JP2015141142A - Transmission image pickup system - Google Patents

Transmission image pickup system Download PDF

Info

Publication number
JP2015141142A
JP2015141142A JP2014015056A JP2014015056A JP2015141142A JP 2015141142 A JP2015141142 A JP 2015141142A JP 2014015056 A JP2014015056 A JP 2014015056A JP 2014015056 A JP2014015056 A JP 2014015056A JP 2015141142 A JP2015141142 A JP 2015141142A
Authority
JP
Japan
Prior art keywords
detection element
detector
transmission image
ray
semiconductor detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014015056A
Other languages
Japanese (ja)
Inventor
定岡 紀行
Noriyuki Sadaoka
紀行 定岡
名雲 靖
Yasushi Nagumo
靖 名雲
横井 一磨
Kazuma Yokoi
一磨 横井
上村 博
Hiroshi Kamimura
博 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014015056A priority Critical patent/JP2015141142A/en
Publication of JP2015141142A publication Critical patent/JP2015141142A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a large-screen semiconductor detector capable of quickly picking up a transmission image by imaging an entire imaging sample at one time even if the imaging sample is a large-sized metallic structure.SOLUTION: A partial module 100 that constitutes a semiconductor detector includes detection elements 1 each generating a current in response to an incident X-ray; detection element substrates 2 each disposed in rear of the detection elements 1, elongated in the same direction as an X-ray radiation direction, and having the detection elements 1 disposed on both surfaces thereof; a circuit board 3 to which the plurality of detection element substrates 2 is coupled by a coupling member; and signal processing circuits 6 disposed on both surfaces of the circuit board 3 and coupled to wiring boards 5 withdrawn from the detection element substrates 2. A combination of a plurality of partial modules 100 constitute the semiconductor detector.

Description

本発明は、透過像撮像システムに関する。   The present invention relates to a transmission image capturing system.

X線による透過撮像は、古くから医療分野で広く活用されてきたが、産業分野においても対象機器内部の欠陥を非破壊で検出する事ができるため、プラント配管の健全性評価や各種重要機器の内部検査に使用されてきた。これらの透過撮像においては、被検体を透過した後のX線検出デバイスとして、通常、X線感光フィルムが用いられてきた。一方、近年、X線検出デバイスとして、イメージングプレート(IP)、フラットパネルデテクタ(FPD)、半導体検出器など被検体を透過した後の透過X線量をデジタル値として計測可能なデバイスが開発され普及してきている。   X-ray transmission imaging has been widely used in the medical field for a long time. However, in the industrial field, it is possible to detect nondestructive defects inside the target equipment. Has been used for internal inspection. In these transmission imaging, an X-ray photosensitive film has usually been used as an X-ray detection device after passing through a subject. On the other hand, in recent years, devices capable of measuring the transmitted X-ray dose after passing through the subject as a digital value such as an imaging plate (IP), a flat panel detector (FPD), and a semiconductor detector have been developed and spread as X-ray detection devices. ing.

イメージングプレート(IP)は輝尽性蛍光体(BaFBr:Eu2+)の微結晶を塗布したフィルムである。X線によりフィルム表面にレーザー光を照射するとX線の露光量に応じて発光するので、この発光量をデジタル値で計測する事によりX線照射に比例したX線透過像を得る事ができる。そのため、IP本体には放射線量を計測する信号処理回路が不要で、発光量の読み取り装置に信号処理回路が組み込まれている。   The imaging plate (IP) is a film coated with stimulable phosphor (BaFBr: Eu2 +) microcrystals. When the surface of the film is irradiated with a laser beam by X-rays, light is emitted according to the exposure amount of the X-rays. Therefore, an X-ray transmission image proportional to the X-ray irradiation can be obtained by measuring the light emission amount with a digital value. Therefore, the IP main body does not require a signal processing circuit for measuring the radiation dose, and the signal processing circuit is incorporated in the light emission amount reading device.

