WO2019150498A1 - Antenna composite, antenna structure, and communication system - Google Patents

Antenna composite, antenna structure, and communication system Download PDF

Info

Publication number
WO2019150498A1
WO2019150498A1 PCT/JP2018/003246 JP2018003246W WO2019150498A1 WO 2019150498 A1 WO2019150498 A1 WO 2019150498A1 JP 2018003246 W JP2018003246 W JP 2018003246W WO 2019150498 A1 WO2019150498 A1 WO 2019150498A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio waves
antenna structure
complex
received
Prior art date
Application number
PCT/JP2018/003246
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 萩原
智之 曽我
央 丸山
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to PCT/JP2018/003246 priority Critical patent/WO2019150498A1/en
Priority to JP2019568485A priority patent/JP6921441B2/en
Publication of WO2019150498A1 publication Critical patent/WO2019150498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • the present invention relates to an antenna complex, an antenna structure, and a communication system.
  • a radio wave including its own identification information is transmitted by short-range wireless transmission with a preset transmission cycle and transmission output, and a battery-driven radio wave transmitter and a radio wave transmitter are accommodated and transmitted from the radio wave transmitter.
  • a radio wave transmitting device is described that includes a shield that restricts radiation of radio waves to be transmitted in a specific direction and transmits radio waves to a preset region.
  • the portable terminal is moved with the owner, and the radio wave information received from the radio wave transmitter and the azimuth information of the portable terminal are sent to the management server via the network device at predetermined intervals.
  • the control unit of the management server Transmitted and stored in the management server database, and the control unit of the management server generates terminal position data including the plane coordinates of the mobile terminal calculated from the plurality of radio wave information and the direction information, and the terminal position
  • a position information acquisition system is described that calculates a movement trajectory of a mobile terminal from data, calculates a stay time at each point in the movement trajectory, and detects a directivity direction of the mobile terminal at the point. Yes.
  • JP2015-106814A Japanese Patent Laid-Open No. 2015-152483
  • An object of the present invention is to provide an antenna complex having a plurality of antenna structures that have a function of a beacon that unilaterally transmits radio waves and that can transmit and receive data.
  • the invention according to claim 1 includes: a plurality of antenna structures that individually transmit and receive radio waves; and a wiring board that is connected to the plurality of antenna structures and includes data lines for transmitting and receiving data.
  • the antenna structure has a directivity for transmitting / receiving radio waves to / from a predetermined area, transmits / receives data via radio waves transmitted / received by the antenna unit, and transmits data via the data lines. It is an antenna complex provided with the communication control part which transmits / receives.
  • the invention according to claim 2 is the antenna complex according to claim 1, wherein the plurality of antenna structures are arranged in a line.
  • an antenna structure included in at least one of the outside of the array of the plurality of antenna structures and included in another antenna complex provided adjacent thereto, and data via radio waves.
  • the antenna complex according to claim 2 further comprising another antenna structure that performs transmission / reception of.
  • the another antenna structure includes the antenna unit having directivity for transmitting and receiving radio waves to and from the area, and the antenna structure and radio waves included in the other antenna complex.
  • a communication control unit for transmitting and receiving data via the radio wave transmitted and received by the antenna unit and for transmitting and receiving data via the data line and the other antenna unit.
  • the antenna complex according to claim 3 wherein the antenna complex is provided.
  • the invention according to claim 5 is the antenna complex according to claim 4, wherein the antenna part, the other antenna part, and the wiring board have flexibility.
  • the invention according to claim 6 is the antenna complex according to claim 1, wherein the antenna unit includes a plurality of antennas having different peak frequencies of radio waves to be transmitted and received.
  • the invention according to claim 7 is a patch antenna in which the plurality of antennas are configured such that a ground electrode and a discharge electrode face each other, and the areas of the discharge electrodes differ according to the peak frequency.
  • the invention according to claim 8 is characterized in that the other antenna unit includes a plurality of other antennas having different phases of radio waves for transmitting and receiving radio waves having different phases. It is a complex.
  • the invention according to claim 9 is that a plurality of the antenna structure and the wiring board are provided with an adhesive on one of the front surface and the back surface, and a pattern is provided on either the front surface or the back surface.
  • the antenna complex according to claim 1. According to the tenth aspect of the present invention, there is provided an antenna unit having a plurality of antennas having different peak frequencies of radio waves to be transmitted and received, data transmitted and received via radio waves transmitted and received by the antenna unit, and data to which data is connected It is an antenna structure provided with the communication control part which transmits / receives via a line.
  • the peak frequency of the plurality of antennas included in the antenna unit is set by dividing a frequency band of a radio wave to be transmitted / received into a plurality of frequencies.
  • This is an antenna structure.
  • the plurality of antennas are patch antennas configured such that a ground electrode and a discharge electrode face each other, and the areas of the discharge electrodes differ according to a peak frequency.
  • a wiring board having a data line through which data is transmitted / received, an antenna unit having directivity for transmitting / receiving radio waves to / from a predetermined area, and radio waves transmitted / received by the antenna unit.
  • a communication control unit that transmits and receives data via the data line, and includes a plurality of antenna structures that individually transmit and receive radio waves.
  • the antenna structure propagates data between a plurality of the antenna structures via the communication control unit included in the antenna structure, and the data is transmitted / received to / from a host computer provided outside. It is a communication system.
  • the invention according to claim 14 is characterized in that the plurality of antenna structures are arranged in a line, and data propagation between the antenna structures is performed in a relay manner along the array.
  • Item 14 The communication system according to Item 13.
  • data propagated through a plurality of the antenna structures via the antenna structure provided at one end of the plurality of the antenna structures arranged in a row is the host.
  • the communication system according to claim 14, wherein the communication system is transmitted to and received from a computer.
  • a beacon function for unilaterally transmitting radio waves is provided and data can be transmitted and received.
  • a structure becomes simple.
  • expandability is enhanced as compared with the case where no other antenna structure is provided.
  • conveyance and installation become easy compared with the case where it does not have flexibility.
  • the seventh and twelfth aspects of the present invention it is easier to make the device thinner than when the patch antenna is not used.
  • the eighth aspect of the present invention it is easier to make the device thinner than when the phases are not different.
  • it can be installed more easily and is easily dissolved in the environment.
  • it is easier to set the peak frequency than when the frequency band is not divided into a plurality of parts.
  • a communication system can be easily constructed.
  • communication control is facilitated as compared with the case where the relay method is not used.
  • the connection is facilitated as compared to the case where the connection is not made at the end.
  • (A) is an antenna complex
  • (b) is a plan view of the antenna structure
  • (c) is a cross-sectional view of the antenna structure taken along line IIC-IIC in (b). It is a figure explaining the state which input and excited the signal of the high frequency band to the antenna part.
  • (A) is a figure which shows the mode of the electric power feeding to a radiation electrode
  • (b) is a figure which shows the directivity of the electromagnetic wave in a far field. It is a figure explaining an antenna structure.
  • FIG. 1 is a plan view of the antenna structure
  • (b) is a cross-sectional view of the antenna structure along the line IVB-IVB in (a)
  • (c) is a directivity of radio waves of the antenna portion in the antenna structure.
  • FIG. It is a top view which shows the modification of an antenna structure.
  • the basic function of a beacon is to detect its position.
  • a plurality of beacons are arranged in the space, and the position is detected from the ID of the beacon received by the terminal or the like (hereinafter referred to as a beacon ID) and the received radio wave intensity.
  • the host computer inquires the beacon ID and received radio wave intensity from the received terminal to the host computer or the like on a separate line. It is necessary to calculate the position and return it to the terminal, which complicates the system.
  • the beacon antenna that transmits the beacon ID in this way has no directivity. That is, the radio wave is omnidirectionally transmitted in the 360 ° direction around the antenna. Radio waves attenuate with the square of the distance. Therefore, if it is close to one of the two beacons, the intensity of the radio wave is large and a difference depending on the distance can be obtained.
  • the range of radio waves reaches concentric circles. Therefore, in order to reduce the gap between two adjacent beacons, the area where radio waves overlap must be increased.
  • there is a large amount of radio wave attenuation in such a region and it is difficult to obtain a difference. That is, there is a problem that even if it is a few meters away, the reception intensity falls below the allowable range and the position becomes difficult to calculate.
  • the antenna structure that has the function of receiving radio waves (receiver function) and receiving radio waves as beacons from the antenna structure Therefore, it was considered to transmit information such as the beacon ID and the received radio wave intensity to the host computer via the antenna structure. In this way, it is not necessary to prepare a separate communication line for inquiring the host computer.
  • directivity is given to the radio wave transmitted by the antenna included in the antenna structure so that the rapid attenuation of the radio wave due to the separation of the distance is suppressed. Therefore, the change in the radio wave intensity due to the difference in position becomes large, so that the position can be easily detected.
  • the antenna structure can easily receive radio waves from a terminal or the like. Furthermore, by giving directivity to the radio waves transmitted by the antenna, the area where the radio waves overlap can be narrowed if the directivity directions are arranged in parallel between adjacent antenna structures. Therefore, it is suppressed that a position becomes difficult to calculate between adjacent antenna structures.
  • the antenna structure and the antenna complex can be used as a simple communication system in addition to the purpose of detecting the position of a terminal or the like.
  • Bluetooth LE is a standard that emphasizes power saving formulated by Bluetooth SIG.
  • FIG. 1 is a diagram for explaining the concept of a communication system 1 to which this exemplary embodiment is applied.
  • FIG. 1 is a diagram in which a communication system 1 is configured in a preset area (section) (indoor).
  • the communication system 1 includes a plurality of (here, three) antenna complexes 10, a host computer 20, an AC power supply unit 30, and a battery power supply unit 40.
  • the three antenna complexes 10 are distinguished from each other, they are denoted as antenna complexes 10-1, 10-2, and 10-3.
  • the two antenna complexes 10-1 and 10-2 are provided so as to be attached to the respective wall surfaces in two directions that divide the area.
  • the antenna complex 10-3 is provided so as to be attached to the floor of the area.
  • the AC power supply unit 30 is an outlet of an AC power source (AC power source), and is connected to supply power to the antenna complex 10 from the AC power source.
  • the battery power supply unit 40 includes a battery and is connected to supply power to the antenna complex 10 from the battery.
  • the area there are a mobile person A who has a communication terminal 50 capable of transmitting and receiving radio waves with the antenna complex 10, and a mobile person B who has a dedicated terminal 60 for transmitting radio waves. Further, in the area, there are an automatic guided vehicle (AGV) 70 capable of transmitting / receiving radio waves to / from the antenna complex 10 and a drone (unmanned aircraft) 80 capable of transmitting / receiving radio waves to / from the antenna complex 10.
  • AGV automatic guided vehicle
  • the communication terminal 50 possessed by the mobile person A, the call-only terminal 60 possessed by the mobile person B, the automatic guided vehicle 70 and the drone 80 are sometimes referred to as mobile objects because they can move within the area. .
  • the moving body includes one that moves from inside the area to outside the area, and one that moves from outside the area to inside the area.
  • the antenna complex 10 includes a plurality of antenna structures 100 and 200.
  • the antenna structures 100 are arranged in a row.
  • the antenna structure 200 is disposed at both ends of the array of antenna structures 100. These antenna structures 100 and 200 transmit radio waves in the area and receive radio waves from the area. As will be described later, the antenna structures 100 and 200 have directivity capable of transmitting and receiving radio waves within the area.
  • the antenna complex 10-1 includes the antenna structures 100-11 to 100-15
  • the antenna complex 10-2 includes the antenna structures 100-21, 100-. 22
  • the antenna complex 10-3 includes antenna structures 100-31 and 100-32.
  • the antenna complex 10-1 includes the antenna structures 200-11 and 200-12
  • the antenna complex 10-2 includes the antenna structures 200-21 and 200-22.
  • the antenna complex 10-3 includes antenna structures 200-31 and 200-32.
  • the wiring board 300 includes a power supply line that supplies power and a data line that transmits and receives data. That is, power is supplied to the plurality of antenna structures 100 and 200 included in the antenna complex 10 through the power supply line, and data is transmitted and received through the data line.
  • data is propagated (transmitted / received) by a relay method as an example. That is, the data line is provided so as to connect between the adjacent antenna structures 100 and 200.
  • multi-hop communication using a data line is represented by a straight line with arrows at both ends.
  • a bus may be provided and a plurality of antenna structures 100 and 200 may be connected to the bus (bus system). Note that communication control in the communication control unit 120 is facilitated by performing communication by the relay method.
  • the antenna complexes 10-1 and 10-2 are connected to the AC power feeding unit 30. That is, the antenna structure 100 included in the antenna complexes 10-1 and 10-2 is supplied with power from the AC power supply.
  • the antenna complex 10 connected to the AC power feeding unit 30 includes an AC-DC converter (converter) that converts alternating current (AC) into direct current (DC).
  • the antenna complex 10-3 is connected to the battery power supply unit 40. That is, the antenna structure 100 included in the antenna complex 10-3 is supplied with power from the battery. If Bluetooth LE is used, power is saved, so that long-term driving is possible by supplying power from the battery. Also, in Bluetooth LE, the communicable distance can be set from 1 m to several tens of meters according to the output of radio waves. Therefore, the size (width) of a cell that is an area within the communicable distance of each of the antenna structures 100 and 200 can be set by the communicable distance. That is, the cell size, that is, the interval at which the antenna structures 100 and 200 are arranged can be set depending on the application.
  • an antenna structure 200-31 located at an end portion close to the antenna complex 10-1 is an antenna located at an end portion of the antenna complex 10-1 near the antenna complex 10-2.
  • the structure 200-12 is wirelessly connected to each other.
  • the antenna structure 200-21 located at the end portion close to the antenna complex 10-1 is located at the end portion of the antenna complex 10-1 near the antenna complex 10-2.
  • the antenna structure 200-11 that is positioned is connected to each other wirelessly. Similar to the communication between the antenna structures 100 in the antenna complex 10, these wireless interconnections are also performed in multihop.
  • wireless multi-hop communication is represented by arcs with arrows at both ends.
  • the antenna structure 200 can transmit and receive radio waves within the area and can communicate with the adjacent antenna complex 10 by radio waves.
  • the antenna structure 200-22 in the antenna complex 10-2 and the antenna structure 200-32 in the antenna complex 10-3 do not have the adjacent antenna complex 10, so that they are wireless with other antenna complexes 10. Do not communicate with.
  • the antenna structure 200-12 located at one end of the antenna complex 10-1 (the wiring board 300) is connected to the host computer 20.
  • the antenna complex 10 and the host computer 20 can be easily connected.
  • FIG. 1 the portion of the antenna structure 200-12 located at one end of the antenna complex 10-1 and the host computer 20 are described as being connected by a wire (signal line).
  • the antenna structure 200-12 may be connected wirelessly through an antenna unit 110 (see FIG. 2 described later) provided in the antenna structure 200-12.
  • the communication control unit 120 included in the antenna structure 100 and the antenna structure 200 includes a microprocessor, a RAM, a ROM, and the like, and realizes the function of Bluetooth LE.
  • the antenna structure 100 and / or the antenna structure 200 may function as a host computer. Even in such a case, the antenna structure 100 and / or the antenna structure 200 that functions as a host computer is used as a host computer.
  • multi-hop communication (data propagation) is performed between the antenna structures 100 and 200 of the antenna complex 10 (antenna complexes 10-1, 10-2, and 10-3). All the antenna structures 100 and 200 communicate with the host computer 20 via the antenna structure 200-12 connected to the host computer 20 of the antenna complex 10-1. Arranging the antenna structures 100 and 200 in a row simplifies the configuration of the antenna complex 10.
  • the antenna complex 10 is provided with the antenna structure 200 at both ends, the antenna structure 200 may be provided only at one end.
  • the antenna complex 10 may not include the antenna structure 200.
  • the connection may be made to the host computer 20 via the antenna structure 100 provided at one end of the antenna complex 10 (in the case of the antenna complex 10-1, for example, the antenna structure 100-15).
  • the end portions of the two antenna complexes 10 may be arranged at a distance where radio waves can reach, and wired wiring for connection It is not necessary to provide.
  • the plurality of antenna complexes 10 can be connected (coupled) without limitation. That is, if both ends of the antenna complex 10 are used as the antenna structure 200 capable of wireless multi-hop communication, the communication system 1 using a plurality of antenna complexes 10 can be easily constructed.
  • an identifiable address is attached to the antenna structures 100 and 200. Therefore, even in multi-hop, the data (information) to be communicated can be identified for each of the antenna structures 100 and 200.
  • FIG. 2 is a diagram for explaining the antenna complex 10 and the antenna structure 100.
  • 2A is the antenna complex 10
  • FIG. 2B is a plan view of the antenna structure 100
  • FIG. 2C is the antenna structure 100 taken along the line IIC-IIC in FIG. 2B.
  • FIG. 1 is the antenna complex 10 and the antenna structure 100.
  • the antenna complex 10 includes a plurality of antenna structures 100 and 200 and a wiring board 300.
  • the plurality of antenna structures 100 are arranged and connected in a row on a wiring board 300 having flexibility (flexibility).
  • the antenna structure 200 is connected to both ends of the wiring board 300.
  • the wiring board 300 is, for example, a flexible printed wiring board (FPC).
  • FPC flexible printed wiring board
  • a power supply line and a data line are provided in the wiring board 300.
  • the power supply line (+ side) and the ground (GND) line ( ⁇ side) constituting the power supply line are supplied with power to all the antenna structures 100 and 200 included in the antenna complex 10. All antenna structures 100 are connected in parallel.
  • the data lines are provided between the adjacent antenna structures 100 and between the antenna structure 200 and the antenna structure 100 adjacent to the antenna structure 200 so as to perform multi-hop communication. Note that the number of data lines provided in parallel is set by a method of data communication to be performed.
  • the wiring board 300 has a strip shape, and a power supply line is provided from one end to the other end. And in the part to which antenna structure 100,200 is connected, the terminal is formed so that antenna structure 100 can be connected to a power supply line.
  • the data line is provided between the adjacent antenna structures 100 and between the antenna structure 200 provided at both ends and the antenna structure 100 adjacent to the antenna structure 200. Are connected to the data line.
  • the wiring board 300 is made of, for example, a conductive material such as a copper layer (copper foil) or a silver layer (silver foil) in which the base material is made of a resin film such as polyimide and the power supply line and the data line are provided on the base material. It is composed of a sex material.
  • the power supply line and the data line are covered with a protective layer made of an electrically insulating material except for the terminals provided on the power supply line and the data line.
  • the antenna structure 100 includes an antenna unit 110 and a communication control unit 120.
  • the antenna unit 110 includes an insulating substrate 111, a ground (GND) electrode 112 provided on one surface (back surface) of the insulating substrate 111, and the other surface (front surface) of the insulating substrate 111.
  • GND ground
  • the radiation electrode 113 has a square outer shape. When the four radiation electrodes 113 are distinguished from each other, they are denoted as radiation electrodes 113-1, 113-2, 113-3, and 113-4.
  • the front surface side of the insulating substrate 111 is referred to as the front surface of the antenna portion 110, and the back surface side of the insulating substrate 111 is referred to as the back surface of the antenna portion 110.
  • the front side of the antenna unit 110 is referred to as the front side of the antenna structure 100, and the back side of the antenna unit 110 is referred to as the back side of the antenna structure 100.
  • the front surface side of the antenna structure 100 is referred to as the front surface of the antenna complex 10
  • the back surface side of the antenna structure 100 is referred to as the rear surface of the antenna complex 10.
  • the insulating substrate 111 is made of, for example, a copper layer (copper foil) or a silver layer (silver foil) in which the base material is made of a resin film such as polyimide, and the ground electrode 112, the radiation electrode 113, and the signal distribution wiring 114 are provided on the base material. ) And other conductive materials.
  • the radiation electrode 113 and the signal distribution wiring 114 are composed of one conductive material layer and are continuous.
  • the antenna unit 110 is a patch antenna (may be referred to as an antenna) that includes a ground electrode 112 provided on the back surface of the insulating substrate 111 and a radiation electrode 113 provided on the surface of the insulating substrate 111. is there. With such a structure, the antenna portion 110 can be made thin and flexible.
  • the antenna does not have to be a patch antenna, but may be another antenna such as an inverted F antenna or a dipole antenna.
  • the antenna unit 110 as a patch antenna, radio waves are transmitted and received on the surface side of the antenna unit 110. Therefore, there is an advantage that the output of radio waves is not affected by the material of the place (for example, a wall surface) to which the antenna unit 110 is attached or the distance from the material.
  • the communication control unit 120 transmits and receives signals to and from the antenna unit 110, and also processes data and exchanges data with the host computer 20.
  • the communication control unit 120 is configured as, for example, a one-chip semiconductor component equipped with a Bluetooth LE function. That is, the communication control unit 120 converts the data to generate a signal to be transmitted by the antenna unit 110, a reception unit to convert the signal received by the antenna unit 110 into data, a base for controlling the transmission unit and the reception unit.
  • a band unit, a microprocessor for processing data (protocol), a RAM, a ROM, and the like are provided.
  • a clock generator that generates a clock in the operating state
