WO2018123957A1 - Radiation device, positioning system, alarm system, sound pickup system, and display system - Google Patents

Radiation device, positioning system, alarm system, sound pickup system, and display system Download PDF

Info

Publication number
WO2018123957A1
WO2018123957A1 PCT/JP2017/046402 JP2017046402W WO2018123957A1 WO 2018123957 A1 WO2018123957 A1 WO 2018123957A1 JP 2017046402 W JP2017046402 W JP 2017046402W WO 2018123957 A1 WO2018123957 A1 WO 2018123957A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
positioning
signal
power
power supply
Prior art date
Application number
PCT/JP2017/046402
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 順治
華璽 劉
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2018123957A1 publication Critical patent/WO2018123957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • This disclosure relates to a radiation device, a positioning system, an alarm system, a sound collection system, and a display system.
  • Japanese Unexamined Patent Application Publication No. 2016-57166 discloses a lighting apparatus used in a position positioning system.
  • the said lighting fixture is a guide sign installed in ceilings, such as an underpass and the vicinity of a ticket gate of a station, for example.
  • the luminaire not only emits illumination light but also transmits a beacon that is a signal used for positioning (for example, a signal including identification information associated with the luminaire).
  • the transmitted beacon is received by a terminal device such as a smartphone.
  • a terminal device such as a smartphone.
  • an application for positioning is executed, and the application can perform positioning of the own device using the received beacon.
  • the luminaire only transmits a beacon signal, and does not know how each terminal device uses the beacon signal. Whether or not the position information can be acquired or how to use the acquired position information depends on each terminal device.
  • GPS Global Positioning System
  • the radiating device of the present disclosure receives a power supplied from a power source and distributes the power, and radiates a wave using the power distributed from the power unit.
  • a receiving antenna device that receives a radio signal by using one radiating element and power distributed from the power supply unit, wherein the radio signal is used for positioning of the external device radiated from an external device.
  • Receiving antenna device which is a beacon signal.
  • a positioning system of the present disclosure includes the above-described radiation device, and a positioning device that receives the wireless signal received by the reception antenna device of the radiation device and outputs position information of the external device that has radiated the wireless signal. Prepare.
  • An alarm system includes the positioning system, a plurality of illumination devices arranged at a plurality of positions, a sensor that detects a moving object and outputs a detection signal, and a control device that receives the position information and the detection signal.
  • the radiation device is capable of receiving the wireless signal radiated from the external device existing within the detectable range of the sensor, and the control device is a communication that receives the position information and the detection signal.
  • a sound collection system of the present disclosure includes the positioning system described above, a microphone having a predetermined sound collection range angle, and an actuator that changes the direction of the microphone in response to a drive signal, and the positioning device includes the wireless The arrival angle of the signal is measured, and a drive signal for changing the direction of the microphone is generated so that the predetermined sound collection range angle of the microphone includes the direction of the arrival angle.
  • the display system of the present disclosure includes the positioning system, a plurality of illumination devices arranged at a plurality of positions, a scanner that acquires in advance information on the distance and position to a stationary object existing in an installed environment, Receives information on the distance and position to a stationary object, and positional information of the external device measured by the positioning system, displays the stationary object reflecting the information on the distance and the position, and the position And an image processing circuit for displaying the external device reflecting information.
  • a radiating device includes at least one radiating element that radiates a wave such as an electromagnetic wave or a sound wave, and a radio signal that is radiated from an external device such as a terminal device and is a beacon signal used for positioning of the external device. And a receiving antenna device for receiving.
  • the radiation device it is possible to realize a positioning system that receives a beacon signal from each external device and performs positioning of each external device. Since the positioning system acquires the position information of each external device, each terminal device can be actively controlled by transmitting a control signal or the like to each external device.
  • FIG. 1 is a diagram illustrating a configuration example of an application system 100 that wraps the positioning system 1.
  • FIG. 2 is a diagram illustrating an example of the positioning system 1 and the application system 100 in which the person 2 who owns the IC tag 5 and the person 2 having the smartphone 4 exist.
  • FIG. 3 is a diagram illustrating an example of the positioning system 1 and the application system 100 in which a plurality of AGVs 3 each incorporating the IC tag 5 are present.
  • FIG. 4A is an external view of the radiation device 10 which is a lighting device.
  • FIG. 4B is a front view of the radiation device 10.
  • FIG. 5 is a diagram showing a plurality of straight tube type lighting devices 41 a and 41 b and the receiving antenna device 12.
  • FIG. 5 is a diagram showing a plurality of straight tube type lighting devices 41 a and 41 b and the receiving antenna device 12.
  • FIG. 6 is a diagram illustrating an electrical configuration of the radiation device 10.
  • FIG. 7 is a diagram illustrating a configuration of an alternative A type PoE-compatible radiation device 10.
  • FIG. 8 is a diagram showing a configuration of an alternative B type PoE-compatible radiation device 10.
  • FIG. 9 is a diagram illustrating a configuration example of the radiation device 10 including the battery B.
  • FIG. 10 is a diagram illustrating a hardware configuration of the positioning device 20.
  • FIG. 11 is a diagram illustrating a hardware configuration of the control device 30.
  • FIG. 12 is a diagram illustrating an example of the alarm system 101.
  • FIG. 13A is an external view of a radiation device 10b that can output sound.
  • FIG. 13B is a front view of the radiation device 10b.
  • FIG. 13A is an external view of a radiation device 10b that can output sound.
  • FIG. 13B is a front view of the radiation device 10b.
  • FIG. 13A is an external view of a radiation device 10b that can output
  • FIG. 14 is a diagram illustrating an example of the alarm system 102 used when a disaster occurs.
  • FIG. 15A is an external view of a radiation device 10c having an antenna device 43 that can transmit and receive.
  • FIG. 15B is a front transparent view of the radiation device 10c.
  • FIG. 16 is a diagram illustrating an example of the sound collection system 103.
  • FIG. 17 is a diagram schematically illustrating an example of acquiring surrounding video (environment video) using the scanner 81.
  • FIG. 18 is a diagram illustrating a configuration example of the display system 104 having the control device 30.
  • FIG. 19 is a diagram showing an example in which the position of the traveling AGV 3 is displayed on the monitor 82 so as to be superimposed on the environmental video.
  • FIG. 1 shows a configuration example of an application system 100 including a positioning system 1.
  • the positioning system 1 and the application system 100 are typically provided indoors where it is difficult to use GPS, but may be provided outdoors.
  • the positioning system 1 has at least one radiation device 10 and a positioning device 20. It is assumed that at least one IC tag 5 exists in the environment where the positioning system 1 is installed.
  • the IC tag 5 is a transmitter that transmits a radio signal (beacon signal).
  • the IC tag 5 may be provided as one electronic device and carried by a person 2 or may be incorporated in devices such as the automatic guided vehicle 3 and the smartphone 4.
  • Identification information RFID that can uniquely identify each IC tag 5 is given in advance, and the beacon signal includes the identification information.
  • the IC tag 5 radiates a signal wave in accordance with the Bluetooth (registered trademark) Low Energy (BLE) standard. More specifically, the IC tag 5 continuously transmits a signal wave including an advertisement packet for each channel using three channels.
  • the frequency of the signal wave is, for example, a microwave band, but may be a millimeter wave band.
  • the IC tag 5 can emit a 2.4 GHz signal wave at a time interval of, for example, 10 milliseconds to 200 milliseconds, typically 100 milliseconds.
  • the frequency of the signal wave does not need to be constant as long as it can be received by the array antenna 20, and a plurality of frequencies can be hopped.
  • the IC tag 5 can only operate as a so-called “non-connectable beacon” that only broadcasts advertising packets and does not accept connection requests from the positioning device 20 or the like.
  • the IC tag 5 may be a “connectable beacon” that can accept a connection request from the positioning device 20 or the like and can transmit and receive data.
  • the IC tag 5 may be a device that operates according to other standards.
  • a radiating device includes at least one radiating element and a receiving antenna device.
  • the radiating element is, for example, an LED element for illumination. However, the radiating element is not limited to the LED element. More generally, the radiating element is an element that radiates waves such as electromagnetic waves or sound waves.
  • the electromagnetic waves can be visible light, invisible light, or radio waves. In the case of radio waves, the radiating element is a transmitting antenna element.
  • the sound wave can be, for example, a voice, an alarm sound, or the like. In the case of sound waves, the radiating element is, for example, a speaker.
  • the receiving antenna device includes at least one receiving antenna element for receiving a beacon signal.
  • the positioning device 20 receives the beacon signal transmitted from the IC tag 5 using the receiving antenna device of the radiation device 10, and estimates the arrival direction of the beacon signal. Thereby, the current position of the IC tag 5 having specific identification information can be estimated.
  • the positioning device 20 outputs the position information of the IC tag 5 that has transmitted the beacon signal.
  • Application system 100 includes a control device 30.
  • the control device 30 can perform various controls for each IC tag 5 using the position information for each IC tag 5 and the identification information for each IC tag 5 output from the positioning device 20. A specific example of control will be described later.
  • the person 2 and the automatic guided vehicle 3 are mixed, but it is not essential.
  • the automatic guided vehicle is sometimes called “AGV” (Automatic (Guided Vehicle).
  • AGV Automatic (Guided Vehicle).
  • AGV Automatic guided Vehicle
  • FIG. 2 shows an example of the positioning system 1 and the application system 100 provided in a room where the person 2 who owns the IC tag 5 and the person 2 having the smartphone 4 exist.
  • the positioning system 1 is provided with a plurality of radiation devices 10, and any radiation device 10 can receive a beacon signal radiated from the IC tag 5 regardless of the position of the IC tag 5.
  • the control device 30 of the application system 100 can always perform entry management and authentication of the IC tag 5.
  • the control device 30 causes the lighting device of the radiating device 10 to blink red and / or emits an audible alarm from the speaker of the radiating device 10. Can inform the existence of a suspicious person.
  • the control device 30 can guide the person 2 to a specific position based on the position of each IC tag 5 estimated by the positioning device 20.
  • FIG. 3 shows an example of the positioning system 1 and the application system 100 in which a plurality of AGVs 3 each incorporating the IC tag 5 are present.
  • the positioning system 1 is provided with a plurality of radiation devices 10 as in the example of FIG.
  • the radiating device 10 includes a transmitting antenna element as a radiating element.
  • the position of each AGV 3 is estimated by the positioning device 20 of the positioning system 1, and the control device 30 of the application system 100 can guide each AGV 3 to a target position by transmitting a guidance command wirelessly using a transmission antenna element. it can.
  • FIG. 4A is an external view of the radiating device 10 that is a lighting device
  • FIG. 4B is a front view of the radiating device 10.
  • the radiating device 10 includes a plurality of radiating elements 11 a and 11 b, a receiving antenna device 12, and a fixing device 13.
  • the radiating elements 11a and 11b are LED elements for illumination. Note that reference numerals are given only to two radiating elements by way of example.
  • the receiving antenna device 12 has a disk-shaped housing, and a plurality of receiving antenna elements 14a, 14b, and 14c are provided inside the housing.
  • the plurality of reception antenna elements constitute a reception antenna element array 14.
  • the receiving antenna element array 14 is a two-dimensional array.
  • the positioning device 20 can estimate the position on the two-dimensional plane where the IC tag 5 exists using the phase difference of the beacon signal incident on each receiving antenna element.
  • the receiving antenna element array 14 may be a one-dimensional array.
  • the plurality of radiating elements are arranged along the circumference (circumference) of the disk-shaped housing of the receiving antenna device 12.
  • the fixing device 13 is a fixture that fixes the radiation device 10 to a lighting bracket, a ceiling, a beam, a column, or a wall.
  • the shape of the fixing device 13 shown in the figure is an example, and those skilled in the art can change the shape as appropriate.
  • FIGS. 4A and 4B show a radiation device 10 a having a shape different from that of the radiation device 10.
  • the radiating device 10a may include a plurality of straight tube type lighting devices 41a and 41b. Each lighting device may have at least one lighting element. Each lighting device may be a fluorescent lamp, for example, or may be a plurality of arranged LED elements.
  • the receiving antenna device 12 is disposed between the lighting devices 41a and 41b.
  • FIG. 6 shows an electrical configuration of the radiation device 10.
  • the radiating device 10 secures power necessary for operation using the power line PL and communicates with the positioning device 20 using the power line PL. That is, the radiating device 10 performs power line communication (PLC: “Power Line Communication”).
  • PLC Power Line Communication
  • the radiation device 10 includes an outlet plug S1, a receiving antenna device 12, an illumination power circuit 16, a power supply unit 18, and a modem 19a.
  • the outlet plug S1 of the radiation device 10 is connected to an outlet S2 connected to the power line PL.
  • a power supply unit 18 and a modem 19a are connected to the outlet plug S1.
  • the power supply unit 18 receives the power supplied from the power supply and distributes the power to the electronic components in the radiation device 10.
  • the power supply unit 18 has a transformer (not shown) that transforms the AC voltage of the power line PL into a DC voltage that can be used in the radiation device 10.
  • the power supply unit 18 distributes the power obtained by the transformation to the reception antenna device 12, the illumination power circuit 16, and the modem 19a.
  • the transformer can convert an AC voltage into a DC voltage by switching, for example, but since the configuration is well known, a specific description is omitted.
  • the receiving antenna device 12 has a receiving circuit 15.
  • the receiving circuit 15 receives a high-frequency power signal derived from electromagnetic waves incident on the plurality of receiving antenna elements 14a, 14b, and 14c, and outputs it to the modem 19a.
  • the modem 19a performs a modulation process necessary for PLC communication, and transmits the modulated signal to the positioning device 20 via the outlet plug S1, the outlet S2, and the power line PL.
  • the illumination power circuit 16 has radiation elements 11a and 11b, which are LED elements for illumination, and a lighting control circuit 17 that controls lighting of the LED elements.
  • the lighting control circuit 17 may control lighting of each LED element by a lighting switch (not shown), or may control lighting of each LED element by external control.
  • the radiation device 10 can also secure power by a so-called PoE (Power-over-Ethernet) method.
  • PoE Power-over-Ethernet
  • the power line PL is included in the LAN cable.
  • the outlet plug S1 and the outlet S2 can each be RJ-45 connectors corresponding to the PoE system.
  • FIG. 7 and 8 show examples of the configuration of the radiation device 10 corresponding to PoE.
  • FIG. 7 shows a configuration example of the alternative A system
  • FIG. 8 shows a configuration example of the alternative B system.
  • Ethernet registered trademark; the same shall apply hereinafter
  • LAN cable C has four pairs of conductors made up of two copper wires.
  • both power and data are superimposed on a pair of copper wires L1 and L2. Therefore, the power supply unit 18 and the modem 19a are connected to the copper wires L1 and L2, respectively.
  • the alternative B system shown in FIG. 8 power and data are superimposed on a pair of different conductors. Therefore, the power supply unit 18 is connected to the copper wire L3, and the modem 19a is connected to a copper wire L4 different from the copper wire L3.
  • the configurations of the receiving antenna device 12 and the illumination power circuit 16 are as described with reference to FIG. Therefore, the re-explanation is omitted.
  • the radiation device 10 may secure power from a built-in battery.
  • FIG. 9 shows a configuration example of the radiation device 10 including the battery B. Except for securing power from the battery B, the configuration of FIG. 9 is the same as the configuration of FIG.
  • the line through which power is transmitted is a category of “power supply” that supplies power to the power supply unit 18 in both cases of PLC communication and PoE.
  • the PoE hub, battery B is also a power source.
  • FIG. 10 shows a hardware configuration of the positioning device 20.
  • the positioning device 20 includes a central processing unit (CPU) 21, a memory 22, an interface (I / F) device 23, and a communication circuit 24, which are connected by an internal bus 25.
  • the CPU 21 measures the position of each IC tag 5 by processing described later, and generates position information indicating the measured position.
