is possible to realize a structure in which the material container 22 is sandwiched between ferromagnetic materials. This makes it possible to realize a configuration in which the material container 22 is linearly extended along the axial direction of the rotary shaft 32, which is difficult with a disk-type magnetic circuit having a known configuration. For this reason, it becomes possible to utilize the structure which laminated
  • the number of the material containers 22 and the inter-material yokes 24 is the same, odd number. As a result, since the cogging torque generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be reduced, the permanent magnet 20 and the built-in yoke 26 can be smoothly rotated. Can be improved.
  • the main body container 30 that houses the permanent magnet 20 and the material container 22 is made of resin. For this reason, it becomes possible to reduce the eddy current which generate
  • a spacer 28 made of resin is disposed between the pair of built-in yokes 26a and 26b.
  • contact between the pair of built-in yokes 26a and 26b can be prevented, and the flow of magnetic flux can be normalized.
  • air resistance generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be reduced, and the capability of the magnetic heat pump device 1 can be improved.
  • wind noise generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be suppressed, and the quietness of the magnetic heat pump device 1 can be improved.
  • the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32. As a result, the amount of resources used as the material of the permanent magnet 20 can be reduced as compared with the case where the shape of the permanent magnet 20 is a shape in which the permanent magnet 20 is opposed to the material container 22 to generate magnetic flux. It becomes possible, and it becomes possible to reduce cost. Further, since the shape of the permanent magnet 20 is a simple shape, the permanent magnet 20 can be easily manufactured, and the cost can be reduced.
  • the material container 22 is formed in a square shape when viewed from the axial direction of the rotary shaft 32. As a result, compared with the case where the shape of the material container 22 is a shape having a tile-shaped portion along the inner diameter surface of the main body container 30, it is possible to simplify the manufacture of the material container 22 and reduce the cost. It can be reduced.
  • the configuration includes the pair of built-in yokes 26 that are in contact with the N-pole surface and the S-pole surface of the single permanent magnet 20, but the present invention is not limited to this. That is, for example, as shown in FIG. 4, the rotating block 38 a and the four permanent magnets 20 a to 20 d may be provided, and the four pairs of built-in yokes 26 in contact with the permanent magnets 20 may be provided.
  • the rotary block 38 a is formed in a square shape when viewed from the axial direction of the rotary shaft 32, and is fixed to the rotary shaft 32. Further, the center of gravity of the rotating block 38 a overlaps the center axis when viewed from the axial direction of the rotating shaft 32.
  • the four permanent magnets 20a to 20d are formed in a square (rectangular shape) when viewed from the axial direction of the rotary shaft 32, and are attached to the four sides of the rotary block 38a when viewed from the axial direction of the rotary shaft 32, respectively. It has been.
  • the four pairs of built-in yokes 26 are a pair of built-in yoke 26a and built-in yoke 26b that are in contact with the N pole surface and the S pole surface of the permanent magnet 20a, respectively, and the N pole surface and the S pole of the permanent magnet 20b. It includes a pair of a built-in yoke 26c and a built-in yoke 26d that are in contact with the surface.
  • the rotary block 38 b, the three plates 50, and the three permanent magnets 20 a to 20 c are provided, and the three pairs of built-in yokes 26 that are in contact with the permanent magnets 20 are provided. It is good also as a structure.
  • the rotating block 38 b is formed in an equilateral triangle when viewed from the axial direction of the rotating shaft 32, and is fixed to the rotating shaft 32. Further, the center of gravity of the rotating block 38 b overlaps with the central axis when viewed from the axial direction of the rotating shaft 32.
  • the three plates 50 are formed in a plate shape, and are respectively attached to three sides of the rotary block 38 b when viewed from the axial direction of the rotary shaft 32.
  • the thickness of the plate 50 is set to a value at which the N and S poles of the two permanent magnets 20 adjacent to each other in the direction along the axis of the rotary shaft 32 have a distance that does not affect each other. .
  • the three permanent magnets 20a to 20c are formed in a square shape (rectangular shape) when viewed from the axial direction of the rotary shaft 32, and are respectively surfaces facing the rotary block 38b of the plate 50 when viewed from the axial direction of the rotary shaft 32. It is attached to the opposite surface.
  • the three pairs of built-in yokes 26 are a pair of built-in yoke 26a and built-in yoke 26b that respectively contact the N-pole surface and S-pole surface of the permanent magnet 20a, and the N-pole surface and S-pole of the permanent magnet 20b. It includes a pair of a built-in yoke 26c and a built-in yoke 26d that are respectively in contact with the surface.
  • the three pairs of built-in yokes 26 include a pair of built-in yoke 26e and built-in yoke 26f that are in contact with the N-pole surface and the S-pole surface of the permanent magnet 20c, respectively.
  • the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32, but the present invention is not limited to this. That is, for example, as shown in FIG. 6, when the permanent magnet 20 is viewed from the axial direction of the rotary shaft 32, two sides that form a square part are formed with straight sides that form a semicircular part. It may be an attached shape. In this case, the magnetic flux density can be improved as compared with the case where the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotating shaft 32.
  • the permanent magnet 20 was formed with one magnet, it is not limited to this. That is, for example, the permanent magnet 20 may be formed by combining a plurality of magnets. Further, the permanent magnet 20 may be formed by arranging a plurality of magnets in a Halbach array along the axial direction of the rotary shaft 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

[Problem] To provide a magnetic heat pump device that makes it possible to improve the magnetic flux density obtained per permanent-magnet mass. [Solution] A magnetic heat pump device provided with: a permanent magnet 20 that can be rotated about a central axis CS of a rotating shaft 32, and the magnetization direction of an N-pole and an S-pole of which is parallel to a direction orthogonal to an axial direction of the central axis CS; a material container 22 that is arranged so as to surround the outer periphery of the permanent magnet 20 and that has a magnetic material 34 accommodated in the interior; and at least a pair of built-in yokes 26 that are respectively in contact with surfaces of different polarities of the permanent magnet 20 and that are separated from one another. The material container 22 is made of resin, and the built-in yokes 26 are ferromagnets and each have a portion that is closer to the material container 22 than the permanent magnet 20.