  • a clock generator that generates a low-frequency clock for a standby state with low power consumption is provided.
  • software developed by an application developer is installed.
  • the communication control unit 120 is mounted on the insulating substrate 111 of the antenna unit 110 by a technology such as CSP (Chip Size Package).
  • the communication control unit 120 has a plurality of terminals.
  • a terminal for transmitting and receiving signals to and from the antenna unit 110 is connected to the signal distribution wiring 114 of the antenna unit 110 provided on the surface of the insulating substrate 111.
  • a terminal that supplies a power supply voltage (+ side) and a ground voltage (GND) for supplying power to the communication control unit 120 and a terminal that exchanges data with the host computer 20 pass through the insulating substrate 111. It is connected to one terminal of the provided wiring (not shown).
  • the other terminal of the wiring is a terminal for connecting to the power supply line and the data line of the wiring board 300 on the back surface of the insulating substrate 111. These terminals provided on the back surface of the insulating substrate 111 are connected to terminals provided on the power supply line and the data line of the wiring board 300. Thereby, the antenna structure 100 is fixed to the wiring board 300.
  • the plurality of radiation electrodes 113 are configured to transmit and receive radio waves having different peak frequencies. That is, when the peak frequencies are f1, f2, f3, and f4 (f1 ⁇ f2 ⁇ f3 ⁇ f4), the radiation electrode 113-1 has the peak frequency f1, the radiation electrode 113-2 has the peak frequency f2, and the radiation electrode 113-3 has the The peak frequency f3 and the radiation electrode 113-4 are set so as to correspond to the radio wave of the peak frequency f4.
  • the peak frequencies f1 to f4 are not distinguished from each other, they are expressed as a peak frequency f.
  • the radiation electrode 113 is configured such that the side length of a square that is a planar shape corresponds to the peak frequency f. That is, the side length of the radiation electrode 113-2 corresponding to the peak frequency f2 is smaller than the side length of the radiation electrode 113-1 corresponding to the peak frequency f1 lower than the peak frequency f2. Similarly, the side length of the radiation electrode 113-3 corresponding to the peak frequency f3 is smaller than the side length of the radiation electrode 113-2 corresponding to the peak frequency f2 lower than the peak frequency f3. Further, the side length of the radiation electrode 113-4 corresponding to the peak frequency f4 is smaller than the side length of the radiation electrode 113-3 corresponding to the peak frequency f3 lower than the peak frequency f4.
  • the antenna unit 110 includes four patch antennas (patch antennas I) each having a different peak frequency f composed of the ground electrode 112 and each of the radiation electrodes 113-1, 113-2, 113-3, and 113-4. , II, III, IV). In this way, the antenna unit 110 can transmit and receive radio waves in a wide frequency band.
  • patch antennas I, II, III, and IV are examples of antennas.
  • Bluetooth LE uses 40 channels obtained by dividing a band from 2.400 GHz to 2.4835 GHz every 2 MHz.
  • the ratio band (a value obtained by dividing the bandwidth by the center frequency) is about 3.3%.
  • Such a wide band is difficult to cover with a single patch antenna having a specific band around 1%.
  • the band is widened by configuring the antenna unit 110 with four patch antennas I, II, III, and IV having different peak frequencies f.
  • the four radiation electrodes 113-1, 113-2, 113-3, 113-4 are connected by a signal distribution wiring 114.
  • the signal distribution wiring 114 and the ground electrode 112 constitute a distribution circuit using a microstrip line.
  • the shape (pattern) is set so as to provide a wideband distribution circuit capable of propagating the above wide frequency band signal.
  • Bluetooth LE communication is performed by switching the frequency to be used (frequency hopping). That is, communication is performed by switching 40 channels obtained by dividing the frequency band from 2.400 GHz to 2.4835 GHz every 2 MHz. Therefore, for example, the band from 2.400 GHz to 2.4835 GHz is divided into four, and the peak frequencies f1 to f4 are set as the center frequencies of the divided bands. As a result, in the case of a signal corresponding to the peak frequency f1, the radiation electrode 113-1 corresponding to the peak frequency f1 is excited through the distribution circuit to emit a radio wave.
  • a signal with a peak frequency f near the peak frequency f1 also excites the radiation electrode 113-1 corresponding to the peak frequency f1 and radiates radio waves.
  • signals having other peak frequencies f For example, in the case of a peak frequency f between the peak frequency f1 and the peak frequency f2, the radiation electrode 113-1 corresponding to the peak frequency f1 and the radiation electrode 113-2 corresponding to the peak frequency f2 are excited together. Radio waves are emitted. The same applies to the case between the other peak frequencies f. Setting the peak frequency f by dividing the frequency band facilitates the setting of the peak frequency f.
  • the size of the antenna unit 110 is 50 mm ⁇ 200 mm.
  • FIG. 3 is a diagram illustrating a state in which a high frequency band signal is input to the antenna unit 110 and excited.
  • FIG. 3A is a diagram showing the state of power feeding to the radiation electrode 113
  • FIG. 3B is a diagram showing the directivity of radio waves in the far field. These were obtained by simulation.
  • the high frequency band signal is a signal having a frequency between the peak frequency f3 and the peak frequency f4.
  • FIG. 3A a portion to which power is supplied is indicated by hatching.
  • the antenna unit 110 is a directional antenna.
  • the frequency band of the antenna unit 110 is widened by dividing the band into several parts and arranging a plurality of patch antennas having different peak frequencies f corresponding to the divided bands.
  • the number of patch antennas may be other than four, and may be set according to the frequency band of radio waves to be transmitted and received.
  • a method of expanding the frequency band of the antenna unit 110 there is a method using a parasitic element.
  • the antenna unit 110 increases in thickness and is thin. Inhibits this, and loses flexibility. That is, the antenna unit 110 is configured by arranging a plurality of patch antennas having different peak frequencies f so as to be thin and flexible.
  • FIG. 4 is a diagram illustrating the antenna structure 200.
  • 4A is a plan view of the antenna structure 200
  • FIG. 4B is a cross-sectional view of the antenna structure 200 taken along line IVB-IVB in FIG. 4A
  • FIG. 4C is an antenna.
  • FIG. 6 is a diagram for explaining the directivity of radio waves of an antenna unit 210 in a structure 200.
  • the antenna structure 200 includes an antenna unit 210 and a communication control unit 120.
  • the antenna unit 210 includes an insulating substrate 211, a ground (GND) electrode 212 provided on the back surface of the insulating substrate 211, and a plurality of (provided on the surface of the insulating substrate 211).
  • four radiation electrodes 113 similarly, a plurality (here, two) of radiation electrodes 213 provided on the surface of the insulating substrate 211, and signal distribution wiring for connecting the radiation electrodes 113 and the communication control unit 120.
  • 114 and a signal distribution wiring 214 that connects the radiation electrode 213 and the communication control unit 120.
  • the radiation electrode 113 and the signal distribution wiring 114 are the same as the antenna unit 110. Therefore, the same code
  • the two radiation electrodes 213 have a square planar shape and the same area. When the two radiation electrodes 213 are distinguished from each other, they are represented as radiation electrodes 213-1 and 213-2.
  • the patch electrodes I to IV are constituted by the radiation electrodes 113-1 to 113-4 and the ground electrode 212. And including the signal distribution wiring 114, it is the same as the antenna part 110, and transmits / receives an electric wave with respect to an area.
  • the radiation electrodes 213-1 and 213-2 and the ground electrode 212 constitute a patch antenna (patch antennas V and VI).
  • an antenna unit multi-hop antenna unit that performs wireless multi-hop communication with the adjacent antenna complex 10 including the signal distribution wiring 214 is configured.
  • the patch antennas V and VI are examples of other antennas.
  • a multi-hop antenna unit is an example of another antenna unit. That is, in the antenna structure 200, the multi-hop antenna unit is configured as one member in the area antenna unit 110 that communicates with the area.
  • a portion (terminal) connected to the communication control unit 120 in the signal distribution wiring 114 is expressed as an area antenna terminal, and a portion (terminal) connected to the communication control unit 120 in the signal distribution wiring 214 is expressed as a multi-hop antenna terminal. There are things to do.
  • the radiation electrodes 213-1 and 213-2 of the antenna unit 210 are configured to have a phase difference of 180 ° by the signal distribution wiring 214. Accordingly, the radiation electrodes 213-1 and 213-2 in FIG. 4C are denoted as 0 [deg] and 180 [deg], respectively.
  • the radio waves are transverse to the surface of the antenna structure 200.
  • Directivity directivity indicated by a solid line. That is, radio waves can be transmitted and received in a direction inclined from the vertical direction of the surface (radiation electrode 213) of the antenna structure 200 while maintaining the characteristics of the thin patch antenna.
  • the radio wave is directed to the surface of the antenna structure 200 as shown by the directivity indicated by the broken line in FIG. Show vertical directivity. This corresponds to the case of the antenna unit 110.
  • the antenna structure 200 is provided at both ends of the antenna complex 10 so as to give the radio wave directivity in the lateral direction, so that the gap between the antenna complex 10-1 and the antenna complex 10-2 in FIG.
  • the two antenna complexes 10 installed so as to be orthogonal (90 °), such as between the antenna complex 10-1 and the antenna complex 10-3, are connected by radio waves. Note that even when two antenna complexes 10 are arranged in the longitudinal direction, that is, when the angle between the antenna complexes 10 is 180 °, radio waves can be transmitted and received.
  • FIG. 5 is a plan view showing an antenna structure 200 ′ that is a modification of the antenna structure 200.
  • the radiation electrode 213-3 and the radiation electrode 213-4 are provided between the radiation electrode 213-1 and the radiation electrode 213-2, and the radiation electrode 213-1 and the radiation electrode 213-3 are connected.
  • the phase is 0 °, and the radiation electrode 213-2 and the radiation electrode 213-4 are 180 ° in phase. In this way, the directivity can be increased (the beam width is reduced). Therefore, the multi-hop distance, that is, the distance between the antenna complexes 10 may be large.
  • Bluetooth LE uses 40 channels for data exchange.
  • 3 channels are advertisement channels.
  • the channel index 37 is set to a center frequency of 2.402 GHz
  • the channel index 38 is set to a center frequency of 2.426 GHz
  • the channel index 39 is set to a center frequency of 2.480 GHz. That is, the upper limit, lower limit, and almost the center of the frequency band from 2.400 GHz to 2.4835 GHz used by Bluetooth LE are set.
  • the other channel is a data channel.
  • FIG. 1 a procedure for data communication between the communication terminal 50 held by the mobile person A and the antenna structure 100-13 located in the vicinity of the communication terminal 50 in the antenna complex 10-1 will be described. Here, it is assumed that the communication terminal 50 requests connection to the antenna structure 100-13.
  • the communication terminal 50 functions as a central, and transmits an advertisement packet using the advertisement channel as a broadcaster (advertisement).
  • the advertisement packet contains its own device information such as its own address (ID). Note that the communication terminal 50 sequentially transmits the advertisement packet to the three advertisement channels having different center frequencies, so that the antenna structure 100-13 can easily receive the advertisement of the communication terminal 50.
  • the antenna structure 100-13 functions as a peripheral and receives an advertisement packet as an observer. In order to receive device information other than the device information included in the advertisement packet, the antenna structure 100-13 transmits a scan request packet using an advertisement channel. Transmit to the communication terminal 50 (scan).
  • the communication terminal 50 functions as an observer in a time-sharing manner, and when receiving a scan request packet, transmits a scan response packet including device information using the advertisement channel.
  • the antenna structure 100-13 transmits a connection request packet for requesting connection to the communication terminal 50 using the advertisement channel (initialization).
  • the antenna structure 100-13 is a master and the communication terminal 50 is a slave. Data communication is performed by periodically transmitting and receiving data packets between the antenna structure 100-13 and the communication terminal 50.
  • the data communication ends. It should be noted that the data communication is terminated even when a data packet from the antenna structure 100-13 or the communication terminal 50 does not reach or when a data error occurs.
  • the antenna structure 100-13 is the master and the communication terminal 50 is the slave.
  • the antenna structure 100-13 and the communication terminal 50 are interchanged, and the communication terminal 50 is the master and the antenna structure 100-13 is the slave. It is good.
  • the operation of the communication system 1, that is, the function (service) performed by the communication system 1 will be described.
  • the position detection function of the communication terminal 50 will be described.
  • a function for notifying the mobile person A who owns the communication terminal 50 of the current position will be described. It is assumed that all the antenna structures 100 in the antenna complex 10 are transmitting advertisement packets.
  • the advertisement packet transmitted by each antenna structure 100 includes the address (ID) of each antenna structure 100 (communication control unit 120).
  • the host computer 20 uses the information for calculating the position (hereinafter, the relationship between the address (ID) of the antenna structure 100 and the installed position, and the change in received radio wave intensity with respect to the distance from the antenna structure 100). , And is written as position calculation information.) And application software for calculating the position.
  • the communication terminal 50 includes an antenna structure 100, an antenna that can transmit and receive signals by radio waves, and a signal processing unit similar to the communication control unit 120, and also displays its position on the display unit (display) of the communication terminal 50.
  • the antenna included in the communication terminal 50 is preferably non-directional capable of transmitting and receiving radio waves with respect to 360 ° around the antenna.
  • the communication terminal 50 acquires the received radio wave intensity and the address (ID) of the antenna structure 100 by receiving the advertisement packet. Note that a plurality of advertisement packets may be received, and the received radio wave intensity and the address (ID) of the antenna structure 100 may be acquired. Communication is established with one antenna structure 100 by the above procedure.
  • the communication terminal 50 transmits the received radio wave intensity and the address (ID) of the antenna structure 100 to the antenna structure 100 as a data packet.
  • the antenna structure 100 transmits the received radio wave intensity in the received data packet and the address (ID) of the antenna structure 100 to the host computer 20.
  • the host computer 20 calculates the position (position information) of the communication terminal 50 from the received received radio wave intensity and the address (ID) of the antenna structure 100 based on the position calculation information held. And the positional information on the communication terminal 50 is transmitted to the antenna structure 100 with which communication with the communication terminal 50 is established. Since the antenna structure 100 has an address (ID), the host computer 20 specifies the address (ID) of the antenna structure 100 and transmits position information.
  • the antenna structure 100 that has received the position information transmits the position information to the communication terminal 50 using the established communication path. Thereby, the position at the communication terminal 50 is displayed on the display unit of the communication terminal 50.
  • the antenna structure 100 is configured not only to transmit a radio wave as a beacon but also to perform data communication with the communication terminal 50. That is, the antenna structure 100 is configured not only to transmit a radio wave as a beacon but also to perform data communication with the communication terminal 50, so that an antenna complex is provided between the communication terminal 50 and the host computer 20. Only a communication line via 10 may be set. On the other hand, when the antenna structure 100 is used as a beacon that only transmits radio waves, it is necessary to prepare a separate communication line for transmitting and receiving data between the communication terminal 50 and the host computer 20. .
  • the host computer 20 can also transmit other information related to the location to the communication terminal 50 in addition to the position information.
  • the place is a shopping street
  • the sale is promoted by transmitting special sale information.
  • the place is a sightseeing spot
  • detailed information regarding the sightseeing spot can be provided by transmitting scenery information and the like.
  • the place is an exhibition hall, it is possible to deepen the appreciation by sending an explanation for each exhibit.
  • the place is a concert hall
  • the audience can individually recognize the position of the audience by holding the penlight having the same function as the communication terminal 50 and control the color of the penlight according to the position. it can. This allows the audience to participate in the concert by flashing penlights that vary in color from place to place, and enhance the sense of unity. And even if a spectator moves a predetermined seat, it is suppressed that the color of a penlight shifts.
  • the room can be made an area, and if it is set large, the outdoor (the above shopping street, Sightseeing spots) can be made into areas.
  • the dedicated transmission terminal 60 includes a signal generation unit that generates an advertisement packet as a signal in a frequency band that can be received by the antenna structure 100 of the antenna complex 10, and an antenna that transmits the signal (advertisement packet) as a radio wave. That is, the signal generation unit may not have the same configuration as the communication control unit 120 included in the antenna structure 100. That is, it is sufficient that the call-only terminal 60 can transmit the advertisement packet. For this reason, it can be manufactured small and inexpensively. If the signal generator of the transmission-only terminal 60 is the same as the communication control unit 120 included in the antenna structure 100, the scan request packet is set not to be received so that the scan response packet is not transmitted. Just keep it. By doing in this way, power consumption is suppressed.
  • the antenna included in the transmission dedicated terminal 60 is preferably omnidirectional. That is, the antenna is preferably non-directional capable of transmitting and receiving radio waves with respect to 360 ° around the antenna.
  • the transmission dedicated terminal 60 always transmits an advertisement packet.
  • the advertisement packet transmitted by the call origination terminal 60 includes the address (ID) of the call origination terminal 60.
  • the antenna structure 100 of the antenna complex 10 is always in a reception state (passive scan).
  • the host computer 20 determines the relationship between the address (ID) of the antenna structure 100 and the position where the antenna structure 100 is installed, and the radio wave antenna structure 100 received from the transmission-only terminal 60 that the antenna structure 100 receives.
  • Information for calculating the position of the call-only terminal 60 position calculation information
  • application software for calculating the position such as a change in strength (received radio wave strength) with respect to the distance of the mobile phone.
  • the antenna structure 100 (the antenna structure 100-21 in FIG. 1) located near the mobile person B is connected to the transmission-only terminal 60. Receives advertisement packets from. At this time, the antenna structure 100-21 acquires the received radio wave intensity together with the address (ID) of the call-only terminal 60. Note that the plurality of antenna structures 100 may receive the advertisement packet from the call-only terminal 60. Then, the antenna structure 100-21 transmits the acquired address (ID) of the transmission-only terminal 60 and the received radio wave intensity to the host computer 20 together with its own address (ID).
  • the host computer 20 calculates the position of the transmission dedicated terminal 60 from the address (ID) of the antenna structure 100-21, the address (ID) of the transmission dedicated terminal 60, and the received radio wave intensity.
  • the host computer 20 calculates the position of the moving person B from the address (ID) of the antenna structure 100-21, the address (ID) of the transmission dedicated terminal 60, and the received radio wave intensity.
  • a display unit display
  • a speaker may be provided in the antenna structure 100 to perform sales promotion, sightseeing spot guidance, explanation of exhibits, and the like as described above.
  • the communication terminal 50 always transmits an advertisement packet.
  • the advertisement packet transmitted by the communication terminal 50 includes the address (ID) of the communication terminal 50.
  • the antenna structure 100 of the antenna complex 10 is always in a reception state (passive scan)
  • the address (ID) of the antenna structure 100 and the radio wave from the communication terminal 50 received by the antenna structure 100 are transmitted.
  • the position of the call-only terminal 60 can be calculated from the intensity (received radio wave intensity) or the like. That is, the communication terminal 50 is operated in the same manner as the call-dedicated terminal 60.
  • the function for controlling the automatic guided vehicle 70 will be described.
  • the data (instruction) about the destination can be transmitted to the automatic guided vehicle 70 from the antenna structure 100 of the antenna complex 10 (antenna structure 100-14 in FIG. 1).
  • the automatic guided vehicle 70 knows its own position by repeating communication with the antenna structure 100 located in the vicinity as it moves. Therefore, it is possible to reach the destination from its own position and the received destination.
  • the antenna complex 10 Since communication is performed via the antenna complex 10, it is not necessary to provide a separate communication line. Further, since the antenna complex 10 has a flexible structure, the antenna complex 10 can be rolled and conveyed, and a path for controlling the automatic guided vehicle 70 is constructed by being attached to a floor or a wall in the factory.
  • the antenna complex 10 includes the antenna structure 200 capable of wireless multi-hop communication at both ends. Therefore, even if a plurality of antenna complexes 10 are arranged in the longitudinal direction, they can be wired. No need to connect. That is, a route for controlling the automatic guided vehicle 70 can be easily constructed.
  • the antenna complex 10 can be driven not only by the AC power source (AC power source) (AC power feeding unit 30 in FIG. 1) but also by the battery (battery power feeding unit 40 in FIG. 1), the AC power source is used. Even if it is difficult, it can be used.
  • AC power source AC power source
  • battery battery power feeding unit 40 in FIG. 1
  • the antenna complex 10 can be made flexible as a whole, it can be conveyed in a rounded and small state. And installation becomes easier by providing an adhesive (adhesive) agent by sticking a double-sided tape on either one of the front surface and the back surface of the antenna complex 10. Further, an advertisement may be printed on one of the front and back surfaces and used for promotion, or a pattern of a wall or floor may be printed to make the antenna complex 10 melt into the environment. The advertisements and patterns on the walls and floors are collectively written as a pattern.
  • the antenna structure 200 has a configuration in which an antenna unit that performs wireless multi-hop communication is added to the antenna unit 110 that transmits and receives radio waves to and from the area.
  • an antenna structure 100 including the antenna unit 110 and an antenna structure including an antenna unit that performs wireless multi-hop communication may be separately provided.
  • Bluetooth LE is taken as an example, but other wireless technologies such as Wi-Fi (registered trademark) based on the IEEE 802.11 standard which is an international standard may be applied.
  • the antenna structures 100 and 200 may be provided with sensors for detecting environmental conditions such as vibration, sound, light, temperature, and humidity. That is, the antenna structures 100 and 200 may function as sensor beacons.
  • an advertisement packet may be transmitted by including the intensity of vibration felt by the vibration sensor in the payload.
  • the intensity of the sound in the case of a light beacon with a light sensor that senses light
  • the intensity of light in the case of a temperature beacon with a temperature sensor that senses temperature
  • an advertisement packet including humidity in the payload may be transmitted.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