  • the memory 22 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 21.
  • the communication circuit 24 is a communication circuit having one or more communication connectors, for example.
  • the I / F device 23 is connected to the receiving antenna device 12 by wire. More specifically, the I / F device 23 is connected to the outputs of the plurality of receiving antenna elements 14a, 14b, 14c, etc. of the receiving antenna device 12, and the high frequency generated from the electromagnetic wave received by each antenna element. Receive electrical signals.
  • the communication circuit 24 is connected to the control device 30 via, for example, a wired communication line that performs Ethernet standard wired communication.
  • positioning process performed by the positioning device 20 for measuring the position of the IC tag 5
  • Various positioning processes for objects on a plane or in space are known.
  • the positioning device 20 measures the position of the IC tag 5 using one of these positioning processes or a combination of a plurality of positioning processes.
  • the positioning process will be exemplified.
  • the positioning device 20 measures the direction of arrival of the radio signal transmitted by the IC tag 5 and determines the position of the moving body (AOA (Angle-Of-Arrival) method).
  • AOA Angle-Of-Arrival
  • the AOA method when the signal transmitted by the IC tag 5 is received by the receiving antenna device 12, the arrival angle of the arrival radio wave is measured based on the reference direction (for example, the front direction of the receiving antenna), thereby the IC tag 5
  • the position of the IC tag 5 can be determined with high accuracy when there is no obstacle from the base station to the terminal and the line of sight is clear.
  • a phased array antenna that controls the beam direction and radiation pattern by adjusting the phase of the current flowing through each antenna element can also be used.
  • the direction of the IC tag 5 relative to the receiving antenna device 12 can be specified by the single receiving antenna device 12.
  • the position of the IC tag 5 can be determined by one receiving antenna device 12. For example, when the direction of the IC tag 5 with respect to the receiving antenna device 12 arranged on the ceiling surface at a predetermined height is specified, if the height of the IC tag 5 with respect to the floor surface is known or estimated, the IC tag It is possible to determine the position of 5. For this reason, it is also possible to position the IC tag 5 with one receiving antenna device 12.
  • the positioning device 20 receives the radio signal emitted from the IC tag 5 by the reception antenna device 12, and determines the position of the moving body from the difference in reception time at each antenna element of the reception antenna device 12 (TDOA (Time Difference Of Arrival method).
  • TDOA Time Difference Of Arrival method
  • the radiating device 10 having the receiving antenna device 12 functions as a base station and must accurately measure the reception time. It is necessary to perform accurate time synchronization between the radiation devices 10 in nanosecond units.
  • the positioning device 20 uses the fact that the position of the receiving antenna device 12 of the radiating device 10 is known and the radio wave is attenuated according to the distance, thereby receiving the radio signal received by the IC tag 5 To determine the position (RSSI (Received Signal Signal Strength Indication) method). However, since the strength of the received signal is affected by multipath, a distance attenuation model is required for each environment in which the positioning system 1 is introduced in order to calculate the distance (position).
  • RSSI Receiveived Signal Signal Strength Indication
  • the positioning device 20 captures an image (for example, QR code (registered trademark)) to which the identification information of the IC tag 5 is added with a camera, and the position of the camera, the direction in which the camera is facing, and within the captured image
  • the position of the IC tag 5 can also be determined based on the position of the IC tag 5.
  • the position measurement accuracy varies depending on the positioning process.
  • the position measurement accuracy is determined by the angular resolution of the antenna and the distance between the object to be measured, and 10 cm is realized in a general building.
  • the positioning process (c) there is a possibility that an error of several meters in a general room or about 1 m even under good conditions may occur due to a change in radio wave intensity due to interference of radio waves emitted from the IC tag.
  • the positioning error depends on the number of pixels of the image sensor, spatial resolution, and distortion caused by the lens. In addition, a relatively heavy processing such as object recognition is required.
  • the positioning process (a) described above is excellent at the present time.
  • the positioning system 1 and the application system 100 of the present disclosure may be constructed using any one of the positioning processes (b) to (d).
  • FIG. 11 shows the hardware configuration of the control device 30.
  • the control device 30 has a central processing unit (CPU) 31, a memory 32, a map information database (DB) 33, and a communication circuit 34, which are connected by an internal bus 35.
  • CPU central processing unit
  • DB map information database
  • the CPU 31 is a signal processing circuit that generates a guidance command for guiding the individual person 2 or the AGV 3 having the IC tag 5 by a process described later.
  • the CPU 31 is a computer configured by a semiconductor integrated circuit.
  • the memory 32 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 31.
  • the memory 32 stores position information of each IC tag 5 received from the positioning device 20.
  • the CPU 31 updates information in the memory 32.
  • the communication circuit 34 is, for example, a communication circuit that has one or more communication connectors and performs Ethernet standard wired communication.
  • the communication circuit 34 acquires position information indicating the position of each IC tag 5 from the positioning device 20.
  • the communication circuit 27 transmits the guidance instruction
  • the map information DB 33 holds information such as the layout of the environment in which the application system 100 is introduced, the passable area, the shortest route from one partition to another in the virtually set environment, and the detour route. ing.
  • FIG. 12 shows an example of the alarm system 101.
  • the alarm system 101 is an example of the application system 100.
  • the alarm system 101 can be installed, for example, in a research facility where only persons who are qualified to enter the room can pass.
  • a sensor 50 is further provided in the positioning system 1 and the application system 100 of FIG.
  • the sensor 50 is a so-called human sensor, and detects the location of the moving person 2 and outputs a detection signal.
  • the sensor 50 detects a moving body using, for example, infrared rays, ultrasonic waves, or visible light.
  • the detection signal is transmitted to the control device 30, and the control device 30 receives the detection signal via the communication circuit 34.
  • the radiation device 10 is installed at a position where the beacon signal radiated from the IC tag 5 existing within the detectable range of the sensor 50 can be received. Thereby, synchronizing with detection of the person 2 by the sensor 50, the radiation device 10 can receive the beacon signal from the IC tag 5 owned by the person 2 or the smartphone 4 incorporating the IC tag 5.
  • the control device 30 holds in advance in the memory 32 the identification information of the IC tag 5 that has been lent only to persons permitted to enter and pass through the environment of the alarm system 101 as a white list.
  • the communication circuit 34 of the control device 30 receives the detection signal output from the sensor 50.
  • the CPU 31 determines whether or not the position information of the IC tag 5 has been received from the positioning device 20.
  • the following processing is further executed. That is, the CPU 31 determines whether or not the identification information included in the received beacon signal exists in the white list.
  • the identification information exists in the white list, since the person is an authenticated person, no special processing is performed.
  • the CPU 31 does not receive the position information when the detection signal is received from the sensor 50, the CPU 31 has received the position information, but the position information indicates that the IC tag 5 exists within the detectable range of the sensor 50. If not, or if the identification information is not in the white list, an alarm is issued. This is because a person other than the person who has been authenticated enters the facility and passes.
  • the control device 30 causes the lighting device (LED element) of the one or more radiation devices 10 associated with the detectable range of the sensor 50 to blink.
  • “Associated” typically means being in the immediate vicinity of the sensor 50 or at a predetermined distance.
  • the CPU 31 may blink the lighting device with a predetermined color, for example, red.
  • FIG. 12 shows a radiation device 10b capable of outputting sound.
  • FIG. 13A is an external view of the radiation device 10b capable of outputting sound, and
  • FIG. 13B is a front view of the radiation device 10b.
  • the radiation device 10b has two speakers 42a and 42b. Since the receiving antenna device 12 and the fixing device 13 are the same as the radiation device 10 shown in FIGS. 4A and 4B, the description thereof is omitted. Audio signals output from the speakers 42a and 42b can be acquired by PLC or Ethernet standard communication. Alternatively, the radiation device 10b may be connected to the control device 30 via a cable that transmits an audio signal.
  • FIG. 14 shows an example of the alarm system 102 used when a disaster occurs.
  • the alarm system 102 described below may be regarded as the alarm system 101 (FIG. 12) that operates in a specific environment, or may be regarded as an independent system from the alarm system 101. In this embodiment, the former example will be described.
  • the emergency signal is an alarm signal when a known disaster prevention system (not shown) automatically detects the occurrence of a disaster, or an alarm signal issued when a person presses the disaster occurrence button.
  • the CPU 31 can recognize a predetermined signal as an emergency signal.
  • the CPU 31 determines the presence or absence of the detection signal from the sensor 50 or the presence or absence of the IC tag 5 within the detectable range of the sensor 50.
  • the CPU 31 turns on at least one illumination device associated with the guide route from the position to a predetermined evacuation position.
  • the guide route is determined in advance for each specific position or section in the facility, for example, and is stored in the map information DB 33.
  • route is also stored in map information DB33.
  • CPU31 reads the information of the path
  • FIG. 14 shows a plurality of patterns 62 of the radiating device 10 that are lit along the guidance path 60.
  • the radiating device 10b (FIGS. 13A and 13B) may be used in combination to notify by voice that the guide path 60 is indicated by the lighting device.
  • the alarm system 102 can accurately guide and evacuate a person when receiving an emergency signal.
  • the guidance route 60 may be displayed on the display of the smartphone 4.
  • a transmission antenna device for transmitting information from the control device 30 to the smartphone 4 may be provided.
  • the control device 30 can push information on the guidance route 60 to the smartphone 4.
  • the information on the guide route 60 may include information on a map on which the guide route 60 is displayed in a superimposed manner.
  • moves on the smart phone 4 may access the control apparatus 30 regularly using the communication function of the smart phone 4.
  • FIG. When information on the guidance route 60 is provided from the control device 30, the application program can acquire the information and display the evacuation route 60 on the display of the smartphone 4.
  • FIG. 15A is an external view of a radiation device 10c having an antenna device 43 that can transmit and receive
  • FIG. 15B is a front transparent view of the radiation device 10c.
  • the antenna device 43 includes a transmission antenna element array 44 in addition to the reception antenna element array 14.
  • the transmission antenna element array 44 includes a plurality of transmission antenna elements 44a, 44b, 44c and the like.
  • the control device 30 can transmit information on the guide route 60 to the smartphone 4 or the like. Thereby, the control apparatus 30 can make the display of the smart phone 4 display the present position and the guidance route 60 from the current position to the evacuation exit.
  • transmission of the information from the control apparatus 30 to the smart phone 4 using the radiation apparatus 10c is not restricted at the time of emergency evacuation. For example, you may utilize in order to display the guidance route in a facility.
  • FIG. 16 shows an example of the sound collection system 103.
  • the sound collection system 103 is an example of the application system 100.
  • the sound collection system 103 makes it possible to direct a directional microphone toward the person having the IC tag 5 and collect the sound of the person.
  • variable direction microphone system 70 is further provided in the positioning system 1 and the application system 100 of FIG.
  • the direction variable microphone system 70 includes a microphone 71 and an actuator 72.
  • the microphone 71 is a directional microphone having a predetermined sound collection range angle.
  • a microphone of about ⁇ 60 degrees with respect to the front is called a unidirectional microphone, and a microphone of about ⁇ 30 degrees is called a super unidirectional microphone.
  • the microphone 71 is a super unidirectional microphone, but a unidirectional microphone may be used.
  • Actuator 72 changes the direction of microphone 71 in response to an external drive signal.
  • FIG. 16 shows an example in which the actuator 72 changes the direction of the microphone 71 along one direction.
  • two actuators may be provided to change the direction of the microphone 71 in two directions.
  • a driving signal for driving the actuator 72 is generated by the positioning device 20 or the control device 30.
  • the positioning device 20 measures the arrival angle of the beacon signal of the IC tag 5 and generates a drive signal for changing the direction of the microphone 71 so that the sound collection range angle of the microphone includes the direction of the arrival angle. This will be described in more detail.
  • the positioning device 20 holds in advance information on the distance and direction from the variable direction microphone system 70 to each radiation device 10 (vector information A).
  • the positioning device 20 estimates the direction and distance from a certain radiation device 10 to a specific person 1b having the IC tag 5. Thereby, the vector information B from the said radiation
  • the positioning device 20 determines the driving amount of the actuator 72 based on the direction information indicated by the acquired vector information C, and generates a driving signal for driving the actuator 72 by the driving amount.
  • the actuator 72 may be driven only in the horizontal (left / right) direction or only in the vertical (up / down) direction.
  • the sound collection system 103 for example, when it is desired to record the remarks of a specific person 1b in a conference hall, if the position of the person 1b is estimated using the identification ID of the IC tag 5 owned by the person 1b, The microphone 71 can be directed in that direction.
  • the sound collection system 103 described above is an example of a system that drives a device (control target) in the direction of the IC tag 5 that emits a specific identification ID.
  • a spotlight may be driven to shine light in the direction of the IC tag 5, or an air conditioner air outlet or louver may be driven to send air in the direction of the IC tag 5. .
  • FIG. 17 schematically shows an example of acquiring surrounding images (environmental images) using the scanner 81.
  • the scanner 81 is mounted on, for example, a self-propelled vehicle 80 and moves within a predetermined range to capture an environmental image.
  • the scanner 81 obtains information on the distance and position to each stationary object existing in the traveling environment.
  • the information on the distance and position to each stationary object acquired by the scanner 81 is accumulated in the map information DB 33 of the control device 30, for example.
  • FIG. 18 shows a configuration example of the display system 104 having the control device 30.
  • a monitor 82 is connected to the control device 30.
  • the control device 30 receives and accumulates information acquired by the scanner 81, performs the following image processing, and displays a video on the monitor 82.
  • the monitor 82 is not a component of the control device 30, but the monitor 82 can be a part of the control device 30 when the control device 30 is realized by a laptop PC, for example.
  • the CPU 31 of the control device 30 receives the position information of the IC tag 5 measured by the positioning device 20 via the communication circuit 34. Furthermore, CPU31 reads the information of the distance and position to each stationary object from map information DB33. Then, the CPU 31 displays a predetermined image at the current position of the IC tag 5, and further superimposes and displays a stationary object present at the position.
  • FIG. 19 shows an example in which the position of the traveling AGV 3 is displayed on the monitor 82 while being superimposed on the environment video.
  • the positioning device 20 receives the beacon signal from the IC tag 5 of the AGV 3 every moment, estimates the position, and transmits the position information to the control device 30.
  • the CPU 31 sequentially switches and displays the environmental video as the background image while sequentially updating the position of the AGV 3 on the monitor 82. If an environmental video is acquired in advance, the administrator can visually check the current position of the AGV 3 without installing a camera permanently.
  • the CPU 31 performs image processing. However, image processing may be performed using a dedicated chip circuit that performs image processing.
  • the chip circuit that performs the above-described image processing is referred to as an image processing circuit in this specification.
  • the radiation apparatus, the positioning system, and the application system including the positioning system of the present disclosure can be widely used for estimation of the position of a moving body that moves indoors or outdoors, guidance using the position, and the like.
  • 1 positioning system 10 radiating device, 11a, 11b radiating element, 14 receiving antenna element array, 14a, 14b receiving antenna element, 15 receiving circuit, 16 lighting power circuit, 17 lighting control circuit, 19a modem, 19b, 19c communication circuit , 100 application system, 101, 102 alarm system, 103 sound collection system, 104 display system, PL power line