フラットパネルデテクタ(FPD)は、入射X線により薄膜のシンチレータ(CsI)で発光させ、この発光量をフォトダイードで電荷に変換する事で計測しX線透過像が得られる。信号処理回路は、シンチレータ後方に存在する。   A flat panel detector (FPD) emits light with a thin film scintillator (CsI) by incident X-rays, and measures the amount of light emitted by converting it into charges with a photodiode to obtain an X-ray transmission image. The signal processing circuit exists behind the scintillator.

半導体検出器としてはSi、CdTe等が実用化されている。医療用と異なり工業用途のX線透過像装置では、対象物が金属物の場合が多く、人体用途に比較して透過能力の強いX線エネルギーが必要となる。半導体検出器は、高エネルギーX線に対する感度が高い。そのため、産業用の透過像撮像において、対象被検体が金属の大型構造物の場合は、IPやFPDより有効であり、より高画質な透過像が得られる。また,Si半導体検出器は、産業用高エネルギーX線CT装置において高エネルギーX線に対して感度が高い有効性を発揮している。   Si, CdTe, etc. have been put to practical use as semiconductor detectors. Unlike medical use, X-ray transmission image apparatuses for industrial use often have a metal object as the object, and require X-ray energy having a strong transmission ability as compared with human use. The semiconductor detector is highly sensitive to high energy X-rays. Therefore, in industrial transmission image capturing, when the target object is a large metal structure, it is more effective than IP or FPD, and a higher-quality transmission image can be obtained. In addition, the Si semiconductor detector is highly effective for high energy X-rays in industrial high energy X-ray CT apparatuses.

特開2012-83277に示された例では、半導体からなるX線受光部は、単体検出器毎に分離され、FPC基板も含め隣接チャンネルとは独立した構造を持つ。また、各検出器は、1方向に一定間隔で配列され1次元ラインセンサを構成している。これらの検出器アレイ構成では、X線が検出器に入射して発生する電荷による電流値を信号処理回路によりデジタル化する。信号処理回路は検出器後方であって、各検出素子に対して1個の基板上に設けられる。また、信号処理回路は大きな基板に実装され、ラインセンサとは配線ケーブルにより連結され、ラインセンサと信号処理回路は一定の距離で離されている。   In the example shown in Japanese Patent Laid-Open No. 2012-83277, the X-ray light receiving portion made of a semiconductor is separated for each single detector and has a structure independent of adjacent channels including the FPC board. In addition, each detector is arranged at regular intervals in one direction to constitute a one-dimensional line sensor. In these detector array configurations, the signal processing circuit digitizes the current value due to the charges generated when the X-rays enter the detector. The signal processing circuit is behind the detector and is provided on one substrate for each detection element. Further, the signal processing circuit is mounted on a large substrate, and is connected to the line sensor by a wiring cable, and the line sensor and the signal processing circuit are separated by a certain distance.

特開2012-83277号公報JP 2012-83277 JP

産業分野でのX線透過像撮像では、撮像対象物として車両構造物や蒸気タービンもあり、大型の金属構造物が撮像対象となる場合がある。従来、これらの大型の金属構造物に対する透過像撮像では、部分領域の撮像を繰り返すか、または対象物を分解または切断してサイズを小さくして撮像していた。一方、大型被検体の変形状態を逐次、透過像として撮像する場合には、部分領域の撮像では全体像が捉えられないため、大型被検体全体を1度に撮像する必要がある。これらの要求を解決するには、大型被検体全体を撮像視野に納める事ができる大画面の検出器が必要になる。   In X-ray transmission imaging in the industrial field, there are vehicle structures and steam turbines as imaging objects, and large metal structures may be imaging objects. Conventionally, in transmission image capturing for these large metal structures, partial region imaging is repeated, or an object is disassembled or cut to reduce the size. On the other hand, when the deformation state of the large subject is sequentially captured as a transmission image, it is necessary to image the entire large subject at a time because the entire image cannot be captured by the partial region imaging. In order to solve these requirements, a detector having a large screen that can fit the entire large subject in the field of view of imaging is required.

