JPS6361155A - Apparatus for inspecting internal flaw - Google Patents

Apparatus for inspecting internal flaw

Info

Publication number
JPS6361155A
JPS6361155A JP61114504A JP11450486A JPS6361155A JP S6361155 A JPS6361155 A JP S6361155A JP 61114504 A JP61114504 A JP 61114504A JP 11450486 A JP11450486 A JP 11450486A JP S6361155 A JPS6361155 A JP S6361155A
Authority
JP
Japan
Prior art keywords
image
rays
solder
ray
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61114504A
Other languages
Japanese (ja)
Other versions
JPH0743329B2 (en
Inventor
Mitsuzo Nakahata
仲畑 光蔵
Toshimitsu Hamada
浜田 利満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61114504A priority Critical patent/JPH0743329B2/en
Publication of JPS6361155A publication Critical patent/JPS6361155A/en
Publication of JPH0743329B2 publication Critical patent/JPH0743329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To effectively inspect the soldering part of a mounting part, by inclining a specimen stand having a circuit part to be inspected mounted thereon and making the characteristic distribution of X-rays allowed to irradiate variable to detect transmitted X-rays. CONSTITUTION:A specimen 3 to be inspected such as an electronic circuit module is mounted on a specimen stage 4 and an electron beam target 10 is controlled by a voltage control apparatus 9 to control the acceleration voltage of the beam from an X-ray source 1. Further, the positions and angles theta1, theta2 of inclination of the specimen stage 4 in X- and Y-direction are controlled by a stage control apparatus 5. The X-rays transmitted through the specimen 3 to be inspected are detected by an X-ray detector 2 and a fluoroscopic image is stored in image memories 7a-7n. At this time, the generation voltage of X-rays allowed to irradiate is changed and the density value between fluoroscopic images to each metal material of solder is changed to extract the image only of a solder connection part by a computer 8. Since the image of the solder connection part is extracted from the fluoroscopic images in which the images corresponding to a plurality of metal materials constituting the circuit module are present in a mixed state, the internal flaw of the solder connection part can be detected with high reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はXWA等の放射線による内部透視技術を用い1
回路部品や配臓材料のはんだ付部を検査する技術に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes an internal fluoroscopy technique using radiation such as XWA.
It relates to technology for inspecting soldered parts of circuit components and organ materials.

〔従来の技術〕[Conventional technology]

XI!を用いた従来の検査装置として、容重=「最近の
非破壊検査技術」(配管と装置、 Vat 25 、m
s C1985) p、p、5’〜60)に記載のよう
に、X線CTスキャナ、X線テレビ装置が挙げられる。
XI! As a conventional inspection device using
As described in s C1985) p, p, 5' to 60), examples include an X-ray CT scanner and an X-ray television device.

これらは対象物VCXiを照射して得られる透視画像若
しくは投影画像から、対象物の内部欠陥を非破壊で検査
するものである。
These are methods for non-destructively inspecting internal defects of a target object from a perspective image or a projection image obtained by irradiating the target object VCXi.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のX線テレビ装置は1分解能は高いものの(一般に
20〜30μm程度)1本発明の対象である回路部品や
配線材料を透視検査するには次のような問題点がある。
Although the conventional X-ray television apparatus has a high resolution (generally about 20 to 30 .mu.m), it has the following problems when transparently inspecting the circuit components and wiring materials that are the subject of the present invention.

即ち、通常これら回路部品等には電子回路モジュールが
高密度に実装されており。
That is, electronic circuit modules are normally mounted in these circuit components at high density.

X線テレビ装置による透視画像には、はんだ付部のみな
らず、電子部品や回路配線等を構成する金属材料の投影
像が重り合った画像が生ずる。このため検査対象である
はんだ接続部分に対する識別性が上がらない。
In a fluoroscopic image obtained by an X-ray television device, an image in which projected images of not only soldered parts but also metal materials constituting electronic components, circuit wiring, etc. are superimposed is generated. Therefore, the identifiability of the solder connection portion to be inspected cannot be improved.

