WO2019150585A1 - Solar cell module manufacturing method, solar cell module manufacturing device, and solar cell module - Google Patents

Solar cell module manufacturing method, solar cell module manufacturing device, and solar cell module Download PDF

Info

Publication number
WO2019150585A1
WO2019150585A1 PCT/JP2018/003874 JP2018003874W WO2019150585A1 WO 2019150585 A1 WO2019150585 A1 WO 2019150585A1 JP 2018003874 W JP2018003874 W JP 2018003874W WO 2019150585 A1 WO2019150585 A1 WO 2019150585A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
ray
soldering
output lead
cell module
Prior art date
Application number
PCT/JP2018/003874
Other languages
French (fr)
Japanese (ja)
Inventor
浩昭 森川
葉影 秀徳
智英 沈
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018563529A priority Critical patent/JPWO2019150585A1/en
Priority to PCT/JP2018/003874 priority patent/WO2019150585A1/en
Publication of WO2019150585A1 publication Critical patent/WO2019150585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell module having a terminal box, a solar cell module manufacturing apparatus, and a solar cell module.
  • a solar power generation system uses direct current power from a solar cell module installed at an installation site such as a roof of a building represented by a house or a site prepared on the premise of installing a solar cell system via an inverter. Is supplied to the grid.
  • the solar power generation system is configured by electrically connecting a plurality of solar cell modules to each other. The electrical connection between the solar cell modules is via a terminal box arranged on the back surface facing the opposite side to the light receiving surface in the solar cell module.
  • the terminal box has a node point where the plus lead wire and the plus module connecting cable are connected by solder joint, and a node point where the minus lead wire and the minus module connecting cable are connected by solder joint.
  • the soldering part which is an electrical connection part in the terminal box, is one of the important parts that determines the product life of the solar cell module.
  • soldering in the terminal box is often performed by a person, the degree of soldering may vary depending on the skill level of the operator. For this reason, the device for ensuring the durability of an electrical connection part is made.
  • Patent Document 1 discloses that a protective connecting cover protects a solder connection portion in which an end portion of an output lead wire and an end portion of a terminal electrode member are solder-connected.
  • Patent Document 2 does not mention a method for determining whether the soldering state of the soldering portion is good or bad.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a method for manufacturing a solar cell module capable of easily determining the soldering state of a soldered portion in the solar cell module.
  • the method for manufacturing a solar cell module involves soldering the first metal component and the second metal component that constitute the solar cell panel.
  • X-ray transmission in the soldering target region which is a region where the first metal component and the second metal component overlap in a direction parallel to the in-plane direction of the solar cell panel.
  • the first metal component and the second metal component are actually solder-bonded to the area of the soldering target region in a direction parallel to the in-plane direction of the solar cell panel.
  • the manufacturing method of a solar cell module includes the 3rd process which determines the quality of the solder joint state of a 1st metal component and a 2nd metal component by comparing an area ratio with a predetermined criterion.
  • the method for manufacturing a solar cell module according to the present invention has an effect that the soldered state of the soldered portion in the solar cell module can be easily determined.
  • the perspective view which looked at the solar cell string concerning Embodiment 1 of this invention from the light-receiving surface side The perspective view which looked at the solar cell panel concerning Embodiment 1 of this invention from the light-receiving surface side.
  • the top view which shows the state by which the terminal box main body was temporarily placed in the position near the output lead of the back surface of the solar cell panel concerning Embodiment 1 of this invention.
  • the top view which shows the state by which the output lead and the terminal board were soldered within the terminal box main body of the back surface of the solar cell panel concerning Embodiment 1 of this invention.
  • the perspective view which looked at the solar cell module concerning Embodiment 1 of this invention from the back surface side 1 is a schematic perspective view showing an X-ray inspection apparatus according to a first embodiment of the present invention.
  • 1 is a configuration diagram showing a functional configuration of an X-ray inspection apparatus according to a first embodiment of the present invention.
  • FIG. 1 Schematic perspective view showing another configuration example of the X-ray inspection apparatus according to the first embodiment of the present invention.
  • the top view of the terminal box main body which shows the imaging location of the X-ray transmission image in the transmission X-ray inspection in Embodiment 1 of this invention.
  • FIG. 18 is an X-ray transmission image obtained by enlarging the X-ray observation region according to the first embodiment of the present invention, and showing an X-ray transmission image obtained by enlarging a part of FIG.
  • FIG. 21 is a diagram showing a simplified image obtained by performing image processing on the soldering target region of the X-ray transmission image of FIG.
  • FIG. 26 is a diagram showing a situation of a solder unsupplied part and a soldered part when the output lead is connected to another terminal board according to the first exemplary embodiment of the present invention, and a sectional view taken along line XXVI-XXVI in FIG.
  • the figure which showed the condition of the solder unsupply part and soldering part when an output lead is connected to the terminal board concerning Embodiment 1 of this invention FIG.
  • FIG. 28 is a diagram showing a situation of a solder unsupplied portion and a soldered portion when an output lead is connected to the terminal board according to the first exemplary embodiment of the present invention, and a cross-sectional view taken along line XXVIII-XXVIII in FIG. Sectional drawing which shows typically the cross section of the solder layer between a terminal board and an output lead when an output lead is connected to the terminal board concerning Embodiment 1 of this invention The figure which shows the upper surface X-ray observation image of the solder layer between a terminal board and an output lead when an output lead is connected to the terminal board concerning Embodiment 1 of this invention.
  • Sectional drawing which shows typically the cross section of the solder layer between another terminal board and an output lead when an output lead is connected to the other terminal board concerning Embodiment 1 of this invention.
  • the figure which shows the upper surface X-ray observation image of the solder layer between another terminal board and an output lead when an output lead is connected to the other terminal board concerning Embodiment 1 of this invention.
  • the top view which shows the positional relationship of the soldering part of the output lead and terminal board concerning Embodiment 1 of this invention, and the connection tab between cells.
  • the perspective view which looked at the solar cell array which soldered the solar cell strings concerning Embodiment 2 of this invention with the connection tab between strings, and was connected in series from the light-receiving surface side.
  • the flowchart which shows the procedure of the manufacturing method of the solar cell module concerning Embodiment 2 of this invention.
  • FIG. 1 is a perspective view of a solar cell module 1 according to Embodiment 1 of the present invention as viewed from the light receiving surface side.
  • FIG. 2 is a perspective view of the solar cell module 1 according to the first embodiment of the present invention as viewed from the back side facing the opposite side to the light receiving surface.
  • the solar cell module 1 is opposite to the light receiving surface protection component 11 disposed on the light receiving surface side in the solar cell array 3 and the light receiving surface in the solar cell array 3. It is sealed between the back surface protection component 12 arranged on the back surface side facing the side.
  • the solar cell module 1 is surrounded by a reinforcing frame 13 at the outer peripheral edge.
  • a terminal box 14 that is electrically connected to the solar cell array 3 is disposed on the back surface protection component 12 on the back surface side of the solar cell module 1.
  • the terminal box 14 is configured by attaching a terminal box lid 16 to an upper portion of a terminal box main body 15 bonded on the back surface protection component 12. Inside the terminal box 14, an output lead (not shown) drawn from the solar cell array 3 and a module connection cable 17 drawn into the terminal box 14 are connected by a cable connecting portion 18 as shown in FIG. 7 described later. Yes.
  • the solar cell module 1 is electrically connected to another solar cell module via the module connection cable 17.
  • the solar cell array 3 is constituted by a plurality of later-described solar cell strings 4 that are electrically and mechanically joined in series or in parallel by inter-cell connection tabs 21 and later-described inter-string connection tabs.
  • the solar cell string 4 is configured by electrically and mechanically connecting a plurality of solar cells 5 having a quadrangular shape arranged adjacent to each other in series between cell connection tabs 21.
  • FIG. 3 is a flowchart showing the procedure of the method for manufacturing the solar cell module 1 according to the first embodiment of the present invention. First, the outline
  • FIG. 4 is a perspective view of the solar cell string 4 according to the first embodiment of the present invention as viewed from the light receiving surface side.
  • FIG. 5 is a perspective view of the solar cell panel 2 according to the first embodiment of the present invention as viewed from the light receiving surface side.
  • FIG. 6 is the perspective view which looked at the solar cell panel 2 concerning Embodiment 1 of this invention from the back surface side.
  • FIG. 4 is a perspective view of the solar cell string 4 according to the first embodiment of the present invention as viewed from the light receiving surface side.
  • FIG. 5 is a perspective view of the solar cell panel 2 according to the first embodiment of the present invention as viewed from the light receiving surface side.
  • FIG. 6 is the perspective view which looked at the solar cell panel 2 concerning Embodiment 1 of
  • FIG. 7 is a plan view showing a state in which the terminal box main body 15 is temporarily placed at a position near the output lead 22 on the back surface of the solar cell panel 2 according to the first embodiment of the present invention.
  • FIG. 8 is a plan view showing a state in which the output lead 22 and the terminal plate 24 are soldered in the terminal box body 15 on the back surface of the solar cell panel 2 according to the first embodiment of the present invention.
  • FIG. 9 is a perspective view of the solar cell module 1 according to the first embodiment of the present invention as viewed from the back side.
  • a solar battery cell 5 that is a crystalline solar battery is manufactured by a known technique.
  • the solar battery cell 5 is formed using a square silicon substrate having an outer dimension of 156 mm ⁇ 156 mm, that is, 156 mm square.
  • the silicon substrate a single crystal silicon substrate or a polycrystalline silicon substrate is used.
  • the outer dimensions of the silicon substrate are in the direction of further expansion, and 161.75 mm ⁇ 161.75 mm, that is, a 161.75 mm square silicon substrate has been studied, and the outer dimension of the silicon substrate is 156 mm square. Not limited.
  • the solar cell 5 has electrodes arranged on the light receiving surface and the back surface.
  • an n-type electrode is disposed on the light receiving surface side and a p-type electrode is disposed on the back surface side.
  • the solar cell string 4 is manufactured by connecting the plurality of solar cells 5 with the inter-cell connection tabs 21 by fixing the inter-cell connection tabs 21 to the solar cells 5 as shown in FIG. .
  • the solar cell strings 4 are electrically connected in series by inter-cell connection tabs 21 in which, for example, a copper foil having a thickness of 160 ⁇ m and a width of 2 mm is coated with a 20 ⁇ m-thick solder, and the inter-cell connection tabs 21 are adjacent solar cells.
  • a region on one end side is soldered to an electrode on the back surface side of one of the solar cells 5 among the cells 5.
  • the inter-cell connection tab 21 is soldered at the other end side to the electrode on the light receiving surface side of the other solar cell 5 among the adjacent solar cells 5.
  • the solar cell string 4 has nine solar cells 5 electrically connected in series.
  • step S30 the four solar cell strings 4 are arranged in parallel, and the adjacent solar cell strings 4 are electrically connected in series with the lateral connection tabs.
  • the solar cell array 3 in which 36 solar cells 5 are electrically connected in series is manufactured.
  • the solar cells 5 are arranged in an arrangement of 9 cells ⁇ 4 cells.
  • a laminated body of components of the solar cell panel 2 is formed and laminated.
  • Formation of a laminated body consists of a light-receiving surface sealing layer sheet
  • the back surface protection component 12 is sequentially laminated to form a laminate.
  • a transparent resin, ethylene-vinyl acetate (EVA) copolymer is used for the light-receiving surface sealing layer sheet and the back surface sealing layer sheet.
  • a solar cell panel 2 in which the solar cell array 3 is sealed is manufactured by performing a heat treatment step to heat and pressurize the laminate, and then cooling the laminate to laminate the laminate. That is, the light receiving surface protection component 11 and the solar cell array 3 are bonded by EVA of the light receiving surface sealing layer sheet, and the solar cell array 3 and the back surface protection component 12 are bonded by EVA of the back surface sealing layer sheet.
  • the laminated body is integrated. That is, the cross-sectional structure of the solar cell panel 2 is, from the light receiving surface side, the light receiving surface protection component 11, EVA, the solar cell array 3, EVA, and the back surface protection component 12. Thereafter, as shown in FIG. 5, an aluminum frame 13 is mounted around the solar cell panel 2.
  • the back surface protection component 12 includes an output lead 22 a electrically connected to the solar battery cell 5 at one end of the solar battery array 3 as an output lead 22 drawn from the solar battery array 3, and a solar battery array 3.
  • the output lead 22b electrically connected to the solar battery cell 5 at the other end is drawn out.
  • the output lead 22 a and the output lead 22 b are pulled out to the back surface of the solar cell panel 2 from a drawer cut 23 provided in the back surface protection component 12 in order to pull out the output lead 22 to the back surface of the solar cell panel 2. It is.
  • the terminal box main body 15 is temporarily placed on the terminal box forming portion 19 near the output lead 22 a and the output lead 22 b on the back surface protection component 12.
  • the module connection cable 17 is drawn into the terminal box body 15 in advance and is electrically connected to the terminal plate 24 disposed inside the terminal box body 15.
  • the output lead 22 a and the output lead 22 b are drawn out into the terminal box body 15 from the bottom surface output lead insertion hole 15 b provided on the bottom surface 15 a of the terminal box body 15.
  • the bottom surface output lead insertion hole 15 b is an insertion hole provided in the bottom surface of the terminal box body 15 in order to draw the output lead 22 from the bottom surface 15 a of the terminal box body 15 into the terminal box body 15.
  • step S50 the terminal box body 15 is bonded onto the temporarily placed back surface protection component 12.
  • step S60 soldering is performed inside the terminal box body 15 in step S60.
  • the output lead 22 a and the output lead 22 b drawn out inside the terminal box main body 15 are soldered inside the terminal box main body 15 and the terminal plate 24 connected to the module connecting cable 17.
  • the output lead 22 a and the output lead 22 b are soldered to the terminal plate 24, the output lead 22 a and the output lead 22 b are wound around the output lead insertion hole 25 opened in the terminal plate 24 with pliers or the like. In this manner, the output lead 22a and the output lead 22b and the terminal plate 24 are brought into close contact with each other, so that the output lead 22a and the output lead 22b and the terminal plate 24 are kept in contact with each other.
  • soldering is performed using a soldering iron while supplying solder between the output lead 22a and the terminal plate 24.
  • soldering is performed using a soldering iron while supplying solder between the output lead 22 b and the terminal plate 24.
  • the output lead 22a and the output lead 22b are coated with solder at a thickness of, for example, 30 ⁇ m in the area to be soldered to the terminal board 24.
  • step S70 a transmission X-ray inspection is performed on the solar cell panel 2, and it is determined whether the soldering state between the output lead 22 and the terminal plate 24 satisfies a predetermined determination criterion. That is, the transmission X-ray inspection is performed in a state where the terminal box body 15 is bonded to the back surface protection component 12 on the back side of the solar cell panel 2 and the output lead 22 and the terminal plate 24 are soldered.
  • the area to be soldered between the output lead 22 and the terminal board 24 is imaged with X-rays, and the soldering between the output lead 22 and the terminal board 24 is in an appropriate soldering state. Or whether the soldering state is inappropriate. That is, the X-ray image transmitted through the soldering target region between the output lead 22 and the terminal plate 24 is analyzed by irradiating the soldering target region between the output lead 22 and the terminal plate 24 with X-rays, The soldering state between the output lead 22 and the terminal board 24 is automatically determined according to a predetermined criterion.
  • the soldering target region between the output lead 22 and the terminal plate 24 is a region where the output lead 22 and the terminal plate 24 overlap in a direction parallel to the in-plane direction of the solar cell panel 2.
  • the predetermined criterion is a criterion for determining whether the soldering between the output lead 22 and the terminal board 24 is an appropriate soldering state or an inappropriate soldering state. Details of the transmission X-ray inspection will be described later.
  • step S70 If the soldering target area between the output lead 22 and the terminal board 24 does not satisfy the predetermined criterion, the result is No in step S70 and the process returns to step S60 to solder the output lead 22 and the terminal board 24. Is done again. As a result, it is possible to eliminate a soldering failure between the output lead 22 and the terminal plate 24.
  • step S70 If the soldering target area between the output lead 22 and the terminal board 24 satisfies a predetermined determination criterion, the result is Yes in step S70 and the process proceeds to step S80.
  • step S80 a potting agent (not shown) is filled in the terminal box body 15.
  • the potting agent is, for example, a resin.
  • the terminal box lid 16 is attached to the upper part of the terminal box body 15 to form the terminal box 14. Thereby, the solar cell module 1 is manufactured.
  • step S90 the output inspection of the solar cell module 1 is performed, and a series of processes for manufacturing the solar cell module 1 is completed.
  • FIG. 10 is a schematic perspective view showing the X-ray inspection apparatus 200 according to the first embodiment of the present invention.
  • FIG. 11 is a configuration diagram showing a functional configuration of the X-ray inspection apparatus 200 according to the first embodiment of the present invention.
  • the X-ray inspection apparatus 200 is used for manufacturing a solar cell module, and is a solar cell module manufacturing apparatus that inspects the solder joint state between the first metal component and the second metal component that constitute the solar cell panel 2.
  • the X-ray inspection apparatus 200 includes a transfer device 201, an X-ray generation device 202, an X-ray nondestructive inspection camera 203, a control device 204, and a display unit 205.
  • the transport device 201 is configured to horizontally support and transport the solar cell panel 2 to be inspected with the back side facing upward.
  • the transport device 201 is a conveyor configured to include, for example, a belt on which the solar battery panel 2 is placed, a transport roller (not illustrated) that moves the belt, a drive mechanism (not illustrated) that drives the transport roller, and the like. .
  • the X-ray generator 202 irradiates the X-ray 206 toward the terminal box body 15 of the solar cell panel 2 transported by the transport device 201.
  • the X-ray generation apparatus 202 limits an emission angle of an X-ray source (not shown) that generates a conical X-ray 206 and an X-ray 206 generated from the X-ray source to form an X-ray belt-like beam. And the restriction part.
  • the X-ray nondestructive inspection camera 203 is a detector that detects the X-ray 206 that has passed through the soldering target region between the output lead 22 and the terminal plate 24 in the solar battery panel 2 and generates an X-ray transmission signal. is there.
  • the X-ray generator 202 is an X-ray non-destructive inspection camera 203, which is disposed above the transfer device 201 in a direction parallel to the in-plane direction of the solar cell panel 2, that is, extending in the horizontal direction. It has a non-destructive inspection camera 203a.
  • the X-ray nondestructive inspection camera 203 is configured by arranging pixels of a large number of light receiving elements that receive the X-ray 206.
  • a charge-coupled device (CCD) camera is used as the X-ray nondestructive inspection camera 203.
  • a line sensor may be used as the X-ray nondestructive inspection camera 203.
  • the control device 204 includes an X-ray control unit 204a, a conveyance control unit 204b, an image information generation unit 204c, a calculation unit 204d, and a determination unit 204e.
  • the X-ray control unit 204a controls the X-ray generator 202 to irradiate the X-ray 206 from the X-ray generator 202.
  • the conveyance control unit 204b controls the conveyance device 201 to convey the solar cell panel 2.
  • the image information generation unit 204c takes in the X-ray transmission signal generated by the X-ray nondestructive inspection camera 203 and generates image information of the X-ray transmission image. In the generation of the image information in the image information generation unit 204c, various conventionally known image processes are used.
  • an X-ray transmission signal having a luminance corresponding to the intensity distribution of the X-ray 206 is X. It is generated by the non-destructive inspection camera 203.
  • the calculation unit 204d calculates the area ratio of the soldering portion where the terminal plate 24 and the output lead 22 are actually soldered to the area of the soldering target region in the direction parallel to the in-plane direction of the solar battery panel 2. And calculation from an X-ray transmission image.
  • the determination unit 204e determines whether the solder joint state between the terminal board 24 and the output lead 22 is good or not.
  • the determination unit 204e compares the area ratio of the soldered portion where the terminal plate 24 and the output lead 22 are actually soldered to the area of the soldering target region with a predetermined determination criterion stored in advance. The quality of the solder joint state is determined.
  • control device 204 is realized, for example, as a processing circuit having a hardware configuration shown in FIG.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the processing circuit according to the first embodiment of the present invention.
  • the control device 204 is realized by, for example, the processor 111 executing a program stored in the memory 112 shown in FIG.
  • a plurality of processors and a plurality of memories may cooperate to realize the above function.
  • a part of the function of the control device 204 may be mounted as an electronic circuit, and the other part may be realized using the processor 111 and the memory 112.
  • Display unit 205 displays an X-ray transmission image and other information.
  • the X-ray control unit 204a, the X-ray nondestructive inspection camera 203a, and a part of the transfer apparatus 201 are covered with a housing 207, and leakage of X-rays unnecessary for transmission X-ray inspection is prevented. Is prevented.
  • the control device 204 may be provided inside the housing 207 or may be provided outside the housing 207.
  • FIG. 13 is a flowchart showing the procedure of the transmission X-ray inspection according to the first embodiment of the present invention.
  • an X-ray transmission image acquisition process, a calculation process, and a determination process are sequentially performed.
  • step S210 an X-ray transmission image acquisition process is performed.
  • X-rays are irradiated toward the area where the terminal plate 24 and the output lead 22 constituting the solar cell panel 2 are soldered, and in the in-plane direction of the solar cell panel 2.
  • An X-ray transmission image is acquired in a soldering target region, which is a region where the terminal board 24 and the output lead 22 overlap in a parallel direction.
  • the solar cell panel 2 is placed on the transfer device 201. Then, the X-ray generator 202 irradiates the X-ray 206 toward the terminal box body 15 of the solar cell panel 2 placed on the transport device 201. Further, the solar cell panel 2 is transported by the transport device 201.
  • the X-ray nondestructive inspection camera 203 detects the X-ray 206 that has passed through the periphery of the terminal box body 15, images the periphery of the terminal box body 15, and generates an X-ray transmission signal.
  • the image information generation unit 204c takes in the X-ray transmission signal generated by the X-ray nondestructive inspection camera 203 and generates image information of the X-ray transmission image around the terminal box body 15 including the soldering target region. To do.
  • step S220 a calculation process is performed.
  • the calculation unit 204d is actually a soldered part in which the terminal plate 24 and the output lead 22 are soldered to the area of the soldering target region in a direction parallel to the in-plane direction of the solar battery panel 2. Is calculated from the X-ray transmission image.
  • step S230 a determination process is performed.
  • the determination unit 204e compares the area ratio of the soldered portion where the terminal plate 24 and the output lead 22 are actually soldered with respect to the area of the soldering target region to a predetermined determination standard. The quality of the solder joint state between the output lead 22 and the output lead 22 is determined.
  • terminal plate 24 corresponds to the first metal component constituting the solar cell panel 2.
  • the output lead 22 corresponds to a second metal part that constitutes the solar cell panel 2.
  • an X-ray belt-like beam is radiated from the X-ray generation apparatus 202 in the horizontal direction and upward direction, and the X-ray nondestructive inspection camera 203a It is possible to detect the X-ray 206 transmitted through the soldering target area. Thereby, a two-dimensional X-ray transmission image parallel to the in-plane direction of the solar cell panel 2 is obtained.
  • the two-dimensional X-ray transmission image is obtained by the X-ray non-destructive inspection by moving the solar cell panel 2 placed on the transfer device 201 in the traveling direction 208 of the transfer device 201 with respect to the X-ray belt-like beam.
  • the X-ray transmission signal generated by the camera 203a is captured by the image information generation unit 204c and rendered as two-dimensional image information.
  • FIG. 14 is a schematic perspective view showing another configuration example of the X-ray inspection apparatus 200 according to the first embodiment of the present invention.
  • a line sensor is used for the X-ray nondestructive inspection camera 203.