This antenna composite 10 is provided with: a plurality of antenna structures 100, each individually transmitting and receiving radio waves; and a wiring board 300 that is connected to the plurality of antenna structures 100, and has a data line through which data is transmitted and received. Each antenna structure 100 is provided with an antenna unit 110 having directionality for transmitting and receiving radio waves to and from a determined area; and a communication control unit 120 that transmits and receives data via radio waves transmitted and received by the antenna unit 110, and also transmits and receives data via the data line.

Description

アンテナ複合体、アンテナ構造体及び通信システムAntenna complex, antenna structure, and communication system
 本発明は、アンテナ複合体、アンテナ構造体及び通信システムに関する。 The present invention relates to an antenna complex, an antenna structure, and a communication system.
 特許文献1には、自己の識別情報を含む電波を予め設定した送信周期と送信出力で近距離無線送信し、電池で駆動する電波送信機と、電波送信機を収容し、電波送信機から送信される電波の特定方向への放射を規制し予め設定した領域に電波を送信する遮蔽体と、を備える電波送信装置が記載されている。 In Patent Document 1, a radio wave including its own identification information is transmitted by short-range wireless transmission with a preset transmission cycle and transmission output, and a battery-driven radio wave transmitter and a radio wave transmitter are accommodated and transmitted from the radio wave transmitter. A radio wave transmitting device is described that includes a shield that restricts radiation of radio waves to be transmitted in a specific direction and transmits radio waves to a preset region.
 特許文献2には、携帯端末機は所持者に帯同して移動され、電波発信機から受信した電波情報と、携帯端末機の方位情報とを、所定の間隔でネットワーク機器を介して管理サーバに送信して、管理サーバ用データベースに保存し、管理サーバの制御部は、複数の電波情報から算出した携帯端末機の平面座標と、方位情報とからなる端末機位置データを生成し、端末機位置データから携帯端末機の移動軌跡の算出と、移動軌跡中の各地点における滞在時間の算出と、当該地点における携帯端末機の向いている指向方向の検出とを行う位置情報取得システムが記載されている。 In Patent Document 2, the portable terminal is moved with the owner, and the radio wave information received from the radio wave transmitter and the azimuth information of the portable terminal are sent to the management server via the network device at predetermined intervals. Transmitted and stored in the management server database, and the control unit of the management server generates terminal position data including the plane coordinates of the mobile terminal calculated from the plurality of radio wave information and the direction information, and the terminal position A position information acquisition system is described that calculates a movement trajectory of a mobile terminal from data, calculates a stay time at each point in the movement trajectory, and detects a directivity direction of the mobile terminal at the point. Yes.
特開2015-106814号公報JP2015-106814A 特開2015-152483号公報Japanese Patent Laid-Open No. 2015-152483
 ところで、ビーコンを使用した位置検出では、一般的に複数のビーコンを空間に配置し、端末などが受信したビーコンのIDと受信電波強度とから位置を検出する。しかし、ビーコンは、一方的に自身のIDを電波により送信するだけであるため、実際に位置を検出するためには、受信した端末からビーコンのIDと受信電波強度とを別回線にてホストコンピュータなどに問い合わせ、位置の情報などを得る必要があり、システムが複雑となっていた。
 本発明の目的は、一方的に電波を送信するビーコンの機能を備えるとともにデータの送受信を可能としたアンテナ構造体を複数備えるアンテナ複合体などを提供する。
By the way, in position detection using a beacon, a plurality of beacons are generally arranged in space, and the position is detected from the ID of the beacon received by the terminal and the received radio wave intensity. However, since the beacon only unilaterally transmits its own ID by radio waves, in order to actually detect the position, the beacon ID and the received radio wave intensity from the receiving terminal are separately connected to the host computer. The system is complicated because it is necessary to obtain information about the location and the like.
An object of the present invention is to provide an antenna complex having a plurality of antenna structures that have a function of a beacon that unilaterally transmits radio waves and that can transmit and receive data.
 請求項1に記載の発明は、それぞれが個別に電波を送受信する複数のアンテナ構造体と、複数の前記アンテナ構造体と接続されるとともに、データが送受信されるデータ線を有する配線板と、を備え、前記アンテナ構造体は、定められたエリアに対して電波を送受信する指向性を有するアンテナ部と、当該アンテナ部の送受信する電波を介してデータを送受信するとともに、前記データ線を介してデータを送受信する通信制御部とを備えるアンテナ複合体である。
 請求項2に記載の発明は、複数の前記アンテナ構造体は、列状に配列されていることを特徴とする請求項1に記載のアンテナ複合体である。
 請求項3に記載の発明は、複数の前記アンテナ構造体の配列の外側の少なくとも一方に設けられ、隣接して設けられた他のアンテナ複合体に含まれるアンテナ構造体と、電波を介してデータの送受信を行う他のアンテナ構造体を、備えることを特徴とする請求項2に記載のアンテナ複合体である。
 請求項4に記載の発明は、前記他のアンテナ構造体は、前記エリアに対して電波を送受信する指向性を有する前記アンテナ部と、前記他のアンテナ複合体に含まれるアンテナ構造体と電波を介してデータの送受信を行う他のアンテナ部と、前記アンテナ部の送受信する電波を介してデータを送受信するとともに、前記データ線及び前記他のアンテナ部を介してデータを送受信する通信制御部とを備えることを特徴とする請求項3に記載のアンテナ複合体である。
 請求項5に記載の発明は、前記アンテナ部、前記他のアンテナ部及び前記配線板は、可撓性を有することを特徴とする請求項4に記載のアンテナ複合体である。
 請求項6に記載の発明は、前記アンテナ部は、送受信する電波のピーク周波数がそれぞれ異なる複数のアンテナを備えていることを特徴とする請求項1に記載のアンテナ複合体である。
 請求項7に記載の発明は、複数の前記アンテナは、接地電極と放電電極とが対向するように構成されたパッチアンテナであって、ピーク周波数に対応して当該放電電極の面積が異なることを特徴とする請求項6に記載のアンテナ構造体である。
 請求項8に記載の発明は、前記他のアンテナ部は、位相の異なる電波を送受信する電波の位相がそれぞれ異なる複数の他のアンテナを備えていることを特徴とする請求項4に記載のアンテナ複合体である。
 請求項9に記載の発明は、複数の前記アンテナ構造体及び前記配線板は、表面及び裏面のいずれか一方に粘着剤が付与され、表面又は裏面のいずれか他方に絵柄が設けられていることを特徴とする請求項1に記載のアンテナ複合体である。
 請求項10に記載の発明は、送受信する電波のピーク周波数がそれぞれ異なる複数のアンテナを備えたアンテナ部と、前記アンテナ部の送受信する電波を介してデータを送受信するとともに、データを接続されるデータ線を介して送受信する通信制御部とを備えるアンテナ構造体である。
 請求項11に記載の発明は、前記アンテナ部が備える複数の前記アンテナの前記ピーク周波数は、送受信する電波の周波数帯域を複数に分割して設定されていることを特徴とする請求項10に記載のアンテナ構造体である。
 請求項12に記載の発明は、複数の前記アンテナは、接地電極と放電電極とが対向するように構成されたパッチアンテナであって、ピーク周波数に対応して当該放電電極の面積が異なることを特徴とする請求項11に記載のアンテナ構造体である。
 請求項13に記載の発明は、データが送受信されるデータ線を有する配線板と、定められたエリアに対して電波を送受信する指向性を有するアンテナ部と、当該アンテナ部の送受信する電波を介してデータを送受信するとともに、前記データ線を介してデータを送受信する通信制御部と、をそれぞれ有し、個別に電波を送受信する複数のアンテナ構造体と、を備えるアンテナ複合体を含み、複数の前記アンテナ構造体が、当該アンテナ構造体が有する前記通信制御部を介して複数の当該アンテナ構造体間でデータを伝搬させるとともに、データが外部に設けられるホストコンピュータと送受信されることを特徴とする通信システムである。
 請求項14に記載の発明は、複数の前記アンテナ構造体は、列状に配列され、前記アンテナ構造体間でのデータの伝搬が、配列に沿ってリレー方式で行われることを特徴とする請求項13に記載の通信システムである。
 請求項15に記載の発明は、複数の前記アンテナ構造体の列状に配列された一方の端部に設けられたアンテナ構造体を介して、複数の当該アンテナ構造体を伝搬したデータが前記ホストコンピュータと送受信されることを特徴とする請求項14に記載の通信システムである。
The invention according to claim 1 includes: a plurality of antenna structures that individually transmit and receive radio waves; and a wiring board that is connected to the plurality of antenna structures and includes data lines for transmitting and receiving data. The antenna structure has a directivity for transmitting / receiving radio waves to / from a predetermined area, transmits / receives data via radio waves transmitted / received by the antenna unit, and transmits data via the data lines. It is an antenna complex provided with the communication control part which transmits / receives.
The invention according to claim 2 is the antenna complex according to claim 1, wherein the plurality of antenna structures are arranged in a line.
According to a third aspect of the present invention, there is provided an antenna structure included in at least one of the outside of the array of the plurality of antenna structures and included in another antenna complex provided adjacent thereto, and data via radio waves. The antenna complex according to claim 2, further comprising another antenna structure that performs transmission / reception of.
According to a fourth aspect of the present invention, the another antenna structure includes the antenna unit having directivity for transmitting and receiving radio waves to and from the area, and the antenna structure and radio waves included in the other antenna complex. And a communication control unit for transmitting and receiving data via the radio wave transmitted and received by the antenna unit and for transmitting and receiving data via the data line and the other antenna unit. The antenna complex according to claim 3, wherein the antenna complex is provided.
The invention according to claim 5 is the antenna complex according to claim 4, wherein the antenna part, the other antenna part, and the wiring board have flexibility.
The invention according to claim 6 is the antenna complex according to claim 1, wherein the antenna unit includes a plurality of antennas having different peak frequencies of radio waves to be transmitted and received.
The invention according to claim 7 is a patch antenna in which the plurality of antennas are configured such that a ground electrode and a discharge electrode face each other, and the areas of the discharge electrodes differ according to the peak frequency. The antenna structure according to claim 6.
The invention according to claim 8 is characterized in that the other antenna unit includes a plurality of other antennas having different phases of radio waves for transmitting and receiving radio waves having different phases. It is a complex.
The invention according to claim 9 is that a plurality of the antenna structure and the wiring board are provided with an adhesive on one of the front surface and the back surface, and a pattern is provided on either the front surface or the back surface. The antenna complex according to claim 1.
According to the tenth aspect of the present invention, there is provided an antenna unit having a plurality of antennas having different peak frequencies of radio waves to be transmitted and received, data transmitted and received via radio waves transmitted and received by the antenna unit, and data to which data is connected It is an antenna structure provided with the communication control part which transmits / receives via a line.
According to an eleventh aspect of the present invention, the peak frequency of the plurality of antennas included in the antenna unit is set by dividing a frequency band of a radio wave to be transmitted / received into a plurality of frequencies. This is an antenna structure.
According to a twelfth aspect of the present invention, the plurality of antennas are patch antennas configured such that a ground electrode and a discharge electrode face each other, and the areas of the discharge electrodes differ according to a peak frequency. The antenna structure according to claim 11, wherein the antenna structure has a feature.
According to a thirteenth aspect of the present invention, there is provided a wiring board having a data line through which data is transmitted / received, an antenna unit having directivity for transmitting / receiving radio waves to / from a predetermined area, and radio waves transmitted / received by the antenna unit. A communication control unit that transmits and receives data via the data line, and includes a plurality of antenna structures that individually transmit and receive radio waves. The antenna structure propagates data between a plurality of the antenna structures via the communication control unit included in the antenna structure, and the data is transmitted / received to / from a host computer provided outside. It is a communication system.
The invention according to claim 14 is characterized in that the plurality of antenna structures are arranged in a line, and data propagation between the antenna structures is performed in a relay manner along the array. Item 14. The communication system according to Item 13.
According to the fifteenth aspect of the present invention, data propagated through a plurality of the antenna structures via the antenna structure provided at one end of the plurality of the antenna structures arranged in a row is the host. The communication system according to claim 14, wherein the communication system is transmitted to and received from a computer.
 請求項1に記載の発明によれば、一方的に電波を送信するビーコンの機能を備えるとともにデータの送受信が可能となる。
 請求項2に記載の発明によれば、列状に配列されていない場合に比べ、構成が簡易になる。
 請求項3に記載の発明によれば、他のアンテナ構造体を備えない場合に比べ、拡張性が高くなる。
 請求項4に記載の発明によれば、アンテナ部と他のアンテナ部とを備えない場合に比べ、小型化できる。
 請求項5に記載の発明によれば、可撓性を有しない場合に比べ、搬送及び設置が容易になる。
 請求項6、10に記載の発明によれば、複数のアンテナを備えない場合に比べ、広周波数帯域化できる。
 請求項7、12に記載の発明によれば、パッチアンテナでない場合に比べ、薄型にしやすい。
 請求項8に記載の発明によれば、位相を異ならせない場合に比べ、薄型にしやすい。
 請求項9に記載の発明によれば、より容易に設置できると共に、環境に溶け込みやすくなる。
 請求項11に記載の発明によれば、周波数帯域を複数に分割しない場合に比べ、ピーク周波数が設定しやすい。
 請求項13に記載の発明によれば、容易に通信システムが構築できる。
 請求項14に記載の発明によれば、リレー方式でない場合に比べ、通信制御が容易になる。
 請求項15に記載の発明によれば、端部で接続しない場合に比べ、接続が容易になる。
According to the first aspect of the present invention, a beacon function for unilaterally transmitting radio waves is provided and data can be transmitted and received.
According to invention of Claim 2, compared with the case where it does not arrange in a line form, a structure becomes simple.
According to the third aspect of the present invention, expandability is enhanced as compared with the case where no other antenna structure is provided.
According to the invention described in claim 4, it is possible to reduce the size as compared with the case where the antenna unit and the other antenna unit are not provided.
According to invention of Claim 5, conveyance and installation become easy compared with the case where it does not have flexibility.
According to the sixth and tenth aspects of the present invention, it is possible to widen the frequency band compared to the case where a plurality of antennas are not provided.
According to the seventh and twelfth aspects of the present invention, it is easier to make the device thinner than when the patch antenna is not used.
According to the eighth aspect of the present invention, it is easier to make the device thinner than when the phases are not different.
According to the ninth aspect of the present invention, it can be installed more easily and is easily dissolved in the environment.
According to the eleventh aspect of the invention, it is easier to set the peak frequency than when the frequency band is not divided into a plurality of parts.
According to the invention of claim 13, a communication system can be easily constructed.
According to the fourteenth aspect of the present invention, communication control is facilitated as compared with the case where the relay method is not used.
According to the fifteenth aspect of the present invention, the connection is facilitated as compared to the case where the connection is not made at the end.
本実施の形態が適用される通信システムの概念を説明する図である。It is a figure explaining the concept of the communication system to which this Embodiment is applied. アンテナ複合体及びアンテナ構造体を説明する図である。(a)は、アンテナ複合体、(b)は、アンテナ構造体の平面図、(c)は、(b)のIIC-IIC線でのアンテナ構造体の断面図である。It is a figure explaining an antenna composite_body | complex and an antenna structure. (A) is an antenna complex, (b) is a plan view of the antenna structure, and (c) is a cross-sectional view of the antenna structure taken along line IIC-IIC in (b). アンテナ部に高い周波数帯の信号を入力して励振した状態を説明する図である。(a)は、放射電極への給電の様子を示す図、(b)は、遠方界における電波の指向性を示す図である。It is a figure explaining the state which input and excited the signal of the high frequency band to the antenna part. (A) is a figure which shows the mode of the electric power feeding to a radiation electrode, (b) is a figure which shows the directivity of the electromagnetic wave in a far field. アンテナ構造体を説明する図である。(a)は、アンテナ構造体の平面図、(b)は、(a)のIVB-IVB線でのアンテナ構造体の断面図、(c)は、アンテナ構造体におけるアンテナ部の電波の指向性を説明する図である。It is a figure explaining an antenna structure. (A) is a plan view of the antenna structure, (b) is a cross-sectional view of the antenna structure along the line IVB-IVB in (a), and (c) is a directivity of radio waves of the antenna portion in the antenna structure. FIG. アンテナ構造体の変形例を示す平面図である。It is a top view which shows the modification of an antenna structure.
 ビーコンは、位置を検出することが基本的な機能である。位置を検出する方法としては、複数のビーコンを空間に配置し、端末などが受信したビーコンのID(以下では、ビーコンIDと表記する。)と受信電波強度とから位置を検出する。しかし、ビーコンは、自身のビーコンIDを送信するだけであるため、実際に位置を検出するためには、受信した端末からビーコンIDと受信電波強度を別回線にてホストコンピュータなどに問い合わせ、ホストコンピュータにおいて位置の計算をして、端末に返送する必要があり、システムが複雑となっていた。 The basic function of a beacon is to detect its position. As a method for detecting the position, a plurality of beacons are arranged in the space, and the position is detected from the ID of the beacon received by the terminal or the like (hereinafter referred to as a beacon ID) and the received radio wave intensity. However, since the beacon only transmits its own beacon ID, in order to actually detect the position, the host computer inquires the beacon ID and received radio wave intensity from the received terminal to the host computer or the like on a separate line. It is necessary to calculate the position and return it to the terminal, which complicates the system.
 また、このようにビーコンIDを送信するビーコンのアンテナは、指向性を有しない。つまり、電波をアンテナの周囲の360°方向に無指向に送信する。電波は、距離の2乗で減衰する。よって、2つのビーコンの一方に近ければ、電波の強度が大きく、距離による差分が取れる。しかし、ビーコンが無指向性の電波を送信する場合、電波の届く範囲は同心円状になるため、隣接する2つのビーコン間における隙間を少なくするためには、電波の重なる領域を大きくせざるを得ないとともに、このような領域では電波の減衰量が大きく、差分が取れにくい。つまり、数メートル離れるだけでも、受信強度が許容範囲以下になって、位置が算定しにくくなってしまうという問題があった。 Also, the beacon antenna that transmits the beacon ID in this way has no directivity. That is, the radio wave is omnidirectionally transmitted in the 360 ° direction around the antenna. Radio waves attenuate with the square of the distance. Therefore, if it is close to one of the two beacons, the intensity of the radio wave is large and a difference depending on the distance can be obtained. However, when a beacon transmits omnidirectional radio waves, the range of radio waves reaches concentric circles. Therefore, in order to reduce the gap between two adjacent beacons, the area where radio waves overlap must be increased. In addition, there is a large amount of radio wave attenuation in such a region, and it is difficult to obtain a difference. That is, there is a problem that even if it is a few meters away, the reception intensity falls below the allowable range and the position becomes difficult to calculate.
 そこで、電波を一方的に送信する機能(ビーコンの機能)に加え、電波の受信ができる機能(レシーバの機能)を有するアンテナ構造体を構成し、アンテナ構造体からビーコンとしての電波を受信した端末などから、アンテナ構造体を介して、ビーコンIDと受信電波強度などの情報をホストコンピュータに送信することを考えた。このようにすれば、ホストコンピュータに問い合わせるための通信回線を別に用意することを要しない。 Therefore, in addition to the function of unilaterally transmitting radio waves (beacon function), the antenna structure that has the function of receiving radio waves (receiver function) and receiving radio waves as beacons from the antenna structure Therefore, it was considered to transmit information such as the beacon ID and the received radio wave intensity to the host computer via the antenna structure. In this way, it is not necessary to prepare a separate communication line for inquiring the host computer.
 また、アンテナ構造体が備えるアンテナが送信する電波に指向性を持たせて、距離が離れることによる電波の急激な減衰が抑制されるようにしている。よって、位置の違いによる電波強度の変化が大きくなるので、位置検出がしやすくなる。また、アンテナ構造体は、端末などから電波を受信しやすくなる。さらに、アンテナが送信する電波に指向性を持たせることで、隣接するアンテナ構造体間で指向性の向きが並列するようにすれば、電波の重なる領域が狭くできる。よって、隣接するアンテナ構造体間において、位置が算定しにくくなることが抑制される。 Moreover, directivity is given to the radio wave transmitted by the antenna included in the antenna structure so that the rapid attenuation of the radio wave due to the separation of the distance is suppressed. Therefore, the change in the radio wave intensity due to the difference in position becomes large, so that the position can be easily detected. The antenna structure can easily receive radio waves from a terminal or the like. Furthermore, by giving directivity to the radio waves transmitted by the antenna, the area where the radio waves overlap can be narrowed if the directivity directions are arranged in parallel between adjacent antenna structures. Therefore, it is suppressed that a position becomes difficult to calculate between adjacent antenna structures.
 そして、アンテナ構造体を複数搭載して一体化したアンテナ複合体とすることで、容易に設置可能としている。 And, it is possible to install easily by making the antenna complex integrated with multiple antenna structures.
 このようにすることで、アンテナ構造体及びアンテナ複合体は、端末などの位置を検出する用途以外に、簡易な通信システムとして使用することを可能としている。 In this way, the antenna structure and the antenna complex can be used as a simple communication system in addition to the purpose of detecting the position of a terminal or the like.
 以下、添付図面を参照して、本発明の実施の形態(本実施の形態)について詳細に説明する。
 なお、Bluetooth(登録商標)LE(Low Energy)の機能を実現する半導体部品(チップ)を、通信制御部の一例として説明する。なお、Bluetooth LEは、Bluetooth SIGによって策定された省電力を強調した規格である。
Hereinafter, an embodiment (this embodiment) of the present invention will be described in detail with reference to the accompanying drawings.
A semiconductor component (chip) that realizes the function of Bluetooth (registered trademark) LE (Low Energy) will be described as an example of a communication control unit. In addition, Bluetooth LE is a standard that emphasizes power saving formulated by Bluetooth SIG.
(通信システム1)
 図1は、本実施の形態が適用される通信システム1の概念を説明する図である。
 図1は、予め設定されたエリア(区画)内(室内)に通信システム1が構成された図である。通信システム1は、複数(ここでは、3つ)のアンテナ複合体10、ホストコンピュータ20、AC給電部30及び電池給電部40を備える。3つのアンテナ複合体10をそれぞれ区別する場合には、アンテナ複合体10-1、10-2、10-3と表記する。
(Communication system 1)
FIG. 1 is a diagram for explaining the concept of a communication system 1 to which this exemplary embodiment is applied.
FIG. 1 is a diagram in which a communication system 1 is configured in a preset area (section) (indoor). The communication system 1 includes a plurality of (here, three) antenna complexes 10, a host computer 20, an AC power supply unit 30, and a battery power supply unit 40. When the three antenna complexes 10 are distinguished from each other, they are denoted as antenna complexes 10-1, 10-2, and 10-3.
 ここでは、2つのアンテナ複合体10-1、10-2は、エリアを区画する2方向のそれぞれ壁面に貼るようにして設けられている。また、アンテナ複合体10-3は、エリアの床面に貼るようにして設けられている。
 AC給電部30は、交流電源(AC電源)のコンセントであって、接続されることにより交流電源からアンテナ複合体10に電力が供給される。電池給電部40は、電池を内蔵し、接続されることにより電池からアンテナ複合体10に電力が供給される。
Here, the two antenna complexes 10-1 and 10-2 are provided so as to be attached to the respective wall surfaces in two directions that divide the area. The antenna complex 10-3 is provided so as to be attached to the floor of the area.
The AC power supply unit 30 is an outlet of an AC power source (AC power source), and is connected to supply power to the antenna complex 10 from the AC power source. The battery power supply unit 40 includes a battery and is connected to supply power to the antenna complex 10 from the battery.