更に具体的には、検査対象として多層配線基板等を選ん
だ場合、スルーホールを埋設した金属配線等の影が濃く
検出され、より淡く検出される検査対象の障害となって
いた。
More specifically, when a multilayer wiring board or the like is selected as an object to be inspected, a dark shadow of metal wiring with buried through holes is detected, which becomes an obstacle to the object to be inspected which is detected more faintly.

一方、従来技術であるXIWCTスキャナは1分解能が
200〜500μmであり1本発明の透視検査で必要と
する分解能に満たない。更に、CTスキャナは対象物の
断面形状を複数の1次元投影画像より再構成するもので
あり、対象物の周囲からX線を照射し画像処理を行うの
で、装置が大型化し。
On the other hand, the conventional XIWCT scanner has a resolution of 200 to 500 μm, which is lower than the resolution required for the fluoroscopic examination of the present invention. Furthermore, a CT scanner reconstructs the cross-sectional shape of an object from a plurality of one-dimensional projection images, and performs image processing by irradiating X-rays from around the object, resulting in an increase in the size of the device.

検査時間が長くなる。Inspection time will be longer.

以上のように1回路部品上に実装された電子回路モジー
−ルのはんだ材部について検査可能な装置は皆無であり
1本発明の目的は上記の従来装置では検査不可能であっ
た実装部品のはんだ何部検査を有効に行い得る検査技術
を提供することにある。
As mentioned above, there are no devices that can inspect the solder parts of electronic circuit modules mounted on one circuit component, and the object of the present invention is to inspect the solder parts of electronic circuit modules mounted on one circuit component. An object of the present invention is to provide an inspection technique that can effectively inspect solder parts.

〔問題点を解決するための手段〕[Means for solving problems]

検査対象に波長分布の異なるX線を照射し、得られた透
視画像を、検査対象のX線吸収係数から算出した補正値
に従って画像処理する構成の装置により、所定の検査部
分を開環化し、当該部分の欠陥を検出する。
A device configured to irradiate the inspection object with X-rays with different wavelength distributions and process the obtained fluoroscopic image according to a correction value calculated from the X-ray absorption coefficient of the inspection object, opens a predetermined inspection area, Detect defects in the relevant part.

より具体的には、検査対象である部品実装済み回路基板
に対し、波長分布の異なるX線を照射して透視画像を複
数枚撮像する。そして回路基板を構成する金属素材のX
WM吸収係数から算出した補正値を用いて、前記画像の
参輿;嚇÷;濃度値の変換等を行い、差画像を算出する
ことにより、検査の障害となっていた金属材料の投影像
を消去し。
More specifically, a plurality of fluoroscopic images are taken by irradiating X-rays with different wavelength distributions onto a component-mounted circuit board to be inspected. And the metal material that makes up the circuit board
Using the correction value calculated from the WM absorption coefficient, the projection image of the metal material that was an obstacle to the inspection can be corrected by converting the density value of the image and calculating the difference image. Erase.

欠陥検査を行う。Perform defect inspection.

〔作用〕[Effect]

X線の加速電圧の変化は、X線スペクトルにおいて主と
して短波長側の放射エネルギーの変化となって表われる
。この変化領域は金属を透過する領域なので、透過X線
の検出につき適当な閾値の設定や画像処理により、当該
金属の画像上の影響を除くことができる。
Changes in the accelerating voltage of X-rays appear as changes in radiation energy mainly on the shorter wavelength side in the X-ray spectrum. Since this changing region is a region that transmits through metal, the influence of the metal on the image can be removed by setting an appropriate threshold value and image processing for detecting transmitted X-rays.

したがって従来技術では困難であった透過X線像中の濃
い像を打ち消す画像処理が行え、より淡く投影される検
査対象の画像処理の前処理とじて有効である。
Therefore, it is possible to perform image processing that cancels out a dark image in a transmitted X-ray image, which was difficult with the prior art, and it is effective as a pre-processing for image processing of an inspection object that is projected more faintly.

[実施例] 本発明の一実施例を以下に説明する。第2図は検査対象
とする電子回路モジュールの例を示すもので、セラミッ
ク基板20上にICチップ12がはんだ接続されて実装
された構造である。第5図は。
[Example] An example of the present invention will be described below. FIG. 2 shows an example of an electronic circuit module to be inspected, which has a structure in which an IC chip 12 is soldered and mounted on a ceramic substrate 20. Figure 5 is.