  • an X-ray belt-like beam is radiated in the horizontal direction and the upward direction from the X-ray generator 202 while the solar cell panel 2 is transported by the transport device 201.
  • the X-ray 206 that has passed through the soldering target region between the output lead 22 and the terminal plate 24 is parallel to the in-plane direction of the solar cell panel 2 above the transfer device 201, that is, in the horizontal direction.
  • Detection is performed by an X-ray line sensor 203al arranged so as to extend. Further, in this apparatus, the X-ray 206 that has passed through the soldering target region between the output lead 22 and the terminal plate 24 is orthogonal to the in-plane direction of the solar cell panel 2 and is along the transport direction of the solar cell panel 2. It is also detected by the X-ray line sensor 203bl that extends in the direction and is disposed on the side of the transport device 201 in a direction orthogonal to the transport direction of the solar cell panel 2. The conveyance direction of the solar cell panel 2 is the same direction as the traveling direction 208 of the conveyance device 201.
  • FIG. 15 is a schematic perspective view showing another configuration example of the X-ray inspection apparatus 200 according to the first embodiment of the present invention.
  • a line sensor is used for the X-ray nondestructive inspection camera 203.
  • an X-ray belt-like beam is emitted upward from an X-ray generator 202 a disposed under the transfer apparatus 201 while the transfer panel 201 transfers the solar battery panel 2, and an output lead X-ray 206 transmitted through the soldering target area between the terminal board 24 and the terminal board 24 can be detected by the X-ray line sensor 203al.
  • FIG. 15 is a schematic perspective view showing another configuration example of the X-ray inspection apparatus 200 according to the first embodiment of the present invention.
  • a line sensor is used for the X-ray nondestructive inspection camera 203.
  • an X-ray belt-like beam is emitted upward from an X-ray generator 202 a disposed under the transfer apparatus 201 while the transfer panel 201 transfers the solar battery panel 2, and an output lead
  • an X-ray belt-like beam is radiated in the horizontal direction from the X-ray generator 202 b disposed on the side surface of the transfer apparatus 201, and between the output lead 22 and the terminal plate 24.
  • the X-ray 206 transmitted through the soldering target area can be detected by the X-ray line sensor 203bl.
  • the direction perpendicular to the traveling direction 208 of the transport device 201 is used.
  • a two-dimensional X-ray transmission image of a longitudinal section can be obtained.
  • the X-ray band beam is emitted from the X-ray generating device 202a and the X-ray generating device 202b, and the information of the X-ray 206 detected by the X-ray line sensor 203al
  • the information of the X-ray 206 detected by the line line sensor 203bl is obtained.
  • the X-ray transmission signal generated by the X-ray line sensor 203bl is captured by the image information generation unit 204c and drawn as two-dimensional image information, so that the information in the height direction of the solar cell panel 2 and the output are output. Information on the solder thickness in the soldering target region between the lead 22 and the terminal board 24 is obtained.
  • FIG. 16 is a plan view of the terminal box main body 15 showing an X-ray transmission image capturing location in the transmission X-ray inspection in the first embodiment of the present invention.
  • the inspection is performed by observing the X-ray observation region 120 in FIG.
  • observation results of the X-ray observation region 120 will be described.
  • the X-ray output conditions in the observation of the X-ray observation region 120 were a tube voltage in the range of 50 kV to 160 kV and a tube current in the range of 40 ⁇ A to 120 ⁇ A. By using such X-ray output conditions, an X-ray transmission image of the X-ray observation region 120 can be obtained with certainty.
  • the tube current range is an appropriate range in which a clear X-ray transmission image of the X-ray observation region 120 can be obtained in the tube voltage range.
  • FIG. 17 is a view showing an image obtained by photographing the X-ray observation region 120 according to the first embodiment of the present invention with a stereomicroscope.
  • Solder 26 is stacked on the output lead 22 and the other terminal plate 24a. 17 to 22 show a case where another terminal plate 24a, which is a more preferable form of the terminal plate 24, and the output lead 22 are soldered as will be described later. Details of the other terminal board 24a will be described later.
  • FIG. 18 is a diagram showing an X-ray transmission image of the X-ray observation region 120 according to the first embodiment of the present invention. In the X-ray transmission image of FIG.
  • solder 26 is supplied between the output lead 22 and the other terminal plate 24a, and the solder 26 is interposed between the output lead 22 and the other terminal plate 24a.
  • Solder 26 is filled between the solder unsupplied portion 212 where there is a gap because it is not filled and the output lead 22 and the other terminal plate 24a, and the output lead 22 and the other terminal plate 24a are soldered. It is possible to distinguish and observe the soldering portions 211 that are present.
  • the solder unsupplied portion 212 is in the case where the solder is not supplied to all regions in the thickness direction between the output lead 22 and the other terminal plate 24a, and in the thickness direction between the output lead 22 and the other terminal plate 24a. Including a case where solder is not supplied to some areas.
  • FIG. 19 is an X-ray transmission image obtained by enlarging the X-ray observation region 120 according to the first embodiment of the present invention, and shows an X-ray transmission image obtained by enlarging a part of FIG.
  • FIG. 20 is a diagram showing a simplified image obtained by subjecting the soldering target region 221 in the X-ray transmission image of FIG. 19 to image processing by distinguishing between the soldering portion 211 and the solder non-supplying portion 212. From FIG. 20, it is observed that there are a plurality of solder non-supply parts 212 in addition to the solder non-supply part 212 present at the center of the soldering part 211.
  • FIG. 21 is a diagram showing an X-ray transmission image obtained by enlarging another X-ray transmission image of the X-ray observation region 120 according to the first embodiment of the present invention.
  • FIG. 22 is a diagram illustrating a simplified image obtained by performing image processing on the soldering target area 221 of the X-ray transmission image of FIG. From FIG. 22, it is observed that the solder unsupplied portion 212 occupies a large area in the soldering target region 221 between the output lead 22 and the other terminal plate 24a, and the soldered portion 211 exists partially. Is done.
  • the solder unsupplied portion 212 is connected to the output lead 22 and the other terminal plate.
  • the area of the soldering part 211 may be different.
  • the inventor uses the X-ray transmission image of the soldering target region 221 in the direction parallel to the in-plane direction of the solar cell panel 2 and the soldering portion 211 in the area of the soldering target region 221. It has been found that by deriving the area ratio, it is possible to determine the state of solder bonding in the soldering target region 221, that is, the degree of solder bonding.
  • a temperature cycle test A-1 of JIS8917 is performed as the temperature cycle test.
  • the specified number of cycles in the temperature cycle test of JIS8917 is 200 cycles.
  • the degree of deterioration with respect to the initial value after the test is less than 5%.
  • Manufacturers of solar cell modules have estimated lifetimes of, for example, several tens of years by uniquely defining temperature ranges and cycle numbers based on these conditions. In the first embodiment, an example in which the degree of deterioration in 1000 cycles is evaluated will be described.
  • the degree of deterioration with respect to the initial value has a correlation with the number of temperature cycles and the area of the soldering part 211.
  • the area ratio of the soldering portion 211 to the area in the surface of the soldering target region exceeds 7% in the direction parallel to the in-plane direction of the solar cell panel 2. It was confirmed that the degree of deterioration was suppressed to less than 5%.
  • the area ratio of the soldering part 211 to the in-plane area of the soldering target region is about 90% and exceeds 7%, so that the degree of deterioration satisfies the requirement of less than 5%. .
  • the area ratio of the soldering portion 211 to the in-plane area of the soldering target region is about 4% and does not exceed 7%, so the degree of deterioration is less than 5%. Does not meet regulations.
  • the area ratio of the soldering part 211 to the in-plane area of the soldering target region is set, and the degree of deterioration is less than 5%.
  • the soldering failure between the output lead 22 and the other terminal plate 24a is eliminated by performing the soldering between the output lead 22 and the other terminal plate 24a again. It becomes possible.
  • FIGS. 17 to 22 as an example of an X-ray transmission image in the transmission X-ray inspection, a case where the other terminal board 24 a and the output lead 22 are soldered is shown.
  • the terminal board 24 and the output lead 22 that are not formed are soldered, it is possible to eliminate the soldering failure between the terminal board 24 and the output lead 22 in the same manner. That is, in a direction parallel to the in-plane direction of the solar cell panel 2, the area ratio of the soldering portion 211 to the in-plane area of the soldering target region is set, and the degree of deterioration is less than 5%. For the battery panel 2, soldering between the output lead 22 and the terminal plate 24 may be performed again.
  • FIG. 23 is a plan view showing another terminal board 24a according to the first embodiment of the present invention.
  • FIG. 24 is a side view showing another terminal board 24a according to the first embodiment of the present invention.
  • 23 and 24 have a groove 27 in the region including the soldering target region in the configuration of the terminal plate 24 in order to make the solder unsupplied portion 212 in the X-ray transmission image clearer. It is the formed terminal board.
  • the dimensions of the groove 27 are, for example, a width x of 1 mm and a depth y of 0.2 mm.
  • the width x is a length in a direction parallel to the width direction of the output lead 22 soldered to the other terminal plate 24a.
  • the image of the solder unsupplied portion 212 existing in the region where the groove 27 is formed is clearer than the image of the other solder unsupplied portion 212 existing in the region where the groove 27 is not formed. .
  • a part of the interval between the output lead 22 and the other terminal plate 24a is soldered at a thickness greater than at least 0.1 mm. That is, when soldering the output lead 22 and the other terminal plate 24a, the solder is supplied so that a part of the interval between the output lead 22 and the other terminal plate 24a is at least thicker than 0.1 mm. It is preferable to perform soldering. It is more preferable that all the intervals between the output lead 22 and the other terminal plate 24a are soldered at a thickness greater than at least 0.1 mm.
  • the width of the groove 27 is 10% or more of the length in the length direction of the output lead 22 in the soldering target region, and the depth is larger than 0.1 mm. Thereby, the sharpness of the solder non-supplying portion 212 in the X-ray transmission image becomes higher.
  • the width of the groove 27 is less than 10% of the width in the length direction of the output lead 22 in the soldering target region, the reliability of the solder joint between the output lead 22 and the other terminal plate 24a with respect to the temperature cycle is ensured.
  • the upper limit of the width of the groove 27 is a length in a range in which contact with the bottom surface of the groove 27 due to the deflection of the output lead 22 does not occur in consideration of the mechanical strength of the output lead 22.
  • the groove 27 has a width of 1 mm or more and a depth of more than 0.1 mm. Thereby, the sharpness of the solder non-supplying portion 212 in the X-ray transmission image becomes higher.
  • the width of the groove 27 is less than 1 mm, the area of the soldering target area necessary for ensuring the reliability of the solder joint between the output lead 22 and the other terminal plate 24a with respect to the temperature cycle as described above. The area of the area where a clear X-ray transmission image for securing the area ratio of the soldered portion where the other terminal plate 24a and the output lead 22 are actually soldered is reduced.
  • the upper limit of the width of the groove 27 is when the thickness of the output lead 22 is 100 ⁇ m thick without including the solder arranged above and below, that is, when the actual thickness of the output lead 22 is 100 ⁇ m.
  • the length of the output lead 22 is 2 mm in a range where the output lead 22 is bent and does not contact the bottom surface of the groove 27.
  • FIG. 25 is a diagram showing the situation of the solder unsupply part 212a and the soldering part 211 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. Note that FIG. 25 shows a state seen through the output lead 22.
  • FIG. 26 is a diagram illustrating a situation of the solder unsupplied portion 212a and the soldered portion 211 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. It is sectional drawing in the XXVI-XXVI line. In FIG. 26, the output lead 22 is shown.
  • FIG. 26 is a diagram showing the situation of the solder unsupply part 212a and the soldering part 211 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. It is sectional drawing in the XXVI-XXVI line. In FIG. 26, the output lead 22 is shown.
  • FIG. 26 the output lead 22 is shown.
  • FIG. 27 is a diagram showing the state of the solder unsupplied portions 212b and 212c and the soldering portion 211 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention.
  • FIG. 27 shows a state seen through the output lead 22.
  • a groove 27 is not formed in the terminal plate 24.
  • FIG. 28 is a diagram showing a situation of the solder unsupplied parts 212b and 212c and the soldering part 211 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention. It is sectional drawing in the XXVIII-XXVIII line. In FIG. 28, the output lead 22 is shown.
  • the output lead 22 When soldering the output lead 22 to the terminal plate 24 or another terminal plate 24a, the output lead 22 is temporarily fixed by being tangled to the terminal plate 24 or another terminal plate 24a as described above. To do. For this reason, it is difficult to hold the opposing surfaces of the output lead 22 and the terminal plate 24 or other terminal plate 24a in parallel during the soldering operation. Further, although the amount of solder used for soldering is controlled to be constant, it is difficult to make the amount of solder 26 supplied between the output lead 22 and the terminal plate 24 or another terminal plate 24a constant. .
  • the output lead 22 and the other terminal plate 24a are not parallel, and the interval between the output lead 22 and the other terminal plate 24a is h1 at one end and h2 at the other end. H1> h2.
  • the solder non-supply portion 212a exists in the region where the groove 27 is formed.
  • the thickness of the solder unsupply part 212a is larger than at least 0.2 mm which is the depth of the groove 27. Accordingly, when the X-ray transmission image of the example shown in FIG. 26 is observed, the contrast between the non-solder supply part 212a and the soldering part 211 becomes strong, so that the clear solder non-supply part 212a in the X-ray transmission image is clear. The degree becomes higher.
  • the output lead 22 and the terminal plate 24 are not parallel, and the distance between the output lead 22 and the terminal plate 24 is h3 at one end and h4 at the other end. , H3> h4.
  • the terminal plate 24 does not have the groove 27.
  • the groove 27 in the terminal plate 24 so that the thickness of the solder non-supply part 212 is increased when the solder non-supply part 212 is formed.
  • the output lead 22 may be entangled with the terminal plate 24 in advance so that the distance between the output lead 22 and the terminal plate 24 is larger than the thickness near the lower limit at which a clear image can be obtained in the X-ray transmission image.
  • soldering is performed while supplying the solder while temporarily holding the terminal board 24 with a dedicated jig or the like coated with polytetrafluoroethylene to which no solder adheres.
  • the target portions are the output lead 22, the solder 26 of the other terminal plate 24 a, and the solder unsupplied portion 212 a.
  • the attenuation is expressed by Lambert-Beer's law. For example, even when the solder unsupply portion 212a, that is, the atmospheric transmittance is 1, and the transmittance of the solder 26 is 0.99, which is slightly smaller than the transmittance 1, for example.
  • the ratio of the intensity of X-rays transmitted through the solder 26 and the intensity of X-rays transmitted through the solder unsupplied portion 212a is about 3 times when the thickness of the solder 26 is 0.1 mm, and about 5 times when the thickness of the solder 26 is 0.2 mm. Become. On the other hand, when the resolution of the X-ray nondestructive inspection camera 203 is a megapixel specification, if the field of view is 20 mm square or more, the resolution is about 50 ⁇ m, and therefore, it is possible to detect the submillimeter solder unsupplied portion 212a. Become. From the above relationship, the depth of the groove 27 of the terminal board 24 is 0.2 mm, and the specification is carried out with an increased clarity.
  • Lambert-Beer's law is that the intensity of radiation before entering an object is I 0 , the intensity of radiation after passing through the object is I, the thickness of the object is x, and the absorption coefficient of the object is ⁇ .
  • the following formula (1) is established.
  • the detected intensity of the X-ray at the portion where the solder exists near the other end is set to 1 / a.
  • the X-ray detection intensity is set to 1 because the X-rays are completely transmitted through the solder non-supply part 212b and the solder non-supply part 212c. Therefore, the difference in detected X-ray intensity between the solder unsupplied portion 212b and the solder unsupplied portion 212c and the vicinity of the other end is 1-1 / a.
  • the detected intensity of the X-ray near the other end where the distance between the output lead 22 and the other terminal plate 24a is h2 is 1 / a.
  • the interval between the output lead 22 and the other terminal plate 24a in a part of the formation part of the groove 27 is h5.
  • the detected intensity of X-rays at the formation portion of the groove 27 is expressed as (1 / a) h5 / h2 .
  • h2 h4.
  • the X-ray detection intensity is 1 because the X-rays are completely transmitted through the solder unsupplied portion 212a. Therefore, the difference in detected X-ray intensity between the other end and the portion where the groove 27 is formed is 1 ⁇ (1 / a) h5 / h2 .
  • the lower limit of the X-ray detection intensity ratio between the other end and the groove 27 forming portion is set to 3 times.
  • the pixel resolution is determined by the number of pixels of the CCD of the X-ray nondestructive inspection camera 203 and the size of the visual field projected by the X-ray nondestructive inspection camera 203.
  • the CCD is an image sensor and is composed of a collection of small elements called pixels, which convert the intensity of brightness into electrical signals. At present, 310,000 pixels are standard for industrial X-ray nondestructive inspection cameras 203.
  • the high-performance X-ray non-destructive inspection camera 203 is mainly a 5 megapixel camera called a megapixel type.
  • the visual field here is a range that appears as an image when the image is captured by the X-ray nondestructive inspection camera 203.
  • the field of view can be freely changed from a wide field of view to a narrow field of view by adjusting the lens used in the X-ray nondestructive inspection camera 203.
  • the actual size of the X-ray observation region 120 shown in FIGS. 17 and 18 is 15 mm square.
  • FIGS. 29 is a cross-sectional view schematically showing a cross section of the solder layer 231 between the terminal plate 24 and the output lead 22 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention.
  • FIG. 30 is a view showing an upper surface X-ray observation image of the solder layer 231 between the terminal plate 24 and the output lead 22 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention.
  • It is. 30 is an X-ray observation image when X-rays 206 are detected above the output lead 22 by irradiating the solder-bonded terminal plate 24 and the output lead 22 with X-rays from below the terminal plate 24. It is a line transmission image.
  • FIG. 31 is a schematic cross-sectional view of the solder layer 231 between the other terminal plate 24a and the output lead 22 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention.
  • FIG. FIG. 32 shows an upper surface X-ray observation of the solder layer 231 between the other terminal plate 24a and the output lead 22 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. It is a figure which shows an image. 32, the X-ray 206 is detected above the output lead 22 by irradiating X-rays from below the other terminal plate 24a on the other terminal plate 24a and the output lead 22 that are soldered together. It is an X-ray transmission image in the case of. The depth of the groove 27 in the other terminal plate 24a is 0.2 mm.
  • the solder layer 231 includes a void 232a and a void 232b, which are solder unsupplied portions 212a, in the soldering portion 211.
  • the output lead 22 and the terminal plate 24 are not parallel, and the interval between the output lead 22 and the terminal plate 24 is h3 at one end, and h4 at the other end. > H4.
  • the terminal plate 24 has no groove 27.
  • the thickness of the solder layer 231 is thinner than the lower limit at which a clear image is obtained in the X-ray transmission image, and it may be difficult to distinguish in the X-ray transmission image.
  • the solder layer 231 includes a void 232c and a void 232d that are not supplied with the solder 212a in the soldering portion 211.
  • the output lead 22 and the other terminal plate 24a are not parallel, and the distance between the output lead 22 and the other terminal plate 24a is h1 at one end and h2 at the other end. H1> h2.
  • the void 232c and the void 232d exist in the region where the groove 27 is formed.
  • the thickness of the void 232d is greater than at least 0.2 mm, which is the depth of the groove 27.
  • the solder layer 231 becomes thicker in the groove 27 portion, and even if there is a difference in the thickness of the solder layer 231 due to the inclination, the influence on the contrast between the soldered portion 211 and the solder unsupplied portion 212a in the X-ray transmission image. Less is. Therefore, when the X-ray transmission image of the example shown in FIG. 32 is observed, the contrast between the void 232d and the soldering portion 211 becomes stronger, so that the upper surface X-ray observation image of FIG. A void 232c that is thin and buried in the groove 27 can be identified.
  • the terminal box 14 in order to obtain a clear X-ray transmission image, it is preferable to arrange the terminal box 14 so that only the soldered portions 211 of the output lead 22 and the terminal plate 24 exist in the cross-sectional structure of the solar cell module 1.
  • the cross-sectional structure of the lower portion of the terminal box 14 in the terminal box forming portion 19 is such that components are arranged in the order of adhesive, back surface protection component 12, EVA, solar battery cell 5, EVA, and light receiving surface protection component 11 from the back side. .
  • inter-cell connection tabs 21 are arranged at equal intervals in one solar cell 5, and output leads 22 and terminals There is a possibility that the inter-cell connection tab 21 is disposed below the soldering portion of the plate 24.
  • FIG. 33 is a plan view showing a positional relationship between the soldered portions of the output lead 22 and the terminal plate 24 and the inter-cell connection tab 21 according to the first embodiment of the present invention.
  • the one having a relatively high X-ray absorption rate is the inter-cell connection tab 21 covered with solder. Therefore, as shown in FIG. It is preferable to arrange so that the soldered portion of the terminal plate 24 and the inter-cell connection tab 21 do not overlap. That is, when arranging the terminal box 14 on the solar cell panel 2, it is preferable to arrange the terminal box 14 at a position that does not overlap the inter-cell connection tab 21 in the in-plane direction of the solar cell panel 2.
  • other materials have a relatively low X-ray absorptance and have little effect on the sharpness of the X-ray transmission image, and thus do not cause a problem.
  • the soldered state between the output lead 22 and the terminal plate 24 in the terminal box 14 of the solar cell panel 2 can be grasped from the X-ray transmission image. As a result, it is possible to easily determine whether the soldering state between the output lead 22 and the terminal plate 24 is an appropriate soldering state or an inappropriate soldering state. Then, the soldering failure between the output lead 22 and the terminal plate 24 can be eliminated by re-soldering the soldering failure between the output lead 22 and the terminal plate 24.
  • the manufacturing method of the solar cell module according to the first embodiment it is possible to easily determine the soldering state of the soldering portion in the solar cell module 1, and to ensure the desired long-term reliability. Can be realized stably, and an effect that a highly reliable solar cell module can be provided is obtained.
  • FIG. FIG. 34 is a perspective view of the solar cell array 3 in which the solar cell strings 4 according to the second embodiment of the present invention are soldered together by the inter-string connection tabs 28 and connected in series, as viewed from the light receiving surface side.
  • FIG. 35 is a flowchart showing the procedure of the method for manufacturing the solar cell module 1 according to the second embodiment of the present invention.
  • the soldered state between the solar cell string 4 and the connection tabs 28 between strings can be inspected by the transmission X-ray inspection described above. That is, the soldering state between the inter-cell connection tab 21 and the inter-string connection tab 28 can be inspected by the transmission X-ray inspection described above. Inspection is performed by the X-ray inspection apparatus 200 described above in a state where the solar cell array 3 is placed on the light receiving surface protection component 11. This transmission X-ray inspection is a step S110 between step S30 and step S40. In the case of No in step S110, the process returns to step S30, and soldering between the inter-cell connection tab 21 and the inter-string connection tab 28 is performed again.
  • the interstring connection tab 28 corresponds to the first metal part.
  • the inter-cell connection tab 21 corresponds to the second metal part.
  • the soldering state between the solar battery cell 5 and the inter-cell connection tab 21 can be inspected by the transmission X-ray inspection described above. That is, by the above-described transmission X-ray inspection, the soldering state between the inter-cell connection tab 21 and the back surface connection electrode 31 can be inspected as shown in FIG. Inspection is performed by the X-ray inspection apparatus 200 described above in a state where the solar cell array 3 is placed on the light receiving surface protection component 11. This transmission X-ray inspection is a step S110 between step S30 and step S40. In the case of No in step S110, the process returns to step S20, and soldering between the solar battery cell 5 and the inter-cell connection tab 21 is performed again.
  • the inter-cell connection tab 21 corresponds to the first metal part.
  • the back surface connection electrode 31 corresponds to the second metal part. Similarly, the soldering state between the light receiving surface side bus electrode of the solar battery cell 5 and the inter-cell connection tab 21 can be inspected.
  • the soldering state between the inter-cell connection tab 21 and the inter-string connection tab 28 and the solar cell 5 and the inter-cell connection tab 21 is highly reliable solar cell module by identifying places where soldering is not sufficiently performed by inspecting the soldering state between them, performing appropriate soldering again, and preventing the occurrence of defective soldering Can be manufactured.

