WO2019150716A1 - Process liquid discharging pipe and substrate processing device - Google Patents

Process liquid discharging pipe and substrate processing device Download PDF

Info

Publication number
WO2019150716A1
WO2019150716A1 PCT/JP2018/042872 JP2018042872W WO2019150716A1 WO 2019150716 A1 WO2019150716 A1 WO 2019150716A1 JP 2018042872 W JP2018042872 W JP 2018042872W WO 2019150716 A1 WO2019150716 A1 WO 2019150716A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
liquid discharge
piping
processing liquid
processing
Prior art date
Application number
PCT/JP2018/042872
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 竹松
宏樹 温井
裕 岩川
克栄 東
雄二 菅原
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020207020672A priority Critical patent/KR102377383B1/en
Priority to CN201880086735.7A priority patent/CN111630634A/en
Publication of WO2019150716A1 publication Critical patent/WO2019150716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles

Definitions

  • the present invention relates to a processing liquid discharge pipe through which a processing liquid flows in an apparatus for discharging a processing liquid onto a substrate surface, and a substrate processing apparatus including the processing liquid discharge pipe.
  • Patent Document 1 discloses a supply nozzle in which a discharge hole for a treatment liquid is made super hydrophilic in order to prevent the dropping of a button.
  • a discharge hole for a treatment liquid is made super hydrophilic in order to prevent the dropping of a button.
  • the discharge hole superhydrophilic by making the discharge hole superhydrophilic, the droplet of the treatment liquid adhering to the surface of the tip portion does not become spherical and spreads in a thin film shape. This prevents spherical droplets from flowing down the tip surface due to vibration or the like.
  • Patent Document 1 it is possible to suppress the dropping of the treatment liquid adhering to the nozzle tip.
  • the processing liquid remains on the inner side (upstream side) of the front end portion, there is a possibility that the dropping of the liquid may occur due to the weight of the processing liquid.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a processing liquid discharge pipe for preventing droplets from dropping at the discharge port, and a substrate processing apparatus including the processing liquid discharge pipe. To do.
  • a first invention of the present application is attached to a processing apparatus that discharges a processing liquid to a substrate surface, and a flow path through which the processing liquid flows and a processing liquid that flows through the flow path are A treatment liquid discharge pipe having a discharge port for discharging to the substrate surface, wherein the flow path includes a hydrophilic flow path in which at least a part of a wall surface is hydrophilic, and is attached to the processing apparatus.
  • the hydrophilic flow path is inclined with respect to the vertical direction, and the upstream end is positioned higher than the downstream end.
  • the second invention of the present application is the processing liquid discharge pipe of the first invention, wherein the flow path has a hydrophobic flow path on the wall surface.
  • a third invention of the present application is the processing liquid discharge pipe of the first invention or the second invention, wherein the flow channel is located downstream of the hydrophilic flow channel and the wall surface is hydrophobic.
  • the first flow path extends in the vertical direction in a state where the first flow path is attached to the processing apparatus.
  • the fourth invention of the present application is the processing liquid discharge pipe of the third invention, wherein the discharge port is located at a downstream end of the first flow path.
  • the fifth invention of the present application is the processing liquid discharge pipe of the third invention or the fourth invention, wherein the hydrophilic flow path and the first flow path are adjacent to each other.
  • a sixth invention of the present application is the processing liquid discharge pipe according to any one of the first to fifth inventions, wherein the flow path has a second flow path positioned upstream of the hydrophilic flow path. In the state attached to the processing apparatus, the second flow path extends in the horizontal direction.
  • a seventh invention of the present application is any one of the processing liquid discharge pipes according to the first invention to the sixth invention, wherein the hydrophilic flow path is made of a resin and is immersed in a chemical solution so that at least one of the wall surfaces.
  • the part is hydrophilic.
  • the eighth invention of the present application is the treatment liquid discharge pipe according to any one of the first invention to the seventh invention, wherein the hydrophilic wall surface of the hydrophilic channel is rougher than the wall surfaces of the other channels.
  • a ninth invention of the present application is attached to a processing apparatus for discharging a processing liquid to the substrate surface, and a flow path through which the processing liquid flows, and a discharge port for discharging the processing liquid flowing through the flow path to the substrate surface
  • the flow path is immersed in a chemical solution in a state where water is in contact with at least a part of the wall surface to make at least a part of the wall surface hydrophilic.
  • the tenth invention of the present application is the treatment liquid discharge pipe according to the ninth invention, wherein the hydrophilic flow path is made hydrophilic by immersing it in a chemical solution in a state where the flow path is filled with water.
  • An eleventh invention of the present application is a substrate processing apparatus comprising any one of the processing liquid discharge pipes from the first invention to the tenth invention, wherein the chamber and a substrate holding portion for horizontally holding the substrate inside the chamber And a processing liquid supply unit for supplying a processing liquid to the upper surface of the substrate held by the substrate holding unit via the processing liquid discharge pipe, and a processing liquid in the flow path of the processing liquid discharge pipe, A pull-back mechanism that pulls back to the upstream side.
  • the wall surface of the inclined channel is hydrophilic.
  • the wall surface of the inclined flow path is hydrophilic.
  • the holding power of the treatment liquid by the wall surface is increased. That is, the processing liquid is held upstream from the discharge port. Thereby, dripping (bottom drop) of the processing liquid from the discharge port can be prevented.
  • the processing liquid is not held on the wall surface of the first flow path, and is easily dropped from the discharge port. Thereby, it is possible to prevent the treatment liquid from remaining near the discharge port and dripping when not intended. Further, it is possible to prevent the processing liquid remaining in the vicinity of the discharge port from being dried by contact with air.
  • the flow path resistance of the processing liquid is low in the second flow path. For this reason, it can avoid that the distribution
  • FIG. 1 is a plan view of a substrate processing apparatus 100 according to this embodiment.
  • the substrate processing apparatus 100 is an apparatus that processes the surface of a disk-shaped substrate W (silicon substrate) in a semiconductor wafer manufacturing process.
  • the substrate processing apparatus 100 performs a liquid supply process for supplying a processing liquid to the surface of the substrate W and a drying process for drying the surface of the substrate W.
  • the substrate processing apparatus 100 includes an indexer 101, a plurality of processing units 102, and a main transfer robot 103.
  • the indexer 101 is a part for carrying in the substrate W before processing from the outside and carrying out the substrate W after processing to the outside.
  • a plurality of carriers that accommodate a plurality of substrates W are arranged.
  • the indexer 101 has a transfer robot (not shown).
  • the transfer robot transfers the substrate W between the carrier in the indexer 101 and the processing unit 102 or the main transfer robot 103.
  • the carrier may be, for example, a known FOUP (Front Opening Unified Unified Pod) or SMIF (Standard Mechanical Inter Inter Face) pod that stores the substrate W in a sealed space, or an OC (Open® Cassette) in which the storage substrate W is in contact with the outside air. Used.
  • the processing unit 102 is a so-called sheet processing unit that processes the substrates W one by one.
  • the plurality of processing units 102 are arranged around the main transfer robot 103.
  • four processing units 102 arranged around the main transfer robot 103 are stacked in three stages in the height direction. That is, the substrate processing apparatus 100 of the present embodiment has twelve processing units 102 in total.
  • the plurality of substrates W are processed in parallel in each processing unit 102.
  • the number of processing units 102 included in the substrate processing apparatus 100 is not limited to 12, and the number can be changed as appropriate. For example, the number may be 24, 16, 8, 4, 1 or the like.
  • the main transport robot 103 is a mechanism for transporting the substrate W between the indexer 101 and the plurality of processing units 102.
  • the main transfer robot 103 has, for example, a hand that holds the substrate W and an arm that moves the hand.
  • the main transfer robot 103 takes out the substrate W before processing from the indexer 101 and transfers it to the processing unit 102.
  • the main transport robot 103 takes out the processed substrate W from the processing unit 102 and transports it to the indexer 101.
  • FIG. 2 is a plan view of the processing unit 102.
  • FIG. 3 is a longitudinal sectional view of the processing unit 102.
  • the processing unit 102 includes a chamber 10, a substrate holding unit 20, a rotation mechanism 30, a processing liquid supply unit 40, a processing liquid collection unit 50, and a control unit 60.
  • the chamber 10 is a housing that encloses a processing space 11 for processing the substrate W.
  • the chamber 10 has a side wall 12, a top plate portion 13, and a bottom plate portion 14.
  • the side wall 12 surrounds the side portion of the processing space 11.
  • the top plate part 13 covers the upper part of the processing space 11.
  • the bottom plate part 14 covers the lower part of the processing space 11.
  • the substrate holding unit 20, the rotation mechanism 30, the processing liquid supply unit 40, and the processing liquid collection unit 50 are accommodated in the chamber 10.
  • a part of the side wall 12 is provided with a loading / unloading port and a shutter for opening and closing the loading / unloading port (both not shown). At the loading / unloading port, the substrate W is loaded into the chamber 10 and the substrate W is unloaded from the chamber 10.
  • a fan filter unit (FFU) 15 is provided in the top plate portion 13 of the chamber 10.
  • the fan filter unit 15 includes a dust collection filter such as a HEPA filter and a fan that generates an airflow.
  • a dust collection filter such as a HEPA filter
  • the air in the clean room in which the substrate processing apparatus 100 is installed is taken into the fan filter unit 15, cleaned by the dust collection filter, and supplied to the processing space 11 in the chamber 10. The As a result, a clean air downflow is formed in the processing space 11 in the chamber 10.
  • an exhaust duct 16 is connected to a part of the lower portion of the side wall 12. The air supplied from the fan filter unit 15 forms a downflow inside the chamber 10, and then is discharged to the outside of the chamber 10 through the exhaust duct 16.
  • the substrate holding unit 20 is a mechanism that holds the substrate W horizontally (in a posture in which the normal line is directed in the vertical direction) inside the chamber 10.
  • the substrate holding unit 20 includes a disk-shaped spin base 21 and a plurality of chuck pins 22.
  • the plurality of chuck pins 22 are provided at equiangular intervals along the outer peripheral portion of the upper surface of the spin base 21.
  • the substrate W is held by the plurality of chuck pins 22 with the processing surface on which the pattern is formed facing upward.
  • Each chuck pin 22 contacts the lower surface and the outer peripheral end surface of the peripheral portion of the substrate W, and supports the substrate W at a position above the upper surface of the spin base 21 through a slight gap.
  • a chuck pin switching mechanism 23 for switching the positions of the plurality of chuck pins 22 is provided inside the spin base 21.
  • the chuck pin switching mechanism 23 switches the plurality of chuck pins 22 between a holding position for holding the substrate W and a release position for releasing the holding of the substrate W.
  • the rotation mechanism 30 is a mechanism for rotating the substrate holding unit 20.
  • the rotation mechanism 30 is accommodated in a motor cover 31 provided below the spin base 21.
  • the rotation mechanism 30 includes a spin motor 32 and a support shaft 33.
  • the support shaft 33 extends in the vertical direction, a lower end portion thereof is connected to the spin motor 32, and an upper end portion is fixed to the center of the lower surface of the spin base 21.
  • the spin motor 32 is driven, the support shaft 33 rotates about its axis 330.
  • the substrate holding unit 20 and the substrate W held by the substrate holding unit 20 also rotate about the axis 330.
  • the processing liquid supply unit 40 is a mechanism that supplies the processing liquid to the upper surface of the substrate W held by the substrate holding unit 20.
  • the processing liquid supply unit 40 includes three processing liquid discharge pipes 41. Each of the three processing liquid discharge pipes 41 has a flow path through which the processing liquid flows.
  • the treatment liquid discharge pipe 41 is made of, for example, a fluororesin such as PTFE (polytetrafluoroethylene) or PFA (perfluoroalkoxyalkane). Note that the number of the treatment liquid discharge pipes 41 is not limited to three, and may be one, two, or four or more.
  • the treatment liquid discharge pipe 41 is supported by a motor 42 as shown in FIG.
  • the treatment liquid discharge pipe 41 has an end portion on the side supported by the motor 42 as a base end portion, extends from the base end portion in the horizontal direction, and the tip end portion is bent downward in the vertical direction. That is, the processing liquid discharge pipe 41 of the present embodiment has an L-shaped outer shape.
  • a discharge port 41 ⁇ / b> A is provided at the lower end portion of the treatment liquid discharge pipe 41 that is bent downward in the vertical direction.
  • the treatment liquid discharge pipe 41 is individually rotated in the horizontal direction around the motor 42 as shown by an arrow in FIG. Accordingly, the discharge port 41 ⁇ / b> A of the processing liquid discharge pipe 41 moves between the processing position above the substrate W held by the substrate holding unit 20 and the retreat position outside the processing liquid collecting unit 50. .
  • the discharge port 41A is arranged at a processing position above the substrate W. Then, the processing liquid flowing through the flow path of the processing liquid discharge pipe 41 is discharged onto the upper surface of the substrate W from the discharge port 41A.
  • the specific configuration of the processing liquid discharge pipe 41 will be described in detail later.
  • FIG. 4 is a diagram illustrating an example of the liquid supply unit 45 connected to the processing liquid discharge pipe 41.
  • FIG. 4 shows an example in which an SPM cleaning liquid that is a mixed liquid of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide water (H 2 O 2 ) is supplied as the processing liquid.
  • the liquid supply unit 45 includes a sulfuric acid supply source 451 and a hydrogen peroxide solution supply source 452.
  • a first valve 453 is provided in the middle of the flow path connected to the sulfuric acid supply source 451.
  • a second valve 454 is provided in the middle of the flow path connected to the hydrogen peroxide solution supply source 452.
  • the flow paths connected to each of the sulfuric acid supply source 451 and the hydrogen peroxide solution supply source 452 merge on the downstream side and are connected to the processing liquid discharge pipe 41.
  • processing liquid discharge pipes 41 discharge different processing liquids, respectively.
  • treatment liquid examples include SC1 cleaning liquid (mixed liquid of ammonia water, hydrogen peroxide water, and pure water), SC2 cleaning liquid (mixed liquid of hydrochloric acid, hydrogen peroxide solution, and pure water), in addition to the above-described SPM cleaning liquid, Examples thereof include DHF cleaning liquid (dilute hydrofluoric acid) and pure water (deionized water).
  • the processing liquid discharge pipe 41 is provided with a suck back pipe 43.
  • the suck-back pipe 43 is an example of the “retraction mechanism” in the present invention.
  • the suck back pipe 43 is a pipe extending in the vertical direction.
  • the upper end portion of the suck back pipe 43 is connected to a portion of the processing liquid discharge pipe 41 that extends in the horizontal direction. Thereby, the flow path extending in the horizontal direction of the processing liquid discharge pipe 41 is branched.
  • the height of the lower end portion of the suck back pipe 43 is lower than the height of the discharge port 41A.
  • the treatment liquid collection unit 50 is a part for collecting the treatment liquid after use. As shown in FIG. 3, the processing liquid collecting unit 50 includes an inner cup 51, an inner cup 52, and an outer cup 53. The inner cup 51, the middle cup 52, and the outer cup 53 can be moved up and down independently of each other by a lifting mechanism 500 (see FIG. 5).