この断面構造を示すもので、セラミック基板20は、配
線層14α〜14dが積層された多層構造であり。
This cross-sectional structure is shown, and the ceramic substrate 20 has a multilayer structure in which wiring layers 14α to 14d are laminated.

各層間には所定の格子寸法位置に金属が充填されたスル
ーホール16があり、また各配線層には薄い膜厚の金属
による回路配線が設けられている。このセラミック基板
20の下面には接続ピン15が設けられ、また上面には
ICチップ12ヲ搭載し、これをはんだ18で接続した
構造となっている。本発明は、はんだ気泡16や不良形
状はんだ19等で示すようなはんだ接続部の欠陥検査を
行なうことを目的とする。
There are through holes 16 filled with metal at predetermined lattice size positions between each layer, and each wiring layer is provided with circuit wiring made of thin metal. Connecting pins 15 are provided on the lower surface of this ceramic substrate 20, and an IC chip 12 is mounted on the upper surface and connected with solder 18. An object of the present invention is to inspect solder connections for defects such as solder bubbles 16 and defective solder 19.

線源1を設けてX線照射を行ない、X線検出器2でこの
透視像を撮像できるようにしている。またこの照射X線
のエネルギーを制御するため、電圧制御器9を設け、X
線源1のX線発生ターゲット10に供給する電子ビーム
の加速電圧を制御することで、計算機8の指令値に従っ
て、照射X線のエネルギー強度を可変できるようにして
いる。
A radiation source 1 is provided to perform X-ray irradiation, and an X-ray detector 2 can take a fluoroscopic image. In addition, in order to control the energy of this irradiated X-ray, a voltage controller 9 is provided,
By controlling the acceleration voltage of the electron beam supplied to the X-ray generation target 10 of the radiation source 1, the energy intensity of the irradiated X-rays can be varied according to the command value of the computer 8.

試料ステージは、ステージ制御装置5を用い。A stage controller 5 is used for the sample stage.

計算機の指令信号に従って、X、Y各方向の位置や傾き
角度θ1.θ2を自動設定できるようにしている。X線
検出器2で撮像した透視画像は、AD変換した後5画像
メモリ7α〜7nに格納し、計算機8から読み出しでき
るように構成し、この演算処理により、はんだ接続部の
みの画像を抽出し、欠陥検査を行な5と共に、モニタテ
レビ11上に表示して、目視確認を可能としたものであ
る。
According to the command signal from the computer, the position in each of the X and Y directions and the inclination angle θ1. θ2 can be set automatically. The fluoroscopic image taken by the X-ray detector 2 is configured to be stored in 5 image memories 7α to 7n after AD conversion and read out from the computer 8, and through this arithmetic processing, an image of only the solder joint is extracted. , a defect inspection is carried out and displayed on a monitor television 11 together with 5 to enable visual confirmation.

はんだ接続部の検査に当っては、検査サンプルを試料ス
テージ上に搭載し、はんだ接続部の透視位置(X、Y)
へ移動させた後、傾き角度σ1.夕2を設定する。次に
、X@発生電圧を逐次所定の値に切り替えながら、各条
件での照射X線に対する透視画像を検出して1画像メモ
リ7α〜7dに格納する。
When inspecting solder joints, the test sample is mounted on the sample stage, and the transparent position (X, Y) of the solder joint is
After moving to the tilt angle σ1. Set evening 2. Next, while sequentially switching the X@ generation voltage to a predetermined value, a fluoroscopic image for the irradiated X-ray under each condition is detected and stored in the one-image memories 7α to 7d.

第4図αは、この時得られる検査サンプルに対する透視
像の例を示すもので、セラミック基板や配線回路に比べ
X線吸収係数の高いはんだ接続部30や金属充填スルー
ホール31.或いは接続ピンの金属部分の透視像が、高
い濃度値の画像として得られる。各透視像は相互に重な
り合ったものとなるため、はんだ接続部に対する識別は
困難なものとなっている。
FIG. 4 α shows an example of a perspective image of the test sample obtained at this time, and shows solder joints 30 and metal-filled through holes 31, which have a higher X-ray absorption coefficient than ceramic substrates and wiring circuits. Alternatively, a perspective image of the metal part of the connection pin is obtained as an image with high density values. Since the perspective images overlap each other, it is difficult to identify the solder joints.