Abstract

This solar cell module manufacturing method includes a first step for directing X-rays toward a region where a first metal component and a second metal component constituting a solar panel are soldered together, and acquiring an X-ray transmission image in a region where soldering is to be carried out, which is the region where the first metal component and the second metal component overlap in a direction parallel to the in-plane direction of the solar panel. This solar cell module manufacturing method also includes a second step for calculating, from the X-ray transmission image, the area ratio of a soldering portion where the first metal component and the second metal component are actually joined by soldering to the region where soldering is to be carried out in the direction parallel to the in-plane direction of the solar panel. This solar cell module manufacturing method also includes a third step for comparing the area ratio with a predefined determination standard to determine whether the solder joint state between the first metal component and the second metal component is good or not.

Description

太陽電池モジュールの製造方法、太陽電池モジュールの製造装置および太陽電池モジュールSolar cell module manufacturing method, solar cell module manufacturing apparatus, and solar cell module
 本発明は、端子ボックスを有する太陽電池モジュールの製造方法、太陽電池モジュールの製造装置および太陽電池モジュールに関する。 The present invention relates to a method for manufacturing a solar cell module having a terminal box, a solar cell module manufacturing apparatus, and a solar cell module.
 太陽光発電システムは、家屋に代表される建築物の屋根、または太陽電池システムを敷設することを前提に整地された敷地といった設置場所に設置された太陽電池モジュールから、インバータを経由して直流電力を系統に供給する。太陽光発電システムは、複数の太陽電池モジュールを相互に電気的に接続することで構成されている。太陽電池モジュール間の電気的接続は、太陽電池モジュールにおいて受光面と反対側を向く裏面に配置された端子ボックスを経由する。 A solar power generation system uses direct current power from a solar cell module installed at an installation site such as a roof of a building represented by a house or a site prepared on the premise of installing a solar cell system via an inverter. Is supplied to the grid. The solar power generation system is configured by electrically connecting a plurality of solar cell modules to each other. The electrical connection between the solar cell modules is via a terminal box arranged on the back surface facing the opposite side to the light receiving surface in the solar cell module.
 太陽電池モジュールの内部で全ての太陽電池セルが直列に接続された太陽電池アレイからは、プラス電極に接続したプラス引き出し線およびマイナス電極に接続したマイナス引き出し線が太陽電池モジュールの裏面側に引き出されている。端子ボックスは、プラス引き出し線とプラスのモジュール連結ケーブルとがはんだ接合により接続された結節点、およびマイナス引き出し線とマイナスのモジュール連結ケーブルとがはんだ接合により接続された結節点となっている。 From the solar cell array in which all the solar cells are connected in series inside the solar cell module, the plus lead wire connected to the plus electrode and the minus lead wire connected to the minus electrode are drawn to the back side of the solar cell module. ing. The terminal box has a node point where the plus lead wire and the plus module connecting cable are connected by solder joint, and a node point where the minus lead wire and the minus module connecting cable are connected by solder joint.
 端子ボックスにおける電気的接続部であるはんだ付け部は、太陽電池モジュールの製品寿命を決める重要な部分の一つである。しかしながら、端子ボックスにおけるはんだ付けは、人が行うことが多いため、はんだ付けのでき具合は作業者の熟練度によって変わる場合があった。このため、電気的接続部の耐久性を確保するための工夫が成されている。 The soldering part, which is an electrical connection part in the terminal box, is one of the important parts that determines the product life of the solar cell module. However, since soldering in the terminal box is often performed by a person, the degree of soldering may vary depending on the skill level of the operator. For this reason, the device for ensuring the durability of an electrical connection part is made.
 特許文献1には、出力取出線の端部と端子電極部材の端部とが半田接続された半田接続部を保護カバーで保護することが開示されている。 Patent Document 1 discloses that a protective connecting cover protects a solder connection portion in which an end portion of an output lead wire and an end portion of a terminal electrode member are solder-connected.
特開2001-284624号公報JP 2001-284624 A 特開2014-190701号公報JP 2014-190701 A
 しかしながら、はんだ付け部のはんだ付け状況は一般的に目視で確認されるため、作業者の熟練度によって判断が異なる可能性があった。 However, since the soldering state of the soldering part is generally confirmed visually, the judgment may differ depending on the skill level of the operator.
 一方、近年、電子機器のプリント基板の表面実装においては、特許文献2に開示されるように、基板の表面側のはんだ付け部をより正確に検査するためにX線検査が行われるようになってきている。 On the other hand, in recent years, in surface mounting of a printed circuit board of an electronic device, as disclosed in Patent Document 2, an X-ray inspection has been performed in order to more accurately inspect a soldered portion on the surface side of the substrate. It is coming.
 しかしながら、特許文献2では、はんだ付け部のはんだ付け状況の良否を判定する方法については言及されていない。 However, Patent Document 2 does not mention a method for determining whether the soldering state of the soldering portion is good or bad.
 本発明は、上記に鑑みてなされたものであって、太陽電池モジュールにおけるはんだ付け部のはんだ付け状態を容易に判定可能な太陽電池モジュールの製造方法を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a method for manufacturing a solar cell module capable of easily determining the soldering state of a soldered portion in the solar cell module.
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池モジュールの製造方法は、太陽電池パネルを構成する第1の金属部品と第2の金属部品とのはんだ付けが行われた領域に向けてX線を照射して、太陽電池パネルの面内方向に平行な方向において第1の金属部品と第2の金属部品とが重なった領域であるはんだ付け対象領域におけるX線透過像を取得する第1工程を含む。また、太陽電池モジュールの製造方法は、太陽電池パネルの面内方向と平行な方向における、はんだ付け対象領域の面積に対する、実際に第1の金属部品と第2の金属部品とがはんだ接合されているはんだ付け部の面積比を、X線透過像から演算する第2工程を含む。また、太陽電池モジュールの製造方法は、面積比を既定の判定基準と比較して第1の金属部品と第2の金属部品とのはんだ接合状態の良否を判定する第3工程を含む。 In order to solve the above-described problems and achieve the object, the method for manufacturing a solar cell module according to the present invention involves soldering the first metal component and the second metal component that constitute the solar cell panel. X-ray transmission in the soldering target region, which is a region where the first metal component and the second metal component overlap in a direction parallel to the in-plane direction of the solar cell panel. A first step of acquiring an image. Further, in the method for manufacturing a solar cell module, the first metal component and the second metal component are actually solder-bonded to the area of the soldering target region in a direction parallel to the in-plane direction of the solar cell panel. A second step of calculating the area ratio of the soldered portions from the X-ray transmission image. Moreover, the manufacturing method of a solar cell module includes the 3rd process which determines the quality of the solder joint state of a 1st metal component and a 2nd metal component by comparing an area ratio with a predetermined criterion.
 本発明にかかる太陽電池モジュールの製造方法は、太陽電池モジュールにおけるはんだ付け部のはんだ付け状態を容易に判定可能である、という効果を奏する。 The method for manufacturing a solar cell module according to the present invention has an effect that the soldered state of the soldered portion in the solar cell module can be easily determined.
本発明の実施の形態1にかかる太陽電池モジュールを受光面側から見た斜視図The perspective view which looked at the solar cell module concerning Embodiment 1 of this invention from the light-receiving surface side. 本発明の実施の形態1にかかる太陽電池モジュールを受光面と反対側を向く裏面側から見た斜視図The perspective view which looked at the solar cell module concerning Embodiment 1 of this invention from the back surface side which faced the opposite side to a light-receiving surface. 本発明の実施の形態1にかかる太陽電池モジュールの製造方法の手順を示すフローチャートThe flowchart which shows the procedure of the manufacturing method of the solar cell module concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池ストリングを受光面側から見た斜視図The perspective view which looked at the solar cell string concerning Embodiment 1 of this invention from the light-receiving surface side 本発明の実施の形態1にかかる太陽電池パネルを受光面側から見た斜視図The perspective view which looked at the solar cell panel concerning Embodiment 1 of this invention from the light-receiving surface side. 本発明の実施の形態1にかかる太陽電池パネルを裏面側から見た斜視図The perspective view which looked at the solar cell panel concerning Embodiment 1 of this invention from the back surface side. 本発明の実施の形態1にかかる太陽電池パネルの裏面の出力リードの近くの位置に端子ボックス本体が仮置きされた状態を示す平面図The top view which shows the state by which the terminal box main body was temporarily placed in the position near the output lead of the back surface of the solar cell panel concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池パネルの裏面の端子ボックス本体内で出力リードと端子板とがはんだ付けされた状態を示す平面図The top view which shows the state by which the output lead and the terminal board were soldered within the terminal box main body of the back surface of the solar cell panel concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池モジュールを裏面側から見た斜視図The perspective view which looked at the solar cell module concerning Embodiment 1 of this invention from the back surface side 本発明の実施の形態1にかかるX線検査装置を示す模式斜視図1 is a schematic perspective view showing an X-ray inspection apparatus according to a first embodiment of the present invention. 本発明の実施の形態1にかかるX線検査装置の機能の構成を示す構成図1 is a configuration diagram showing a functional configuration of an X-ray inspection apparatus according to a first embodiment of the present invention. 本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図The figure which shows an example of the hardware constitutions of the processing circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる透過X線検査の手順を示すフローチャートFlowchart showing the procedure of transmission X-ray inspection according to the first embodiment of the present invention. 本発明の実施の形態1にかかるX線検査装置の他の構成例を示す模式斜視図Schematic perspective view showing another configuration example of the X-ray inspection apparatus according to the first embodiment of the present invention. 本発明の実施の形態1にかかるX線検査装置の他の構成例を示す模式斜視図Schematic perspective view showing another configuration example of the X-ray inspection apparatus according to the first embodiment of the present invention. 本発明の実施の形態1における透過X線検査でのX線透過像の撮像箇所を示す端子ボックス本体の平面図The top view of the terminal box main body which shows the imaging location of the X-ray transmission image in the transmission X-ray inspection in Embodiment 1 of this invention 本発明の実施の形態1にかかるX線観察領域を実体顕微鏡で撮影した画像を示す図The figure which shows the image which image | photographed the X-ray observation area | region concerning Embodiment 1 of this invention with the stereomicroscope. 本発明の実施の形態1にかかるX線観察領域のX線透過像を示す図The figure which shows the X-ray transmissive image of the X-ray observation area | region concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるX線観察領域を拡大したX線透過像であり、図18の一部を拡大したX線透過像を示す図18 is an X-ray transmission image obtained by enlarging the X-ray observation region according to the first embodiment of the present invention, and showing an X-ray transmission image obtained by enlarging a part of FIG. 図19のX線透過像におけるはんだ付け対象領域に対して、はんだ付け部とはんだ未供給部とを区別して画像処理を施して簡略化した画像を示す図The figure which shows the image simplified by performing image processing, distinguishing a soldering part and a solder non-supply part with respect to the soldering object area | region in the X-ray transmission image of FIG. 本発明の実施の形態1にかかるX線観察領域の他のX線透過像を拡大したX線透過像を示す図The figure which shows the X-ray transmission image which expanded the other X-ray transmission image of the X-ray observation area | region concerning Embodiment 1 of this invention. 図21のX線透過像のはんだ付け対象領域に対して、はんだ付け部とはんだ未供給部とを区別して画像処理を施して簡略化した画像を示す図FIG. 21 is a diagram showing a simplified image obtained by performing image processing on the soldering target region of the X-ray transmission image of FIG. 本発明の実施の形態1にかかる他の端子板を示す平面図The top view which shows the other terminal board concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる他の端子板を示す側面図The side view which shows the other terminal board concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる他の端子板に出力リードが接続された場合のはんだ未供給部とはんだ付け部の状況を示した図The figure which showed the condition of the solder unsupply part and soldering part when an output lead is connected to the other terminal board concerning Embodiment 1 of this invention 本発明の実施の形態1にかかる他の端子板に出力リードが接続された場合のはんだ未供給部とはんだ付け部の状況を示した図であり、図25におけるXXVI-XXVI線における断面図FIG. 26 is a diagram showing a situation of a solder unsupplied part and a soldered part when the output lead is connected to another terminal board according to the first exemplary embodiment of the present invention, and a sectional view taken along line XXVI-XXVI in FIG. 本発明の実施の形態1にかかる端子板に出力リードが接続された場合のはんだ未供給部とはんだ付け部の状況を示した図The figure which showed the condition of the solder unsupply part and soldering part when an output lead is connected to the terminal board concerning Embodiment 1 of this invention 本発明の実施の形態1にかかる端子板に出力リードが接続された場合のはんだ未供給部とはんだ付け部の状況を示した図であり、図27におけるXXVIII-XXVIII線における断面図FIG. 28 is a diagram showing a situation of a solder unsupplied portion and a soldered portion when an output lead is connected to the terminal board according to the first exemplary embodiment of the present invention, and a cross-sectional view taken along line XXVIII-XXVIII in FIG. 本発明の実施の形態1にかかる端子板に出力リードが接続された場合の、端子板と出力リードとの間のはんだ層の断面を模式的に示す断面図Sectional drawing which shows typically the cross section of the solder layer between a terminal board and an output lead when an output lead is connected to the terminal board concerning Embodiment 1 of this invention 本発明の実施の形態1にかかる端子板に出力リードが接続された場合の、端子板と出力リードとの間のはんだ層の上面X線観察像を示す図The figure which shows the upper surface X-ray observation image of the solder layer between a terminal board and an output lead when an output lead is connected to the terminal board concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる他の端子板に出力リードが接続された場合の、他の端子板と出力リードとの間のはんだ層の断面を模式的に示す断面図Sectional drawing which shows typically the cross section of the solder layer between another terminal board and an output lead when an output lead is connected to the other terminal board concerning Embodiment 1 of this invention 本発明の実施の形態1にかかる他の端子板に出力リードが接続された場合の、他の端子板と出力リードとの間のはんだ層の上面X線観察像を示す図The figure which shows the upper surface X-ray observation image of the solder layer between another terminal board and an output lead when an output lead is connected to the other terminal board concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる出力リードおよび端子板のはんだ付け部とセル間接続タブとの位置関係を示す平面図The top view which shows the positional relationship of the soldering part of the output lead and terminal board concerning Embodiment 1 of this invention, and the connection tab between cells. 本発明の実施の形態2にかかる太陽電池ストリング同士をストリング間接続タブによりはんだ付けして直列に接続した太陽電池アレイを受光面側から見た斜視図The perspective view which looked at the solar cell array which soldered the solar cell strings concerning Embodiment 2 of this invention with the connection tab between strings, and was connected in series from the light-receiving surface side. 本発明の実施の形態2にかかる太陽電池モジュールの製造方法の手順を示すフローチャートThe flowchart which shows the procedure of the manufacturing method of the solar cell module concerning Embodiment 2 of this invention.
 以下に、本発明の実施の形態にかかる太陽電池モジュールの製造方法、太陽電池モジュールの製造装置および太陽電池モジュールを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a solar cell module manufacturing method, a solar cell module manufacturing apparatus, and a solar cell module according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池モジュール1を受光面側から見た斜視図である。図2は、本発明の実施の形態1にかかる太陽電池モジュール1を受光面と反対側を向く裏面側から見た斜視図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a solar cell module 1 according to Embodiment 1 of the present invention as viewed from the light receiving surface side. FIG. 2 is a perspective view of the solar cell module 1 according to the first embodiment of the present invention as viewed from the back side facing the opposite side to the light receiving surface.
 本実施の形態1にかかる太陽電池モジュール1は、図1および図2に示すように、太陽電池アレイ3における受光面側に配置された受光面保護部品11と太陽電池アレイ3における受光面と反対側を向く裏面側に配置された裏面保護部品12との間に封止されている。また、太陽電池モジュール1は、外周縁部が補強用のフレーム13で囲まれている。また、太陽電池モジュール1の裏面側に、太陽電池アレイ3に電気的に接続する端子ボックス14が裏面保護部品12上に配置されている。 As shown in FIGS. 1 and 2, the solar cell module 1 according to the first embodiment is opposite to the light receiving surface protection component 11 disposed on the light receiving surface side in the solar cell array 3 and the light receiving surface in the solar cell array 3. It is sealed between the back surface protection component 12 arranged on the back surface side facing the side. The solar cell module 1 is surrounded by a reinforcing frame 13 at the outer peripheral edge. A terminal box 14 that is electrically connected to the solar cell array 3 is disposed on the back surface protection component 12 on the back surface side of the solar cell module 1.
 端子ボックス14は、裏面保護部品12上に接着された端子ボックス本体15の上部に端子ボックスフタ16が取り付けられて構成されている。端子ボックス14の内部では、太陽電池アレイ3から引き出された図示しない出力リードと、端子ボックス14に引き込まれたモジュール連結ケーブル17とが後述する図7に示すようにケーブル接続部18により接続されている。太陽電池モジュール1は、モジュール連結ケーブル17を介して、他の太陽電池モジュールと電気的に連結される。 The terminal box 14 is configured by attaching a terminal box lid 16 to an upper portion of a terminal box main body 15 bonded on the back surface protection component 12. Inside the terminal box 14, an output lead (not shown) drawn from the solar cell array 3 and a module connection cable 17 drawn into the terminal box 14 are connected by a cable connecting portion 18 as shown in FIG. 7 described later. Yes. The solar cell module 1 is electrically connected to another solar cell module via the module connection cable 17.
 太陽電池アレイ3は、複数の後述する太陽電池ストリング4が、セル間接続タブ21および後述するストリング間接続タブで電気的および機械的に直列または並列に接合されて構成されている。太陽電池ストリング4は、隣り合って配置された四角形状を呈する複数の太陽電池セル5がセル間接続タブ21で電気的および機械的に直列に接続されて構成されている。 The solar cell array 3 is constituted by a plurality of later-described solar cell strings 4 that are electrically and mechanically joined in series or in parallel by inter-cell connection tabs 21 and later-described inter-string connection tabs. The solar cell string 4 is configured by electrically and mechanically connecting a plurality of solar cells 5 having a quadrangular shape arranged adjacent to each other in series between cell connection tabs 21.
 図3は、本発明の実施の形態1にかかる太陽電池モジュール1の製造方法の手順を示すフローチャートである。まず、本実施の形態1にかかる太陽電池モジュール1の製造方法の概要について説明する。図4は、本発明の実施の形態1にかかる太陽電池ストリング4を受光面側から見た斜視図である。図5は、本発明の実施の形態1にかかる太陽電池パネル2を受光面側から見た斜視図である。図6は、本発明の実施の形態1にかかる太陽電池パネル2を裏面側から見た斜視図である。図7は、本発明の実施の形態1にかかる太陽電池パネル2の裏面の出力リード22の近くの位置に端子ボックス本体15が仮置きされた状態を示す平面図である。図8は、本発明の実施の形態1にかかる太陽電池パネル2の裏面の端子ボックス本体15内で出力リード22と端子板24とがはんだ付けされた状態を示す平面図である。図9は、本発明の実施の形態1にかかる太陽電池モジュール1を裏面側から見た斜視図である。 FIG. 3 is a flowchart showing the procedure of the method for manufacturing the solar cell module 1 according to the first embodiment of the present invention. First, the outline | summary of the manufacturing method of the solar cell module 1 concerning this Embodiment 1 is demonstrated. FIG. 4 is a perspective view of the solar cell string 4 according to the first embodiment of the present invention as viewed from the light receiving surface side. FIG. 5 is a perspective view of the solar cell panel 2 according to the first embodiment of the present invention as viewed from the light receiving surface side. FIG. 6: is the perspective view which looked at the solar cell panel 2 concerning Embodiment 1 of this invention from the back surface side. FIG. 7 is a plan view showing a state in which the terminal box main body 15 is temporarily placed at a position near the output lead 22 on the back surface of the solar cell panel 2 according to the first embodiment of the present invention. FIG. 8 is a plan view showing a state in which the output lead 22 and the terminal plate 24 are soldered in the terminal box body 15 on the back surface of the solar cell panel 2 according to the first embodiment of the present invention. FIG. 9 is a perspective view of the solar cell module 1 according to the first embodiment of the present invention as viewed from the back side.
 まず、ステップS10において、公知の技術により結晶系太陽電池である太陽電池セル5が製造される。太陽電池セル5は、外形寸法が156mm×156mm、すなわち156mm角の正方形のシリコン基板を用いて形成される。シリコン基板には、単結晶シリコン基板または多結晶シリコン基板が用いられる。現在、シリコン基板の外形寸法は更に拡大する方向にあり、161.75mm×161.75mm、すなわち161.75mm角の正方形のシリコン基板が検討され始められており、シリコン基板の外形寸法は156mm角に限られない。 First, in step S10, a solar battery cell 5 that is a crystalline solar battery is manufactured by a known technique. The solar battery cell 5 is formed using a square silicon substrate having an outer dimension of 156 mm × 156 mm, that is, 156 mm square. As the silicon substrate, a single crystal silicon substrate or a polycrystalline silicon substrate is used. At present, the outer dimensions of the silicon substrate are in the direction of further expansion, and 161.75 mm × 161.75 mm, that is, a 161.75 mm square silicon substrate has been studied, and the outer dimension of the silicon substrate is 156 mm square. Not limited.
 太陽電池セル5は、受光面および裏面に電極が配されている。一般的に用いられるp型シリコン基板を用いて作製された太陽電池セルの場合は、受光面側にn型の電極が、裏面側にp型の電極が配されている。 The solar cell 5 has electrodes arranged on the light receiving surface and the back surface. In the case of a solar cell fabricated using a commonly used p-type silicon substrate, an n-type electrode is disposed on the light receiving surface side and a p-type electrode is disposed on the back surface side.
 ステップS20において、図4に示すように太陽電池セル5にセル間接続タブ21を固着することで、複数の太陽電池セル5をセル間接続タブ21で接続して太陽電池ストリング4が製造される。太陽電池ストリング4は、例えば厚さ160μm、2mm幅の銅箔に20μm厚のはんだがコーティングされたセル間接続タブ21により電気的に直列に接続されてセル間接続タブ21は、隣り合う太陽電池セル5のうち一方の太陽電池セル5の裏面側の電極に一端側の領域がはんだ付けされる。また、セル間接続タブ21は、隣り合う太陽電池セル5のうち他方の太陽電池セル5の受光面側の電極に他端側の領域がはんだ付けされる。本実施の形態1では、太陽電池ストリング4は、9枚の太陽電池セル5が電気的に直列に接続されている。 In step S20, the solar cell string 4 is manufactured by connecting the plurality of solar cells 5 with the inter-cell connection tabs 21 by fixing the inter-cell connection tabs 21 to the solar cells 5 as shown in FIG. . The solar cell strings 4 are electrically connected in series by inter-cell connection tabs 21 in which, for example, a copper foil having a thickness of 160 μm and a width of 2 mm is coated with a 20 μm-thick solder, and the inter-cell connection tabs 21 are adjacent solar cells. A region on one end side is soldered to an electrode on the back surface side of one of the solar cells 5 among the cells 5. In addition, the inter-cell connection tab 21 is soldered at the other end side to the electrode on the light receiving surface side of the other solar cell 5 among the adjacent solar cells 5. In the first embodiment, the solar cell string 4 has nine solar cells 5 electrically connected in series.
 続いてステップS30において4つの太陽電池ストリング4を並列配置し、隣り合う太陽電池ストリング4同士を横接続タブで電気的に直列に接続する。これにより、36枚の太陽電池セル5が電気的に直列に接続された太陽電池アレイ3が製造される。太陽電池アレイ3では、太陽電池セル5が9セル×4セルの配置で配列されている。 Subsequently, in step S30, the four solar cell strings 4 are arranged in parallel, and the adjacent solar cell strings 4 are electrically connected in series with the lateral connection tabs. Thereby, the solar cell array 3 in which 36 solar cells 5 are electrically connected in series is manufactured. In the solar cell array 3, the solar cells 5 are arranged in an arrangement of 9 cells × 4 cells.
 続いてステップS40において、太陽電池パネル2の構成部品の積層体を形成し、ラミネートする。積層体の形成は、ガラス基板といった透光性基板からなる受光面保護部品11上に、受光面封止層シートおよび太陽電池アレイ3、裏面封止層シート、絶縁性の裏面側保護シートからなる裏面保護部品12を順次積層して積層体を形成する。受光面封止層シートおよび裏面封止層シートには、透明な樹脂であるエチレン酢酸ビニル(Ethylene-Vinyl Acetate:EVA)共重合体が用いられる。 Subsequently, in step S40, a laminated body of components of the solar cell panel 2 is formed and laminated. Formation of a laminated body consists of a light-receiving surface sealing layer sheet | seat and the solar cell array 3, a back surface sealing layer sheet, and an insulating back surface side protective sheet on the light-receiving surface protection component 11 which consists of translucent substrates, such as a glass substrate. The back surface protection component 12 is sequentially laminated to form a laminate. For the light-receiving surface sealing layer sheet and the back surface sealing layer sheet, a transparent resin, ethylene-vinyl acetate (EVA) copolymer, is used.
 そして、熱処理工程を実施して積層体を加熱および加圧し、その後、積層体を冷却させることで積層体をラミネートして太陽電池アレイ3が封止された太陽電池パネル2が製造される。すなわち、受光面保護部品11と太陽電池アレイ3とが受光面封止層シートのEVAにより接着され、太陽電池アレイ3と裏面保護部品12とが裏面封止層シートのEVAにより接着されることで、積層体が一体化される。すなわち太陽電池パネル2の断面構造は、受光面側から、受光面保護部品11、EVA、太陽電池アレイ3、EVA、裏面保護部品12となっている。その後、図5に示すように、太陽電池パネル2の周囲にアルミ製のフレーム13が装着される。 Then, a solar cell panel 2 in which the solar cell array 3 is sealed is manufactured by performing a heat treatment step to heat and pressurize the laminate, and then cooling the laminate to laminate the laminate. That is, the light receiving surface protection component 11 and the solar cell array 3 are bonded by EVA of the light receiving surface sealing layer sheet, and the solar cell array 3 and the back surface protection component 12 are bonded by EVA of the back surface sealing layer sheet. The laminated body is integrated. That is, the cross-sectional structure of the solar cell panel 2 is, from the light receiving surface side, the light receiving surface protection component 11, EVA, the solar cell array 3, EVA, and the back surface protection component 12. Thereafter, as shown in FIG. 5, an aluminum frame 13 is mounted around the solar cell panel 2.
