WO2019150714A1 - 積層型電池 - Google Patents

積層型電池 Download PDF

Info

Publication number
WO2019150714A1
WO2019150714A1 PCT/JP2018/042598 JP2018042598W WO2019150714A1 WO 2019150714 A1 WO2019150714 A1 WO 2019150714A1 JP 2018042598 W JP2018042598 W JP 2018042598W WO 2019150714 A1 WO2019150714 A1 WO 2019150714A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery
tab
stacked battery
electrode terminal
Prior art date
Application number
PCT/JP2018/042598
Other languages
English (en)
French (fr)
Inventor
阿部 誠
栄二 關
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019150714A1 publication Critical patent/WO2019150714A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stacked battery.
  • Patent Document 1 discloses the following content as a technology related to a stacked battery. Inside the laminate film 2, the edge 12 of the positive electrode current collector 4, the burr 11 of the ultrasonic weld 9 in which the positive electrode current collector 4 and the positive electrode tab 6 are welded by ultrasonic welding, and the positive electrode current collector A protective sheet 8 is attached to a region covering the edge 10 of the positive electrode tab 6 on the side connected to the electric part 4.
  • Patent Document 1 since the positive electrode current collector 4 and the positive electrode tab 6 are connected by ultrasonic welding and sealed by the laminate film 2 outside the welded portion, the seal portion becomes a dead space, and the laminated battery There is a possibility that the volumetric energy density of the material will decrease.
  • An object of this invention is to improve the volume energy density of a laminated battery.
  • a stacked battery comprising: an electrode body having a positive electrode and a negative electrode; an electrode tab derived from the electrode body; an electrode terminal electrically connected to the electrode tab; and an exterior body that houses the electrode body and the electrode terminal.
  • the electrode tab and the electrode terminal are welded to the electrode terminal joint, and the electrode tab, the electrode terminal, and a seal portion for sealing the exterior body, and when viewing the stacked battery from the in-plane direction,
  • a stacked battery in which an electrode tab, an electrode terminal, an exterior body, and a seal portion are arranged in one section.
  • the volume energy density of the laminated battery can be improved by the present invention. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • FIG. FIG. FIG. 1 A first figure.
  • Described in this specification is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value described in another stepwise manner.
  • the upper limit value or lower limit value of the numerical ranges described in the present specification may be replaced with the values shown in the examples.
  • a lithium ion secondary battery is an electrochemical device that can store or use electrical energy by occluding / releasing lithium ions to and from an electrode in an electrolyte. This is called by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any battery is a subject of the present invention.
  • the technical idea of the present invention can also be applied to sodium ion secondary batteries, magnesium ion secondary batteries, calcium ion secondary batteries, zinc secondary batteries, aluminum ion secondary batteries, and the like.
  • FIG. 1 is an external view of a stacked battery.
  • the stacked battery 1000 includes a positive electrode 100 (electrode), a negative electrode 200 (electrode), a positive electrode terminal 150 (electrode terminal), a negative electrode terminal 250 (electrode terminal), a separator 300, an outer package 500, an electrode terminal joint portion 600, and a seal portion 700.
  • the positive electrode 100 has a positive electrode mixture layer 110 (electrode mixture layer), a positive electrode current collector 120, and a positive electrode tab 130 (electrode tab).
  • a positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120 (electrode current collector). It has a negative electrode 200, a negative electrode mixture layer 210 (electrode mixture layer), a negative electrode current collector 220 (electrode current collector), and a negative electrode tab 230 (electrode tab).
  • Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220.
  • the positive electrode 100, the separator 300, and the negative electrode 200 are laminated to form an electrode body 400.
  • the stacked battery 1000 is configured by stacking a plurality of electrode bodies 400. By connecting the positive electrode tabs 130 to each other and the negative electrode tab 230, an electrical parallel connection is configured in the stacked battery 1000.
  • a stacked battery 1000 in FIG. 1 is a stacked secondary battery.
  • the positive electrode mixture layer 110 has a positive electrode active material capable of inserting and extracting Li.
  • the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li-Co-Ni-Mn composite oxides, LiFeP-based oxides, and the like.
  • the negative electrode mixture layer 210 has a negative electrode active material capable of inserting and extracting Li. Examples of the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal.