照射X線の発生電圧を変えて検出した透視画像上では、
各金属素材に対する透視像間の濃度値比率が異った値を
示す。換言すれば、同一色調の金属部分の投影像に濃淡
差が生じる。
On a fluoroscopic image detected by changing the generated voltage of irradiated X-rays,
The density value ratio between the perspective images for each metal material shows different values. In other words, a difference in shading occurs in the projected images of metal parts of the same color tone.

これは第5図の鉛、タングステン、モリブデン等の金属
素材で、各々のX線吸収係数が照射するX線の波長分布
により異なることと、第6図で示されるX線の波長分布
が、X線発生電圧により短波長成分において増減が顕著
であることに起因する。換言すればX線の発生電圧を上
げ下げすると。
This is because the X-ray absorption coefficients of metal materials such as lead, tungsten, and molybdenum shown in Figure 5 differ depending on the wavelength distribution of the irradiated X-rays, and the wavelength distribution of the X-rays shown in Figure 6 This is due to the fact that the line-generated voltage significantly increases or decreases in short wavelength components. In other words, increase or decrease the X-ray generation voltage.

第6図の0.1X付近のX線波長が増減し、このX線が
タングステン、鉛等の金属を透過するので、透過画像の
濃淡が明瞭となるのである。
The X-ray wavelength around 0.1X in FIG. 6 increases or decreases, and since this X-ray transmits through metals such as tungsten and lead, the shading of the transmitted image becomes clear.

本発明は、これらの画像から計算機8の処理により、は
んだ部分の画像を抽出して検査するものである。
The present invention extracts and inspects images of solder parts from these images through processing by a computer 8.

以下、X線発生電圧を2条件V+ 、 V2とした場合
について、各条件で検出した透視画像からはんだ接続部
の画像を抽出する方法の説明を行なう。
Hereinafter, a method for extracting an image of a solder joint from a fluoroscopic image detected under each condition will be explained when the X-ray generation voltage is set to two conditions, V+ and V2.

予め1本装置のX線源を用い、X線発生電圧v1v2に
おける各金属素材のX線吸収係数(照射X線の分布波長
域における平均の吸収係数)を求めておく。
Using the X-ray source of one apparatus, the X-ray absorption coefficient (average absorption coefficient in the distribution wavelength range of the irradiated X-rays) of each metal material at the X-ray generation voltage v1v2 is determined in advance.

X線吸収係数μは、照射X線量を1in、透過X線量を
Iotbt 、対象材料−の厚さをTとすれば。
The X-ray absorption coefficient μ is calculated by assuming that the irradiation X-ray dose is 1 inch, the transmitted X-ray dose is Iotbt, and the thickness of the target material is T.

IoJ = Iin −e−μ°T と表わされる。このことからX線発生電圧をV+ 。IoJ = Iin −e−μ°T It is expressed as From this, the X-ray generation voltage is set to V+.

v2と設定した各条件で、検出器に直接入射するX線の
検出値J+ 、 I2及び、対象とする材質の金属サン
プル(厚さT)に対する通過X線の検出値工oLLt1
゜ICmt2を求めておけば、X線吸収係数μm、I2
は。
Under each condition set as v2, the detected values of X-rays directly incident on the detector J+, I2 and the detected values of X-rays passing through the metal sample (thickness T) of the target material oLLt1
゜If ICmt2 is determined, the X-ray absorption coefficient μm, I2
teeth.