 そして、エリア内には、アンテナ複合体10と電波の送受信が可能な通信端末50を所持する移動者A、電波の発信のみが可能な発信専用端末60を所持する移動者Bがいる。さらに、エリア内には、アンテナ複合体10と電波の送受信が可能な無人搬送車(AGV:Automatic  Guided  Vehicle)70及びアンテナ複合体10と電波の送受信が可能なドローン(無人航空機)80がある。ここでは、移動者Aの所持する通信端末50、移動者Bが所持する発信専用端末60、無人搬送車70及びドローン80を、エリア内において移動可能であることから移動体と表記することがある。なお、エリア内に移動可能な他の移動体があってもよい。なお、移動体は、エリア内からエリア外に移動するもの、エリア外からエリア内に移動するものを含む。 In the area, there are a mobile person A who has a communication terminal 50 capable of transmitting and receiving radio waves with the antenna complex 10, and a mobile person B who has a dedicated terminal 60 for transmitting radio waves. Further, in the area, there are an automatic guided vehicle (AGV) 70 capable of transmitting / receiving radio waves to / from the antenna complex 10 and a drone (unmanned aircraft) 80 capable of transmitting / receiving radio waves to / from the antenna complex 10. Here, the communication terminal 50 possessed by the mobile person A, the call-only terminal 60 possessed by the mobile person B, the automatic guided vehicle 70 and the drone 80 are sometimes referred to as mobile objects because they can move within the area. . Note that there may be other movable bodies that can move within the area. In addition, the moving body includes one that moves from inside the area to outside the area, and one that moves from outside the area to inside the area.
 アンテナ複合体10は、複数のアンテナ構造体100、200を備える。アンテナ構造体100は、列状に配列されている。そして、アンテナ構造体200は、アンテナ構造体100の配列の両端部に配置されている。これらのアンテナ構造体100、200は、エリア内に電波を送信するとともに、エリア内から電波を受信する。なお、後述するように、アンテナ構造体100、200は、エリア内と電波を送受信可能な指向性を有している。 The antenna complex 10 includes a plurality of antenna structures 100 and 200. The antenna structures 100 are arranged in a row. The antenna structure 200 is disposed at both ends of the array of antenna structures 100. These antenna structures 100 and 200 transmit radio waves in the area and receive radio waves from the area. As will be described later, the antenna structures 100 and 200 have directivity capable of transmitting and receiving radio waves within the area.
 ここで、アンテナ構造体100のそれぞれを区別する場合、アンテナ複合体10-1がアンテナ構造体100-11~100-15を備え、アンテナ複合体10-2がアンテナ構造体100-21、100-22を備え、アンテナ複合体10-3がアンテナ構造体100-31、100-32を備えるとする。また、アンテナ構造体200のそれぞれを区別する場合、アンテナ複合体10-1がアンテナ構造体200-11、200-12を備え、アンテナ複合体10-2がアンテナ構造体200-21、200-22を備え、アンテナ複合体10-3がアンテナ構造体200-31、200-32を備えるとする。 Here, when each of the antenna structures 100 is distinguished, the antenna complex 10-1 includes the antenna structures 100-11 to 100-15, and the antenna complex 10-2 includes the antenna structures 100-21, 100-. 22 and the antenna complex 10-3 includes antenna structures 100-31 and 100-32. In order to distinguish each of the antenna structures 200, the antenna complex 10-1 includes the antenna structures 200-11 and 200-12, and the antenna complex 10-2 includes the antenna structures 200-21 and 200-22. The antenna complex 10-3 includes antenna structures 200-31 and 200-32.
 これらのアンテナ構造体100、200は、配線(後述する図2(a)の配線板300)で接続されている。配線板300をそれぞれ区別する場合、アンテナ複合体10-1が配線板300-1を備え、アンテナ複合体10-2が配線板300-2を備え、アンテナ複合体10-3が配線板300-3を備えるとする。配線板300は、電力を供給する電力供給線とデータを送受信するデータ線を備える。つまり、アンテナ複合体10に含まれる複数のアンテナ構造体100、200は、電力供給線により電力が供給され、データ線によりデータが送受信される。ここでは、データは、一例としてリレー方式で伝搬(送受信)されるとする。つまり、データ線は、隣接するアンテナ構造体100、200間を接続するように設けられている。リレー方式での通信は、マルチホップと呼ばれるので、以下ではマルチホップと表記する。図1において、データ線を用いたマルチホップによる通信を両端に矢印を設けた直線で表記する。なお、バスを設け、バスに複数のアンテナ構造体100、200を接続するようにしてもよい(バス方式)。
 なお、リレー方式で通信を行うことで、通信制御部120における通信制御が容易になる。
These antenna structures 100 and 200 are connected by wiring (wiring board 300 in FIG. 2A described later). When the wiring boards 300 are distinguished from each other, the antenna complex 10-1 includes the wiring board 300-1, the antenna complex 10-2 includes the wiring board 300-2, and the antenna complex 10-3 includes the wiring board 300-. 3 is provided. The wiring board 300 includes a power supply line that supplies power and a data line that transmits and receives data. That is, power is supplied to the plurality of antenna structures 100 and 200 included in the antenna complex 10 through the power supply line, and data is transmitted and received through the data line. Here, it is assumed that data is propagated (transmitted / received) by a relay method as an example. That is, the data line is provided so as to connect between the adjacent antenna structures 100 and 200. Since communication in the relay system is called multi-hop, it is expressed as multi-hop below. In FIG. 1, multi-hop communication using a data line is represented by a straight line with arrows at both ends. A bus may be provided and a plurality of antenna structures 100 and 200 may be connected to the bus (bus system).
Note that communication control in the communication control unit 120 is facilitated by performing communication by the relay method.
 そして、アンテナ複合体10の内、アンテナ複合体10-1、10-2は、AC給電部30に接続されている。つまり、アンテナ複合体10-1、10-2に含まれるアンテナ構造体100は、交流電源から電力が供給される。なお、AC給電部30に接続されるアンテナ複合体10は、交流(AC)を直流(DC)に変換するAC-DC変換器(コンバータ)を備える。 Of the antenna complex 10, the antenna complexes 10-1 and 10-2 are connected to the AC power feeding unit 30. That is, the antenna structure 100 included in the antenna complexes 10-1 and 10-2 is supplied with power from the AC power supply. The antenna complex 10 connected to the AC power feeding unit 30 includes an AC-DC converter (converter) that converts alternating current (AC) into direct current (DC).
 一方、アンテナ複合体10-3は、電池給電部40に接続されている。つまり、アンテナ複合体10-3に含まれるアンテナ構造体100は、電池から電力が供給される。Bluetooth LEを用いれば、省電力であるので、電池からの電力供給で長期間の駆動が可能である。
 また、Bluetooth LEでは、電波の出力に応じて通信可能距離が1mから数10mに設定可能である。よって、通信可能距離によりアンテナ構造体100、200のそれぞれの通信可能距離内の領域であるセルの大きさ(広さ)が設定できる。つまり、用途によって、セルの大きさ、つまりアンテナ構造体100、200を配列する間隔などを設定できる。
On the other hand, the antenna complex 10-3 is connected to the battery power supply unit 40. That is, the antenna structure 100 included in the antenna complex 10-3 is supplied with power from the battery. If Bluetooth LE is used, power is saved, so that long-term driving is possible by supplying power from the battery.
Also, in Bluetooth LE, the communicable distance can be set from 1 m to several tens of meters according to the output of radio waves. Therefore, the size (width) of a cell that is an area within the communicable distance of each of the antenna structures 100 and 200 can be set by the communicable distance. That is, the cell size, that is, the interval at which the antenna structures 100 and 200 are arranged can be set depending on the application.
 アンテナ複合体10-2は、アンテナ複合体10-1に近い端部に位置するアンテナ構造体200-31が、アンテナ複合体10-1のアンテナ複合体10-2に近い端部に位置するアンテナ構造体200-12と無線で相互に接続されるようになっている。同様に、アンテナ複合体10-3も、アンテナ複合体10-1に近い端部に位置するアンテナ構造体200-21が、アンテナ複合体10-1のアンテナ複合体10-2に近い端部に位置するアンテナ構造体200-11と無線で相互に接続されている。これらの無線での相互接続もアンテナ複合体10内のアンテナ構造体100間での通信と同様に、マルチホップで行われる。なお、図1において、無線によるマルチホップによる通信を両端に矢印を設けた弧で表記する。 In the antenna complex 10-2, an antenna structure 200-31 located at an end portion close to the antenna complex 10-1 is an antenna located at an end portion of the antenna complex 10-1 near the antenna complex 10-2. The structure 200-12 is wirelessly connected to each other. Similarly, in the antenna complex 10-3, the antenna structure 200-21 located at the end portion close to the antenna complex 10-1 is located at the end portion of the antenna complex 10-1 near the antenna complex 10-2. The antenna structure 200-11 that is positioned is connected to each other wirelessly. Similar to the communication between the antenna structures 100 in the antenna complex 10, these wireless interconnections are also performed in multihop. In FIG. 1, wireless multi-hop communication is represented by arcs with arrows at both ends.
 つまり、アンテナ構造体200は、アンテナ構造体100と同様に、エリア内と電波の送受信を行うとともに、隣接するアンテナ複合体10と電波による通信を行えるようになっている。なお、アンテナ複合体10-2におけるアンテナ構造体200-22及びアンテナ複合体10-3におけるアンテナ構造体200-32は、隣接するアンテナ複合体10が存在しないため、他のアンテナ複合体10と無線での通信をしない。 That is, similarly to the antenna structure 100, the antenna structure 200 can transmit and receive radio waves within the area and can communicate with the adjacent antenna complex 10 by radio waves. Note that the antenna structure 200-22 in the antenna complex 10-2 and the antenna structure 200-32 in the antenna complex 10-3 do not have the adjacent antenna complex 10, so that they are wireless with other antenna complexes 10. Do not communicate with.
 そして、アンテナ複合体10-1の一端部に位置するアンテナ構造体200-12の部分(配線板300の部分)で、ホストコンピュータ20に接続されている。一端部に位置するアンテナ構造体200-12を介して、ホストコンピュータ20と接続することで、アンテナ複合体10とホストコンピュータ20との接続が容易になる。
 なお、図1では、アンテナ複合体10-1の一端部に位置するアンテナ構造体200-12の部分と、ホストコンピュータ20とが有線(信号線)にて接続されているように記載されているが、アンテナ構造体200-12が備えるアンテナ部110(後述する図2参照)などを介して無線で接続されてもよい。
Then, the antenna structure 200-12 located at one end of the antenna complex 10-1 (the wiring board 300) is connected to the host computer 20. By connecting to the host computer 20 via the antenna structure 200-12 located at one end, the antenna complex 10 and the host computer 20 can be easily connected.
In FIG. 1, the portion of the antenna structure 200-12 located at one end of the antenna complex 10-1 and the host computer 20 are described as being connected by a wire (signal line). However, the antenna structure 200-12 may be connected wirelessly through an antenna unit 110 (see FIG. 2 described later) provided in the antenna structure 200-12.
 また、後述するように、アンテナ構造体100及びアンテナ構造体200の備える通信制御部120(後述する図2参照)は、マイクロプロセッサ、RAM、ROMなどを備え、Bluetooth LEの機能を実現するためのソフトウェアに加えて、アプリケーション開発者が開発したソフトウェアが実装されている。よって、アンテナ構造体100及び/又はアンテナ構造体200が、ホストコンピュータとして機能するようにしてもよい。このような場合であっても、ホストコンピュータとして機能するアンテナ構造体100及び/又はアンテナ構造体200をホストコンピュータとする。 Further, as will be described later, the communication control unit 120 (see FIG. 2 described later) included in the antenna structure 100 and the antenna structure 200 includes a microprocessor, a RAM, a ROM, and the like, and realizes the function of Bluetooth LE. In addition to software, software developed by application developers is implemented. Therefore, the antenna structure 100 and / or the antenna structure 200 may function as a host computer. Even in such a case, the antenna structure 100 and / or the antenna structure 200 that functions as a host computer is used as a host computer.
 以上説明したように、アンテナ複合体10(アンテナ複合体10-1、10-2、10-3)のアンテナ構造体100、200間において、マルチホップで通信(データの伝搬)を行う。そして、すべてのアンテナ構造体100、200は、アンテナ複合体10-1のホストコンピュータ20に接続されたアンテナ構造体200-12を介して、ホストコンピュータ20と通信を行うようになっている。
 アンテナ構造体100、200を列状に配列することで、アンテナ複合体10の構成が簡易になる。
As described above, multi-hop communication (data propagation) is performed between the antenna structures 100 and 200 of the antenna complex 10 (antenna complexes 10-1, 10-2, and 10-3). All the antenna structures 100 and 200 communicate with the host computer 20 via the antenna structure 200-12 connected to the host computer 20 of the antenna complex 10-1.
Arranging the antenna structures 100 and 200 in a row simplifies the configuration of the antenna complex 10.
 なお、アンテナ複合体10は、両端部にアンテナ構造体200を備えるとしたが、一端部のみにアンテナ構造体200を備えてもよい。また、アンテナ複合体10は、アンテナ構造体200を備えなくてもよい。この場合、アンテナ複合体10の一端部に設けられたアンテナ構造体100(アンテナ複合体10-1の場合では、例えばアンテナ構造体100-15)を介して、ホストコンピュータ20に接続すればよい。 Although the antenna complex 10 is provided with the antenna structure 200 at both ends, the antenna structure 200 may be provided only at one end. The antenna complex 10 may not include the antenna structure 200. In this case, the connection may be made to the host computer 20 via the antenna structure 100 provided at one end of the antenna complex 10 (in the case of the antenna complex 10-1, for example, the antenna structure 100-15).
 アンテナ複合体10間の通信(データの伝搬)を無線によるマルチホップで行うことで、2つのアンテナ複合体10の端部間を無線が届く距離に配置すればよく、接続のための有線の配線を設けることを要しない。そして、複数のアンテナ複合体10を制限なく接続(連結)することが可能になる。つまり、アンテナ複合体10の両端部を無線によるマルチホップによる通信が可能なアンテナ構造体200としておけば、複数のアンテナ複合体10を用いた通信システム1が容易に構築できる。 By performing communication (data propagation) between the antenna complexes 10 by wireless multi-hop, the end portions of the two antenna complexes 10 may be arranged at a distance where radio waves can reach, and wired wiring for connection It is not necessary to provide. The plurality of antenna complexes 10 can be connected (coupled) without limitation. That is, if both ends of the antenna complex 10 are used as the antenna structure 200 capable of wireless multi-hop communication, the communication system 1 using a plurality of antenna complexes 10 can be easily constructed.
 なお、アンテナ構造体100、200には、識別可能なアドレス(ID)が付される。よって、マルチホップであっても、通信されるデータ(情報)がアンテナ構造体100、200毎に識別可能である。 Note that an identifiable address (ID) is attached to the antenna structures 100 and 200. Therefore, even in multi-hop, the data (information) to be communicated can be identified for each of the antenna structures 100 and 200.
(アンテナ複合体10及びアンテナ構造体100)
 図2は、アンテナ複合体10及びアンテナ構造体100を説明する図である。図2(a)は、アンテナ複合体10、図2(b)は、アンテナ構造体100の平面図、図2(c)は、図2(b)のIIC-IIC線でのアンテナ構造体100の断面図である。
(Antenna complex 10 and antenna structure 100)
FIG. 2 is a diagram for explaining the antenna complex 10 and the antenna structure 100. 2A is the antenna complex 10, FIG. 2B is a plan view of the antenna structure 100, and FIG. 2C is the antenna structure 100 taken along the line IIC-IIC in FIG. 2B. FIG.
 アンテナ複合体10は、複数のアンテナ構造体100、200及び配線板300を備える。複数のアンテナ構造体100は、可撓性(フレキシビリティ性)を有する配線板300に列状に配列されて接続されている。そして、配線板300の両端部のそれぞれには、アンテナ構造体200が接続されている。 The antenna complex 10 includes a plurality of antenna structures 100 and 200 and a wiring board 300. The plurality of antenna structures 100 are arranged and connected in a row on a wiring board 300 having flexibility (flexibility). The antenna structure 200 is connected to both ends of the wiring board 300.
 配線板300は、例えばフレキシブルプリント配線板(FPC:Flexible printed circuits)である。配線板300内には、電力供給線とデータ線とが設けられている。そして、電力供給線を構成する電源線(+側)と接地(GND)線(-側)が、アンテナ複合体10に含まれるすべてのアンテナ構造体100、200に電力が供給されるように、すべてのアンテナ構造体100に並列に接続されている。 The wiring board 300 is, for example, a flexible printed wiring board (FPC). In the wiring board 300, a power supply line and a data line are provided. The power supply line (+ side) and the ground (GND) line (− side) constituting the power supply line are supplied with power to all the antenna structures 100 and 200 included in the antenna complex 10. All antenna structures 100 are connected in parallel.
 一方、データ線は、マルチホップで通信するように、隣接するアンテナ構造体100間、及びアンテナ構造体200とアンテナ構造体200に隣接するアンテナ構造体100との間に設けられている。なお、並行して設けられるデータ線の数は、行うデータ通信の方式などによって設定されている。 On the other hand, the data lines are provided between the adjacent antenna structures 100 and between the antenna structure 200 and the antenna structure 100 adjacent to the antenna structure 200 so as to perform multi-hop communication. Note that the number of data lines provided in parallel is set by a method of data communication to be performed.
 つまり、配線板300は、帯状であって、一端部から他端部まで電力供給線が設けられている。そして、アンテナ構造体100,200が接続される部分において、アンテナ構造体100を電力供給線に接続できるように端子が形成されている。一方、データ線は、隣接するアンテナ構造体100間、及び両端部に設けられたアンテナ構造体200とアンテナ構造体200に隣接するアンテナ構造体100との間に設けられ、アンテナ構造体100、200がデータ線に接続できるように端子が形成されている。なお、配線板300は、例えば、基材がポリイミドなどの樹脂フィルムで構成され、電力供給線及びデータ線が基材上に設けられた銅層(銅箔)、銀層(銀箔)などの導電性材料で構成されている。そして、電力供給線及びデータ線は、電力供給線及びデータ線に設けられた端子の部分を除いて、電気絶縁性材料の保護層で覆われている。 That is, the wiring board 300 has a strip shape, and a power supply line is provided from one end to the other end. And in the part to which antenna structure 100,200 is connected, the terminal is formed so that antenna structure 100 can be connected to a power supply line. On the other hand, the data line is provided between the adjacent antenna structures 100 and between the antenna structure 200 provided at both ends and the antenna structure 100 adjacent to the antenna structure 200. Are connected to the data line. The wiring board 300 is made of, for example, a conductive material such as a copper layer (copper foil) or a silver layer (silver foil) in which the base material is made of a resin film such as polyimide and the power supply line and the data line are provided on the base material. It is composed of a sex material. The power supply line and the data line are covered with a protective layer made of an electrically insulating material except for the terminals provided on the power supply line and the data line.
 図2(b)に示すように、アンテナ構造体100は、アンテナ部110と通信制御部120とを備えている。 As shown in FIG. 2B, the antenna structure 100 includes an antenna unit 110 and a communication control unit 120.
 図2(c)に示すように、アンテナ部110は、絶縁基板111、絶縁基板111の一方の面(裏面)に設けられた接地(GND)電極112、絶縁基板111の他方の面(表面)に設けられた複数(ここでは、4個)の放射電極113、放射電極113と通信制御部120とを接続する信号分配配線114を備える。放射電極113は、外形が正方形である。なお、4個の放射電極113をそれぞれ区別する場合には、放射電極113-1、113-2、113-3、113-4と表記する。なお、絶縁基板111の表面側をアンテナ部110の表面、絶縁基板111の裏面側をアンテナ部110の裏面と表記する。そして、アンテナ部110の表面側をアンテナ構造体100の表面、アンテナ部110の裏面側をアンテナ構造体100の裏面と表記する。さらに、アンテナ構造体100の表面側をアンテナ複合体10の表面、アンテナ構造体100の裏面側をアンテナ複合体10の裏面と表記する。 As shown in FIG. 2C, the antenna unit 110 includes an insulating substrate 111, a ground (GND) electrode 112 provided on one surface (back surface) of the insulating substrate 111, and the other surface (front surface) of the insulating substrate 111. Are provided with a plurality of (here, four) radiation electrodes 113 and a signal distribution wiring 114 that connects the radiation electrodes 113 and the communication control unit 120. The radiation electrode 113 has a square outer shape. When the four radiation electrodes 113 are distinguished from each other, they are denoted as radiation electrodes 113-1, 113-2, 113-3, and 113-4. Note that the front surface side of the insulating substrate 111 is referred to as the front surface of the antenna portion 110, and the back surface side of the insulating substrate 111 is referred to as the back surface of the antenna portion 110. The front side of the antenna unit 110 is referred to as the front side of the antenna structure 100, and the back side of the antenna unit 110 is referred to as the back side of the antenna structure 100. Furthermore, the front surface side of the antenna structure 100 is referred to as the front surface of the antenna complex 10, and the back surface side of the antenna structure 100 is referred to as the rear surface of the antenna complex 10.
 絶縁基板111は、例えば、基材がポリイミドなどの樹脂フィルムで構成され、接地電極112、放射電極113及び信号分配配線114が基材上に設けられた銅層(銅箔)、銀層(銀箔)などの電導性材料で構成されている。そして、放射電極113及び信号分配配線114は、1つの電導性材料の層から構成され、連続している。そして、アンテナ部110は、絶縁基板111の裏面に設けられた接地電極112と絶縁基板111の表面に設けられた放射電極113とで構成されたパッチアンテナ(アンテナと表記することがある。)である。このような構造とすることで、アンテナ部110が薄型になるとともに、可撓性を持たせることができる。なお、アンテナは、パッチアンテナでなくともよく、逆Fアンテナやダイポールアンテナなどの他のアンテナであってもよい。 The insulating substrate 111 is made of, for example, a copper layer (copper foil) or a silver layer (silver foil) in which the base material is made of a resin film such as polyimide, and the ground electrode 112, the radiation electrode 113, and the signal distribution wiring 114 are provided on the base material. ) And other conductive materials. The radiation electrode 113 and the signal distribution wiring 114 are composed of one conductive material layer and are continuous. The antenna unit 110 is a patch antenna (may be referred to as an antenna) that includes a ground electrode 112 provided on the back surface of the insulating substrate 111 and a radiation electrode 113 provided on the surface of the insulating substrate 111. is there. With such a structure, the antenna portion 110 can be made thin and flexible. The antenna does not have to be a patch antenna, but may be another antenna such as an inverted F antenna or a dipole antenna.
 さらに、アンテナ部110をパッチアンテナにすることで、電波はアンテナ部110の表面側に送受信される。よって、アンテナ部110を取り付ける場所(例えば、壁面)の材質やそれからの距離などにより電波の出力などが影響を受けない利点がある。 Furthermore, by using the antenna unit 110 as a patch antenna, radio waves are transmitted and received on the surface side of the antenna unit 110. Therefore, there is an advantage that the output of radio waves is not affected by the material of the place (for example, a wall surface) to which the antenna unit 110 is attached or the distance from the material.
 一方、通信制御部120は、アンテナ部110と信号の送受信を行うとともに、データの処理及びホストコンピュータ20との間でデータのやり取りを行う。通信制御部120は、例えば、Bluetooth LEの機能を搭載した1チップの半導体部品として構成されている。つまり、通信制御部120は、データを変換してアンテナ部110が送信する信号を生成する送信部、アンテナ部110が受信した信号をデータに変換する受信部、送信部及び受信部を制御するベースバンド部、データ(プロトコル)を処理するマイクロプロセッサ、RAM、ROMなどを備えている。そして、動作状態におけるクロックを発生するクロック発生器に加え、消費電力の少ないスタンバイ状態のための低い周波数のクロックを発生するクロック発生器を備えている。そして、Bluetooth LEの機能を実現するためのソフトウェアに加えて、アプリケーション開発者が開発したソフトウェアが実装されている。 On the other hand, the communication control unit 120 transmits and receives signals to and from the antenna unit 110, and also processes data and exchanges data with the host computer 20. The communication control unit 120 is configured as, for example, a one-chip semiconductor component equipped with a Bluetooth LE function. That is, the communication control unit 120 converts the data to generate a signal to be transmitted by the antenna unit 110, a reception unit to convert the signal received by the antenna unit 110 into data, a base for controlling the transmission unit and the reception unit. A band unit, a microprocessor for processing data (protocol), a RAM, a ROM, and the like are provided. In addition to a clock generator that generates a clock in the operating state, a clock generator that generates a low-frequency clock for a standby state with low power consumption is provided. In addition to the software for realizing the Bluetooth LE function, software developed by an application developer is installed.