  • a positive electrode conductive agent responsible for electron conductivity in the electrode mixture layer a binder that ensures adhesion between materials in the electrode mixture layer, and ion conductivity in the electrode mixture layer
  • a solid electrolyte may be included to ensure
  • the method for producing the electrode mixture layer is, for example, as follows. First, the material contained in the electrode mixture layer is dissolved in a solvent to form a slurry, which is applied onto the electrode current collector. Examples of the coating method include a doctor blade method, a dipping method, and a spray method. Next, in order to remove the solvent, the electrode mixture layer coated on the electrode current collector is dried. Next, the electrode mixture layer is pressed to ensure electron conductivity and ion conductivity in the electrode mixture layer.
  • Electrode current collector is electrically connected to the electrode tab.
  • the electrode tab is led out to the side surface of the electrode current collector.
  • the electrode mixture layer is not formed on the electrode tab.
  • the electrode mixture layer may be formed on the electrode tab as long as the battery performance is not adversely affected.
  • an aluminum foil for the positive electrode current collector 120 and the positive electrode tab 130, an aluminum foil, an aluminum perforated foil having a hole diameter of 0.1 mm to 10 mm, an expanded metal, a foamed aluminum plate, or the like can be applied.
  • an aluminum foil for the positive electrode current collector 120 and the positive electrode tab 130, an aluminum foil, an aluminum perforated foil having a hole diameter of 0.1 mm to 10 mm, an expanded metal, a foamed aluminum plate, or the like can be applied.
  • stainless steel, titanium, etc. can be applied in addition to aluminum.
  • the negative electrode current collector 220 and the negative electrode tab 230 copper foil, copper perforated foil having a hole diameter of 0.1 mm to 10 mm, expanded metal, foamed copper plate, or the like is used.
  • copper stainless steel, titanium, nickel, etc. can be applied as the material.
  • the thickness of the electrode current collector and electrode tab is preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the multilayer battery 1000 and the mechanical strength of the electrode, about 1 ⁇ m to 100 ⁇ m is desirable.
  • the separator 300 is formed between the positive electrode 100 and the negative electrode 200.
  • the separator 300 transmits lithium ions and prevents a short circuit between the positive electrode 100 and the negative electrode 200.
  • a material constituting the separator 300 a microporous film, a solid electrolyte, or the like can be used.
  • microporous film polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used.
  • electrolyte solution is injected into the laminated battery 1000 from the vacant side or the injection hole of the exterior body that houses the plurality of electrode bodies 400. Is filled with an electrolyte solution.
  • the electrolytic solution includes, for example, a solvent and a lithium salt, and serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200.
  • ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, butylene carbonate, ⁇ -butyrolactone, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, etc. as solvents. Can do. These materials may be used alone or in combination.
  • lithium salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide, LiFSI) and the like can be preferably used. These lithium salts may be used alone or in combination.
  • solid electrolytes organic polymers and inorganic particles such as sulfides such as Li 10 Ge 2 PS 12 and Li 2 SP 2 S 5 , oxides such as Li-La-Zr-O, ionic liquids and room temperature molten salts, etc.
  • a semi-solid electrolyte supported on the gel, a gel electrolyte using a polymer gel as an electrolyte, or the like can be used.
  • the solid electrolyte serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, and the above-described electrolyte is basically unnecessary. You can configure the connection.
  • an electrolytic solution may be added to the multilayer battery 1000 even when a solid electrolyte is used as the separator 300 as long as an electrical short circuit in the multilayer battery 1000 can be prevented.
  • the separator 300 may be formed as a sheet between the positive electrode 100 and the negative electrode 200, or may be formed by coating on the electrode mixture layer.
  • the separator 300 may be formed on both surfaces of the electrode mixture layer, and if the separator 300 is formed between the positive electrode 100 and the negative electrode 200, the separator 300 may be formed on one surface of the electrode mixture layer.
  • the thickness of the separator 300 is several nanometers to several millimeters from the viewpoint of ensuring the energy density of the multilayer battery 1000, ensuring electronic insulation, and the like.
  • the electrode terminal is electrically connected to the electrode tab.
  • materials for the positive electrode terminal 150 and the negative electrode terminal 250 metals such as aluminum, copper, nickel, and stainless steel can be used.