μ+ = = 〒Ln (Imtl /■in1 )I
2 = −y An (Iout2/ bjL2 ’)
と表わせる。
μ+ = = 〒Ln (Imtl /■in1)I
2 = −y An (Iout2/bjL2')
It can be expressed as

このようにして求めた。X線発生電圧V+、V2におけ
るはんだのX線吸収係数をμs+ 、μ82.スルーホ
ール充填金属のX線吸収係数をμtん1.μth2とす
れば、X線吸収係数の小さい1回路モジュール上の他の
素材は無視できるため、X線発生電圧V1゜V2におけ
る透視画像PICx、y)・P2Cx、y)は下記のよ
うに表わされる。
This is how I found it. The X-ray absorption coefficient of the solder at the X-ray generation voltage V+, V2 is μs+, μ82. The X-ray absorption coefficient of the through-hole filling metal is μt1. If μth2, other materials on one circuit module with a small X-ray absorption coefficient can be ignored, so the fluoroscopic images PICx, y) and P2Cx, y) at the X-ray generation voltage V1°V2 are expressed as follows. .

但し、3:、νは2次元画像上の座標位置を表わし、 
’p+(:c、2)、 P2C3:、l)は各位置にお
ける透過X線の検出値、 Ts (x 、 y ) 、
 Tth (x 、 y )は、はんだ及びスルーホー
ル充填金属量の分布(X線通過距離)、11.I2は各
発生電圧(V+ 、 V2 )における照射X線量を示
すもの°とする。
However, 3:, ν represents the coordinate position on the two-dimensional image,
'p+(:c, 2), P2C3:, l) is the detected value of transmitted X-rays at each position, Ts (x, y),
Tth (x, y) is the distribution of the amount of solder and through-hole filling metal (X-ray passing distance); 11. I2 represents the irradiated X-ray dose at each generated voltage (V+, V2).

(1) 、 (21式を対数変換すれば、(31、(4
1式が得られる。
(1), (If we logarithmically transform equation 21, we get (31, (4
One formula is obtained.

(3+ 、 (41式よりはんだ量の分布TsCx、y
)を求めれ本発明の原理は(5)に従い、予め求ぬた照
射X線量■+ 、 I2及び、μs+ 、I82 、μ
th+ 、μth2と、検査。
(3+, (From equation 41, distribution of solder amount TsCx, y
) is determined.The principle of the present invention is based on (5), and the irradiation X-ray dose ■+ , I2 and μs+ , I82 , μ
th+, μth2, and inspection.

対象サンプルに対する透過X線の検出値p+(z、y)
Detected value p+(z,y) of transmitted X-rays for the target sample
.

P2(ZJ)を用い、計74機によりはんだ量分布Ts
(3:、y)を算出するもので、この結果第4図すの例
で示すような、はんだ透視像のみの画像が抽出できる。
Using P2 (ZJ), solder amount distribution Ts by a total of 74 machines
(3:, y), and as a result, it is possible to extract an image of only a perspective solder image, as shown in the example of FIG.

本装置は、このようにして求めた各はんだ抽出像から、
はんだの面積−′P画直・水平方向の径。
From each solder extraction image obtained in this way, this device
Solder area - 'P diameter in the horizontal direction.

或いは周囲長、気泡の有無を検出して、基準値と比較す
ることにより、はんだ接続欠陥を検出する。
Alternatively, solder connection defects are detected by detecting the circumferential length and the presence or absence of bubbles and comparing them with reference values.

この結果第7図αに示すような気泡欠陥q、b。As a result, bubble defects q and b are formed as shown in FIG. 7 α.

Cに示すようなはんだ量の過大、過小、或いは形状不良
等の検出が行える。
It is possible to detect excessive or insufficient amount of solder, defective shape, etc. as shown in C.

はんだ部の像を抽出する際に、検査対象が3種類以上の
材質で構成される場合には、相当する回数だけ、x線発
生条件を切り替え、各透視画像を検出すれば、同様な演
算処理により、はんだ接続部の透視画像が抽出できる。
When extracting an image of a solder part, if the inspection target is made of three or more types of materials, the same calculation process can be performed by switching the x-ray generation conditions the corresponding number of times and detecting each fluoroscopic image. , a perspective image of the solder joint can be extracted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば従来不可能であった実装済み回路基板の
X線透視検査が行える効果がある。
According to the present invention, it is possible to carry out X-ray fluoroscopic inspection of a mounted circuit board, which was previously impossible.