さらに、大画面の検出器を構成するためには、信号処理回路を検出器後方にコンパクトに設置する必要がある。従来と同様の信号処理回路の実装方法では、検出器素子配列の後方空間のみでは回路実装部がおさまらず、検出素子面よりも上下左右の広い空間に回路が配置される。   Furthermore, in order to construct a detector with a large screen, it is necessary to install a signal processing circuit in a compact manner behind the detector. In the conventional signal processing circuit mounting method, the circuit mounting portion does not fit only in the space behind the detector element array, and the circuit is arranged in a wider space in the vertical and horizontal directions than the detection element surface.

一方、大画面を構成するためには検出器モジュールを複数個配列させる必要があり、1個の検出器モジュールを処理する回路実装部分は、検出器モジュールの検出面と縦横が同サイズで検出素子の後方に設置しなければ、大画面は構成できない。   On the other hand, in order to construct a large screen, it is necessary to arrange a plurality of detector modules, and the circuit mounting portion that processes one detector module has the same size as the detection surface of the detector module, and the detection element. If it is not installed behind the large screen, it cannot be configured.

前述のイメージングプレート(IP)およびフラットパネルデテクタ(FPD) の検出器画面サイズは、検出素子の製造・製作上の制約から、ともに最大約400mm×400mm程度であり、同サイズ以上の大型化は難しい。   The detector screen size of the aforementioned imaging plate (IP) and flat panel detector (FPD) is about 400 mm x 400 mm at the maximum due to restrictions on the manufacturing and manufacturing of the detector elements, and it is difficult to increase the size beyond that size. .

また、大型の金属構造物の透過像撮像では、透過能力の高い高エネルギーX線源を用いる必要があり、イメージングプレート(IP)およびフラットパネルデイテクタ(FPD)は、ともに、X線源のエネルギーレベルとしては〜200kVが有意な感度を持つ適用範囲である。これは、検出素子のX線エネルギーに対する感度が200kVを超えると急激に低下するためである。工業用の厚い金属物を透過するためにMV領域のX線エネルギーレベルが得られる線形加速器を用いた場合、イメージングプレート(IP)およびフラットパネルデイテクタ(FPD)では、MV領域の高エネルギーX線に対する感度が非常に低いため十分な画像が得られない。   In addition, in the transmission imaging of large metal structures, it is necessary to use a high-energy X-ray source with high transmission capability, and both the imaging plate (IP) and flat panel detector (FPD) use the energy of the X-ray source. As a level, ˜200 kV is an applicable range with significant sensitivity. This is because when the sensitivity of the detection element to X-ray energy exceeds 200 kV, it rapidly decreases. When using linear accelerators that allow X-ray energy levels in the MV range to penetrate industrial thick metal, imaging plates (IP) and flat panel detectors (FPDs) use high energy X-rays in the MV range. Since the sensitivity to is very low, a sufficient image cannot be obtained.

そして、前述の高エネルギー領域のX線に対しても感度の高い半導体検出器では、1列のみのラインセンサでの活用が主であり、二次元平面としての検出面の構成例は僅かしかない。実用化されているCdTe検出器では検出面サイズが最大50mm×50mm程度であり、FPDと同様に検出素子の製造・製作上の制約から現状の構造による大型化は困難である。   In the semiconductor detector having high sensitivity to the above-mentioned X-rays in the high energy region, it is mainly used in a single line sensor, and there are only a few configuration examples of the detection surface as a two-dimensional plane. . CdTe detectors in practical use have a maximum detection surface size of about 50 mm × 50 mm, and it is difficult to increase the size of the current structure due to restrictions in manufacturing and manufacturing of detection elements, as in FPD.

また、背景技術で説明した産業用高エネルギーX線CT装置で用いられているSi半導体検出器による1次元ラインセンサを用いて透過像を得るには、1次元ラインセンサをセンサの配列方向とは垂直な方向にスキャンして撮像する必要がある。そのため、被検体が大型になると被検体全体の透過像を撮像するためにスキャンに要する時間がかかり、短時間で連続的に透過像を取得する事は困難である。   In addition, in order to obtain a transmission image by using a one-dimensional line sensor based on an Si semiconductor detector used in the industrial high energy X-ray CT apparatus described in the background art, the one-dimensional line sensor is referred to as the sensor arrangement direction. It is necessary to scan in the vertical direction and take an image. For this reason, when the subject becomes large, it takes time to scan in order to capture a transmission image of the entire subject, and it is difficult to obtain a transmission image continuously in a short time.