 そして、通信制御部120は、CSP(Chip Size Package)などの技術により、アンテナ部110の絶縁基板111上に搭載されている。通信制御部120は、複数の端子を有している。アンテナ部110との信号の送受信を行う端子は、絶縁基板111の表面に設けられたアンテナ部110の信号分配配線114に接続されている。通信制御部120に電力を供給するための電源電圧(+側)と接地電圧(GND)とを供給する端子、ホストコンピュータ20との間でデータのやり取りを行う端子は、絶縁基板111を貫いて設けられた配線(不図示)の一方の端子に接続される。この配線の他方の端子は、絶縁基板111の裏面において、配線板300の電力供給線及びデータ線に接続するための端子となっている。そして、絶縁基板111の裏面に設けられたこれらの端子が、配線板300の電力供給線及びデータ線に設けられた端子と接続される。これにより、アンテナ構造体100が配線板300に固定される。 The communication control unit 120 is mounted on the insulating substrate 111 of the antenna unit 110 by a technology such as CSP (Chip Size Package). The communication control unit 120 has a plurality of terminals. A terminal for transmitting and receiving signals to and from the antenna unit 110 is connected to the signal distribution wiring 114 of the antenna unit 110 provided on the surface of the insulating substrate 111. A terminal that supplies a power supply voltage (+ side) and a ground voltage (GND) for supplying power to the communication control unit 120 and a terminal that exchanges data with the host computer 20 pass through the insulating substrate 111. It is connected to one terminal of the provided wiring (not shown). The other terminal of the wiring is a terminal for connecting to the power supply line and the data line of the wiring board 300 on the back surface of the insulating substrate 111. These terminals provided on the back surface of the insulating substrate 111 are connected to terminals provided on the power supply line and the data line of the wiring board 300. Thereby, the antenna structure 100 is fixed to the wiring board 300.
<アンテナ部110>
 次に、アンテナ構造体100におけるアンテナ部110を詳細に説明する。
 複数の放射電極113(放射電極113-1~113-4)は、異なるピーク周波数の電波を送受信するように構成されている。すなわち、ピーク周波数f1、f2、f3、f4とした場合(f1<f2<f3<f4)、放射電極113-1がピーク周波数f1、放射電極113-2がピーク周波数f2、放射電極113-3がピーク周波数f3、放射電極113-4がピーク周波数f4の電波に対応するように設定されている。ここで、ピーク周波数f1~f4をそれぞれ区別しない場合は、ピーク周波数fと表記する。
<Antenna part 110>
Next, the antenna unit 110 in the antenna structure 100 will be described in detail.
The plurality of radiation electrodes 113 (radiation electrodes 113-1 to 113-4) are configured to transmit and receive radio waves having different peak frequencies. That is, when the peak frequencies are f1, f2, f3, and f4 (f1 <f2 <f3 <f4), the radiation electrode 113-1 has the peak frequency f1, the radiation electrode 113-2 has the peak frequency f2, and the radiation electrode 113-3 has the The peak frequency f3 and the radiation electrode 113-4 are set so as to correspond to the radio wave of the peak frequency f4. Here, when the peak frequencies f1 to f4 are not distinguished from each other, they are expressed as a peak frequency f.
 具体的には、放射電極113は、平面形状である正方形の一辺長がピーク周波数fに対応するように構成されている。つまり、ピーク周波数f2に対応する放射電極113-2の一辺長は、ピーク周波数f2より低いピーク周波数f1に対応する放射電極113-1の一辺長より小さい。同様に、ピーク周波数f3に対応する放射電極113-3の一辺長は、ピーク周波数f3より低いピーク周波数f2に対応する放射電極113-2の一辺長より小さい。さらに、ピーク周波数f4に対応する放射電極113-4の一辺長は、ピーク周波数f4より低いピーク周波数f3に対応する放射電極113-3の一辺長より小さい。 Specifically, the radiation electrode 113 is configured such that the side length of a square that is a planar shape corresponds to the peak frequency f. That is, the side length of the radiation electrode 113-2 corresponding to the peak frequency f2 is smaller than the side length of the radiation electrode 113-1 corresponding to the peak frequency f1 lower than the peak frequency f2. Similarly, the side length of the radiation electrode 113-3 corresponding to the peak frequency f3 is smaller than the side length of the radiation electrode 113-2 corresponding to the peak frequency f2 lower than the peak frequency f3. Further, the side length of the radiation electrode 113-4 corresponding to the peak frequency f4 is smaller than the side length of the radiation electrode 113-3 corresponding to the peak frequency f3 lower than the peak frequency f4.
 つまり、アンテナ部110は、接地電極112と、放射電極113-1、113-2、113-3、113-4のそれぞれとで構成されるピーク周波数fが異なる4個のパッチアンテナ(パッチアンテナI、II、III、IV)で構成されていることになる。このようにすることで、アンテナ部110は、広い周波数帯域の電波の送受信が可能になる。ここで、パッチアンテナI、II、III、IVがアンテナの一例である。 That is, the antenna unit 110 includes four patch antennas (patch antennas I) each having a different peak frequency f composed of the ground electrode 112 and each of the radiation electrodes 113-1, 113-2, 113-3, and 113-4. , II, III, IV). In this way, the antenna unit 110 can transmit and receive radio waves in a wide frequency band. Here, patch antennas I, II, III, and IV are examples of antennas.
 例えば、Bluetooth LEでは、2.400GHzから2.4835GHzまでの帯域を2MHz毎に区切った40チャネルを使用する。この場合の比帯域(帯域幅を中心周波数で割った値)は、約3.3%である。このような広い帯域は、比帯域が1%前後である1個のパッチアンテナではカバーしづらい。 For example, Bluetooth LE uses 40 channels obtained by dividing a band from 2.400 GHz to 2.4835 GHz every 2 MHz. In this case, the ratio band (a value obtained by dividing the bandwidth by the center frequency) is about 3.3%. Such a wide band is difficult to cover with a single patch antenna having a specific band around 1%.
 そこで、ピーク周波数fが異なる4個のパッチアンテナI、II、III、IVによりアンテナ部110を構成することで、帯域を広げている。そして、4個の放射電極113-1、113-2、113-3、113-4は、信号分配配線114で接続されている。なお、信号分配配線114は、接地電極112とで、マイクロストリップラインによる分配回路を構成している。そして、上記の広い周波数帯域の信号が伝搬できる広帯域の分配回路となるように、形状(パタン)が設定されている。 Therefore, the band is widened by configuring the antenna unit 110 with four patch antennas I, II, III, and IV having different peak frequencies f. The four radiation electrodes 113-1, 113-2, 113-3, 113-4 are connected by a signal distribution wiring 114. The signal distribution wiring 114 and the ground electrode 112 constitute a distribution circuit using a microstrip line. The shape (pattern) is set so as to provide a wideband distribution circuit capable of propagating the above wide frequency band signal.
 Bluetooth LEでは、用いる周波数を切り替えること(周波数ホッピング)により通信が行われている。つまり、2.400GHzから2.4835GHzまでの周波数帯域を2MHz毎に区切った40チャネルを切り替えることで通信が行われる。そこで、例えば、2.400GHzから2.4835GHzまでの帯域を4つに分割し、上記のピーク周波数f1~f4を、分割した帯域の中心周波数に設定しておく。これにより、ピーク周波数f1に対応する信号の場合には、分配回路を経由してピーク周波数f1に対応する放射電極113-1を励振して電波が放射される。なお、上記の40チャネルにおける周波数差は小さいので、ピーク周波数f1の近傍のピーク周波数fの信号もピーク周波数f1に対応する放射電極113-1を励振して電波が放射される。他のピーク周波数fの信号も同様である。そして、例えばピーク周波数f1とピーク周波数f2との間のピーク周波数fの場合には、ピーク周波数f1に対応する放射電極113-1とピーク周波数f2に対応する放射電極113-2とをともに励振して電波が放射される。他のピーク周波数f間の場合も同様である。
 周波数帯域を分割してピーク周波数fを設定することで、ピーク周波数fの設定が容易になる。
In Bluetooth LE, communication is performed by switching the frequency to be used (frequency hopping). That is, communication is performed by switching 40 channels obtained by dividing the frequency band from 2.400 GHz to 2.4835 GHz every 2 MHz. Therefore, for example, the band from 2.400 GHz to 2.4835 GHz is divided into four, and the peak frequencies f1 to f4 are set as the center frequencies of the divided bands. As a result, in the case of a signal corresponding to the peak frequency f1, the radiation electrode 113-1 corresponding to the peak frequency f1 is excited through the distribution circuit to emit a radio wave. Since the frequency difference in the 40 channels is small, a signal with a peak frequency f near the peak frequency f1 also excites the radiation electrode 113-1 corresponding to the peak frequency f1 and radiates radio waves. The same applies to signals having other peak frequencies f. For example, in the case of a peak frequency f between the peak frequency f1 and the peak frequency f2, the radiation electrode 113-1 corresponding to the peak frequency f1 and the radiation electrode 113-2 corresponding to the peak frequency f2 are excited together. Radio waves are emitted. The same applies to the case between the other peak frequencies f.
Setting the peak frequency f by dividing the frequency band facilitates the setting of the peak frequency f.
 アンテナ部110の大きさは、50mm×200mmである。 The size of the antenna unit 110 is 50 mm × 200 mm.
 図3は、アンテナ部110に高い周波数帯の信号を入力して励振した状態を説明する図である。図3(a)は、放射電極113への給電の様子を示す図、図3(b)は、遠方界における電波の指向性を示す図である。これらは、シミュレーションにより求めた。ここで、高い周波数帯の信号とは、ピーク周波数f3とピーク周波数f4との間の周波数の信号である。図3(a)において、給電されている部分を斜線で示す。 FIG. 3 is a diagram illustrating a state in which a high frequency band signal is input to the antenna unit 110 and excited. FIG. 3A is a diagram showing the state of power feeding to the radiation electrode 113, and FIG. 3B is a diagram showing the directivity of radio waves in the far field. These were obtained by simulation. Here, the high frequency band signal is a signal having a frequency between the peak frequency f3 and the peak frequency f4. In FIG. 3A, a portion to which power is supplied is indicated by hatching.
 図3(a)に示すように、アンテナ部110の信号分配配線114及び放射電極113-3、113-4に給電がされていることが分かる。
 そして、図3(b)に示すように、アンテナ部110の放射電極113に垂直方向に電波が放射される。つまり、アンテナ部110は、指向性を有するアンテナとなっている。
As shown in FIG. 3A, power is supplied to the signal distribution wiring 114 and the radiation electrodes 113-3 and 113-4 of the antenna unit 110.
And as shown in FIG.3 (b), a radio wave is radiated | emitted to the radiation | emission electrode 113 of the antenna part 110 at a perpendicular direction. That is, the antenna unit 110 is a directional antenna.
 このように、帯域をいくつかに分割して、分割した帯域のそれぞれに対応するピーク周波数fの異なるパッチアンテナを複数配列することで、アンテナ部110の周波数帯域を広げている。パッチアンテナの数は、4個以外であってもよく、送受信する電波の周波数帯域によって設定すればよい。
 なお、アンテナ部110の周波数帯域を広げる方法として、無給電素子を用いる方法があるが、無給電素子を放射電極113に対向するように設けると、アンテナ部110の厚さが増して薄型であることを阻害するとともに、可撓性を失わせてしまう。つまり、アンテナ部110をピーク周波数fの異なるパッチアンテナを複数配列して構成することで、薄型としつつ可撓性を有するようにしている。
As described above, the frequency band of the antenna unit 110 is widened by dividing the band into several parts and arranging a plurality of patch antennas having different peak frequencies f corresponding to the divided bands. The number of patch antennas may be other than four, and may be set according to the frequency band of radio waves to be transmitted and received.
In addition, as a method of expanding the frequency band of the antenna unit 110, there is a method using a parasitic element. However, when the parasitic element is provided so as to face the radiation electrode 113, the antenna unit 110 increases in thickness and is thin. Inhibits this, and loses flexibility. That is, the antenna unit 110 is configured by arranging a plurality of patch antennas having different peak frequencies f so as to be thin and flexible.
(アンテナ構造体200)
 次に、アンテナ構造体200を説明する。アンテナ構造体200は、アンテナ構造体100におけるアンテナ部110に、無線によるマルチホップの通信を行うアンテナ部を等価的に加えた構成である。
 図4は、アンテナ構造体200を説明する図である。図4(a)は、アンテナ構造体200の平面図、図4(b)は、図4(a)のIVB-IVB線でのアンテナ構造体200の断面図、図4(c)は、アンテナ構造体200におけるアンテナ部210の電波の指向性を説明する図である。
(Antenna structure 200)
Next, the antenna structure 200 will be described. The antenna structure 200 has a configuration in which an antenna unit that performs wireless multi-hop communication is equivalently added to the antenna unit 110 of the antenna structure 100.
FIG. 4 is a diagram illustrating the antenna structure 200. 4A is a plan view of the antenna structure 200, FIG. 4B is a cross-sectional view of the antenna structure 200 taken along line IVB-IVB in FIG. 4A, and FIG. 4C is an antenna. FIG. 6 is a diagram for explaining the directivity of radio waves of an antenna unit 210 in a structure 200.
 図4(a)に示すように、アンテナ構造体200は、アンテナ部210及び通信制御部120を備える。
 図4(a)、(b)に示すように、アンテナ部210は、絶縁基板211、絶縁基板211の裏面に設けられた接地(GND)電極212、絶縁基板211の表面に設けられた複数(ここでは、4個)の放射電極113、同様に絶縁基板211の表面に設けられた複数(ここでは、2個)の放射電極213、放射電極113と通信制御部120とを接続する信号分配配線114、及び放射電極213と通信制御部120とを接続する信号分配配線214を備える。
As shown in FIG. 4A, the antenna structure 200 includes an antenna unit 210 and a communication control unit 120.
4A and 4B, the antenna unit 210 includes an insulating substrate 211, a ground (GND) electrode 212 provided on the back surface of the insulating substrate 211, and a plurality of (provided on the surface of the insulating substrate 211). Here, four radiation electrodes 113, similarly, a plurality (here, two) of radiation electrodes 213 provided on the surface of the insulating substrate 211, and signal distribution wiring for connecting the radiation electrodes 113 and the communication control unit 120. 114 and a signal distribution wiring 214 that connects the radiation electrode 213 and the communication control unit 120.
 放射電極113及び信号分配配線114は、アンテナ部110と同じである。よって、同じ符号を付している。
 2個の放射電極213は、平面形状が正方形であって、同じ面積である。なお、2個の放射電極213をそれぞれ区別する場合には、放射電極213-1、213-2と表記する。
The radiation electrode 113 and the signal distribution wiring 114 are the same as the antenna unit 110. Therefore, the same code | symbol is attached | subjected.
The two radiation electrodes 213 have a square planar shape and the same area. When the two radiation electrodes 213 are distinguished from each other, they are represented as radiation electrodes 213-1 and 213-2.
 つまり、放射電極113-1~113-4と接地電極212とでパッチアンテナI~IVを構成する。そして、信号分配配線114を含めて、アンテナ部110と同じであって、エリアに対して電波の送受信を行う。 That is, the patch electrodes I to IV are constituted by the radiation electrodes 113-1 to 113-4 and the ground electrode 212. And including the signal distribution wiring 114, it is the same as the antenna part 110, and transmits / receives an electric wave with respect to an area.
 一方、放射電極213-1、213-2と接地電極212とでパッチアンテナ(パッチアンテナV、VI)を構成する。そして、信号分配配線214を含めて、隣接するアンテナ複合体10との間で、無線によるマルチホップの通信を行うアンテナ部(マルチホップ用のアンテナ部)を構成する。ここで、パッチアンテナV、VIが他のアンテナの一例である。また、マルチホップ用のアンテナ部が他のアンテナ部の一例である。
 つまり、アンテナ構造体200は、エリアに対して通信するエリア用のアンテナ部110に、マルチホップ用のアンテナ部を1つの部材として構成している。
On the other hand, the radiation electrodes 213-1 and 213-2 and the ground electrode 212 constitute a patch antenna (patch antennas V and VI). Then, an antenna unit (multi-hop antenna unit) that performs wireless multi-hop communication with the adjacent antenna complex 10 including the signal distribution wiring 214 is configured. Here, the patch antennas V and VI are examples of other antennas. A multi-hop antenna unit is an example of another antenna unit.
That is, in the antenna structure 200, the multi-hop antenna unit is configured as one member in the area antenna unit 110 that communicates with the area.
 なお、信号分配配線114における通信制御部120に接続される部分(端子)をエリア用アンテナ端子、信号分配配線214における通信制御部120に接続される部分(端子)をマルチホップ用アンテナ端子と表記することがある。 A portion (terminal) connected to the communication control unit 120 in the signal distribution wiring 114 is expressed as an area antenna terminal, and a portion (terminal) connected to the communication control unit 120 in the signal distribution wiring 214 is expressed as a multi-hop antenna terminal. There are things to do.
 アンテナ部210の放射電極213-1、213-2は、信号分配配線214により位相が180°異なるように構成されている。よって、図4(c)の放射電極213-1、213-2に、それぞれ0[deg]、180[deg]と表記する。 The radiation electrodes 213-1 and 213-2 of the antenna unit 210 are configured to have a phase difference of 180 ° by the signal distribution wiring 214. Accordingly, the radiation electrodes 213-1 and 213-2 in FIG. 4C are denoted as 0 [deg] and 180 [deg], respectively.
 図4(c)に示すように、アンテナ部210の放射電極213-1、213-2に位相が180°異なる信号が供給されると、電波は、アンテナ構造体200の表面に対して横方向の指向性(実線で示す指向性)を示す。つまり、薄型であるパッチアンテナの特徴を維持しつつ、アンテナ構造体200の表面(放射電極213)の垂直方向から傾いた方向に電波を送受信できる。
 なお、放射電極213-1、213-2に位相が同じ信号が供給された場合には、図4(c)に破線で示す指向性のように、電波は、アンテナ構造体200の表面に対して垂直方向の指向性を示す。これは、アンテナ部110の場合に対応する。
As shown in FIG. 4C, when signals having a phase difference of 180 ° are supplied to the radiation electrodes 213-1 and 213-2 of the antenna unit 210, the radio waves are transverse to the surface of the antenna structure 200. Directivity (directivity indicated by a solid line). That is, radio waves can be transmitted and received in a direction inclined from the vertical direction of the surface (radiation electrode 213) of the antenna structure 200 while maintaining the characteristics of the thin patch antenna.
When signals having the same phase are supplied to the radiation electrodes 213-1 and 213-2, the radio wave is directed to the surface of the antenna structure 200 as shown by the directivity indicated by the broken line in FIG. Show vertical directivity. This corresponds to the case of the antenna unit 110.
 アンテナ複合体10の両端部にそれぞれアンテナ構造体200を設けて、横方向に電波の指向性を持たせることで、図1のアンテナ複合体10-1とアンテナ複合体10-2との間や、アンテナ複合体10-1とアンテナ複合体10-3との間のように、直交(90°)するように設置された2つのアンテナ複合体10の間が電波で接続される。なお、アンテナ複合体10を長手方向に2つ並べた場合、つまりアンテナ複合体10の間の角度が180°の場合であっても、電波の送受信が可能となる。 The antenna structure 200 is provided at both ends of the antenna complex 10 so as to give the radio wave directivity in the lateral direction, so that the gap between the antenna complex 10-1 and the antenna complex 10-2 in FIG. The two antenna complexes 10 installed so as to be orthogonal (90 °), such as between the antenna complex 10-1 and the antenna complex 10-3, are connected by radio waves. Note that even when two antenna complexes 10 are arranged in the longitudinal direction, that is, when the angle between the antenna complexes 10 is 180 °, radio waves can be transmitted and received.
 図5は、アンテナ構造体200の変形例であるアンテナ構造体200′を示す平面図である。
 図5に示すように、放射電極213-1と放射電極213-2との間に、放射電極213-3と放射電極213-4を設け、放射電極213-1と放射電極213-3とを位相0°とし、放射電極213-2と放射電極213-4とを位相180°とする。このようにすると、指向性を強くすることができる(ビーム幅が狭くなる)。よって、マルチホップの距離、つまりアンテナ複合体10間の距離が大きくてもよい。
FIG. 5 is a plan view showing an antenna structure 200 ′ that is a modification of the antenna structure 200.
As shown in FIG. 5, the radiation electrode 213-3 and the radiation electrode 213-4 are provided between the radiation electrode 213-1 and the radiation electrode 213-2, and the radiation electrode 213-1 and the radiation electrode 213-3 are connected. The phase is 0 °, and the radiation electrode 213-2 and the radiation electrode 213-4 are 180 ° in phase. In this way, the directivity can be increased (the beam width is reduced). Therefore, the multi-hop distance, that is, the distance between the antenna complexes 10 may be large.
<通信制御部120>
 次に、通信制御部120を詳細に説明する。以下では、通信制御部120がBluetooth LEの機能を搭載するとして、通信制御部120の機能を説明する。
<Communication control unit 120>
Next, the communication control unit 120 will be described in detail. Hereinafter, the function of the communication control unit 120 will be described assuming that the communication control unit 120 is equipped with a Bluetooth LE function.
 まず、Bluetooth LEにおける2つの機器間における接続について説明する。Bluetooth LEでは、2つの機器がマスタとスレーブとの関係で接続される。前述したように、Bluetooth LEでは、40チャネルをデータのやり取りに使用する。そのうち、3チャネル(チャネルインデックス37、38、39)は、アドバタイズチャネルである。チャネルインデックス37は、中心周波数が2.402GHz、チャネルインデックス38は、中心周波数が2.426GHz、チャネルインデックス39は、中心周波数が2.480GHzに設定されている。つまり、Bluetooth LEが使用する2.400GHzから2.4835GHzまでの周波数帯域の上限、下限及びほぼ中央に設定されている。なお、他のチャネルは、データチャネルである。 First, connection between two devices in Bluetooth LE will be described. In Bluetooth LE, two devices are connected in a relationship between a master and a slave. As described above, Bluetooth LE uses 40 channels for data exchange. Of these, 3 channels (channel indexes 37, 38, 39) are advertisement channels. The channel index 37 is set to a center frequency of 2.402 GHz, the channel index 38 is set to a center frequency of 2.426 GHz, and the channel index 39 is set to a center frequency of 2.480 GHz. That is, the upper limit, lower limit, and almost the center of the frequency band from 2.400 GHz to 2.4835 GHz used by Bluetooth LE are set. The other channel is a data channel.
 図1において、移動者Aが保持する通信端末50とアンテナ複合体10-1における通信端末50の近傍に位置するアンテナ構造体100-13との間でデータ通信する手順を説明する。ここでは、通信端末50からアンテナ構造体100-13に対して、接続を要求するとする。 In FIG. 1, a procedure for data communication between the communication terminal 50 held by the mobile person A and the antenna structure 100-13 located in the vicinity of the communication terminal 50 in the antenna complex 10-1 will be described. Here, it is assumed that the communication terminal 50 requests connection to the antenna structure 100-13.
 通信端末50は、セントラルとして機能し、ブロードキャスタとしてアドバタイズチャネルを用いて、アドバタイズパケットを送信する(アドバタイズ)。アドバタイズパケットには、自身のアドレス(ID)などの自身の機器情報が入っている。なお、通信端末50は、アドバタイズパケットを中心周波数の異なる3つのアドバタイズチャネルに順に送信するので、アンテナ構造体100-13は、通信端末50のアドバタイズを受信しやすくなっている。 The communication terminal 50 functions as a central, and transmits an advertisement packet using the advertisement channel as a broadcaster (advertisement). The advertisement packet contains its own device information such as its own address (ID). Note that the communication terminal 50 sequentially transmits the advertisement packet to the three advertisement channels having different center frequencies, so that the antenna structure 100-13 can easily receive the advertisement of the communication terminal 50.
 アンテナ構造体100-13は、ペリフェラルとして機能し、オブザーバとしてアドバタイズパケットを受信すると、アドバタイズパケットに含まれている機器情報以外の機器情報を受信するために、アドバタイズチャネルを用いて、スキャン要求パケットを通信端末50に対して送信する(スキャン)。 The antenna structure 100-13 functions as a peripheral and receives an advertisement packet as an observer. In order to receive device information other than the device information included in the advertisement packet, the antenna structure 100-13 transmits a scan request packet using an advertisement channel. Transmit to the communication terminal 50 (scan).
 通信端末50は、時分割でオブザーバとして機能し、スキャン要求パケットを受信すると、アドバタイズチャネルを用いて、機器情報を含むスキャン応答パケットを送信する。 The communication terminal 50 functions as an observer in a time-sharing manner, and when receiving a scan request packet, transmits a scan response packet including device information using the advertisement channel.
 すると、アンテナ構造体100-13は、スキャン応答パケットを受信すると、アドバタイズチャネルを用いて、接続を要求する接続要求パケットを通信端末50に対して送信する(イニシャライズ)。 Then, when receiving the scan response packet, the antenna structure 100-13 transmits a connection request packet for requesting connection to the communication terminal 50 using the advertisement channel (initialization).
 これにより、アドバタイズチャネルからデータチャネルに移動して、アンテナ構造体100-13と通信端末50とがデータ通信可能な状態になる(接続)。つまり、通信が確立する。なお、アンテナ構造体100-13がマスタ、通信端末50がスレーブになる。そして、アンテナ構造体100-13と通信端末50との間で、定期的にデータパケットが送受信されることでデータ通信がされる。 This moves from the advertise channel to the data channel, and the antenna structure 100-13 and the communication terminal 50 become ready for data communication (connection). That is, communication is established. The antenna structure 100-13 is a master and the communication terminal 50 is a slave. Data communication is performed by periodically transmitting and receiving data packets between the antenna structure 100-13 and the communication terminal 50.
 そして、アンテナ構造体100-13又は通信端末50が終了パケットを送信することで、データ通信が終了する。なお、アンテナ構造体100-13又は通信端末50からのデータパケットが届かなくなった場合、データエラーが発生した場合などにおいても、データ通信が終了するようになっている。 Then, when the antenna structure 100-13 or the communication terminal 50 transmits an end packet, the data communication ends. It should be noted that the data communication is terminated even when a data packet from the antenna structure 100-13 or the communication terminal 50 does not reach or when a data error occurs.
 なお、アドバタイズパケットの機器情報で十分である場合には、スキャン要求パケット及びスキャン応答パケットの送受信を要しない。 If the device information of the advertisement packet is sufficient, transmission / reception of the scan request packet and the scan response packet is not required.