Abstract

Provided is a positioning system, etc., with which it is possible to process position information without relying on terminal devices in indoor spaces, etc., where it is difficult to use GPS. A radiation device 10 used in a positioning system 1 has a power source unit 18 for receiving electric power supplied from a power source and distributing the electric power, at least one radiation element 11a for using the electric power distributed by the power source unit 18 to radiate waves, and a reception antenna device 12 for using the electric power distributed by the power source unit 18 to receive a wireless signal. The wireless signal is a beacon signal that is emitted from an external device 5 and that is used in measuring the position of the external device 5.

Description

放射装置、測位システム、警報システム、収音システムおよび表示システムRadiation device, positioning system, alarm system, sound collection system and display system
 本開示は、放射装置、測位システム、警報システム、収音システムおよび表示システムに関する。 This disclosure relates to a radiation device, a positioning system, an alarm system, a sound collection system, and a display system.
 特開2016-57166号公報は、位置測位システムに用いられる照明器具を開示する。当該照明器具は、たとえば、地下道、駅の改札付近等の天井に設置される案内サインである。当該照明器具は、照明光を発するだけでなく、位置測位に用いられる信号(例えば、自器具に対応づけられた識別情報を含む信号)であるビーコンを送信する。 Japanese Unexamined Patent Application Publication No. 2016-57166 discloses a lighting apparatus used in a position positioning system. The said lighting fixture is a guide sign installed in ceilings, such as an underpass and the vicinity of a ticket gate of a station, for example. The luminaire not only emits illumination light but also transmits a beacon that is a signal used for positioning (for example, a signal including identification information associated with the luminaire).
 送信されたビーコンは、スマートフォン等の端末装置によって受信される。当該端末装置では位置測位用のアプリケーションが実行されており、アプリケーションは受信したビーコンを用いて自装置の位置測位を行うことができる。 The transmitted beacon is received by a terminal device such as a smartphone. In the terminal device, an application for positioning is executed, and the application can perform positioning of the own device using the received beacon.
特開2016-57166号公報Japanese Unexamined Patent Publication No. 2016-57166
 上述の先行技術文献では、照明器具はビーコン信号を送信するだけであり、各端末装置がどのようにビーコン信号を利用するかについては関知しない。位置情報を取得できるかどうか、あるいは、取得した位置情報を如何に利用するかは、各端末装置に依存する。 In the above-described prior art documents, the luminaire only transmits a beacon signal, and does not know how each terminal device uses the beacon signal. Whether or not the position information can be acquired or how to use the acquired position information depends on each terminal device.
 屋内等のGPS(Global Positioning System)の利用が困難な屋内等において、各端末装置に依存せず、位置情報の処理を行うことが可能な測位システムが必要とされている。 There is a need for a positioning system that can process location information without relying on each terminal device in indoors where it is difficult to use GPS (Global Positioning System).
 本開示の放射装置は、例示的な実施形態において、電源から供給された電力を受けて前記電力を分配する電源ユニットと、前記電源ユニットから分配された電力を利用して波を放射する、少なくとも1つの放射素子と、前記電源ユニットから分配された電力を利用して無線信号を受信する受信アンテナ装置であって、前記無線信号は、外部機器から放射された、前記外部機器の測位に利用されるビーコン信号である、受信アンテナ装置とを備える。 In an exemplary embodiment, the radiating device of the present disclosure receives a power supplied from a power source and distributes the power, and radiates a wave using the power distributed from the power unit. A receiving antenna device that receives a radio signal by using one radiating element and power distributed from the power supply unit, wherein the radio signal is used for positioning of the external device radiated from an external device. Receiving antenna device, which is a beacon signal.
 本開示の測位システムは、上記の放射装置と、前記放射装置の前記受信アンテナ装置によって受信された前記無線信号を受け取り、前記無線信号を放射した前記外部機器の位置情報を出力する測位装置とを備える。 A positioning system of the present disclosure includes the above-described radiation device, and a positioning device that receives the wireless signal received by the reception antenna device of the radiation device and outputs position information of the external device that has radiated the wireless signal. Prepare.
 本開示の警報システムは、上記の測位システムと、複数の位置に配置された複数の照明装置と、動体を検出して検出信号を出力するセンサと、前記位置情報および前記検出信号を受け取る制御装置とを備える。前記放射装置は、前記センサの検出可能範囲内に存在する前記外部機器から放射された前記無線信号を受信することが可能であり、前記制御装置は、前記位置情報および前記検出信号を受信する通信装置と、前記センサからの前記検出信号の受信に応答して、前記受信アンテナ装置が前記センサの検出可能範囲内に外部機器が存在するかどうかを判定する演算回路であって、前記検出可能範囲内に外部機器が存在しない場合には、前記複数の照明装置のうち、前記検出可能範囲に関連付けられた照明装置を点灯させる演算回路とを有する。 An alarm system according to the present disclosure includes the positioning system, a plurality of illumination devices arranged at a plurality of positions, a sensor that detects a moving object and outputs a detection signal, and a control device that receives the position information and the detection signal. With. The radiation device is capable of receiving the wireless signal radiated from the external device existing within the detectable range of the sensor, and the control device is a communication that receives the position information and the detection signal. And an arithmetic circuit for determining whether an external device is present within the detectable range of the sensor in response to reception of the detection signal from the device and the sensor, wherein the detectable range When there is no external device, an arithmetic circuit for lighting a lighting device associated with the detectable range among the plurality of lighting devices.
 本開示の収音システムは、上記の測位システムと、所定の収音範囲角度を有するマイクロフォンと、駆動信号に応答して前記マイクの向きを変化させるアクチュエータとを備え、前記測位装置は、前記無線信号の到来角度を測定して、前記マイクの前記所定の収音範囲角度が前記到来角度の方向を含むよう、前記マイクの向きを変化させる駆動信号を生成する。 A sound collection system of the present disclosure includes the positioning system described above, a microphone having a predetermined sound collection range angle, and an actuator that changes the direction of the microphone in response to a drive signal, and the positioning device includes the wireless The arrival angle of the signal is measured, and a drive signal for changing the direction of the microphone is generated so that the predetermined sound collection range angle of the microphone includes the direction of the arrival angle.
 本開示の表示システムは、上記の測位システムと、複数の位置に配置された複数の照明装置と、設置された環境に存在する静止物までの距離および位置の情報を予め取得するスキャナと、前記静止物までの距離および位置の情報、および、前記測位システムによって測定された前記外部機器の位置情報を受け取り、前記距離および前記位置の情報を反映して前記静止物を表示し、かつ、前記位置情報を反映して前記外部機器を表示する画像処理回路とを備える。 The display system of the present disclosure includes the positioning system, a plurality of illumination devices arranged at a plurality of positions, a scanner that acquires in advance information on the distance and position to a stationary object existing in an installed environment, Receives information on the distance and position to a stationary object, and positional information of the external device measured by the positioning system, displays the stationary object reflecting the information on the distance and the position, and the position And an image processing circuit for displaying the external device reflecting information.
 本開示にかかる放射装置は、電磁波または音波等の波を放射する少なくとも1つの放射素子と、端末装置等の外部機器から放射された、外部機器の測位に利用されるビーコン信号である無線信号を受信する受信アンテナ装置とを備えている。当該放射装置を利用することにより、各外部機器からのビーコン信号を受信して各外部機器の測位を行う測位システムを実現できる。測位システムが各外部機器の位置情報を取得するため、各外部機器に制御信号等を送信することにより、積極的に各端末装置を制御することができる。 A radiating device according to the present disclosure includes at least one radiating element that radiates a wave such as an electromagnetic wave or a sound wave, and a radio signal that is radiated from an external device such as a terminal device and is a beacon signal used for positioning of the external device. And a receiving antenna device for receiving. By using the radiation device, it is possible to realize a positioning system that receives a beacon signal from each external device and performs positioning of each external device. Since the positioning system acquires the position information of each external device, each terminal device can be actively controlled by transmitting a control signal or the like to each external device.
図1は、測位システム1を包む応用システム100の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of an application system 100 that wraps the positioning system 1. 図2は、ICタグ5を所有する人2、およびスマートフォン4を有する人2が存在する測位システム1および応用システム100の例を示す図である。FIG. 2 is a diagram illustrating an example of the positioning system 1 and the application system 100 in which the person 2 who owns the IC tag 5 and the person 2 having the smartphone 4 exist. 図3は、各々にICタグ5が組み込まれた複数のAGV3が存在する測位システム1および応用システム100の例を示す図である。FIG. 3 is a diagram illustrating an example of the positioning system 1 and the application system 100 in which a plurality of AGVs 3 each incorporating the IC tag 5 are present. 図4Aは、照明装置である放射装置10の外観図である。FIG. 4A is an external view of the radiation device 10 which is a lighting device. 図4Bは、放射装置10の正面図である。FIG. 4B is a front view of the radiation device 10. 図5は、直管型の複数の照明装置41aおよび41bと、受信アンテナ装置12とを示す図である。FIG. 5 is a diagram showing a plurality of straight tube type lighting devices 41 a and 41 b and the receiving antenna device 12. 図6は、放射装置10の電気的な構成を示す図である。FIG. 6 is a diagram illustrating an electrical configuration of the radiation device 10. 図7は、オルタナティブA方式のPoE対応放射装置10の構成を示す図である。FIG. 7 is a diagram illustrating a configuration of an alternative A type PoE-compatible radiation device 10. 図8は、オルタナティブB方式のPoE対応放射装置10の構成を示す図である。FIG. 8 is a diagram showing a configuration of an alternative B type PoE-compatible radiation device 10. 図9は、バッテリBを内蔵する放射装置10の構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of the radiation device 10 including the battery B. 図10は、測位装置20のハードウェアの構成を示す図である。FIG. 10 is a diagram illustrating a hardware configuration of the positioning device 20. 図11は、制御装置30のハードウェアの構成を示す図である。FIG. 11 is a diagram illustrating a hardware configuration of the control device 30. 図12は、警報システム101の例を示す図である。FIG. 12 is a diagram illustrating an example of the alarm system 101. 図13Aは、音声を出力可能な放射装置10bの外観図である。FIG. 13A is an external view of a radiation device 10b that can output sound. 図13Bは、放射装置10bの正面図である。FIG. 13B is a front view of the radiation device 10b. 図14は、災害発生時に利用される警報システム102の例を示す図である。FIG. 14 is a diagram illustrating an example of the alarm system 102 used when a disaster occurs. 図15Aは、送信および受信が可能なアンテナ装置43を有する放射装置10cの外観図である。FIG. 15A is an external view of a radiation device 10c having an antenna device 43 that can transmit and receive. 図15Bは、放射装置10cの正面透過図である。FIG. 15B is a front transparent view of the radiation device 10c. 図16は、収音システム103の例を示す図である。FIG. 16 is a diagram illustrating an example of the sound collection system 103. 図17は、スキャナ81を用いて周囲の映像(環境映像)を取得する例を模式的に示す図である。FIG. 17 is a diagram schematically illustrating an example of acquiring surrounding video (environment video) using the scanner 81. 図18は、制御装置30を有する表示システム104の構成例を示す図である。FIG. 18 is a diagram illustrating a configuration example of the display system 104 having the control device 30. 図19は、走行するAGV3の位置を、環境映像に重畳してモニタ82に表示した例を示す図である。FIG. 19 is a diagram showing an example in which the position of the traveling AGV 3 is displayed on the monitor 82 so as to be superimposed on the environmental video.
 以下、添付の図面を参照しながら、本開示にかかる放射装置、測位システム、および当該測位システムを利用した応用システムを説明する。本明細書では、応用システムとして警報システム、収音システムおよび表示システムを説明する。 Hereinafter, a radiation device, a positioning system, and an application system using the positioning system according to the present disclosure will be described with reference to the accompanying drawings. In this specification, an alarm system, a sound collection system, and a display system will be described as application systems.
 まず図1から図3を参照しながら、測位システムおよび応用システムの概要を説明する。 First, an overview of the positioning system and application system will be described with reference to FIGS.
 図1は、測位システム1を含む応用システム100の構成例を示す。測位システム1および応用システム100は、典型的にはGPSの利用が困難な屋内に設けられるが、屋外に設けられてもよい。 FIG. 1 shows a configuration example of an application system 100 including a positioning system 1. The positioning system 1 and the application system 100 are typically provided indoors where it is difficult to use GPS, but may be provided outdoors.
 測位システム1は、少なくとも1台の放射装置10と、測位装置20とを有する。測位システム1が設置された環境には、少なくとも1つのICタグ5が存在するとする。 The positioning system 1 has at least one radiation device 10 and a positioning device 20. It is assumed that at least one IC tag 5 exists in the environment where the positioning system 1 is installed.
 ICタグ5は無線信号(ビーコン信号)を送信する送信器である。ICタグ5は、1個の電子機器として設けられて人2が携行してもよいし、無人搬送車3、スマートフォン4等の機器に組み込まれてもよい。ICタグ5には、各々を一意に識別することが可能な識別情報(RFID)が予め付与されており、ビーコン信号には当該識別情報が含まれている。 The IC tag 5 is a transmitter that transmits a radio signal (beacon signal). The IC tag 5 may be provided as one electronic device and carried by a person 2 or may be incorporated in devices such as the automatic guided vehicle 3 and the smartphone 4. Identification information (RFID) that can uniquely identify each IC tag 5 is given in advance, and the beacon signal includes the identification information.
 本実施形態において、ICタグ5は、ブルートゥース(登録商標)・ロー・エナジー(BLE)規格に従って信号波を放射する。より具体的には、ICタグ5は、3つのチャネルを用いて、チャネルごとにアドバタイズメント・パケットを含む信号波を定期的に送信し続ける。信号波の周波数は、例えばマイクロ波帯域であるが、ミリ波帯域であってもよい。ICタグ5からは、例えば10ミリ秒以上200ミリ秒以下の時間間隔、典型的には100ミリ秒の時間間隔で2.4ギガヘルツ帯の信号波が放射され得る。信号波の周波数は、アレイ・アンテナ20で受信できる限り、一定である必要はなく、複数の周波数をホッピングし得る。 In this embodiment, the IC tag 5 radiates a signal wave in accordance with the Bluetooth (registered trademark) Low Energy (BLE) standard. More specifically, the IC tag 5 continuously transmits a signal wave including an advertisement packet for each channel using three channels. The frequency of the signal wave is, for example, a microwave band, but may be a millimeter wave band. The IC tag 5 can emit a 2.4 GHz signal wave at a time interval of, for example, 10 milliseconds to 200 milliseconds, typically 100 milliseconds. The frequency of the signal wave does not need to be constant as long as it can be received by the array antenna 20, and a plurality of frequencies can be hopped.
 アドバタイズメント・パケットには、ICタグ5を一意に特定する識別情報(RFID)として機能する「パブリック・デバイス・アドレス」または「ランダム・デバイス・アドレス」が記述されている。これにより、自身の存在を周囲に知らせることができる。 In the advertisement packet, “public device address” or “random device address” that functions as identification information (RFID) that uniquely identifies the IC tag 5 is described. Thereby, the presence of itself can be notified to the surroundings.
 本実施形態では、ICタグ5は、アドバタイジング・パケットのブロードキャストのみを行い、測位装置20等からの接続要求を受け容れない、いわゆる「ノン・コネクタブル・ビーコン」として動作し得る。しかしながらICタグ5は、測位装置20等からの接続要求を受け容れて、データの送受信を行うことが可能な「コネクタブル・ビーコン」であってもよい。 In this embodiment, the IC tag 5 can only operate as a so-called “non-connectable beacon” that only broadcasts advertising packets and does not accept connection requests from the positioning device 20 or the like. However, the IC tag 5 may be a “connectable beacon” that can accept a connection request from the positioning device 20 or the like and can transmit and receive data.
 なお、ICタグ5は、他の規格に従って動作する機器であってもよい。 The IC tag 5 may be a device that operates according to other standards.