 図6に示すように、太陽電池パネル2の裏面においては、端子ボックス本体15を設置する領域が端子ボックス形成箇所19とされる。また、裏面保護部品12には、太陽電池アレイ3から引き出された出力リード22として、太陽電池アレイ3における一端の太陽電池セル5に電気的に接続された出力リード22aと、太陽電池アレイ3における他端の太陽電池セル5に電気的に接続された出力リード22bと、が引き出される。出力リード22aおよび出力リード22bは、図7に示すように、出力リード22を太陽電池パネル2の裏面に引き出すために裏面保護部品12に設けられた引き出し切り込み23から太陽電池パネル2の裏面に引き出される。 As shown in FIG. 6, on the back surface of the solar cell panel 2, a region where the terminal box main body 15 is installed is a terminal box forming portion 19. The back surface protection component 12 includes an output lead 22 a electrically connected to the solar battery cell 5 at one end of the solar battery array 3 as an output lead 22 drawn from the solar battery array 3, and a solar battery array 3. The output lead 22b electrically connected to the solar battery cell 5 at the other end is drawn out. As shown in FIG. 7, the output lead 22 a and the output lead 22 b are pulled out to the back surface of the solar cell panel 2 from a drawer cut 23 provided in the back surface protection component 12 in order to pull out the output lead 22 to the back surface of the solar cell panel 2. It is.
 つぎに、図7に示すように、端子ボックス本体15が、裏面保護部品12上において、出力リード22aおよび出力リード22bの近くの端子ボックス形成箇所19に仮置きされる。端子ボックス本体15には、あらかじめモジュール連結ケーブル17が引き込まれて、端子ボックス本体15の内部に配置された端子板24に電気的に接続されている。そして、図7に示すように、端子ボックス本体15の底面15aに設けられた底面出力リード挿通孔15bから出力リード22aおよび出力リード22bが端子ボックス本体15の内部に引き出される。底面出力リード挿通孔15bは、出力リード22を端子ボックス本体15の底面15aから端子ボックス本体15の内部に引き出すために端子ボックス本体15の底面に設けられた挿通孔である。 Next, as shown in FIG. 7, the terminal box main body 15 is temporarily placed on the terminal box forming portion 19 near the output lead 22 a and the output lead 22 b on the back surface protection component 12. The module connection cable 17 is drawn into the terminal box body 15 in advance and is electrically connected to the terminal plate 24 disposed inside the terminal box body 15. Then, as shown in FIG. 7, the output lead 22 a and the output lead 22 b are drawn out into the terminal box body 15 from the bottom surface output lead insertion hole 15 b provided on the bottom surface 15 a of the terminal box body 15. The bottom surface output lead insertion hole 15 b is an insertion hole provided in the bottom surface of the terminal box body 15 in order to draw the output lead 22 from the bottom surface 15 a of the terminal box body 15 into the terminal box body 15.
 そして、ステップS50において端子ボックス本体15が、仮置きされた裏面保護部品12上に接着される。 In step S50, the terminal box body 15 is bonded onto the temporarily placed back surface protection component 12.
 続いて、ステップS60において、端子ボックス本体15の内部でのはんだ付けがおこなわれる。図8に示すように、端子ボックス本体15の内部に引き出された出力リード22aおよび出力リード22bが、モジュール連結ケーブル17に接続された端子板24と端子ボックス本体15の内部ではんだ付けされる。出力リード22aおよび出力リード22bは、端子板24にはんだ付けされる際、端子板24に開けられた出力リード挿通孔25の周囲にペンチ等でからげられる。このようにして、出力リード22aおよび出力リード22bと、端子板24とを密着させることにより、出力リード22aおよび出力リード22bと端子板24とが接触する状態を維持させる。 Subsequently, soldering is performed inside the terminal box body 15 in step S60. As shown in FIG. 8, the output lead 22 a and the output lead 22 b drawn out inside the terminal box main body 15 are soldered inside the terminal box main body 15 and the terminal plate 24 connected to the module connecting cable 17. When the output lead 22 a and the output lead 22 b are soldered to the terminal plate 24, the output lead 22 a and the output lead 22 b are wound around the output lead insertion hole 25 opened in the terminal plate 24 with pliers or the like. In this manner, the output lead 22a and the output lead 22b and the terminal plate 24 are brought into close contact with each other, so that the output lead 22a and the output lead 22b and the terminal plate 24 are kept in contact with each other.
 この状態で、はんだごてを用いて、出力リード22aと端子板24の間にはんだを供給しながら、はんだ付けが行われる。同様に、はんだごてを用いて、出力リード22bと端子板24の間にはんだを供給しながら、はんだ付けが行われる。なお、出力リード22aおよび出力リード22bは、端子板24にはんだ付けされる領域には、たとえば30μmの厚さで半田がコーティングされている。 In this state, soldering is performed using a soldering iron while supplying solder between the output lead 22a and the terminal plate 24. Similarly, soldering is performed using a soldering iron while supplying solder between the output lead 22 b and the terminal plate 24. The output lead 22a and the output lead 22b are coated with solder at a thickness of, for example, 30 μm in the area to be soldered to the terminal board 24.
 続いてステップS70において、太陽電池パネル2に対して透過X線検査が行われ、出力リード22と端子板24との間のはんだ付け状態が既定の判定基準を満たすかを判定する。すなわち、透過X線検査は、太陽電池パネル2の裏側の裏面保護部品12に端子ボックス本体15を接着しさらに出力リード22と端子板24とをはんだ付けした状態で実施される。 Subsequently, in step S70, a transmission X-ray inspection is performed on the solar cell panel 2, and it is determined whether the soldering state between the output lead 22 and the terminal plate 24 satisfies a predetermined determination criterion. That is, the transmission X-ray inspection is performed in a state where the terminal box body 15 is bonded to the back surface protection component 12 on the back side of the solar cell panel 2 and the output lead 22 and the terminal plate 24 are soldered.
 透過X線検査では、出力リード22と端子板24との間のはんだ付け対象領域をX線により撮像し、出力リード22と端子板24との間のはんだ付けが適切なはんだ付け状態であるか、または不適切なはんだ付け状態であるかが判定される。すなわち、出力リード22と端子板24との間のはんだ付け対象領域にX線を照射して、出力リード22と端子板24との間のはんだ付け対象領域を透過したX線像を解析し、既定の判定基準に従って、出力リード22と端子板24との間のはんだ付け状態が自動的に判定される。出力リード22と端子板24との間のはんだ付け対象領域は、出力リード22と端子板24とが太陽電池パネル2の面内方向と平行な方向において重なる領域である。既定の判定基準は、出力リード22と端子板24との間のはんだ付けが適切なはんだ付け状態であるか、または不適切なはんだ付け状態であるかを判定するための判定基準である。透過X線検査の詳細については後述する。 In the transmission X-ray inspection, the area to be soldered between the output lead 22 and the terminal board 24 is imaged with X-rays, and the soldering between the output lead 22 and the terminal board 24 is in an appropriate soldering state. Or whether the soldering state is inappropriate. That is, the X-ray image transmitted through the soldering target region between the output lead 22 and the terminal plate 24 is analyzed by irradiating the soldering target region between the output lead 22 and the terminal plate 24 with X-rays, The soldering state between the output lead 22 and the terminal board 24 is automatically determined according to a predetermined criterion. The soldering target region between the output lead 22 and the terminal plate 24 is a region where the output lead 22 and the terminal plate 24 overlap in a direction parallel to the in-plane direction of the solar cell panel 2. The predetermined criterion is a criterion for determining whether the soldering between the output lead 22 and the terminal board 24 is an appropriate soldering state or an inappropriate soldering state. Details of the transmission X-ray inspection will be described later.
 出力リード22と端子板24との間のはんだ付け対象領域が既定の判定基準を満たしていない場合は、ステップS70においてNoとなりステップS60に戻って出力リード22と端子板24との間のはんだ付けが再度行われる。これにより、出力リード22と端子板24との間のはんだ付け不良を無くすことが可能となる。 If the soldering target area between the output lead 22 and the terminal board 24 does not satisfy the predetermined criterion, the result is No in step S70 and the process returns to step S60 to solder the output lead 22 and the terminal board 24. Is done again. As a result, it is possible to eliminate a soldering failure between the output lead 22 and the terminal plate 24.
 出力リード22と端子板24との間のはんだ付け対象領域が既定の判定基準を満たしている場合は、ステップS70においてYesとなりステップS80に進む。 If the soldering target area between the output lead 22 and the terminal board 24 satisfies a predetermined determination criterion, the result is Yes in step S70 and the process proceeds to step S80.
 ステップS80では、図示していないポッティング剤が端子ボックス本体15の内部に充填される。ポッティング剤は、たとえば樹脂である。さらに、図9に示すように、端子ボックス本体15の上部に端子ボックスフタ16が取り付けられて端子ボックス14が形成される。これにより、太陽電池モジュール1が製造される。 In step S80, a potting agent (not shown) is filled in the terminal box body 15. The potting agent is, for example, a resin. Further, as shown in FIG. 9, the terminal box lid 16 is attached to the upper part of the terminal box body 15 to form the terminal box 14. Thereby, the solar cell module 1 is manufactured.
 続いてステップS90において太陽電池モジュール1の出力検査が行われて、太陽電池モジュール1の製造の一連の工程が終了する。 Subsequently, in step S90, the output inspection of the solar cell module 1 is performed, and a series of processes for manufacturing the solar cell module 1 is completed.
 つぎに、太陽電池パネル2に対する透過X線検査の詳細について説明する。図10は、本発明の実施の形態1にかかるX線検査装置200を示す模式斜視図である。図11は、本発明の実施の形態1にかかるX線検査装置200の機能の構成を示す構成図である。X線検査装置200は、太陽電池モジュールの製造に用いられ、太陽電池パネル2を構成する第1の金属部品と第2の金属部品とのはんだ接合状態を検査する太陽電池モジュールの製造装置である。X線検査装置200は、搬送装置201と、X線発生装置202と、X線非破壊検査用カメラ203と、制御装置204と、表示部205と、を含んで構成されている。 Next, the details of the transmission X-ray inspection for the solar cell panel 2 will be described. FIG. 10 is a schematic perspective view showing the X-ray inspection apparatus 200 according to the first embodiment of the present invention. FIG. 11 is a configuration diagram showing a functional configuration of the X-ray inspection apparatus 200 according to the first embodiment of the present invention. The X-ray inspection apparatus 200 is used for manufacturing a solar cell module, and is a solar cell module manufacturing apparatus that inspects the solder joint state between the first metal component and the second metal component that constitute the solar cell panel 2. . The X-ray inspection apparatus 200 includes a transfer device 201, an X-ray generation device 202, an X-ray nondestructive inspection camera 203, a control device 204, and a display unit 205.
 搬送装置201は、検査対象となる太陽電池パネル2を、裏面側を上向きにした状態で水平に支持するとともに搬送するものである。搬送装置201は、たとえば、太陽電池パネル2が載置されるベルトと、ベルトを移動させる不図示の搬送ローラと、搬送ローラを駆動する不図示の駆動機構などを含んで構成されるコンベアである。 The transport device 201 is configured to horizontally support and transport the solar cell panel 2 to be inspected with the back side facing upward. The transport device 201 is a conveyor configured to include, for example, a belt on which the solar battery panel 2 is placed, a transport roller (not illustrated) that moves the belt, a drive mechanism (not illustrated) that drives the transport roller, and the like. .
 X線発生装置202は、搬送装置201によって搬送される太陽電池パネル2の端子ボックス本体15に向けてX線206を照射するものである。X線発生装置202は、円錐状のX線206を発生する不図示のX線源と、X線源から発生されたX線206の放射角を制限してX線帯状ビームを形成する不図示の制限部とを含んで構成されている。 The X-ray generator 202 irradiates the X-ray 206 toward the terminal box body 15 of the solar cell panel 2 transported by the transport device 201. The X-ray generation apparatus 202 limits an emission angle of an X-ray source (not shown) that generates a conical X-ray 206 and an X-ray 206 generated from the X-ray source to form an X-ray belt-like beam. And the restriction part.
 X線非破壊検査用カメラ203は、太陽電池パネル2における出力リード22と端子板24との間のはんだ付け対象領域を透過したX線206を検出してX線透過信号を生成する検出器である。X線発生装置202は、X線非破壊検査用カメラ203として、搬送装置201の上方において、太陽電池パネル2の面内方向と平行な方向、すなわち水平方向に延在して配置されたX線非破壊検査用カメラ203aを有する。X線非破壊検査用カメラ203は、X線206を受光する多数の受光素子の画素が並べられて構成されている。本実施の形態1では、X線非破壊検査用カメラ203に、電荷結合素子(Charge-Coupled Device:CCD)カメラを用いている。なお、X線非破壊検査用カメラ203としてラインセンサを用いることも可能である。 The X-ray nondestructive inspection camera 203 is a detector that detects the X-ray 206 that has passed through the soldering target region between the output lead 22 and the terminal plate 24 in the solar battery panel 2 and generates an X-ray transmission signal. is there. The X-ray generator 202 is an X-ray non-destructive inspection camera 203, which is disposed above the transfer device 201 in a direction parallel to the in-plane direction of the solar cell panel 2, that is, extending in the horizontal direction. It has a non-destructive inspection camera 203a. The X-ray nondestructive inspection camera 203 is configured by arranging pixels of a large number of light receiving elements that receive the X-ray 206. In the first embodiment, a charge-coupled device (CCD) camera is used as the X-ray nondestructive inspection camera 203. Note that a line sensor may be used as the X-ray nondestructive inspection camera 203.
 制御装置204は、X線制御部204a、搬送制御部204b、画像情報生成部204c、演算部204d、判定部204eを有する。 The control device 204 includes an X-ray control unit 204a, a conveyance control unit 204b, an image information generation unit 204c, a calculation unit 204d, and a determination unit 204e.
 X線制御部204aは、X線発生装置202を制御することによりX線発生装置202からX線206を照射させる。 The X-ray control unit 204a controls the X-ray generator 202 to irradiate the X-ray 206 from the X-ray generator 202.
 搬送制御部204bは、搬送装置201を制御することにより太陽電池パネル2を搬送させる。 The conveyance control unit 204b controls the conveyance device 201 to convey the solar cell panel 2.
 画像情報生成部204cは、X線非破壊検査用カメラ203で生成されたX線透過信号を取り込んでX線透過像の画像情報を生成する。画像情報生成部204cにおける画像情報の生成においては、従来公知の様々な画像処理が用いられる。X線発生装置202から照射され太陽電池パネル2を透過したX線206がX線非破壊検査用カメラ203で検出されると、X線206の強度分布に対応した輝度のX線透過信号がX線非破壊検査用カメラ203で生成される。 The image information generation unit 204c takes in the X-ray transmission signal generated by the X-ray nondestructive inspection camera 203 and generates image information of the X-ray transmission image. In the generation of the image information in the image information generation unit 204c, various conventionally known image processes are used. When the X-ray 206 irradiated from the X-ray generator 202 and transmitted through the solar battery panel 2 is detected by the X-ray nondestructive inspection camera 203, an X-ray transmission signal having a luminance corresponding to the intensity distribution of the X-ray 206 is X. It is generated by the non-destructive inspection camera 203.
 演算部204dは、太陽電池パネル2の面内方向と平行な方向における、はんだ付け対象領域の面積に対する、実際に端子板24と出力リード22とがはんだ接合されているはんだ付け部の面積比を、X線透過像から演算する。 The calculation unit 204d calculates the area ratio of the soldering portion where the terminal plate 24 and the output lead 22 are actually soldered to the area of the soldering target region in the direction parallel to the in-plane direction of the solar battery panel 2. And calculation from an X-ray transmission image.
 判定部204eは、端子板24と出力リード22とのはんだ接合状態の良否を判定する。判定部204eは、はんだ付け対象領域の面積に対する、実際に端子板24と出力リード22とがはんだ接合されているはんだ付け部の面積比を、あらかじめ記憶されている既定の判定基準と比較して、はんだ接合状態の良否を判定する。 The determination unit 204e determines whether the solder joint state between the terminal board 24 and the output lead 22 is good or not. The determination unit 204e compares the area ratio of the soldered portion where the terminal plate 24 and the output lead 22 are actually soldered to the area of the soldering target region with a predetermined determination criterion stored in advance. The quality of the solder joint state is determined.
 また、制御装置204は、例えば、図12に示したハードウェア構成の処理回路として実現される。図12は、本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図である。制御装置204が図12に示す処理回路により実現される場合、制御装置204は、例えば、図12に示すメモリ112に記憶されたプログラムをプロセッサ111が実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、制御装置204の機能のうちの一部を電子回路として実装し、他の部分をプロセッサ111およびメモリ112を用いて実現するようにしてもよい。 Further, the control device 204 is realized, for example, as a processing circuit having a hardware configuration shown in FIG. FIG. 12 is a diagram illustrating an example of a hardware configuration of the processing circuit according to the first embodiment of the present invention. When the control device 204 is realized by the processing circuit shown in FIG. 12, the control device 204 is realized by, for example, the processor 111 executing a program stored in the memory 112 shown in FIG. A plurality of processors and a plurality of memories may cooperate to realize the above function. Further, a part of the function of the control device 204 may be mounted as an electronic circuit, and the other part may be realized using the processor 111 and the memory 112.
 表示部205は、X線透過像およびその他の情報を表示する。 Display unit 205 displays an X-ray transmission image and other information.
 また、X線制御部204a、X線非破壊検査用カメラ203a、および搬送装置201の一部は、筐体207で覆われており、透過X線検査に不要なX線の外部への漏洩が防止される。制御装置204は、筐体207の内部に設けられてもよく、筐体207の外部に設けられてもよい。 In addition, the X-ray control unit 204a, the X-ray nondestructive inspection camera 203a, and a part of the transfer apparatus 201 are covered with a housing 207, and leakage of X-rays unnecessary for transmission X-ray inspection is prevented. Is prevented. The control device 204 may be provided inside the housing 207 or may be provided outside the housing 207.
 つぎに、太陽電池パネル2に対する透過X線検査の手順について説明する。図13は、本発明の実施の形態1にかかる透過X線検査の手順を示すフローチャートである。透過X線検査は、X線透過像取得工程と、演算工程と、判定工程とが順次実施される。 Next, the procedure of the transmission X-ray inspection for the solar cell panel 2 will be described. FIG. 13 is a flowchart showing the procedure of the transmission X-ray inspection according to the first embodiment of the present invention. In the transmission X-ray inspection, an X-ray transmission image acquisition process, a calculation process, and a determination process are sequentially performed.
 ステップS210において、X線透過像取得工程が行われる。X線透過像取得工程では、太陽電池パネル2を構成する端子板24と出力リード22とのはんだ付けが行われた領域に向けてX線を照射して、太陽電池パネル2の面内方向に平行な方向において端子板24と出力リード22とが重なった領域であるはんだ付け対象領域におけるX線透過像を取得する。 In step S210, an X-ray transmission image acquisition process is performed. In the X-ray transmission image acquisition step, X-rays are irradiated toward the area where the terminal plate 24 and the output lead 22 constituting the solar cell panel 2 are soldered, and in the in-plane direction of the solar cell panel 2. An X-ray transmission image is acquired in a soldering target region, which is a region where the terminal board 24 and the output lead 22 overlap in a parallel direction.
 X線透過像取得工程では、太陽電池パネル2が搬送装置201に載置される。そして、X線発生装置202が、搬送装置201に載置された太陽電池パネル2の端子ボックス本体15に向けてX線206を照射する。また、太陽電池パネル2が搬送装置201によって搬送される。X線非破壊検査用カメラ203は、端子ボックス本体15の周辺を透過したX線206を検出して端子ボックス本体15の周辺を撮像し、X線透過信号を生成する。そして、画像情報生成部204cが、X線非破壊検査用カメラ203で生成されたX線透過信号を取り込んではんだ付け対象領域を含む端子ボックス本体15の周辺のX線透過像の画像情報を生成する。 In the X-ray transmission image acquisition process, the solar cell panel 2 is placed on the transfer device 201. Then, the X-ray generator 202 irradiates the X-ray 206 toward the terminal box body 15 of the solar cell panel 2 placed on the transport device 201. Further, the solar cell panel 2 is transported by the transport device 201. The X-ray nondestructive inspection camera 203 detects the X-ray 206 that has passed through the periphery of the terminal box body 15, images the periphery of the terminal box body 15, and generates an X-ray transmission signal. Then, the image information generation unit 204c takes in the X-ray transmission signal generated by the X-ray nondestructive inspection camera 203 and generates image information of the X-ray transmission image around the terminal box body 15 including the soldering target region. To do.
 つぎにステップS220において、演算工程が行われる。演算工程では、演算部204dが、太陽電池パネル2の面内方向と平行な方向における、はんだ付け対象領域の面積に対する、実際に端子板24と出力リード22とがはんだ接合されているはんだ付け部の面積比を、X線透過像から演算する。 Next, in step S220, a calculation process is performed. In the calculation process, the calculation unit 204d is actually a soldered part in which the terminal plate 24 and the output lead 22 are soldered to the area of the soldering target region in a direction parallel to the in-plane direction of the solar battery panel 2. Is calculated from the X-ray transmission image.
 つぎにステップS230において、判定工程が行われる。判定工程では、判定部204eが、はんだ付け対象領域の面積に対する、実際に端子板24と出力リード22とがはんだ接合されているはんだ付け部の面積比を既定の判定基準と比較して端子板24と出力リード22とのはんだ接合状態の良否を判定する。 Next, in step S230, a determination process is performed. In the determination step, the determination unit 204e compares the area ratio of the soldered portion where the terminal plate 24 and the output lead 22 are actually soldered with respect to the area of the soldering target region to a predetermined determination standard. The quality of the solder joint state between the output lead 22 and the output lead 22 is determined.
 ここで、端子板24は、太陽電池パネル2を構成する第1の金属部品に対応する。出力リード22は、太陽電池パネル2を構成する第2の金属部品に対応する。 Here, the terminal plate 24 corresponds to the first metal component constituting the solar cell panel 2. The output lead 22 corresponds to a second metal part that constitutes the solar cell panel 2.
 図10に示すX線検査装置200では、X線発生装置202より水平方向および上方方向にX線帯状ビームを放射し、X線非破壊検査用カメラ203aで、出力リード22と端子板24との間のはんだ付け対象領域を透過したX線206を検出することができる。これにより、太陽電池パネル2の面内方向に平行な2次元X線透過像が得られる。 In the X-ray inspection apparatus 200 shown in FIG. 10, an X-ray belt-like beam is radiated from the X-ray generation apparatus 202 in the horizontal direction and upward direction, and the X-ray nondestructive inspection camera 203a It is possible to detect the X-ray 206 transmitted through the soldering target area. Thereby, a two-dimensional X-ray transmission image parallel to the in-plane direction of the solar cell panel 2 is obtained.
 基本的には、2次元X線透過像は、X線帯状ビームに対して搬送装置201に載せられた太陽電池パネル2が搬送装置201の進行方向208に移動することで、X線非破壊検査用カメラ203aで生成されたX線透過信号を画像情報生成部204cが取り込んで2次元画像情報として描画される。 Basically, the two-dimensional X-ray transmission image is obtained by the X-ray non-destructive inspection by moving the solar cell panel 2 placed on the transfer device 201 in the traveling direction 208 of the transfer device 201 with respect to the X-ray belt-like beam. The X-ray transmission signal generated by the camera 203a is captured by the image information generation unit 204c and rendered as two-dimensional image information.
 図14は、本発明の実施の形態1にかかるX線検査装置200の他の構成例を示す模式斜視図である。図14に示すX線検査装置では、X線非破壊検査用カメラ203にラインセンサを用いている。図14に示すX線検査装置では、搬送装置201で太陽電池パネル2を搬送しながら、X線発生装置202より水平方向および上方方向にX線帯状ビームを放射する。本装置では、出力リード22と端子板24との間のはんだ付け対象領域を透過したX線206を、搬送装置201の上方において太陽電池パネル2の面内方向と平行な方向、すなわち水平方向に延在して配置されたX線ラインセンサ203alで検出する。また、本装置では、出力リード22と端子板24との間のはんだ付け対象領域を透過したX線206を、太陽電池パネル2の面内方向と直交して太陽電池パネル2の搬送方向に沿う方向に延在して、太陽電池パネル2の搬送方向と直交する方向の搬送装置201の側方に配置されたX線ラインセンサ203blでも検出する。太陽電池パネル2の搬送方向は、搬送装置201の進行方向208と同じ方向である。 FIG. 14 is a schematic perspective view showing another configuration example of the X-ray inspection apparatus 200 according to the first embodiment of the present invention. In the X-ray inspection apparatus shown in FIG. 14, a line sensor is used for the X-ray nondestructive inspection camera 203. In the X-ray inspection apparatus shown in FIG. 14, an X-ray belt-like beam is radiated in the horizontal direction and the upward direction from the X-ray generator 202 while the solar cell panel 2 is transported by the transport device 201. In the present apparatus, the X-ray 206 that has passed through the soldering target region between the output lead 22 and the terminal plate 24 is parallel to the in-plane direction of the solar cell panel 2 above the transfer device 201, that is, in the horizontal direction. Detection is performed by an X-ray line sensor 203al arranged so as to extend. Further, in this apparatus, the X-ray 206 that has passed through the soldering target region between the output lead 22 and the terminal plate 24 is orthogonal to the in-plane direction of the solar cell panel 2 and is along the transport direction of the solar cell panel 2. It is also detected by the X-ray line sensor 203bl that extends in the direction and is disposed on the side of the transport device 201 in a direction orthogonal to the transport direction of the solar cell panel 2. The conveyance direction of the solar cell panel 2 is the same direction as the traveling direction 208 of the conveyance device 201.
 図15は、本発明の実施の形態1にかかるX線検査装置200の他の構成例を示す模式斜視図である。図15に示すX線検査装置では、X線非破壊検査用カメラ203にラインセンサを用いている。図15に示すX線検査装置では、搬送装置201で太陽電池パネル2を搬送しながら、搬送装置201の下に配置されたX線発生装置202aから上方にX線帯状ビームを放射し、出力リード22と端子板24との間のはんだ付け対象領域を透過したX線206をX線ラインセンサ203alで検出することができる。また、図15に示すX線検査装置では、搬送装置201の側面側に配置されたX線発生装置202bから水平方向にX線帯状ビームを放射し、出力リード22と端子板24との間のはんだ付け対象領域を透過したX線206をX線ラインセンサ203blで検出することができる。 FIG. 15 is a schematic perspective view showing another configuration example of the X-ray inspection apparatus 200 according to the first embodiment of the present invention. In the X-ray inspection apparatus shown in FIG. 15, a line sensor is used for the X-ray nondestructive inspection camera 203. In the X-ray inspection apparatus shown in FIG. 15, an X-ray belt-like beam is emitted upward from an X-ray generator 202 a disposed under the transfer apparatus 201 while the transfer panel 201 transfers the solar battery panel 2, and an output lead X-ray 206 transmitted through the soldering target area between the terminal board 24 and the terminal board 24 can be detected by the X-ray line sensor 203al. In the X-ray inspection apparatus shown in FIG. 15, an X-ray belt-like beam is radiated in the horizontal direction from the X-ray generator 202 b disposed on the side surface of the transfer apparatus 201, and between the output lead 22 and the terminal plate 24. The X-ray 206 transmitted through the soldering target area can be detected by the X-ray line sensor 203bl.