より具体的には1回路モジエールを構成する複数の金属
材料に対応する像が混在した透視画像から、はんだ接続
部の画像を抽出することが可能となり、高密度に配線・
実装された回路モジー−ルに対しても、はんだ接続部に
おける信頼性の高い内部欠陥検量が行える。
More specifically, it is now possible to extract images of solder connections from a perspective image containing a mixture of images corresponding to multiple metal materials that make up one circuit module, allowing for high-density wiring and
Highly reliable measurement of internal defects in solder joints can also be performed on mounted circuit modules.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る実施例の全体構成図、第2図は検
査対象の概観図、第5図は第2図の検査対象の断面図、
第4図αは検出したままの透視画像を示す図、第4図す
ははんだ接続部の画像な抽出した結果を示す図、第5図
は金属材料のX線吸収係数を示す図、第6図は発生電圧
を変化させた時の出力X線の波長分布を示す図、第7図
は、はんだ部欠陥に対する透視画像の例を示す図である
。 1・・・X線源、2・・・X線検出器、3・・・検査資
料。 4・5.資料ステージ、5・・・ステージ制御装置、6
・・・AD変換器、7α〜フル・・・画像メモリ、8・
・・計算機。 9・・・X線発生電圧制御器、10・・・電子ビームタ
ーゲット。 発 l 凹 第2凶 晃〕口 第4 の 寿5呂 θ   σ、l  σ、2  θづ  σ、4 15 
 θ乙江長[ス] 猶≦国 0   0.1   θ、2  θ、56.Δ  ρ、
6う艮長 [A] 為7 に 手続補正書防幻 昭和 61年特許願第 114504  号発 明 の
 名 称  内部欠陥検量装置補正をする者 1哨との関係 特許出願人 名  称    ′51つ)株式]叶  I]  立 
 製  作  折代   理   人 補正(7)  対&   明細書の図面の簡単な説明の
欄補正の内容
FIG. 1 is an overall configuration diagram of an embodiment according to the present invention, FIG. 2 is an overview diagram of the object to be inspected, and FIG. 5 is a sectional view of the object to be inspected in FIG.
Figure 4 α is a diagram showing the detected fluoroscopic image, Figure 4 is a diagram showing the extracted result of the image of the solder joint, Figure 5 is a diagram showing the X-ray absorption coefficient of metal materials, and Figure 6 is a diagram showing the X-ray absorption coefficient of metal materials. The figure shows the wavelength distribution of output X-rays when the generated voltage is changed, and FIG. 7 is a diagram showing an example of a perspective image of a solder defect. 1... X-ray source, 2... X-ray detector, 3... Inspection materials. 4.5. Material stage, 5... Stage control device, 6
...AD converter, 7α~Full...Image memory, 8.
··calculator. 9... X-ray generation voltage controller, 10... Electron beam target. Departure l concave 2nd fall] mouth 4th Kotobuki 5ro θ σ, l σ, 2 θzu σ, 4 15
θOtoecho [su] Yu≦Country0 0.1 θ, 2 θ, 56. Δρ,
6. Chief [A] 7. Procedural amendment for the purpose of 7. Showa 1961 patent application No. 114504 Name of the invention Person who corrects the internal defect calibration device 1 Relationship with the patent applicant Name 51) Stocks ] Kano I] Standing
Manufacturer's Billing Fee Management Person's Amendment (7) Contents of the amendment in the brief explanation of drawings in the specification

Claims (1)

【特許請求の範囲】 1、検査対象を傾斜自在に載置する試料台と、照射X線
の特性分布可変なX線源と、 検査対象からの透過X線を検出する検出器と、前記試料
台の傾斜を制御し、前記照射X線の特性分布を可変し、
前記検出器からの信号を処理する電子装置から成る内部
欠陥検査装置。 2、特許請求の範囲第1項記載の内部欠陥検査装置にお
いて、 前記X線源はX線発生のための電子線加速電圧を変化さ
せる電圧制御器により特性分布を可変とする内部欠陥検
査装置。
[Scope of Claims] 1. A sample stage on which an object to be inspected is placed tiltably; an X-ray source with variable characteristic distribution of irradiated X-rays; a detector for detecting transmitted X-rays from the object to be inspected; controlling the inclination of the table to vary the characteristic distribution of the irradiated X-rays;
An internal defect inspection device comprising an electronic device for processing signals from the detector. 2. The internal defect inspection apparatus according to claim 1, wherein the X-ray source has a characteristic distribution variable by a voltage controller that changes the electron beam acceleration voltage for generating X-rays.
JP61114504A 1986-05-21 1986-05-21 Internal defect inspection method and apparatus Expired - Lifetime JPH0743329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61114504A JPH0743329B2 (en) 1986-05-21 1986-05-21 Internal defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61114504A JPH0743329B2 (en) 1986-05-21 1986-05-21 Internal defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JPS6361155A true JPS6361155A (en) 1988-03-17
JPH0743329B2 JPH0743329B2 (en) 1995-05-15