そのため、本発明の目的は、上記のような事情を背景になされたものであり、産業用高エネルギーX線源を用いた透過像撮像システムにおいて、撮像被検体が大型の金属構造物である場合においても、被検体全体を1回の撮像で迅速に透過像を撮像する事が可能な大画面の半導体検出器を提供することにある。
Therefore, the object of the present invention is made in the background as described above, and in a transmission image imaging system using an industrial high-energy X-ray source, the imaging subject is a large metal structure. The present invention also provides a large-screen semiconductor detector capable of rapidly capturing a transmission image of a whole subject with a single imaging.

本発明の半導体検出器を構成する部分モジュールは、入射X線により電流を発生させる検出素子と、検出素子よりもX線入射方向に長く、両面に検出素子が配置された検出素子基板と、複数の検出素子基板が連結部材によって連結された回路基板と、回路基板の両面に、検出素子基板から引き出された配線板と連結された信号処理回路を備え、部分モジュールを複数個組み合わせることで半導体検出器を構成することを特徴とする。   The partial module constituting the semiconductor detector of the present invention includes a detection element that generates current by incident X-rays, a detection element substrate that is longer in the X-ray incidence direction than the detection elements and that has detection elements disposed on both sides, A circuit board in which the detection element board is connected by a connecting member, and a signal processing circuit connected to a wiring board drawn from the detection element board on both sides of the circuit board, and semiconductor detection by combining multiple partial modules It constitutes a container.

本発明によれば、産業用高エネルギーX線源を用いた透過像撮像システムにおいて、撮像被検体が大型の金属構造物である場合においても、被検体全体を1回の撮像で迅速に透過像を撮像する事が可能な大画面の半導体検出器を提供できる。
According to the present invention, in a transmission image imaging system using an industrial high-energy X-ray source, even when the imaging subject is a large metal structure, the entire subject can be quickly transmitted by one imaging. Can be provided.

本発明の一実施例である稠密検出器用の回路実装構造の一例を表した図である。It is a figure showing an example of the circuit mounting structure for dense detectors which are one Example of this invention. 本発明の一実施例である稠密検出器用の回路実装構造で組み込む信号処理回路の基本構成を表した図である。It is a figure showing the basic composition of the signal processing circuit built in with the circuit mounting structure for dense detectors which is one example of the present invention. 本発明の一実施例である稠密検出器用の回路実装構造を用いた検出器モジュール1個の鳥瞰図を表した図である。It is the figure showing the bird's-eye view of one detector module using the circuit mounting structure for dense detectors which is one Example of this invention. 本発明の一実施例である稠密検出器用の回路実装構造を用いた検出器モジュールを複数個配列し構成した大画面検出器の1部分を示した図である。It is the figure which showed one part of the large screen detector which arranged and comprised two or more detector modules using the circuit mounting structure for dense detectors which is one Example of this invention. 本発明の一実施例である稠密検出器用の回路実装構造を用いた検出器モジュールを複数個配列し構成した大画面検出器の全体像を示した図である。It is the figure which showed the whole image of the big screen detector which arranged and comprised two or more detector modules using the circuit mounting structure for dense detectors which is one Example of this invention. 本発明の一実施例である稠密検出器用の回路実装構造を用いた検出器モジュールを複数個配列し構成した大画面検出器を用いたX線透過像システムの構成機器配置を表した図である。It is a figure showing the arrangement arrangement | positioning apparatus of the X-ray transmission image system using the large screen detector which arranged and comprised two or more detector modules using the circuit mounting structure for dense detectors which is one Example of this invention. .