  • the exterior body 500 houses the electrode body 400 and electrode terminals. In order to electrically connect the electrode terminal to the bus bar, an opening is formed in the exterior body 500 so that the electrode terminal is exposed on the surface of the exterior body 500 where the electrode terminal is formed.
  • the material of the outer package 500 is selected from materials that are corrosion resistant to the electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • Electrode terminal joint 600 By welding the electrode tab and the electrode terminal by, for example, ultrasonic welding, an electrode terminal joint portion 600 in which the electrode tab and the electrode terminal are joined is formed.
  • ⁇ Seal part 700> By thermally fusing the electrode terminal joint portion 600 with a sealant, a seal portion 700 that seals the stacked battery 1000 (electrode tab, electrode terminal, exterior body 500) is formed. At this time, when the multilayer battery 1000 is viewed from the in-plane direction, the electrode tab, the electrode terminal, the exterior body 500, and the seal portion 700 are arranged in one section. Thus, conventionally, when the laminated battery 1000 is sealed, the electrode terminal joint portion 600 and the seal portion 700 that are arranged in the in-plane direction of the laminated battery 1000 can be integrated into one cross section. Dead space can be reduced and the volume energy density of the stacked battery 1000 can be improved.
  • sealant material examples include polypropylene, polyethylene, polyolefin resin, and the like, which have a function of being deformed by heat and closely contacting the constituent members of the laminated battery 1000.
  • the electrode tab is formed inside the seal portion 700 in the in-plane direction of the stacked battery 1000. Thereby, contact with an electrode tab and external air can be prevented, and corrosion of an electrode tab can be prevented.
  • FIG. 2 is an external view of a stacked battery.
  • one cross section constituted by the electrode tab, the electrode terminal, the outer package 500, and the seal portion 700 is inclined with respect to the stacking direction of the stacked battery 1000.
  • the electrode tab led out of the area of the exterior body 500 that houses the electrode body 400 is bent, and the electrode terminal joint portion 600 and the seal portion 700 are laminated.
  • the battery 1000 is oriented in the stacking direction. Thereby, the dead space of the laminated battery 1000 generated by the electrode terminals can be reduced, and the volume energy density of the laminated battery 1000 can be improved.
  • the extension direction of the electrode tab is substantially perpendicular to the in-plane direction of the stacked battery 1000, but it may be inclined even if not perpendicular. In that case, the position of the tip of the tilted electrode tab projected in the thickness direction of the electrode body 400 is within the width in the stacking direction of the electrode body 400, thereby improving the volume energy density. Can do.
  • the exterior body 500 is also bonded to three sides of the side surface of the electrode body 400 except the side where the electrode tab is disposed. At this time, it is desirable that the width of the joint portion of the outer package 500 on the three sides is inclined with respect to the stacking direction of the stacked battery 1000. In other words, the position of the point projected in the thickness direction of the electrode body 400 at the tip of the joint portion of the inclined exterior body 500 is within the width in the stacking direction of the electrode body 400. desirable. Thereby, the dead space of the laminated battery 1000 generated by the outer package 500 can be reduced, and the volume energy density of the laminated battery 1000 can be improved.
  • FIG. 3 is an external view of a stacked battery.
  • the electrode terminal joint portion 600 and the seal portion 700 are formed in the lower portion in the stacking direction of the stacked battery 1000.
  • a plurality of electrode tabs are bundled at the position where the electrode tabs at the bottom of the electrode body 400 are formed, and the electrode tabs are bundled from the position at which the electrode tabs at the bottom of the electrode body 400 are formed. Is bent.
  • the outer package 500 arranged at the lower part of the stacked battery 1000 in the stacking direction is not bent in the stacking direction of the stacked battery 1000 as shown in FIG. 2, and extends in the in-plane direction of the stacked battery 1000. doing. Thereby, the length of an electrode terminal can be enlarged.
  • FIG. 4 is an external view of a stacked battery.
  • the separator 300 when viewed from the stacking direction of the stacked battery 1000, the separator 300 is formed larger than the electrodes. Specifically, the separator 300 is formed so as to cover part or all of the electrode end portions. Thereby, when the electrode tab is bent, a short circuit between an electrode different from the electrode corresponding to the bent electrode tab and the bent electrode tab can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本発明の課題は、積層型電池の体積エネルギー密度を向上させることである。本発明の積層型電池は、正極および負極を有する電極体と電極体から導出された電極タブと電極タブに電気的に接続された電極端子と、電極体および電極端子を収容する外装体と、を有する積層型電池であって、電極タブと電極端子とが溶接されている電極端子接合部と、電極タブ、電極端子、および外装体をシールするシール部と、を有し、積層型電池を面内方向から見た際、電極タブ、電極端子、外装体およびシール部が一断面に並んでいることを特徴とする。