 以上では、アンテナ構造体100-13をマスタ、通信端末50をスレーブとしたが、アンテナ構造体100-13と通信端末50とを入れ替えて、通信端末50をマスタ、アンテナ構造体100-13をスレーブとしてもよい。 In the above description, the antenna structure 100-13 is the master and the communication terminal 50 is the slave. However, the antenna structure 100-13 and the communication terminal 50 are interchanged, and the communication terminal 50 is the master and the antenna structure 100-13 is the slave. It is good.
 次に、通信システム1の動作、つまり通信システム1が行う機能(サービス)について説明する。
 まず、通信端末50の位置検出機能について説明する。ここでは、通信端末50を所有する移動者Aに、現在の位置を通知する機能を説明する。
 アンテナ複合体10におけるすべてのアンテナ構造体100が、アドバタイズパケットを送信しているとする。それぞれのアンテナ構造体100が送信するアドバタイズパケットには、それぞれのアンテナ構造体100(通信制御部120)のアドレス(ID)が含まれている。
Next, the operation of the communication system 1, that is, the function (service) performed by the communication system 1 will be described.
First, the position detection function of the communication terminal 50 will be described. Here, a function for notifying the mobile person A who owns the communication terminal 50 of the current position will be described.
It is assumed that all the antenna structures 100 in the antenna complex 10 are transmitting advertisement packets. The advertisement packet transmitted by each antenna structure 100 includes the address (ID) of each antenna structure 100 (communication control unit 120).
 ホストコンピュータ20は、アンテナ構造体100のアドレス(ID)と設置されている位置との関係、及びアンテナ構造体100からの距離に対する受信電波強度の変化など、位置を算出するための情報(以下では、位置算出情報と表記する。)と位置を算出するためのアプリケーションソフトウェアを保持している。 The host computer 20 uses the information for calculating the position (hereinafter, the relationship between the address (ID) of the antenna structure 100 and the installed position, and the change in received radio wave intensity with respect to the distance from the antenna structure 100). , And is written as position calculation information.) And application software for calculating the position.
 一方、通信端末50は、アンテナ構造体100と電波によって信号の送受信が可能なアンテナと通信制御部120と同様な信号処理部を備えるとともに、通信端末50の表示部(ディスプレイ)に自身の位置を表示するアプリケーションソフトウェアを備えているとする。なお、通信端末50の備えるアンテナは、アンテナ構造体100の指向性を有するアンテナ部110と異なり、アンテナの周囲の360°に対して電波を送受信できる無指向性であることがよい。 On the other hand, the communication terminal 50 includes an antenna structure 100, an antenna that can transmit and receive signals by radio waves, and a signal processing unit similar to the communication control unit 120, and also displays its position on the display unit (display) of the communication terminal 50. Suppose you have application software to display. Note that, unlike the antenna unit 110 having the directivity of the antenna structure 100, the antenna included in the communication terminal 50 is preferably non-directional capable of transmitting and receiving radio waves with respect to 360 ° around the antenna.
 通信端末50は、アドバタイズパケットの受信により、受信電波強度とアンテナ構造体100のアドレス(ID)とを取得する。なお、複数のアドバタイズパケットを受信し、それぞれの受信電波強度とアンテナ構造体100のアドレス(ID)とを取得してもよい。そして、1つのアンテナ構造体100と上記の手順により通信を確立する。 The communication terminal 50 acquires the received radio wave intensity and the address (ID) of the antenna structure 100 by receiving the advertisement packet. Note that a plurality of advertisement packets may be received, and the received radio wave intensity and the address (ID) of the antenna structure 100 may be acquired. Communication is established with one antenna structure 100 by the above procedure.
 そして、通信端末50は、受信電波強度及びアンテナ構造体100のアドレス(ID)を、データパケットとして、アンテナ構造体100に送信する。アンテナ構造体100は、受信したデータパケットにおける受信電波強度及びアンテナ構造体100のアドレス(ID)をホストコンピュータ20に送信する。 Then, the communication terminal 50 transmits the received radio wave intensity and the address (ID) of the antenna structure 100 to the antenna structure 100 as a data packet. The antenna structure 100 transmits the received radio wave intensity in the received data packet and the address (ID) of the antenna structure 100 to the host computer 20.
 すると、ホストコンピュータ20は、保持する位置算出情報に基づいて、受信した受信電波強度及びアンテナ構造体100のアドレス(ID)から通信端末50の位置(位置情報)を算出する。
 そして、通信端末50と通信が確立しているアンテナ構造体100に、通信端末50の位置情報を送信する。なお、アンテナ構造体100はアドレス(ID)を有しているので、ホストコンピュータ20は、アンテナ構造体100のアドレス(ID)を指定して位置情報を送信する。
Then, the host computer 20 calculates the position (position information) of the communication terminal 50 from the received received radio wave intensity and the address (ID) of the antenna structure 100 based on the position calculation information held.
And the positional information on the communication terminal 50 is transmitted to the antenna structure 100 with which communication with the communication terminal 50 is established. Since the antenna structure 100 has an address (ID), the host computer 20 specifies the address (ID) of the antenna structure 100 and transmits position information.
 位置情報を受信したアンテナ構造体100は、確立された通信経路を使って、通信端末50に位置情報を送信する。これにより、通信端末50の表示部に通信端末50での位置が表示される。 The antenna structure 100 that has received the position information transmits the position information to the communication terminal 50 using the established communication path. Thereby, the position at the communication terminal 50 is displayed on the display unit of the communication terminal 50.
 以上説明したように、アンテナ構造体100は、ビーコンとしての電波の送信のみならず、通信端末50との間でデータの通信を行うように構成されている。つまり、アンテナ構造体100をビーコンとしての電波の送信のみならず、通信端末50とのデータの通信を行うように構成することで、通信端末50とホストコンピュータ20との間には、アンテナ複合体10を介した通信回線のみを設定すればよい。
 一方、アンテナ構造体100を電波の送信のみを行うビーコンとして使用した場合には、通信端末50とホストコンピュータ20との間でデータの送受信を行うための通信回線を別に用意することが必要になる。
As described above, the antenna structure 100 is configured not only to transmit a radio wave as a beacon but also to perform data communication with the communication terminal 50. That is, the antenna structure 100 is configured not only to transmit a radio wave as a beacon but also to perform data communication with the communication terminal 50, so that an antenna complex is provided between the communication terminal 50 and the host computer 20. Only a communication line via 10 may be set.
On the other hand, when the antenna structure 100 is used as a beacon that only transmits radio waves, it is necessary to prepare a separate communication line for transmitting and receiving data between the communication terminal 50 and the host computer 20. .
 そして、ホストコンピュータ20は、通信端末50に位置情報に加えて、その場所に関係する他の情報を合わせて送信することもできる。例えば、場所が商店街であれば、特売情報などを送信することで、販売促進になる。また、場所が観光地であれば、景色の情報などを送信することで、観光地に関する詳細な情報が提供できる。さらにまた、場所が展覧会会場であれば、展示物毎に解説を送信することで、より深く鑑賞ができるようになる。そしてまた、場所がコンサート会場であれば、通信端末50と同様な機能を有するペンライトを観客に所持させることで、観客の位置を個別に認識するとともに、位置に応じてペンライトの色を制御できる。これにより、観客が場所ごとに色が異なるペンライトを翳すことでコンサートに参加させ、一体感を盛り上げることができる。そして、例え観客が予め決められた席を移動しても、ペンライトの色がずれることが抑制される。 Then, the host computer 20 can also transmit other information related to the location to the communication terminal 50 in addition to the position information. For example, if the place is a shopping street, the sale is promoted by transmitting special sale information. Further, if the place is a sightseeing spot, detailed information regarding the sightseeing spot can be provided by transmitting scenery information and the like. Furthermore, if the place is an exhibition hall, it is possible to deepen the appreciation by sending an explanation for each exhibit. If the place is a concert hall, the audience can individually recognize the position of the audience by holding the penlight having the same function as the communication terminal 50 and control the color of the penlight according to the position. it can. This allows the audience to participate in the concert by flashing penlights that vary in color from place to place, and enhance the sense of unity. And even if a spectator moves a predetermined seat, it is suppressed that the color of a penlight shifts.
 そして、アンテナ構造体100が送受信する電波の到達可能距離(セルの大きさ)を小さく設定すれば、室内(展覧会会場)などをエリアにでき、大きく設定すれば、室外(上記の商店街、観光地)などをエリアにできる。 If the reachable distance (cell size) of the radio wave transmitted and received by the antenna structure 100 is set small, the room (exhibition hall) can be made an area, and if it is set large, the outdoor (the above shopping street, Sightseeing spots) can be made into areas.
 次に、発信専用端末60による位置検出機能について説明する。ここでは、発信専用端末60を所有する移動者Bの位置を検知(監視)する機能を説明する。 Next, the position detection function by the call-dedicated terminal 60 will be described. Here, a function of detecting (monitoring) the position of the mobile person B who owns the transmission-only terminal 60 will be described.
 発信専用端末60は、アドバタイズパケットをアンテナ複合体10のアンテナ構造体100が受信可能な周波数帯の信号として発生する信号発生部とこの信号(アドバタイズパケット)を電波として送信するアンテナとを備える。すなわち、信号発生部は、アンテナ構造体100が備える通信制御部120と同様な構成を備えなくてもよい。つまり、発信専用端末60は、アドバタイズパケットを送信できればよい。このため、小型且つ安価に製造できる。
 なお、発信専用端末60の信号発生器を、アンテナ構造体100が備える通信制御部120と同様なものとした場合には、スキャン応答パケットを送信しないようにスキャン要求パケットを受け付けないように設定しておけばよい。このようにすることで、電力消費が抑制される。
The dedicated transmission terminal 60 includes a signal generation unit that generates an advertisement packet as a signal in a frequency band that can be received by the antenna structure 100 of the antenna complex 10, and an antenna that transmits the signal (advertisement packet) as a radio wave. That is, the signal generation unit may not have the same configuration as the communication control unit 120 included in the antenna structure 100. That is, it is sufficient that the call-only terminal 60 can transmit the advertisement packet. For this reason, it can be manufactured small and inexpensively.
If the signal generator of the transmission-only terminal 60 is the same as the communication control unit 120 included in the antenna structure 100, the scan request packet is set not to be received so that the scan response packet is not transmitted. Just keep it. By doing in this way, power consumption is suppressed.
 また、発信専用端末60が備えるアンテナは、指向性を有するアンテナ構造体100と異なり、無指向性であることがよい。つまり、アンテナは、アンテナの周囲の360°に対して電波を送受信できる無指向性であることがよい。 Also, unlike the antenna structure 100 having directivity, the antenna included in the transmission dedicated terminal 60 is preferably omnidirectional. That is, the antenna is preferably non-directional capable of transmitting and receiving radio waves with respect to 360 ° around the antenna.
 そして、発信専用端末60は、常にアドバタイズパケットを送信しているとする。発信専用端末60の送信するアドバタイズパケットには、発信専用端末60のアドレス(ID)が含まれている。 Further, it is assumed that the transmission dedicated terminal 60 always transmits an advertisement packet. The advertisement packet transmitted by the call origination terminal 60 includes the address (ID) of the call origination terminal 60.
 一方、アンテナ複合体10のアンテナ構造体100は、常に受信状態(パッシブスキャン)になっているとする。 On the other hand, it is assumed that the antenna structure 100 of the antenna complex 10 is always in a reception state (passive scan).
 ホストコンピュータ20は、アンテナ構造体100のアドレス(ID)とアンテナ構造体100が設置されている位置との関係、及びアンテナ構造体100が受信する発信専用端末60からの電波のアンテナ構造体100からの距離に対する強度(受信電波強度)の変化など、発信専用端末60の位置を算出するための情報(位置算出情報)と位置を算出するためのアプリケーションソフトウェアを保持している。 The host computer 20 determines the relationship between the address (ID) of the antenna structure 100 and the position where the antenna structure 100 is installed, and the radio wave antenna structure 100 received from the transmission-only terminal 60 that the antenna structure 100 receives. Information for calculating the position of the call-only terminal 60 (position calculation information) and application software for calculating the position, such as a change in strength (received radio wave strength) with respect to the distance of the mobile phone.
 アンテナ複合体10が設置されたエリア(室など)に移動者Bが入ると、移動者Bに近い位置にあるアンテナ構造体100(図1におけるアンテナ構造体100-21)は、発信専用端末60からのアドバタイズパケットを受信する。このとき、アンテナ構造体100-21は、発信専用端末60のアドレス(ID)とともに受信電波強度を合わせて取得する。なお、複数のアンテナ構造体100が、発信専用端末60からアドバタイズパケットを受信してもよい。そして、アンテナ構造体100-21は、自身のアドレス(ID)とともに、取得した発信専用端末60のアドレス(ID)及び受信電波強度をホストコンピュータ20に送信する。 When the mobile person B enters an area (such as a room) where the antenna complex 10 is installed, the antenna structure 100 (the antenna structure 100-21 in FIG. 1) located near the mobile person B is connected to the transmission-only terminal 60. Receives advertisement packets from. At this time, the antenna structure 100-21 acquires the received radio wave intensity together with the address (ID) of the call-only terminal 60. Note that the plurality of antenna structures 100 may receive the advertisement packet from the call-only terminal 60. Then, the antenna structure 100-21 transmits the acquired address (ID) of the transmission-only terminal 60 and the received radio wave intensity to the host computer 20 together with its own address (ID).
 すると、ホストコンピュータ20は、アンテナ構造体100-21のアドレス(ID)、発信専用端末60のアドレス(ID)及び受信電波強度から、発信専用端末60の位置を算出する。このようにして、移動者Bの位置を算出することで、移動者Bの移動軌跡が取得できる。 Then, the host computer 20 calculates the position of the transmission dedicated terminal 60 from the address (ID) of the antenna structure 100-21, the address (ID) of the transmission dedicated terminal 60, and the received radio wave intensity. Thus, by calculating the position of the moving person B, the moving locus of the moving person B can be acquired.
 ここでは、発信専用端末60であるので、ホストコンピュータ20からデータを送信することができない。しかし、発信専用端末60からのアドバタイズパケットを受信したアンテナ構造体100-21にデータを送信することができる。よって、アンテナ構造体100に表示部(ディスプレイ)やスピーカを設けて、上記と同様な販売促進、観光地案内、展示物解説などを行うようにしてもよい。 Here, since it is the transmission-only terminal 60, data cannot be transmitted from the host computer 20. However, data can be transmitted to the antenna structure 100-21 that has received the advertise packet from the call origination terminal 60. Therefore, a display unit (display) or a speaker may be provided in the antenna structure 100 to perform sales promotion, sightseeing spot guidance, explanation of exhibits, and the like as described above.
 また、通信端末50は常にアドバタイズパケットを送信している。そして、通信端末50の送信するアドバタイズパケットには、通信端末50のアドレス(ID)が含まれている。一方、アンテナ複合体10のアンテナ構造体100は、常に受信状態(パッシブスキャン)になっているので、アンテナ構造体100のアドレス(ID)とアンテナ構造体100が受信する通信端末50からの電波の強度(受信電波強度)などから、発信専用端末60の位置を算出できる。つまり、通信端末50は、発信専用端末60と同様に動作させられる。 Further, the communication terminal 50 always transmits an advertisement packet. The advertisement packet transmitted by the communication terminal 50 includes the address (ID) of the communication terminal 50. On the other hand, since the antenna structure 100 of the antenna complex 10 is always in a reception state (passive scan), the address (ID) of the antenna structure 100 and the radio wave from the communication terminal 50 received by the antenna structure 100 are transmitted. The position of the call-only terminal 60 can be calculated from the intensity (received radio wave intensity) or the like. That is, the communication terminal 50 is operated in the same manner as the call-dedicated terminal 60.
 また、人通りの多い場所、通行人にそれぞれ発信専用端末60を所持させることで、通行人の動態統計など、いわゆるビックデータを容易に収集することが可能になる。例えば、空港などに設けることで、空港内を移動する搭乗者などの動態統計を取得することで、空港内の改善などに寄与できる。 In addition, by making each caller possess a call-only terminal 60 in a busy place, so-called big data such as passerby statistics can be easily collected. For example, it is possible to contribute to improvement in the airport by obtaining dynamic statistics of passengers moving in the airport by providing it in the airport.
 さらに、無人搬送車70を制御する機能について説明する。工場内などのエリアにおいて、無人搬送車70を使用する場合、工場内における位置を知ることが必要となる。よって、アンテナ複合体10のアンテナ構造体100(図1におけるアンテナ構造体100-14)から、無人搬送車70に行先についてのデータ(指示)を送信することができる。そして、無人搬送車70は、移動に伴って近傍に位置するアンテナ構造体100と通信を繰り返すことにより、自身の位置を知る。よって、自身の位置と受信した行先とから、行先に到達することができる。 Furthermore, the function for controlling the automatic guided vehicle 70 will be described. When the automatic guided vehicle 70 is used in an area such as a factory, it is necessary to know the position in the factory. Therefore, the data (instruction) about the destination can be transmitted to the automatic guided vehicle 70 from the antenna structure 100 of the antenna complex 10 (antenna structure 100-14 in FIG. 1). And the automatic guided vehicle 70 knows its own position by repeating communication with the antenna structure 100 located in the vicinity as it moves. Therefore, it is possible to reach the destination from its own position and the received destination.
 アンテナ複合体10を介して通信が行われるので、別に通信回線を設けることを要しない。また、アンテナ複合体10は、可撓性を有する構造となっているので、丸めて搬送できるとともに、工場内の床や壁に貼り付けることで、無人搬送車70を制御する経路が構築される。そして、アンテナ複合体10は、両端部に無線によるマルチホップの通信ができるアンテナ構造体200を備えているので、複数のアンテナ複合体10を長手方向に配置して用いても、有線の配線で接続することを要しない。つまり、無人搬送車70を制御する経路が容易に構築できる。 Since communication is performed via the antenna complex 10, it is not necessary to provide a separate communication line. Further, since the antenna complex 10 has a flexible structure, the antenna complex 10 can be rolled and conveyed, and a path for controlling the automatic guided vehicle 70 is constructed by being attached to a floor or a wall in the factory. The antenna complex 10 includes the antenna structure 200 capable of wireless multi-hop communication at both ends. Therefore, even if a plurality of antenna complexes 10 are arranged in the longitudinal direction, they can be wired. No need to connect. That is, a route for controlling the automatic guided vehicle 70 can be easily constructed.
 なお、前述したように、アンテナ複合体10は、交流電源(AC電源)(図1のAC給電部30)のみならず電池(図1の電池給電部40)で駆動できるので、交流電源が用いにくい場合であっても、使用可能である。 As described above, since the antenna complex 10 can be driven not only by the AC power source (AC power source) (AC power feeding unit 30 in FIG. 1) but also by the battery (battery power feeding unit 40 in FIG. 1), the AC power source is used. Even if it is difficult, it can be used.
 以上説明したように、アンテナ複合体10は、全体として可撓性を有するようにできるので、丸めた小さくした状態において搬送可能である。そして、アンテナ複合体10の表面及び裏面のいずれか一方に両面テープを貼り付けるなどにより粘着(接着)剤を設けることで、設置がより容易になる。また、表面及び裏面のいずれか他方の面に広告を印刷して宣伝に用いたり、壁や床の模様を印刷してアンテナ複合体10を環境に溶け込ませたりしてもよい。広告や壁や床の模様などをまとめて絵柄と表記する。 As described above, since the antenna complex 10 can be made flexible as a whole, it can be conveyed in a rounded and small state. And installation becomes easier by providing an adhesive (adhesive) agent by sticking a double-sided tape on either one of the front surface and the back surface of the antenna complex 10. Further, an advertisement may be printed on one of the front and back surfaces and used for promotion, or a pattern of a wall or floor may be printed to make the antenna complex 10 melt into the environment. The advertisements and patterns on the walls and floors are collectively written as a pattern.
 なお、アンテナ構造体200は、エリアに対して電波の送受信を行うアンテナ部110に、無線によるマルチホップの通信を行うアンテナ部を加えた構成とした。しかし、アンテナ構造体200の代わりに、アンテナ部110を備えるアンテナ構造体100と、無線によるマルチホップの通信を行うアンテナ部を備えるアンテナ構造体とを別に設けてもよい。 The antenna structure 200 has a configuration in which an antenna unit that performs wireless multi-hop communication is added to the antenna unit 110 that transmits and receives radio waves to and from the area. However, instead of the antenna structure 200, an antenna structure 100 including the antenna unit 110 and an antenna structure including an antenna unit that performs wireless multi-hop communication may be separately provided.
 以上においては、Bluetooth LEを例としたが、国際標準規格であるIEEE 802.11規格に基づいたWi-Fi(登録商標)など他の無線技術を適用してもよい。 In the above, Bluetooth LE is taken as an example, but other wireless technologies such as Wi-Fi (registered trademark) based on the IEEE 802.11 standard which is an international standard may be applied.
 また、アンテナ構造体100、200を、例えば、振動、音、光、温度、湿度などの環境状態を感知するセンサを備ええてもよい。すなわち、アンテナ構造体100、200は、センサビーコンとして機能してもよい。アンテナ構造体100、200が振動を感知する振動センサを備えた振動ビーコンとして機能する場合、ペイロードに振動センサが感じた振動の強度を含ませてアドバタイズパケットを送信するようにしてもよい。音を感知する音センサを備えた音ビーコンの場合は音の強度、光を感知する光センサを備えた光ビーコンの場合は光の強度、温度を感知する温度センサを備えた温度ビーコンの場合は温度、湿度を感知する湿度ビーコンの場合は湿度をペイロードに含んだアドバタイズパケットを送信すればよい。このようにすることで、位置だけでなく、環境状態を感知できる。このようにすると、コンサート会場などにおいて、人の位置とともに、人の動きによる振動を感知して、盛り上がりの具合を判断し、判断した盛り上がり具合に応じて会場の演出を行うことで、コンサートをより盛り上げるようにすることができる。 Further, the antenna structures 100 and 200 may be provided with sensors for detecting environmental conditions such as vibration, sound, light, temperature, and humidity. That is, the antenna structures 100 and 200 may function as sensor beacons. When the antenna structures 100 and 200 function as a vibration beacon including a vibration sensor that senses vibration, an advertisement packet may be transmitted by including the intensity of vibration felt by the vibration sensor in the payload. In the case of a sound beacon with a sound sensor that senses sound, the intensity of the sound, in the case of a light beacon with a light sensor that senses light, the intensity of light, in the case of a temperature beacon with a temperature sensor that senses temperature In the case of a humidity beacon that detects temperature and humidity, an advertisement packet including humidity in the payload may be transmitted. In this way, not only the position but also the environmental state can be sensed. In this way, in concert venues, etc., by detecting vibrations caused by people's movements along with the position of people, determining the degree of excitement, and performing the venue according to the determined degree of excitement, the concert more It can be made exciting.
 以上、本実施の形態を説明したが、本発明の趣旨に反しない限りにおいて様々な変形を行っても構わない。 Although the present embodiment has been described above, various modifications may be made without departing from the spirit of the present invention.
1…通信システム、10、10-1~10-3…アンテナ複合体、20…ホストコンピュータ、30…AC給電部、40…電池給電部、50…通信端末、60…発信専用端末、70…無人搬送車、100、100-11~100-15、100-21、100-22、100-31、100-32、200、200-11、200-12、200-21、200-22、200-31、200-32、200′…アンテナ構造体、110…アンテナ部、111、211…絶縁基板、112、212…接地(GND)電極、113、113-1~113-4、213、213-1~213-4…放射電極、114、214…信号分配配線、300、300-1~300-2…配線板、A、B…移動者、I~VI…パッチアンテナ DESCRIPTION OF SYMBOLS 1 ... Communication system 10, 10-1 to 10-3 ... Antenna complex, 20 ... Host computer, 30 ... AC feeding part, 40 ... Battery feeding part, 50 ... Communication terminal, 60 ... Dedicated terminal, 70 ... Unmanned Transport vehicle, 100, 100-11 to 100-15, 100-21, 100-22, 100-31, 100-32, 200, 200-11, 200-12, 200-21, 200-22, 200-31 , 200-32, 200 ′, antenna structure, 110, antenna portion, 111, 211, insulating substrate, 112, 212, ground (GND) electrode, 113, 113-1 to 113-4, 213, 213-1 to 213-4 ... Radiation electrode, 114, 214 ... Signal distribution wiring, 300, 300-1 to 300-2 ... Wiring board, A, B ... Mobile, I-VI ... Patch antenna