Description

磁気ヒートポンプ装置Magnetic heat pump device
 本発明は、磁気熱量効果を用いた磁気ヒートポンプ装置に関する。 The present invention relates to a magnetic heat pump apparatus using a magnetocaloric effect.
 磁気熱量効果を用いた磁気ヒートポンプ装置の技術としては、例えば、特許文献1に記載されている技術がある。
 特許文献1に記載されている技術は、回転可能に配置した永久磁石と、磁性材料を収容しており、永久磁石の外周を取り囲む材料容器と、SUS等の強磁性体を用いて形成され、材料容器を収容する枠体(ヨーク)を備える。そして、枠体に収容された容器の内部で永久磁石を回転させることで、永久磁石とヨークとの間で磁性材料を励磁及び消磁させ、励磁及び消磁を行うタイミングで熱交換媒体が流れる方向を切り替えることで、温熱及び冷熱を得る。
As a technique of the magnetic heat pump apparatus using the magnetocaloric effect, there is a technique described in Patent Document 1, for example.
The technique described in Patent Document 1 is formed using a permanent magnet rotatably arranged, a magnetic material, a material container surrounding the outer periphery of the permanent magnet, and a ferromagnetic material such as SUS, A frame body (yoke) for accommodating the material container is provided. Then, by rotating the permanent magnet inside the container accommodated in the frame, the magnetic material is excited and demagnetized between the permanent magnet and the yoke, and the direction in which the heat exchange medium flows at the timing of excitation and demagnetization is changed. By switching, heat and cold are obtained.
特開2013-204984号公報JP 2013-204984 A
 しかしながら、特許文献1に記載されている技術のように、強磁性体を用いてヨークを形成した構成では、磁束の流れが、永久磁石から磁性材料を通過してヨークで折り返し、再度、磁性材料を通過して永久磁石へ戻る流れとなる。このため、磁束が流れる磁気回路が、永久磁石と、磁性材料と、ヨークにより形成されることとなり、磁束の流れが集中せず、永久磁石の質量あたりに得られる磁束密度が低くなるという問題点がある。
 本発明は、上記のような問題点に着目してなされたもので、永久磁石の質量あたりに得られる磁束密度を向上させることが可能な、磁気ヒートポンプ装置を提供することを目的とする。
However, in the configuration in which the yoke is formed using a ferromagnetic material as in the technique described in Patent Document 1, the flow of magnetic flux passes through the magnetic material from the permanent magnet and is folded back by the yoke. The flow returns to the permanent magnet after passing through. For this reason, the magnetic circuit through which the magnetic flux flows is formed by the permanent magnet, the magnetic material, and the yoke, so that the flow of the magnetic flux is not concentrated and the magnetic flux density obtained per mass of the permanent magnet is reduced. There is.
The present invention has been made paying attention to the above-described problems, and an object thereof is to provide a magnetic heat pump device capable of improving the magnetic flux density obtained per mass of a permanent magnet.
 上記課題を解決するために、本発明の一態様は、永久磁石と、材料容器と、少なくとも一対の内蔵ヨークを備える磁気ヒートポンプ装置である。永久磁石は、回転軸の中心軸周りに回転可能であり、且つN極及びS極の着磁方向が中心軸の軸方向と直交する方向と平行である。材料容器は、樹脂製であり、永久磁石の外周を包囲するように配置され、且つ内部に磁性材料を収容している。内蔵ヨークは、永久磁石の極性が異なる面とそれぞれ接触し、且つ互いに離間している。これに加え、内蔵ヨークは、強磁性体であり、且つ永久磁石よりも材料容器に近い部分を有する。 In order to solve the above problems, one aspect of the present invention is a magnetic heat pump device including a permanent magnet, a material container, and at least a pair of built-in yokes. The permanent magnet is rotatable around the central axis of the rotation axis, and the magnetization direction of the N pole and the S pole is parallel to the direction orthogonal to the axial direction of the central axis. The material container is made of resin, is disposed so as to surround the outer periphery of the permanent magnet, and contains a magnetic material therein. The built-in yokes are in contact with the surfaces of the permanent magnets having different polarities, and are separated from each other. In addition, the built-in yoke is a ferromagnetic body and has a portion closer to the material container than the permanent magnet.
 本発明の一態様によれば、磁束の流れが、永久磁石のN極から、一対の内蔵ヨークのうち一方と、材料容器に収容されている磁性材料と、一対の内蔵ヨークのうち他方とを順に経由して、永久磁石のS極へ至る流れとなる。
 これにより、磁気回路を、永久磁石と、磁性材料と、一対の内蔵ヨークにより形成することが可能となり、磁束の流れを集中させて、永久磁石の質量あたりに得られる磁束密度を向上させることが可能な、磁気ヒートポンプ装置を提供することが可能となる。
According to one aspect of the present invention, the magnetic flux flows from the north pole of the permanent magnet to one of the pair of built-in yokes, the magnetic material accommodated in the material container, and the other of the pair of built-in yokes. It goes through the order and reaches the south pole of the permanent magnet.
As a result, the magnetic circuit can be formed by a permanent magnet, a magnetic material, and a pair of built-in yokes, and the magnetic flux flow can be concentrated to improve the magnetic flux density obtained per mass of the permanent magnet. A possible magnetic heat pump device can be provided.
本発明の第一実施形態における磁気ヒートポンプ装置の構成を表す分解図である。It is an exploded view showing the structure of the magnetic heat pump apparatus in 1st embodiment of this invention. 本体部の構成を表す図である。It is a figure showing the structure of a main-body part. 本発明の第一実施形態における磁気ヒートポンプ装置を用いて行う動作を表す図である。It is a figure showing the operation | movement performed using the magnetic heat pump apparatus in 1st embodiment of this invention. 本体部の変形例を表す図である。It is a figure showing the modification of a main-body part. 本体部の変形例を表す図である。It is a figure showing the modification of a main-body part. 本体部の変形例を表す図である。It is a figure showing the modification of a main-body part.
 図面を参照して、本発明の第一実施形態を以下において説明する。以下の説明で参照する図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、厚さと平面寸法との関係や、各層の厚さの比率等は、現実のものとは異なることに留意すべきである。したがって、具体的な厚さや寸法は、以下の説明を参酌して判断すべきものである。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 A first embodiment of the present invention will be described below with reference to the drawings. In the description of the drawings referred to in the following description, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and it should be noted that the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that the drawings include portions having different dimensional relationships and ratios.
 さらに、以下に示す第一実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質や、それらの形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることが可能である。また、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」になり、「右」が「左」になることは勿論である。 Furthermore, the first embodiment shown below exemplifies a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention is the material of the component parts, their shapes, The structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims. Further, the directions of “left and right” and “up and down” in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention. Thus, for example, if the paper is rotated 90 degrees, “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course it becomes.
(第一実施形態)
 以下、本発明の第一実施形態について、図面を参照しつつ説明する。
(構成)
 図1中に表すように、磁気ヒートポンプ装置1は、本体部2と、二つの連通孔プレート4と、二つの回転ディスク6と、二つの端面プレート8と、循環ポンプ10と、放熱側熱交換器12と、吸熱側熱交換器14を備える。なお、図1中では、本体部2を簡略化して図示する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
(Constitution)
As shown in FIG. 1, the magnetic heat pump device 1 includes a main body portion 2, two communication hole plates 4, two rotating disks 6, two end face plates 8, a circulation pump 10, and a heat radiation side heat exchange. And an endothermic heat exchanger 14. In addition, in FIG. 1, the main-body part 2 is simplified and illustrated.
 本体部2は、図2中に示すように、一つの永久磁石20と、複数の材料容器22と、複数の材料間ヨーク24と、一対の内蔵ヨーク26と、一対のスペーサ28と、一つの本体容器30を備える。なお、本体部2の詳細な構成は、後述する。なお、図2は、本体部2を、本体部2と、連通孔プレート4と、回転ディスク6と、端面プレート8とを配列した方向から見た図である。また、図1及び図2中では、説明のために、材料容器22のみを、断面図で図示している。 As shown in FIG. 2, the main body 2 includes one permanent magnet 20, a plurality of material containers 22, a plurality of inter-material yokes 24, a pair of built-in yokes 26, a pair of spacers 28, and a single spacer. A main body container 30 is provided. The detailed configuration of the main body 2 will be described later. FIG. 2 is a view of the main body 2 viewed from the direction in which the main body 2, the communication hole plate 4, the rotating disk 6, and the end face plate 8 are arranged. Moreover, in FIG.1 and FIG.2, only the material container 22 is shown with sectional drawing for description.
 二つの連通孔プレート4は、それぞれ、本体部2が有する二箇所の開口部に固定されている。これにより、二つの連通孔プレート4は、本体部2の開口部を閉塞している。
 また、各連通孔プレート4には、本体部2と連通する複数の連通孔40が形成されている。
 複数の連通孔40は、例えば、連通孔プレート4の外周側に配置された複数の外周側連通孔40aと、連通孔プレート4の内周側に配置された複数の内周側連通孔40bにより構成される。
 外周側連通孔40aと内周側連通孔40bには、それぞれ、材料容器22の内部に配置された配管である容器内配管16の開口端が取り付けられている。容器内配管16は、一つの材料容器22に対し、二本一組で配置されている。二本の容器内配管16のうち一方の開口端は、外周側連通孔40aに取り付けられている。二本の容器内配管16のうち他方の開口端は、内周側連通孔40bに取り付けられている。
The two communication hole plates 4 are respectively fixed to two openings of the main body 2. Thereby, the two communication hole plates 4 block the opening of the main body 2.
Each communication hole plate 4 is formed with a plurality of communication holes 40 communicating with the main body 2.
The plurality of communication holes 40 include, for example, a plurality of outer peripheral side communication holes 40 a disposed on the outer peripheral side of the communication hole plate 4 and a plurality of inner peripheral side communication holes 40 b disposed on the inner peripheral side of the communication hole plate 4. Composed.
The outer end side communication hole 40 a and the inner peripheral side communication hole 40 b are respectively attached to open ends of the in-container pipe 16 that is a pipe disposed inside the material container 22. The in-container pipes 16 are arranged in pairs for one material container 22. One open end of the two in-container pipes 16 is attached to the outer peripheral side communication hole 40a. The other open end of the two in-container pipes 16 is attached to the inner peripheral side communication hole 40b.
 なお、図1中では、説明のために、複数の材料容器22のうち、二つの材料容器22の内部に配置された容器内配管16、すなわち、四本の容器内配管16のみを図示している。また、図1中では、説明のために、材料容器22の内部には、容器内配管16を図示していない。また、図1中では、説明のために、容器内配管16の開口端が、外周側連通孔40a及び内周側連通孔40bに取り付けられている状態を、イメージで表している。
 また、図1中に図示した連通孔40の数は、一例であり、第一実施形態の磁気ヒートポンプ装置1が備える実際の数と、必ずしも一致するものではない。
In FIG. 1, for the sake of explanation, only the in-container pipes 16 arranged inside the two material containers 22 among the plurality of material containers 22, that is, only four in-container pipes 16 are illustrated. Yes. In FIG. 1, the in-container piping 16 is not shown inside the material container 22 for the sake of explanation. Further, in FIG. 1, for the sake of explanation, the state in which the open ends of the in-container piping 16 are attached to the outer peripheral side communication hole 40 a and the inner peripheral side communication hole 40 b is represented by an image.
Moreover, the number of the communicating holes 40 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
 二つの回転ディスク6は、それぞれ、連通孔プレート4を間に挟んで、本体部2の開口部と対向して配置されており、連通孔プレート4と接触している。
 また、各回転ディスク6は、永久磁石20と同期して回転する。
 また、各回転ディスク6には、複数の切欠き60が弁のポートとして開口している。
 複数の切欠き60は、例えば、回転ディスク6の外周側に配置された複数の外周側切欠き60aと、回転ディスク6の内周側に配置された複数の内周側切欠き60bにより構成される。
The two rotating disks 6 are respectively arranged to face the opening of the main body 2 with the communication hole plate 4 interposed therebetween, and are in contact with the communication hole plate 4.
Each rotating disk 6 rotates in synchronization with the permanent magnet 20.
Each rotary disk 6 has a plurality of notches 60 opened as valve ports.
The plurality of notches 60 include, for example, a plurality of outer periphery-side notches 60 a disposed on the outer peripheral side of the rotating disk 6 and a plurality of inner periphery-side notches 60 b disposed on the inner peripheral side of the rotating disk 6. The
 外周側切欠き60a及び内周側切欠き60bは、共に、回転ディスク6の周方向に沿って延びるスリット状に形成されており、外周側切欠き60a及び内周側切欠き60bを介して、作業流体の供給制御が行われる構成となっている。
 また、図1中に図示した切欠き60の数は、一例であり、第一実施形態の磁気ヒートポンプ装置1が備える実際の数と、必ずしも一致するものではない。
 二つの端面プレート8は、それぞれ、回転ディスク6及び連通孔プレート4を間に挟んで、本体部2の開口部と対向して配置されており、回転ディスク6と接触している。
Both the outer peripheral side notch 60a and the inner peripheral side notch 60b are formed in a slit shape extending along the circumferential direction of the rotating disk 6, and the outer peripheral side notch 60a and the inner peripheral side notch 60b The supply control of the working fluid is performed.
Moreover, the number of the notches 60 illustrated in FIG. 1 is an example, and does not necessarily match the actual number provided in the magnetic heat pump device 1 of the first embodiment.
The two end face plates 8 are arranged to face the opening of the main body 2 with the rotating disk 6 and the communication hole plate 4 interposed therebetween, and are in contact with the rotating disk 6.
 また、各端面プレート8には、それぞれ、外周側配管80a及び内周側配管80bが接続されている。
 以上により、本体部2と、連通孔プレート4及び端面プレート8は回転せず、回転ディスク6のみが、永久磁石20と同期して回転する構成となっている。
 循環ポンプ10の吐出側は、端面プレート8aに接続されている外周側配管80aと連通している。なお、端面プレート8aは、二つの端面プレート8のうち一方(図1中では、左側の端面プレート)である。
Each end face plate 8 is connected to an outer peripheral side pipe 80a and an inner peripheral side pipe 80b.
As described above, the main body 2, the communication hole plate 4 and the end face plate 8 do not rotate, and only the rotating disk 6 rotates in synchronization with the permanent magnet 20.
The discharge side of the circulation pump 10 communicates with an outer peripheral side pipe 80a connected to the end face plate 8a. The end face plate 8a is one of the two end face plates 8 (left end face plate in FIG. 1).
 放熱側熱交換器12の入口は、端面プレート8aに接続されている内周側配管80bと連通している。
 放熱側熱交換器12の出口は、配管を介して、循環ポンプ10の吸入側と連通している。
 吸熱側熱交換器14の入口は、端面プレート8bに接続されている外周側配管80aと連通している。なお、端面プレート8bは、二つの端面プレート8のうち他方(図1中では、右側の端面プレート)である。
 吸熱側熱交換器14の出口は、端面プレート8bに接続されている内周側配管80bと連通している。
The inlet of the heat radiation side heat exchanger 12 communicates with the inner peripheral side pipe 80b connected to the end face plate 8a.
The outlet of the heat radiation side heat exchanger 12 communicates with the suction side of the circulation pump 10 through a pipe.
The inlet of the heat absorption side heat exchanger 14 communicates with the outer peripheral side pipe 80a connected to the end face plate 8b. The end face plate 8b is the other of the two end face plates 8 (the right end face plate in FIG. 1).
The outlet of the heat absorption side heat exchanger 14 communicates with the inner peripheral side pipe 80b connected to the end face plate 8b.
(永久磁石)
 永久磁石20は、回転軸32に固定されている。回転軸32は、図外のモータにより回転する。したがって、永久磁石20は、回転軸32の中心軸CS周りに回転可能に形成されている。なお、図1中では、説明のために、回転軸32の図示を省略している。
 永久磁石20の形状は、図2中に示すように、回転軸32の軸方向から見て、方形(長方形)である。すなわち、永久磁石20は、回転軸32の軸方向から見て、方形に形成されている。
(permanent magnet)
The permanent magnet 20 is fixed to the rotating shaft 32. The rotating shaft 32 is rotated by a motor (not shown). Therefore, the permanent magnet 20 is formed to be rotatable around the central axis CS of the rotating shaft 32. In addition, in FIG. 1, illustration of the rotating shaft 32 is abbreviate | omitted for description.
As shown in FIG. 2, the shape of the permanent magnet 20 is square (rectangular) when viewed from the axial direction of the rotating shaft 32. That is, the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32.
 また、永久磁石20は、一組のN極及びS極を有しており、N極及びS極の着磁方向が、中心軸CSの軸方向と直交する方向と平行である。なお、図2中には、N極を「N」と図示し、S極を「S」と図示する。
 永久磁石20の重心は、回転軸32の軸方向から見て、回転軸32の中心軸CSと重なっている。すなわち、回転軸32の軸方向から見て、中心軸CSと、永久磁石20の重心が重なっている。
The permanent magnet 20 has a pair of N and S poles, and the magnetization direction of the N and S poles is parallel to the direction orthogonal to the axial direction of the central axis CS. In FIG. 2, the N pole is illustrated as “N”, and the S pole is illustrated as “S”.
The center of gravity of the permanent magnet 20 overlaps the central axis CS of the rotating shaft 32 when viewed from the axial direction of the rotating shaft 32. That is, when viewed from the axial direction of the rotating shaft 32, the center axis CS and the center of gravity of the permanent magnet 20 overlap.
(材料容器)
 複数の材料容器22は、樹脂製(例えば、ABS樹脂製)であり、内部に磁性材料34が収容されている。
 また、複数の材料容器22は、永久磁石20の外周を包囲するように、回転軸32の周方向に沿って間隔を空けて配置されている。
 材料容器22の数は、奇数である。第一実施形態では、一例として、材料容器22の数を、15個とした場合について説明する。
(Material container)
The plurality of material containers 22 are made of resin (for example, made of ABS resin), and a magnetic material 34 is accommodated therein.
Further, the plurality of material containers 22 are arranged at intervals along the circumferential direction of the rotation shaft 32 so as to surround the outer periphery of the permanent magnet 20.
The number of material containers 22 is an odd number. In the first embodiment, a case where the number of material containers 22 is 15 will be described as an example.
 また、材料容器22は、回転軸32の軸方向から見て、方形(正方形)に形成されている。
 なお、特に図示しないが、各材料容器22は、例えば、連通孔プレート4の本体部2と対向する面に設けられた突起等により、位置決めされている。
 また、材料容器22の内部には、磁性材料34の中を通過するように、図1中に示した容器内配管16が配置されているが、図2中では、説明のために、容器内配管16の図示を省略している。
The material container 22 is formed in a square shape (square) when viewed from the axial direction of the rotation shaft 32.
Although not particularly illustrated, each material container 22 is positioned by, for example, a protrusion provided on the surface of the communication hole plate 4 facing the main body 2.
In addition, the in-container piping 16 shown in FIG. 1 is arranged inside the material container 22 so as to pass through the magnetic material 34. In FIG. Illustration of the piping 16 is omitted.
(材料間ヨーク)
 複数の材料間ヨーク24は、それぞれ、隣り合う材料容器22の間に配置されている。具体的には、各材料間ヨーク24は、隣り合う材料容器22と接触している。
 また、材料間ヨーク24は、例えば、SUS等の金属材料を用いて形成されており、強磁性体である。
 材料間ヨーク24の数は、材料容器22と同数の奇数である。第一実施形態では、一例として、材料容器22の数を15個としているため、材料間ヨーク24の数も、15個とした場合について説明する。
 したがって、第一実施形態の磁気ヒートポンプ装置1は、一組の隣り合う材料容器22と材料間ヨーク24が形成する15組のペアを備えている。
 また、材料間ヨーク24は、回転軸32の軸方向から見て、台形に形成されている。
 なお、特に図示しないが、各材料間ヨーク24は、材料容器22と同様、例えば、連通孔プレート4の本体部2と対向する面に設けられた突起等により、位置決めされている。
(Material yoke)
The plurality of inter-material yokes 24 are respectively disposed between adjacent material containers 22. Specifically, each material yoke 24 is in contact with the adjacent material container 22.
The inter-material yoke 24 is formed using a metal material such as SUS, and is a ferromagnetic material.
The number of inter-material yokes 24 is an odd number that is the same as the number of material containers 22. In the first embodiment, as an example, since the number of material containers 22 is 15, a case where the number of inter-material yokes 24 is also 15 will be described.
Therefore, the magnetic heat pump device 1 according to the first embodiment includes 15 pairs formed by a pair of adjacent material containers 22 and an inter-material yoke 24.
Further, the inter-material yoke 24 is formed in a trapezoidal shape when viewed from the axial direction of the rotary shaft 32.
Although not particularly illustrated, each material yoke 24 is positioned by, for example, a protrusion provided on the surface of the communication hole plate 4 facing the main body 2 as in the material container 22.
(内蔵ヨーク)
 一対の内蔵ヨーク26は、共に、例えば、SUS等の金属材料を用いて形成されており、強磁性体である。
 また、一対の内蔵ヨーク26は、それぞれ、永久磁石20の極性がN極である面と、永久磁石20の極性がS極である面に接触しており、互いに離間している。また、内蔵ヨーク26は、接着剤等を用いて、永久磁石20に取り付けられている。
 第一実施形態では、一例として、一対の内蔵ヨーク26が、それぞれ、回転軸32の軸方向から見て長方形に形成された永久磁石20のうち、回転軸32の軸方向から見て、長方形の長辺を形成する面に接触している場合について説明する。
(Built-in yoke)
The pair of built-in yokes 26 are both made of a metal material such as SUS, and are ferromagnetic.
The pair of built-in yokes 26 are in contact with the surface of the permanent magnet 20 whose polarity is the N pole and the surface of the permanent magnet 20 whose polarity is the S pole, and are separated from each other. The built-in yoke 26 is attached to the permanent magnet 20 using an adhesive or the like.
In the first embodiment, as an example, each of the pair of built-in yokes 26 has a rectangular shape when viewed from the axial direction of the rotating shaft 32 among the permanent magnets 20 formed in a rectangular shape when viewed from the axial direction of the rotating shaft 32. The case where it contacts the surface which forms a long side is demonstrated.
 なお、図2中及び以降の説明では、永久磁石20の極性がN極である面と接触している内蔵ヨーク26を、N極側内蔵ヨーク26aと規定する。同様に、図2中及び以降の説明では、永久磁石20の極性がS極である面と接触している内蔵ヨーク26を、S極側内蔵ヨーク26bと規定する。
 N極側内蔵ヨーク26aは、永久磁石20よりも材料容器22に近い部分である二つの突出部分36aを有する。
 S極側内蔵ヨーク26bは、N極側内蔵ヨーク26aと同様、永久磁石20よりも材料容器22に近い部分である二つの突出部分36bを有する。
In FIG. 2 and the following description, the built-in yoke 26 that is in contact with the surface of the permanent magnet 20 that is N-pole is defined as the N-pole-side built-in yoke 26a. Similarly, in FIG. 2 and the following description, the built-in yoke 26 that is in contact with the surface of the permanent magnet 20 having the south pole is defined as the south pole-side built-in yoke 26b.
The north pole side built-in yoke 26 a has two projecting portions 36 a that are closer to the material container 22 than the permanent magnet 20.
The S pole-side built-in yoke 26b has two projecting portions 36b that are closer to the material container 22 than the permanent magnet 20 as in the N-pole side built-in yoke 26a.
 突出部分36a及び突出部分36bと材料容器22との距離(隙間)は、例えば、磁気ヒートポンプ装置1に要求される磁束密度に応じて設定する。これに加え、例えば、永久磁石20を回転させた際に回転軸32の揺動等によって発生する、突出部分36a及び突出部分36bと材料容器22との接触を回避することが可能な値に応じて設定する。
 突出部分36aと突出部分36bとの距離(間隔)は、一つの材料容器22に隣り合う二つの材料間ヨーク24に対する、突出部分36aの距離と突出部分36bの距離とが、それぞれ、等しい距離となる値に設定する。突出部分36aと突出部分36bとの距離及び形状は、磁束の流れMFがスペーサ28を通って短絡してしまう影響が無い距離及び形状とする。
The distance (gap) between the protruding portion 36a and the protruding portion 36b and the material container 22 is set according to the magnetic flux density required for the magnetic heat pump device 1, for example. In addition to this, for example, according to a value capable of avoiding contact between the protruding portion 36a and the protruding portion 36b and the material container 22 caused by swinging of the rotating shaft 32 when the permanent magnet 20 is rotated. To set.
The distance (interval) between the projecting portion 36a and the projecting portion 36b is such that the distance between the projecting portion 36a and the distance between the projecting portions 36b with respect to two inter-material yokes 24 adjacent to one material container 22 is equal to each other. Set to a value. The distance and shape between the projecting portion 36a and the projecting portion 36b are set to a distance and shape that does not affect the flow of magnetic flux MF through the spacer 28.
(スペーサ)
 一対のスペーサ28は、樹脂製(例えば、ABS樹脂製)である。
 スペーサ28の形状は、図2中に示すように、回転軸32の軸方向から見て、方形(長方形)である。
 また、一対のスペーサ28は、共に、一対の内蔵ヨーク26(N極側内蔵ヨーク26aとS極側内蔵ヨーク26b)の間に配置されている。また、各スペーサ28は、接着剤等を用いて、内蔵ヨーク26に取り付けられている。
 さらに、一対のスペーサ28は、共に、材料容器22との距離が、突出部分36a及び突出部分36bと材料容器22との距離よりも短くならない形状に形成されている。
 また、一対のスペーサ28は、共に、永久磁石20と接触している。
(Spacer)
The pair of spacers 28 are made of resin (for example, made of ABS resin).
As shown in FIG. 2, the shape of the spacer 28 is square (rectangular) when viewed from the axial direction of the rotary shaft 32.
The pair of spacers 28 are both arranged between the pair of built-in yokes 26 (N-pole side built-in yoke 26a and S-pole side built-in yoke 26b). Each spacer 28 is attached to the built-in yoke 26 using an adhesive or the like.
Furthermore, both the pair of spacers 28 are formed in a shape in which the distance from the material container 22 does not become shorter than the distance between the protruding portion 36 a and the protruding portion 36 b and the material container 22.
The pair of spacers 28 are both in contact with the permanent magnet 20.
(本体容器)
 本体容器30は、樹脂製(例えば、ABS樹脂製)である。
 本体容器30の形状は、円筒状である。また、本体容器30の軸方向は、回転軸32の軸方向と平行である。
 本体容器30の内部には、永久磁石20と、材料容器22と、材料間ヨーク24と、内蔵ヨーク26と、スペーサ28が収容されている。
(Main body container)
The main body container 30 is made of resin (for example, made of ABS resin).
The main body container 30 has a cylindrical shape. The axial direction of the main body container 30 is parallel to the axial direction of the rotation shaft 32.
Inside the main body container 30, a permanent magnet 20, a material container 22, an inter-material yoke 24, a built-in yoke 26, and a spacer 28 are accommodated.
(動作)
 図1及び図2を参照しつつ、図3を用いて、第一実施形態の動作の一例を説明する。
 磁気ヒートポンプ装置1の使用時において、図3中に示すように、永久磁石20及び内蔵ヨーク26の位置が0°の位置である状態では、材料容器22aに印加される磁場の大きさが増大する。これにより、材料容器22aに収容されている磁性材料34が励磁されて、温度が上昇する。なお、材料容器22aは、突出部分36aに最も近い材料間ヨーク24aと、突出部分36bに最も近い材料間ヨーク24bとの間に配置されている材料容器22である。
(Operation)
An example of the operation of the first embodiment will be described with reference to FIGS. 1 and 2 and FIG.
When the magnetic heat pump device 1 is used, as shown in FIG. 3, the magnitude of the magnetic field applied to the material container 22a increases when the permanent magnet 20 and the built-in yoke 26 are at 0 °. . Thereby, the magnetic material 34 accommodated in the material container 22a is excited and the temperature rises. The material container 22a is the material container 22 disposed between the inter-material yoke 24a closest to the protruding portion 36a and the inter-material yoke 24b closest to the protruding portion 36b.
 一方、0°の位置である永久磁石20及び内蔵ヨーク26と位相が異なる位置に配置された、複数の材料容器22bに印加される磁場の大きさは減少するため、材料容器22bに収容されている磁性材料34が消磁されて、温度が低下する。なお、図3中では、説明のために、0°の位置である永久磁石20及び内蔵ヨーク26と位相が異なる位置に配置
された、複数の材料容器22のうち、選択した二つの材料容器22のみを、材料容器22bと図示している。
On the other hand, since the magnitude of the magnetic field applied to the plurality of material containers 22b disposed at positions different from the phases of the permanent magnet 20 and the built-in yoke 26 at 0 ° is reduced, the magnetic field is accommodated in the material container 22b. The magnetic material 34 is demagnetized and the temperature is lowered. In FIG. 3, for the purpose of explanation, two selected material containers 22 out of a plurality of material containers 22 arranged at a position different from the phase of the permanent magnet 20 and the built-in yoke 26 at 0 ° are shown. Only the material container 22b is illustrated.
 また、永久磁石20及び内蔵ヨーク26の位置が0°の位置である状態では、例えば、外周側連通孔40aと、外周側切欠き60aと、外周側配管80aを連通させる。
 そして、循環ポンプ10を作動させることにより、媒体(例えば、水)を、循環ポンプ10の吐出側から、外周側配管80aと、外周側切欠き60a及び外周側連通孔40aを順に経由させて、材料容器22bの内部に配置した容器内配管16を通過させる。さらに、媒体を、外周側連通孔40a、外周側切欠き60a及び外周側配管80aを順に経由させて、吸熱側熱交換器14へ移動させる。
Further, in a state where the positions of the permanent magnet 20 and the built-in yoke 26 are 0 °, for example, the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a are communicated.
Then, by operating the circulation pump 10, the medium (for example, water) is passed from the discharge side of the circulation pump 10 through the outer peripheral side pipe 80a, the outer peripheral side notch 60a, and the outer peripheral side communication hole 40a in this order. The in-container piping 16 arranged inside the material container 22b is passed. Further, the medium is moved to the heat absorption side heat exchanger 14 through the outer peripheral side communication hole 40a, the outer peripheral side notch 60a, and the outer peripheral side pipe 80a in this order.
 次に、吸熱側熱交換器14へ移動させた媒体を、内周側配管80bと、内周側切欠き60b及び内周側連通孔40bを順に経由させて、材料容器22aの内部に配置した容器内配管16を通過させる。さらに、媒体を、内周側連通孔40b、内周側切欠き60b及び内周側配管80bを順に経由させて、放熱側熱交換器12へ移動させる。そして、放熱側熱交換器12へ移動させた媒体を、配管を介して、循環ポンプ10の吸入側へ移動させる。
 上述した経路で媒体を循環させる際に、放熱側熱交換器12に移動した媒体は、仕事分の熱量を外部(外気等)に放出する。一方、吸熱側熱交換器14に移動した媒体は、吸熱側熱交換器14に接触する被冷却体(図示せず)から吸熱して被冷却体を冷却する。
Next, the medium moved to the heat absorption side heat exchanger 14 is arranged inside the material container 22a through the inner circumference side pipe 80b, the inner circumference side cutout 60b, and the inner circumference side communication hole 40b in this order. The in-container piping 16 is passed. Further, the medium is moved to the heat radiation side heat exchanger 12 through the inner circumference side communication hole 40b, the inner circumference side cutout 60b, and the inner circumference side pipe 80b in this order. Then, the medium moved to the heat radiation side heat exchanger 12 is moved to the suction side of the circulation pump 10 through the pipe.
When the medium is circulated through the above-described path, the medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like). On the other hand, the medium that has moved to the heat absorption side heat exchanger 14 absorbs heat from an object to be cooled (not shown) that contacts the heat absorption side heat exchanger 14 to cool the object to be cooled.
 したがって、消磁されて温度が低下した磁性材料34を収容している材料容器22bに放熱することで、冷却された媒体は、吸熱側熱交換器14で被冷却体から吸熱する。また、被冷却体を冷却した媒体は、励磁されて温度が上昇した磁性材料34を収容している材料容器22aから吸熱することで、材料容器22aに収容されている磁性材料34を冷却し、放熱側熱交換器12へ移動する。放熱側熱交換器12へ移動した媒体は、仕事分の熱量を外部(外気等)に放出する。
 ここで、第一実施形態では、強磁性体であるN極側内蔵ヨーク26a及びS極側内蔵ヨーク26bが、永久磁石20の極性が異なる面とそれぞれ接触しているとともに、互いに離間している。これに加え、N極側内蔵ヨーク26aが、永久磁石20よりも材料容器22に近い部分である突出部分36aを有し、S極側内蔵ヨーク26bが、永久磁石20よりも材料容器22に近い部分である突出部分36bを有する。
Therefore, the cooled medium absorbs heat from the object to be cooled by the heat absorption side heat exchanger 14 by dissipating heat to the material container 22b containing the magnetic material 34 that has been demagnetized and the temperature has decreased. In addition, the medium that has cooled the object to be cooled absorbs heat from the material container 22a that contains the magnetic material 34 that has been excited to increase the temperature, thereby cooling the magnetic material 34 contained in the material container 22a. It moves to the heat radiation side heat exchanger 12. The medium that has moved to the heat radiation side heat exchanger 12 releases the heat of work to the outside (outside air or the like).
Here, in the first embodiment, the N-pole side built-in yoke 26a and the S-pole side built-in yoke 26b, which are ferromagnetic materials, are in contact with the surfaces of the permanent magnet 20 having different polarities, and are separated from each other. . In addition, the N pole side built-in yoke 26 a has a protruding portion 36 a that is closer to the material container 22 than the permanent magnet 20, and the S pole side built-in yoke 26 b is closer to the material container 22 than the permanent magnet 20. It has the protrusion part 36b which is a part.