本発明は、X線を用いて、対象とする被検体を透過するX線の透過量を計測する事により、非破壊で被検体の外部形状および内部形状を計測するために必要となる検出器の信号処理回路の実装技術に関する。   The present invention uses a X-ray to measure the amount of X-ray transmitted through the subject, thereby detecting the external shape and the internal shape of the subject in a nondestructive manner. It is related with the mounting technology of the signal processing circuit.

以下、本発明の実施例を、検出器の構成図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to a configuration diagram of a detector.

図1(a)(b)は、検出器の部分モジュールに関する構造を示す。入射X線により電流を発生させる検出素子1は、SiやCdTe等の一定厚みの半導体に一定間隔で複数の電極構成を持つ。また検出素子1は、検出素子基板2上に設置される。検出素子基板2は、検出素子1よりも奥行き方向(Z方向、即ちX線入射方向)に延長され、連結部材4を介して、回路基板3に連結される。   1 (a) and 1 (b) show the structure related to the partial module of the detector. The detection element 1 that generates a current by incident X-rays has a plurality of electrode configurations at constant intervals in a semiconductor having a constant thickness such as Si or CdTe. The detection element 1 is installed on the detection element substrate 2. The detection element substrate 2 extends in the depth direction (Z direction, that is, the X-ray incidence direction) more than the detection element 1, and is connected to the circuit board 3 via the connection member 4.

各検出素子1は、検出素子基板2および配線板5上の配線ケーブルにより信号処理回路6に連結される。信号処理回路6の基本構成を図2に示した。信号処理回路6は、1個の検出素子1に対して初段増幅回路7、サンプルホールド(S/H)回路8、ADコンバータ9、メモリ10、外部インターフェイス11から構成される。本実施例では、図1(b)に示したように、1枚の検出素子基板2上に複数の検出素子1が設置され、この1枚の検出素子基板2上の複数の検出素子1に対する図2の信号処理が、信号処理回路6に集積される。   Each detection element 1 is connected to the signal processing circuit 6 by a wiring cable on the detection element substrate 2 and the wiring board 5. The basic configuration of the signal processing circuit 6 is shown in FIG. The signal processing circuit 6 includes a first-stage amplifier circuit 7, a sample hold (S / H) circuit 8, an AD converter 9, a memory 10, and an external interface 11 for one detection element 1. In this embodiment, as shown in FIG. 1B, a plurality of detection elements 1 are installed on one detection element substrate 2, and a plurality of detection elements 1 on the one detection element substrate 2 are provided. The signal processing of FIG. 2 is integrated in the signal processing circuit 6.

図1(a)に示したように、それぞれの検出素子基板2は、先端部の表裏両面に検出素子1の配列を設置する。そのため、各検出素子基板2の表に設置される検出器素子1の配列の数と裏側に設置される検出器素子1の配列の数の総和の検出素子分の信号処理が信号処理回路6において実行される。図1に示した実施例では、4枚の検出素子基板2が1枚の回路基板3に連結部材4を介して連結され、4個の信号処理回路6と配線板5を介して結線される。本実施例では、1枚の検出素子基板2から1個の信号処理回路6が結線されるが、信号処理回路の処理能力により複数の検出素子基板2から1個の信号処理回路6に結線する事も可能である。   As shown in FIG. 1 (a), each detection element substrate 2 has an array of detection elements 1 on both the front and back surfaces of the tip. For this reason, the signal processing circuit 6 performs signal processing corresponding to the number of detector elements 1 arranged on the front surface of each detector element substrate 2 and the sum of the number of detector elements 1 arranged on the back side. Executed. In the embodiment shown in FIG. 1, four detection element substrates 2 are connected to one circuit substrate 3 via a connecting member 4 and connected to four signal processing circuits 6 via a wiring board 5. . In this embodiment, one signal processing circuit 6 is connected from one detection element substrate 2, but a plurality of detection element substrates 2 are connected to one signal processing circuit 6 by the processing capability of the signal processing circuit. Things are also possible.