  • the inner cup 51 has an annular first guide plate 510 that surrounds the periphery of the substrate holding unit 20.
  • the middle cup 52 has an annular second guide plate 520 located outside and above the first guide plate 510.
  • the outer cup 53 has an annular third guide plate 530 located outside and above the second guide plate 520. Further, the bottom of the inner cup 51 extends to below the middle cup 52 and the outer cup 53.
  • a first drainage groove 511, a second drainage groove 512, and a third drainage groove 513 are provided on the top surface of the bottom portion in order from the inside.
  • the processing liquid discharged from the processing liquid discharge pipes 41 of the processing liquid supply unit 40 is supplied to the substrate W, it is scattered to the outside by the centrifugal force generated by the rotation of the substrate W. Then, the processing liquid scattered from the substrate W is collected by any of the first guide plate 510, the second guide plate 520, and the third guide plate 530.
  • the processing liquid collected by the first guide plate 510 passes through the first drain groove 511 and is discharged to the outside of the processing unit 102.
  • the processing liquid collected by the second guide plate 520 passes through the second drain groove 512 and is discharged to the outside of the processing unit 102.
  • the processing liquid collected by the third guide plate 530 is discharged to the outside of the processing unit 102 through the third drain groove 513.
  • the processing unit 102 has a plurality of processing liquid discharge paths. For this reason, the processing liquid supplied to the substrate can be collected separately for each type. Therefore, disposal and recovery processing of the collected processing liquid can be performed separately according to the properties of each processing liquid.
  • the control unit 60 is a part for controlling the operation of each unit in the processing unit 102.
  • FIG. 5 is a block diagram showing connections between the control unit 60 and each unit in the processing unit 102.
  • the control unit 60 is configured by a computer having a processor 61 such as a CPU, a memory 62 such as a RAM, and a storage unit 63 such as a hard disk drive.
  • a computer program P for executing the processing of the substrate W in the processing unit 102 is installed in the storage unit 63.
  • the control unit 60 includes the fan filter unit 15, the chuck pin switching mechanism 23, the spin motor 32, the three motors 42, the valves 453 and 454 of the processing liquid supply unit 40, and the processing liquid.
  • the lifting mechanism of the collection unit 50 is connected to be able to communicate with each other.
  • the control unit 60 temporarily reads the computer program P and data stored in the storage unit 63 into the memory 62, and the processor 61 performs arithmetic processing based on the computer program P, thereby controlling the operation of each unit described above. To do. Thereby, the processing of the substrate W in the processing unit 102 proceeds.
  • FIG. 6 is a partial cross-sectional view of the processing liquid discharge pipe 41.
  • the treatment liquid discharge pipe 41 includes a first pipe part 411, a second pipe part 412, and a third pipe part 413.
  • the 1st piping part 411 is a site
  • the upstream end of the first piping part 411 is connected to the liquid supply part 45 described above.
  • the second piping portion 412 is a portion located at a bent portion of the substantially L-shaped processing liquid discharge piping 41.
  • the upstream end of the second piping part 412 is connected to the downstream end of the first piping part 411.
  • the downstream end of the second piping part 412 is positioned below the upstream end of the second piping part 412.
  • the second piping portion 412 extends while being curved from the upstream end portion toward the downstream end portion.
  • the 3rd piping part 413 is a site
  • the upstream end of the third piping part 413 is connected to the downstream end of the second piping part 412.
  • the downstream end of the third piping part 413 is positioned below the upstream end of the third piping part 413.
  • the discharge port 41 ⁇ / b> A is provided at the lower end of the third piping portion 413.
  • the 1st piping part 411, the 2nd piping part 412, and the 3rd piping part 413 may be one component, and may be a different component.
  • the processing liquid discharge pipe 41 has a flow path 44 through which the processing liquid flows.
  • the channel 44 includes a first piping channel 441, a second piping channel 442, and a third piping channel 443 in order from the upstream side.
  • the first piping channel 441 is a straight channel formed in the first piping part 411 and extending in the horizontal direction.
  • the suck back pipe 43 is connected to the first pipe part 411. That is, the suck back pipe 43 branches from the first pipe part 411.
  • the wall surface of the first piping channel 441, that is, the inner wall surface 411A of the first piping part 411 is hydrophobic.
  • the inner wall surface 411A of the first piping part 411 is a smoother surface than the inner wall surface 412A of the second piping channel 442 described later.
  • the first piping channel 441 is an example of the “second channel” in the present invention.
  • the second piping channel 442 is a channel formed inside the second piping part 412 and inclined with respect to the vertical direction.
  • the second piping channel 442 is located adjacent to the downstream side of the first piping channel 441.
  • the position of the upstream end of the second piping channel 442 is higher than the position of the downstream end of the second piping channel 442.
  • the wall surface of the second piping channel 442, that is, the inner wall surface 412A of the second piping part 412 is hydrophilic.
  • the inner wall surface 412A of the second piping channel 442 is rougher than the inner wall surface 411A of the first piping part 411 and the inner wall surface 413A of the third piping part 413 described later.
  • the inner wall surface 412 ⁇ / b> A of the second pipe flow path 442 is rougher than the outer wall surface of the processing liquid discharge pipe 41.
  • the second piping channel 442 is an example of the “hydrophilic channel” in the present invention.
  • the third piping channel 443 is a straight channel formed in the third piping part 413 and extending in the vertical direction.
  • the third piping channel 443 is located adjacent to the downstream side of the second piping channel 442.
  • the lower end of the third piping channel 443 is the discharge port 41A.
  • the wall surface of the third piping channel 443, that is, the inner wall surface 413A of the third piping part 413 is hydrophobic.
  • the inner wall surface 413A of the third piping part 413 is a smoother surface than the inner wall surface 412A of the second piping channel 442 described above.
  • the third piping channel 443 is an example of the “first channel” in the present invention.
  • Examples of a method for making the wall surface of the second piping channel 442 hydrophilic include a method of immersing the treatment liquid discharge piping 41 made of fluororesin in hydrochloric acid (hydrogen chloride (HCL) aqueous solution).
  • hydrochloric acid hydrogen chloride (HCL) aqueous solution.
  • HCL hydrogen chloride
  • the hydrochloric acid gas dissolved in the hydrochloric acid permeates into the second pipe portion 412. Then, the permeated chlorine gas acts on the surface of the inner wall surface 412A of the second piping part 412 in contact with water.
  • the inner wall surface 412A of the second piping part 412 is roughened.
  • only the hydrochloric acid gas is accumulated in the first piping portion 411 and the third piping portion 413 that are not filled with water, and the inner wall surface 411A and the inner wall surface 413A are not roughened.
  • the surface roughness of the inner wall surface 412A of the second piping part 412 is rougher than the surface roughness of the inner wall surface 411A of the first piping part 411 and the inner wall surface 413A of the third piping part 413.
  • the wall surface of the first piping channel 441 is hydrophobic, the flow resistance of the processing liquid in the first piping channel 441 is low. For this reason, when the processing liquid is supplied from the liquid supply unit 45, the flow of the processing liquid is hardly hindered in the first piping flow path 441.
  • the processing liquid in the third piping channel 443 is dropped from the discharge port 41A without being held by the wall surface of the third piping channel 443. Cheap. Further, when the supply of the processing liquid from the liquid supply unit 45 is stopped, the processing liquid in the third pipe flow path 443 is drawn back to the upstream side by the suck back pipe 43. For this reason, the processing liquid is unlikely to remain in the third piping channel 443. As a result, the processing liquid remains in the third piping flow path 443, and the remaining processing liquid can be prevented from dripping when not intended. Further, it is possible to prevent the processing liquid remaining in the vicinity of the discharge port 41A from being dried by contact with air.
  • the wall surface of the second piping channel 442 is hydrophilic, the treatment liquid remaining in the second piping channel 442 is easily held on the wall surface of the second piping channel 442. For this reason, the processing liquid remaining in the second piping channel 442 is unlikely to flow down to the third piping channel 443.
  • the second piping channel 442 is inclined with respect to the vertical direction.
  • the processing liquid held on the wall surface of the flow path tends to flow downstream due to its own weight applied to the processing liquid.
  • the ease of flow of the processing liquid in the flow path is greater when the flow path is inclined than when the flow path is not inclined.
  • the processing liquid held on the wall surface of the second piping channel 442 flows down, the processing liquid drops from the discharge port 41A.
  • the wall surface of the inclined second pipe flow path 442 is made hydrophilic to increase the holding power of the processing liquid. Thereby, dripping of the process liquid by dead weight can be suppressed.
  • the substrate holding unit 20 holds the loaded substrate W horizontally by the plurality of chuck pins 22. Thereafter, when the spin motor 32 of the rotation mechanism 30 is driven, the rotation of the substrate W is started. Subsequently, the motor 42 is driven, and the third piping unit 413 of the processing liquid supply unit 40 is moved to a processing position facing the upper surface of the substrate W. Then, the first valve 453 and the second valve 454 in FIG. 4 are opened, and the SPM cleaning liquid that is a mixed liquid of sulfuric acid and hydrogen peroxide solution is discharged from the third piping portion 413 toward the upper surface of the substrate W. .
  • the temperature of the SPM cleaning liquid is, for example, 150 ° C. to 200 ° C.
  • the surface of the substrate W is dried.
  • the holding of the substrate W by the plurality of chuck pins 22 is released. Thereafter, the processed substrate W is taken out of the substrate holding unit 20 by the main transfer robot 103 and carried out of the chamber 10.
  • the wall surface of the inclined second pipe flow path 442 of the treatment liquid discharge pipe 41 hydrophilic, it is possible to increase the holding power of the process liquid on the wall face of the second pipe flow path 442. And the process liquid hold
  • the surface of the substrate W can be processed with high accuracy.
  • the SPM cleaning liquid shown in this example has a relatively high specific gravity (for example, than pure water) and a relatively low surface tension (for example, than pure water).
  • Such a high specific gravity and low surface tension chemical solution is very likely to be dripped by its own weight.
  • such a dripping due to the weight of the chemical solution can be prevented by making the wall surface of the second piping channel 442 hydrophilic.
  • the channel that makes the wall surface hydrophilic is not limited to the second piping channel 442 of the above-described embodiment.
  • the flow path that makes the wall surface hydrophilic is at least upstream from the discharge port 41A, is inclined with respect to the vertical direction, and the upstream end is higher than the downstream end. If it is.
  • FIG. 7 is a partial cross-sectional view of a treatment liquid discharge pipe 46 of a modified example.
  • the 7 has a first piping portion 461, a second piping portion 462, and a third piping portion 463.
  • the first piping part 461 is a part extending in the horizontal direction.
  • the 2nd piping part 462 is located in the downstream of the 1st piping part 461, and is a linear part inclined with respect to the perpendicular direction.
  • the upstream end of the second piping part 462 is connected to the downstream end of the first piping part 461.
  • the downstream end of the second piping part 462 is positioned below the upstream end of the second piping part 462.
  • the 3rd piping part 463 is located in the downstream of the 2nd piping part 462, and is a site
  • the upstream end portion of the third piping portion 463 is connected to the downstream end portion of the second piping portion 462.
  • a discharge port 46 ⁇ / b> A is provided at the downstream end of the third piping portion 463.
  • the third piping portion 463 is an example of the “first straight flow path” in the present invention.
  • the processing liquid discharge pipe 46 has a flow path 47 through which the processing liquid flows.
  • the channel 47 includes a first piping channel 471, a second piping channel 472, and a third piping channel 473.
  • the first piping channel 471 is a straight channel formed in the first piping part 461 and extending in the horizontal direction.
  • the suck back pipe 43 described with reference to FIG. 4 is connected to the first pipe section 461.
  • the wall surface of the first piping channel 471, that is, the inner wall surface 461A of the first piping part 461 is hydrophobic.
  • the second piping channel 472 is formed inside the second piping unit 462 and is a channel inclined with respect to the vertical direction.
  • the second piping channel 472 is located on the downstream side of the first piping channel 471.
  • the position of the upstream end of the second piping channel 472 is higher than the position of the downstream end of the second piping channel 442.
  • the wall surface of the second piping channel 472, that is, the inner wall surface 462A of the second piping part 462 is hydrophilic.
  • the wall surface of the second piping channel 472 is made hydrophilic by immersing the treatment liquid discharge piping 46 in hydrochloric acid in a state where the second piping channel 472 is filled with water, as in the above embodiment. .
  • the second piping channel 472 is an example of the “hydrophilic channel” in the present invention.
  • the third piping channel 473 is a straight channel formed inside the third piping part 463 and extending in the horizontal direction.
  • the third piping channel 473 is located on the downstream side of the second piping channel 472.
  • the wall surface of the third piping channel 473, that is, the inner wall surface 463A of the third piping portion 463 is hydrophobic.
  • the processing liquid discharge pipe 46 having this configuration the processing liquid is held by the inclined wall surface of the second pipe flow path 472 as in the case of the processing liquid discharge pipe 41 of the above embodiment. Thereby, dripping by the dead weight of a processing liquid is prevented.
  • the entire wall surface of the inclined second pipe flow path 462 is hydrophilic, but at least a part of the wall surface of the inclined second pipe flow path 462 is formed. It only needs to be hydrophilic.
  • the treatment liquid discharge pipe may be immersed in hydrochloric acid while sealing the water in the wall surface of the second pipe flow path 462 that is desired to be hydrophilic.
  • the method of making the wall surface of the flow path hydrophilic may be a method other than dipping in a chemical solution. Further, the method for making the wall surface of the flow path hydrophilic may be a method other than roughening. Furthermore, in the above-described embodiment and the modification of FIG. 7, the wall surfaces of the first piping channels 441 and 471 located upstream of the second piping channels 442 and 472 are made hydrophobic, but they may be made hydrophilic. . In addition, the first piping unit 411, the second piping unit 412, and the third piping unit 413 may be separate parts, and only the piping whose wall should be hydrophilic may be immersed in hydrochloric acid.
  • each pipe does not necessarily extend in parallel with the defined direction (vertical direction or horizontal direction).
  • the third piping part 413 in FIG. 6 may be slightly inclined with respect to the vertical direction.
  • the detailed configuration of the substrate processing apparatus 100 may be different from those of the present application. Moreover, you may combine suitably each element which appeared in said embodiment and modification in the range which does not produce inconsistency.
  • processing liquid supply unit 41 processing liquid discharge pipe 41A discharge port 43 suckback pipe 44 flow path 46 processing liquid discharge pipe 46A discharge port 47 flow path 61 processor 62 memory 63 storage unit 100 substrate processing apparatus 411 first piping part 411A inner wall surface 412 2nd piping part 412A inner wall surface 413 3rd piping part 413A inner wall surface 414 Motor 441 1st piping channel 442 2nd piping channel 443 3rd piping channel 451 Sulfuric acid supply source 452 Hydrogen peroxide supply source 453 1st Valve 454 Second valve 461 First piping portion 461A Inner wall surface 462 Second piping portion 462A Inner wall surface 463 Third piping portion 463A Inner wall surface 471 First piping passage 472 Second piping passage 473 Third piping passage