 図14および図15において、X線ラインセンサ203alで検出したX線206の情報と、X線ラインセンサ203blで検出したX線206の情報とを用いることで、搬送装置201の進行方向208と垂直な縦断面の2次元X線透過像が得られる。さらに、搬送装置201で太陽電池パネル2を搬送しながら、X線発生装置202aおよびX線発生装置202bからX線帯状ビームを放射してX線ラインセンサ203alで検出したX線206の情報とX線ラインセンサ203blで検出したX線206の情報とを用いることで、搬送装置201の進行方向208を含めた、3次元X線透過像が得られる。 14 and 15, by using the information of the X-ray 206 detected by the X-ray line sensor 203al and the information of the X-ray 206 detected by the X-ray line sensor 203bl, the direction perpendicular to the traveling direction 208 of the transport device 201 is used. A two-dimensional X-ray transmission image of a longitudinal section can be obtained. Further, while conveying the solar cell panel 2 by the conveying device 201, the X-ray band beam is emitted from the X-ray generating device 202a and the X-ray generating device 202b, and the information of the X-ray 206 detected by the X-ray line sensor 203al By using the information of the X-ray 206 detected by the line line sensor 203bl, a three-dimensional X-ray transmission image including the traveling direction 208 of the transport device 201 is obtained.
 また、図15においてX線ラインセンサ203blで生成されたX線透過信号を画像情報生成部204cが取り込んで2次元画像情報として描画することにより、太陽電池パネル2の高さ方向の情報、および出力リード22と端子板24との間のはんだ付け対象領域のはんだの厚さの情報が得られる。 Further, in FIG. 15, the X-ray transmission signal generated by the X-ray line sensor 203bl is captured by the image information generation unit 204c and drawn as two-dimensional image information, so that the information in the height direction of the solar cell panel 2 and the output are output. Information on the solder thickness in the soldering target region between the lead 22 and the terminal board 24 is obtained.
 図16は、本発明の実施の形態1における透過X線検査でのX線透過像の撮像箇所を示す端子ボックス本体15の平面図である。本実施の形態1における透過X線検査では、図16におけるX線観察領域120について観察して検査を行っている。以下、X線観察領域120の観察結果について説明する。X線観察領域120の観察におけるX線出力の条件は、管電圧が50kVから160kVの範囲、管電流が40μAから120μAの範囲で行った。このようなX線出力の条件を用いることにより、X線観察領域120のX線透過像を確実に得ることが可能となる。管電圧の下限値を50kVとすることで、鮮明なX線観察領域120のX線透過像を得ることが可能となる。管電圧の上限値である160kVは、装置性能上の制約である。また、上記の管電流範囲は、上記の管電圧の範囲において鮮明なX線観察領域120のX線透過像を得ることが可能となる、適切な範囲である。    FIG. 16 is a plan view of the terminal box main body 15 showing an X-ray transmission image capturing location in the transmission X-ray inspection in the first embodiment of the present invention. In the transmission X-ray inspection in the first embodiment, the inspection is performed by observing the X-ray observation region 120 in FIG. Hereinafter, observation results of the X-ray observation region 120 will be described. The X-ray output conditions in the observation of the X-ray observation region 120 were a tube voltage in the range of 50 kV to 160 kV and a tube current in the range of 40 μA to 120 μA. By using such X-ray output conditions, an X-ray transmission image of the X-ray observation region 120 can be obtained with certainty. By setting the lower limit of the tube voltage to 50 kV, a clear X-ray transmission image of the X-ray observation region 120 can be obtained. The upper limit value of the tube voltage, 160 kV, is a restriction on the device performance. The tube current range is an appropriate range in which a clear X-ray transmission image of the X-ray observation region 120 can be obtained in the tube voltage range. *
 図17は、本発明の実施の形態1にかかるX線観察領域120を実体顕微鏡で撮影した画像を示す図である。出力リード22および他の端子板24aの上には、はんだ26が盛られている。なお、図17から図22においては、後述するように端子板24のより好ましい形態である他の端子板24aと出力リード22とがはんだ接合されている場合について示す。他の端子板24aの詳細については後述する。図18は、本発明の実施の形態1にかかるX線観察領域120のX線透過像を示す図である。図18のX線透過像では、出力リード22と他の端子板24aとの間にははんだ26が供給されていることが分かり、出力リード22と他の端子板24aとの間にはんだ26が充填されていないために空隙が存在するはんだ未供給部212と、出力リード22と他の端子板24aとの間にはんだ26が充填されて出力リード22と他の端子板24aとがはんだ接合されているはんだ付け部211を区別して観察することができる。はんだ未供給部212は、出力リード22と他の端子板24aとの厚さ方向における全ての領域に半田が供給されていない場合と、出力リード22と他の端子板24aとの厚さ方向における一部の領域に半田が供給されていない場合と、を含む。 FIG. 17 is a view showing an image obtained by photographing the X-ray observation region 120 according to the first embodiment of the present invention with a stereomicroscope. Solder 26 is stacked on the output lead 22 and the other terminal plate 24a. 17 to 22 show a case where another terminal plate 24a, which is a more preferable form of the terminal plate 24, and the output lead 22 are soldered as will be described later. Details of the other terminal board 24a will be described later. FIG. 18 is a diagram showing an X-ray transmission image of the X-ray observation region 120 according to the first embodiment of the present invention. In the X-ray transmission image of FIG. 18, it can be seen that the solder 26 is supplied between the output lead 22 and the other terminal plate 24a, and the solder 26 is interposed between the output lead 22 and the other terminal plate 24a. Solder 26 is filled between the solder unsupplied portion 212 where there is a gap because it is not filled and the output lead 22 and the other terminal plate 24a, and the output lead 22 and the other terminal plate 24a are soldered. It is possible to distinguish and observe the soldering portions 211 that are present. The solder unsupplied portion 212 is in the case where the solder is not supplied to all regions in the thickness direction between the output lead 22 and the other terminal plate 24a, and in the thickness direction between the output lead 22 and the other terminal plate 24a. Including a case where solder is not supplied to some areas.
 図19は、本発明の実施の形態1にかかるX線観察領域120を拡大したX線透過像であり、図18の一部を拡大したX線透過像を示す図である。図20は、図19のX線透過像におけるはんだ付け対象領域221に対して、はんだ付け部211とはんだ未供給部212とを区別して画像処理を施して簡略化した画像を示す図である。図20から、はんだ付け部211の中央に存在するはんだ未供給部212に加え、複数のはんだ未供給部212が存在することが観察される。 FIG. 19 is an X-ray transmission image obtained by enlarging the X-ray observation region 120 according to the first embodiment of the present invention, and shows an X-ray transmission image obtained by enlarging a part of FIG. FIG. 20 is a diagram showing a simplified image obtained by subjecting the soldering target region 221 in the X-ray transmission image of FIG. 19 to image processing by distinguishing between the soldering portion 211 and the solder non-supplying portion 212. From FIG. 20, it is observed that there are a plurality of solder non-supply parts 212 in addition to the solder non-supply part 212 present at the center of the soldering part 211.
 図21は、本発明の実施の形態1にかかるX線観察領域120の他のX線透過像を拡大したX線透過像を示す図である。図22は、図21のX線透過像のはんだ付け対象領域221に対して、はんだ付け部211とはんだ未供給部212とを区別して画像処理を施して簡略化した画像を示す図である。図22から、はんだ未供給部212が出力リード22と他の端子板24aとの間のはんだ付け対象領域221における多くの面積を占めており、部分的にはんだ付け部211が存在することが観察される。 FIG. 21 is a diagram showing an X-ray transmission image obtained by enlarging another X-ray transmission image of the X-ray observation region 120 according to the first embodiment of the present invention. FIG. 22 is a diagram illustrating a simplified image obtained by performing image processing on the soldering target area 221 of the X-ray transmission image of FIG. From FIG. 22, it is observed that the solder unsupplied portion 212 occupies a large area in the soldering target region 221 between the output lead 22 and the other terminal plate 24a, and the soldered portion 211 exists partially. Is done.
 上述したように、はんだ未供給部212が出力リード22と他の端子板24aとの間のはんだ付け対象領域221におけるはんだ付けの状態によって、はんだ未供給部212が出力リード22と他の端子板24aとの間のはんだ付け対象領域221において、はんだ付け部211の面積が異なる場合がある。上記の知見により、発明者は、はんだ付け対象領域221のX線透過像を用いて、太陽電池パネル2の面内方向と平行な方向において、はんだ付け対象領域221の面積におけるはんだ付け部211の面積の割合を導出することにより、はんだ付け対象領域221のはんだ接合の状態、すなわちはんだ接合のでき具合を判定できることを見出した。 As described above, depending on the soldering state in the soldering target region 221 between the output lead 22 and the other terminal plate 24a, the solder unsupplied portion 212 is connected to the output lead 22 and the other terminal plate. In the soldering target region 221 between 24a and 24a, the area of the soldering part 211 may be different. Based on the above knowledge, the inventor uses the X-ray transmission image of the soldering target region 221 in the direction parallel to the in-plane direction of the solar cell panel 2 and the soldering portion 211 in the area of the soldering target region 221. It has been found that by deriving the area ratio, it is possible to determine the state of solder bonding in the soldering target region 221, that is, the degree of solder bonding.
 現在、太陽電池モジュールの信頼性に関して、はんだ付けのでき具合は、温度サイクル試験によって把握されている。一般的には、温度サイクル試験としてはJIS8917の温度サイクル試験A-1が行われる。JIS8917の温度サイクル試験における規定のサイクル数は200サイクルである。本試験の合格範囲は、本試験後、初期値に対する劣化の程度が5%未満となっている。太陽電池モジュールを製造するメーカは各社、本条件を基本に温度の範囲やサイクル数を独自に規定することによって例えば数十年間といった寿命の期間を推定している。本実施の形態1では1000サイクルにおける劣化の程度を対象として評価した例を説明する。 Currently, regarding the reliability of the solar cell module, the degree of soldering is grasped by a temperature cycle test. Generally, a temperature cycle test A-1 of JIS8917 is performed as the temperature cycle test. The specified number of cycles in the temperature cycle test of JIS8917 is 200 cycles. In the pass range of this test, the degree of deterioration with respect to the initial value after the test is less than 5%. Manufacturers of solar cell modules have estimated lifetimes of, for example, several tens of years by uniquely defining temperature ranges and cycle numbers based on these conditions. In the first embodiment, an example in which the degree of deterioration in 1000 cycles is evaluated will be described.
 初期値に対する劣化の程度は、温度サイクル数とはんだ付け部211の面積に相関がある。発明者の検討の結果、1000サイクルの場合は、太陽電池パネル2の面内方向と平行な方向において、はんだ付け対象領域の面内の面積に対するはんだ付け部211の面積比が7%を越えると、劣化の程度が5%未満に抑えられることが確認された。上記の図20の場合は、はんだ付け対象領域の面内の面積に対するはんだ付け部211の面積比は90%程度であり7%を越えているので、劣化の程度が5%未満という規定を満たす。一方、上記の図22の場合は、はんだ付け対象領域の面内の面積に対するはんだ付け部211の面積比は4%程度であり、7%を越えていないので、劣化の程度が5%未満という規定を満たさない。 The degree of deterioration with respect to the initial value has a correlation with the number of temperature cycles and the area of the soldering part 211. As a result of the inventor's investigation, in the case of 1000 cycles, when the area ratio of the soldering portion 211 to the area in the surface of the soldering target region exceeds 7% in the direction parallel to the in-plane direction of the solar cell panel 2. It was confirmed that the degree of deterioration was suppressed to less than 5%. In the case of FIG. 20 described above, the area ratio of the soldering part 211 to the in-plane area of the soldering target region is about 90% and exceeds 7%, so that the degree of deterioration satisfies the requirement of less than 5%. . On the other hand, in the case of FIG. 22 described above, the area ratio of the soldering portion 211 to the in-plane area of the soldering target region is about 4% and does not exceed 7%, so the degree of deterioration is less than 5%. Does not meet regulations.
 以上の例のように、太陽電池パネル2の面内方向と平行な方向において、はんだ付け対象領域の面内の面積に対するはんだ付け部211の面積比を設定し、劣化の程度が5%未満という規定を満たさない太陽電池パネル2については、出力リード22と他の端子板24aとの間のはんだ付けを再度行うことにより、出力リード22と他の端子板24aとの間のはんだ付け不良を無くすことが可能となる。なお、図17から図22においては、透過X線検査でのX線透過像の例として、他の端子板24aと出力リード22とがはんだ接合されている場合について示しているが、溝27が形成されていない端子板24と出力リード22とがはんだ接合されている場合においても、同様にして端子板24と出力リード22との間のはんだ付け不良を無くすことが可能となる。すなわち、太陽電池パネル2の面内方向と平行な方向において、はんだ付け対象領域の面内の面積に対するはんだ付け部211の面積比を設定し、劣化の程度が5%未満という規定を満たさない太陽電池パネル2については、出力リード22と端子板24との間のはんだ付けを再度行えばよい。 As in the above example, in the direction parallel to the in-plane direction of the solar cell panel 2, the area ratio of the soldering part 211 to the in-plane area of the soldering target region is set, and the degree of deterioration is less than 5%. For the solar battery panel 2 that does not satisfy the regulations, the soldering failure between the output lead 22 and the other terminal plate 24a is eliminated by performing the soldering between the output lead 22 and the other terminal plate 24a again. It becomes possible. In FIGS. 17 to 22, as an example of an X-ray transmission image in the transmission X-ray inspection, a case where the other terminal board 24 a and the output lead 22 are soldered is shown. Even in the case where the terminal board 24 and the output lead 22 that are not formed are soldered, it is possible to eliminate the soldering failure between the terminal board 24 and the output lead 22 in the same manner. That is, in a direction parallel to the in-plane direction of the solar cell panel 2, the area ratio of the soldering portion 211 to the in-plane area of the soldering target region is set, and the degree of deterioration is less than 5%. For the battery panel 2, soldering between the output lead 22 and the terminal plate 24 may be performed again.
 図23は、本発明の実施の形態1にかかる他の端子板24aを示す平面図である。図24は、本発明の実施の形態1にかかる他の端子板24aを示す側面図である。図23および図24に示す他の端子板24aは、X線透過像におけるはんだ未供給部212をより鮮明化するために、端子板24の構成において、はんだ付け対象領域を含む領域に溝27が形成された端子板である。 FIG. 23 is a plan view showing another terminal board 24a according to the first embodiment of the present invention. FIG. 24 is a side view showing another terminal board 24a according to the first embodiment of the present invention. 23 and 24 have a groove 27 in the region including the soldering target region in the configuration of the terminal plate 24 in order to make the solder unsupplied portion 212 in the X-ray transmission image clearer. It is the formed terminal board.
 溝27の寸法は、例えば、幅xは1mm、深さyは0.2mmである。幅xは、他の端子板24aにはんだ接合される出力リード22の幅方向と平行な方向の長さである。はんだ未供給部212の厚さが0.1mmより厚くなると、X線透過像においてはんだ未供給部212とはんだ付け部211との明暗のコントラストが強くなるため、X線透過像においてはんだ未供給部212の鮮明度がより高くなる。このため、余裕を持たせて深さyを0.2mmとしている。例えば、図19において、溝27の形成領域に存在するはんだ未供給部212の像は、溝27が形成されていない領域に存在する他のはんだ未供給部212の像よりも鮮明になっている。出力リード22と他の端子板24aとの間隔の一部が、少なくとも、0.1mmより厚い厚さではんだ付けされていることが好ましい。すなわち、出力リード22と他の端子板24aとをはんだ付けする際には、出力リード22と他の端子板24aとの間隔の一部が、少なくとも、0.1mmより厚くなるようにはんだを供給してはんだ付けすることが好ましい。そして、出力リード22と他の端子板24aとの間隔の全てが、少なくとも、0.1mmより厚い厚さではんだ付けされていることがより好ましい。 The dimensions of the groove 27 are, for example, a width x of 1 mm and a depth y of 0.2 mm. The width x is a length in a direction parallel to the width direction of the output lead 22 soldered to the other terminal plate 24a. When the thickness of the solder unsupplied portion 212 is greater than 0.1 mm, the contrast between the solder unsupplied portion 212 and the soldered portion 211 in the X-ray transmitted image becomes strong. The sharpness of 212 becomes higher. For this reason, the depth y is set to 0.2 mm with a margin. For example, in FIG. 19, the image of the solder unsupplied portion 212 existing in the region where the groove 27 is formed is clearer than the image of the other solder unsupplied portion 212 existing in the region where the groove 27 is not formed. . It is preferable that a part of the interval between the output lead 22 and the other terminal plate 24a is soldered at a thickness greater than at least 0.1 mm. That is, when soldering the output lead 22 and the other terminal plate 24a, the solder is supplied so that a part of the interval between the output lead 22 and the other terminal plate 24a is at least thicker than 0.1 mm. It is preferable to perform soldering. It is more preferable that all the intervals between the output lead 22 and the other terminal plate 24a are soldered at a thickness greater than at least 0.1 mm.
 また、溝27は、幅がはんだ付け対象領域の出力リード22の長さ方向の長さの10%以上であり、深さが0.1mmより大であることが好ましい。これにより、X線透過像においてはんだ未供給部212の鮮明度がより高くなる。溝27の幅が、はんだ付け対象領域の出力リード22の長さ方向の幅の10%未満の場合は、温度サイクルに対する出力リード22と他の端子板24aとのはんだ接合の信頼性を確保するために必要な、はんだ付け対象領域の面積に対する実際に他の端子板24aと出力リード22とがはんだ接合されているはんだ付け部の面積比を確保するための鮮明なX線透過像が得られる面積の領域が狭くなる。この結果、X線検査装置200における、他の端子板24aと出力リード22とのはんだ接合状態の良否の自動での判定が困難となる。溝27の幅の上限は、出力リード22の機械強度を配慮し、出力リード22のたわみによる溝27の底面への接触が生じない範囲の長さである。 Further, it is preferable that the width of the groove 27 is 10% or more of the length in the length direction of the output lead 22 in the soldering target region, and the depth is larger than 0.1 mm. Thereby, the sharpness of the solder non-supplying portion 212 in the X-ray transmission image becomes higher. When the width of the groove 27 is less than 10% of the width in the length direction of the output lead 22 in the soldering target region, the reliability of the solder joint between the output lead 22 and the other terminal plate 24a with respect to the temperature cycle is ensured. Therefore, a clear X-ray transmission image can be obtained for securing the area ratio of the soldering portion where the other terminal plate 24a and the output lead 22 are actually soldered to the area of the soldering target region necessary for the purpose. The area area is narrowed. As a result, in the X-ray inspection apparatus 200, it is difficult to automatically determine whether or not the solder joint state between the other terminal plate 24a and the output lead 22 is good. The upper limit of the width of the groove 27 is a length in a range in which contact with the bottom surface of the groove 27 due to the deflection of the output lead 22 does not occur in consideration of the mechanical strength of the output lead 22.
 また、溝27は、幅が1mm以上であり、深さが0.1mmより大であることが好ましい。これにより、X線透過像においてはんだ未供給部212の鮮明度がより高くなる。溝27の幅が、1mm未満の場合は、前記と同様に、温度サイクルに対する出力リード22と他の端子板24aとのはんだ接合の信頼性を確保するために必要な、はんだ付け対象領域の面積に対する実際に他の端子板24aと出力リード22とがはんだ接合されているはんだ付け部の面積比を確保するための鮮明なX線透過像が得られる面積の領域が狭くなる。この結果、X線検査装置200における、他の端子板24aと出力リード22とのはんだ接合状態の良否の自動での判定が困難となる。溝27の幅の上限は、出力リード22の厚さが上下に配置されるはんだを含まない状態で100μm厚である場合に、すなわち、出力リード22の実際の厚さが100μm厚である場合に、機械強度を配慮し、出力リード22がたわんで溝27の底面に接触しない範囲の長さ2mmとしている。 Further, it is preferable that the groove 27 has a width of 1 mm or more and a depth of more than 0.1 mm. Thereby, the sharpness of the solder non-supplying portion 212 in the X-ray transmission image becomes higher. When the width of the groove 27 is less than 1 mm, the area of the soldering target area necessary for ensuring the reliability of the solder joint between the output lead 22 and the other terminal plate 24a with respect to the temperature cycle as described above. The area of the area where a clear X-ray transmission image for securing the area ratio of the soldered portion where the other terminal plate 24a and the output lead 22 are actually soldered is reduced. As a result, in the X-ray inspection apparatus 200, it is difficult to automatically determine whether or not the solder joint state between the other terminal plate 24a and the output lead 22 is good. The upper limit of the width of the groove 27 is when the thickness of the output lead 22 is 100 μm thick without including the solder arranged above and below, that is, when the actual thickness of the output lead 22 is 100 μm. Considering the mechanical strength, the length of the output lead 22 is 2 mm in a range where the output lead 22 is bent and does not contact the bottom surface of the groove 27.
 図25は、本発明の実施の形態1にかかる他の端子板24aに出力リード22が接続された場合のはんだ未供給部212aとはんだ付け部211の状況を示した図である。なお、図25においては、出力リード22を透過して見た状態を示している。図26は、本発明の実施の形態1にかかる他の端子板24aに出力リード22が接続された場合のはんだ未供給部212aとはんだ付け部211の状況を示した図であり、図25におけるXXVI-XXVI線における断面図である。なお、図26においては、出力リード22を記載している。図27は、本発明の実施の形態1にかかる端子板24に出力リード22が接続された場合のはんだ未供給部212b,212cとはんだ付け部211の状況を示した図である。なお、図27においては、出力リード22を透過して見た状態を示している。端子板24には、溝27が形成されていない。図28は、本発明の実施の形態1にかかる端子板24に出力リード22が接続された場合のはんだ未供給部212b,212cとはんだ付け部211の状況を示した図であり、図27におけるXXVIII-XXVIII線における断面図である。なお、図28においては、出力リード22を記載している。 FIG. 25 is a diagram showing the situation of the solder unsupply part 212a and the soldering part 211 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. Note that FIG. 25 shows a state seen through the output lead 22. FIG. 26 is a diagram illustrating a situation of the solder unsupplied portion 212a and the soldered portion 211 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. It is sectional drawing in the XXVI-XXVI line. In FIG. 26, the output lead 22 is shown. FIG. 27 is a diagram showing the state of the solder unsupplied portions 212b and 212c and the soldering portion 211 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention. FIG. 27 shows a state seen through the output lead 22. A groove 27 is not formed in the terminal plate 24. FIG. 28 is a diagram showing a situation of the solder unsupplied parts 212b and 212c and the soldering part 211 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention. It is sectional drawing in the XXVIII-XXVIII line. In FIG. 28, the output lead 22 is shown.
 出力リード22と、端子板24または他の端子板24aとのはんだ付けの際は、上述したように出力リード22を端子板24または他の端子板24aにからげることにより仮止めしてはんだ付けを行う。このため、はんだ付け作業の間に出力リード22と、端子板24または他の端子板24aとの対向面を平行に保持することは困難である。また、はんだ付けに使用するはんだ量は一定に管理されるが、出力リード22と、端子板24または他の端子板24aとの間に供給するはんだ26の量を一定にすることは困難である。 When soldering the output lead 22 to the terminal plate 24 or another terminal plate 24a, the output lead 22 is temporarily fixed by being tangled to the terminal plate 24 or another terminal plate 24a as described above. To do. For this reason, it is difficult to hold the opposing surfaces of the output lead 22 and the terminal plate 24 or other terminal plate 24a in parallel during the soldering operation. Further, although the amount of solder used for soldering is controlled to be constant, it is difficult to make the amount of solder 26 supplied between the output lead 22 and the terminal plate 24 or another terminal plate 24a constant. .
 図26に示す例では、出力リード22と他の端子板24aとが平行ではなく、出力リード22と他の端子板24aとの間隔は、一端部ではh1であり、他端部ではh2となっており、h1>h2である。図26に示す例では、はんだ未供給部212aは、溝27が形成された領域に存在している。そして、はんだ未供給部212aの厚みは、少なくとも溝27の深さである0.2mmよりも大きい厚みとなっている。これにより、図26に示す例のX線透過像を観察した場合、はんだ未供給部212aとはんだ付け部211との明暗のコントラストが強くなるため、X線透過像においてはんだ未供給部212aの鮮明度がより高くなる。 In the example shown in FIG. 26, the output lead 22 and the other terminal plate 24a are not parallel, and the interval between the output lead 22 and the other terminal plate 24a is h1 at one end and h2 at the other end. H1> h2. In the example shown in FIG. 26, the solder non-supply portion 212a exists in the region where the groove 27 is formed. And the thickness of the solder unsupply part 212a is larger than at least 0.2 mm which is the depth of the groove 27. Accordingly, when the X-ray transmission image of the example shown in FIG. 26 is observed, the contrast between the non-solder supply part 212a and the soldering part 211 becomes strong, so that the clear solder non-supply part 212a in the X-ray transmission image is clear. The degree becomes higher.
 一方、図28に示す例では、出力リード22と端子板24とが平行ではなく、出力リード22と端子板24との間隔は、一端部ではh3であり、他端部ではh4となっており、h3>h4である。図28に示す例では、端子板24には溝27が存在していない。はんだ未供給部212bの厚さがX線透過像において鮮明な像が得られる下限に近い厚さの場合は、h4の周辺に存在するはんだ未供給部212cは、X線透過像において判別しにくい場合がある。 On the other hand, in the example shown in FIG. 28, the output lead 22 and the terminal plate 24 are not parallel, and the distance between the output lead 22 and the terminal plate 24 is h3 at one end and h4 at the other end. , H3> h4. In the example shown in FIG. 28, the terminal plate 24 does not have the groove 27. When the thickness of the solder unsupplied portion 212b is close to the lower limit at which a clear image is obtained in the X-ray transmission image, the solder non-supply portion 212c existing around h4 is difficult to discriminate in the X-ray transmission image. There is a case.
 したがって、はんだ未供給部212が形成された場合に、はんだ未供給部212の厚さが厚くなるように、端子板24には溝27を形成することが好ましい。 Therefore, it is preferable to form the groove 27 in the terminal plate 24 so that the thickness of the solder non-supply part 212 is increased when the solder non-supply part 212 is formed.
 また、あらかじめ出力リード22と端子板24との間隔がX線透過像において鮮明な像が得られる下限に近い厚さより大きくなるように出力リード22を端子板24にからげてもよい。この場合、例えばはんだが付着しないポリテトラフルオロエチレンがコーティングされた専用治具等で端子板24を仮押さえしながら、はんだを供給しつつはんだ付けを行う。 Further, the output lead 22 may be entangled with the terminal plate 24 in advance so that the distance between the output lead 22 and the terminal plate 24 is larger than the thickness near the lower limit at which a clear image can be obtained in the X-ray transmission image. In this case, for example, soldering is performed while supplying the solder while temporarily holding the terminal board 24 with a dedicated jig or the like coated with polytetrafluoroethylene to which no solder adheres.