また、回路基板3の両面に設置された信号処理回路6は、回路基板3の前後方向(Z方向)にずらして配置されており、回路基板3を上下(X方向)に積層する場合に比べて、検出器の部分モジュール100の高さを低減している。   In addition, the signal processing circuits 6 installed on both surfaces of the circuit board 3 are arranged so as to be shifted in the front-rear direction (Z direction) of the circuit board 3, compared with the case where the circuit boards 3 are stacked vertically (X direction). Thus, the height of the partial module 100 of the detector is reduced.

本発明の回路実装構造を用いた、透過像撮像システムにおける大画面半導体検出器の構成を図3(a)(b)、図4(a)(b)および図5(a)(b)(c)に示す。また、図6には本実施例の回路実装構造を用いた大画面検出器を構成要素とした高エネルギー透過像システム構成を示した。   3 (a) (b), FIG. 4 (a) (b) and FIG. 5 (a) (b) () show the configuration of a large-screen semiconductor detector in a transmission image capturing system using the circuit mounting structure of the present invention. Shown in c). FIG. 6 shows a high energy transmission image system configuration using a large screen detector using the circuit mounting structure of this embodiment as a component.

図3(a)は、本実施例の回路実装構造を用いた検出器モジュール12を示している。図3(b)に示した1枚の検出素子基板2が複数枚連結され、図1(a)(b)に示した部分モジュール100を構成する。具体的には、図1(a)(b)に示した部分モジュール100は、4枚の検出素子基板2が連結部材4によって連結されている。さらに、この部分モジュール100を複数個組み合わせる事により、図3(a)の検出器モジュール12を構成する。本実施例の回路実装部分は、図3(a)の検出器モジュール12の後方に配置される。   FIG. 3A shows the detector module 12 using the circuit mounting structure of this embodiment. A plurality of detection element substrates 2 shown in FIG. 3B are connected to each other to constitute the partial module 100 shown in FIGS. Specifically, in the partial module 100 shown in FIGS. 1A and 1B, four detection element substrates 2 are connected by a connecting member 4. Further, the detector module 12 of FIG. 3A is configured by combining a plurality of the partial modules 100. The circuit mounting portion of the present embodiment is disposed behind the detector module 12 in FIG.

本実施例の回路実装構造を用いた検出器モジュール12は、図4(a)(b)に示したように一定配列で複数個配置し、一体化することにより大画面を構成する。複数の検出器モジュール12は、大画面を構成するためのフレーム14で保持される。また、図4(a)に示したように、各検出器モジュールのX線受光面がX線源の中心を捉えるように、検出器モジュール12のX線入射面は、X線源中心に対してそれぞれ表面中心の接面がX線源の中心に対して直角となるよう配置される。   As shown in FIGS. 4 (a) and 4 (b), a plurality of detector modules 12 using the circuit mounting structure of this embodiment are arranged in a fixed arrangement and integrated to form a large screen. The plurality of detector modules 12 are held by a frame 14 for constituting a large screen. Further, as shown in FIG. 4 (a), the X-ray incident surface of the detector module 12 is located with respect to the center of the X-ray source so that the X-ray receiving surface of each detector module captures the center of the X-ray source. Thus, the tangent plane at the center of the surface is arranged so as to be perpendicular to the center of the X-ray source.

図5には、大画面を構成した検出器全体の構造を示した。本実施例の回路実装構造を用いた稠密検出器から構成される大画面半導体検出器15は複数の検出器モジュール12からなる大画面全体を後方で支える構成要素18、および支持部16、台座17から構成される。   FIG. 5 shows the structure of the entire detector that has a large screen. The large-screen semiconductor detector 15 composed of a dense detector using the circuit mounting structure of the present embodiment includes a component 18 that supports the entire large screen composed of a plurality of detector modules 12, a support portion 16, and a pedestal 17. Consists of