 放射装置10は、所定の固定具を用いて照明ブラケット等に固定される。本開示にかかる放射装置は、少なくとも1つの放射素子と、受信アンテナ装置とを備えている。放射素子は、たとえば照明用のLED素子である。ただし放射素子はLED素子には限られない。より一般的に説明すると、放射素子は、電磁波または音波等の波を放射する素子である。電磁波は、可視光、不可視光、または電波であり得る。電波の場合、放射素子は送信アンテナ素子である。音波は、たとえば音声、警報音等であり得る。音波の場合、放射素子はたとえばスピーカである。受信アンテナ装置はビーコン信号を受信するための少なくとも1つの受信アンテナ素子を備えている。 The radiation device 10 is fixed to a lighting bracket or the like using a predetermined fixture. A radiating device according to the present disclosure includes at least one radiating element and a receiving antenna device. The radiating element is, for example, an LED element for illumination. However, the radiating element is not limited to the LED element. More generally, the radiating element is an element that radiates waves such as electromagnetic waves or sound waves. The electromagnetic waves can be visible light, invisible light, or radio waves. In the case of radio waves, the radiating element is a transmitting antenna element. The sound wave can be, for example, a voice, an alarm sound, or the like. In the case of sound waves, the radiating element is, for example, a speaker. The receiving antenna device includes at least one receiving antenna element for receiving a beacon signal.
 測位装置20は、ICタグ5から送信されるビーコン信号を、放射装置10の受信アンテナ装置を用いて受信し、ビーコン信号の到来方向を推定する。これにより、特定の識別情報を有するICタグ5の現在の位置を推定することができる。測位装置20は、ビーコン信号を送信したICタグ5の位置情報を出力する。 The positioning device 20 receives the beacon signal transmitted from the IC tag 5 using the receiving antenna device of the radiation device 10, and estimates the arrival direction of the beacon signal. Thereby, the current position of the IC tag 5 having specific identification information can be estimated. The positioning device 20 outputs the position information of the IC tag 5 that has transmitted the beacon signal.
 応用システム100は、制御装置30を有する。制御装置30は、測位装置20から出力された、ICタグ5ごとの位置情報と、各ICタグ5の識別情報とを用いて、ICタグ5ごとに種々の制御を行うことができる。制御の具体例は後述する。 Application system 100 includes a control device 30. The control device 30 can perform various controls for each IC tag 5 using the position information for each IC tag 5 and the identification information for each IC tag 5 output from the positioning device 20. A specific example of control will be described later.
 図1では、人2と無人搬送車3とが混在しているが、混在することは必須ではない。なお、無人搬送車は「AGV」(Automatic Guided Vehicle)と呼ばれることがある。以下、本明細書では、無人搬送車をAGVと呼ぶ。 In FIG. 1, the person 2 and the automatic guided vehicle 3 are mixed, but it is not essential. The automatic guided vehicle is sometimes called “AGV” (Automatic (Guided Vehicle). Hereinafter, in this specification, the automatic guided vehicle is referred to as AGV.
 図2は、ICタグ5を所有する人2、およびスマートフォン4を有する人2が存在する部屋に設けられた測位システム1および応用システム100の例を示す。測位システム1には複数の放射装置10が設けられており、ICタグ5がどの位置に存在したとしても、いずれかの放射装置10がICタグ5から放射されるビーコン信号を受信することができる。応用システム100の制御装置30は、測位装置20によって推定された各ICタグ5の位置に基づいて、当該ICタグ5の入室管理、認証を常時行うことができる。入室する資格が与えられていないICタグ5が存在すると、制御装置30は、放射装置10の照明装置を赤色に点滅させ、および/または、放射装置10のスピーカから警報音を発することにより、周囲の人に不審者の存在を知らせることができる。または制御装置30は、測位装置20によって推定された各ICタグ5の位置に基づいて当該人2を、特定の位置に誘導することができる。 FIG. 2 shows an example of the positioning system 1 and the application system 100 provided in a room where the person 2 who owns the IC tag 5 and the person 2 having the smartphone 4 exist. The positioning system 1 is provided with a plurality of radiation devices 10, and any radiation device 10 can receive a beacon signal radiated from the IC tag 5 regardless of the position of the IC tag 5. . Based on the position of each IC tag 5 estimated by the positioning device 20, the control device 30 of the application system 100 can always perform entry management and authentication of the IC tag 5. When there is an IC tag 5 that is not qualified to enter the room, the control device 30 causes the lighting device of the radiating device 10 to blink red and / or emits an audible alarm from the speaker of the radiating device 10. Can inform the existence of a suspicious person. Alternatively, the control device 30 can guide the person 2 to a specific position based on the position of each IC tag 5 estimated by the positioning device 20.
 図3は、各々にICタグ5が組み込まれた複数のAGV3が存在する測位システム1および応用システム100の例を示す。測位システム1に複数の放射装置10が設けられていることは、図2の例と同じである。本例においては、放射装置10は、放射素子として送信アンテナ素子を有している。測位システム1の測位装置20によって各AGV3の位置が推定され、応用システム100の制御装置30は送信アンテナ素子を利用して無線により誘導指令を送信して各AGV3を目的の位置まで誘導することができる。 FIG. 3 shows an example of the positioning system 1 and the application system 100 in which a plurality of AGVs 3 each incorporating the IC tag 5 are present. The positioning system 1 is provided with a plurality of radiation devices 10 as in the example of FIG. In this example, the radiating device 10 includes a transmitting antenna element as a radiating element. The position of each AGV 3 is estimated by the positioning device 20 of the positioning system 1, and the control device 30 of the application system 100 can guide each AGV 3 to a target position by transmitting a guidance command wirelessly using a transmission antenna element. it can.
 次に、放射装置10、測位装置20および制御装置30の構成を説明する。 Next, the configuration of the radiation device 10, the positioning device 20, and the control device 30 will be described.
 図4Aは照明装置である放射装置10の外観図であり、図4Bは放射装置10の正面図である。図4Aに示すように、放射装置10は、複数の放射素子11aおよび11bと、受信アンテナ装置12と、固定装置13とを有する。放射素子11aおよび11bは照明用のLED素子である。なお、参照符号は例示的に2つの放射素子のみに付している。 FIG. 4A is an external view of the radiating device 10 that is a lighting device, and FIG. 4B is a front view of the radiating device 10. As illustrated in FIG. 4A, the radiating device 10 includes a plurality of radiating elements 11 a and 11 b, a receiving antenna device 12, and a fixing device 13. The radiating elements 11a and 11b are LED elements for illumination. Note that reference numerals are given only to two radiating elements by way of example.
 受信アンテナ装置12は円盤形状の筐体を有しており、筐体の内部には、複数の受信アンテナ素子14a、14b、14cが設けられている。複数の受信アンテナ素子は受信アンテナ素子アレイ14を構成している。図4Bでは受信アンテナ素子アレイ14は二次元アレイである。各受信アンテナ素子に入射するビーコン信号の位相差等を利用して、測位装置20はICタグ5が存在する二次元平面上の位置を推定することができる。ただし、受信アンテナ素子アレイ14は一次元アレイであってもよい。 The receiving antenna device 12 has a disk-shaped housing, and a plurality of receiving antenna elements 14a, 14b, and 14c are provided inside the housing. The plurality of reception antenna elements constitute a reception antenna element array 14. In FIG. 4B, the receiving antenna element array 14 is a two-dimensional array. The positioning device 20 can estimate the position on the two-dimensional plane where the IC tag 5 exists using the phase difference of the beacon signal incident on each receiving antenna element. However, the receiving antenna element array 14 may be a one-dimensional array.
 図4Bに示すように、複数の放射素子は受信アンテナ装置12の円盤形状の筐体の周囲(円周)に沿って配列されている。 As shown in FIG. 4B, the plurality of radiating elements are arranged along the circumference (circumference) of the disk-shaped housing of the receiving antenna device 12.
 固定装置13は、放射装置10を照明ブラケット、天井、梁、柱または壁に固定する固定具である。図示された固定装置13の形状は一例であり、当業者であれば形状を適宜変更することがきる。 The fixing device 13 is a fixture that fixes the radiation device 10 to a lighting bracket, a ceiling, a beam, a column, or a wall. The shape of the fixing device 13 shown in the figure is an example, and those skilled in the art can change the shape as appropriate.
 なお、図4Aおよび図4Bで示した放射装置10の形状は一例である。たとえば図5は、放射装置10と異なる形状を有する放射装置10aを示している。放射装置10aは、直管型の複数の照明装置41a、41bを有していてもよい。各照明装置は少なくとも1つの照明素子を有していればよい。各照明装置は、たとえば蛍光灯であってもよいし、配列された複数のLED素子であってもよい。受信アンテナ装置12は、照明装置41aおよび41bの間に配置されている。 In addition, the shape of the radiation device 10 shown in FIGS. 4A and 4B is an example. For example, FIG. 5 shows a radiation device 10 a having a shape different from that of the radiation device 10. The radiating device 10a may include a plurality of straight tube type lighting devices 41a and 41b. Each lighting device may have at least one lighting element. Each lighting device may be a fluorescent lamp, for example, or may be a plurality of arranged LED elements. The receiving antenna device 12 is disposed between the lighting devices 41a and 41b.
 図6は、放射装置10の電気的な構成を示す。図6の例では、放射装置10は、動作するために必要な電力を、電力線PLを利用して確保すると共に、当該電力線PLを利用して測位装置20と通信する。すなわち放射装置10は、電力線通信(PLC: Power Line Communication)を行う。 FIG. 6 shows an electrical configuration of the radiation device 10. In the example of FIG. 6, the radiating device 10 secures power necessary for operation using the power line PL and communicates with the positioning device 20 using the power line PL. That is, the radiating device 10 performs power line communication (PLC: “Power Line Communication”).
 放射装置10は、コンセントプラグS1と、受信アンテナ装置12と、照明用電力回路16と、電源ユニット18と、モデム19aとを有する。 The radiation device 10 includes an outlet plug S1, a receiving antenna device 12, an illumination power circuit 16, a power supply unit 18, and a modem 19a.
 放射装置10のコンセントプラグS1は、電力線PLと接続されたコンセントS2に接続される。コンセントプラグS1には電源ユニット18およびモデム19aが接続されている。電源ユニット18は、電源から供給された電力を受けて、当該電力を放射装置10内の電子部品に分配する。電源ユニット18は、電力線PLの交流電圧を放射装置10において利用可能な直流電圧に変圧する変圧器(図示せず)を有する。電源ユニット18は、変圧して得られた電力を受信アンテナ装置12、照明用電力回路16およびモデム19aに分配する。変圧器は、たとえばスイッチングすることによって交流電圧を直流電圧に変換することができるが、当該構成は周知であるため、具体的な説明は省略する。 The outlet plug S1 of the radiation device 10 is connected to an outlet S2 connected to the power line PL. A power supply unit 18 and a modem 19a are connected to the outlet plug S1. The power supply unit 18 receives the power supplied from the power supply and distributes the power to the electronic components in the radiation device 10. The power supply unit 18 has a transformer (not shown) that transforms the AC voltage of the power line PL into a DC voltage that can be used in the radiation device 10. The power supply unit 18 distributes the power obtained by the transformation to the reception antenna device 12, the illumination power circuit 16, and the modem 19a. The transformer can convert an AC voltage into a DC voltage by switching, for example, but since the configuration is well known, a specific description is omitted.
 受信アンテナ装置12は受信回路15を有する。受信回路15は、複数の受信アンテナ素子14a、14b、14cに入射した電磁波に由来する高周波電力信号を受信し、モデム19aに出力する。モデム19aは、PLC通信に必要な変調処理を行い、変調した信号をコンセントプラグS1およびコンセントS2および電力線PLを介して測位装置20に送信する。 The receiving antenna device 12 has a receiving circuit 15. The receiving circuit 15 receives a high-frequency power signal derived from electromagnetic waves incident on the plurality of receiving antenna elements 14a, 14b, and 14c, and outputs it to the modem 19a. The modem 19a performs a modulation process necessary for PLC communication, and transmits the modulated signal to the positioning device 20 via the outlet plug S1, the outlet S2, and the power line PL.
 照明用電力回路16は、照明用のLED素子である放射素子11aおよび11bと、各LED素子の点灯を制御する点灯制御回路17を有している。点灯制御回路17は、点灯スイッチ(図示せず)によって各LED素子の点灯を制御してもよいし、外部からの制御によって各LED素子の点灯を制御してもよい。 The illumination power circuit 16 has radiation elements 11a and 11b, which are LED elements for illumination, and a lighting control circuit 17 that controls lighting of the LED elements. The lighting control circuit 17 may control lighting of each LED element by a lighting switch (not shown), or may control lighting of each LED element by external control.
 放射装置10は、いわゆるPoE(Power over Ethernet)方式で電力を確保することもできる。その場合、電力線PLはLANケーブルに内包される。また、コンセントプラグS1およびコンセントS2はそれぞれ、PoE方式に対応するRJ-45コネクタになり得る。 The radiation device 10 can also secure power by a so-called PoE (Power-over-Ethernet) method. In that case, the power line PL is included in the LAN cable. Also, the outlet plug S1 and the outlet S2 can each be RJ-45 connectors corresponding to the PoE system.
 図7および図8は、いずれもPoEに対応する放射装置10の構成例を示す。図7はオルタナティブA方式の構成例であり、図8はオルタナティブB方式の構成例である。 7 and 8 show examples of the configuration of the radiation device 10 corresponding to PoE. FIG. 7 shows a configuration example of the alternative A system, and FIG. 8 shows a configuration example of the alternative B system.
 イーサネット(登録商標。以下同じ。)規格のLANケーブルCは、8本の銅線を2本ずつより合わせた4対の導線を有する。図7に示すオルタナティブA方式では、1対の銅線L1およびL2に、電力およびデータの両方が重畳される。そのため、電源ユニット18およびモデム19aは、それぞれ銅線L1およびL2に接続される。一方、図8に示すオルタナティブB方式では、電力およびデータは異なる1対の導線に重畳される。そのため電源ユニット18は銅線L3に接続され、モデム19aは、銅線L3とは異なる銅線L4に接続される。 Ethernet (registered trademark; the same shall apply hereinafter) LAN cable C has four pairs of conductors made up of two copper wires. In the alternative A system shown in FIG. 7, both power and data are superimposed on a pair of copper wires L1 and L2. Therefore, the power supply unit 18 and the modem 19a are connected to the copper wires L1 and L2, respectively. On the other hand, in the alternative B system shown in FIG. 8, power and data are superimposed on a pair of different conductors. Therefore, the power supply unit 18 is connected to the copper wire L3, and the modem 19a is connected to a copper wire L4 different from the copper wire L3.
 なお、受信アンテナ装置12および照明用電力回路16の構成は図6で説明した通りである。よって再度の説明は省略する。 The configurations of the receiving antenna device 12 and the illumination power circuit 16 are as described with reference to FIG. Therefore, the re-explanation is omitted.
 放射装置10は、内蔵バッテリから電力を確保してもよい。図9は、バッテリBを内蔵する放射装置10の構成例を示す。バッテリBから電力を確保する以外は、図9の構成は図8の構成と同じである。 The radiation device 10 may secure power from a built-in battery. FIG. 9 shows a configuration example of the radiation device 10 including the battery B. Except for securing power from the battery B, the configuration of FIG. 9 is the same as the configuration of FIG.
 上述の説明から明らかな通り、PLC通信の場合でもPoE方式の場合でも、電力が伝送される線は、電源ユニット18に電力を供給する「電源」の範疇である。もちろん、PoE対応のハブ、バッテリBもまた、電源である。 As is clear from the above description, the line through which power is transmitted is a category of “power supply” that supplies power to the power supply unit 18 in both cases of PLC communication and PoE. Of course, the PoE hub, battery B, is also a power source.
 次に、測位装置20および制御装置30をそれぞれ説明する。 Next, the positioning device 20 and the control device 30 will be described.
 図10は、測位装置20のハードウェアの構成を示す。 FIG. 10 shows a hardware configuration of the positioning device 20.
 測位装置20は、中央処理装置(CPU)21と、メモリ22と、インタフェース(I/F)装置23と、通信回路24とを有しており、これらは内部バス25で接続されている。CPU21は、後述の処理により、個々のICタグ5の位置を測定し、測定した位置を示す位置情報を生成する。メモリ22は、たとえばDRAMであり、CPU21の処理に関連して利用されるワークメモリである。通信回路24は、たとえば、1または複数の通信コネクタを有する通信回路である。I/F装置23は受信アンテナ装置12と有線で接続されている。より具体的には、I/F装置23は、受信アンテナ装置12の複数の受信アンテナ素子14a、14b、14c等の出力と接続されており、各アンテナ素子によって受信された電磁波から生成された高周波電気信号を受信する。また、通信回路24は、制御装置30と、たとえば、イーサネット規格の有線通信を行う有線通信回線を介して接続されている。 The positioning device 20 includes a central processing unit (CPU) 21, a memory 22, an interface (I / F) device 23, and a communication circuit 24, which are connected by an internal bus 25. The CPU 21 measures the position of each IC tag 5 by processing described later, and generates position information indicating the measured position. The memory 22 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 21. The communication circuit 24 is a communication circuit having one or more communication connectors, for example. The I / F device 23 is connected to the receiving antenna device 12 by wire. More specifically, the I / F device 23 is connected to the outputs of the plurality of receiving antenna elements 14a, 14b, 14c, etc. of the receiving antenna device 12, and the high frequency generated from the electromagnetic wave received by each antenna element. Receive electrical signals. The communication circuit 24 is connected to the control device 30 via, for example, a wired communication line that performs Ethernet standard wired communication.