 X線透過像の鮮明度に関して図26を参照して説明する。対象となる部分は、出力リード22と他の端子板24aのはんだ26およびはんだ未供給部212aである。はんだ26の部分を透過するX線ははんだ26を透過する際、一部ははんだ26に吸収されて減衰する。減衰量はランバート・ベールの法則で表現され、例えば、はんだ未供給部212aすなわち大気の透過率を1とし、はんだ26の透過率を例えば透過率1より僅かに小さい0.99とする場合においても、はんだ26を透過するX線の強度とはんだ未供給部212aを透過するX線の強度の比は、はんだ26の厚さが0.1mmでは約3倍となり、0.2mmでは約5倍となる。一方、X線非破壊検査用カメラ203の解像度をメガピクセル仕様とした場合、20mm角以上の視野であれば分解能は50μm程度あるので、サブミリオーダのはんだ未供給部212aを検出することが可能となる。以上の関係から、端子板24の溝27の深さは0.2mmとし鮮明度を高めた仕様にて実施している。 The definition of the X-ray transmission image will be described with reference to FIG. The target portions are the output lead 22, the solder 26 of the other terminal plate 24 a, and the solder unsupplied portion 212 a. When the X-rays passing through the solder 26 pass through the solder 26, a part of the X-rays is absorbed by the solder 26 and attenuates. The attenuation is expressed by Lambert-Beer's law. For example, even when the solder unsupply portion 212a, that is, the atmospheric transmittance is 1, and the transmittance of the solder 26 is 0.99, which is slightly smaller than the transmittance 1, for example. The ratio of the intensity of X-rays transmitted through the solder 26 and the intensity of X-rays transmitted through the solder unsupplied portion 212a is about 3 times when the thickness of the solder 26 is 0.1 mm, and about 5 times when the thickness of the solder 26 is 0.2 mm. Become. On the other hand, when the resolution of the X-ray nondestructive inspection camera 203 is a megapixel specification, if the field of view is 20 mm square or more, the resolution is about 50 μm, and therefore, it is possible to detect the submillimeter solder unsupplied portion 212a. Become. From the above relationship, the depth of the groove 27 of the terminal board 24 is 0.2 mm, and the specification is carried out with an increased clarity.
 ランバート・ベールの法則は、物体に入射する前の放射線の強さをI、物体を透過した後の放射線の強さをI、物体の厚さをx、物体の吸収係数をμ、とすれば下記の式(1)が成立する。 Lambert-Beer's law is that the intensity of radiation before entering an object is I 0 , the intensity of radiation after passing through the object is I, the thickness of the object is x, and the absorption coefficient of the object is μ. The following formula (1) is established.
 I=I-μx ・・・(1) I = I 0 e −μx (1)
 図28において、出力リード22と端子板24との間隔がh4である他端部でX線透過像が不鮮明な場合を考える。この場合、他端部の近くではんだが存在している部分のX線の検出強度を1/aとする。はんだ未供給部212bおよびはんだ未供給部212cはX線が全透過するため、X線の検出強度は1とする。したがって、はんだ未供給部212bおよびはんだ未供給部212cと、他端部の近くと、のX線の検出強度の差は、1-1/aとなる。 In FIG. 28, consider a case where the X-ray transmission image is unclear at the other end where the distance between the output lead 22 and the terminal plate 24 is h4. In this case, the detected intensity of the X-ray at the portion where the solder exists near the other end is set to 1 / a. The X-ray detection intensity is set to 1 because the X-rays are completely transmitted through the solder non-supply part 212b and the solder non-supply part 212c. Therefore, the difference in detected X-ray intensity between the solder unsupplied portion 212b and the solder unsupplied portion 212c and the vicinity of the other end is 1-1 / a.
 図26において、出力リード22と他の端子板24aとの間隔がh2である他端部の近くでのX線の検出強度を1/aとする。また、溝27の形成部の一部での出力リード22と他の端子板24aとの間隔をh5とする。この溝27の形成部でのX線の検出強度は、ランバート・ベールの法則から、(1/a)h5/h2と表される。ここで、h2=h4である。はんだ未供給部212aはX線が全透過するため、X線の検出強度は1である。したがって、他端部とこの溝27の形成部とのX線の検出強度の差は1-(1/a)h5/h2となる。 In FIG. 26, the detected intensity of the X-ray near the other end where the distance between the output lead 22 and the other terminal plate 24a is h2 is 1 / a. In addition, the interval between the output lead 22 and the other terminal plate 24a in a part of the formation part of the groove 27 is h5. From the Lambert-Beer law, the detected intensity of X-rays at the formation portion of the groove 27 is expressed as (1 / a) h5 / h2 . Here, h2 = h4. The X-ray detection intensity is 1 because the X-rays are completely transmitted through the solder unsupplied portion 212a. Therefore, the difference in detected X-ray intensity between the other end and the portion where the groove 27 is formed is 1− (1 / a) h5 / h2 .
 ここで、他端部の近くでのX線透過像が不鮮明な場合に、例えば、h2=0.05mm、溝27の深さ=0.2mm、1/a=0.99とすると、他端部の近くでのX線の検出強度は、1-1/a=0.01となる。一方、溝27の形成部でのX線の検出強度は、1-(1/a)h5/h2=0.05となる。したがって、他端部と溝27の形成部とで、X線の検出強度の比は5倍となる。仮に、溝27の深さ=0.1mmの場合の溝27の形成部での出力リード22と他の端子板24aとの間隔をh6とすると、溝27の形成部でのX線の検出強度は、1-(1/a)h6/h2=0.03となり、他端部と溝27の形成部とで、X線の検出強度の比は3倍となる。本実施の形態1では他端部と溝27の形成部とでのX線の検出強度の比は3倍を下限と設定した。 Here, when the X-ray transmission image near the other end is unclear, for example, when h2 = 0.05 mm, the depth of the groove 27 = 0.2 mm, and 1 / a = 0.99, the other end The detected intensity of the X-ray near the portion is 1-1 / a = 0.01. On the other hand, the detected intensity of X-rays at the formation portion of the groove 27 is 1− (1 / a) h5 / h2 = 0.05. Therefore, the ratio of the X-ray detection intensity is 5 times between the other end and the formation part of the groove 27. If the distance between the output lead 22 and the other terminal plate 24a in the groove 27 forming portion when the depth of the groove 27 is 0.1 mm is h6, the detected intensity of X-rays in the groove 27 forming portion. Is 1− (1 / a) h6 / h2 = 0.03, and the ratio of the detected intensity of X-rays is tripled between the other end and the portion where the groove 27 is formed. In the first embodiment, the lower limit of the X-ray detection intensity ratio between the other end and the groove 27 forming portion is set to 3 times.
 また、はんだの厚さが厚いほど、はんだを透過するX線の透過量が減るので、はんだが供給されないはんだ未供給部212の厚さが一定であれば、はんだの厚みが厚いほどはんだの有無によるX線透過像のコントラストの差は強くなる。そこで、上述した溝27を形成することにより、はんだ未供給部212が生じた場合のX線透過像のコントラストの差を強くする機能も有している。 In addition, since the amount of X-ray transmitted through the solder decreases as the thickness of the solder increases, if the thickness of the solder unsupplied portion 212 to which no solder is supplied is constant, the presence or absence of solder increases as the thickness of the solder increases. The difference in contrast of the X-ray transmission image due to is increased. Therefore, by forming the groove 27 described above, it also has a function of strengthening the difference in contrast of the X-ray transmission image when the solder non-supplying portion 212 occurs.
 ここで、X線非破壊検査用カメラ203における画素分解能の考え方について説明する。画素分解能は、X線非破壊検査用カメラ203のCCDの画素数とX線非破壊検査用カメラ203で映す視野の大きさによって決定される。CCDは、撮像素子であり、画素と呼ばれる明るさの強弱を電気信号に変換する小さな素子の集まりで構成されている。現在、工業用のX線非破壊検査用カメラ203では、31万画素のものが標準的なものである。また、高性能なX線非破壊検査用カメラ203は、メガピクセルタイプと呼ばれる500万画素のものが主流になっている。 Here, the concept of pixel resolution in the X-ray nondestructive inspection camera 203 will be described. The pixel resolution is determined by the number of pixels of the CCD of the X-ray nondestructive inspection camera 203 and the size of the visual field projected by the X-ray nondestructive inspection camera 203. The CCD is an image sensor and is composed of a collection of small elements called pixels, which convert the intensity of brightness into electrical signals. At present, 310,000 pixels are standard for industrial X-ray nondestructive inspection cameras 203. The high-performance X-ray non-destructive inspection camera 203 is mainly a 5 megapixel camera called a megapixel type.
 また、ここでの視野とは、X線非破壊検査用カメラ203で撮像したときに画像として映る範囲である。視野は、X線非破壊検査用カメラ203で使用するレンズを調整することによって、広い視野から狭い視野まで任意の視野に自由に変更可能である。図19から図22に示した図では、視野の範囲は縦5mm、横4mmである。したがって、上記の20mm角の視野は、図19から図22に示した図における視野の範囲である縦5mm×横4mm=20mm角に基づいている。なお、図17および図18に示したX線観察領域120の実寸法は、15mm角である。 In addition, the visual field here is a range that appears as an image when the image is captured by the X-ray nondestructive inspection camera 203. The field of view can be freely changed from a wide field of view to a narrow field of view by adjusting the lens used in the X-ray nondestructive inspection camera 203. In the diagrams shown in FIGS. 19 to 22, the range of the visual field is 5 mm in length and 4 mm in width. Therefore, the 20 mm square field of view is based on the range of the field of view in the drawings shown in FIGS. 19 to 22 which is 5 mm long × 4 mm wide = 20 mm square. The actual size of the X-ray observation region 120 shown in FIGS. 17 and 18 is 15 mm square.
 X線透過像の鮮明度に関して図29から図32を模式図を参照して説明する。図29は、本発明の実施の形態1にかかる端子板24に出力リード22が接続された場合の、端子板24と出力リード22との間のはんだ層231の断面を模式的に示す断面図である。図30は、本発明の実施の形態1にかかる端子板24に出力リード22が接続された場合の、端子板24と出力リード22との間のはんだ層231の上面X線観察像を示す図である。図30の上面X線観察像は、はんだ接合された端子板24と出力リード22において端子板24の下方からX線を照射して、出力リード22の上方でX線206を検出した場合のX線透過像である。 The clarity of the X-ray transmission image will be described with reference to FIGS. 29 is a cross-sectional view schematically showing a cross section of the solder layer 231 between the terminal plate 24 and the output lead 22 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention. It is. FIG. 30 is a view showing an upper surface X-ray observation image of the solder layer 231 between the terminal plate 24 and the output lead 22 when the output lead 22 is connected to the terminal plate 24 according to the first embodiment of the present invention. It is. 30 is an X-ray observation image when X-rays 206 are detected above the output lead 22 by irradiating the solder-bonded terminal plate 24 and the output lead 22 with X-rays from below the terminal plate 24. It is a line transmission image.
 図31は、本発明の実施の形態1にかかる他の端子板24aに出力リード22が接続された場合の、他の端子板24aと出力リード22との間のはんだ層231の断面を模式的に示す断面図である。図32は、本発明の実施の形態1にかかる他の端子板24aに出力リード22が接続された場合の、他の端子板24aと出力リード22との間のはんだ層231の上面X線観察像を示す図である。図32の上面X線観察像は、はんだ接合された他の端子板24aと出力リード22において他の端子板24aの下方からX線を照射して、出力リード22の上方でX線206を検出した場合のX線透過像である。他の端子板24aにおける溝27の深さは0.2mmである。 FIG. 31 is a schematic cross-sectional view of the solder layer 231 between the other terminal plate 24a and the output lead 22 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. FIG. FIG. 32 shows an upper surface X-ray observation of the solder layer 231 between the other terminal plate 24a and the output lead 22 when the output lead 22 is connected to the other terminal plate 24a according to the first embodiment of the present invention. It is a figure which shows an image. 32, the X-ray 206 is detected above the output lead 22 by irradiating X-rays from below the other terminal plate 24a on the other terminal plate 24a and the output lead 22 that are soldered together. It is an X-ray transmission image in the case of. The depth of the groove 27 in the other terminal plate 24a is 0.2 mm.
 図29および図30に示すように、はんだ層231には、はんだ付け部211の中にはんだ未供給部212aであるボイド232aおよびボイド232bが存在する。図29に示す例では、出力リード22と端子板24とが平行ではなく、出力リード22と端子板24との間隔は、一端部ではh3であり、他端部ではh4となっており、h3>h4である。図29に示す例では、端子板24には溝27が存在していない。ボイド232aの厚さがX線透過像において鮮明な像が得られる下限に近い厚さの場合は、ボイド232aは、図30の上面X線観察像において判別される。一方、他端部の周辺に存在するボイド232bは、はんだ層231の厚さがX線透過像において鮮明な像が得られる下限よりも薄くなり、X線透過像において判別しにくい場合がある。 29 and FIG. 30, the solder layer 231 includes a void 232a and a void 232b, which are solder unsupplied portions 212a, in the soldering portion 211. As shown in FIG. In the example shown in FIG. 29, the output lead 22 and the terminal plate 24 are not parallel, and the interval between the output lead 22 and the terminal plate 24 is h3 at one end, and h4 at the other end. > H4. In the example shown in FIG. 29, the terminal plate 24 has no groove 27. When the thickness of the void 232a is close to the lower limit at which a clear image is obtained in the X-ray transmission image, the void 232a is determined in the upper surface X-ray observation image of FIG. On the other hand, in the void 232b existing around the other end, the thickness of the solder layer 231 is thinner than the lower limit at which a clear image is obtained in the X-ray transmission image, and it may be difficult to distinguish in the X-ray transmission image.
 図31および図32に示すように、はんだ層231には、はんだ付け部211の中にはんだ未供給部212aであるボイド232cおよびボイド232dが存在する。図31に示す例では、出力リード22と他の端子板24aとが平行ではなく、出力リード22と他の端子板24aとの間隔は、一端部ではh1であり、他端部ではh2となっており、h1>h2である。図31に示す例では、ボイド232cおよびボイド232dは、溝27が形成された領域に存在している。そして、ボイド232dの厚みは、少なくとも溝27の深さである0.2mmよりも大きい厚みとなっている。これにより、図31に示す例のX線透過像を観察した場合、ボイド232dとはんだ付け部211との明暗のコントラストが強くなるため、図32の上面X線観察像においてボイド232dの鮮明度がより高くなる。 As shown in FIGS. 31 and 32, the solder layer 231 includes a void 232c and a void 232d that are not supplied with the solder 212a in the soldering portion 211. In the example shown in FIG. 31, the output lead 22 and the other terminal plate 24a are not parallel, and the distance between the output lead 22 and the other terminal plate 24a is h1 at one end and h2 at the other end. H1> h2. In the example shown in FIG. 31, the void 232c and the void 232d exist in the region where the groove 27 is formed. The thickness of the void 232d is greater than at least 0.2 mm, which is the depth of the groove 27. Thereby, when the X-ray transmission image of the example shown in FIG. 31 is observed, the contrast between the void 232d and the soldering portion 211 becomes strong, so the sharpness of the void 232d in the upper surface X-ray observation image of FIG. Get higher.
 また、溝27の部分でははんだ層231が厚くなり、傾きによるはんだ層231の厚さの差があっても、X線透過像におけるはんだ付け部211とはんだ未供給部212aとのコントラストへ与える影響が少ない。したがって、図32に示す例のX線透過像を観察した場合、ボイド232dとはんだ付け部211との明暗のコントラストが強くなるため、図32の上面X線観察像において、溝27の深さよりも厚さが薄く溝27に埋まっているようなボイド232cを判別することができる。 In addition, the solder layer 231 becomes thicker in the groove 27 portion, and even if there is a difference in the thickness of the solder layer 231 due to the inclination, the influence on the contrast between the soldered portion 211 and the solder unsupplied portion 212a in the X-ray transmission image. Less is. Therefore, when the X-ray transmission image of the example shown in FIG. 32 is observed, the contrast between the void 232d and the soldering portion 211 becomes stronger, so that the upper surface X-ray observation image of FIG. A void 232c that is thin and buried in the groove 27 can be identified.
 また、鮮明なX線透過像を得るために、太陽電池モジュール1の断面構造において、出力リード22および端子板24のはんだ付け部211のみが存在するように、端子ボックス14を配置することが好ましい。端子ボックス形成箇所19における端子ボックス14の下部の断面構造は、裏面側から、接着剤、裏面保護部品12、EVA、太陽電池セル5、EVA、受光面保護部品11の順に部品が配置されている。 Further, in order to obtain a clear X-ray transmission image, it is preferable to arrange the terminal box 14 so that only the soldered portions 211 of the output lead 22 and the terminal plate 24 exist in the cross-sectional structure of the solar cell module 1. . The cross-sectional structure of the lower portion of the terminal box 14 in the terminal box forming portion 19 is such that components are arranged in the order of adhesive, back surface protection component 12, EVA, solar battery cell 5, EVA, and light receiving surface protection component 11 from the back side. .
 現在、一般的に製造されている太陽電池セル5の場合、一枚の太陽電池セル5には等間隔で4本または5本のセル間接続タブ21が配されており、出力リード22および端子板24のはんだ付け部の下部にセル間接続タブ21が配置される可能性がある。 Currently, in the case of a generally manufactured solar cell 5, four or five inter-cell connection tabs 21 are arranged at equal intervals in one solar cell 5, and output leads 22 and terminals There is a possibility that the inter-cell connection tab 21 is disposed below the soldering portion of the plate 24.
 図33は、本発明の実施の形態1にかかる出力リード22および端子板24のはんだ付け部とセル間接続タブ21との位置関係を示す平面図である。上述した太陽電池モジュール1を構成する材料の中で相対的にX線の吸収率が高いものは、はんだに覆われたセル間接続タブ21であるので、図33に示すように出力リード22および端子板24のはんだ付け部とセル間接続タブ21とが重ならないように配置することが好ましい。すなわち、太陽電池パネル2に端子ボックス14を配置する際に、端子ボックス14を、太陽電池パネル2の面内方向においてセル間接続タブ21に重ならない位置に配置することが好ましい。一方、他の材料は、X線の吸収率が相対的に小さく、X線透過像の鮮明度への影響が小さいため、問題とならない。 FIG. 33 is a plan view showing a positional relationship between the soldered portions of the output lead 22 and the terminal plate 24 and the inter-cell connection tab 21 according to the first embodiment of the present invention. Among the materials constituting the solar cell module 1 described above, the one having a relatively high X-ray absorption rate is the inter-cell connection tab 21 covered with solder. Therefore, as shown in FIG. It is preferable to arrange so that the soldered portion of the terminal plate 24 and the inter-cell connection tab 21 do not overlap. That is, when arranging the terminal box 14 on the solar cell panel 2, it is preferable to arrange the terminal box 14 at a position that does not overlap the inter-cell connection tab 21 in the in-plane direction of the solar cell panel 2. On the other hand, other materials have a relatively low X-ray absorptance and have little effect on the sharpness of the X-ray transmission image, and thus do not cause a problem.
 上述したように、本実施の形態1にかかる太陽電池モジュールの製造方法では、太陽電池パネル2の端子ボックス14における出力リード22と端子板24とのはんだ付け状態をX線透過像から把握できる。これにより、出力リード22と端子板24とのはんだ付け状態が適切なはんだ付け状態であるか不適切なはんだ付け状態であるかを容易に判定することが可能である。そして、出力リード22と端子板24とのはんだ付けの不具合については再度はんだ付け加工を実施することで、出力リード22と端子板24との間のはんだ付け不良を無くすことが可能となる。 As described above, in the method for manufacturing the solar cell module according to the first embodiment, the soldered state between the output lead 22 and the terminal plate 24 in the terminal box 14 of the solar cell panel 2 can be grasped from the X-ray transmission image. As a result, it is possible to easily determine whether the soldering state between the output lead 22 and the terminal plate 24 is an appropriate soldering state or an inappropriate soldering state. Then, the soldering failure between the output lead 22 and the terminal plate 24 can be eliminated by re-soldering the soldering failure between the output lead 22 and the terminal plate 24.
 したがって、本実施の形態1にかかる太陽電池モジュールの製造方法によれば、太陽電池モジュール1におけるはんだ付け部のはんだ付け状態を容易に判定可能であり、所望の長期信頼性が確保可能なはんだ付けを安定的に実現することができ、信頼性の高い太陽電池モジュールを提供可能である、という効果が得られる。 Therefore, according to the manufacturing method of the solar cell module according to the first embodiment, it is possible to easily determine the soldering state of the soldering portion in the solar cell module 1, and to ensure the desired long-term reliability. Can be realized stably, and an effect that a highly reliable solar cell module can be provided is obtained.
実施の形態2.
 図34は、本発明の実施の形態2にかかる太陽電池ストリング4同士をストリング間接続タブ28によりはんだ付けして直列に接続した太陽電池アレイ3を受光面側から見た斜視図である。図35は、本発明の実施の形態2にかかる太陽電池モジュール1の製造方法の手順を示すフローチャートである。
Embodiment 2. FIG.
FIG. 34 is a perspective view of the solar cell array 3 in which the solar cell strings 4 according to the second embodiment of the present invention are soldered together by the inter-string connection tabs 28 and connected in series, as viewed from the light receiving surface side. FIG. 35 is a flowchart showing the procedure of the method for manufacturing the solar cell module 1 according to the second embodiment of the present invention.
 上述した透過X線検査により、太陽電池ストリング4とストリング間接続タブ28との間のはんだ付け状態を検査することができる。すなわち、上述した透過X線検査により、セル間接続タブ21とストリング間接続タブ28との間のはんだ付け状態を検査することができる。太陽電池アレイ3を受光面保護部品11上に乗せた状態で上述したX線検査装置200によって検査する。この透過X線検査は、ステップS30とステップS40との間のステップS110の工程となる。ステップS110でNoの場合は、ステップS30に戻ってセル間接続タブ21とストリング間接続タブ28との間のはんだ付けが再度行われる。これにより、セル間接続タブ21とストリング間接続タブ28との間のはんだ付け不良を無くすことが可能となる。この場合、ストリング間接続タブ28が第1の金属部品に対応する。また、セル間接続タブ21が第2の金属部品に対応する。 The soldered state between the solar cell string 4 and the connection tabs 28 between strings can be inspected by the transmission X-ray inspection described above. That is, the soldering state between the inter-cell connection tab 21 and the inter-string connection tab 28 can be inspected by the transmission X-ray inspection described above. Inspection is performed by the X-ray inspection apparatus 200 described above in a state where the solar cell array 3 is placed on the light receiving surface protection component 11. This transmission X-ray inspection is a step S110 between step S30 and step S40. In the case of No in step S110, the process returns to step S30, and soldering between the inter-cell connection tab 21 and the inter-string connection tab 28 is performed again. Thereby, it is possible to eliminate a soldering failure between the inter-cell connection tab 21 and the inter-string connection tab 28. In this case, the interstring connection tab 28 corresponds to the first metal part. The inter-cell connection tab 21 corresponds to the second metal part.
 同様に、上述した透過X線検査により、太陽電池セル5とセル間接続タブ21との間のはんだ付け状態を検査することができる。すなわち、上述した透過X線検査により、図33に示すようにセル間接続タブ21と裏面接続電極31との間のはんだ付け状態を検査することができる。太陽電池アレイ3を受光面保護部品11上に乗せた状態で上述したX線検査装置200によって検査する。この透過X線検査は、ステップS30とステップS40との間のステップS110の工程となる。ステップS110でNoの場合は、ステップS20に戻って太陽電池セル5とセル間接続タブ21との間のはんだ付けが再度行われる。これにより、太陽電池セル5とセル間接続タブ21との間のはんだ付け不良を無くすことが可能となる。この場合、セル間接続タブ21が第1の金属部品に対応する。また、裏面接続電極31が第2の金属部品に対応する。同様に、太陽電池セル5の受光面側バス電極とセル間接続タブ21との間のはんだ付け状態を検査することができる。 Similarly, the soldering state between the solar battery cell 5 and the inter-cell connection tab 21 can be inspected by the transmission X-ray inspection described above. That is, by the above-described transmission X-ray inspection, the soldering state between the inter-cell connection tab 21 and the back surface connection electrode 31 can be inspected as shown in FIG. Inspection is performed by the X-ray inspection apparatus 200 described above in a state where the solar cell array 3 is placed on the light receiving surface protection component 11. This transmission X-ray inspection is a step S110 between step S30 and step S40. In the case of No in step S110, the process returns to step S20, and soldering between the solar battery cell 5 and the inter-cell connection tab 21 is performed again. Thereby, it becomes possible to eliminate the soldering failure between the solar battery cell 5 and the inter-cell connection tab 21. In this case, the inter-cell connection tab 21 corresponds to the first metal part. Further, the back surface connection electrode 31 corresponds to the second metal part. Similarly, the soldering state between the light receiving surface side bus electrode of the solar battery cell 5 and the inter-cell connection tab 21 can be inspected.
 したがって、本実施の形態1にかかる太陽電池モジュールの製造方法によれば、セル間接続タブ21とストリング間接続タブ28との間のはんだ付け状態および太陽電池セル5とセル間接続タブ21との間のはんだ付け状態を検査することで、はんだ付けが十分に行われていない箇所を特定し、再度適切なはんだ付けを行い、はんだ付け不良の発生を防止することで高信頼性の太陽電池モジュールを製造することが可能となる。 Therefore, according to the manufacturing method of the solar cell module according to the first embodiment, the soldering state between the inter-cell connection tab 21 and the inter-string connection tab 28 and the solar cell 5 and the inter-cell connection tab 21. Highly reliable solar cell module by identifying places where soldering is not sufficiently performed by inspecting the soldering state between them, performing appropriate soldering again, and preventing the occurrence of defective soldering Can be manufactured.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、実施の形態の技術同士を組み合わせることも可能であるし、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and the technologies of the embodiment can be combined with each other or can be combined with another known technology. However, part of the configuration may be omitted or changed without departing from the gist of the present invention.
 1 太陽電池モジュール、2 太陽電池パネル、3 太陽電池アレイ、4 太陽電池ストリング、5 太陽電池セル、11 受光面保護部品、12 裏面保護部品、13 フレーム、14 端子ボックス、15 端子ボックス本体、15a 底面、15b 底面出力リード挿通孔、16 端子ボックスフタ、17 モジュール連結ケーブル、18 ケーブル接続部、19 端子ボックス形成箇所、21 セル間接続タブ、22,22a,22b 出力リード、23 引き出し切り込み、24 端子板、24a 他の端子板、25 出力リード挿通孔、26 はんだ、27 溝、28 ストリング間接続タブ、31 裏面接続電極、111 プロセッサ、112 メモリ、120 X線観察領域、200 X線検査装置、201 搬送装置、202,202a,202b X線発生装置、203,203a X線非破壊検査用カメラ、203al,203bl X線ラインセンサ、204 制御装置、204a X線制御部、204b 搬送制御部、204c 画像情報生成部、204d 演算部、204e 判定部、205 表示部、206 X線、207 筐体、208 進行方向、211 はんだ付け部、212,212a,212b,212c はんだ未供給部、221 はんだ付け対象領域。 1 solar cell module, 2 solar cell panel, 3 solar cell array, 4 solar cell string, 5 solar cell, 11 light receiving surface protection component, 12 back surface protection component, 13 frame, 14 terminal box, 15 terminal box body, 15a bottom surface 15b Bottom output lead insertion hole, 16 Terminal box cover, 17 Module connection cable, 18 Cable connection part, 19 Terminal box formation location, 21 Inter-cell connection tab, 22, 22a, 22b Output lead, 23 Drawer cut, 24 Terminal board 24a Other terminal board, 25 Output lead insertion hole, 26 Solder, 27 groove, 28 Inter-string connection tab, 31 Back connection electrode, 111 Processor, 112 Memory, 120 X-ray observation area, 200 X-ray inspection device, 201 apparatus, 02, 202a, 202b X-ray generator, 203, 203a X-ray non-destructive inspection camera, 203al, 203bl X-ray line sensor, 204 controller, 204a X-ray controller, 204b transport controller, 204c image information generator, 204d operation unit, 204e determination unit, 205 display unit, 206 X-ray, 207 housing, 208 traveling direction, 211 soldering unit, 212, 212a, 212b, 212c solder unsupplied unit, 221 soldering target area.