Family

ID=14639408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61114504A Expired - Lifetime JPH0743329B2 (en) 1986-05-21 1986-05-21 Internal defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JPH0743329B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301154A (en) * 1988-05-30 1989-12-05 Hitachi Ltd Method and device for x-ray image pickup
JPH02112747A (en) * 1988-10-21 1990-04-25 Toshiba Corp X-ray inspection apparatus
JPH07221151A (en) * 1994-01-19 1995-08-18 Internatl Business Mach Corp <Ibm> Method and equipment for inspecting junction between parts
JP2009085923A (en) * 2007-10-03 2009-04-23 Toyota Motor Corp Void inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314592A (en) * 1976-07-26 1978-02-09 Toshiba Corp X-ray diagnosis apparatus
JPS60161551A (en) * 1984-01-31 1985-08-23 Shimadzu Corp Inspecting method of multilayer substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314592A (en) * 1976-07-26 1978-02-09 Toshiba Corp X-ray diagnosis apparatus
JPS60161551A (en) * 1984-01-31 1985-08-23 Shimadzu Corp Inspecting method of multilayer substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301154A (en) * 1988-05-30 1989-12-05 Hitachi Ltd Method and device for x-ray image pickup
JPH02112747A (en) * 1988-10-21 1990-04-25 Toshiba Corp X-ray inspection apparatus
JPH07221151A (en) * 1994-01-19 1995-08-18 Internatl Business Mach Corp <Ibm> Method and equipment for inspecting junction between parts
JP2009085923A (en) * 2007-10-03 2009-04-23 Toyota Motor Corp Void inspection method

Also Published As

Publication number Publication date
JPH0743329B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US4852131A (en) Computed tomography inspection of electronic devices
JP4711759B2 (en) X-ray inspection equipment
JP2934455B2 (en) Inspection method and apparatus for soldered part by X-ray transmission image
JP4910378B2 (en) X-ray inspection apparatus and X-ray inspection method
JPH07221151A (en) Method and equipment for inspecting junction between parts
JP5830928B2 (en) Inspection area setting method and X-ray inspection system
US5463667A (en) Inspection method for soldered joints using x-ray imaging and apparatus therefor
JP3599986B2 (en) Flip chip bonding inspection method and inspection device
JPH0746080B2 (en) Internal defect inspection method
KR20110044479A (en) X-ray inspection system and metohd using the same
JP4228773B2 (en) Board inspection equipment
JPH0785520B2 (en) X-ray inspection device for electronic circuits
JP3942786B2 (en) Bonding inspection apparatus and method
JPS6361155A (en) Apparatus for inspecting internal flaw
JPH0692944B2 (en) X-ray tomography system
JPS60161551A (en) Inspecting method of multilayer substrate
Adams X-ray laminography analysis of ultra-fine-pitch solder connections on ultrathin boards
JPH04359447A (en) Soldering-junction inspecting apparatus for semiconductor device
JPH01265145A (en) X-ray inspection device
JP4340373B2 (en) Bonding inspection apparatus, method, and recording medium recording program for executing bonding inspection method
JP2000356606A (en) Fluoroscopic examination device
JP3902017B2 (en) Solder height measuring apparatus and method
JPH05259249A (en) Method and apparatus for inspecting flip chip
WO2024117099A1 (en) Inspection device
KR100300586B1 (en) Single Layer Inspection Device and Inspection Method of Printed Circuit Board Using X-Ray

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term