 以下、測位装置20が行う、ICタグ5の位置を測定する処理(測位処理)を説明する。平面上の、または空間内の物体の測位処理は種々知られている。測位装置20は、それらのうちの1つの測位処理、または、複数の測位処理の組み合わせを利用してICタグ5の位置を測定する。以下、測位処理を例示する。 Hereinafter, a process (positioning process) performed by the positioning device 20 for measuring the position of the IC tag 5 will be described. Various positioning processes for objects on a plane or in space are known. The positioning device 20 measures the position of the IC tag 5 using one of these positioning processes or a combination of a plurality of positioning processes. Hereinafter, the positioning process will be exemplified.
 (a)測位装置20は、ICタグ5が送信した無線信号の到来方向を測定し、移動体の位置を決定する(AOA(Angle Of Arrival)方式)。AOA方式は、ICタグ5が送信する信号を受信アンテナ装置12で受信した際に、基準方位(たとえば受信アンテナの正面方向)をもとに到達電波の到来角度を測定することで、ICタグ5の位置を決定する方式である。位置の決定に最低限必要な基地局数(受信アンテナ装置12を有する放射装置10の数)は2つであるため、同時に必要な放射装置10の数は少なくて済む。また、角度を正確に計測することができるため、基地局から端末までに障害物がなく、見通し線が明確な場合には高い精度でICタグ5の位置を決定できる。各アンテナ素子に流す電流の位相を調整することによってビーム方向や放射パターンの制御を行う、フェーズド・アレイ・アンテナを用いることもできる。 (A) The positioning device 20 measures the direction of arrival of the radio signal transmitted by the IC tag 5 and determines the position of the moving body (AOA (Angle-Of-Arrival) method). In the AOA method, when the signal transmitted by the IC tag 5 is received by the receiving antenna device 12, the arrival angle of the arrival radio wave is measured based on the reference direction (for example, the front direction of the receiving antenna), thereby the IC tag 5 This is a method for determining the position of. Since the minimum number of base stations (the number of radiating devices 10 having the receiving antenna device 12) required for determining the position is two, the number of radiating devices 10 required at the same time is small. In addition, since the angle can be accurately measured, the position of the IC tag 5 can be determined with high accuracy when there is no obstacle from the base station to the terminal and the line of sight is clear. A phased array antenna that controls the beam direction and radiation pattern by adjusting the phase of the current flowing through each antenna element can also be used.
 なお、アレイ・アンテナを利用する場合、単一の受信アンテナ装置12によって、その受信アンテナ装置12に対するICタグ5の方向を特定することができる。この場合、1個の受信アンテナ装置12によってICタグ5の位置を決定することも可能である。例えば、所定の高さにある天井面に配置された受信アンテナ装置12に対するICタグ5の方向が特定される場合、ICタグ5の床面に対する高さが既知または推定されるならば、ICタグ5の位置を決定することが可能である。このため、1個の受信アンテナ装置12によってICタグ5を測位することも可能である。 When an array antenna is used, the direction of the IC tag 5 relative to the receiving antenna device 12 can be specified by the single receiving antenna device 12. In this case, the position of the IC tag 5 can be determined by one receiving antenna device 12. For example, when the direction of the IC tag 5 with respect to the receiving antenna device 12 arranged on the ceiling surface at a predetermined height is specified, if the height of the IC tag 5 with respect to the floor surface is known or estimated, the IC tag It is possible to determine the position of 5. For this reason, it is also possible to position the IC tag 5 with one receiving antenna device 12.
 (b)測位装置20は、ICタグ5が発した無線信号を受信アンテナ装置12で受信し、受信アンテナ装置12の各アンテナ素子における受信時刻の差から移動体の位置を決定する(TDOA(Time Difference Of Arrival)方式)。受信アンテナ装置12を有する放射装置10は基地局として機能して、正確に受信時刻を測定しなければならない。放射装置10間では、ナノ秒単位の、正確な時刻の同期を行う必要がある。 (B) The positioning device 20 receives the radio signal emitted from the IC tag 5 by the reception antenna device 12, and determines the position of the moving body from the difference in reception time at each antenna element of the reception antenna device 12 (TDOA (Time Difference Of Arrival method). The radiating device 10 having the receiving antenna device 12 functions as a base station and must accurately measure the reception time. It is necessary to perform accurate time synchronization between the radiation devices 10 in nanosecond units.
 (c)測位装置20は、放射装置10の受信アンテナ装置12の位置が既知であり、かつ、電波が距離に応じて減衰することを利用して、ICタグ5が発した無線信号の受信強度から位置を決定する(RSSI(Received Signal Strength Indication)方式)。ただし、受信信号の強度はマルチパスの影響を受けるため、距離(位置)を算出するためには、測位システム1が導入される環境ごとに距離減衰モデルが必要である。 (C) The positioning device 20 uses the fact that the position of the receiving antenna device 12 of the radiating device 10 is known and the radio wave is attenuated according to the distance, thereby receiving the radio signal received by the IC tag 5 To determine the position (RSSI (Received Signal Signal Strength Indication) method). However, since the strength of the received signal is affected by multipath, a distance attenuation model is required for each environment in which the positioning system 1 is introduced in order to calculate the distance (position).
 (d)測位装置20は、ICタグ5の識別情報が付加された画像(たとえばQRコード(登録商標))をカメラで撮影し、カメラの位置、カメラが向いている方向、撮影された画像内のICタグ5の位置に基づいて、ICタグ5の位置を決定することもできる。 (D) The positioning device 20 captures an image (for example, QR code (registered trademark)) to which the identification information of the IC tag 5 is added with a camera, and the position of the camera, the direction in which the camera is facing, and within the captured image The position of the IC tag 5 can also be determined based on the position of the IC tag 5.
 なお、測位処理によってその位置測定精度は異なる。測位処理(a)においては、位置測定精度はアンテナの角度分解能と被測定物との距離で決まり、一般の建物においては10cmが実現されている。測位処理(c)においてはICタグから出た電波の干渉による電波強度の変化等により、一般の室内では数メートル、条件の良い場合でも1m程の誤差が生じる可能性がある。測位処理(d)においては、測位誤差は、イメージセンサの画素数、空間分解能、レンズによる歪に依存する。また、物体認識という比較的負荷の高い処理を必要とする。 The position measurement accuracy varies depending on the positioning process. In the positioning process (a), the position measurement accuracy is determined by the angular resolution of the antenna and the distance between the object to be measured, and 10 cm is realized in a general building. In the positioning process (c), there is a possibility that an error of several meters in a general room or about 1 m even under good conditions may occur due to a change in radio wave intensity due to interference of radio waves emitted from the IC tag. In the positioning process (d), the positioning error depends on the number of pixels of the image sensor, spatial resolution, and distortion caused by the lens. In addition, a relatively heavy processing such as object recognition is required.
 精度の観点では、現時点では上述した測位処理(a)が優れている。しかしながら、測位処理(b)から(d)のいずれかを利用して本開示の測位システム1および応用システム100が構築されてもよい。 From the viewpoint of accuracy, the positioning process (a) described above is excellent at the present time. However, the positioning system 1 and the application system 100 of the present disclosure may be constructed using any one of the positioning processes (b) to (d).
 図11は、制御装置30のハードウェアの構成を示す。 FIG. 11 shows the hardware configuration of the control device 30.
 制御装置30は、中央処理装置(CPU)31と、メモリ32と、地図情報データベース(DB)33と、通信回路34とを有しており、これらは内部バス35で接続されている。 The control device 30 has a central processing unit (CPU) 31, a memory 32, a map information database (DB) 33, and a communication circuit 34, which are connected by an internal bus 35.
 CPU31は、後述の処理により、ICタグ5を有する個々の人2またはAGV3を誘導するための誘導指令を生成する信号処理回路である。典型的には、CPU31は半導体集積回路によって構成されたコンピュータである。メモリ32は、たとえばDRAMであり、CPU31の処理に関連して利用されるワークメモリである。たとえばメモリ32には、測位装置20から受信した、各ICタグ5の位置情報等が格納される。CPU31はメモリ32の情報を更新する。 The CPU 31 is a signal processing circuit that generates a guidance command for guiding the individual person 2 or the AGV 3 having the IC tag 5 by a process described later. Typically, the CPU 31 is a computer configured by a semiconductor integrated circuit. The memory 32 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 31. For example, the memory 32 stores position information of each IC tag 5 received from the positioning device 20. The CPU 31 updates information in the memory 32.
 通信回路34は、たとえば、1または複数の通信コネクタを有し、イーサネット規格の有線通信を行う通信回路である。通信回路34は、測位装置20から個々のICタグ5の位置を示す位置情報を取得する。また通信回路27は、後述する、送信アンテナ装置を有する放射装置10cを介して、ICタグ5を有する各スマートフォン4またはICタグ5への誘導指令を送信する。 The communication circuit 34 is, for example, a communication circuit that has one or more communication connectors and performs Ethernet standard wired communication. The communication circuit 34 acquires position information indicating the position of each IC tag 5 from the positioning device 20. Moreover, the communication circuit 27 transmits the guidance instruction | command to each smart phone 4 or IC tag 5 which has IC tag 5 via the radiation | emission apparatus 10c which has a transmission antenna apparatus mentioned later.
 地図情報DB33は、応用システム100が導入される環境のレイアウト、通行可能な領域、仮想的に設定された環境内のある区画から他の区画までの最短の経路、迂回経路等の情報が保持されている。 The map information DB 33 holds information such as the layout of the environment in which the application system 100 is introduced, the passable area, the shortest route from one partition to another in the virtually set environment, and the detour route. ing.
 CPU31が誘導指令を生成する処理は、後に応用システム100の具体例と共に説明する。 The process in which the CPU 31 generates the guidance command will be described later together with a specific example of the application system 100.
 図12は、警報システム101の例を示す。警報システム101は応用システム100の一例である。警報システム101は、たとえば入室する資格が与えられた人物のみが通行可能な研究施設に設置され得る。 FIG. 12 shows an example of the alarm system 101. The alarm system 101 is an example of the application system 100. The alarm system 101 can be installed, for example, in a research facility where only persons who are qualified to enter the room can pass.
 警報システム101では、図1の測位システム1および応用システム100にさらにセンサ50が設けられている。センサ50はいわゆる人感センサであり、動体である人2の所在を検出して検出信号を出力する。センサ50は、たとえば赤外線、超音波、可視光のいずれかを用いて動体を検出する。検出信号は制御装置30に送信され、制御装置30は通信回路34を介して検出信号を受信する。 In the alarm system 101, a sensor 50 is further provided in the positioning system 1 and the application system 100 of FIG. The sensor 50 is a so-called human sensor, and detects the location of the moving person 2 and outputs a detection signal. The sensor 50 detects a moving body using, for example, infrared rays, ultrasonic waves, or visible light. The detection signal is transmitted to the control device 30, and the control device 30 receives the detection signal via the communication circuit 34.
 放射装置10は、センサ50の検出可能範囲内に存在するICタグ5から放射されたビーコン信号を受信することが可能な位置に設置されている。これにより、センサ50による人2の検出と同期して、放射装置10は、人2が所有するICタグ5、または、ICタグ5を内蔵したスマートフォン4からのビーコン信号を受信することができる。 The radiation device 10 is installed at a position where the beacon signal radiated from the IC tag 5 existing within the detectable range of the sensor 50 can be received. Thereby, synchronizing with detection of the person 2 by the sensor 50, the radiation device 10 can receive the beacon signal from the IC tag 5 owned by the person 2 or the smartphone 4 incorporating the IC tag 5.
 制御装置30は、予め、警報システム101の環境内の入室および通行を許可されている人物にのみ貸与されたICタグ5の識別情報をホワイトリストとしてメモリ32に保持している。 The control device 30 holds in advance in the memory 32 the identification information of the IC tag 5 that has been lent only to persons permitted to enter and pass through the environment of the alarm system 101 as a white list.
 制御装置30の通信回路34は、センサ50から出力された検出信号を受信する。CPU31は、センサ50からの検出信号の受信に応答して、測位装置20からICタグ5の位置情報を受信したか否かを判定する。位置情報を受信し、かつ、当該位置情報が、センサ50の検出可能範囲内にICタグ5が存在することを示している場合には、さらに次の処理を実行する。すなわちCPU31は、受信したビーコン信号に含まれる識別情報がホワイトリストに存在するか否かを判定する。識別情報がホワイトリストに存在する場合には認証を受けた人物であるため、特段の処理を行わない。 The communication circuit 34 of the control device 30 receives the detection signal output from the sensor 50. In response to receiving the detection signal from the sensor 50, the CPU 31 determines whether or not the position information of the IC tag 5 has been received from the positioning device 20. When the position information is received and the position information indicates that the IC tag 5 exists within the detectable range of the sensor 50, the following processing is further executed. That is, the CPU 31 determines whether or not the identification information included in the received beacon signal exists in the white list. When the identification information exists in the white list, since the person is an authenticated person, no special processing is performed.
 一方、CPU31は、センサ50から検出信号を受信した時点で位置情報を受信しない場合、位置情報を受信したが当該位置情報が、センサ50の検出可能範囲内にICタグ5が存在することを示していない場合、または、識別情報がホワイトリストに存在しない場合には、警報を発する。認証を受けた人物以外の人物が施設に入室し、通行しているからである。 On the other hand, when the CPU 31 does not receive the position information when the detection signal is received from the sensor 50, the CPU 31 has received the position information, but the position information indicates that the IC tag 5 exists within the detectable range of the sensor 50. If not, or if the identification information is not in the white list, an alarm is issued. This is because a person other than the person who has been authenticated enters the facility and passes.
 警報の発し方は種々考えられる。たとえば、制御装置30は、センサ50の検出可能範囲に関連付けられた1または複数の放射装置10の照明装置(LED素子)を明滅させる。「関連付けられた」とは、典型的にはセンサ50の直近、または、予め定められた距離に存在する、ことを表す。照明装置の発光色が可変である場合には、CPU31は、予め定められた色、たとえば赤色、で照明装置を明滅させてもよい。 There are various ways of issuing alarms. For example, the control device 30 causes the lighting device (LED element) of the one or more radiation devices 10 associated with the detectable range of the sensor 50 to blink. “Associated” typically means being in the immediate vicinity of the sensor 50 or at a predetermined distance. When the luminescent color of the lighting device is variable, the CPU 31 may blink the lighting device with a predetermined color, for example, red.
 または、警報システム101は、音声で警報を発してもよい。図12には、音声を出力可能な放射装置10bが記載されている。図13Aは音声を出力可能な放射装置10bの外観図であり、図13Bは放射装置10bの正面図である。 Alternatively, the alarm system 101 may issue an alarm by voice. FIG. 12 shows a radiation device 10b capable of outputting sound. FIG. 13A is an external view of the radiation device 10b capable of outputting sound, and FIG. 13B is a front view of the radiation device 10b.
 放射装置10bは、2台のスピーカ42aおよび42bを有している。受信アンテナ装置12および固定装置13は図4Aおよび図4Bに示す放射装置10と同じであるため説明は省略する。スピーカ42aおよび42bから出力される音声の信号は、PLCまたはイーサネット規格の通信によって取得することができる。または放射装置10bは制御装置30と音声信号を伝送するケーブルで接続されていてもよい。 The radiation device 10b has two speakers 42a and 42b. Since the receiving antenna device 12 and the fixing device 13 are the same as the radiation device 10 shown in FIGS. 4A and 4B, the description thereof is omitted. Audio signals output from the speakers 42a and 42b can be acquired by PLC or Ethernet standard communication. Alternatively, the radiation device 10b may be connected to the control device 30 via a cable that transmits an audio signal.
 照明装置の明滅に加えて音声(警報音)を発することにより、不審者の存在を周囲の人に通知することができる。なお、音声のみによって警報を発してもよい。 * In addition to the blinking of the lighting device, it is possible to notify the surrounding people of the existence of a suspicious person by issuing a sound (alarm sound). An alarm may be issued only by voice.
 図14は、災害発生時に利用される警報システム102の例を示す。以下で説明する警報システム102は、特定環境下で動作する警報システム101(図12)であると捉えてもよいし、警報システム101とは別個独立のシステムであると捉えてもよい。本実施形態では、前者の例として説明する。 FIG. 14 shows an example of the alarm system 102 used when a disaster occurs. The alarm system 102 described below may be regarded as the alarm system 101 (FIG. 12) that operates in a specific environment, or may be regarded as an independent system from the alarm system 101. In this embodiment, the former example will be described.