 このため、突出部分36a及び突出部分36bに最も近い二つの材料容器22に収容されている磁性材料34が励磁されると、図3中に示すように、磁束の流れMFが、本体容器30を経由しない流れとなる。すなわち、磁束の流れMFが、永久磁石20のN極から、N極側内蔵ヨーク26a、材料間ヨーク24a、材料容器22に収容されている磁性材料34、材料間ヨーク24b、S極側内蔵ヨーク26bを順に経由して、永久磁石20のS極へ至る流れとなる。
 これにより、磁束が流れる磁気回路を、永久磁石20と、磁性材料34と、二つの材料間ヨーク24a,24bと、一対の内蔵ヨーク26a,26bにより形成することが可能となる。
For this reason, when the magnetic material 34 accommodated in the two material containers 22 closest to the projecting portion 36a and the projecting portion 36b is excited, the flow of magnetic flux MF causes the main body container 30 to pass through as shown in FIG. The flow does not go through. That is, the magnetic flux MF is changed from the N pole of the permanent magnet 20 to the N pole side built-in yoke 26a, the inter-material yoke 24a, the magnetic material 34 accommodated in the material container 22, the inter-material yoke 24b, and the S pole-side built-in yoke. The flow reaches the south pole of the permanent magnet 20 through the 26b in order.
Thereby, the magnetic circuit through which the magnetic flux flows can be formed by the permanent magnet 20, the magnetic material 34, the two inter-material yokes 24a and 24b, and the pair of built-in yokes 26a and 26b.
 したがって、磁気回路が、永久磁石20と、磁性材料34と、本体容器30により形成される場合と比較して、磁束の流れを集中させることが可能となり、永久磁石20の質量あたりに得られる磁束密度を向上させることが可能となる。
 なお、上述した第一実施形態は、本発明の一例であり、本発明は、上述した第一実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
Therefore, compared with the case where a magnetic circuit is formed with the permanent magnet 20, the magnetic material 34, and the main body container 30, it becomes possible to concentrate the flow of magnetic flux, and the magnetic flux obtained per mass of the permanent magnet 20 is obtained. The density can be improved.
The above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment, and the present invention may be applied to other forms than this embodiment. Various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
(第一実施形態の効果)
 第一実施形態の磁気ヒートポンプ装置1であれば、以下に記載する効果を奏することが可能となる。
(1)永久磁石20の極性が異なる面とそれぞれ接触し、且つ互いに離間している一対の内蔵ヨーク26a,26bが、強磁性体であり、且つ永久磁石20よりも材料容器22に近い部分である突出部分36を有する。
 このため、磁束が流れる磁気回路を、永久磁石20と、磁性材料34と、一対の内蔵ヨーク26a,26bにより形成することが可能となる。
 その結果、磁気回路が、永久磁石20と、磁性材料34と、本体容器30により形成される場合と比較して、磁束の流れを集中させることが可能となる。これにより、永久磁石20の質量あたりに得られる磁束密度を向上させることが可能な、磁気ヒートポンプ装置1を提供することが可能となる。
(Effects of the first embodiment)
If it is the magnetic heat pump apparatus 1 of 1st embodiment, it will become possible to show the effect described below.
(1) The pair of built-in yokes 26a and 26b that are in contact with the surfaces of the permanent magnet 20 having different polarities and are separated from each other are ferromagnetic and are closer to the material container 22 than the permanent magnet 20 is. It has a certain protruding portion 36.
Therefore, a magnetic circuit through which magnetic flux flows can be formed by the permanent magnet 20, the magnetic material 34, and the pair of built-in yokes 26a and 26b.
As a result, it is possible to concentrate the flow of magnetic flux as compared with the case where the magnetic circuit is formed by the permanent magnet 20, the magnetic material 34, and the main body container 30. Thereby, it becomes possible to provide the magnetic heat pump device 1 capable of improving the magnetic flux density obtained per mass of the permanent magnet 20.
(2)材料容器22が、回転軸32の周方向に沿って間隔を空けて配置された複数の材料容器22であり、隣り合う材料容器22の間に配置された複数の材料間ヨーク24が、強磁性体である。
 このため、磁束が流れる磁気回路を、永久磁石20と、磁性材料34と、磁性材料34が収容された材料容器22に隣り合う二つの材料間ヨーク24a,24bと、一対の内蔵ヨーク26a,26bにより形成することが可能となる。
 その結果、一対の内蔵ヨーク26a,26bが二つの材料間ヨーク24a,24bと接近した状態でのみ、二つの材料間ヨーク24a,24bの間に配置された材料容器22に収容されている磁性材料34が励磁されることとなる。これにより、励磁と消磁との切り替え時に、磁束を急激に変化させることが可能となるため、効率的に温熱と冷熱を得ることが可能となる。
(2) The material container 22 is a plurality of material containers 22 arranged at intervals along the circumferential direction of the rotation shaft 32, and a plurality of inter-material yokes 24 arranged between adjacent material containers 22 It is a ferromagnetic material.
Therefore, the magnetic circuit through which the magnetic flux flows includes a permanent magnet 20, a magnetic material 34, two inter-material yokes 24a and 24b adjacent to the material container 22 containing the magnetic material 34, and a pair of built-in yokes 26a and 26b. Can be formed.
As a result, the magnetic material accommodated in the material container 22 disposed between the two inter-material yokes 24a and 24b only when the pair of built-in yokes 26a and 26b are close to the two inter-material yokes 24a and 24b. 34 is excited. Thereby, since it becomes possible to change a magnetic flux rapidly at the time of switching between excitation and demagnetization, it becomes possible to obtain hot and cold efficiently.
 また、隣り合う材料容器22の接触を防止することが可能となり、励磁により昇温している材料容器22と消磁により降温している材料容器22との接触を防止して、伝熱によって発生するロスを低減させることが可能となる。これにより、効率的に温熱と冷熱を得ることが可能となる。
 また、材料容器22が本体容器30の内径面と全体的に接触している構成と比較して、材料容器22の形状を単純化することが可能となり、磁性材料34や材料容器22の形状を変更する際に、設計等の自由度を向上させることが可能となる。
In addition, it is possible to prevent contact between adjacent material containers 22, which prevents contact between the material container 22 that has been heated by excitation and the material container 22 that has been cooled by demagnetization, and is generated by heat transfer. Loss can be reduced. Thereby, it becomes possible to obtain hot and cold efficiently.
Further, the shape of the material container 22 can be simplified as compared with the configuration in which the material container 22 is entirely in contact with the inner diameter surface of the main body container 30, and the shapes of the magnetic material 34 and the material container 22 can be changed. When changing, it is possible to improve the degree of freedom of design and the like.
 また、直管型の磁気ヒートポンプ装置1において、材料容器22を強磁性体により挟み込む構造を実現することが可能となる。これにより、公知の構成である円盤型の磁気回路では困難な、材料容器22を回転軸32の軸方向に沿って直線的に延長する構成を実現することが可能となる。このため、磁性材料34を積層した構造を活用することが可能となり、磁気ヒートポンプ装置1で発生させることが可能な温度の範囲を拡大することが可能となる。 Also, in the straight pipe type magnetic heat pump device 1, it is possible to realize a structure in which the material container 22 is sandwiched between ferromagnetic materials. This makes it possible to realize a configuration in which the material container 22 is linearly extended along the axial direction of the rotary shaft 32, which is difficult with a disk-type magnetic circuit having a known configuration. For this reason, it becomes possible to utilize the structure which laminated | stacked the magnetic material 34, and it becomes possible to expand the range of the temperature which can generate | occur | produce with the magnetic heat pump apparatus 1. FIG.
(3)材料容器22及び材料間ヨーク24の数が、同数の奇数である。
 その結果、永久磁石20及び内蔵ヨーク26の回転時に発生するコギングトルクを低減することが可能となるため、永久磁石20及び内蔵ヨーク26を円滑に回転させることが可能となり、磁気ヒートポンプ装置1の能力を向上させることが可能となる。
(4)永久磁石20及び材料容器22を収容する本体容器30が、樹脂製である。
 このため、本体部2の最外層を形成する本体容器30に発生する渦電流を低減させることが可能となり、本体容器30の発熱を抑制することが可能となる。
 その結果、本体容器30が強磁性体である構成と比較して、低温が得やすくなるため、磁気ヒートポンプ装置1の能力を向上させることが可能となる。
(3) The number of the material containers 22 and the inter-material yokes 24 is the same, odd number.
As a result, since the cogging torque generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be reduced, the permanent magnet 20 and the built-in yoke 26 can be smoothly rotated. Can be improved.
(4) The main body container 30 that houses the permanent magnet 20 and the material container 22 is made of resin.
For this reason, it becomes possible to reduce the eddy current which generate | occur | produces in the main body container 30 which forms the outermost layer of the main-body part 2, and it becomes possible to suppress the heat_generation | fever of the main body container 30. FIG.
As a result, compared to the configuration in which the main body container 30 is made of a ferromagnetic material, it becomes easier to obtain a low temperature, so that the capability of the magnetic heat pump device 1 can be improved.
(5)一対の内蔵ヨーク26a,26bの間に、樹脂製であるスペーサ28を配置する。
 その結果、一対の内蔵ヨーク26a,26b同士の接触を防止して、磁束の流れを正常化することが可能となる。
 また、永久磁石20及び内蔵ヨーク26の回転時に発生する空気抵抗を低減させることが可能となり、磁気ヒートポンプ装置1の能力を向上させることが可能となる。
 さらに、永久磁石20及び内蔵ヨーク26の回転時に発生する風切り音を抑制することが可能となり、磁気ヒートポンプ装置1の静粛性を向上させることが可能となる。
(5) A spacer 28 made of resin is disposed between the pair of built-in yokes 26a and 26b.
As a result, contact between the pair of built-in yokes 26a and 26b can be prevented, and the flow of magnetic flux can be normalized.
In addition, air resistance generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be reduced, and the capability of the magnetic heat pump device 1 can be improved.
Furthermore, wind noise generated when the permanent magnet 20 and the built-in yoke 26 are rotated can be suppressed, and the quietness of the magnetic heat pump device 1 can be improved.
(6)永久磁石20が、回転軸32の軸方向から見て、方形に形成されている。
 その結果、永久磁石20の形状が、永久磁石20を材料容器22と対向させて磁束を発生させる形状である場合と比較して、永久磁石20の材料として用いる資源の使用量を低減させることが可能となり、コストを低減させることが可能となる。
 また、永久磁石20の形状が、単純な形状であるため、永久磁石20の製造が容易となり、コストを低減させることが可能となる。
(6) The permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32.
As a result, the amount of resources used as the material of the permanent magnet 20 can be reduced as compared with the case where the shape of the permanent magnet 20 is a shape in which the permanent magnet 20 is opposed to the material container 22 to generate magnetic flux. It becomes possible, and it becomes possible to reduce cost.
Further, since the shape of the permanent magnet 20 is a simple shape, the permanent magnet 20 can be easily manufactured, and the cost can be reduced.
(7)回転軸32の軸方向から見て、回転軸32の中心軸CSと、永久磁石20の重心とが重なっている。
 その結果、回転軸32の中心軸CSと、永久磁石20の重心とがずれている構成と比較して、永久磁石20及び内蔵ヨーク26の回転時に発生する揺動を低減させることが可能となり、磁気ヒートポンプ装置1の能力を向上させることが可能となる。
(8)材料容器22が、回転軸32の軸方向から見て方形に形成されている。
 その結果、材料容器22の形状が、本体容器30の内径面に沿った瓦状の部分を有する形状である場合と比較して、材料容器22の製造を簡略化することが可能となり、コストを低減させることが可能となる。
(7) When viewed from the axial direction of the rotating shaft 32, the center axis CS of the rotating shaft 32 and the center of gravity of the permanent magnet 20 overlap.
As a result, compared to a configuration in which the center axis CS of the rotating shaft 32 and the center of gravity of the permanent magnet 20 are shifted, it is possible to reduce the oscillation that occurs when the permanent magnet 20 and the built-in yoke 26 rotate. The capability of the magnetic heat pump device 1 can be improved.
(8) The material container 22 is formed in a square shape when viewed from the axial direction of the rotary shaft 32.
As a result, compared with the case where the shape of the material container 22 is a shape having a tile-shaped portion along the inner diameter surface of the main body container 30, it is possible to simplify the manufacture of the material container 22 and reduce the cost. It can be reduced.
(第一実施形態の変形例)
(1)第一実施形態では、一つの永久磁石20が有するN極の面及びS極の面とそれぞれ接触する一対の内蔵ヨーク26を備える構成としたが、これに限定するものではない。
 すなわち、例えば、図4中に示すように、回転ブロック38aと、四つの永久磁石20a~20dを備える構成とし、各永久磁石20と接触する四対の内蔵ヨーク26を備える構成としてもよい。
 回転ブロック38aは、回転軸32の軸方向から見て正方形に形成されており、回転軸32に固定されている。また、回転ブロック38aの重心は、回転軸32の軸方向から見て、中心軸と重なっている。
(Modification of the first embodiment)
(1) In the first embodiment, the configuration includes the pair of built-in yokes 26 that are in contact with the N-pole surface and the S-pole surface of the single permanent magnet 20, but the present invention is not limited to this.
That is, for example, as shown in FIG. 4, the rotating block 38 a and the four permanent magnets 20 a to 20 d may be provided, and the four pairs of built-in yokes 26 in contact with the permanent magnets 20 may be provided.
The rotary block 38 a is formed in a square shape when viewed from the axial direction of the rotary shaft 32, and is fixed to the rotary shaft 32. Further, the center of gravity of the rotating block 38 a overlaps the center axis when viewed from the axial direction of the rotating shaft 32.
 四つの永久磁石20a~20dは、回転軸32の軸方向から見て方形(長方形)に形成されており、それぞれ、回転軸32の軸方向から見て、回転ブロック38aが有する四つの辺に取り付けられている。
 四対の内蔵ヨーク26は、永久磁石20aが有するN極の面及びS極の面とそれぞれ接触する内蔵ヨーク26aと内蔵ヨーク26bの対と、永久磁石20bが有するN極の面及びS極の面とそれぞれ接触する内蔵ヨーク26cと内蔵ヨーク26dの対を含む。また、四対の内蔵ヨーク26は、永久磁石20cが有するN極の面及びS極の面とそれぞれ接触する内蔵ヨーク26eと内蔵ヨーク26fの対と、永久磁石20dが有するN極の面及びS極の面とそれぞれ接触する内蔵ヨーク26gと内蔵ヨーク26hの対を含む。
The four permanent magnets 20a to 20d are formed in a square (rectangular shape) when viewed from the axial direction of the rotary shaft 32, and are attached to the four sides of the rotary block 38a when viewed from the axial direction of the rotary shaft 32, respectively. It has been.
The four pairs of built-in yokes 26 are a pair of built-in yoke 26a and built-in yoke 26b that are in contact with the N pole surface and the S pole surface of the permanent magnet 20a, respectively, and the N pole surface and the S pole of the permanent magnet 20b. It includes a pair of a built-in yoke 26c and a built-in yoke 26d that are in contact with the surface. The four pairs of built-in yokes 26 are a pair of built-in yoke 26e and built-in yoke 26f that are in contact with the N pole surface and S pole surface of the permanent magnet 20c, respectively, and the N pole surface and S of the permanent magnet 20d. It includes a pair of built-in yoke 26g and built-in yoke 26h that are in contact with the pole surfaces, respectively.
 図4中に示す構成であれば、一つの永久磁石20と一対の内蔵ヨーク26を備える構成と比較して、磁極が二極から四極となるため、永久磁石20及び内蔵ヨーク26の一回転あたりで励磁及び消磁する領域を、2倍に拡大することが可能となる。
 このため、回転軸32の回転速度を低下させることが可能となり、磁気ヒートポンプ装置1の静粛性を向上させることが可能となるとともに、COP(成績係数)を低減させる
ことが可能となる。
In the configuration shown in FIG. 4, since the magnetic pole is changed from two poles to four poles as compared with the configuration including one permanent magnet 20 and a pair of built-in yokes 26, per rotation of the permanent magnet 20 and the built-in yoke 26. Thus, it is possible to double the area to be excited and demagnetized.
For this reason, it becomes possible to reduce the rotational speed of the rotating shaft 32, to improve the quietness of the magnetic heat pump device 1, and to reduce COP (coefficient of performance).
 また、例えば、図5中に示すように、回転ブロック38bと、三つのプレート50と、三つの永久磁石20a~20cを備える構成とし、各永久磁石20と接触する三対の内蔵ヨーク26を備える構成としてもよい。
 回転ブロック38bは、回転軸32の軸方向から見て正三角形に形成されており、回転軸32に固定されている。また、回転ブロック38bの重心は、回転軸32の軸方向から見て、中心軸と重なっている。
 三つのプレート50は、板状に形成されており、それぞれ、回転軸32の軸方向から見て、回転ブロック38bが有する三つの辺に取り付けられている。プレート50の厚さは、回転軸32の軸回りに沿った方向で隣り合う二つの永久磁石20に対し、それぞれが有するN極とS極が、互いに影響を及ぼさない距離となる値に設定する。
Further, for example, as shown in FIG. 5, the rotary block 38 b, the three plates 50, and the three permanent magnets 20 a to 20 c are provided, and the three pairs of built-in yokes 26 that are in contact with the permanent magnets 20 are provided. It is good also as a structure.
The rotating block 38 b is formed in an equilateral triangle when viewed from the axial direction of the rotating shaft 32, and is fixed to the rotating shaft 32. Further, the center of gravity of the rotating block 38 b overlaps with the central axis when viewed from the axial direction of the rotating shaft 32.
The three plates 50 are formed in a plate shape, and are respectively attached to three sides of the rotary block 38 b when viewed from the axial direction of the rotary shaft 32. The thickness of the plate 50 is set to a value at which the N and S poles of the two permanent magnets 20 adjacent to each other in the direction along the axis of the rotary shaft 32 have a distance that does not affect each other. .
 三つの永久磁石20a~20cは、回転軸32の軸方向から見て方形(長方形)に形成されており、それぞれ、回転軸32の軸方向から見て、プレート50の回転ブロック38bと対向する面と反対の面に取り付けられている。
 三対の内蔵ヨーク26は、永久磁石20aが有するN極の面及びS極の面とそれぞれ接触する内蔵ヨーク26aと内蔵ヨーク26bの対と、永久磁石20bが有するN極の面及びS極の面とそれぞれ接触する内蔵ヨーク26cと内蔵ヨーク26dの対を含む。また、三対の内蔵ヨーク26は、永久磁石20cが有するN極の面及びS極の面とそれぞれ接触する内蔵ヨーク26eと内蔵ヨーク26fの対を含む。
The three permanent magnets 20a to 20c are formed in a square shape (rectangular shape) when viewed from the axial direction of the rotary shaft 32, and are respectively surfaces facing the rotary block 38b of the plate 50 when viewed from the axial direction of the rotary shaft 32. It is attached to the opposite surface.
The three pairs of built-in yokes 26 are a pair of built-in yoke 26a and built-in yoke 26b that respectively contact the N-pole surface and S-pole surface of the permanent magnet 20a, and the N-pole surface and S-pole of the permanent magnet 20b. It includes a pair of a built-in yoke 26c and a built-in yoke 26d that are respectively in contact with the surface. The three pairs of built-in yokes 26 include a pair of built-in yoke 26e and built-in yoke 26f that are in contact with the N-pole surface and the S-pole surface of the permanent magnet 20c, respectively.
 図5中に示す構成であれば、一つの永久磁石20と一対の内蔵ヨーク26を備える構成と比較して、磁極が二極から三極となるため、永久磁石20及び内蔵ヨーク26の一回転あたりで励磁及び消磁する領域を、1.5倍に拡大することが可能となる。
 このため、回転軸32の回転速度を低下させることが可能となり、磁気ヒートポンプ装置1の静粛性を向上させることが可能となるとともに、COP(成績係数)を低減させることが可能となる。
In the configuration shown in FIG. 5, since the magnetic poles are changed from two to three as compared with the configuration including one permanent magnet 20 and a pair of built-in yokes 26, one rotation of the permanent magnet 20 and the built-in yoke 26. It is possible to enlarge the region excited and demagnetized around 1.5 times.
For this reason, it becomes possible to reduce the rotational speed of the rotating shaft 32, to improve the quietness of the magnetic heat pump device 1, and to reduce COP (coefficient of performance).
(2)第一実施形態では、永久磁石20を、回転軸32の軸方向から見て、方形に形成したが、これに限定するものではない。
 すなわち、例えば、図6中に示すように、永久磁石20を、回転軸32の軸方向から見て、方形の部分を形成する二つの辺に、半円状の部分を形成する直線の辺を取り付けた形状としてもよい。
 この場合、永久磁石20を、回転軸32の軸方向から見て方形に形成した場合と比較して、磁束密度を向上させることが可能となる。
(2) In the first embodiment, the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotary shaft 32, but the present invention is not limited to this.
That is, for example, as shown in FIG. 6, when the permanent magnet 20 is viewed from the axial direction of the rotary shaft 32, two sides that form a square part are formed with straight sides that form a semicircular part. It may be an attached shape.
In this case, the magnetic flux density can be improved as compared with the case where the permanent magnet 20 is formed in a square shape when viewed from the axial direction of the rotating shaft 32.
(3)第一実施形態では、永久磁石20を、一つの磁石により形成したが、これに限定するものではない。
 すなわち、例えば、複数の磁石を組み合わせて、永久磁石20を形成してもよい。また、回転軸32の軸方向に沿って、複数の磁石をハルバッハ配列することで、永久磁石20を形成してもよい。
(3) In 1st embodiment, although the permanent magnet 20 was formed with one magnet, it is not limited to this.
That is, for example, the permanent magnet 20 may be formed by combining a plurality of magnets. Further, the permanent magnet 20 may be formed by arranging a plurality of magnets in a Halbach array along the axial direction of the rotary shaft 32.
 1…磁気ヒートポンプ装置、2…本体部、4…連通孔プレート、6…回転ディスク、8…端面プレート、10…循環ポンプ、12…放熱側熱交換器、14…吸熱側熱交換器、16…、20…永久磁石、22…材料容器、24…材料間ヨーク、26…内蔵ヨーク、28…スペーサ、30…本体容器、32…回転軸、34…磁性材料、36a…突出部分、38…回転ブロック、36b…突出部分、40a…外周側連通孔、40b…内周側連通孔、50…プレート、60a…外周側切欠き、60b…内周側切欠き、80a…外周側配管、80b…内周側配管、CS…中心軸、MF…磁束の流れ DESCRIPTION OF SYMBOLS 1 ... Magnetic heat pump apparatus, 2 ... Main-body part, 4 ... Communication hole plate, 6 ... Rotating disk, 8 ... End surface plate, 10 ... Circulation pump, 12 ... Heat radiation side heat exchanger, 14 ... Heat absorption side heat exchanger, 16 ... , 20 ... Permanent magnet, 22 ... Material container, 24 ... Inter-material yoke, 26 ... Built-in yoke, 28 ... Spacer, 30 ... Body container, 32 ... Rotating shaft, 34 ... Magnetic material, 36a ... Projecting part, 38 ... Rotating block 36b ... Projection part, 40a ... Outer peripheral side communication hole, 40b ... Inner peripheral side communication hole, 50 ... Plate, 60a ... Outer peripheral side notch, 60b ... Inner peripheral side notch, 80a ... Outer peripheral side pipe, 80b ... Inner peripheral side Side piping, CS ... center axis, MF ... flow of magnetic flux

Claims (8)

  1.  回転軸の中心軸周りに回転可能であり、且つN極及びS極の着磁方向が前記中心軸の軸方向と直交する方向と平行な永久磁石と、
     前記永久磁石の外周を包囲するように配置され、且つ内部に磁性材料を収容した材料容器と、
     前記永久磁石の極性が異なる面とそれぞれ接触し、且つ互いに離間している少なくとも一対の内蔵ヨークと、を備え、
     前記材料容器は、樹脂製であり、
     前記内蔵ヨークは、強磁性体であり、且つ前記永久磁石よりも前記材料容器に近い部分を有することを特徴とする磁気ヒートポンプ装置。
    A permanent magnet that is rotatable about the central axis of the rotation axis and in which the magnetization direction of the N pole and the S pole is parallel to a direction orthogonal to the axial direction of the central axis;
    A material container disposed so as to surround the outer periphery of the permanent magnet and containing a magnetic material therein;
    And at least a pair of built-in yokes that are in contact with surfaces of different polarity of the permanent magnets and are spaced apart from each other,
    The material container is made of resin,
    The built-in yoke is a ferromagnetic body and has a portion closer to the material container than the permanent magnet.
  2.  前記永久磁石は、一組の前記N極及び前記S極を有し、
     前記内蔵ヨークは、前記N極の面及び前記S極の面とそれぞれ接触し、且つ互いに離間している一対の内蔵ヨークであり、
     前記材料容器は、前記回転軸の周方向に沿って間隔を空けて配置された複数の材料容器であり、
     隣り合う前記材料容器の間に配置された複数の材料間ヨークをさらに備え、
     前記材料間ヨークは、強磁性体であることを特徴とする請求項1に記載した磁気ヒートポンプ装置。
    The permanent magnet has a set of the north pole and the south pole,
    The built-in yokes are a pair of built-in yokes that are in contact with the N-pole surface and the S-pole surface, respectively, and are spaced apart from each other.
    The material container is a plurality of material containers arranged at intervals along the circumferential direction of the rotating shaft,
    A plurality of inter-material yokes disposed between the adjacent material containers;
    The magnetic heat pump device according to claim 1, wherein the inter-material yoke is a ferromagnetic material.
  3.  前記材料容器及び前記材料間ヨークの数は、奇数であることを特徴とする請求項2に記載した磁気ヒートポンプ装置。 3. The magnetic heat pump device according to claim 2, wherein the number of the material container and the inter-material yoke is an odd number.
  4.  前記永久磁石及び前記材料容器を収容する本体容器をさらに備え、
     前記本体容器は、樹脂製であることを特徴とする請求項1から請求項3のうちいずれか1項に記載した磁気ヒートポンプ装置。
    A main body container for housing the permanent magnet and the material container;
    The said main body container is resin, The magnetic heat pump apparatus described in any one of Claims 1-3 characterized by the above-mentioned.
  5.  前記一対の内蔵ヨークの間に配置されたスペーサをさらに備え、
     前記スペーサは、樹脂製であることを特徴とする請求項1から請求項4のうちいずれか1項に記載した磁気ヒートポンプ装置。
    A spacer disposed between the pair of built-in yokes;
    The magnetic heat pump device according to any one of claims 1 to 4, wherein the spacer is made of a resin.
  6.  前記永久磁石は、前記回転軸の軸方向から見て方形に形成されていることを特徴とする請求項1から請求項5のうちいずれか1項に記載した磁気ヒートポンプ装置。 The magnetic heat pump device according to any one of claims 1 to 5, wherein the permanent magnet is formed in a square shape when viewed from an axial direction of the rotating shaft.
  7.  前記回転軸の軸方向から見て、前記中心軸と、前記永久磁石の重心と、が重なっていることを特徴とする請求項1から請求項6のうちいずれか1項に記載した磁気ヒートポンプ装置。 The magnetic heat pump device according to any one of claims 1 to 6, wherein the central axis and the center of gravity of the permanent magnet overlap each other when viewed from the axial direction of the rotating shaft. .
  8.  前記材料容器は、前記回転軸の軸方向から見て方形に形成されていることを特徴とする請求項1から請求項7のうちいずれか1項に記載した磁気ヒートポンプ装置。 The magnetic heat pump device according to any one of claims 1 to 7, wherein the material container is formed in a square shape when viewed from an axial direction of the rotating shaft.
PCT/JP2018/046912 2018-01-31 2018-12-20 Magnetic heat pump device WO2019150817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015607 2018-01-31
JP2018015607A JP2019132551A (en) 2018-01-31 2018-01-31 Magnetic heat pump device