Claims (15)

  1.  太陽電池パネルを構成する第1の金属部品と第2の金属部品とのはんだ付けが行われた領域に向けてX線を照射して、前記太陽電池パネルの面内方向に平行な方向において前記第1の金属部品と前記第2の金属部品とが重なった領域であるはんだ付け対象領域におけるX線透過像を取得する第1工程と、
     前記太陽電池パネルの面内方向と平行な方向における、前記はんだ付け対象領域の面積に対する、実際に前記第1の金属部品と前記第2の金属部品とがはんだ接合されているはんだ付け部の面積比を、前記X線透過像から演算する第2工程と、
     前記面積比を既定の判定基準と比較して前記第1の金属部品と前記第2の金属部品とのはんだ接合状態の良否を判定する第3工程と、
     を含むことを特徴とする太陽電池モジュールの製造方法。
    The X-ray is irradiated toward the area where the first metal part and the second metal part constituting the solar cell panel are soldered, and the direction is parallel to the in-plane direction of the solar cell panel. A first step of obtaining an X-ray transmission image in an area to be soldered, which is an area where the first metal part and the second metal part overlap;
    The area of the soldering part where the first metal part and the second metal part are actually soldered to the area of the soldering target region in the direction parallel to the in-plane direction of the solar cell panel A second step of calculating a ratio from the X-ray transmission image;
    A third step of comparing the area ratio with a predetermined determination criterion to determine whether the solder joint state between the first metal part and the second metal part is good or not;
    The manufacturing method of the solar cell module characterized by including.
  2.  前記X線透過像が、前記太陽電池パネルの面内方向と平行な方向における2次元X線透過像であること、
     を特徴とする請求項1に記載の太陽電池モジュールの製造方法。
    The X-ray transmission image is a two-dimensional X-ray transmission image in a direction parallel to the in-plane direction of the solar cell panel;
    The manufacturing method of the solar cell module of Claim 1 characterized by these.
  3.  前記X線透過像が、前記太陽電池パネルの面内方向と平行な方向および前記太陽電池パネルの面内方向と垂直な方向における3次元X線透過像であること、
     を特徴とする請求項1に記載の太陽電池モジュールの製造方法。
    The X-ray transmission image is a three-dimensional X-ray transmission image in a direction parallel to the in-plane direction of the solar cell panel and a direction perpendicular to the in-plane direction of the solar cell panel;
    The manufacturing method of the solar cell module of Claim 1 characterized by these.
  4.  前記第1の金属部品が、前記太陽電池パネルにおける一面に配置された端子ボックス内に設けられた端子板であり、
     前記第2の金属部品が、前記太陽電池パネルから引き出された出力リードであること、
     を特徴とする請求項1から3のいずれか1つに記載の太陽電池モジュールの製造方法。
    The first metal component is a terminal plate provided in a terminal box disposed on one surface of the solar cell panel;
    The second metal part is an output lead drawn from the solar cell panel;
    The method for manufacturing a solar cell module according to any one of claims 1 to 3, wherein:
  5.  前記X線の出力の条件が、管電圧が50kVから160kVの範囲、管電流が40μAから120μAの範囲であること、
     を特徴とする請求項4に記載の太陽電池モジュールの製造方法。
    The X-ray output condition is that the tube voltage is in the range of 50 kV to 160 kV and the tube current is in the range of 40 μA to 120 μA.
    The manufacturing method of the solar cell module of Claim 4 characterized by these.
  6.  前記はんだ付け対象領域を透過した前記X線を検出して、前記X線透過像を取得するためのX線透過信号を生成する検出器の解像度が、メガピクセル以上の画素数であり、視野が20mm角未満であること、
     を特徴とする請求項4または5に記載の太陽電池モジュールの製造方法。
    The detector that detects the X-ray transmitted through the soldering target region and generates an X-ray transmission signal for obtaining the X-ray transmission image has a resolution of megapixels or more and a field of view. Less than 20 mm square,
    A method for manufacturing a solar cell module according to claim 4 or 5.
  7.  前記出力リードと前記端子板との間隔を、少なくとも、0.1mmより厚い厚さで前記出力リードと前記端子板とをはんだ付けすること、
     を特徴とする請求項6に記載の太陽電池モジュールの製造方法。
    Soldering the output lead and the terminal plate at a thickness greater than 0.1 mm at least between the output lead and the terminal plate;
    The method for manufacturing a solar cell module according to claim 6.
  8.  前記端子板における前記はんだ付け対象領域に、前記出力リードの幅方向と平行な方向に延在する溝が設けられていること、
     を特徴とする請求項4から7のいずれか1つに記載の太陽電池モジュールの製造方法。
    A groove extending in a direction parallel to the width direction of the output lead is provided in the soldering target region of the terminal board;
    The method for manufacturing a solar cell module according to claim 4, wherein:
  9.  前記溝は、幅が前記はんだ付け対象領域の前記出力リードの長さ方向の長さの10%以上であり、深さが0.1mmより大であること、
     を特徴とする請求項8に記載の太陽電池モジュールの製造方法。
    The groove has a width of 10% or more of the length in the length direction of the output lead of the soldering target region, and a depth greater than 0.1 mm.
    The manufacturing method of the solar cell module of Claim 8 characterized by these.
  10.  前記溝は、幅が1mm以上であり、深さが0.1mmより大であること、
     を特徴とする請求項8に記載の太陽電池モジュールの製造方法。
    The groove has a width of 1 mm or more and a depth of more than 0.1 mm;
    The manufacturing method of the solar cell module of Claim 8 characterized by these.
  11.  前記太陽電池パネルに前記端子ボックスを配置する際に、前記端子ボックスにおける前記はんだ付け部を、前記太陽電池パネルの面内方向において前記太陽電池パネルを構成する複数の太陽電池セルを接続するセル間接続タブに重ならない位置に配置すること、
     を特徴とする請求項4から10のいずれか1つに記載の太陽電池モジュールの製造方法。
    When arranging the terminal box on the solar cell panel, the soldering portion in the terminal box is connected between cells connecting a plurality of solar cells constituting the solar cell panel in the in-plane direction of the solar cell panel. Arrange it so that it does not overlap the connection tab,
    The method for manufacturing a solar cell module according to any one of claims 4 to 10, wherein:
  12.  前記第1の金属部品が、前記太陽電池パネルを構成する太陽電池ストリング同士を接続するストリング間接続タブであり、
     前記第2の金属部品が、前記太陽電池ストリングに接続されたセル間接続タブであること、
     を特徴とする請求項1から3のいずれか1つに記載の太陽電池モジュールの製造方法。
    The first metal component is an interstring connection tab that connects solar cell strings that constitute the solar cell panel;
    The second metal part is an inter-cell connection tab connected to the solar cell string;
    The method for manufacturing a solar cell module according to any one of claims 1 to 3, wherein:
  13.  前記第1の金属部品が、前記太陽電池パネルを構成する太陽電池セルの電極に接続されたセル間接続タブであり、
     前記第2の金属部品が、前記太陽電池セルの電極であること、
     を特徴とする請求項1から3のいずれか1つに記載の太陽電池モジュールの製造方法。
    The first metal part is an inter-cell connection tab connected to an electrode of a solar battery cell constituting the solar battery panel,
    The second metal part is an electrode of the solar battery cell;
    The method for manufacturing a solar cell module according to any one of claims 1 to 3, wherein:
  14.  太陽電池パネルを構成する第1の金属部品と第2の金属部品とのはんだ付けが行われた領域に向けてX線を照射するX線発生装置と、
     前記第1の金属部品と前記第2の金属部品とのはんだ付けが行われた領域を透過したX線を検出してX線透過信号を生成するX線非破壊検査用カメラと、
     前記X線透過信号を取り込んでX線透過像を生成する画像情報生成部と、
     前記太陽電池パネルの面内方向と平行な方向における、前記第1の金属部品と前記第2の金属部品とが重なった領域であるはんだ付け対象領域の面積に対する、実際に前記第1の金属部品と前記第2の金属部品とがはんだ接合されているはんだ付け部の面積比を、前記X線透過像から演算する演算部と、
     前記面積比を既定の判定基準と比較して、前記第1の金属部品と前記第2の金属部品とのはんだ接合状態の良否を判定する判定部と、
     を備えることを特徴とする太陽電池モジュールの製造装置。
    An X-ray generator for irradiating X-rays toward a region where soldering of the first metal part and the second metal part constituting the solar cell panel is performed;
    An X-ray nondestructive inspection camera that detects an X-ray transmitted through a region where the first metal part and the second metal part are soldered and generates an X-ray transmission signal;
    An image information generation unit that takes in the X-ray transmission signal and generates an X-ray transmission image;
    Actually, the first metal part with respect to the area of the soldering target area, which is an area where the first metal part and the second metal part overlap in a direction parallel to the in-plane direction of the solar cell panel And an arithmetic unit that calculates an area ratio of a soldered portion where the second metal part is solder-joined from the X-ray transmission image,
    A determination unit that compares the area ratio with a predetermined determination criterion and determines whether the solder joint state between the first metal part and the second metal part is good,
    An apparatus for manufacturing a solar cell module, comprising:
  15.  複数の太陽電池セルがセル間接続タブによって電気的に接続された太陽電池アレイが受光面保護部品と裏面保護部品との間に封止された太陽電池パネルと、
     前記裏面保護部品の表面に配置された端子ボックスと、
     を備え、
     前記端子ボックス内に設けられた端子板と、前記太陽電池パネルから引き出された出力リードと、がはんだ接合されているはんだ付け部が、前記セル間接続タブに重ならない位置に配置されていること、
     を特徴とする太陽電池モジュール。
    A solar battery panel in which a solar battery array in which a plurality of solar battery cells are electrically connected by inter-cell connection tabs is sealed between a light-receiving surface protection component and a back surface protection component;
    A terminal box arranged on the surface of the back surface protection component;
    With
    A soldering portion in which a terminal plate provided in the terminal box and an output lead drawn from the solar battery panel are solder-bonded is disposed at a position not overlapping the inter-cell connection tab. ,
    A solar cell module characterized by.
PCT/JP2018/003874 2018-02-05 2018-02-05 Solar cell module manufacturing method, solar cell module manufacturing device, and solar cell module WO2019150585A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018563529A JPWO2019150585A1 (en) 2018-02-05 2018-02-05 Solar cell module manufacturing method, solar cell module manufacturing apparatus, and solar cell module
PCT/JP2018/003874 WO2019150585A1 (en) 2018-02-05 2018-02-05 Solar cell module manufacturing method, solar cell module manufacturing device, and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003874 WO2019150585A1 (en) 2018-02-05 2018-02-05 Solar cell module manufacturing method, solar cell module manufacturing device, and solar cell module