 いま、CPU31が緊急信号を受信したとする。緊急信号は、災害の発生を公知の防災システム(図示せず)が自動的に検出したことによる警報信号、人が災害発生ボタンを押下した場合に発せられる警報信号である。CPU31は、予め定められた信号を緊急信号として認識することができる。 Now, assume that the CPU 31 receives an emergency signal. The emergency signal is an alarm signal when a known disaster prevention system (not shown) automatically detects the occurrence of a disaster, or an alarm signal issued when a person presses the disaster occurrence button. The CPU 31 can recognize a predetermined signal as an emergency signal.
 CPU31は、緊急信号の受信に応答して、センサ50による検出信号の有無、または、センサ50の検出可能範囲内にICタグ5が存否を判定する。センサ50から検出信号を受信し、または、ICタグ5が存在する場合には、CPU31は、当該位置から所定の避難位置までの誘導経路に関連付けられた少なくとも1つの照明装置を点灯させる。誘導経路は、たとえば施設内の特定の位置または区画ごとに予め定められており、地図情報DB33に格納されている。また、誘導経路に沿って配置された、照明装置を有する放射装置10群の情報もまた、地図情報DB33に格納されている。CPU31は、地図情報DB33から、たとえばICタグ5が存在する位置から避難口までの経路の情報を読み出す。そしてCPU31は、当該経路に沿って配置された、照明装置を有する放射装置10群を特定し、それらを一斉に、または避難方向に沿って順次点灯させる。 In response to the reception of the emergency signal, the CPU 31 determines the presence or absence of the detection signal from the sensor 50 or the presence or absence of the IC tag 5 within the detectable range of the sensor 50. When the detection signal is received from the sensor 50 or the IC tag 5 is present, the CPU 31 turns on at least one illumination device associated with the guide route from the position to a predetermined evacuation position. The guide route is determined in advance for each specific position or section in the facility, for example, and is stored in the map information DB 33. Moreover, the information of the radiation | emission apparatus 10 group which has the illuminating device arrange | positioned along the guidance path | route is also stored in map information DB33. CPU31 reads the information of the path | route from the position where IC tag 5 exists to an evacuation exit from map information DB33, for example. And CPU31 specifies the radiation | emission apparatus 10 group which has the illuminating device arrange | positioned along the said path | route, and makes them light up simultaneously or sequentially along an evacuation direction.
 図14には、誘導経路60に沿って点灯した複数の放射装置10のパターン62が示されている。このとき、放射装置10b(図13Aおよび図13B)を併用して、誘導経路60が照明装置によって示されていることを音声で通知してもよい。これにより、警報システム102は、緊急信号の受信時に的確に人を誘導し避難させることができる。 FIG. 14 shows a plurality of patterns 62 of the radiating device 10 that are lit along the guidance path 60. At this time, the radiating device 10b (FIGS. 13A and 13B) may be used in combination to notify by voice that the guide path 60 is indicated by the lighting device. Thus, the alarm system 102 can accurately guide and evacuate a person when receiving an emergency signal.
 なお、誘導経路60をスマートフォン4のディスプレイに表示させてもよい。そのために、制御装置30からスマートフォン4に情報を送信するための送信アンテナ装置が設けられ得る。制御装置30はスマートフォン4に誘導経路60の情報をプッシュ送信し得る。誘導経路60の情報には、誘導経路60が重畳して表示される地図の情報も含まれ得る。または、スマートフォン4上で動作するアプリケーションプログラムがスマートフォン4の通信機能を利用して定期的に制御装置30にアクセスしてもよい。誘導経路60の情報が制御装置30から提供されたとき、アプリケーションプログラムは当該情報を取得して避難経路60をスマートフォン4のディスプレイに表示させることができる。 Note that the guidance route 60 may be displayed on the display of the smartphone 4. For this purpose, a transmission antenna device for transmitting information from the control device 30 to the smartphone 4 may be provided. The control device 30 can push information on the guidance route 60 to the smartphone 4. The information on the guide route 60 may include information on a map on which the guide route 60 is displayed in a superimposed manner. Or the application program which operate | moves on the smart phone 4 may access the control apparatus 30 regularly using the communication function of the smart phone 4. FIG. When information on the guidance route 60 is provided from the control device 30, the application program can acquire the information and display the evacuation route 60 on the display of the smartphone 4.
 図15Aは、送信および受信が可能なアンテナ装置43を有する放射装置10cの外観図であり、図15Bは放射装置10cの正面透過図である。図15Bに示すように、アンテナ装置43は、受信アンテナ素子アレイ14に加えて、送信アンテナ素子アレイ44を有している。送信アンテナ素子アレイ44は、複数の送信アンテナ素子44a、44b、44c等を有する。このような送信アンテナ素子アレイ44を用いて、制御装置30はスマートフォン4等に誘導経路60の情報を送信することができる。これにより、制御装置30は、スマートフォン4のディスプレイに、現在の位置と、現在の位置から避難口までの誘導経路60を表示させることができる。 15A is an external view of a radiation device 10c having an antenna device 43 that can transmit and receive, and FIG. 15B is a front transparent view of the radiation device 10c. As illustrated in FIG. 15B, the antenna device 43 includes a transmission antenna element array 44 in addition to the reception antenna element array 14. The transmission antenna element array 44 includes a plurality of transmission antenna elements 44a, 44b, 44c and the like. Using such a transmission antenna element array 44, the control device 30 can transmit information on the guide route 60 to the smartphone 4 or the like. Thereby, the control apparatus 30 can make the display of the smart phone 4 display the present position and the guidance route 60 from the current position to the evacuation exit.
 なお、放射装置10cを利用した、制御装置30からスマートフォン4への情報の伝送は、緊急避難時に限られない。たとえば、施設内の案内経路を表示するために利用してもよい。 In addition, transmission of the information from the control apparatus 30 to the smart phone 4 using the radiation apparatus 10c is not restricted at the time of emergency evacuation. For example, you may utilize in order to display the guidance route in a facility.
 次に、図16を参照しながら、収音システムを説明する。 Next, the sound collection system will be described with reference to FIG.
 図16は、収音システム103の例を示す。収音システム103は応用システム100の一例である。収音システム103は、ICタグ5を有する人の方向に指向性マイクを向け、当該人の音声を収集することを可能にする。 FIG. 16 shows an example of the sound collection system 103. The sound collection system 103 is an example of the application system 100. The sound collection system 103 makes it possible to direct a directional microphone toward the person having the IC tag 5 and collect the sound of the person.
 収音システム103では、図1の測位システム1および応用システム100にさらに方向可変マイクロフォンシステム70が設けられている。 In the sound collection system 103, a variable direction microphone system 70 is further provided in the positioning system 1 and the application system 100 of FIG.
 方向可変マイクロフォンシステム70は、マイクロフォン71と、アクチュエータ72とを有する。 The direction variable microphone system 70 includes a microphone 71 and an actuator 72.
 マイクロフォン71は、所定の収音範囲角度を有する指向性マイクロフォンである。収音範囲角度として、正面を基準にして±60度程度のマイクロフォンは単一指向性マイクロフォンと呼ばれ、±30度程度のマイクロフォンは超単一指向性マイクロフォンと呼ばれる。本実施形態では、マイクロフォン71は超単一指向性マイクロフォンであるとするが、単一指向性マイクロフォンを利用してもよい。 The microphone 71 is a directional microphone having a predetermined sound collection range angle. As a sound collection range angle, a microphone of about ± 60 degrees with respect to the front is called a unidirectional microphone, and a microphone of about ± 30 degrees is called a super unidirectional microphone. In the present embodiment, the microphone 71 is a super unidirectional microphone, but a unidirectional microphone may be used.
 アクチュエータ72は、外部からの駆動信号に応答してマイクロフォン71の向きを変化させる。図16ではアクチュエータ72は、一方向に沿ってマイクロフォン71の向きを変える例を示している。他の例として、2つのアクチュエータを設けて二方向にマイクロフォン71の向きを変えるようにしてもよい。 Actuator 72 changes the direction of microphone 71 in response to an external drive signal. FIG. 16 shows an example in which the actuator 72 changes the direction of the microphone 71 along one direction. As another example, two actuators may be provided to change the direction of the microphone 71 in two directions.
 アクチュエータ72を駆動させる駆動信号は、測位装置20または制御装置30によって生成される。たとえば測位装置20は、ICタグ5のビーコン信号の到来角度を測定して、マイクロフォンの収音範囲角度が到来角度の方向を含むよう、マイクロフォン71の向きを変化させるための駆動信号を生成する。より詳細に説明する。測位装置20は、方向可変マイクロフォンシステム70から各放射装置10までの距離および方向の情報(ベクトル情報A)を予め保持している。たとえば、測位装置20によって、ある放射装置10からICタグ5を有する特定の人1bまでの方向および距離が推定される。これにより、当該放射装置10から人1bまでのベクトル情報Bが決定される。ベクトル情報AおよびBの加算演算を行えば、方向可変マイクロフォンシステム70から人1bまでの距離および方向(ベクトル情報C)を取得できる。測位装置20は取得したベクトル情報Cによって示される方向の情報に基づいて、アクチュエータ72の駆動量を決定し、当該駆動量だけアクチュエータ72を駆動させる駆動信号を生成する。方向可変マイクロフォンシステム70を人1bに精度良く向けるためには、水平(左右)方向および垂直(上下)方向の両方についてアクチュエータ72を駆動することが好ましい。しかしながら、アクチュエータ72を水平(左右)方向にのみ、または、垂直(上下)方向にのみ駆動してもよい。 A driving signal for driving the actuator 72 is generated by the positioning device 20 or the control device 30. For example, the positioning device 20 measures the arrival angle of the beacon signal of the IC tag 5 and generates a drive signal for changing the direction of the microphone 71 so that the sound collection range angle of the microphone includes the direction of the arrival angle. This will be described in more detail. The positioning device 20 holds in advance information on the distance and direction from the variable direction microphone system 70 to each radiation device 10 (vector information A). For example, the positioning device 20 estimates the direction and distance from a certain radiation device 10 to a specific person 1b having the IC tag 5. Thereby, the vector information B from the said radiation | emission apparatus 10 to the person 1b is determined. If the addition calculation of the vector information A and B is performed, the distance and direction (vector information C) from the direction variable microphone system 70 to the person 1b can be acquired. The positioning device 20 determines the driving amount of the actuator 72 based on the direction information indicated by the acquired vector information C, and generates a driving signal for driving the actuator 72 by the driving amount. In order to direct the variable direction microphone system 70 toward the person 1b with high accuracy, it is preferable to drive the actuator 72 in both the horizontal (left and right) direction and the vertical (up and down) direction. However, the actuator 72 may be driven only in the horizontal (left / right) direction or only in the vertical (up / down) direction.
 収音システム103によれば、たとえば会議場において特定の人1bの発言を収録したい場合には、人1bが所有するICタグ5の識別IDを利用して当該人1bの位置を推定すれば、その方向にマイクロフォン71を向けることができる。 According to the sound collection system 103, for example, when it is desired to record the remarks of a specific person 1b in a conference hall, if the position of the person 1b is estimated using the identification ID of the IC tag 5 owned by the person 1b, The microphone 71 can be directed in that direction.
 上述の収音システム103は、特定の識別IDを発するICタグ5の方向に機器(制御対象)を駆動するシステムの一例である。マイクロフォン71に代えて、例えばスポットライトを駆動してICタグ5の方向に光を当ててもよいし、エアーコンディショナーの送風口またはルーバーを駆動してICタグ5の方向に風を送ってもよい。 The sound collection system 103 described above is an example of a system that drives a device (control target) in the direction of the IC tag 5 that emits a specific identification ID. Instead of the microphone 71, for example, a spotlight may be driven to shine light in the direction of the IC tag 5, or an air conditioner air outlet or louver may be driven to send air in the direction of the IC tag 5. .
 次に、図17を参照しながら、ICタグ5を保持して移動する移動体の現在位置を、予め取得した環境映像に重畳して表示する表示システムを説明する。 Next, with reference to FIG. 17, a display system that displays the current position of a moving body that moves while holding the IC tag 5 superimposed on a previously acquired environmental image will be described.
 図17は、スキャナ81を用いて周囲の映像(環境映像)を取得する例を模式的に示す。スキャナ81は、たとえば自走式の車両80に搭載されて予め定められた範囲を移動し、環境映像を撮影する。 FIG. 17 schematically shows an example of acquiring surrounding images (environmental images) using the scanner 81. The scanner 81 is mounted on, for example, a self-propelled vehicle 80 and moves within a predetermined range to capture an environmental image.
 移動中、スキャナ81は、走行中の環境に存在する各静止物までの距離および位置の情報を取得する。スキャナ81によって取得された各静止物までの距離および位置の情報は、たとえば制御装置30の地図情報DB33に蓄積される。 During movement, the scanner 81 obtains information on the distance and position to each stationary object existing in the traveling environment. The information on the distance and position to each stationary object acquired by the scanner 81 is accumulated in the map information DB 33 of the control device 30, for example.
 図18は、制御装置30を有する表示システム104の構成例を示す。制御装置30にはモニタ82が接続されている。表示システム104では、制御装置30は、スキャナ81が取得した情報を受け取って蓄積し、さらに下記の画像処理を行って映像をモニタ82に表示する。モニタ82は制御装置30の構成要素ではないが、たとえば制御装置30がラップトップPCによって実現される場合には、モニタ82は制御装置30の一部になり得る。 FIG. 18 shows a configuration example of the display system 104 having the control device 30. A monitor 82 is connected to the control device 30. In the display system 104, the control device 30 receives and accumulates information acquired by the scanner 81, performs the following image processing, and displays a video on the monitor 82. The monitor 82 is not a component of the control device 30, but the monitor 82 can be a part of the control device 30 when the control device 30 is realized by a laptop PC, for example.
 制御装置30のCPU31は、通信回路34を介して、測位装置20によって測定されたICタグ5の位置情報を受け取る。さらにCPU31は、各静止物までの距離および位置の情報を地図情報DB33から読み出す。そしてCPU31は、現在のICタグ5の位置に予め定められた画像を表示し、さらに当該位置に存在する静止物を重畳して表示する。 The CPU 31 of the control device 30 receives the position information of the IC tag 5 measured by the positioning device 20 via the communication circuit 34. Furthermore, CPU31 reads the information of the distance and position to each stationary object from map information DB33. Then, the CPU 31 displays a predetermined image at the current position of the IC tag 5, and further superimposes and displays a stationary object present at the position.
 図19は、走行するAGV3の位置を、環境映像に重畳してモニタ82に表示した例を示す。測位装置20は、AGV3のICタグ5からのビーコン信号を刻々受信して位置を推定し、位置情報を制御装置30に送信する。CPU31は、逐次、モニタ82上のAGV3の位置を更新しながら、背景画像である環境映像を適宜切り替えて表示する。予め環境映像を取得しておけば、カメラを常設しなくても管理者はAGV3の現在の位置を視角的に確認することができる。なお、上述の説明ではCPU31が画像処理を行ったが、画像処理を行う専用チップ回路を用いて画像処理を行ってもよい。上述の画像処理を行うチップ回路を、本明細書では画像処理回路と呼ぶ。 FIG. 19 shows an example in which the position of the traveling AGV 3 is displayed on the monitor 82 while being superimposed on the environment video. The positioning device 20 receives the beacon signal from the IC tag 5 of the AGV 3 every moment, estimates the position, and transmits the position information to the control device 30. The CPU 31 sequentially switches and displays the environmental video as the background image while sequentially updating the position of the AGV 3 on the monitor 82. If an environmental video is acquired in advance, the administrator can visually check the current position of the AGV 3 without installing a camera permanently. In the above description, the CPU 31 performs image processing. However, image processing may be performed using a dedicated chip circuit that performs image processing. The chip circuit that performs the above-described image processing is referred to as an image processing circuit in this specification.
 本開示の放射装置、測位システムおよび当該測位システムを含む応用システムは、屋内または屋外を移動する移動体の位置の推定および位置を利用した誘導等に広く用いられ得る。 The radiation apparatus, the positioning system, and the application system including the positioning system of the present disclosure can be widely used for estimation of the position of a moving body that moves indoors or outdoors, guidance using the position, and the like.
 1 測位システム、 10 放射装置、 11a、11b 放射素子、 14 受信アンテナ素子アレイ、 14a、14b 受信アンテナ素子、 15 受信回路、 16 照明用電力回路、 17 点灯制御回路、 19a モデム、 19b、19c 通信回路、 100 応用システム、 101、102 警報システム、 103 収音システム、 104 表示システム、 PL 電力線 1 positioning system, 10 radiating device, 11a, 11b radiating element, 14 receiving antenna element array, 14a, 14b receiving antenna element, 15 receiving circuit, 16 lighting power circuit, 17 lighting control circuit, 19a modem, 19b, 19c communication circuit , 100 application system, 101, 102 alarm system, 103 sound collection system, 104 display system, PL power line