Publications (1)

Publication Number Publication Date
WO2019150817A1 true WO2019150817A1 (en) 2019-08-08

Family

ID=67479602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046912 WO2019150817A1 (en) 2018-01-31 2018-12-20 Magnetic heat pump device

Country Status (2)

Country Link
JP (1) JP2019132551A (en)
WO (1) WO2019150817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209948A1 (en) 2021-03-29 2022-10-06 ダイキン工業株式会社 Magnetic refrigeration device and regrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120720A1 (en) * 2003-12-04 2005-06-09 Chih-Hsing Fang Reciprocating and rotary magnetic refrigeration apparatus
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
US20160238287A1 (en) * 2015-02-13 2016-08-18 General Electric Company Magnetic device for magneto caloric heat pump regenerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120720A1 (en) * 2003-12-04 2005-06-09 Chih-Hsing Fang Reciprocating and rotary magnetic refrigeration apparatus
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
US20160238287A1 (en) * 2015-02-13 2016-08-18 General Electric Company Magnetic device for magneto caloric heat pump regenerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209948A1 (en) 2021-03-29 2022-10-06 ダイキン工業株式会社 Magnetic refrigeration device and regrigeration device

Also Published As

Publication number Publication date
JP2019132551A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP4921891B2 (en) Magnetic refrigeration equipment
CN104930749B (en) Magnetic regenerator unit and magnetic cooling system having the same
JP6068644B2 (en) Permanent magnetic laminated motor
JP5425732B2 (en) Magnetic refrigeration equipment
JP4917385B2 (en) Magnetic refrigeration equipment
JP2017537291A (en) Magnetocaloric heat equipment
JP2010101576A (en) Rotary magnetic temperature regulation device
JP5602482B2 (en) Magnetic refrigeration equipment
JP5957605B2 (en) Axial gap type rotating electrical machine
GB2545154A (en) Magnetically geared apparatus and a pole piece for such apparatus
WO2019150819A1 (en) Magnetic heat pump device
JP2012235546A (en) Rotor and rotating electric machine
WO2019150817A1 (en) Magnetic heat pump device
JP6402739B2 (en) Rotating electric machine
JP2004254437A (en) Cooling device employing magnetic fluid
JP5126218B2 (en) Magnetic coupling with hysteresis, especially for winding / unwinding devices
JP2022114761A (en) motor cooling structure
JP5816491B2 (en) Magnetic refrigeration equipment
JP4917386B2 (en) Magnetic refrigeration equipment
JP2013135539A (en) Electric motor and laminate stator
JP4921890B2 (en) Magnetic refrigeration equipment
JP6940017B2 (en) Solid refrigerant cooling module and solid refrigerant cooling system
CN113541340A (en) Axial gap motor
JP2011069508A (en) Magnetic temperature adjustment device
JP2020038026A (en) Magnetic refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903946

Country of ref document: EP

Kind code of ref document: A1