Claims (15)

  1.  それぞれが個別に電波を送受信する複数のアンテナ構造体と、
     複数の前記アンテナ構造体と接続されるとともに、データが送受信されるデータ線を有する配線板と、を備え、
     前記アンテナ構造体は、定められたエリアに対して電波を送受信する指向性を有するアンテナ部と、当該アンテナ部の送受信する電波を介してデータを送受信するとともに、前記データ線を介してデータを送受信する通信制御部とを備えるアンテナ複合体。
    A plurality of antenna structures each transmitting and receiving radio waves individually;
    A wiring board connected to a plurality of the antenna structures and having data lines through which data is transmitted and received,
    The antenna structure transmits / receives data via an antenna unit having directivity for transmitting / receiving radio waves to / from a predetermined area, and radio waves transmitted / received by the antenna unit, and transmits / receives data via the data line. An antenna complex including a communication control unit.
  2.  複数の前記アンテナ構造体は、列状に配列されていることを特徴とする請求項1に記載のアンテナ複合体。 The antenna complex according to claim 1, wherein the plurality of antenna structures are arranged in a line.
  3.  複数の前記アンテナ構造体の配列の外側の少なくとも一方に設けられ、隣接して設けられた他のアンテナ複合体に含まれるアンテナ構造体と、電波を介してデータの送受信を行う他のアンテナ構造体を、備えることを特徴とする請求項2に記載のアンテナ複合体。 An antenna structure included in another antenna complex provided adjacent to at least one outside the array of the plurality of antenna structures and another antenna structure that transmits and receives data via radio waves The antenna complex according to claim 2, further comprising:
  4.  前記他のアンテナ構造体は、
     前記エリアに対して電波を送受信する指向性を有する前記アンテナ部と、
     前記他のアンテナ複合体に含まれるアンテナ構造体と電波を介してデータの送受信を行う他のアンテナ部と、
     前記アンテナ部の送受信する電波を介してデータを送受信するとともに、前記データ線及び前記他のアンテナ部を介してデータを送受信する通信制御部とを備えることを特徴とする請求項3に記載のアンテナ複合体。
    The other antenna structure is:
    The antenna unit having directivity for transmitting and receiving radio waves to and from the area;
    An antenna structure included in the other antenna complex and another antenna unit that transmits and receives data via radio waves;
    The antenna according to claim 3, further comprising: a communication control unit that transmits / receives data via radio waves transmitted / received by the antenna unit and transmits / receives data via the data line and the other antenna unit. Complex.
  5.  前記アンテナ部、前記他のアンテナ部及び前記配線板は、可撓性を有することを特徴とする請求項4に記載のアンテナ複合体。 The antenna complex according to claim 4, wherein the antenna part, the other antenna part, and the wiring board have flexibility.
  6.  前記アンテナ部は、送受信する電波のピーク周波数がそれぞれ異なる複数のアンテナを備えていることを特徴とする請求項1に記載のアンテナ複合体。 The antenna complex according to claim 1, wherein the antenna section includes a plurality of antennas having different peak frequencies of radio waves to be transmitted and received.
  7.  複数の前記アンテナは、接地電極と放電電極とが対向するように構成されたパッチアンテナであって、ピーク周波数に対応して当該放電電極の面積が異なることを特徴とする請求項6に記載のアンテナ構造体。 The plurality of antennas are patch antennas configured such that a ground electrode and a discharge electrode face each other, and the areas of the discharge electrodes differ according to a peak frequency. Antenna structure.
  8.  前記他のアンテナ部は、位相の異なる電波を送受信する電波の位相がそれぞれ異なる複数の他のアンテナを備えていることを特徴とする請求項4に記載のアンテナ複合体。 5. The antenna complex according to claim 4, wherein the other antenna unit includes a plurality of other antennas having different phases of radio waves for transmitting and receiving radio waves having different phases.
  9.  複数の前記アンテナ構造体及び前記配線板は、表面及び裏面のいずれか一方に粘着剤が付与され、表面及び裏面のいずれか他方に絵柄が設けられていることを特徴とする請求項1に記載のアンテナ複合体。 The plurality of antenna structures and the wiring board are provided with a pressure-sensitive adhesive on one of a front surface and a back surface, and a pattern is provided on either the front surface or the back surface. Antenna complex.
  10.  送受信する電波のピーク周波数がそれぞれ異なる複数のアンテナを備えたアンテナ部と、
     前記アンテナ部の送受信する電波を介してデータを送受信するとともに、データを接続されるデータ線を介して送受信する通信制御部と
    を備えるアンテナ構造体。
    An antenna unit having a plurality of antennas having different peak frequencies of radio waves to be transmitted and received,
    An antenna structure comprising: a communication control unit that transmits and receives data via radio waves transmitted and received by the antenna unit and transmits and receives data via a data line connected thereto.
  11.  前記アンテナ部が備える複数の前記アンテナの前記ピーク周波数は、送受信する電波の周波数帯域を複数に分割して設定されていることを特徴とする請求項10に記載のアンテナ構造体。 The antenna structure according to claim 10, wherein the peak frequencies of the plurality of antennas provided in the antenna unit are set by dividing a frequency band of radio waves to be transmitted and received.
  12.  複数の前記アンテナは、接地電極と放電電極とが対向するように構成されたパッチアンテナであって、ピーク周波数に対応して当該放電電極の面積が異なることを特徴とする請求項11に記載のアンテナ構造体。 The plurality of antennas are patch antennas configured such that a ground electrode and a discharge electrode face each other, and the areas of the discharge electrodes differ according to a peak frequency. Antenna structure.
  13.  データが送受信されるデータ線を有する配線板と、
     定められたエリアに対して電波を送受信する指向性を有するアンテナ部と、当該アンテナ部の送受信する電波を介してデータを送受信するとともに、前記データ線を介してデータを送受信する通信制御部と、をそれぞれ有し、個別に電波を送受信する複数のアンテナ構造体と、を備えるアンテナ複合体を含み、
     複数の前記アンテナ構造体が、当該アンテナ構造体が有する前記通信制御部を介して複数の当該アンテナ構造体間でデータを伝搬させるとともに、
     データが外部に設けられるホストコンピュータと送受信されることを特徴とする通信システム。
    A wiring board having data lines through which data is transmitted and received;
    An antenna unit having directivity for transmitting / receiving radio waves to / from a defined area, a communication control unit for transmitting / receiving data via radio waves transmitted / received by the antenna unit, and for transmitting / receiving data via the data line; A plurality of antenna structures that individually transmit and receive radio waves, and an antenna complex including
    A plurality of the antenna structures propagate data between the plurality of antenna structures via the communication control unit included in the antenna structures,
    A communication system, wherein data is transmitted / received to / from a host computer provided outside.
  14.  複数の前記アンテナ構造体は、列状に配列され、
     前記アンテナ構造体間でのデータの伝搬が、配列に沿ってリレー方式で行われることを特徴とする請求項13に記載の通信システム。
    The plurality of antenna structures are arranged in a row,
    14. The communication system according to claim 13, wherein propagation of data between the antenna structures is performed in a relay manner along the array.
  15.   複数の前記アンテナ構造体の列状に配列された一方の端部に設けられたアンテナ構造体を介して、複数の当該アンテナ構造体を伝搬したデータが前記ホストコンピュータと送受信されることを特徴とする請求項14に記載の通信システム。 The data propagated through the plurality of antenna structures is transmitted to and received from the host computer via the antenna structure provided at one end of the plurality of antenna structures arranged in a row. The communication system according to claim 14.
PCT/JP2018/003246 2018-01-31 2018-01-31 Antenna composite, antenna structure, and communication system WO2019150498A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/003246 WO2019150498A1 (en) 2018-01-31 2018-01-31 Antenna composite, antenna structure, and communication system
JP2019568485A JP6921441B2 (en) 2018-01-31 2018-01-31 Antenna complex, antenna structure and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003246 WO2019150498A1 (en) 2018-01-31 2018-01-31 Antenna composite, antenna structure, and communication system