Claims (26)

  1.  電源から供給された電力を受けて前記電力を分配する電源ユニットと、
     前記電源ユニットから分配された電力を利用して波を放射する、少なくとも1つの放射素子と、
     前記電源ユニットから分配された電力を利用して無線信号を受信する受信アンテナ装置であって、前記無線信号は、外部機器から放射された、前記外部機器の測位に利用されるビーコン信号である、受信アンテナ装置と
     を備えた放射装置。
    A power supply unit that receives power supplied from a power supply and distributes the power;
    At least one radiating element that radiates waves using power distributed from the power supply unit;
    A receiving antenna device that receives a radio signal using power distributed from the power supply unit, wherein the radio signal is a beacon signal radiated from an external device and used for positioning of the external device. A radiating device comprising a receiving antenna device.
  2.  前記電源ユニットは、前記電源と接続された電力線であって、データ通信を行うことが可能な電力線を介して前記電力を受ける、請求項1に記載の放射装置。 The radiation device according to claim 1, wherein the power supply unit is a power line connected to the power supply and receives the power through a power line capable of performing data communication.
  3.  前記電源ユニットは、データ通信のための通信回線の一端と接続されており、
     前記通信回線の他端は前記電源に接続されている、請求項1に記載の放射装置。
    The power supply unit is connected to one end of a communication line for data communication,
    The radiation device according to claim 1, wherein the other end of the communication line is connected to the power source.
  4.  前記通信回線は前記データ通信に利用される少なくとも1本のケーブルを有しており、
     前記電源ユニットは、前記電源が前記少なくとも1本のケーブルに重畳した電力を受ける、請求項3に記載の放射装置。
    The communication line has at least one cable used for the data communication,
    The radiation device according to claim 3, wherein the power supply unit receives power superimposed on the at least one cable by the power supply.
  5.  前記通信回線は、前記データ通信のための少なくとも1本の第1ケーブルと、前記データ通信には利用されない少なくとも1本の第2ケーブルとを有し、
     前記電源は前記第2ケーブルの一端と接続されており、
     前記電源ユニットは、前記電源が前記第2ケーブルに重畳した電力を受ける、請求項3に記載の放射装置。
    The communication line has at least one first cable for the data communication and at least one second cable not used for the data communication,
    The power source is connected to one end of the second cable;
    The radiation device according to claim 3, wherein the power supply unit receives power superimposed on the second cable by the power supply.
  6.  前記電源は電池である、請求項1に記載の放射装置。 The radiation device according to claim 1, wherein the power source is a battery.
  7.  屋内の構造体へ取り付けるための固定装置をさらに備えた、請求項1から6のいずれかに記載の放射装置。 The radiation device according to any one of claims 1 to 6, further comprising a fixing device for attaching to an indoor structure.
  8.  前記屋内の構造体は、照明ブラケット、天井、梁、柱、壁の少なくとも1つである、請求項7に記載の放射装置。 The radiation device according to claim 7, wherein the indoor structure is at least one of a lighting bracket, a ceiling, a beam, a column, and a wall.
  9.  前記少なくとも1つの放射素子は電磁波または音波を放射する、請求項1から8のいずれかに記載の放射装置。 The radiation device according to any one of claims 1 to 8, wherein the at least one radiation element radiates electromagnetic waves or sound waves.
  10.  前記少なくとも1つの放射素子は、前記電磁波である可視光を放射する、請求項9に記載の放射装置。 The radiation device according to claim 9, wherein the at least one radiation element emits visible light that is the electromagnetic wave.
  11.  前記少なくとも1つの放射素子は、前記電磁波である不可視光を放射する、請求項9に記載の放射装置。 The radiation device according to claim 9, wherein the at least one radiation element emits invisible light which is the electromagnetic wave.
  12.  前記少なくとも1つの放射素子は、前記電磁波である電波を放射する少なくとも1つの送信アンテナ素子である、請求項9に記載の放射装置。 The radiation device according to claim 9, wherein the at least one radiation element is at least one transmission antenna element that radiates a radio wave that is the electromagnetic wave.
  13.  前記少なくとも1つの放射素子は前記音波を放射するスピーカである、請求項9に記載の放射装置。 The radiation device according to claim 9, wherein the at least one radiation element is a speaker that emits the sound wave.
  14.  前記少なくとも1つの放射素子は、照明に用いられる複数の放射素子であり、
     前記複数の放射素子は前記受信アンテナ装置の周囲に配列されている、請求項10に記載の放射装置。
    The at least one radiating element is a plurality of radiating elements used for illumination;
    The radiation device according to claim 10, wherein the plurality of radiation elements are arranged around the reception antenna device.
  15.  前記受信アンテナ装置は円盤形状の筐体を有し、
     前記複数の放射素子は前記受信アンテナ装置の円周に沿って配列されている、請求項14に記載の放射装置。
    The receiving antenna device has a disk-shaped housing,
    The radiating device according to claim 14, wherein the plurality of radiating elements are arranged along a circumference of the receiving antenna device.
  16.  直管型の複数の照明装置をさらに備え、
     前記複数の照明装置の各々は前記少なくとも1つの放射素子を有しており
     前記受信アンテナ装置は、前記複数の照明装置の間に配置される、請求項14に記載の放射装置。
    It further includes a plurality of straight tube type lighting devices,
    The radiation device according to claim 14, wherein each of the plurality of illumination devices includes the at least one radiation element, and the reception antenna device is disposed between the plurality of illumination devices.
  17.  請求項1から16のいずれかに記載の放射装置と、
     前記放射装置の前記受信アンテナ装置によって受信された前記無線信号を受け取り、前記無線信号を放射した前記外部機器の位置情報を出力する測位装置と
     を備えた測位システム。
    A radiation device according to any of claims 1 to 16,
    A positioning system comprising: a positioning device that receives the wireless signal received by the receiving antenna device of the radiating device and outputs position information of the external device that has radiated the wireless signal.
  18.  前記受信アンテナ装置は、アレイ状に配列された複数のアンテナ素子を有する、請求項17に記載の測位システム。 The positioning system according to claim 17, wherein the receiving antenna device has a plurality of antenna elements arranged in an array.
  19.  前記複数のアンテナ素子の各々は前記無線信号を受信し、
     前記測位装置は、前記複数のアンテナ素子の各々によって受信された前記無線信号の到来角度を測定する、請求項18に記載の測位システム。
    Each of the plurality of antenna elements receives the radio signal;
    The positioning system according to claim 18, wherein the positioning device measures an arrival angle of the radio signal received by each of the plurality of antenna elements.
  20.  請求項17から19のいずれかに記載の測位システムと、
     複数の位置に配置された複数の照明装置と、
     動体を検出して検出信号を出力するセンサと、
     前記位置情報および前記検出信号を受け取る制御装置と
     を備え、
     前記放射装置は、前記センサの検出可能範囲内に存在する前記外部機器から放射された前記無線信号を受信することが可能であり、
     前記制御装置は、
      前記位置情報および前記検出信号を受信する通信装置と、
      前記センサからの前記検出信号の受信に応答して、前記受信アンテナ装置が前記センサの検出可能範囲内に外部機器が存在するかどうかを判定する演算回路であって、前記検出可能範囲内に外部機器が存在しない場合には、前記複数の照明装置のうち、前記検出可能範囲に関連付けられた照明装置を点灯させる演算回路と
     を有する、警報システム。
    A positioning system according to any one of claims 17 to 19,
    A plurality of lighting devices arranged at a plurality of positions;
    A sensor that detects a moving object and outputs a detection signal;
    A controller for receiving the position information and the detection signal;
    The radiating device is capable of receiving the radio signal radiated from the external device existing within the detectable range of the sensor,
    The control device includes:
    A communication device that receives the position information and the detection signal;
    In response to reception of the detection signal from the sensor, the receiving antenna device is an arithmetic circuit that determines whether or not an external device exists within the detectable range of the sensor, and is an external circuit within the detectable range. An alarm system comprising: an arithmetic circuit for lighting a lighting device associated with the detectable range among the plurality of lighting devices when no device exists.
  21.  前記演算回路は前記照明装置を予め定められた色で点滅させる、請求項20に記載の警報システム。 21. The alarm system according to claim 20, wherein the arithmetic circuit causes the lighting device to blink in a predetermined color.
  22.  スピーカをさらに備え、
     前記演算回路は、前記検出可能範囲内に外部機器が存在しない場合には、さらに前記スピーカから音を出力させる、請求項20または21に記載の警報システム。
    A speaker,
    The alarm system according to claim 20 or 21, wherein the arithmetic circuit further outputs a sound from the speaker when there is no external device within the detectable range.
  23.  前記演算回路は、前記検出可能範囲内に外部機器が存在する場合であって、予め定められた信号の受信に応答して、前記複数の照明装置のうち、前記検出可能範囲から、所定の位置までの経路に関連付けられた少なくとも1つの照明装置を点灯させる、請求項20から22のいずれかに記載の警報システム。 The arithmetic circuit is a case where an external device is present within the detectable range, and in response to reception of a predetermined signal, a predetermined position from the detectable range among the plurality of lighting devices. 23. The alarm system according to any one of claims 20 to 22, wherein at least one lighting device associated with the route to is turned on.
  24.  前記演算回路は、警報信号の受信に応答して、前記少なくとも1つの照明装置を点灯させる、請求項23に記載の警報システム。 24. The alarm system according to claim 23, wherein the arithmetic circuit turns on the at least one lighting device in response to reception of an alarm signal.
  25.  請求項19に記載の測位システムと、
     所定の収音範囲角度を有するマイクロフォンと、
     駆動信号に応答して前記マイクの向きを変化させるアクチュエータと
     を備え、
     前記測位装置は、前記無線信号の到来角度を測定して、前記マイクの前記所定の収音範囲角度が前記到来角度の方向を含むよう、前記マイクの向きを変化させる駆動信号を生成する、収音システム。
    A positioning system according to claim 19,
    A microphone having a predetermined sound collection range angle;
    An actuator that changes the direction of the microphone in response to a drive signal;
    The positioning device measures an arrival angle of the wireless signal, and generates a drive signal for changing the direction of the microphone so that the predetermined sound collection range angle of the microphone includes the direction of the arrival angle. Sound system.
  26.  請求項17から19のいずれかに記載の測位システムと、
     複数の位置に配置された複数の照明装置と、
     設置された環境に存在する静止物までの距離および位置の情報を予め取得するスキャナと、
     前記静止物までの距離および位置の情報、および、前記測位システムによって測定された前記外部機器の位置情報を受け取り、前記距離および前記位置の情報を反映して前記静止物を表示し、かつ、前記位置情報を反映して前記外部機器を表示する画像処理回路と
     を備えた表示システム。
    A positioning system according to any one of claims 17 to 19,
    A plurality of lighting devices arranged at a plurality of positions;
    A scanner that acquires in advance information on the distance and position to a stationary object present in the installed environment; and
    Receiving information on the distance and position to the stationary object, and positional information of the external device measured by the positioning system, displaying the stationary object reflecting the information on the distance and the position; and A display system comprising: an image processing circuit that reflects the position information and displays the external device.
PCT/JP2017/046402 2016-12-28 2017-12-25 Radiation device, positioning system, alarm system, sound pickup system, and display system WO2018123957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255104 2016-12-28
JP2016255104 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123957A1 true WO2018123957A1 (en) 2018-07-05