Description

積層型電池
 本発明は、積層型電池に関する。
 積層型電池に関する技術として、特許文献1には以下の内容が開示されている。ラミネートフィルム2の内部において、正極集電部4のエッジ12と、正極集電部4と正極タブ6とを超音波溶接により溶着している超音波溶接部9のバリ状部分11と、正極集電部4と接続された側の正極タブ6の端部のカエリ10とを覆う領域に保護シート8が貼り付けられている。
特開2012-33449号公報
 特許文献1では、正極集電部4と正極タブ6とを超音波溶接により接続しており、溶接部より外側でラミネートフィルム2によりシールされているため、シール部がデッドスペースとなり、積層型電池の体積エネルギー密度が低下する可能性がある。
 本発明は、積層型電池の体積エネルギー密度を向上させることを目的とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 正極および負極を有する電極体と電極体から導出された電極タブと電極タブに電気的に接続された電極端子と、電極体および電極端子を収容する外装体と、を有する積層型電池であって、電極タブと電極端子とが溶接されている電極端子接合部と、電極タブ、電極端子、および外装体をシールするシール部と、を有し、積層型電池を面内方向から見た際、電極タブ、電極端子、外装体およびシール部が一断面に並んでいる積層型電池。
 本発明により積層型電池の体積エネルギー密度を向上できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
積層型電池の外観図。 積層型電池の外観図。 積層型電池の外観図。 積層型電池の外観図。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本明細書に記載される「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。
 本明細書では、積層型電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、ナトリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、亜鉛二次電池、アルミニウムイオン二次電池などに対しても適用できる。
[実施例1]
 図1は、積層型電池の外観図である。積層型電池1000は、正極100(電極)、負極200(電極)、正極端子150(電極端子)、負極端子250(電極端子)、セパレータ300、外装体500、電極端子接合部600、シール部700を有する。
 正極100は、正極合剤層110(電極合剤層)、正極集電体120、および正極タブ130(電極タブ)を有する。正極集電体120(電極集電体)の両面に正極合剤層110が形成されている。負極200、負極合剤層210(電極合剤層)、負極集電体220(電極集電体)、および負極タブ230(電極タブ)を有する。負極集電体220の両面に負極合剤層210が形成されている。
 正極100、セパレータ300、負極200が積層されて電極体400が構成される。積層型電池1000は、複数の電極体400が積層されて構成される。正極タブ130同士および負極タブ230が接続されることで、積層型電池1000中で電気的な並列接続が構成される。図1の積層型電池1000は積層型の二次電池である。
 <電極合剤層>
 正極合剤層110は、Liの吸蔵・放出が可能な正極活物質を有する。正極活物質としては、LiCo系酸化物、LiNi系複合酸化物、LiMn系複合酸化物な、Li-Co-Ni-Mn複合酸化物、LiFeP系酸化物などが上げられる。負極合剤層210は、Liの吸蔵・放出が可能な負極活物質を有する。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが上げられる。
 電極合剤層中に、電極合剤層内の電子伝導性を担う正極導電剤や、電極合剤層内の材料間の密着性を確保するバインダ、さらには電極合剤層内のイオン伝導性を確保するための固体電解質を含めてもよい。
 電極合剤層の作製方法は、例えば以下の通りである。まず、電極合剤層に含まれる材料を溶媒に溶かしてスラリー化し、それを電極集電体上に塗工する。塗工方法として、例えば、ドクターブレード法、ディッピング法、スプレー法などが挙げられる。次に、溶媒を除去するために電極集電体上に塗工された電極合剤層を乾燥させる。次に、電極合剤層内の電子伝導性、イオン伝導性を確保するために電極合剤層をプレスする。
 <電極集電体、電極タブ>
 電極集電体は電極タブと電気的に接続されている。電極タブは電極集電体の側面に導出されている。図1において、電極タブには電極合剤層が形成されていない。ただし、電池性能に悪影響を与えない範囲で電極タブに電極合剤層を形成してもよい。
 正極集電体120および正極タブ130には、アルミニウム箔、孔径0.1mm~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などを適用できる。材質は、アルミニウムの他に、ステンレス、チタンなどを適用できる。
 負極集電体220および負極タブ230には、銅箔、孔径0.1mm~10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられる。材質は、銅の他に、ステンレス、チタン、ニッケルなどを適用できる。
 電極集電体および電極タブの厚さは、10nm~1mmであることが望ましい。積層型電池1000のエネルギー密度と電極の機械強度両立の観点から1μm~100μm程度が望ましい。
 <セパレータ300>
 セパレータ300は、正極100と負極200との間に形成され、積層型電池1000がリチウムイオン積層型電池の場合リチウムイオンを透過させ、正極100と負極200の短絡を防止する。セパレータ300を構成する材料として、微多孔膜や固体電解質等を利用できる。
 微多孔膜として、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータ300に微多孔膜が用いられる場合、複数の電極体400を収納する外装体の空いている1辺や注液孔から積層型電池1000に電解液を注入することで、積層型電池1000中に電解液が充填される。
 電解液は、例えば溶媒及びリチウム塩を有し、正極100と負極200の間でリチウムイオンの伝達させる媒体となる。溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン等を用いることができる。こられの材料を単独または複数組み合わせて使用してもよい。リチウム塩としては、例えば、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、リチウムビスオキサレートボラート(LiBOB)、リチウムイミド塩(例えば、リチウムビス(フルオロスルホニル)イミド、LiFSI)等を好ましく用いることができる。これらのリチウム塩を単独または複数組み合わせて使用してもよい。
 固体電解質として、Li10Ge2PS12、Li2S-P2S5などの硫化物系、Li-La-Zr-Oなどの酸化物系、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させた半固体電解質、高分子ゲルを電解質としたゲル電解質等を利用できる。セパレータ300として固体電解質を用いた場合、固体電解質が正極100と負極200の間にリチウムイオンの伝達させる媒体となり、上記の電解液は基本不要となるため、積層型電池1000中で電気的な直列接続を構成できる。ただし、積層型電池1000中での電気的な短絡を防止できるのであれば、セパレータ300として固体電解質を用いた場合でも積層型電池1000中に電解液を添加してもよい。
 セパレータ300は、シートとして正極100と負極200との間に形成してもよいし、電極合剤層の上に塗布により形成してもよい。電極合剤層の両面にセパレータ300を形成してもよく、正極100と負極200との間にセパレータ300が形成されれば、電極合剤層の片面にセパレータ300が形成されていてもよい。セパレータ300の厚さは積層型電池1000のエネルギー密度、電子絶縁性の確保等の観点から数nm~数mmのサイズとなる。
 <電極端子>
 電極端子は電極タブと電気的に接続される。正極端子150および負極端子250の材質として、アルミニウム、銅、ニッケル、ステンレスなどの金属を用いることができる。
 <外装体500>
 外装体500は、電極体400、電極端子を収納する。電極端子をバスバに電気的に接続させるために、外装体500の電極端子が形成されている面では、電極端子を露出させるように外装体500に開口部が形成されている。外装体500の材質はアルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、電解質に対し耐食性のある材料から選択される。
 <電極端子接合部600>
 電極タブと電極端子を例えば超音波溶接により溶接することにより、電極タブと電極端子とが接合された電極端子接合部600が形成される。
 <シール部700>
 電極端子接合部600をシーラント材で熱融着することにより、積層型電池1000(電極タブ、電極端子、外装体500)をシールするシール部700が形成される。このとき、積層型電池1000を面内方向から見た際、電極タブ、電極端子、外装体500およびシール部700が一断面に並んでいる。これにより、従来、積層型電池1000をシールする際に積層型電池1000の面内方向に並んでいた電極端子接合部600およびシール部700を一断面に集約することができ、積層型電池1000のデッドスペースを低減し、積層型電池1000の体積エネルギー密度を向上できる。
 シーラント材として、ポリプロピレン、ポリエチレン、ポリオレフィン系樹脂等、熱により変形し、積層型電池1000の構成部材に密着する機能を有する材料が挙げられる。
 図1では、積層型電池1000の面内方向において、電極タブはシール部700より内側に形成されている。これにより、電極タブと外部の空気との接触を防止でき、電極タブの腐食を防げる。
[実施例2]
 図2は、積層型電池の外観図である。図2では、電極タブ、電極端子、外装体500およびシール部700で構成される一断面が積層型電池1000の積層方向に対して傾いている。具体的には、積層型電池1000の面内方向において、外装体500の電極体400を収納する領域の外部に導出されている電極タブを折り曲げ、電極端子接合部600およびシール部700が積層型電池1000の積層方向に向けられている。これにより、電極端子により生ずる積層型電池1000のデッドスペースを低減し、積層型電池1000の体積エネルギー密度を向上できる。
 積層型電池1000の面内方向に対して電極タブの延出方向がほぼ垂直になっているが、垂直でなくとも傾いていればよい。その場合、傾いている電極タブの先端の、電極体400の厚さ方向に射影された点の位置が、電極体400の積層方向の幅の中に納まることで体積エネルギー密度の向上を図ることができる。
 電極体400の側面の前記電極タブが配置された辺を除く3辺においても外装体500は接合されている。このとき、3辺における外装体500の接合箇所の幅が、積層型電池1000の積層方向に対して傾いていることが望ましい。換言すれば、傾いている外装体500の接合箇所の先端の、電極体400の厚さ方向に射影された点の位置が、電極体400の積層方向の幅の中に納められていることが望ましい。これにより、外装体500により生ずる積層型電池1000のデッドスペースを低減し、積層型電池1000の体積エネルギー密度を向上できる。
 積層型電池1000の面内方向において、傾いている外装体500の接合箇所より外周側に、傾いている外装体500およびシール部700で構成される一断面が形成されることが望ましい。これにより、積層型電池1000の生産性を向上できる。
[実施例3]
 図3は、積層型電池の外観図である。図3では、電極端子接合部600およびシール部700が積層型電池1000の積層方向における下部に形成されている。具体的には、電極体400の最下部にある電極タブが形成されている位置で複数の電極タブを束ね、電極体400の最下部にある電極タブが形成されている位置から束ねた電極タブを折り曲げられている。また、積層型電池1000の積層方向の下部に配置されている外装体500は、図2のように積層型電池1000の積層方向に折り曲げられておらず、積層型電池1000の面内方向に延伸している。これにより、電極端子の長さを大きくすることができる。
 電極体400の最下部にある電極タブが形成されている位置で複数の電極タブを束ねる必要はなく、およそ積層型電池1000の積層方向の膜厚の1/2より下部、好ましくは1/3より下部で複数の電極タブが束ねられていることが望ましい。
[実施例4]
 図4は、積層型電池の外観図である。図4では、積層型電池1000の積層方向から見た際、セパレータ300を電極より大きく形成している。具体的には、電極端部の一部または全部を覆うようにセパレータ300が形成されている。これにより、電極タブを折り曲げた際に、折り曲げた電極タブに対応する電極とは異なる電極と折り曲げた電極タブとの短絡を防止できる。
100 正極、110 正極合剤層、120 正極集電体、130 正極タブ、150 正極端子
200 負極、210 負極合剤層、220 負極集電体、230 負極タブ、250 負極端子
300 セパレータ
400 電極体
500 外装体
600 電極端子接合部
700 シール部
1000 積層型電池