Abstract

[Problem] To provide a process liquid discharging pipe preventing droplets from falling down from a discharge port and a substrate processing device provided with the process liquid discharging pipe. [Solution] A process liquid discharging pipe 41 internally has a channel 44 through which a process liquid flows, and discharges the process liquid flowing through the channel 44 onto a substrate surface through a discharge port 41A. The channel 44 has a second pipe channel 442 that is a hydrophilic channel including a wall surface that is at least partially hydrophilic. While the process liquid discharging pipe 41 is attached to a substrate processing device, the second pipe channel 442 is inclined with respect to the vertical direction and include an upstream end portion located higher than a downstream end portion.

Description

処理液吐出配管および基板処理装置Processing liquid discharge piping and substrate processing apparatus
 本発明は、基板表面に処理液を吐出させる装置において処理液が流通する処理液吐出配管、および、当該処理液吐出配管を備えた基板処理装置に関する。 The present invention relates to a processing liquid discharge pipe through which a processing liquid flows in an apparatus for discharging a processing liquid onto a substrate surface, and a substrate processing apparatus including the processing liquid discharge pipe.
 従来、半導体ウェハの製造工程においては、フォトレジスト液、エッチング液、洗浄液、純水等の種々の処理液が、基板表面に供給される。この処理液の供給処理において、処理液の供給を停止する際、処理液の吐出口から、意図せぬ液滴の落下、所謂「ボタ落ち」が生じる場合がある。このような液滴のボタ落ちは、基板表面にムラが生じる原因となるため、回避する必要がある。 Conventionally, in a semiconductor wafer manufacturing process, various processing liquids such as a photoresist liquid, an etching liquid, a cleaning liquid, and pure water are supplied to the substrate surface. In the treatment liquid supply process, when the supply of the treatment liquid is stopped, an unintended drop of liquid droplets, so-called “bottom drop” may occur from the treatment liquid discharge port. Such a drop-off of the droplets causes unevenness on the substrate surface and must be avoided.
 特許文献1には、ボタ落ちを防止するために、処理液の吐出孔を超親水性にした、供給ノズルが開示されている。特許文献1では、吐出孔を超親水性とすることで、先端部の表面に付着した処理液の液滴が球状となることなく、薄膜状に拡がる。これにより、球状の液滴が振動などによって先端部の表面を流下していくことが防止される。 Patent Document 1 discloses a supply nozzle in which a discharge hole for a treatment liquid is made super hydrophilic in order to prevent the dropping of a button. In Patent Document 1, by making the discharge hole superhydrophilic, the droplet of the treatment liquid adhering to the surface of the tip portion does not become spherical and spreads in a thin film shape. This prevents spherical droplets from flowing down the tip surface due to vibration or the like.
特開平10-256116号公報JP-A-10-256116
 特許文献1の構成によれば、ノズル先端部に付着した処理液のボタ落ちを抑制できる。しかしながら、先端部よりも内側(上流側)に処理液が残存している場合、処理液の自重により、ボタ落ちが生じるおそれがある。 According to the configuration of Patent Document 1, it is possible to suppress the dropping of the treatment liquid adhering to the nozzle tip. However, when the processing liquid remains on the inner side (upstream side) of the front end portion, there is a possibility that the dropping of the liquid may occur due to the weight of the processing liquid.
 本発明は、このような事情に鑑みなされたものであり、吐出口における液滴落下を防止する処理液吐出配管、および、当該処理液吐出配管を備えた基板処理装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a processing liquid discharge pipe for preventing droplets from dropping at the discharge port, and a substrate processing apparatus including the processing liquid discharge pipe. To do.
 上記課題を解決するため、本願の第1発明は、基板表面に対して処理液を吐出する処理装置に取り付けられ、前記処理液が流通する流路と、前記流路を流通する処理液を前記基板表面に吐出する吐出口とを有する処理液吐出配管であって、前記流路は、壁面の少なくとも一部が親水性である親水性流路、を含み、前記処理装置に取り付けられた状態において、前記親水性流路は、鉛直方向に対して傾斜し、上流側の端部が下流側の端部よりも高く位置する。 In order to solve the above problems, a first invention of the present application is attached to a processing apparatus that discharges a processing liquid to a substrate surface, and a flow path through which the processing liquid flows and a processing liquid that flows through the flow path are A treatment liquid discharge pipe having a discharge port for discharging to the substrate surface, wherein the flow path includes a hydrophilic flow path in which at least a part of a wall surface is hydrophilic, and is attached to the processing apparatus. The hydrophilic flow path is inclined with respect to the vertical direction, and the upstream end is positioned higher than the downstream end.
 本願の第2発明は、第1発明の処理液吐出配管であって、前記流路は、壁面が疎水性の流路を有する。 The second invention of the present application is the processing liquid discharge pipe of the first invention, wherein the flow path has a hydrophobic flow path on the wall surface.
 本願の第3発明は、第1発明または第2発明の処理液吐出配管であって、前記流路は、前記親水性流路の下流側に位置し、壁面が疎水性である第1流路、を有し、前記処理装置に取り付けられた状態において、前記第1流路は鉛直方向に延びる。 A third invention of the present application is the processing liquid discharge pipe of the first invention or the second invention, wherein the flow channel is located downstream of the hydrophilic flow channel and the wall surface is hydrophobic. The first flow path extends in the vertical direction in a state where the first flow path is attached to the processing apparatus.
 本願の第4発明は、第3発明の処理液吐出配管であって、前記吐出口は、前記第1流路の下流側端部に位置する。 The fourth invention of the present application is the processing liquid discharge pipe of the third invention, wherein the discharge port is located at a downstream end of the first flow path.
 本願の第5発明は、第3発明または第4発明の処理液吐出配管であって、前記親水性流路と前記第1流路とは隣接している。 The fifth invention of the present application is the processing liquid discharge pipe of the third invention or the fourth invention, wherein the hydrophilic flow path and the first flow path are adjacent to each other.
 本願の第6発明は、第1発明から第5発明までのいずれかの処理液吐出配管であって、前記流路は、前記親水性流路の上流に位置する第2流路、を有し、前記処理装置に取り付けられた状態において、前記第2流路は水平方向に延びる。 A sixth invention of the present application is the processing liquid discharge pipe according to any one of the first to fifth inventions, wherein the flow path has a second flow path positioned upstream of the hydrophilic flow path. In the state attached to the processing apparatus, the second flow path extends in the horizontal direction.
 本願の第7発明は、第1発明から第6発明までのいずれかの処理液吐出配管であって、前記親水性流路は、樹脂からなり、薬液に浸漬されることで、壁面の少なくとも一部が、親水性となっている。 A seventh invention of the present application is any one of the processing liquid discharge pipes according to the first invention to the sixth invention, wherein the hydrophilic flow path is made of a resin and is immersed in a chemical solution so that at least one of the wall surfaces. The part is hydrophilic.
 本願の第8発明は、第1発明から第7発明までのいずれかの処理液吐出配管であって、親水性である前記親水性流路の壁面は、他の流路の壁面よりも粗い。 The eighth invention of the present application is the treatment liquid discharge pipe according to any one of the first invention to the seventh invention, wherein the hydrophilic wall surface of the hydrophilic channel is rougher than the wall surfaces of the other channels.
 本願の第9発明は、基板表面に対して処理液を吐出する処理装置に取り付けられ、前記処理液が流通する流路と、前記流路を流通する処理液を前記基板表面に吐出する吐出口とを有する処理液吐出配管であって、樹脂からなり、前記流路は、壁面の少なくとも一部に対して水を接した状態で薬液に浸漬して、前記壁面の少なくとも一部を親水性にした親水性流路、を含み、前記処理装置に取り付けられると、前記親水性流路は、鉛直方向に対して傾斜し、上流側の端部が下流側の端部よりも高く位置する。 A ninth invention of the present application is attached to a processing apparatus for discharging a processing liquid to the substrate surface, and a flow path through which the processing liquid flows, and a discharge port for discharging the processing liquid flowing through the flow path to the substrate surface The flow path is immersed in a chemical solution in a state where water is in contact with at least a part of the wall surface to make at least a part of the wall surface hydrophilic. When the hydrophilic channel is attached to the processing apparatus, the hydrophilic channel is inclined with respect to the vertical direction, and the upstream end is positioned higher than the downstream end.
 本願の第10発明は、第9発明の処理液吐出配管、であって、前記親水性流路は、前記流路に水を満たした状態で薬液に浸漬して、親水性にされている。 The tenth invention of the present application is the treatment liquid discharge pipe according to the ninth invention, wherein the hydrophilic flow path is made hydrophilic by immersing it in a chemical solution in a state where the flow path is filled with water.
 本願の第11発明は、第1発明から第10発明までのいずれかの処理液吐出配管、を備える基板処理装置であって、チャンバと、前記チャンバの内部において基板を水平に保持する基板保持部と、前記処理液吐出配管を介して、前記基板保持部に保持された基板の上面に、処理液を供給する処理液供給部と、前記処理液吐出配管の前記流路内の処理液を、上流側へ引き戻す引き戻し機構と、を備える。 An eleventh invention of the present application is a substrate processing apparatus comprising any one of the processing liquid discharge pipes from the first invention to the tenth invention, wherein the chamber and a substrate holding portion for horizontally holding the substrate inside the chamber And a processing liquid supply unit for supplying a processing liquid to the upper surface of the substrate held by the substrate holding unit via the processing liquid discharge pipe, and a processing liquid in the flow path of the processing liquid discharge pipe, A pull-back mechanism that pulls back to the upstream side.
 本願の第1発明~第11発明によれば、傾斜した流路の壁面が親水性である。流路が傾斜すると処理液の保持が難しくなるが、その傾斜した流路の壁面を親水性とすることで、その壁面による処理液の保持力は高まる。つまり、吐出口より上流側で、処理液が保持される。これにより、吐出口からの処理液の滴下(ボタ落ち)を防止できる。 According to the first to eleventh inventions of the present application, the wall surface of the inclined channel is hydrophilic. When the flow path is inclined, it becomes difficult to hold the treatment liquid. However, by making the wall surface of the inclined flow path hydrophilic, the holding power of the treatment liquid by the wall surface is increased. That is, the processing liquid is held upstream from the discharge port. Thereby, dripping (bottom drop) of the processing liquid from the discharge port can be prevented.
 本願の第4発明によれば、第1流路の壁面で処理液が保持されずに、吐出口から滴下しやすい。これにより、吐出口付近に処理液が残存し、意図せぬときに滴下することを防止できる。また、吐出口付近に残存した処理液が、空気との接触によって乾燥することを防止できる。 According to the fourth invention of the present application, the processing liquid is not held on the wall surface of the first flow path, and is easily dropped from the discharge port. Thereby, it is possible to prevent the treatment liquid from remaining near the discharge port and dripping when not intended. Further, it is possible to prevent the processing liquid remaining in the vicinity of the discharge port from being dried by contact with air.
 本願の第6発明によれば、第2流路において、処理液の流路抵抗が低い。このため、第2流路において、処理液の流通が妨げられることを回避できる。 According to the sixth invention of the present application, the flow path resistance of the processing liquid is low in the second flow path. For this reason, it can avoid that the distribution | circulation of a process liquid is prevented in a 2nd flow path.
基板処理装置の平面図である。It is a top view of a substrate processing apparatus. 処理ユニットの平面図である。It is a top view of a processing unit. 処理ユニットの縦断面図である。It is a longitudinal cross-sectional view of a processing unit. 処理液吐出配管に接続される給液部の一例を示した図である。It is the figure which showed an example of the liquid supply part connected to a process liquid discharge piping. 制御部と、処理ユニット内の各部との接続を示したブロック図である。It is the block diagram which showed the connection of a control part and each part in a processing unit. 処理液吐出配管の部分断面図である。It is a fragmentary sectional view of processing liquid discharge piping. 変形例の処理液吐出配管の部分断面図である。It is a fragmentary sectional view of the processing liquid discharge piping of a modification.
 以下では、本発明の処理液吐出配管を備えた、基板処理装置について説明する。 Hereinafter, a substrate processing apparatus including the processing liquid discharge pipe of the present invention will be described.
 <1.基板処理装置の全体構成>
 図1は、本実施形態に係る基板処理装置100の平面図である。基板処理装置100は、半導体ウェハの製造工程において、円板状の基板W(シリコン基板)の表面を処理する装置である。基板処理装置100は、基板Wの表面に処理液を供給する液体供給処理と、基板Wの表面を乾燥させる乾燥処理とを行う。
<1. Overall configuration of substrate processing apparatus>
FIG. 1 is a plan view of a substrate processing apparatus 100 according to this embodiment. The substrate processing apparatus 100 is an apparatus that processes the surface of a disk-shaped substrate W (silicon substrate) in a semiconductor wafer manufacturing process. The substrate processing apparatus 100 performs a liquid supply process for supplying a processing liquid to the surface of the substrate W and a drying process for drying the surface of the substrate W.
 基板処理装置100は、インデクサ101と、複数の処理ユニット102と、主搬送ロボット103とを備えている。 The substrate processing apparatus 100 includes an indexer 101, a plurality of processing units 102, and a main transfer robot 103.
 インデクサ101は、処理前の基板Wを外部から搬入するとともに、処理後の基板Wを外部へ搬出するための部位である。インデクサ101には、複数の基板Wを収容するキャリアが、複数配置される。また、インデクサ101は、図示を省略した移送ロボットを有する。移送ロボットは、インデクサ101内のキャリアと、処理ユニット102または主搬送ロボット103との間で、基板Wを移送する。なお、キャリアには、例えば、基板Wを密閉空間に収納する公知のFOUP(Front Opening Unified Pod)またはSMIF(Standard Mechanical Inter Face)ポッド、あるいは、収納基板Wが外気と接するOC(Open Cassette)が用いられる。 The indexer 101 is a part for carrying in the substrate W before processing from the outside and carrying out the substrate W after processing to the outside. In the indexer 101, a plurality of carriers that accommodate a plurality of substrates W are arranged. The indexer 101 has a transfer robot (not shown). The transfer robot transfers the substrate W between the carrier in the indexer 101 and the processing unit 102 or the main transfer robot 103. The carrier may be, for example, a known FOUP (Front Opening Unified Unified Pod) or SMIF (Standard Mechanical Inter Inter Face) pod that stores the substrate W in a sealed space, or an OC (Open® Cassette) in which the storage substrate W is in contact with the outside air. Used.
 処理ユニット102は、基板Wを1枚ずつ処理する、いわゆる枚様式の処理部である。複数の処理ユニット102は、主搬送ロボット103の周囲に配置されている。本実施形態では、主搬送ロボット103の周囲に配置された4つの処理ユニット102が、高さ方向に3段に積層されている。すなわち、本実施形態の基板処理装置100は、全部で12台の処理ユニット102を有する。複数の基板Wは、各処理ユニット102において、並列に処理される。ただし、基板処理装置100が備える処理ユニット102の数は、12台に限定されるものではなく、その台数は適宜変更可能である。例えば、24台、16台、8台、4台、1台などであってもよい。 The processing unit 102 is a so-called sheet processing unit that processes the substrates W one by one. The plurality of processing units 102 are arranged around the main transfer robot 103. In the present embodiment, four processing units 102 arranged around the main transfer robot 103 are stacked in three stages in the height direction. That is, the substrate processing apparatus 100 of the present embodiment has twelve processing units 102 in total. The plurality of substrates W are processed in parallel in each processing unit 102. However, the number of processing units 102 included in the substrate processing apparatus 100 is not limited to 12, and the number can be changed as appropriate. For example, the number may be 24, 16, 8, 4, 1 or the like.
 主搬送ロボット103は、インデクサ101と複数の処理ユニット102との間で、基板Wを搬送するための機構である。主搬送ロボット103は、例えば、基板Wを保持するハンドと、ハンドを移動させるアームとを有する。主搬送ロボット103は、インデクサ101から処理前の基板Wを取り出して、処理ユニット102へ搬送する。また、処理ユニット102における基板Wの処理が完了すると、主搬送ロボット103は、当該処理ユニット102から処理後の基板Wを取り出して、インデクサ101へ搬送する。 The main transport robot 103 is a mechanism for transporting the substrate W between the indexer 101 and the plurality of processing units 102. The main transfer robot 103 has, for example, a hand that holds the substrate W and an arm that moves the hand. The main transfer robot 103 takes out the substrate W before processing from the indexer 101 and transfers it to the processing unit 102. When the processing of the substrate W in the processing unit 102 is completed, the main transport robot 103 takes out the processed substrate W from the processing unit 102 and transports it to the indexer 101.
 <2.処理ユニットの構成>
 続いて、処理ユニット102の構成について説明する。以下では、基板処理装置100が有する複数の処理ユニット102のうちの1つについて説明するが、他の処理ユニット102も同等の構成を有する。
<2. Configuration of processing unit>
Next, the configuration of the processing unit 102 will be described. Hereinafter, one of the plurality of processing units 102 included in the substrate processing apparatus 100 will be described, but the other processing units 102 have the same configuration.
 図2は、処理ユニット102の平面図である。図3は、処理ユニット102の縦断面図である。図2および図3に示すように、処理ユニット102は、チャンバ10、基板保持部20、回転機構30、処理液供給部40、処理液捕集部50、および制御部60を備えている。 FIG. 2 is a plan view of the processing unit 102. FIG. 3 is a longitudinal sectional view of the processing unit 102. As shown in FIGS. 2 and 3, the processing unit 102 includes a chamber 10, a substrate holding unit 20, a rotation mechanism 30, a processing liquid supply unit 40, a processing liquid collection unit 50, and a control unit 60.
 チャンバ10は、基板Wを処理するための処理空間11を内包する筐体である。チャンバ10は、側壁12と、天板部13と、底板部14とを有する。側壁12は、処理空間11の側部を取り囲む。天板部13は、処理空間11の上部を覆う。底板部14は、処理空間11の下部を覆う。基板保持部20、回転機構30、処理液供給部40、および処理液捕集部50は、チャンバ10の内部に収容される。側壁12の一部には、搬入出口と、搬入出口を開閉するシャッタとが、設けられている(いずれも図示省略)。搬入出口において、チャンバ10内への基板Wの搬入およびチャンバ10から基板Wの搬出が行われる。 The chamber 10 is a housing that encloses a processing space 11 for processing the substrate W. The chamber 10 has a side wall 12, a top plate portion 13, and a bottom plate portion 14. The side wall 12 surrounds the side portion of the processing space 11. The top plate part 13 covers the upper part of the processing space 11. The bottom plate part 14 covers the lower part of the processing space 11. The substrate holding unit 20, the rotation mechanism 30, the processing liquid supply unit 40, and the processing liquid collection unit 50 are accommodated in the chamber 10. A part of the side wall 12 is provided with a loading / unloading port and a shutter for opening and closing the loading / unloading port (both not shown). At the loading / unloading port, the substrate W is loaded into the chamber 10 and the substrate W is unloaded from the chamber 10.
 図3に示すように、チャンバ10の天板部13には、ファンフィルタユニット(FFU)15が設けられている。ファンフィルタユニット15は、HEPAフィルタ等の集塵フィルタと、気流を発生させるファンとを有する。ファンフィルタユニット15を動作させると、基板処理装置100が設置されるクリーンルーム内の空気が、ファンフィルタユニット15に取り込まれ、集塵フィルタにより清浄化されて、チャンバ10内の処理空間11へ供給される。これにより、チャンバ10内の処理空間11に、清浄な空気のダウンフローが形成される。 As shown in FIG. 3, a fan filter unit (FFU) 15 is provided in the top plate portion 13 of the chamber 10. The fan filter unit 15 includes a dust collection filter such as a HEPA filter and a fan that generates an airflow. When the fan filter unit 15 is operated, the air in the clean room in which the substrate processing apparatus 100 is installed is taken into the fan filter unit 15, cleaned by the dust collection filter, and supplied to the processing space 11 in the chamber 10. The As a result, a clean air downflow is formed in the processing space 11 in the chamber 10.
 また、側壁12の下部の一部には、排気ダクト16が接続されている。ファンフィルタユニット15から供給された空気は、チャンバ10の内部においてダウンフローを形成した後、排気ダクト16を通ってチャンバ10の外部へ排出される。 Further, an exhaust duct 16 is connected to a part of the lower portion of the side wall 12. The air supplied from the fan filter unit 15 forms a downflow inside the chamber 10, and then is discharged to the outside of the chamber 10 through the exhaust duct 16.
 基板保持部20は、チャンバ10の内部において、基板Wを水平に(法線が鉛直方向を向く姿勢で)保持する機構である。基板保持部20は、円板状のスピンベース21と、複数のチャックピン22とを有する。複数のチャックピン22は、スピンベース21の上面の外周部に沿って、等角度間隔で設けられている。基板Wは、パターンが形成される被処理面を上側に向けた状態で、複数のチャックピン22に保持される。各チャックピン22は、基板Wの周縁部の下面および外周端面に接触し、スピンベース21の上面から僅かな空隙を介して上方の位置に、基板Wを支持する。 The substrate holding unit 20 is a mechanism that holds the substrate W horizontally (in a posture in which the normal line is directed in the vertical direction) inside the chamber 10. The substrate holding unit 20 includes a disk-shaped spin base 21 and a plurality of chuck pins 22. The plurality of chuck pins 22 are provided at equiangular intervals along the outer peripheral portion of the upper surface of the spin base 21. The substrate W is held by the plurality of chuck pins 22 with the processing surface on which the pattern is formed facing upward. Each chuck pin 22 contacts the lower surface and the outer peripheral end surface of the peripheral portion of the substrate W, and supports the substrate W at a position above the upper surface of the spin base 21 through a slight gap.
 スピンベース21の内部には、複数のチャックピン22の位置を切り替えるためのチャックピン切替機構23が設けられている。チャックピン切替機構23は、複数のチャックピン22を、基板Wを保持する保持位置と、基板Wの保持を解除する解除位置と、の間で切り替える。 A chuck pin switching mechanism 23 for switching the positions of the plurality of chuck pins 22 is provided inside the spin base 21. The chuck pin switching mechanism 23 switches the plurality of chuck pins 22 between a holding position for holding the substrate W and a release position for releasing the holding of the substrate W.
 回転機構30は、基板保持部20を回転させるための機構である。回転機構30は、スピンベース21の下方に設けられたモータカバー31の内部に収容されている。図3中に破線で示したように、回転機構30は、スピンモータ32と支持軸33とを有する。支持軸33は、鉛直方向に延び、その下端部がスピンモータ32に接続されるとともに、上端部がスピンベース21の下面の中央に固定される。スピンモータ32を駆動させると、支持軸33がその軸芯330を中心として回転する。そして、支持軸33とともに、基板保持部20および基板保持部20に保持された基板Wも、軸芯330を中心として回転する。 The rotation mechanism 30 is a mechanism for rotating the substrate holding unit 20. The rotation mechanism 30 is accommodated in a motor cover 31 provided below the spin base 21. As indicated by a broken line in FIG. 3, the rotation mechanism 30 includes a spin motor 32 and a support shaft 33. The support shaft 33 extends in the vertical direction, a lower end portion thereof is connected to the spin motor 32, and an upper end portion is fixed to the center of the lower surface of the spin base 21. When the spin motor 32 is driven, the support shaft 33 rotates about its axis 330. In addition to the support shaft 33, the substrate holding unit 20 and the substrate W held by the substrate holding unit 20 also rotate about the axis 330.
 処理液供給部40は、基板保持部20に保持された基板Wの上面に、処理液を供給する機構である。処理液供給部40は、3本の処理液吐出配管41を有する。3本の処理液吐出配管41は、それぞれ、処理液が流通する流路を内部に有する。処理液吐出配管41は、例えば、PTFE(ポリテトラフルオロエチレン)またはPFA(パーフルオロアルコキシアルカン)などのフッ素樹脂から形成される。なお、処理液吐出配管41の数は、3本に限定されるものではなく、1本、2本、または4本以上であってもよい。 The processing liquid supply unit 40 is a mechanism that supplies the processing liquid to the upper surface of the substrate W held by the substrate holding unit 20. The processing liquid supply unit 40 includes three processing liquid discharge pipes 41. Each of the three processing liquid discharge pipes 41 has a flow path through which the processing liquid flows. The treatment liquid discharge pipe 41 is made of, for example, a fluororesin such as PTFE (polytetrafluoroethylene) or PFA (perfluoroalkoxyalkane). Note that the number of the treatment liquid discharge pipes 41 is not limited to three, and may be one, two, or four or more.
 処理液吐出配管41の一端は、図2に示すように、モータ42に支持されている。処理液吐出配管41は、モータ42に支持された側の端部を基端部として、その基端部から水平方向に延びるとともに、その先端部が鉛直方向下向きに屈曲する。すなわち、本実施形態の処理液吐出配管41は、L字状の外形を有する。処理液吐出配管41の、鉛直方向下向きに屈曲した部分の下端部には、吐出口41Aが設けられる。 One end of the treatment liquid discharge pipe 41 is supported by a motor 42 as shown in FIG. The treatment liquid discharge pipe 41 has an end portion on the side supported by the motor 42 as a base end portion, extends from the base end portion in the horizontal direction, and the tip end portion is bent downward in the vertical direction. That is, the processing liquid discharge pipe 41 of the present embodiment has an L-shaped outer shape. A discharge port 41 </ b> A is provided at the lower end portion of the treatment liquid discharge pipe 41 that is bent downward in the vertical direction.
 処理液吐出配管41は、モータ42の駆動により、図2中の矢印のように、モータ42を中心として、水平方向に個別に回動する。これにより、処理液吐出配管41の吐出口41Aは、基板保持部20に保持された基板Wの上方の処理位置と、処理液捕集部50よりも外側の退避位置との間で、移動する。処理液の供給時には、吐出口41Aが基板Wの上方の処理位置に配置される。そして、処理液吐出配管41の流路を流通した処理液が、吐出口41Aから基板Wの上面に吐出される。処理液吐出配管41の具体的な構成は、後に詳述する。 The treatment liquid discharge pipe 41 is individually rotated in the horizontal direction around the motor 42 as shown by an arrow in FIG. Accordingly, the discharge port 41 </ b> A of the processing liquid discharge pipe 41 moves between the processing position above the substrate W held by the substrate holding unit 20 and the retreat position outside the processing liquid collecting unit 50. . At the time of supplying the processing liquid, the discharge port 41A is arranged at a processing position above the substrate W. Then, the processing liquid flowing through the flow path of the processing liquid discharge pipe 41 is discharged onto the upper surface of the substrate W from the discharge port 41A. The specific configuration of the processing liquid discharge pipe 41 will be described in detail later.
 各処理液吐出配管41には、処理液を供給するための給液部が個別に接続されている。図4は、処理液吐出配管41に接続される給液部45の一例を示した図である。図4では、処理液として、硫酸(HSO)と、過酸化水素水(H)との混合液であるSPM洗浄液を供給する場合の例を示している。 A liquid supply unit for supplying a processing liquid is individually connected to each processing liquid discharge pipe 41. FIG. 4 is a diagram illustrating an example of the liquid supply unit 45 connected to the processing liquid discharge pipe 41. FIG. 4 shows an example in which an SPM cleaning liquid that is a mixed liquid of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide water (H 2 O 2 ) is supplied as the processing liquid.
 給液部45は、硫酸供給源451と、過酸化水素水供給源452とを有する。硫酸供給源451に接続される流路途中には、第1バルブ453が設けられている。また、過酸化水素水供給源452に接続される流路途中には、第2バルブ454が設けられている。硫酸供給源451および過酸化水素水供給源452のそれぞれに接続された流路は、下流側で合流し、処理液吐出配管41に接続されている。 The liquid supply unit 45 includes a sulfuric acid supply source 451 and a hydrogen peroxide solution supply source 452. A first valve 453 is provided in the middle of the flow path connected to the sulfuric acid supply source 451. A second valve 454 is provided in the middle of the flow path connected to the hydrogen peroxide solution supply source 452. The flow paths connected to each of the sulfuric acid supply source 451 and the hydrogen peroxide solution supply source 452 merge on the downstream side and are connected to the processing liquid discharge pipe 41.
 吐出口41Aを処理位置に配置した状態で、第1バルブ453および第2バルブ454を開放すると、硫酸供給源451から硫酸が排出されるとともに、過酸化水素水供給源452から過酸化水素水が排出される。排出された硫酸と過酸化水素水とが、合流して、SPM洗浄液となって、処理液吐出配管41に供給される。そして、そのSPM洗浄液が、処理液吐出配管41の吐出口41Aから、基板保持部20に保持された基板Wの上面に向けて吐出される。 When the first valve 453 and the second valve 454 are opened with the discharge port 41A disposed at the processing position, sulfuric acid is discharged from the sulfuric acid supply source 451 and hydrogen peroxide solution is supplied from the hydrogen peroxide solution supply source 452. Discharged. The discharged sulfuric acid and the hydrogen peroxide solution merge to form an SPM cleaning liquid, which is supplied to the processing liquid discharge pipe 41. Then, the SPM cleaning liquid is discharged from the discharge port 41 </ b> A of the processing liquid discharge pipe 41 toward the upper surface of the substrate W held by the substrate holding unit 20.
 なお、3本の処理液吐出配管41はそれぞれ、互いに異なる処理液を吐出する。処理液の例としては、上述したSPM洗浄液の他に、SC1洗浄液(アンモニア水、過酸化水素水、純水の混合液)、SC2洗浄液(塩酸、過酸化水素水、純水の混合液)、DHF洗浄液(希フッ酸)、純水(脱イオン水)などを挙げることができる。 Note that the three processing liquid discharge pipes 41 discharge different processing liquids, respectively. Examples of treatment liquid include SC1 cleaning liquid (mixed liquid of ammonia water, hydrogen peroxide water, and pure water), SC2 cleaning liquid (mixed liquid of hydrochloric acid, hydrogen peroxide solution, and pure water), in addition to the above-described SPM cleaning liquid, Examples thereof include DHF cleaning liquid (dilute hydrofluoric acid) and pure water (deionized water).
 また、処理液吐出配管41には、サックバック配管43が設けられる。サックバック配管43は、本発明の「引き戻し機構」の一例である。サックバック配管43は、鉛直方向に延びる配管である。サックバック配管43の上端部は、処理液吐出配管41の水平方向に延びる部位に接続される。これにより、処理液吐出配管41の水平方向に延びる流路は分岐される。また、サックバック配管43の下端部の高さは、吐出口41Aの高さよりも低い。 Further, the processing liquid discharge pipe 41 is provided with a suck back pipe 43. The suck-back pipe 43 is an example of the “retraction mechanism” in the present invention. The suck back pipe 43 is a pipe extending in the vertical direction. The upper end portion of the suck back pipe 43 is connected to a portion of the processing liquid discharge pipe 41 that extends in the horizontal direction. Thereby, the flow path extending in the horizontal direction of the processing liquid discharge pipe 41 is branched. Further, the height of the lower end portion of the suck back pipe 43 is lower than the height of the discharge port 41A.
 第1バルブ453および第2バルブ454が閉鎖され、給液部45から処理液吐出配管41への処理液の供給が停止されると、吐出口41Aからの処理液の吐出が停止する。このとき、処理液吐出配管41の流路44内に残る処理液は、サイフォンの原理によって、サックバック配管43の流路へ流れ込む。つまり、サックバック配管43の下端部の高さは、吐出口41Aの高さよりも低いため、サックバック配管43の接続箇所より下流側の流路44内に残る処理液は、サックバック配管43へ向けて引き戻される。これにより、吐出口41Aからの処理液の滴下が抑制される。 When the first valve 453 and the second valve 454 are closed and the supply of the processing liquid from the liquid supply unit 45 to the processing liquid discharge pipe 41 is stopped, the discharge of the processing liquid from the discharge port 41A is stopped. At this time, the processing liquid remaining in the flow path 44 of the processing liquid discharge pipe 41 flows into the flow path of the suck back pipe 43 by the siphon principle. That is, since the height of the lower end portion of the suck back pipe 43 is lower than the height of the discharge port 41 </ b> A, the processing liquid remaining in the flow path 44 on the downstream side from the connection position of the suck back pipe 43 is transferred to the suck back pipe 43. It is pulled back towards. Thereby, dripping of the processing liquid from the discharge port 41A is suppressed.
 処理液捕集部50は、使用後の処理液を捕集する部位である。図3に示すように、処理液捕集部50は、内カップ51、中カップ52、および外カップ53を有する。内カップ51、中カップ52、および外カップ53は、昇降機構500(図5参照)により、互いに独立して昇降移動することが可能である。 The treatment liquid collection unit 50 is a part for collecting the treatment liquid after use. As shown in FIG. 3, the processing liquid collecting unit 50 includes an inner cup 51, an inner cup 52, and an outer cup 53. The inner cup 51, the middle cup 52, and the outer cup 53 can be moved up and down independently of each other by a lifting mechanism 500 (see FIG. 5).
 内カップ51は、基板保持部20の周囲を包囲する円環状の第1案内板510を有する。中カップ52は、第1案内板510の外側かつ上側に位置する円環状の第2案内板520を有する。外カップ53は、第2案内板520の外側かつ上側に位置する円環状の第3案内板530を有する。また、内カップ51の底部は、中カップ52および外カップ53の下方まで広がっている。そして、当該底部の上面には、内側から順に、第1排液溝511、第2排液溝512、および第3排液溝513が設けられている。 The inner cup 51 has an annular first guide plate 510 that surrounds the periphery of the substrate holding unit 20. The middle cup 52 has an annular second guide plate 520 located outside and above the first guide plate 510. The outer cup 53 has an annular third guide plate 530 located outside and above the second guide plate 520. Further, the bottom of the inner cup 51 extends to below the middle cup 52 and the outer cup 53. A first drainage groove 511, a second drainage groove 512, and a third drainage groove 513 are provided on the top surface of the bottom portion in order from the inside.
 処理液供給部40の各処理液吐出配管41から吐出された処理液は、基板Wに供給された後、基板Wの回転による遠心力で、外側へ飛散する。そして、基板Wから飛散した処理液は、第1案内板510、第2案内板520、および第3案内板530のいずれかに捕集される。第1案内板510に捕集された処理液は、第1排液溝511を通って、処理ユニット102の外部へ排出される。第2案内板520に捕集された処理液は、第2排液溝512を通って、処理ユニット102の外部へ排出される。第3案内板530に捕集された処理液は、第3排液溝513を通って、処理ユニット102の外部へ排出される。 After the processing liquid discharged from the processing liquid discharge pipes 41 of the processing liquid supply unit 40 is supplied to the substrate W, it is scattered to the outside by the centrifugal force generated by the rotation of the substrate W. Then, the processing liquid scattered from the substrate W is collected by any of the first guide plate 510, the second guide plate 520, and the third guide plate 530. The processing liquid collected by the first guide plate 510 passes through the first drain groove 511 and is discharged to the outside of the processing unit 102. The processing liquid collected by the second guide plate 520 passes through the second drain groove 512 and is discharged to the outside of the processing unit 102. The processing liquid collected by the third guide plate 530 is discharged to the outside of the processing unit 102 through the third drain groove 513.
 このように、この処理ユニット102は、処理液の排出経路を複数有する。このため、基板に供給された処理液を、種類毎に分別して回収できる。したがって、回収された処理液の廃棄や再生処理も、各処理液の性質に応じて別々に行うことができる。 Thus, the processing unit 102 has a plurality of processing liquid discharge paths. For this reason, the processing liquid supplied to the substrate can be collected separately for each type. Therefore, disposal and recovery processing of the collected processing liquid can be performed separately according to the properties of each processing liquid.
 制御部60は、処理ユニット102内の各部を動作制御するための部位である。図5は、制御部60と、処理ユニット102内の各部との接続を示したブロック図である。図5中に概念的に示したように、制御部60は、CPU等のプロセッサ61、RAM等のメモリ62、およびハードディスクドライブ等の記憶部63を有するコンピュータにより構成される。記憶部63内には、処理ユニット102における基板Wの処理を実行するためのコンピュータプログラムPが、インストールされている。 The control unit 60 is a part for controlling the operation of each unit in the processing unit 102. FIG. 5 is a block diagram showing connections between the control unit 60 and each unit in the processing unit 102. As conceptually shown in FIG. 5, the control unit 60 is configured by a computer having a processor 61 such as a CPU, a memory 62 such as a RAM, and a storage unit 63 such as a hard disk drive. A computer program P for executing the processing of the substrate W in the processing unit 102 is installed in the storage unit 63.
 また、図5に示すように、制御部60は、上述したファンフィルタユニット15、チャックピン切替機構23、スピンモータ32、3つのモータ42、処理液供給部40のバルブ453,454、および処理液捕集部50の昇降機構と、それぞれ通信可能に接続されている。制御部60は、記憶部63に記憶されたコンピュータプログラムPおよびデータをメモリ62に一時的に読み出し、当該コンピュータプログラムPに基づいて、プロセッサ61が演算処理を行うことにより、上記の各部を動作制御する。これにより、処理ユニット102における基板Wの処理が進行する。 As shown in FIG. 5, the control unit 60 includes the fan filter unit 15, the chuck pin switching mechanism 23, the spin motor 32, the three motors 42, the valves 453 and 454 of the processing liquid supply unit 40, and the processing liquid. The lifting mechanism of the collection unit 50 is connected to be able to communicate with each other. The control unit 60 temporarily reads the computer program P and data stored in the storage unit 63 into the memory 62, and the processor 61 performs arithmetic processing based on the computer program P, thereby controlling the operation of each unit described above. To do. Thereby, the processing of the substrate W in the processing unit 102 proceeds.
 <3.処理液吐出配管41の構成>
 次に、処理液吐出配管41の具体的構成について説明する。図6は、処理液吐出配管41の部分断面図である。
<3. Configuration of Treatment Liquid Discharge Piping 41>
Next, a specific configuration of the processing liquid discharge pipe 41 will be described. FIG. 6 is a partial cross-sectional view of the processing liquid discharge pipe 41.