この図1から図5の構成からなる大画面半導体検出器を用いた透過像撮像システム構成例を図6に示した。同システムでは、撮像対象となる被検体領域20を挟んで、本実施例による回路実装構造を用いた大画面半導体検出器15と高エネルギーX線源19が相対する。透過能力の高い高エネルギーX線源19と受光面積の大きい大画面半導体検出器15の組み合わせにより、撮像被検体が大型の金属構造物である場合においても、被検体全体を1回の撮像で迅速に透過像を撮像する事が可能となる。大画面半導体検出器15で計測された各素子のX線透過量は画像化処理部22に伝送され画像化される。その後、記憶装置23においてデジタル画像として保存される。
A configuration example of a transmission image capturing system using the large-screen semiconductor detector having the configuration shown in FIGS. 1 to 5 is shown in FIG. In the system, the large-screen semiconductor detector 15 using the circuit mounting structure according to the present embodiment and the high energy X-ray source 19 are opposed to each other with the subject region 20 to be imaged. By combining the high-energy X-ray source 19 having a high transmission capability and the large-screen semiconductor detector 15 having a large light receiving area, even when the imaging subject is a large metal structure, the entire subject can be quickly captured by one imaging. It is possible to capture a transmission image. The X-ray transmission amount of each element measured by the large-screen semiconductor detector 15 is transmitted to the imaging processing unit 22 and imaged. Thereafter, the image is stored as a digital image in the storage device 23.

本発明の稠密検出器用回路実装構造を用いることで、稠密な検出素子からなる大画面検出器の構成が可能となる。それにより、産業用高エネルギーX線源を用いた透過像撮像システムにおいて、撮像被検体が大型の金属構造物である場合においても、被検体全体を1回の撮像で迅速に透過像を撮像する事が可能となる。
By using the circuit mounting structure for a dense detector according to the present invention, it is possible to configure a large-screen detector composed of dense detecting elements. As a result, in a transmission image imaging system using an industrial high energy X-ray source, even when the imaging subject is a large metal structure, the entire subject is quickly imaged with a single imaging. Things will be possible.

1 検出素子
2 検出器素子基板
3 回路基板
4 連結部材
5 配線板
6 信号処理回路
7 初段増幅回路
8 サンプルホールド回路
9 ADコンバータ
10 メモリ
11 外部インターフェイス
12 検出器モジュール
14 フレーム
15 大画面半導体検出器
16 支持部
17 台座
100 部分モジュール
DESCRIPTION OF SYMBOLS 1 Detection element 2 Detector element board | substrate 3 Circuit board 4 Connecting member 5 Wiring board 6 Signal processing circuit 7 First stage amplifier circuit 8 Sample hold circuit 9 AD converter 10 Memory 11 External interface 12 Detector module 14 Frame 15 Large screen semiconductor detector 16 Support unit 17 Base 100 Partial module

Claims (3)

撮像対象となる被検体を挟んで、半導体検出器と高エネルギーX線源が相対配置された透過像撮像システムであって、
前記半導体検出器を構成する部分モジュールは、入射X線により電流を発生させる検出素子と、前記検出器素子の後方に設置されX線照射方向と同じ向きに細長く、両面に前記検出素子が配置された検出素子基板と、複数の前記検出素子基板が連結部材によって連結された回路基板と、前記回路基板の両面に、前記検出素子基板から引き出された配線板と連結された信号処理回路を備え、
前記部分モジュールを複数個組み合わせることで前記半導体検出器を構成することを特徴とする透過像撮像システム。
A transmission imaging system in which a semiconductor detector and a high-energy X-ray source are arranged relative to each other with an object to be imaged interposed therebetween,
The partial module constituting the semiconductor detector includes a detection element that generates an electric current by incident X-rays, and is elongated behind the detector element in the same direction as the X-ray irradiation direction, and the detection elements are arranged on both sides. A detection element substrate, a circuit board in which the plurality of detection element substrates are connected by a connecting member, and a signal processing circuit connected to a wiring board drawn from the detection element substrate on both surfaces of the circuit board,
A transmission image imaging system comprising the semiconductor detector by combining a plurality of the partial modules.
請求項1記載の透過像撮像システムであって、
前記半導体検出器から出力された各検出素子のX線透過量を画像化する画像化処理部と、画像化されたデジタル画像を保存する記憶装置を備えることを特徴とする透過像撮像システム。
The transmission image capturing system according to claim 1,
A transmission image imaging system comprising: an imaging processing unit that images the X-ray transmission amount of each detection element output from the semiconductor detector; and a storage device that stores the imaged digital image.
請求項1記載の透過像撮像システムであって、
前記回路基板の両面に設置された信号処理回路は、前記回路基板のX線入射方向にずらして配置されていることを特徴とする透過像撮像システム。
The transmission image capturing system according to claim 1,
The transmission image capturing system, wherein the signal processing circuits installed on both surfaces of the circuit board are arranged to be shifted in the X-ray incident direction of the circuit board.
JP2014015056A 2014-01-30 2014-01-30 Transmission image pickup system Pending JP2015141142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015056A JP2015141142A (en) 2014-01-30 2014-01-30 Transmission image pickup system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015056A JP2015141142A (en) 2014-01-30 2014-01-30 Transmission image pickup system