Claims (6)

  1.  正極および負極を有する電極体と
     前記電極体から導出された電極タブと
     前記電極タブに電気的に接続された電極端子と、
     前記電極体および前記電極端子を収容する外装体と、を有する積層型電池であって、
     前記電極タブと前記電極端子とが溶接されている電極端子接合部と、
     前記電極タブ、前記電極端子、および前記外装体をシールするシール部と、を有し、
     前記積層型電池を面内方向から見た際、前記電極タブ、前記電極端子、前記外装体および前記シール部が一断面に並んでいる積層型電池。
  2.  請求項1の積層型電池において、
     前記積層型電池の面内方向において、前記電極タブは前記シール部より内側に形成されている積層型電池。
  3.  請求項1の積層型電池において、
     前記一断面が前記積層型電池の積層方向に対して傾いている積層型電池。
  4.  請求項3に記載の積層型電池において、
     前記電極タブの先端の、前記電極体の厚さ方向に射影された点の位置が、前記電極体の積層方向の幅の中に納められている積層型電池。
  5.  請求項1の積層型電池において、
     前記電極端子接合部および前記シール部が前記積層型電池の積層方向における下部に形成されている積層型電池。
  6.  請求項1の積層型電池において、
     前記電極体は、前記正極および前記負極を分離するセパレータを有し、
     前記積層型電池の積層方向から見た際、前記セパレータは前記正極または前記負極より大きい積層型電池。
PCT/JP2018/042598 2018-01-30 2018-11-19 積層型電池 WO2019150714A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-013168 2018-01-30
JP2018013168A JP2019133779A (ja) 2018-01-30 2018-01-30 積層型電池

Publications (1)

Publication Number Publication Date
WO2019150714A1 true WO2019150714A1 (ja) 2019-08-08

Family

ID=67479647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042598 WO2019150714A1 (ja) 2018-01-30 2018-11-19 積層型電池

Country Status (2)

Country Link
JP (1) JP2019133779A (ja)
WO (1) WO2019150714A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451712A (zh) * 2021-07-29 2021-09-28 珠海冠宇电池股份有限公司 极耳结构、电池、极耳焊接方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260417A (ja) * 1998-03-12 1999-09-24 Toshiba Battery Co Ltd 高分子電解質リチウム二次電池
JP2000235850A (ja) * 1999-02-16 2000-08-29 Hitachi Maxell Ltd 積層形ポリマー電解質電池
JP2001093491A (ja) * 1999-09-24 2001-04-06 Mitsubishi Electric Corp 板状電池および携帯無線端末
JP2009532843A (ja) * 2006-04-03 2009-09-10 エルジー・ケム・リミテッド 安全性及び容量が改善されたリチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260417A (ja) * 1998-03-12 1999-09-24 Toshiba Battery Co Ltd 高分子電解質リチウム二次電池
JP2000235850A (ja) * 1999-02-16 2000-08-29 Hitachi Maxell Ltd 積層形ポリマー電解質電池
JP2001093491A (ja) * 1999-09-24 2001-04-06 Mitsubishi Electric Corp 板状電池および携帯無線端末
JP2009532843A (ja) * 2006-04-03 2009-09-10 エルジー・ケム・リミテッド 安全性及び容量が改善されたリチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451712A (zh) * 2021-07-29 2021-09-28 珠海冠宇电池股份有限公司 极耳结构、电池、极耳焊接方法及其装置
CN113451712B (zh) * 2021-07-29 2024-04-09 珠海冠宇电池股份有限公司 极耳结构、电池、极耳焊接方法及其装置

Also Published As

Publication number Publication date
JP2019133779A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5505218B2 (ja) 密閉型蓄電池
JP4784236B2 (ja) 非水電解質電池用リード線及び非水電解質電池
WO2018190016A1 (ja) 積層型二次電池
JP3972205B2 (ja) 積層型電池
JP7006683B2 (ja) 円筒形電池
JP3825593B2 (ja) 包装体の製造方法
JP2008016368A (ja) フィルム外装電池および組電池
JP2007115678A (ja) 非水電解質電池およびその製造方法
WO2018220924A1 (ja) 二次電池モジュール
JP2018147574A (ja) 角形リチウムイオン二次電池
JP4138172B2 (ja) 電気化学デバイス及びその製造方法
JP4021592B2 (ja) 電気化学デバイス
WO2018163636A1 (ja) リチウムイオン電池
WO2019150714A1 (ja) 積層型電池
JP4899244B2 (ja) 電池パック
JP3869668B2 (ja) 電気化学デバイスおよびその製造方法
JP2020149935A (ja) 電池モジュール
JPH11102673A (ja) 薄形二次電池
JP2019145724A (ja) 電気化学セル
WO2019077922A1 (ja) 二次電池モジュール
CN111033818A (zh) 电极、以及锂离子二次电池
WO2019111691A1 (ja) 二次電池
JP4018881B2 (ja) 電気化学デバイス
JP2020004515A (ja) 電池セル
JP2006147185A (ja) 捲回電極およびその製造方法、並びにそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904293

Country of ref document: EP

Kind code of ref document: A1