 図6に示すように、処理液吐出配管41は、第1配管部411と、第2配管部412と、第3配管部413とを有する。第1配管部411は、水平方向に延びる部位である。第1配管部411の上流側の端部は、上述した給液部45に接続される。第2配管部412は、略L字状の処理液吐出配管41の屈曲箇所に位置する部位である。第2配管部412の上流側の端部は、第1配管部411の下流側の端部に接続される。第2配管部412の下流側の端部は、第2配管部412の上流側の端部よりも下方に位置する。また、第2配管部412は、上流側の端部から下流側の端部へ向けて、湾曲しつつ延びる。第3配管部413は、鉛直方向に延びる部位である。第3配管部413の上流側の端部は、第2配管部412の下流側の端部に接続される。第3配管部413の下流側の端部は、第3配管部413の上流側の端部よりも下方に位置する。第3配管部413の下端部には、上記の吐出口41Aが設けられる。 As shown in FIG. 6, the treatment liquid discharge pipe 41 includes a first pipe part 411, a second pipe part 412, and a third pipe part 413. The 1st piping part 411 is a site | part extended in a horizontal direction. The upstream end of the first piping part 411 is connected to the liquid supply part 45 described above. The second piping portion 412 is a portion located at a bent portion of the substantially L-shaped processing liquid discharge piping 41. The upstream end of the second piping part 412 is connected to the downstream end of the first piping part 411. The downstream end of the second piping part 412 is positioned below the upstream end of the second piping part 412. Further, the second piping portion 412 extends while being curved from the upstream end portion toward the downstream end portion. The 3rd piping part 413 is a site | part extended in a perpendicular direction. The upstream end of the third piping part 413 is connected to the downstream end of the second piping part 412. The downstream end of the third piping part 413 is positioned below the upstream end of the third piping part 413. The discharge port 41 </ b> A is provided at the lower end of the third piping portion 413.
 なお、第1配管部411、第2配管部412および第3配管部413は、一部品であってもよいし、異なる部品であってもよい。 In addition, the 1st piping part 411, the 2nd piping part 412, and the 3rd piping part 413 may be one component, and may be a different component.
 処理液吐出配管41は、処理液が流通する流路44を内部に有する。流路44は、上流側から順に、第1配管流路441と、第2配管流路442と、第3配管流路443とを有する。 The processing liquid discharge pipe 41 has a flow path 44 through which the processing liquid flows. The channel 44 includes a first piping channel 441, a second piping channel 442, and a third piping channel 443 in order from the upstream side.
 第1配管流路441は、第1配管部411の内部に形成され、水平方向に延びる直線流路である。上記のサックバック配管43は、第1配管部411に接続される。すなわち、サックバック配管43は、第1配管部411から分岐する。第1配管流路441の壁面、つまり、第1配管部411の内壁面411Aは、疎水性である。具体的には、第1配管部411の内壁面411Aは、後述する第2配管流路442の内壁面412Aよりも、平滑な面となっている。第1配管流路441は、本発明の「第2流路」の一例である。 The first piping channel 441 is a straight channel formed in the first piping part 411 and extending in the horizontal direction. The suck back pipe 43 is connected to the first pipe part 411. That is, the suck back pipe 43 branches from the first pipe part 411. The wall surface of the first piping channel 441, that is, the inner wall surface 411A of the first piping part 411 is hydrophobic. Specifically, the inner wall surface 411A of the first piping part 411 is a smoother surface than the inner wall surface 412A of the second piping channel 442 described later. The first piping channel 441 is an example of the “second channel” in the present invention.
 第2配管流路442は、第2配管部412の内部に形成され、鉛直方向に対して傾斜した流路である。第2配管流路442は、第1配管流路441の下流側に隣接して位置する。第2配管流路442の上流側の端部の位置は、第2配管流路442の下流側の端部の位置よりも高い。第2配管流路442の壁面、つまり、第2配管部412の内壁面412Aは、親水性である。具体的には、第2配管流路442の内壁面412Aは、上述した第1配管部411の内壁面411Aおよび後述する第3配管部413の内壁面413Aよりも、粗い面となっている。また、第2配管流路442の内壁面412Aは、処理液吐出配管41の外壁面よりも、粗い面となっている。第2配管流路442は、本発明の「親水性流路」の一例である。 The second piping channel 442 is a channel formed inside the second piping part 412 and inclined with respect to the vertical direction. The second piping channel 442 is located adjacent to the downstream side of the first piping channel 441. The position of the upstream end of the second piping channel 442 is higher than the position of the downstream end of the second piping channel 442. The wall surface of the second piping channel 442, that is, the inner wall surface 412A of the second piping part 412 is hydrophilic. Specifically, the inner wall surface 412A of the second piping channel 442 is rougher than the inner wall surface 411A of the first piping part 411 and the inner wall surface 413A of the third piping part 413 described later. Further, the inner wall surface 412 </ b> A of the second pipe flow path 442 is rougher than the outer wall surface of the processing liquid discharge pipe 41. The second piping channel 442 is an example of the “hydrophilic channel” in the present invention.
 第3配管流路443は、第3配管部413の内部に形成され、鉛直方向に延びる直線流路である。第3配管流路443は、第2配管流路442の下流側に隣接して位置する。第3配管流路443の下端は、吐出口41Aである。第3配管流路443の壁面、つまり、第3配管部413の内壁面413Aは、疎水性である。具体的には、第3配管部413の内壁面413Aは、上述した第2配管流路442の内壁面412Aよりも、平滑な面となっている。第3配管流路443は、本発明の「第1流路」の一例である。 The third piping channel 443 is a straight channel formed in the third piping part 413 and extending in the vertical direction. The third piping channel 443 is located adjacent to the downstream side of the second piping channel 442. The lower end of the third piping channel 443 is the discharge port 41A. The wall surface of the third piping channel 443, that is, the inner wall surface 413A of the third piping part 413 is hydrophobic. Specifically, the inner wall surface 413A of the third piping part 413 is a smoother surface than the inner wall surface 412A of the second piping channel 442 described above. The third piping channel 443 is an example of the “first channel” in the present invention.
 第2配管流路442の壁面を親水性にする方法としては、例えば、フッ素樹脂製の処理液吐出配管41を、塩酸(塩化水素(HCL)水溶液)に浸漬させる方法が挙げられる。塩酸に浸漬させる際、第1配管部411~第3配管部413のうち、第2配管部412内のみを水で満たす。その状態で、処理液吐出配管41を塩酸に浸漬させると、塩酸中に溶解していた塩酸ガスが、第2配管部412内に浸透する。そうすると、水に接液している第2配管部412の内壁面412Aの表面に対して、浸透した塩素ガスが作用する。その結果、第2配管部412の内壁面412Aが粗面化される。これに対し、水が満たされていない第1配管部411内および第3配管部413内には、塩酸ガスが溜まるだけで、内壁面411Aおよび内壁面413Aは、粗面化されない。 Examples of a method for making the wall surface of the second piping channel 442 hydrophilic include a method of immersing the treatment liquid discharge piping 41 made of fluororesin in hydrochloric acid (hydrogen chloride (HCL) aqueous solution). When immersed in hydrochloric acid, only the second piping portion 412 of the first piping portion 411 to the third piping portion 413 is filled with water. In this state, when the treatment liquid discharge pipe 41 is immersed in hydrochloric acid, the hydrochloric acid gas dissolved in the hydrochloric acid permeates into the second pipe portion 412. Then, the permeated chlorine gas acts on the surface of the inner wall surface 412A of the second piping part 412 in contact with water. As a result, the inner wall surface 412A of the second piping part 412 is roughened. On the other hand, only the hydrochloric acid gas is accumulated in the first piping portion 411 and the third piping portion 413 that are not filled with water, and the inner wall surface 411A and the inner wall surface 413A are not roughened.
 つまり、第2配管部412の内壁面412Aの表面粗さは、第1配管部411の内壁面411Aおよび第3配管部413の内壁面413Aの表面粗さよりも、粗い。第2配管部412の内壁面412Aの表面粗さは、例えば、JIS B 0601:2013(対応国際規格:ISO 4287:1997)において定義された「算術平均粗さRa」の値が、Ra=0.04~0.15であることが好ましい。 That is, the surface roughness of the inner wall surface 412A of the second piping part 412 is rougher than the surface roughness of the inner wall surface 411A of the first piping part 411 and the inner wall surface 413A of the third piping part 413. The surface roughness of the inner wall surface 412A of the second piping part 412 is, for example, the value of “arithmetic average roughness Ra” defined in JIS B 0601: 2013 (corresponding international standard: ISO 4287: 1997), Ra = 0 It is preferably 0.04 to 0.15.
 第1配管流路441の壁面が疎水性であるため、第1配管流路441における処理液の流路抵抗は低い。このため、給液部45からの処理液の供給時に、第1配管流路441において、処理液の流通は妨げられにくい。 Since the wall surface of the first piping channel 441 is hydrophobic, the flow resistance of the processing liquid in the first piping channel 441 is low. For this reason, when the processing liquid is supplied from the liquid supply unit 45, the flow of the processing liquid is hardly hindered in the first piping flow path 441.
 また、第3配管流路443の壁面が疎水性であるため、第3配管流路443内の処理液は、第3配管流路443の壁面で保持されることなく、吐出口41Aから滴下しやすい。また、給液部45からの処理液の供給が停止されると、第3配管流路443内の処理液は、サックバック配管43により、上流側に引き戻される。このため、第3配管流路443内に処理液は残存しにくい。その結果、第3配管流路443内に処理液が残存し、その残存した処理液が、意図せぬときに滴下することを防止できる。また、吐出口41A付近に残存した処理液が、空気との接触によって乾燥することを防止できる。 Further, since the wall surface of the third piping channel 443 is hydrophobic, the processing liquid in the third piping channel 443 is dropped from the discharge port 41A without being held by the wall surface of the third piping channel 443. Cheap. Further, when the supply of the processing liquid from the liquid supply unit 45 is stopped, the processing liquid in the third pipe flow path 443 is drawn back to the upstream side by the suck back pipe 43. For this reason, the processing liquid is unlikely to remain in the third piping channel 443. As a result, the processing liquid remains in the third piping flow path 443, and the remaining processing liquid can be prevented from dripping when not intended. Further, it is possible to prevent the processing liquid remaining in the vicinity of the discharge port 41A from being dried by contact with air.
 また、第2配管流路442の壁面が親水性であるため、第2配管流路442内に残存した処理液は、第2配管流路442の壁面に保持されやすい。このため、第2配管流路442に残存する処理液は、第3配管流路443へ流下しにくい。特に、第2配管流路442は、鉛直方向に対して傾斜している。流路の壁面で保持される処理液は、当該処理液にかかる自重によって、下流側へと流下しようとする。流路内における処理液の流下しやすさは、その流路が傾斜している場合の方が、流路が傾斜していない場合よりも大きい。第2配管流路442の壁面で保持される処理液が流下すると、吐出口41Aから処理液が滴下してしまう。しかしながら、この処理液吐出配管41では、傾斜している第2配管流路442の壁面を親水性として、処理液の保持力を大きくしている。これにより、自重による処理液の滴下を抑制できる。 Further, since the wall surface of the second piping channel 442 is hydrophilic, the treatment liquid remaining in the second piping channel 442 is easily held on the wall surface of the second piping channel 442. For this reason, the processing liquid remaining in the second piping channel 442 is unlikely to flow down to the third piping channel 443. In particular, the second piping channel 442 is inclined with respect to the vertical direction. The processing liquid held on the wall surface of the flow path tends to flow downstream due to its own weight applied to the processing liquid. The ease of flow of the processing liquid in the flow path is greater when the flow path is inclined than when the flow path is not inclined. When the processing liquid held on the wall surface of the second piping channel 442 flows down, the processing liquid drops from the discharge port 41A. However, in the processing liquid discharge pipe 41, the wall surface of the inclined second pipe flow path 442 is made hydrophilic to increase the holding power of the processing liquid. Thereby, dripping of the process liquid by dead weight can be suppressed.
 <4.基板Wの処理>
 以下に、上記のように構成された基板処理装置100における、基板Wの処理の一例について説明する。以下の各処理は、制御部60が各部を制御することにより、進行する。
<4. Processing of substrate W>
Hereinafter, an example of processing of the substrate W in the substrate processing apparatus 100 configured as described above will be described. The following processes proceed as the control unit 60 controls each unit.