Publications (1)

Publication Number Publication Date
WO2019150498A1 true WO2019150498A1 (en) 2019-08-08

Family

ID=67478686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003246 WO2019150498A1 (en) 2018-01-31 2018-01-31 Antenna composite, antenna structure, and communication system

Country Status (2)

Country Link
JP (1) JP6921441B2 (en)
WO (1) WO2019150498A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057446A4 (en) * 2019-11-06 2023-12-13 Agc Inc. Distributed antenna and distributed antenna system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219618A (en) * 1996-02-13 1997-08-19 Toshiba Corp Circular polarized wave patch antenna and radio communication system
JP2002353707A (en) * 2001-05-30 2002-12-06 Kobe Steel Ltd High frequency strip line and antenna system
WO2004100314A1 (en) * 2003-05-12 2004-11-18 Kabushiki Kaisha Kobe Seiko Sho Radio lan antenna
JP2007329546A (en) * 2006-06-06 2007-12-20 Univ Of Electro-Communications Broadband antenna and broadband antenna system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219618A (en) * 1996-02-13 1997-08-19 Toshiba Corp Circular polarized wave patch antenna and radio communication system
JP2002353707A (en) * 2001-05-30 2002-12-06 Kobe Steel Ltd High frequency strip line and antenna system
WO2004100314A1 (en) * 2003-05-12 2004-11-18 Kabushiki Kaisha Kobe Seiko Sho Radio lan antenna
JP2007329546A (en) * 2006-06-06 2007-12-20 Univ Of Electro-Communications Broadband antenna and broadband antenna system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057446A4 (en) * 2019-11-06 2023-12-13 Agc Inc. Distributed antenna and distributed antenna system
US11949160B2 (en) 2019-11-06 2024-04-02 AGC Inc. Distributed antenna and distributed antenna system

Also Published As

Publication number Publication date
JPWO2019150498A1 (en) 2020-11-19
JP6921441B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
TWI565962B (en) Positioning system for indoor and surrounding area, method thereof and mobile apparatus
US9172405B2 (en) Light device and positional information management system
JP2012251959A (en) Radio positioning system and radio positioning device
US10849205B2 (en) Luminaire having a beacon and a directional antenna
JP6473545B1 (en) Transmission system, transmission device and production system
WO2018157059A1 (en) Light fixture positioning system that transmits beacon signals having different spatial resolutions
WO2019098068A1 (en) Beacon network, moving body positioning system, and logistics management system
WO2019150498A1 (en) Antenna composite, antenna structure, and communication system
KR102042121B1 (en) Wireless power transfer system for wirelessly transferring power to power receiving apparatus by monitoring receiving power of power receiving apparatus
JP4551877B2 (en) Wireless marker
KR102673444B1 (en) Apparatus and method for providing different service according to area based on beam book information
JP2998669B2 (en) Antenna device
US20190235045A1 (en) Antenna, wireless transmission device, and position measurement system
WO2018123957A1 (en) Radiation device, positioning system, alarm system, sound pickup system, and display system
JP5282411B2 (en) Wireless positioning system
WO2014132233A2 (en) A method of and system for mounting an antenna in a wireless network
JP6473544B1 (en) Rendering method, receiving apparatus and communication system
JP2005109700A (en) Method and device for detecting position of indoor moving object by radio lan system
JP2004165707A (en) High frequency microstrip line
RU2803915C2 (en) Radiated carrier and integrated communication and navigation network for indoor
KR102042116B1 (en) Method and apparatus for controlling of power in wireless power transmission system
JP4410695B2 (en) Wireless LAN system and antenna module thereof
WO2018193726A1 (en) Signal transmission device, signal transmission system, transmission module placement method, and transmission module usage method
CN117081637A (en) Network independent intelligent reflective surface
JP2016223892A (en) Radio transmitter for position finding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903235

Country of ref document: EP

Kind code of ref document: A1