Publications (1)

Publication Number Publication Date
JP2015141142A true JP2015141142A (en) 2015-08-03

Family

ID=53771579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015056A Pending JP2015141142A (en) 2014-01-30 2014-01-30 Transmission image pickup system

Country Status (1)

Country Link
JP (1) JP2015141142A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106703A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Radiographic examination device
JP2010185753A (en) * 2009-02-12 2010-08-26 Hitachi Cable Ltd Radiation detector
JP2010187811A (en) * 2009-02-17 2010-09-02 Hitachi Medical Corp X-ray ct apparatus
US20130108019A1 (en) * 2011-10-27 2013-05-02 General Electric Company Detector modules for imaging systems and methods of manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106703A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Radiographic examination device
JP2010185753A (en) * 2009-02-12 2010-08-26 Hitachi Cable Ltd Radiation detector
JP2010187811A (en) * 2009-02-17 2010-09-02 Hitachi Medical Corp X-ray ct apparatus
US20130108019A1 (en) * 2011-10-27 2013-05-02 General Electric Company Detector modules for imaging systems and methods of manufacturing

Similar Documents

Publication Publication Date Title
US10007007B2 (en) Methods for making an X-ray detector
TW201824855A (en) Image sensors having x-ray detectors
KR20180003533A (en) Method for manufacturing a semiconductor X-ray detector
KR20170141196A (en) Semiconductor X-ray detector
TWI714672B (en) Packaging methods of semiconductor x-ray detectors
JP6721682B2 (en) Radiation detector and imaging device
JP5665857B2 (en) Detector array with prefocused scattered radiation cancellation grid
TWI813785B (en) Image sensors, radiography system, cargo scanning or non-intrusive inspection (nii) system, full-body scanner system, radiation computed tomography (radiation ct) system, electron microscope and imaging system
US20140348290A1 (en) Apparatus and Method for Low Capacitance Packaging for Direct Conversion X-Ray or Gamma Ray Detector
KR20170046792A (en) Digital flat panel detector with squircle shape
TW201821826A (en) Packaging of semiconductor X-ray detectors
JP2015021784A (en) Two-dimensional image detection system
JP2009198343A (en) Detector arrangement substrate and nuclear medicine diagnosis device using it
US7283608B2 (en) System and method for X-ray imaging using X-ray intensity information
US20190353805A1 (en) Digital x-ray detector having polymeric substrate
JP2005181201A (en) Radiation detector
JP4464998B2 (en) Semiconductor detector module, and radiation detection apparatus or nuclear medicine diagnostic apparatus using the semiconductor detector module
JP6643271B2 (en) X-ray inspection equipment
JP6177663B2 (en) X-ray transmission imaging device
JP2015141142A (en) Transmission image pickup system
JP2007278792A (en) Radiation detecting apparatus and system
JP6411775B2 (en) X-ray imaging system and X-ray imaging method
JP2008070219A (en) X-ray ct system
JP2017044588A (en) X-ray detector and X-ray imaging system
US11948285B2 (en) Imaging systems with multiple radiation sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024