 主搬送ロボット103により、チャンバ10内に基板Wが搬入されると、基板保持部20は、搬入された基板Wを、複数のチャックピン22により水平に保持する。その後、回転機構30のスピンモータ32が駆動されると、基板Wの回転が開始される。続いて、モータ42が駆動され、処理液供給部40の第3配管部413が、基板Wの上面に対向する処理位置へ移動される。そして、図4の第1バルブ453および第2バルブ454が開放され、第3配管部413から基板Wの上面に向けて、硫酸と過酸化水素水との混合液であるSPM洗浄液が吐出される。SPM洗浄液の温度は、例えば、150℃~200℃とされる。 When the substrate W is loaded into the chamber 10 by the main transfer robot 103, the substrate holding unit 20 holds the loaded substrate W horizontally by the plurality of chuck pins 22. Thereafter, when the spin motor 32 of the rotation mechanism 30 is driven, the rotation of the substrate W is started. Subsequently, the motor 42 is driven, and the third piping unit 413 of the processing liquid supply unit 40 is moved to a processing position facing the upper surface of the substrate W. Then, the first valve 453 and the second valve 454 in FIG. 4 are opened, and the SPM cleaning liquid that is a mixed liquid of sulfuric acid and hydrogen peroxide solution is discharged from the third piping portion 413 toward the upper surface of the substrate W. . The temperature of the SPM cleaning liquid is, for example, 150 ° C. to 200 ° C.
 所定時間のSPM洗浄液を吐出した後、第1バルブ453のみが閉鎖され、硫酸の供給が停止される。これにより、第3配管部413から過酸化水素水のみを吐出する、いわゆる「過水押し出し処理」が行われる。この過水押し出し処理は、流路内に残留する硫酸成分を洗い流して、処理液の供給を停止した後の第3配管部413からの硫酸の意図せぬ滴下を防止することを目的として行われる。その後、所定時間が経過すると、第2バルブ454も閉鎖され、過酸化水素水の吐出が停止される。 After discharging the SPM cleaning liquid for a predetermined time, only the first valve 453 is closed and the supply of sulfuric acid is stopped. As a result, a so-called “overwater extrusion process” in which only the hydrogen peroxide solution is discharged from the third piping part 413 is performed. This overwater extrusion treatment is performed for the purpose of preventing unintentional dripping of sulfuric acid from the third piping part 413 after washing away the sulfuric acid component remaining in the flow path and stopping the supply of the treatment liquid. . Thereafter, when a predetermined time has elapsed, the second valve 454 is also closed, and the discharge of the hydrogen peroxide solution is stopped.
 基板Wへの種々の処理液の供給が完了した後、基板Wの表面を乾燥させる。基板Wの乾燥処理が終了すると、複数のチャックピン22による基板Wの保持が解除される。その後、主搬送ロボット103により、処理後の基板Wが、基板保持部20から取り出され、チャンバ10の外部へ搬出される。 After the supply of various processing liquids to the substrate W is completed, the surface of the substrate W is dried. When the drying process of the substrate W is completed, the holding of the substrate W by the plurality of chuck pins 22 is released. Thereafter, the processed substrate W is taken out of the substrate holding unit 20 by the main transfer robot 103 and carried out of the chamber 10.
 上述の通り、処理液吐出配管41の傾斜した第2配管流路442の壁面を親水性とすることで、第2配管流路442の壁面での処理液の保持力を高めることができる。そして、第2配管流路442の壁面で保持された処理液が、自重によって滴下することを防止できる。その結果、基板Wの表面を、精度よく処理できる。特に、本例で示したSPM洗浄液は、比較的(例えば純水よりも)比重が高く、かつ、比較的(例えば純水よりも)表面張力が低い。このような、高比重かつ低表面張力の薬液は、自重による滴下が極めて生じやすい。しかしながら、この基板処理装置100では、第2配管流路442の壁面を親水性とすることで、このような薬液の自重による滴下を防止できる。 As described above, by making the wall surface of the inclined second pipe flow path 442 of the treatment liquid discharge pipe 41 hydrophilic, it is possible to increase the holding power of the process liquid on the wall face of the second pipe flow path 442. And the process liquid hold | maintained at the wall surface of the 2nd piping flow path 442 can prevent dripping with dead weight. As a result, the surface of the substrate W can be processed with high accuracy. In particular, the SPM cleaning liquid shown in this example has a relatively high specific gravity (for example, than pure water) and a relatively low surface tension (for example, than pure water). Such a high specific gravity and low surface tension chemical solution is very likely to be dripped by its own weight. However, in the substrate processing apparatus 100, such a dripping due to the weight of the chemical solution can be prevented by making the wall surface of the second piping channel 442 hydrophilic.
 <5.変形例>
 以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
<5. Modification>
As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment.
 壁面を親水性にする流路は、上記の実施形態の第2配管流路442に限定されない。壁面を親水性にする流路は、少なくとも、吐出口41Aよりも上流側であって、鉛直方向に対して傾斜し、上流側の端部が下流側の端部よりも高い位置にある流路であればよい。 The channel that makes the wall surface hydrophilic is not limited to the second piping channel 442 of the above-described embodiment. The flow path that makes the wall surface hydrophilic is at least upstream from the discharge port 41A, is inclined with respect to the vertical direction, and the upstream end is higher than the downstream end. If it is.
 図7は、変形例の処理液吐出配管46の部分断面図である。 FIG. 7 is a partial cross-sectional view of a treatment liquid discharge pipe 46 of a modified example.
 図7の処理液吐出配管46は、第1配管部461と、第2配管部462と、第3配管部463とを有する。第1配管部461は、水平方向に延びる部位である。第2配管部462は、第1配管部461の下流側に位置し、鉛直方向に対して傾斜した直線状の部位である。第2配管部462の上流側の端部は、第1配管部461の下流側の端部に接続される。第2配管部462の下流側の端部は、第2配管部462の上流側の端部よりも、下方に位置する。第3配管部463は、第2配管部462の下流側に位置し、水平方向に延びる部位である。第3配管部463の上流側の端部は、第2配管部462の下流側の端部に接続される。第3配管部463の下流側の端部には、吐出口46Aが設けられる。第3配管部463は、本発明の「第1直線流路」の一例である。 7 has a first piping portion 461, a second piping portion 462, and a third piping portion 463. The first piping part 461 is a part extending in the horizontal direction. The 2nd piping part 462 is located in the downstream of the 1st piping part 461, and is a linear part inclined with respect to the perpendicular direction. The upstream end of the second piping part 462 is connected to the downstream end of the first piping part 461. The downstream end of the second piping part 462 is positioned below the upstream end of the second piping part 462. The 3rd piping part 463 is located in the downstream of the 2nd piping part 462, and is a site | part extended in a horizontal direction. The upstream end portion of the third piping portion 463 is connected to the downstream end portion of the second piping portion 462. A discharge port 46 </ b> A is provided at the downstream end of the third piping portion 463. The third piping portion 463 is an example of the “first straight flow path” in the present invention.
 処理液吐出配管46は、内部に処理液が流通する流路47を有する。流路47は、第1配管流路471と、第2配管流路472と、第3配管流路473とを有する。 The processing liquid discharge pipe 46 has a flow path 47 through which the processing liquid flows. The channel 47 includes a first piping channel 471, a second piping channel 472, and a third piping channel 473.
 第1配管流路471は、第1配管部461の内部に形成され、水平方向に延びる直線流路である。図4で説明したサックバック配管43は、第1配管部461に接続される。第1配管流路471の壁面、つまり、第1配管部461の内壁面461Aは、疎水性である。 The first piping channel 471 is a straight channel formed in the first piping part 461 and extending in the horizontal direction. The suck back pipe 43 described with reference to FIG. 4 is connected to the first pipe section 461. The wall surface of the first piping channel 471, that is, the inner wall surface 461A of the first piping part 461 is hydrophobic.
 第2配管流路472は、第2配管部462の内部に形成され、鉛直方向に対して傾斜した流路である。第2配管流路472は、第1配管流路471の下流側に位置する。第2配管流路472の上流側の端部の位置は、第2配管流路442の下流側の端部の位置よりも高い。第2配管流路472の壁面、つまり、第2配管部462の内壁面462Aは、親水性である。第2配管流路472の壁面は、上記の実施形態と同様、第2配管流路472内に水を満たした状態で、処理液吐出配管46を塩酸に浸漬することで、親水性にされる。第2配管流路472は、本発明の「親水性流路」の一例である。 The second piping channel 472 is formed inside the second piping unit 462 and is a channel inclined with respect to the vertical direction. The second piping channel 472 is located on the downstream side of the first piping channel 471. The position of the upstream end of the second piping channel 472 is higher than the position of the downstream end of the second piping channel 442. The wall surface of the second piping channel 472, that is, the inner wall surface 462A of the second piping part 462 is hydrophilic. The wall surface of the second piping channel 472 is made hydrophilic by immersing the treatment liquid discharge piping 46 in hydrochloric acid in a state where the second piping channel 472 is filled with water, as in the above embodiment. . The second piping channel 472 is an example of the “hydrophilic channel” in the present invention.
 第3配管流路473は、第3配管部463の内部に形成され、水平方向に延びる直線流路である。第3配管流路473は、第2配管流路472の下流側に位置する。第3配管流路473の壁面、つまり、第3配管部463の内壁面463Aは、疎水性である。 The third piping channel 473 is a straight channel formed inside the third piping part 463 and extending in the horizontal direction. The third piping channel 473 is located on the downstream side of the second piping channel 472. The wall surface of the third piping channel 473, that is, the inner wall surface 463A of the third piping portion 463 is hydrophobic.
 この構成の処理液吐出配管46においても、上記実施形態の処理液吐出配管41と同様、傾斜した第2配管流路472の壁面で処理液が保持される。これにより、処理液の自重による滴下が防止される。 Also in the processing liquid discharge pipe 46 having this configuration, the processing liquid is held by the inclined wall surface of the second pipe flow path 472 as in the case of the processing liquid discharge pipe 41 of the above embodiment. Thereby, dripping by the dead weight of a processing liquid is prevented.
 なお、上記の実施形態、および、図7の変形例においては、傾斜した第2配管流路462の壁面全体を親水性としているが、傾斜した第2配管流路462の壁面の少なくとも一部が親水性であればよい。この場合、第2配管流路462のうち、親水性にしたい部分の壁面内に水を封止しつつ、処理液吐出配管を塩酸に浸漬すればよい。 In the above embodiment and the modified example of FIG. 7, the entire wall surface of the inclined second pipe flow path 462 is hydrophilic, but at least a part of the wall surface of the inclined second pipe flow path 462 is formed. It only needs to be hydrophilic. In this case, the treatment liquid discharge pipe may be immersed in hydrochloric acid while sealing the water in the wall surface of the second pipe flow path 462 that is desired to be hydrophilic.
 また、流路の壁面を親水性にする方法は、薬液に浸漬する以外の方法であってもよい。また、流路の壁面を親水性にする方法は、粗面化以外の方法であってもよい。さらに、上記の実施形態および、図7の変形例において、第2配管流路442,472の上流に位置する第1配管流路441,471の壁面を疎水性としているが、親水性としてもよい。また、第1配管部411と、第2配管部412と、第3配管部413とを、別部品として、壁面を親水性にすべき配管のみを、塩酸に浸漬するようにしてもよい。 Further, the method of making the wall surface of the flow path hydrophilic may be a method other than dipping in a chemical solution. Further, the method for making the wall surface of the flow path hydrophilic may be a method other than roughening. Furthermore, in the above-described embodiment and the modification of FIG. 7, the wall surfaces of the first piping channels 441 and 471 located upstream of the second piping channels 442 and 472 are made hydrophobic, but they may be made hydrophilic. . In addition, the first piping unit 411, the second piping unit 412, and the third piping unit 413 may be separate parts, and only the piping whose wall should be hydrophilic may be immersed in hydrochloric acid.
 さらに、上記の説明において、各配管は、定義した方向(鉛直方向または水平方向)に対し、必ずしも平行に延びていなくてもよい。例えば、図6の第3配管部413は、鉛直方向に対して、多少傾斜していてもよい。 Furthermore, in the above description, each pipe does not necessarily extend in parallel with the defined direction (vertical direction or horizontal direction). For example, the third piping part 413 in FIG. 6 may be slightly inclined with respect to the vertical direction.
 基板処理装置100の細部の構成については、本願の各図と相違していてもよい。また、上記の実施形態および変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。 The detailed configuration of the substrate processing apparatus 100 may be different from those of the present application. Moreover, you may combine suitably each element which appeared in said embodiment and modification in the range which does not produce inconsistency.
 40 処理液供給部
 41 処理液吐出配管
 41A 吐出口
 43 サックバック配管
 44 流路
 46 処理液吐出配管
 46A 吐出口
 47 流路
 61 プロセッサ
 62 メモリ
 63 記憶部
 100 基板処理装置
 411 第1配管部
 411A 内壁面
 412 第2配管部
 412A 内壁面
 413 第3配管部
 413A 内壁面
 414 モータ
 441 第1配管流路
 442 第2配管流路
 443 第3配管流路
 451 硫酸供給源
 452 過酸化水素水供給源
 453 第1バルブ
 454 第2バルブ
 461 第1配管部
 461A 内壁面
 462 第2配管部
 462A 内壁面
 463 第3配管部
 463A 内壁面
 471 第1配管流路
 472 第2配管流路
 473 第3配管流路

 
40 processing liquid supply unit 41 processing liquid discharge pipe 41A discharge port 43 suckback pipe 44 flow path 46 processing liquid discharge pipe 46A discharge port 47 flow path 61 processor 62 memory 63 storage unit 100 substrate processing apparatus 411 first piping part 411A inner wall surface 412 2nd piping part 412A inner wall surface 413 3rd piping part 413A inner wall surface 414 Motor 441 1st piping channel 442 2nd piping channel 443 3rd piping channel 451 Sulfuric acid supply source 452 Hydrogen peroxide supply source 453 1st Valve 454 Second valve 461 First piping portion 461A Inner wall surface 462 Second piping portion 462A Inner wall surface 463 Third piping portion 463A Inner wall surface 471 First piping passage 472 Second piping passage 473 Third piping passage

Claims (11)

  1.  基板表面に対して処理液を吐出する処理装置に取り付けられる処理液吐出配管であって、
     前記処理液が流通する流路と、
     前記流路を流通する処理液を前記基板表面に吐出する吐出口と、
    を有し、
     前記流路は、
      壁面の少なくとも一部が親水性である親水性流路、
    を含み、
     前記処理装置に取り付けられた状態において、
     前記親水性流路は、鉛直方向に対して傾斜し、上流側の端部が下流側の端部よりも高く位置する、
     処理液吐出配管。
    A processing liquid discharge pipe attached to a processing apparatus for discharging the processing liquid to the substrate surface,
    A flow path through which the treatment liquid flows;
    A discharge port for discharging the processing liquid flowing through the flow path to the substrate surface;
    Have
    The flow path is
    A hydrophilic flow path in which at least a part of the wall surface is hydrophilic,
    Including
    In a state attached to the processing apparatus,
    The hydrophilic flow path is inclined with respect to the vertical direction, and the upstream end is positioned higher than the downstream end.
    Treatment liquid discharge piping.
  2.  請求項1に記載の処理液吐出配管であって、
     前記流路は、壁面が疎水性の流路を含む、
     処理液吐出配管。
    The treatment liquid discharge pipe according to claim 1,
    The flow path includes a flow path having a hydrophobic wall surface,
    Treatment liquid discharge piping.
  3.  請求項1または請求項2に記載の処理液吐出配管であって、
     前記流路は、
      前記親水性流路の下流側に位置し、壁面が疎水性である第1流路、
     を含み、
     前記処理装置に取り付けられた状態において、前記第1流路は鉛直方向に延びる、
     処理液吐出配管。
    The processing liquid discharge pipe according to claim 1 or 2,
    The flow path is
    A first channel located downstream of the hydrophilic channel and having a hydrophobic wall;
    Including
    In the state attached to the processing apparatus, the first flow path extends in the vertical direction.
    Treatment liquid discharge piping.
  4.  請求項3に記載の処理液吐出配管であって、
     前記吐出口は、前記第1流路の下流側端部に位置する、
     処理液吐出配管。
    The processing liquid discharge pipe according to claim 3,
    The discharge port is located at a downstream end of the first flow path;
    Treatment liquid discharge piping.
  5.  請求項3または請求項4に記載の処理液吐出配管であって、
     前記親水性流路と前記第1流路とは隣接している、
     処理液吐出配管。
    The processing liquid discharge pipe according to claim 3 or claim 4,
    The hydrophilic flow path and the first flow path are adjacent to each other.
    Treatment liquid discharge piping.
  6.  請求項1から請求項5までのいずれか一つに記載の処理液吐出配管であって、
     前記流路は、
      前記親水性流路の上流に位置する第2流路、
    を有し、
     前記処理装置に取り付けられた状態において、前記第2流路は水平方向に延びる、
     処理液吐出配管。
    The processing liquid discharge pipe according to any one of claims 1 to 5,
    The flow path is
    A second channel located upstream of the hydrophilic channel;
    Have
    In the state attached to the processing apparatus, the second flow path extends in a horizontal direction.
    Treatment liquid discharge piping.
  7.  請求項1から請求項6までのいずれか一つに記載の処理液吐出配管であって、
     前記親水性流路は、
      樹脂からなり、薬液に浸漬されることで、壁面の少なくとも一部が、親水性となっている、
     処理液吐出配管。
    A treatment liquid discharge pipe according to any one of claims 1 to 6,
    The hydrophilic flow path is
    Made of resin and immersed in a chemical solution, at least a part of the wall surface is hydrophilic,
    Treatment liquid discharge piping.
  8.  請求項1から請求項7までのいずれか一つに記載の処理液吐出配管であって、
     親水性である前記親水性流路の壁面は、他の流路の壁面よりも粗い、
     処理液吐出配管。
    The treatment liquid discharge pipe according to any one of claims 1 to 7,
    The hydrophilic channel walls that are hydrophilic are rougher than the walls of the other channels,
    Treatment liquid discharge piping.
  9.  基板表面に対して処理液を吐出する処理装置に取り付けられ、前記処理液が流通する流路と、前記流路を流通する処理液を前記基板表面に吐出する吐出口とを有する処理液吐出配管であって、
     樹脂からなり、
     前記流路は、
      壁面の少なくとも一部に対して水を接した状態で薬液に浸漬して、前記壁面の少なくとも一部を親水性にした親水性流路、
    を含み、
     前記処理装置に取り付けられた状態において、
     前記親水性流路は、鉛直方向に対して傾斜し、上流側の端部が下流側の端部よりも高く位置する、
     処理液吐出配管。
    A processing liquid discharge pipe attached to a processing apparatus for discharging a processing liquid to the substrate surface and having a flow path through which the processing liquid flows and a discharge port for discharging the processing liquid flowing through the flow path to the substrate surface Because
    Made of resin,
    The flow path is
    A hydrophilic flow path in which at least a part of the wall surface is made hydrophilic by immersing it in a chemical solution in contact with water,
    Including
    In a state attached to the processing apparatus,
    The hydrophilic flow path is inclined with respect to the vertical direction, and the upstream end is positioned higher than the downstream end.
    Treatment liquid discharge piping.
  10.  請求項9に記載の処理液吐出配管であって、
     前記親水性流路は、前記流路に水を満たした状態で薬液に浸漬して、親水性にされている、
     処理液吐出配管。
    The treatment liquid discharge pipe according to claim 9,
    The hydrophilic flow path is made hydrophilic by being immersed in a chemical solution in a state where the flow path is filled with water.
    Treatment liquid discharge piping.
  11.  請求項1から請求項10までのいずれか一つに記載の処理液吐出配管、を備える基板処理装置であって、
     チャンバと、
     前記チャンバの内部において基板を水平に保持する基板保持部と、
     前記処理液吐出配管を介して、前記基板保持部に保持された基板の上面に、処理液を供給する処理液供給部と、
     前記処理液吐出配管の前記流路内の処理液を、上流側へ引き戻す引き戻し機構と、
     を備える基板処理装置。

     
    A substrate processing apparatus comprising the processing liquid discharge pipe according to any one of claims 1 to 10,
    A chamber;
    A substrate holder for horizontally holding the substrate inside the chamber;
    A processing liquid supply unit for supplying a processing liquid to the upper surface of the substrate held by the substrate holding unit via the processing liquid discharge pipe;
    A pull back mechanism that pulls the processing liquid in the flow path of the processing liquid discharge pipe back to the upstream side;
    A substrate processing apparatus comprising:

PCT/JP2018/042872 2018-01-30 2018-11-20 Process liquid discharging pipe and substrate processing device WO2019150716A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207020672A KR102377383B1 (en) 2018-01-30 2018-11-20 Processing liquid discharge piping and substrate processing equipment
CN201880086735.7A CN111630634A (en) 2018-01-30 2018-11-20 Processing liquid discharge pipe and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-013772 2018-01-30
JP2018013772A JP7000177B2 (en) 2018-01-30 2018-01-30 Processing liquid discharge piping and substrate processing equipment

Publications (1)

Publication Number Publication Date
WO2019150716A1 true WO2019150716A1 (en) 2019-08-08

Family

ID=67479621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042872 WO2019150716A1 (en) 2018-01-30 2018-11-20 Process liquid discharging pipe and substrate processing device

Country Status (5)

Country Link
JP (1) JP7000177B2 (en)
KR (1) KR102377383B1 (en)
CN (1) CN111630634A (en)
TW (1) TWI718458B (en)
WO (1) WO2019150716A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230036905A (en) 2021-09-08 2023-03-15 세메스 주식회사 Apparatus for suppying liquid and apparatus for treating substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205059A (en) * 2007-02-19 2008-09-04 Tokyo Electron Ltd Processing liquid feeder
JP2015070157A (en) * 2013-09-30 2015-04-13 株式会社Screenホールディングス Substrate processing apparatus
JP2016178109A (en) * 2015-03-18 2016-10-06 株式会社東芝 Nozzle and liquid supply device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256116A (en) 1997-03-10 1998-09-25 Dainippon Screen Mfg Co Ltd Treatment liquid supplying nozzle for substrate treating device
JP4198219B2 (en) * 1997-11-12 2008-12-17 大日本スクリーン製造株式会社 Development device
TW548143B (en) * 2001-06-29 2003-08-21 Dainippon Screen Mfg Substrate application apparatus, liquid supply apparatus and method of manufacturing nozzle
US10133173B2 (en) * 2012-09-27 2018-11-20 SCREEN Holdings Co., Ltd. Processing fluid supply device, substrate processing device, processing fluid supply method, substrate processing method, processing fluid processing device, and processing fluid processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205059A (en) * 2007-02-19 2008-09-04 Tokyo Electron Ltd Processing liquid feeder
JP2015070157A (en) * 2013-09-30 2015-04-13 株式会社Screenホールディングス Substrate processing apparatus
JP2016178109A (en) * 2015-03-18 2016-10-06 株式会社東芝 Nozzle and liquid supply device

Also Published As

Publication number Publication date
TW201933436A (en) 2019-08-16
CN111630634A (en) 2020-09-04
KR102377383B1 (en) 2022-03-21
JP2019134023A (en) 2019-08-08
KR20200096643A (en) 2020-08-12
JP7000177B2 (en) 2022-01-19
TWI718458B (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP7336955B2 (en) Substrate processing system and substrate processing method
JP5472169B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
JP5474853B2 (en) Liquid processing apparatus, liquid processing method, and recording medium on which a computer program for executing the liquid processing method is recorded
JP7336956B2 (en) Substrate processing system and substrate processing method
JP5819762B2 (en) Substrate processing equipment
US11024519B2 (en) Substrate processing apparatus, substrate processing method and computer readable recording medium
KR102525270B1 (en) Substrate processing apparatus and substrate processing method
JP2014197592A (en) Substrate processor
JP2010129809A (en) Substrate processing method, and substrate processing apparatus
JP3958594B2 (en) Substrate processing apparatus and substrate processing method
JP7132054B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2019169649A (en) Substrate processing method and substrate processing device
WO2019150716A1 (en) Process liquid discharging pipe and substrate processing device
JP2015070157A (en) Substrate processing apparatus
JP6489524B2 (en) Substrate processing equipment
JP2012204451A (en) Substrate processing device
JP6593920B2 (en) Substrate processing method and substrate processing apparatus
TWI717675B (en) Substrate processing device
JP5726636B2 (en) Liquid processing apparatus and liquid processing method
JP6536994B2 (en) Substrate processing method and substrate processing apparatus
JP2009218617A (en) Substrate processing apparatus and substrate processing method
JP2019169647A (en) Substrate processing method and substrate processing device
JP2009049063A (en) Substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207020672

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903697

Country of ref document: EP

Kind code of ref document: A1