Publications (1)

Publication Number Publication Date
WO2019150585A1 true WO2019150585A1 (en) 2019-08-08

Family

ID=67478647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003874 WO2019150585A1 (en) 2018-02-05 2018-02-05 Solar cell module manufacturing method, solar cell module manufacturing device, and solar cell module

Country Status (2)

Country Link
JP (1) JPWO2019150585A1 (en)
WO (1) WO2019150585A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012502A (en) * 1990-06-18 1991-04-30 Irt Corporation Method for determining degree of interconnection of solder joints using X-ray inspection
JP2004333310A (en) * 2003-05-08 2004-11-25 Hitachi Kokusai Electric Inc X-ray ct scanner
JP2006156693A (en) * 2004-11-29 2006-06-15 Kyocera Corp Solar battery element and solar battery module using it
JP2010251569A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Solar cell module
JP2014007225A (en) * 2012-06-22 2014-01-16 Sharp Corp Solar cell with wiring, solar cell module, and solar cell array
JP2014190702A (en) * 2013-03-26 2014-10-06 Nec Corp Inspection device, inspection method, and inspection program
WO2015056399A1 (en) * 2013-10-16 2015-04-23 パナソニックIpマネジメント株式会社 Solar cell module
JP2017017774A (en) * 2015-06-26 2017-01-19 三菱電機株式会社 Solar cell module, manufacturing method for solar cell module, and manufacturing apparatus for solar cell module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012502A (en) * 1990-06-18 1991-04-30 Irt Corporation Method for determining degree of interconnection of solder joints using X-ray inspection
JP2004333310A (en) * 2003-05-08 2004-11-25 Hitachi Kokusai Electric Inc X-ray ct scanner
JP2006156693A (en) * 2004-11-29 2006-06-15 Kyocera Corp Solar battery element and solar battery module using it
JP2010251569A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Solar cell module
JP2014007225A (en) * 2012-06-22 2014-01-16 Sharp Corp Solar cell with wiring, solar cell module, and solar cell array
JP2014190702A (en) * 2013-03-26 2014-10-06 Nec Corp Inspection device, inspection method, and inspection program
WO2015056399A1 (en) * 2013-10-16 2015-04-23 パナソニックIpマネジメント株式会社 Solar cell module
JP2017017774A (en) * 2015-06-26 2017-01-19 三菱電機株式会社 Solar cell module, manufacturing method for solar cell module, and manufacturing apparatus for solar cell module

Also Published As

Publication number Publication date
JPWO2019150585A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP4128397B2 (en) Battery inspection device
US10937823B2 (en) Image-capturing element manufacturing method, image-capturing element and image-capturing device
US8525119B2 (en) Detector array with pre-focused anti-scatter grid
CN110121780B (en) Separation and reattachment of flexible polyimide based x-ray detectors
KR20130083824A (en) Semiconductor integrated circuit device inspection method and semiconductor integrated circuit device
KR101318826B1 (en) X-ray inspecting apparatus
WO2019150585A1 (en) Solar cell module manufacturing method, solar cell module manufacturing device, and solar cell module
JP2001281169A (en) Joint inspecting device and its method, and storage medium stored with program for executing same joint inspecting method
JP4660998B2 (en) Bonding inspection device
JP3942786B2 (en) Bonding inspection apparatus and method
JPH11304726A (en) Inspection method by x rays and x-ray inspection device
JP4660441B2 (en) Substrate inspection device, substrate inspection method, and program for causing a computer to function as the inspection device
JP4859486B2 (en) Potting material inspection device, potting material defect inspection method, and solar cell panel manufacturing method
JP2008051583A (en) Inspection device
KR101503806B1 (en) Manufacturing Method of Grid In Gas Typr Detector For Detecting X-Ray Image And Detecting System
JP3969337B2 (en) Bump inspection device
JP2008051584A (en) Inspection system
US20240120426A1 (en) Photovoltaic module and method for producing the same
JP7454095B1 (en) Photovoltaic module and method for manufacturing photovoltaic module
JPS6361155A (en) Apparatus for inspecting internal flaw
JP2008051585A (en) Inspection device
TWI639829B (en) Inspection method and inspection system of a solar cell
KR970070993A (en) Single layer and perspective inspection equipment and inspection method
JP2015141142A (en) Transmission image pickup system
JP2000058601A (en) Device and method of detecting defect in of tape carrier

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563529

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903190

Country of ref document: EP

Kind code of ref document: A1