Family

ID=62707673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046402 WO2018123957A1 (en) 2016-12-28 2017-12-25 Radiation device, positioning system, alarm system, sound pickup system, and display system

Country Status (1)

Country Link
WO (1) WO2018123957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016466A (en) * 2018-07-23 2020-01-30 鹿島建設株式会社 Position management system and position management method
WO2021161736A1 (en) * 2020-02-13 2021-08-19 アルプスアルパイン株式会社 Receiver

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112271U (en) * 1979-02-02 1980-08-07
JPH01108599U (en) * 1988-01-11 1989-07-21
JP2012227021A (en) * 2011-04-20 2012-11-15 Panasonic Corp Illumination light source
JP2012249254A (en) * 2011-05-31 2012-12-13 Nec Infrontia Corp Telephone exchange, control method, program, and telephone system
JP2012251959A (en) * 2011-06-06 2012-12-20 Rcs:Kk Radio positioning system and radio positioning device
JP2013113740A (en) * 2011-11-29 2013-06-10 Secom Co Ltd Azimuth detection device of radio equipment
JP2016057166A (en) * 2014-09-09 2016-04-21 パナソニックIpマネジメント株式会社 Lighting fixture and position measuring system
JP2016072125A (en) * 2014-09-30 2016-05-09 ローム株式会社 Lighting device, control circuit for controlling the same, integrated circuit, illumination system and method of operating lighting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112271U (en) * 1979-02-02 1980-08-07
JPH01108599U (en) * 1988-01-11 1989-07-21
JP2012227021A (en) * 2011-04-20 2012-11-15 Panasonic Corp Illumination light source
JP2012249254A (en) * 2011-05-31 2012-12-13 Nec Infrontia Corp Telephone exchange, control method, program, and telephone system
JP2012251959A (en) * 2011-06-06 2012-12-20 Rcs:Kk Radio positioning system and radio positioning device
JP2013113740A (en) * 2011-11-29 2013-06-10 Secom Co Ltd Azimuth detection device of radio equipment
JP2016057166A (en) * 2014-09-09 2016-04-21 パナソニックIpマネジメント株式会社 Lighting fixture and position measuring system
JP2016072125A (en) * 2014-09-30 2016-05-09 ローム株式会社 Lighting device, control circuit for controlling the same, integrated circuit, illumination system and method of operating lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016466A (en) * 2018-07-23 2020-01-30 鹿島建設株式会社 Position management system and position management method
JP7072459B2 (en) 2018-07-23 2022-05-20 鹿島建設株式会社 Location management system and location management method
WO2021161736A1 (en) * 2020-02-13 2021-08-19 アルプスアルパイン株式会社 Receiver
JP7284866B2 (en) 2020-02-13 2023-05-31 アルプスアルパイン株式会社 Receiving machine

Similar Documents

Publication Publication Date Title
US10771935B2 (en) Device locating using angle of arrival measurements
EP3045016B1 (en) Methods and apparatus for automated commissioning of coded light sources
US8510033B2 (en) Indoor navigation method and system using illumination lamps
JP6225461B2 (en) Lighting device and position information management system
CN103017758B (en) Indoor real-time high-precision positioning system
EP3048747B1 (en) Positioning method based on visible light source, mobile terminal and controller
JP6171512B2 (en) Lighting device and position information management system
US20080037241A1 (en) Light fixture
US20180324933A1 (en) Lighting Control With Location Based Communication
TWI565962B (en) Positioning system for indoor and surrounding area, method thereof and mobile apparatus
US11105886B2 (en) Three-dimensional asset tracking using radio frequency-enabled nodes
WO2017093839A1 (en) Flexible surveillance system
US20190007809A1 (en) Calibration of the Position of Mobile Objects in Buildings
KR20200025421A (en) Augmented Reality Based Parking Guidance System in Indoor Parking Lot
WO2018123957A1 (en) Radiation device, positioning system, alarm system, sound pickup system, and display system
CN110894924A (en) Embedded down lamp and radar system
US20100277338A1 (en) System and method for positioning and tracking mobiles within a structure
JP2013167559A (en) Illumination device with localization mechanism, and localization system
US20200083955A1 (en) Determining position via multiple cameras and vlc technology
Ayub et al. Visible light ID system for indoor localization
KR101535005B1 (en) Smart apparatus, System apparatus for providing location information and the method thereof
WO2019187259A1 (en) Positioning system, positioning method, and adjustment method for positioning system
JP2013258047A (en) Lighting fixture, and position information control system
Moriya et al. Indoor localization based on distance-illuminance model and active control of lighting devices
JP6915660B2 (en) Lighting equipment, location information management system and location information management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP