WO2019149153A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2019149153A1
WO2019149153A1 PCT/CN2019/073228 CN2019073228W WO2019149153A1 WO 2019149153 A1 WO2019149153 A1 WO 2019149153A1 CN 2019073228 W CN2019073228 W CN 2019073228W WO 2019149153 A1 WO2019149153 A1 WO 2019149153A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
phase
signals
bridge
Prior art date
Application number
PCT/CN2019/073228
Other languages
English (en)
French (fr)
Inventor
陈帅
陈卫
郑晓军
金涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19748400.9A priority Critical patent/EP3739763B1/en
Priority to CN201980011039.4A priority patent/CN111670545B/zh
Publication of WO2019149153A1 publication Critical patent/WO2019149153A1/zh
Priority to US16/939,315 priority patent/US11336326B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/58Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/583Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa using a bridge network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular to a multi-antenna technology.
  • multi-antenna technologies have been proposed, such as multiple input multiple output (MIMO) technology.
  • MIMO multiple input multiple output
  • the multi-antenna technology can effectively improve the system capacity.
  • multiple transmit channels and antenna array shaped beams on the base station side can be used to realize that the transmitted signals respectively point to different end users to improve the downlink capacity; Over-receiving will improve the demodulation sensitivity of the base station and improve the uplink capacity. It can also perform the uplink-received beam according to the signal transmitted by the terminal to achieve only the signal from the receiving terminal and suppress the interference of other surrounding signals to further enhance the uplink. System capacity.
  • Multi-antenna technology also increases the power consumption of operators while increasing the system capacity. How to reduce system power consumption when using multi-antenna technology is an urgent problem to be solved.
  • the embodiment of the present application provides a communication apparatus, which can reduce power consumption of a system when using a multi-antenna technology.
  • an embodiment of the present invention provides a communication device, including a phase correction unit, a first RF channel, a first analog bridge, a second RF channel, and a second analog bridge, where the first analog bridge includes An input terminal and at least two first output terminals, the first input end being connected to the first RF channel, each of the first output terminals being connected to a first antenna array; the first output end and the first antenna array
  • the connection relationship may be a direct connection or an indirect connection.
  • the indirect connection means that other devices are disposed between the first output end and the first antenna array, and are connected to the first output end and the first antenna array through other devices. between.
  • the second analog bridge includes a second input end and at least two second output ends, the second input end being connected to the second RF channel, each of the second output ends being connected to a second antenna array;
  • the connection between the output end and the second array antenna may be the same as the connection between the first output end and the first antenna array.
  • the first RF channel Transmitting, by the first RF channel, the first signal to the first input end, and dividing, by the first analog bridge, at least two first partial signals, wherein the at least two first partial signals are respectively from the at least two first outputs Outputting to the at least two first antenna arrays;
  • the second signal is sent to the second input terminal through the second RF channel, and the second analog bridge is divided into at least two second partial signals, the at least two paths
  • the binary signals are respectively output from the at least two second output ends to the at least two second antenna arrays; the first first partial signals and the at least two second partial signals of the at least two first partial signals
  • the first second derivative signal is coupled to the phase correction unit by a coupler, and the phase correction unit transmits the adjusted signal to the corresponding RF channel, so that the first first division signal and the first The second sub-signal has the same phase.
  • the application is configured by the first analog bridge and the second analog bridge, so that the signals of the first RF channel and the second RF channel are respectively divided into at least two after passing through the first analog bridge and the second analog bridge.
  • a first partial signal and at least two second partial signals, and phase adjustment of the signal by the phase correcting unit so that the at least two first partial signals respectively drive at least two first antenna arrays, and at least two second partial signals respectively Driving at least two second antenna arrays, such that the signal of one RF channel can be decomposed into at least two signals and can drive at least two antenna arrays.
  • the RF channel and the corresponding covered antenna array in the communication device provided by the present application
  • the ratio of 1:N, N is greater than or equal to 2, which can cover more antenna arrays with fewer RF channels, less RF channels, lower energy consumption, and energy saving effect.
  • the communication device is an RRU, and the first and second antenna arrays are not included in the communication device.
  • the communication device further includes: an antenna unit, the antenna unit including the at least two first antenna arrays and the at least two second antenna arrays.
  • the embodiment specifically protects a communication device in which the RRU and the antenna are combined, that is, the communication device includes a phase correction unit, a first RF channel, a first analog bridge, a second RF channel, and a second analog bridge, and includes a 1. A second antenna array.
  • a communications apparatus in a second aspect, includes an antenna unit, a first analog bridge, and a second analog bridge, where the antenna unit includes at least two first antenna arrays and at least two second antenna arrays;
  • An analog bridge includes a first input end and at least two first output ends, the first input end being coupled to the first RF channel, each of the first output terminals being coupled to a first antenna array;
  • the second simulation The bridge includes a second input end and at least two second output ends, the second input end being connected to the second RF channel, each of the second output ends being connected to one of the second antenna arrays;
  • the first RF channel Transmitting, by the first RF channel, the first signal to the first input end, and dividing, by the first analog bridge, at least two first partial signals, wherein the at least two first partial signals are respectively from the at least two first outputs Outputting to the at least two first antenna arrays;
  • the second signal is sent to the second input terminal through the second RF channel, and the second analog bridge is divided into at least two second partial signals, the at least two paths
  • the binary signals are respectively output from the at least two second output ends to the at least two second antenna arrays; the first first partial signals and the at least two second partial signals of the at least two first partial signals
  • the first second derivative signal is coupled to the phase correction unit by a coupler, and the phase correction unit transmits the adjusted signal to the corresponding RF channel, so that the first first division signal and the first The second sub-signal has the same phase.
  • the communication device is an antenna system that does not include the first RF channel and the second RF channel, and includes only the antenna unit, the first analog bridge, and the second analog bridge.
  • the first signal of one input of the first analog bridge in the antenna system can be divided into at least two first partial signals, such that one input signal can be transmitted to at least two antenna arrays, which has energy saving effect.
  • the phase correction unit sends the adjusted signal to the corresponding RF channel, including:
  • the phase correction unit adjusts the first signal and sends the adjusted first signal to the first radio frequency channel; or the phase correction unit adjusts the second signal and sends the adjusted second signal to the first a second RF channel; or the phase correction unit adjusts the first signal and the second signal, and sends the adjusted first signal to the first RF channel, and sends the adjusted second signal to the first Two RF channels.
  • the above embodiment includes three specific embodiments, one of which is to adjust the first signal by the phase correction unit, and send the adjusted signal to the first RF channel, without limiting whether the phase correction unit adjusts the second signal;
  • the correcting unit adjusts the second signal, and sends the adjusted signal to the second RF channel, without limiting whether the phase correcting unit adjusts the first signal;
  • the third is the phase correcting unit, that is, adjusting the first signal and adjusting the second signal, and The adjusted signal is sent to the first RF channel and the second RF channel.
  • the present embodiment defines a specific manner in which the phase correcting unit performs phase correction on the signal.
  • the phase correction unit periodically performs phase adjustment on the first signal and the second signal, and periodically transmits the adjusted signal to the corresponding radio frequency channel.
  • the periodic adjustment means that the phase correction unit adjusts the interval between the phases every time, and forms an adjustment period.
  • the setting of the adjustment period is affected by factors such as ambient temperature, humidity, and buried position of the communication device.
  • the timing device can be set in the communication device.
  • the timing unit can be hardware, such as a timer chip, or can be implemented by software.
  • the timing unit is used to set the adjustment period and transmit the adjustment period signal to the phase correction unit.
  • the present embodiment adopts periodic adjustment of the phase to make the communication device more energy efficient.
  • a phase difference between the first first signal and the second first signal of the at least two first partial signals is a first preset value;
  • the phase difference between the signal and the second of the at least two second divided signals is a second predetermined value.
  • one of the at least two first output terminals is a first port
  • the other of the at least two first output terminals is a second port
  • the first path first minute signal is from the first port Outputting, the second first branch signal is output from the second port
  • the first port is connected to the first first phase shifter
  • the first first phase shifter is configured to adjust the first pass of the first path Signaling a phase difference between the first first signal and the second first signal to the first predetermined value
  • the second and second first phase shifters Connected the second first phase shifter is configured to adjust the second first signal of the second path to make a phase difference between the first first signal and the second first signal to the first default value
  • the first port and the second port may each be provided with a phase shifter, or a phase shifter may be provided only at one of the ports.
  • one of the at least two second outputs is a third port
  • the other of the at least two second outputs is a fourth port
  • the first second signal is output from the third port
  • the second second signal is output from the fourth port
  • the third port is connected to the first second phase shifter
  • the first second phase shifter is configured to adjust the first second signal So that the phase difference between the first second derivative signal and the second secondary signal is to the first preset value
  • the fourth port is connected to the second second phase shifter
  • the second second phase shifter is configured to adjust the second second signal of the second path to make a phase difference between the first second signal and the second second signal to the second Set the value.
  • the third port and the fourth port can each be provided with a phase shifter, or a phase shifter can be provided only at one of the ports.
  • the vertical direction of the beam synthesized by the antenna array corresponding to all the radio frequency channels is the same as that before the RF channel is turned off, so that the cell is not changed.
  • the cell is not changed, and the UE is switched or re-accessed to ensure the user experience.
  • the first preset value and/or the second preset value may be 90 degrees, and a phase difference is formed between the first partial signals to ensure the radiation performance of the antenna.
  • the first preset value is the same as the second preset value, in other words, the phase difference between the first partial signal and the second partial signal are consistent, and are the same.
  • the preset value is advantageous for the antenna array of the communication device to cover the regularity and stability of the signal.
  • the first phase shifter and the second phase shifter may be fixed phase shifters or adjustable phase shifters, may be separate electronic devices, or may be integrated with other components, such as a phase shifting unit integrated in the coupler. .
  • the adjustment of the phase difference is not limited to the phase shifter.
  • the embodiment of the present application can also be implemented in other manners.
  • the analog bridge itself can output the phase difference of the port, that is, the circuit architecture in the bridge is used to implement at least one A phase difference between an output and at least one second output.
  • the first input is coupled to a first power amplifier for amplifying the first signal; the second input is coupled to a second power amplifier, the second power amplifier is for Amplify the second signal.
  • the first power amplifier can be disposed in the first RF channel or between the first RF channel and the first analog bridge. Similarly, a power amplifier can also be provided at the second input. The power amplifier is used to amplify the power of the RF signal, which can improve the signal strength radiated by the antenna array.
  • the first analog bridge and/or the second analog bridge is a single analog bridge or a simulated bridge group.
  • the embodiment includes three specific embodiments. The first embodiment is: the first analog bridge is a single analog bridge or an analog bridge group; the second embodiment is: the second analog bridge is a single analog bridge or The analog bridge group; the third embodiment is: the first analog bridge and the second analog bridge are both a single analog bridge or an analog bridge group.
  • the number of the first output ends is two, and the two first output ends are respectively a first port and a second port, and the number of the second output ends is two, the two The second output terminal is a third port and a fourth port respectively.
  • the phase correcting unit sends the adjusted signal to the corresponding RF channel
  • the corresponding RF channel refers to the first RF channel and the second RF channel
  • the first The phase of the first partial signal of the port is the same as the phase of the second partial signal of the third port.
  • This embodiment provides a design of a first analog bridge and a second analog bridge that are divided into two, that is, each RF channel corresponds to driving two antenna arrays.
  • the signal processing is easier, the phase correction unit is also easier to select the signal for correction, the phase correction unit can refer to the signal coupled back to the first port and the third port, or the phase correction unit can also be coupled back to the second port and the fourth port. signal of.
  • the first, second, third, and fourth ports are all connected to the phase correction unit, and the phase correction unit selects two signals for adjustment according to needs.
  • the phase correction unit is electrically connected to the first RF channel and the second RF channel for transmitting the adjusted signal to the first RF channel and the second RF channel.
  • phase of the first partial signal of the second port and the phase of the second partial signal of the fourth port are the same.
  • the communication device has at least two RF channels, and the number of input ends of the first analog bridge and the second analog bridge is also at least two, forming a one-to-one driving relationship of the multiple RF channels to the antenna array.
  • the number of the first input end, the first RF channel, and the first output end is N, N is greater than or equal to 2, and all the first RF channels are open, the first RF channel, The first input end and the first output end are connected in a one-to-one correspondence to form an N-way juxtaposed first signal branch.
  • the second input terminal, the second RF channel, and the second output terminal are both N, N is greater than or equal to 2, and all the second RF channels are open, the second RF channel, the second RF channel
  • the second input end and the second output end are connected in a one-to-one correspondence to form an N-way parallel second signal branch.
  • the communication device further includes a signal processing unit that performs pre-weighting processing on the signals of all the first RF channels in a state in which all of the first RF channels are turned on to implement the N
  • the signals of one RF channel are respectively transmitted from the N signal side-by-side first signal branches to different antenna arrays.
  • the signal processing unit performs pre-weighting processing on all the signals of the second RF channel, so that signals of the N second RF channels are juxtaposed from the N channels.
  • the second signal branch is transmitted to a different antenna array.
  • the signal processing unit pre-weights the signal of the first RF channel by means of a back-fill bridge, and the back-compensation bridge is an inverse matrix of the first analog bridge. For example, in one embodiment, the power is returned.
  • the algorithm of the bridge is as follows:
  • mapping array of signals of the first analog bridge is:
  • One of the first analog bridge output signals before the pre-compensation bridge pre-weighting is expressed as:
  • the matrix of the signals of the anti-compensation bridge is the inverse matrix of the first analog bridge 40, which is:
  • the input signal of one output signal is:
  • the signal input by the RF channel in each signal branch is consistent with the signal output by the analog bridge.
  • FIG. 1 is a schematic diagram of a system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a system provided by an embodiment of the present application.
  • 3a is a schematic diagram of a system provided by an embodiment of the present application.
  • Figure 3b is an enlarged schematic view of an antenna array of Figure 3a;
  • FIG. 4 is a schematic diagram of a system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a simulated bridge group provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to the system 10 as described in FIG.
  • the system includes a radio frequency device 101 and an antenna device 102, and the radio frequency device 101 and the antenna device 102 are connected.
  • the radio frequency device 101 can be configured to convert the received digital signal into a radio frequency signal, transmit the radio frequency signal to the antenna device 102, or receive the radio frequency signal from the antenna device 102, and convert the radio frequency signal into a digital signal and transmit the signal to the baseband control unit. .
  • the antenna device 102 can transmit the received radio frequency signal or receive the external radio frequency signal and transmit it to the radio frequency device 101.
  • the radio frequency device 101 and the antenna device 102 in FIG. 1 are physically separable.
  • the radio frequency device 101 may be a radio remote unit (RRU) or a radio frequency unit (RFU), and the antenna device may be multiple.
  • the root antenna, the plurality of antennas may be arranged in a pair of radomes.
  • the radio frequency device 101 and the antenna device 102 can be physically integrated.
  • the system 10 can be an Active Antenna Unit (AAU).
  • AAU Active Antenna Unit
  • the radio frequency device 101 can include a transceiver, which can be a transmitter TX and a receiver RX.
  • the transmitter TX includes a modulator 11 that is electrically connected in sequence, an upconverter 12, a power amplifier 13, a bandpass filter 14, and optionally, a modulator 11 and an upconverter 12. Connected to an oscillator 15 respectively.
  • the baseband signal transmitted by the baseband control unit enters the radio frequency device 101, passes through the modulator 11, the upconverter 12, the power amplifier 13, and the bandpass filter 14 in sequence, and is then transmitted to the antenna device 102.
  • the receiver RX includes a bandpass filter 16, a low noise amplifier 17, a downconverter 18, and a demodulator 19, which are electrically connected in sequence.
  • the downconverter 18 and the demodulator 19 are respectively coupled to an oscillator 15.
  • the modulator 11 and the demodulator 19 are connected to an oscillator 15, and the upconverter 12 and the down converter 18 are connected to an oscillator 15.
  • the inverter 19 can be connected to different oscillators, and the up-converter 12 and the down-converter 18 can be connected to different oscillators, which is not limited in this embodiment of the present application.
  • the antenna signal After the antenna signal enters the radio frequency device 101, it passes through the band pass filter 16, the low noise amplifier 17, the down converter 18, and the demodulator 19 in sequence to form a baseband signal for transmission to the baseband control unit.
  • FIG. 2 is only an example of the radio frequency device 101 and the antenna device 102. In the embodiment of the present application, the number of electronic devices, electronic devices, and electronic devices in the radio frequency device 101 are not limited thereto. .
  • the radio frequency device 101 can include a plurality of radio frequency channels, such as radio frequency channels 1011, 1012, 1013, and 1014.
  • the plurality of radio frequency channels can be separately received and/or transmitted to implement multi-receipt and multiple transmission of the radio frequency device.
  • the 2T2R radio frequency device may include two radio frequency channels, which can be received and/or transmitted to implement two transmissions and two receptions of the radio frequency device.
  • the RF channel herein may refer to a circuit channel in the radio frequency device, such as a circuit channel in the transceiver as shown in FIG. 2, and the circuit channel may include one or more electronic components such as the circuit architecture shown in FIG. 2.
  • the device, multiple RF channels can share circuit channels, or each RF channel can include separate circuit channels.
  • the RF channel herein may refer to a logic channel in the RF device, in which the conversion of the baseband signal and the RF signal can be completed.
  • Antenna device 102 can include multiple antenna arrays, such as antenna arrays 1021, 1022, 1023, and 1024.
  • an antenna array can be referred to as an antenna.
  • Each RF channel is connected to a corresponding antenna array, and each RF channel can transmit a radio frequency signal to a corresponding antenna array, and the corresponding antenna array is transmitted into the air.
  • the RF channel 1011 is connected to the antenna array 1021
  • the RF channel 1011 can transmit the RF signal to the antenna array 1021
  • the RF channel 1012 is connected to the antenna array 1022
  • the RF channel 1012 transmits the RF signal to the antenna array 1022.
  • the RF channel 1013 is coupled to the antenna array 1023, the RF channel 1013 transmits the RF signal to the antenna array 1023; the RF channel 1014 is coupled to the antenna array 1024, and the RF channel 1014 transmits the RF signal to the antenna array 1024.
  • Each antenna array consists of one or more antenna elements. It should be noted that the RF channel is connected to the corresponding antenna array, and the RF channel can be connected to each antenna array in the antenna array; the RF channel sends the RF signal to the corresponding antenna array, which can indicate that the RF channel will be Radio frequency signals are sent to each antenna element in the antenna array. The RF channel sends the RF signal to the antenna array. It can be understood that the RF signal is sent to the antenna array through the RF channel, or the RF channel is used to drive the antenna array.
  • One antenna array includes N (N is an integer greater than or equal to 1) antenna array, and may also be represented as one RF channel driving N antenna array or simply 1 flood N.
  • the antenna array 1021 will be described as an example.
  • the antenna element A1 and the antenna element B1 form a positive and negative 45 degree cross polarization direction arrangement.
  • the antenna element A2 and the antenna element B2 form a positive and negative 45 degree cross polarization direction arrangement;
  • the antenna element A3 and the antenna element B3 A positive and negative 45 degree cross polarization direction arrangement is also formed.
  • the antenna elements A1, A2, and A3 together form an antenna array
  • the antenna elements B1, B2, and B3 together form another antenna array.
  • the two different antenna arrays can be driven by different RF channels.
  • the antenna array 1021 can be formed by the antenna elements A1, A2, and A3, and the RF channel 1011 is connected to the antenna array 1021, that is, the RF channel 1011 is connected to the antenna element A1, the antenna element A2, and the antenna element A3.
  • the antenna arrays 1022, 1023, and 1024 are similar to the antenna array 1021 and will not be described herein.
  • the RF channel and the antenna array are connected to form a one-to-one correspondence.
  • the RF channel 1011 corresponds to the antenna array 1021
  • the RF channel 1012 corresponds to the antenna array 1022.
  • each RF channel generates a certain amount of power consumption. The greater the number of RF channels, the greater the power consumption of the system.
  • the capacity of the user is large, all or multiple RF channels can be enabled.
  • all or more RF channels are still enabled to generate unnecessary power consumption. In this case, a power consumption reduction is required. method.
  • One solution is to choose to turn off part of the RF channel.
  • the antenna array corresponding to the part of the RF channel is also closed.
  • the number of antenna arrays will affect the coverage performance of the system.
  • the more antenna arrays the better the system coverage; conversely, the fewer the antenna arrays, the worse the system coverage. Therefore, although the solution reduces power consumption by turning off the RF channel, the coverage performance of the system is significantly reduced.
  • the embodiment of the present application proposes a solution capable of reducing power consumption.
  • the capacity requirement of the system 10 is small, part of the RF channel can be closed, and the one-to-one correspondence between the RF channel and the antenna array can be changed, and the antenna array corresponding to the part of the RF channel is not closed, thereby reducing system power consumption without Will make the coverage significantly lower.
  • the radio frequency device 101 illustrated in FIG. 4 can implement the same or similar functions of the radio frequency device 101 of FIGS. 2 and 3a.
  • the radio frequency device 101 illustrated in FIG. 4 includes a phase correcting unit 20, a first radio frequency channel 30, and a second
  • the RF channel 50, the first RF channel 30 and the second RF channel 50 may implement the same or similar functions of the RF channel 1011, 1012, 1013 or 1014 of Figure 3a.
  • the antenna device 102 illustrated in Figure 4 can implement the same or similar functions of the antenna device 102 of Figures 2 and 3a.
  • the antenna device 102 illustrated in FIG. 4 includes a plurality of first antenna arrays 71 and a plurality of second antenna arrays 72.
  • the first antenna array 71 and the second antenna array 72 may implement the antenna arrays 1021, 1022, 1023 of FIG. 3a or The same or similar function of 1024.
  • the system 10 illustrated in FIG. 4 also includes a bridge unit 103.
  • the bridge unit 103 includes a first analog bridge 40 and a second analog bridge 60.
  • the first analog bridge 40 includes a first input end 41 and at least two first output ends 42.
  • the first input end 41 is connected to the first RF channel 30, and each of the first output ends 42 Connected to a first antenna array 71.
  • the different first output ends 42 are connected to different first antenna arrays 71 to form a multi-parallel antenna structure.
  • the second analog bridge 60 includes a second input 61 and at least two second outputs 62.
  • the second input 62 is coupled to the second RF channel 50, and each of the second outputs 62 Connected to a second antenna array 72; the second output 62 and the second antenna array 72 are in a one-to-one correspondence, and the different second outputs 62 are connected to different second antenna arrays 72 to form a multi-channel Parallel antenna architecture.
  • first output end 42 and the first antenna array 71 may be directly connected or indirectly connected. When indirectly connected, other devices may be disposed between the first output end 42 and the first antenna array 71.
  • the second output end 62 and the second antenna array 72 may be directly connected or indirectly connected. When indirectly connected, other devices may be disposed between the first output end 42 and the first antenna array 71.
  • the communication device receives the first signal and the second signal from a signal source (eg, a baseband control unit).
  • the first signal is sent to the first input terminal 41 through the first RF channel 30, and after entering the first analog bridge 40 through the first input terminal 41, the first signal is divided into at least the first analog bridge 40.
  • Two first first sub-signals, the at least two first sub-signals are respectively output from the at least two first output ends 42 to at least two of the first antenna arrays 71; the second signal passes through the second radio frequency
  • the channel 50 is sent to the second input end 61, and after entering the second analog bridge 60 through the second input end 61, the second signal is divided into at least two second sub-signals by the second analog bridge 60.
  • At least two second partial signals are output from the at least two second output terminals 62 to at least two of the second antenna arrays 72, respectively.
  • the first first partial signal of the at least two first partial signals and the first second partial signal of the at least two second partial signals are coupled to the phase correcting unit 20 by a coupler 80 .
  • a coupler 80 is located between the first output end corresponding to the first sub-signal of the first path and the first antenna array corresponding to the first sub-signal of the first path; the other coupler 80 is located at the first path
  • the second output corresponding to the binary signal is between the second antenna array corresponding to the first secondary signal.
  • the first first signal of the first path may be any one of the at least two first partial signals.
  • the first second partial signal may be any one of the at least two second partial signals.
  • the phase correcting unit 20 adjusts the phase of the signal of the input radio frequency channel by referring to the phases of the first sub-signal and the second sub-signal, and the phase correcting unit 20 sends the adjusted signal to the corresponding
  • the RF channel is such that the phases of the first first derivative signal and the first secondary signal are the same.
  • the signal of one RF channel can be decomposed into at least two signals and can drive at least two antenna arrays.
  • the number ratio of the RF channel and the corresponding covered antenna array is 1: N, N is greater than or equal to 2, which can drive more antenna arrays with fewer RF channels.
  • the phase correcting unit 20 sends the adjusted signal to the corresponding radio frequency channel, including:
  • the phase correction unit 20 adjusts the first signal and transmits the adjusted first signal to the first radio frequency channel 30;
  • the phase correction unit 20 adjusts the second signal and transmits the adjusted second signal to the second RF channel 50;
  • the phase correcting unit 20 adjusts the first signal and the second signal, and sends the adjusted first signal to the first RF channel 30, and sends the adjusted second signal to The second RF channel 50, that is, the phase correcting unit adjusts the first signal and adjusts the second signal, and sends the adjusted signal to the first RF channel 30 and the second RF channel 50.
  • the embodiment defines a specific manner in which the phase correction unit performs phase correction on the signal, and the phase correction unit can be set according to different usage environments or requirements, and the corresponding correction manner is correspondingly executed, thereby enabling flexible phase correction.
  • the phase correcting unit 20 periodically performs phase adjustment on the first signal and the second signal, and sends the adjusted signal to the corresponding radio frequency channel.
  • the periodic adjustment means that the phase correction unit adjusts the interval between the phases every time for a predetermined period of time to form an adjustment period.
  • the setting of the adjustment period may be affected by the environment in which the system 10 is located, such as temperature, humidity, geographic location, etc., and in different environments, such as temperature, humidity, and geographic location, the system 10 may set different adjustment periods; or, adjust The period can be fixed, for example, the radio frequency device 101 sets the adjustment period before leaving the factory.
  • the adjustment period can be implemented by setting a timing unit in the radio frequency device 101.
  • the timing unit can be hardware, such as a timer chip, and the timing unit can also be implemented by software.
  • the timing unit is configured to set an adjustment period and transmit the adjustment period signal to the phase correction unit 20.
  • the phase is periodically adjusted, on the one hand, avoiding phase correction too frequently, and saving resources; on the other hand, avoiding the long time, the phase of the first partial signal or the second partial signal changes to cause the first way
  • the phase of the one-point signal and the first-stage second-segment signal are different, affecting the performance of the system 10, such as coverage or capacity.
  • a phase difference between the first first signal and the second first signal of the at least two first partial signals is a first preset value;
  • a phase difference between the second partial signal and the second second partial signal of the at least two second divided signals is a second preset value.
  • the second first-segment signal may be any one of the at least two first-segment signals except the first-channel first-segment signal. That is, each of the at least two first partial signals and the first first signal may have a preset phase difference, and each of the at least two first partial signals
  • the preset phase differences between the first first-segment signals may be the same or different.
  • the phase difference between the first first signal and the other first signal is 90 degrees; or, the phase difference between the first first signal and the other first signal is 90 respectively. Degree, 180 degrees, 270 degrees ⁇ .
  • the phase difference between the second second partial signal and the second second partial signal of the at least two second partial signals is a second preset value similar to the above, and details are not described herein again.
  • the first preset value may be implemented by the first analog bridge 40, and the second preset value may be implemented by the second analog bridge 60.
  • the first analog bridge 40 is a 90-degree 2-input 2-output analog bridge. After the first signal passes through the first analog bridge, the output of the two first-segment signals has a phase difference of 90 degrees.
  • the at least two of the first antenna array 71 and the at least two of the second antenna arrays 72 are only in the RF channel 30 and the RF channel 50 (closed The vertical direction of the drive-synthesized beam after the partial RF channel), and the vertical direction of the beam synthesized by each of the first antenna array 71 and each of the second antenna arrays 72 driven by one RF channel (before the RF channel is turned off) . Therefore, before and after the radio channel is closed, the cell does not change, and the UE is prevented from being switched or re-accessed, thereby ensuring the user experience.
  • one of the at least two first output ends 42 is a first port 421
  • the other of the at least two first output ends 42 is a second port 422.
  • the first first branch signal is output from the first port 421, and the second first minute signal is output from the second port 422; the first port 421 and the first first phase shifter 91 Connected, the first path first phase shifter 91 is configured to adjust the first path first sub-signal to make the first path first sub-signal and the second path first sub-signal Phase difference to the first predetermined value; and/or the second port 422 is coupled to the second first phase shifter 92, the second first phase shifter 92 is configured to adjust the second The first signal is divided to make a phase difference between the first first signal and the second first signal to the first preset value.
  • the first port 421 and the second port 422 can be respectively provided with a phase shifter 91 and a phase shifter 92, the phase shifter 91 performs phase adjustment on the first first signal, and the phase shifter 92 is on the second path.
  • the first sub-signal is phase-adjusted such that a phase difference between the first first-segment signal and the second first-segment signal is to the first preset value; or, the first sub-signal 421 can be set only at the first port 421
  • the phase shifter 91, the phase shifter 91 performs phase adjustment on the first first signal, and the second first signal does not perform phase adjustment, so that the first first signal and the second first signal are The phase difference between the two is to the first preset value; or, the phase shifter 92 can be set only at the second port 422, and the phase shifter 92 performs phase adjustment on the second first signal, the first way
  • the one-point signal is not phase-adjusted such that the phase difference between the first first derivative signal and the second first derivative signal is to the first predetermined value.
  • the two-way first sub-signal can be adjusted by the phase shifter, or one of the first sub-signals can be adjusted only
  • one of the at least two second output terminals 62 is a third port 621, and the other of the at least two second output terminals 62 is a fourth port 622.
  • a signal is output from the third port 621, the second second signal is output from the fourth port 622;
  • the third port 621 is connected to the first second phase shifter 93, the first
  • the second phase shifter 93 is configured to adjust the first second signal to make a phase difference between the first second signal and the second second signal to the first a predetermined value;
  • the fourth port 622 is connected to the second second phase shifter 94, and the second second phase shifter 94 is configured to adjust the second second signal. Taking a phase difference between the first second derivative signal and the second secondary signal to the second preset value.
  • the third port 621 and the fourth port 622 can be respectively provided with a phase shifter 93 and a phase shifter 94, the phase shifter 93 performs phase adjustment on the first second derivative signal, and the phase shifter 94 is on the second path.
  • the second partial signal is phase-adjusted such that a phase difference between the first second derivative signal and the second secondary signal is to the second preset value; or, the third branch 621 can be set only
  • the phase difference between the two is to the second preset value; or, the phase shifter 94 can be set only at the fourth port 622, and the phase shifter 94 performs phase adjustment on the second second partial signal, the first way
  • the binary signal is not phase-adjusted such that the phase difference between the first second derivative signal and the second secondary signal is to the second predetermined value.
  • the two second partial signals can be adjusted by the phase shifter respectively, or one of the second partial signals can be adjusted only by the phase shifter.
  • the first preset value is the same as the second preset value. Specifically, the following two situations can be included:
  • the phase difference between each of the at least two first partial signals and the first divided first signal is the first predetermined value, and each of the at least two second partial signals
  • the phase difference between the first and second partial signals is the same, and is a second preset value, and the first preset value is the same as the second preset value.
  • the phase difference between the first first signal and the other first signal is 90 degrees
  • the phase difference between the first second signal and the other second signal is also 90 degrees.
  • phase difference between each of the at least two first partial signals and the first divided first signal but the phase difference is different; each of the at least two second partial signals There is a phase difference between the first and second partial signals, but the phase difference is different; but the set of phase differences between each of the at least two first partial signals and the first divided first signal
  • the set of phase differences between each of the at least two second partial signals and the first secondary second signal is the same.
  • the phase difference between the first first signal and the other first signal is 90 degrees, 180 degrees, 270 degrees, respectively; the first second signal and the other second signal The phase difference between them is also 90 degrees, 180 degrees, and 270 degrees.
  • the first preset value is the same as the second preset value, so that the phase of the first partial signal of the other road is
  • the set of phases of the other second derivative signals is the same, that is, the multiple first partial signals and the multiple second partial signals are correspondingly the same.
  • the first first signal and the first second signal have a phase of 0 degrees
  • the first signal of the other road has a phase of 90 degrees, 180 degrees, 270 degrees, and other second signals.
  • the phase is 90 degrees, 180 degrees, 270 degrees.
  • the regularity and stability of the system 10 can be improved, and the vertical direction of the beam synthesized by the plurality of first antenna arrays and the plurality of second antenna arrays is controlled to be the same as before the RF channel is closed, so that the cell is not closed before and after the RF channel is closed. A change has occurred. Avoid UE switching or re-access, ensuring user experience.
  • the phase shifter can be a fixed phase shifter or an adjustable phase shifter, can be a separate electronic device, or can be integrated with other components, such as a phase shifting unit integrated in the coupler, or integrated in an analog bridge. .
  • the adjustment of the phase difference is not limited to the phase shifter.
  • the embodiment of the present application can also be implemented in other manners.
  • the analog bridge itself can output the phase difference of the port, that is, the circuit architecture in the bridge is used to implement at least one A phase difference between an output and at least one second output.
  • the first input end 41 is connected to a first power amplifier 411, the first power amplifier 411 is used to amplify the first signal; and the second input end 61 is 61. Connected to a second power amplifier 611 for amplifying the second signal.
  • the first power amplifier 411 may be disposed in the first RF channel 30 or may be disposed between the first RF channel 30 and the first analog bridge 40. The power amplifier is used to amplify the power of the RF signal to improve the signal strength.
  • the first analog bridge 40 and/or the second analog bridge 60 are a single analog bridge or a simulated bridge group.
  • the present embodiment includes three types. First, the first analog bridge 40 is a single analog bridge or a simulated bridge group; second: the second analog bridge 60 is a single analog bridge or an analog bridge group; Three: The first analog bridge 40 and the second analog bridge 60 are each a single analog bridge or an analog bridge group.
  • FIG. 4 and FIG. 5 have two RF channels, and the bridge unit 103 includes two analog bridges as an example. In the implementation, there may be one, two or more radio frequencies.
  • the channel, bridge unit 103 can include one analog bridge, or more than two analog bridges.
  • any one of the output signals of each analog bridge is coupled back to the phase correction unit 20, and the phase correction unit 20 adjusts the two or more simulations.
  • One or more of the signals of the output terminals corresponding to the bridges such that the phases of the corresponding ones of the plurality of signals of the output of the two or more analog bridges are the same; and each of the two or more analog bridges
  • One or more outputs of the analog bridges have phase shifters such that the sets of phases of the signals at the output of each analog bridge are the same, such that the vertical alignment of the beams synthesized by the antenna arrays corresponding to all of the RF channels is Before the RF channel is closed, the vertical direction of the beams synthesized by the antenna array is the same, so that the cell is not changed before and after the RF channel is turned off.
  • the radio frequency device 101 may not include the phase correction unit 20, and one or more outputs of the one analog bridge have a phase shifter to make the one
  • the multiplexed signals output by the analog bridge form a preset phase difference.
  • FIG. 6 is a schematic illustration of system 10 in an embodiment.
  • the system 10 in FIG. 6 adopts the design of the analog bridge in FIG. 4 or FIG. 5 above.
  • all the RF channels need to be turned on, so that all the RF channels form a one-to-one correspondence with the antenna array. So that more information can be sent or received.
  • the signal input from one input of the analog bridge is divided into at least two channels and output from the output of the analog bridge, which cannot form a one-to-one correspondence with the antenna array.
  • the system 10 illustrated in Figure 6 is capable of maintaining a one-to-one correspondence between the RF channel and the antenna array when the analog bridge is introduced.
  • RF channels four RF channels, two two-input two-output analog bridges, and four antenna array architectures are taken as an example.
  • the number of RF channels, the sum of the number of input terminals of the analog bridge in the bridge device, the sum of the number of output terminals, and the number of antenna arrays are the same.
  • the RF channel and the antenna array may be one or more, for example, one, two, three or more.
  • the analog bridge can be one or more, such as 1, 2, 3 or more. This embodiment of the present application does not limit this.
  • the radio frequency device 101 illustrated in FIG. 6 includes two first radio frequency channels 30, two second radio frequency channels 50, a signal processing unit 412, a signal processing unit 612, and a phase correction unit 20.
  • the bridge device 103 illustrated in FIG. 6 includes a first analog bridge 40 and a second analog bridge 60.
  • the first analog bridge 40 includes two first input terminals 41 and two first output terminals 42.
  • the two first outputs 42 are a first port 421 and a second port 422.
  • the second analog bridge 60 includes two second input terminals 61 and two second output terminals 62, the two second output terminals 62 being the signal of the third port 621 and the fourth port 622; the bridge device 103 is also Including amplifiers, couplers, phase shifters.
  • the two first input terminals 41 and the two second input terminals 61 are each provided with a power amplifier 411.
  • the two first output terminals 42 and the two second output terminals 62 are each provided with a coupler 80.
  • the antenna device illustrated in FIG. 6 includes two first antenna arrays 71 and two second antenna arrays 72.
  • FIG. 4 or FIG. 5 can implement the same or similar functions as those in FIG. 4 or FIG. 5.
  • each analog bridge includes two input terminals and two output terminals.
  • the four RF channels respectively drive four antenna arrays, and one-to-one driving is realized by four independent signal branches.
  • the direction indicated by the dotted line with arrows in FIG. 6 is the flow direction of the signal, including four closely parallel dotted lines. .
  • the first RF channel 30, the first input end 41, and the first output end 42 are connected in a one-to-one correspondence to form a two-way juxtaposed first signal branch.
  • the second RF channel 50, the second input end 61, and the second output end 62 are connected in a one-to-one correspondence to form two parallel signals. Branch road.
  • the signal processing unit performs a pre-weighting process on all the signals of the first RF channel 30 to perform the two first RF channels 30 in a state in which the two first RF channels are all open.
  • the signals are respectively transmitted from the two parallel first signal branches to different first antenna arrays 71.
  • the signal processing unit 612 performs pre-weighting processing on all the signals of the second RF channel 50 to implement the two second RF channels 50.
  • the signals are transmitted from the two parallel second signal branches to different second antenna arrays 72, respectively.
  • the signal processing units 412, 612 can be implemented in software or can be a hardware circuit architecture.
  • the signal processing units 412, 612 pre-weight the signals of the first RF channel 30 and the second RF channel 50 by means of a back-fill bridge, the signal processing units 412, 612.
  • the anti-compensation bridges are the inverse matrices of the first analog bridge 40 and the second analog bridge 60 respectively.
  • the algorithm of the anti-compensation bridge is as follows:
  • the matrix of the first analog bridge 40 is:
  • the matrix of the signals of the anti-compensation bridge is the inverse matrix of the first analog bridge 40, which is:
  • One of the output signals of the first analog bridge 40 before the pre-compensation bridge pre-weighting is expressed as:
  • the input signal of one output signal of the bridge 40 is:
  • the matrix of the first analog bridge 40 and the second analog bridge 60 may have other forms in addition to the above examples, which are not limited in this embodiment of the present application.
  • the phase correction unit 20 may refer to signals coupled back by the first port 421 and the third port 621, or the phase correction unit 20 may also refer to signals coupled back by the second port 422 and the fourth port 622.
  • the first, second, third, and fourth ports may each be connected to the phase correcting unit 20, and the phase correcting unit 20 refers to the phase pairs of the first, second, third, and fourth port signals to input the two first RF channels 30. And adjusting the signals of the two second RF channels 50, and transmitting the adjusted signals to the corresponding RF channels (referring to the two first RF channels 30 and the two second RF channels 50), after adjustment, The phases of the signals output by the first, second, third, and fourth ports are aligned.
  • the phase correcting unit 20 can adjust the phase of the signals of the input RF channel by referring to all the signals of the first, second, third, and fourth ports, so that the phases of the signals of the four ports are aligned to a unified phase. value. It is also possible to adjust the phase of the signal of the input RF channel by referring only to the signals of the three ports of the first, second, third, and fourth ports, so that the phase of the signal of the referenced three ports is the phase value of the other port. Align for the baseline.
  • phase correcting unit 20 The details of the correction of the signal by the phase correcting unit 20 may be identical to the embodiment shown in FIG. 4 and will not be described again.
  • FIG. 7 is a schematic diagram of a system 10 provided by another embodiment of the present application.
  • the communication device turns off two RF channels, that is, the number of the first RF channel 30 and the second RF channel 50 is one, and correspondingly,
  • the number of the first input terminal 41 of the first analog bridge 40 and the second input terminal 61 of the second analog bridge 60 is also one, but the outputs of the first analog bridge 40 and the second analog bridge 60 are Not closed, i.e. still having two first output 42 and two second outputs 62, the antenna array is also not closed, i.e. still has two first antenna arrays 711 and two second antenna arrays 72.
  • one input signal is used to drive two antenna arrays, and the direction indicated by the dotted line with an arrow in FIG.
  • the flow direction of the signal is the flow direction of the signal.
  • the two RF channels are closed, which can save energy.
  • four antenna arrays two first antenna arrays 711 and two second antenna arrays 72 are still used to complete signal transmission, and the antenna system The coverage performance is not significantly reduced.
  • the first analog bridge 40 and the second analog bridge 60 are disposed such that the signals of the first RF channel 30 and the second RF channel 50 pass through the first analog bridge 40 and the second analog bridge 60, respectively.
  • the two first output terminals 42 and the two second output terminals 62 are each provided with a coupler 80, that is, the communication device includes four couplers 80, two first output terminals 42 and two second output terminals.
  • the signals output by 62 are both passed through coupler 80 and then delivered to first antenna array 71 and second antenna array 72.
  • the communication device also includes two phase shifters 90 disposed at one of the first output terminals 42 and one of the second output terminals 62, respectively.
  • the phase shifter 90 is configured to change the phase of the signal such that the phase difference of the signals at the two first output terminals 42 is a first predetermined value, and the phase difference of the signals at the two second output terminals 62 is The second preset value.
  • the first preset value and the second preset value may be equal.
  • Figure 6 and Figure 7 take the analog bridge of 2 input and 2 output as an example.
  • the analog bridge can be N input, M output, M is greater than or equal to N; the analog bridge can be a single bridge or analog bridge
  • the structure of a simulated bridge group is illustrated below.
  • the analog bridge group 103 includes four bridges, which are a first bridge 40a, a second bridge 40b, a second bridge 60a, and a fourth bridge 60b, respectively, from one of the first bridges 40a.
  • the signal i0 input from the input terminal 41 enters the first bridge 40a, it is divided into two signals i1 and i2.
  • the first signal i1 is output from the first bridge 40a and enters the second bridge 40b from the input of the second bridge 40b.
  • the first signal i1 has two signals i3 and i4 in the second bridge 40b. Therefore, the first output 421 of the second bridge 40b outputs the signal i3, and the second output 422 of the second bridge 40b outputs the signal. I4.
  • the second signal i2 is output from the first bridge 40a and enters the fourth bridge 60b from the input of the fourth bridge 60b.
  • the second signal i2 has two signals i5 and i6 in the fourth bridge 60b. Therefore, the first output 621 of the fourth bridge 60b outputs the signal i5, and the second output 622 of the fourth bridge 60b outputs the signal. I6.
  • a signal i0 is input from the analog bridge group 103 and can be decomposed into four output signals i3, i4, i5, i6.
  • the embodiment of the present application provides the following communication device:
  • the embodiment of the present application provides a communication device, which includes a radio frequency device 101 and a bridge unit 103.
  • the communication device can be an RRU, RFU or other device capable of performing a conversion between a digital signal or an intermediate frequency signal and a radio frequency signal.
  • the embodiment of the present application provides a communication device including an antenna device 102 and a bridge unit 103.
  • the communication device can be an antenna or other device capable of transmitting radio frequency signals into the air or receiving external radio frequency signals.
  • the embodiment of the present application provides a communication device, which includes a radio frequency device 101, a bridge unit 103, and an antenna device 102.
  • the communication device can be an AAU or other device capable of converting a digital signal or an intermediate frequency signal into a radio frequency signal transmitted into the air.
  • first”, “second” and the like in the present application are only intended to distinguish different objects, and “first” and “second” do not limit the actual order or function of the objects to which they are modified.
  • first and “second” in the “first antenna array” and the “second antenna array” are merely for distinguishing that the two are corresponding to the first radio frequency channel and the second radio frequency channel, respectively.
  • One” and “second” are not themselves limited in their actual order or function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种通信装置,包括相位校正单元、第一射频通道、第一模拟电桥、第二射频通道和第二模拟电桥,第一模拟电桥包括第一输入端和至少两个第一输出端,第二模拟电桥包括第二输入端和至少两个第二输出端;第一信号通过第一射频通道发送至第一输入端,通过第一模拟电桥分成至少两路第一分信号,至少两路第一分信号分别从至少两个第一输出端输出到至少两个所述第一天线阵列;相似地,第二信号通过第二模拟电桥分成至少两路第二分信号,并输出到至少两个第二天线阵列;第一路第一分信号和第一路第二分信号通过耦合器被耦合至相位校正单元,相位校正单元调整后,第一路第一分信号和第一路第二分信号的相位相同。上述通信装置具有节能优势。

Description

通信装置
本申请要求于2018年1月31日提交中国专利局、申请号为2018101000702,发明名称为“通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及多天线技术。
背景技术
随着长期演进(Long Term Evolution,LTE)和第五代(5G,5th Generation)网络不断发展,多天线技术被提出,例如多输入多输出(multiple input multiple output,MIMO)技术。采用多天线技术能够有效提高系统容量,对于下行多发,可以利用基站侧多个发射通道和天线阵列赋型波束以实现体现发射出的信号分别指向不同的终端用户从而提升下行的容量;对于上行的多收,会提升基站的解调灵敏度从而提升上行容量,也可以根据终端发射过来的信号进行上行接收的赋型波束以达到只接收终端发射过来方向的信号并抑制周围其它信号的干扰进一步提升上行系统容量。
多天线技术在提高系统容量的同时,也给运营商带来了功耗的增加,采用多天线技术时如何降低系统功耗是一个亟待解决的问题。
发明内容
本申请实施例提供一种通信装置,可以在采用多天线技术时降低系统的功耗。
第一方面,本发明实施例提供了一种通信装置,包括相位校正单元、第一射频通道、第一模拟电桥、第二射频通道和第二模拟电桥,该第一模拟电桥包括第一输入端和至少两个第一输出端,该第一输入端与该第一射频通道相连,每个该第一输出端连接至一个第一天线阵列;第一输出端与第一天线阵列之间的连接关系可以是直接连接,也可以为间接连接,间接连接是指在第一输出端和第一天线阵列之间设置其它器件,通过其它器件连接在第一输出端和第一天线阵列之间。第一输出端和第一天线阵列之间是一一对应的连接关系,不同的第一输出端所对应连接的第一天线阵列也是不同的。该第二模拟电桥包括第二输入端和至少两个第二输出端,该第二输入端与该第二射频通道相连,每个该第二输出端连接至一个第二天线阵列;第二输出端和第二阵列天线之间的连接方式可以与第一输出端和第一天线阵列之间的连接方式相同。
第一信号通过该第一射频通道发送至该第一输入端,通过该第一模拟电桥分成至少两路第一分信号,该至少两路第一分信号分别从该至少两个第一输出端输出到至少两个该第一天线阵列;第二信号通过该第二射频通道发送至该第二输入端,通过该第二模拟电桥分成至少两路第二分信号,该至少两路第二分信号分别从该至少两个第二输出端输出到至少两个该第二天线阵列;该至少两路第一分信号中的第一路第一分信号和该至少两路第二分信号中的第一路第二分信号通过耦合器被耦合至该相位校正单元,该相位校正单元将调整后的信号发送至对应的射频通道,以使该第一路第一分信号和该第一路第二分信号的相位相同。
本申请通过第一模拟电桥和第二模拟电桥的设置,使得第一射频通道和第二射频通道 的信号分别经过第一模拟电桥和第二模拟电桥后,被分为至少两个第一分信号和至少两个第二分信号,并利用相位校正单元对信号的相位调整,使得至少两个第一分信号分别驱动至少两个第一天线阵列,至少两个第二分信号分别驱动至少两个第二天线阵列,这样一个射频通道的信号可以分解为至少两路信号并能够驱动至少两个天线阵列,因此,本申请提供的通信装置中的射频通道和对应覆盖的天线阵列的数量比为1:N,N大于等于2,可以实现在射频通道数量少的情况下,能够覆盖更多的天线阵列,射频通道少,能耗就低,具有节能的效果。一种实施方式中,该通信装置为RRU,第一、第二天线阵列不包含在通信装置中。
一种实施方式中,该通信装置还包括:天线单元,该天线单元包括该至少两个该第一天线阵列和该至少两个该第二天线阵列。本实施例具体保护一种RRU和天线组合成的通信装置,即通信装置除了包括相位校正单元、第一射频通道、第一模拟电桥、第二射频通道和第二模拟电桥,还包括第一、第二天线阵列。
第二方面,本申请实施例提供的通信装置包括天线单元、第一模拟电桥和第二模拟电桥,该天线单元包括至少两个第一天线阵列和至少两个第二天线阵列;该第一模拟电桥包括第一输入端和至少两个第一输出端,该第一输入端与第一射频通道相连,每个该第一输出端连接至一个该第一天线阵列;该第二模拟电桥包括第二输入端和至少两个第二输出端,该第二输入端与第二射频通道相连,每个该第二输出端连接至一个该第二天线阵列;
第一信号通过该第一射频通道发送至该第一输入端,通过该第一模拟电桥分成至少两路第一分信号,该至少两路第一分信号分别从该至少两个第一输出端输出到至少两个该第一天线阵列;第二信号通过该第二射频通道发送至该第二输入端,通过该第二模拟电桥分成至少两路第二分信号,该至少两路第二分信号分别从该至少两个第二输出端输出到至少两个该第二天线阵列;该至少两路第一分信号中的第一路第一分信号和该至少两路第二分信号中的第一路第二分信号通过耦合器被耦合至该相位校正单元,该相位校正单元将调整后的信号发送至对应的射频通道,以使该第一路第一分信号和该第一路第二分信号的相位相同。
具体而言,本实施方式所涉及的通信装置为一种天线系统,不包括第一射频通道和第二射频通道,只包括天线单元、第一模拟电桥和第二模拟电桥。天线系统中的第一模拟电桥的一个输入端的第一信号可以被分为至少两路第一分信号,这样一路输入信号可以输送至至少两个天线阵列,具有节能功效。
一种实施方式中,该相位校正单元将调整后的信号发送至对应的射频通道,包括:
该相位校正单元调整该第一信号并将调整后的该第一信号发送至该第一射频通道;或者,该相位校正单元调整该第二信号并将调整后的该第二信号发送至该第二射频通道;或者,该相位校正单元调整该第一信号和该第二信号,并将调整后的该第一信号发送至该第一射频通道,将调整后的该第二信号发送至该第二射频通道。上述实施方式包括三种具体的实施例,其一为相位校正单元调整第一信号,并将调整后的信号发给第一射频通道,不限定相位校正单元是否调整第二信号;其二为相位校正单元调整第二信号,并将调整后的信号发给第二射频通道,不限定相位校正单元是否调整第一信号;其三为相位校正单元即调整第一信号又调整第二信号,并将调整后的信号发给第一射频通道和第二射频通道。本 实施方式限定了相位校正单元对信号进行相位校正的具体方式。
一种实施方式中,该相位校正单元周期性地对第一信号和第二信号中进行相位调整,周期性地发送调整后的信号至对应的射频通道。周期性地调整是指相位校正单元每一次调整相位之间间隔预设的时间,形成调节周期,调节周期的设置受到通信装置所处的环境温度、湿度、地埋位置等因素影响。通信装置在出厂之前,就设置好调节周期,通信装置应用在通信设备中,通信设备内可以设置计时单元,计时单元可以为硬件,例如计时器芯片,也可以通过软件来实现。计时单元用于设置调节周期,并将调节周期信号传送至相位校正单元。本实施方式采用周期性地调整相位,使得通信装置的更具节能性。
一种实施方式中,该第一路第一分信号和该至少两路第一分信号中的第二路第一分信号之间相位差为第一预设值;该第一路第二分信号和该至少两路第二分信号中的第二路第二分信号之间的相位差为第二预设值。
具体而言,该至少两个第一输出端之其中一个为第一端口,该至少两个第一输出端之其中另一个为第二端口,该第一路第一分信号从该第一端口输出,该第二路第一分信号从该第二端口输出;该第一端口与第一路第一移相器相连,该第一路第一移相器用于调整该第一路第一分信号,以使该第一路第一分信号和该第二路第一分信号之间的相位差至该第一预设值;和/或该第二端口与第二路第一移相器相连,该第二路第一移相器用于调整该第二路第一分信号,以使该第一路第一分信号和该第二路第一分信号之间的相位差至该第一预设值。概括而言,第一端口和第二端口可以分别都设置移相器,也可以只在其中一个端口处设置移相器。
相似地,该至少两个第二输出端之其中一个为第三端口,该至少两个第二输出端之其中另一个为第四端口,该第一路第二分信号从该第三端口输出,该第二路第二分信号从该第四端口输出;该第三端口与第一路第二移相器相连,该第一路第二移相器用于调整该第一路第二分信号,以使该第一路第二分信号和该第二路第二分信号之间的相位差至该第一预设值;和/或该第四端口与第二路第二移相器相连,该第二路第二移相器用于调整该第二路第二分信号,以使该第一路第二分信号和该第二路第二分信号之间的相位差至该第二预设值。概括而言,第三端口和第四端口可以分别都设置移相器,也可以只在其中一个端口处设置移相器。
具体而言,通过预期相位差(即第一预设值和第二预设值),使得所有射频通道对应的天线阵列合成的波束的垂直指向与关闭射频通道前相同,从而没有改变小区。不改变小区,避免了UE切换或者重新接入,保证了用户体验。
该第一预设值和/或第二预设值可以为90度,在第一分信号之间形成相位差,可以保证天线的辐射性能。
一种实施方式中,该第一预设值与该第二预设值相同,换言之,第一分信号之间的相位差和第二分信号之间的相位差是一致的,均为同样的预设值,有利于通信装置的天线阵列覆盖信号的规律性和稳定性。
上述第一移相器和第二移相器可以为固定移相器或者可调移相器,可以为单独电子器件,也可以与其它元件集成在一起,例如集成在耦合器中的移相单元。然而,调节相位差不限于通过移相器,本申请实施例还可以通过其它的方式实现,例如:模拟电桥本身就可 以输出端口的相位差,即利用电桥内的电路架构实现至少一个第一输出端和至少一个第二输出端的相位差。
一种实施方式中,该第一输入端与第一功率放大器相连,该第一功率放大器用于放大该第一信号;该第二输入端与第二功率放大器相连,该第二功率放大器用于放大该第二信号。第一功率放大器即可以设置在第一射频通道中,也可以设置在第一射频通道和第一模拟电桥之间。相似地,第二输入端也可以设置功率放大器。功率放大器用于对射频信号功率放大,可以提升天线阵列辐射的信号强度。
一种实施方式中,该第一模拟电桥和/或该第二模拟电桥是单个模拟电桥或者模拟电桥组。本实施方式包括三种具体实施例,第一实施例为:第一模拟电桥是单个模拟电桥或者模拟电桥组;第二实施例为:该第二模拟电桥是单个模拟电桥或者模拟电桥组;第三实施例为:该第一模拟电桥和该第二模拟电桥均是单个模拟电桥或者模拟电桥组。
为了方便理解,一种具体实施方式中,该第一输出端的数量为两个,该两个第一输出端分别为第一端口和第二端口,该第二输出端的数量为两个,该两个第二输出端分别为第三端口和第四端口,该相位校正单元将调整后的信号发送至对应的射频通道后,对应的射频通道指第一射频通道和第二射频通道,该第一端口的该第一分信号的相位和该第三端口的该第二分信号的相位相同。本实施例提供了一分为二的第一模拟电桥和第二模拟电桥的设计,即每个射频通道对应驱动两个天线阵列。信号处理的更容易,相位校正单元也比较容易选择信号来校正,相位校正单元可以参考第一端口和第三端口耦合回的信号,或者相位校正单元也可以参考第二端口和第四端口耦合回的信号。第一、第二、第三、第四端口均连接至相位校正单元,相位校正单元根据需要选择两路信号做调节。相位校正单元与第一射频通道和第二射频通道电连接,用于将调整后的信号输送至第一射频通道和第二射频通道。
一种实施方式中,该第二端口的该第一分信号的相位和该第四端口的该第二分信号的相位相同。
一种实施方式中,通信装置具有至少两个射频通道,第一模拟电桥和第二模拟电桥的输入端的数量也是至少两个,形成多射频通道至天线阵列一对一驱动的关系。具体而言,该第一输入端、该第一射频通道和该第一输出端的数量均为N,N大于等于2,所有的该第一射频通道均打开的状态下,该第一射频通道、该第一输入端和该第一输出端一一对应连接形成N路并列的第一信号支路。
相应地,该第二输入端、该第二射频通道和该第二输出端的数量均为N,N大于等于2,所有的该第二射频通道均打开的状态下,该第二射频通道、该第二输入端和该第二输出端一一对应连接形成N路并列的第二信号支路。
具体而言,通信装置还包括信号处理单元,所有的该第一射频通道均打开的状态下,该信号处理单元对所有的该第一射频通道的信号进行预加权处理,以实现该N个第一射频通道的信号分别从该N路并列的第一信号支路传送至不同的天线阵列。所有的该第二射频通道均打开的状态下,该信号处理单元对所有的该第二射频通道的信号进行预加权处理,以实现该N个第二射频通道的信号分别从该N路并列的第二信号支路传送至不同的天线阵列。
该信号处理单元通过反补电桥的方式对该第一射频通道的信号进行预加权处理,反补电桥是第一模拟电桥的逆矩阵,举例说明,一种实施方式中,返补电桥的算法如下:
该第一模拟电桥的信号的映射阵列为:
Figure PCTCN2019073228-appb-000001
其中,j为复数。
通过该反补电桥预加权前的该第一模拟电桥输出信号中的一路信号表达为:
Figure PCTCN2019073228-appb-000002
反补电桥的信号的矩阵为第一模拟电桥40的逆矩阵,为:
Figure PCTCN2019073228-appb-000003
通过该反补电桥预加权后的该第一射频通道的输入信号,即对应上述第一模拟电桥的
一路输出信号的输入信号为:
Figure PCTCN2019073228-appb-000004
可见通过反补电桥预加权后,每一个信号支路中的射频通道输入的信号与模拟电桥输出的信号是一致的。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本申请一种实施方式提供的一种系统的示意图;
图2是本申请一种实施方式提供的系统的示意图;
图3a是本申请一种实施方式提供的系统的示意图;
图3b是图3a中的一个天线阵列的放大示意图;
图4是本申请一种实施方式提供的系统的示意图;
图5是本申请一种实施方式提供的系统的示意图;
图6是本申请一种实施方式提供的系统的示意图;
图7是本申请一种实施方式提供的系统的示意图;
图8是本申请一种实施方式提供的模拟电桥组的示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请实施例的技术方案可以适用于如图1所述的系统10。该系统包括射频装置101和天线装置102,射频装置101和天线装置102连接。
射频装置101可以用于将接收到的数字信号转换成射频信号,将射频信号发送至天线装置102,或者从天线装置102接收射频信号,并将射频信号转换成数字信号,并传送至基带控制单元。天线装置102可以将接收到的射频信号发射出去或者接收外界的射频信号并传送至射频装置101。
图1中的射频装置101和天线装置102物理上可以分开,例如,射频装置101可以是射频拉远单元(radio remote unit,RRU)或者射频单元(radio frequency unit,RFU),天线装置可以是多根天线,该多根天线可以布局在一副天线罩内。射频装置101和天线装置102物理上可以集成在一起,例如,系统10可以是有源天线单元(Active Antenna Unit,AAU)。
图2是一种实施方式中的系统10的示意图,包括射频装置101和天线装置102。射频装置101可以包括收发器,收发器可以为发射机TX和接收机RX。请参阅图2,一种实施方式中,发射机TX包括依次电连接的调制器11、上变频器12、功率放大器13、带通滤波器14,可选的,调制器11和上变频器12分别与一个振荡器15连接。基带控制单元发送的基带信号进入射频装置101后,依次经过调制器11、上变频器12、功率放大器13和带通滤波器14后,发送给天线装置102。接收机RX包括依次电连接的带通滤波器16、低噪放大器17、下变频器18和解调制器19,可选的,下变频器18和解调制器19分别与一个振荡器15连接。如图2所示,调制器11和解调制器19连接一个振荡器15,上变频器12和下变频器18连接一个振荡器15,需要说明的是,这仅仅是一个示例,调制器11和解调制器19可以连接不同的振荡器,上变频器12和下变频器18可以连接不同的振荡器,本申请实施例对此不作限定。天线信号进入射频装置101后,依次经过带通滤波器16、低噪放大器17、下变频器18和解调制器19后形成基带信号发送给基带控制单元。需要说明的是,图2仅仅是射频装置101和天线装置102的一种示例,本申请实施例中,射频装置101中的电子器件、电子器件的数量以及电子器件之间的连接关系不限于此。
图3a是一种实施方式中的系统10的示意图。射频装置101可以包括多个射频通道,例如射频通道1011,1012,1013和1014。该多个射频通道可以分别进行接收和/或发送以实现射频装置的多收多发。例如:2T2R的射频装置可以包括2个射频通道,该2个射频通道可以进行接收和/或发送以实现射频装置的2发2收。需要说明的是,这里射频通道可以指射频装置中的电路通道,例如如图2所示收发器中的电路通道,该电路通道可以包括例如图2所示的电路架构中的一个或者多个电子器件,多个射频通道可以共用电路通道,也 可以每个射频通道都包括单独的电路通道。或者,这里的射频通道可以指射频装置中的逻辑通道,该逻辑通道中可以完成基带信号与射频信号的转换。
天线装置102可以包括多个天线阵列,例如天线阵列1021,1022,1023和1024。这里一个天线阵列可以称为一根天线。每个射频通道与一个对应的天线阵列连接,每个射频通道可以将射频信号发送至一个对应的天线阵列,由该对应的天线阵列发射到空中。例如,如图3a所示,射频通道1011与天线阵列1021连接,射频通道1011可以将射频信号发送至天线阵列1021;射频通道1012与天线阵列1022连接,射频通道1012将射频信号发送至天线阵列1022;射频通道1013与天线阵列1023连接,射频通道1013将射频信号发送至天线阵列1023;射频通道1014与天线阵列1024连接,射频通道1014将射频信号发送至天线阵列1024。
每个天线阵列由一个或者多个天线阵子组成。需要说明的是,射频通道与对应的天线阵列连接,可以表示该射频通道与该天线阵列中的每个天线阵子相连接;射频通道将射频信号发送至对应的天线阵列,可以表示该射频通道将射频信号发送至该天线阵列中的每个天线阵子。该射频通道将射频信号发送至该天线阵列,可以理解为射频信号经过射频通道发送至天线阵列,或者表述为射频通道驱动该天线阵列。1个天线阵列包括N(N为大于等于1的整数)个天线阵子,也可以表示为1个射频通道驱动N天线阵子或者简称为1驱N。
例如,结合图3a和图3b,以天线阵列1021为例进行说明。图3b中,天线阵子A1和天线阵子B1形成正负45度交叉极化方向布置,同样地,天线阵子A2和天线阵子B2形成正负45度交叉极化方向布置;天线阵子A3和天线阵子B3亦形成正负45度交叉极化方向布置。天线阵子A1、A2、A3共同形成一个天线阵列,天线阵子B1、B2、B3共同形成另一个天线阵列,这两个不同的天线阵列可以由不同的射频通道驱动。天线阵列1021可以由天线阵子A1、A2、A3共同形成,射频通道1011与天线阵列1021相连接,即射频通道1011与天线阵子A1,天线阵子A2和天线阵子A3相连接。天线阵列1022,1023,1024与天线阵列1021类似,在此不再赘述。
如图3a所示,射频通道和天线阵列连接形成一一对应的架构,例如,射频通道1011与天线阵列1021对应,射频通道1012与天线阵列1022对应。在系统10中,每个射频通道都会产生一定的功耗,射频通道的数量越多,系统的功耗越大。当用户容量需求较大,可以开启所有或者多个射频通道;当用户容量需求较小时,仍然开启所有或者多个射频通道会带来不必要的功耗,此时需要一种能够降低功耗的方法。一种解决方式是选择关闭部分射频通道。但是,由于射频通道与天线阵列的一一对应的关系,当关闭其中部分射频通道时,该部分射频通道对应的天线阵列也随之关闭。天线阵列的数量会影响系统的覆盖性能,在系统保持相同的功率下,天线阵列越多,系统的覆盖越好;反之,天线阵列越少,系统的覆盖越差。故该解决方式虽然通过关闭射频通道实现了降低功耗,但是导致系统的覆盖性能明显下降。
基于上述问题,本申请实施例提出了一种能够降低功耗的方案。当系统10的容量需求较小时,可以关闭部分射频通道,改变射频通道与天线阵列之间的一一对应关系,不关闭该部分射频通道对应的天线阵列,从而既能降低系统功耗,又不会使得覆盖明显下降。
下面具体对本申请中的方案进行介绍。
如图4和图5所示,为本申请实施例提供的一种实施方式中的系统10。图4中示意出的射频装置101可以实现图2和图3a中射频装置101的相同或者类似的功能,图4中示意出的射频装置101包括相位校正单元20、第一射频通道30和第二射频通道50,第一射频通道30和第二射频通道50可以实现图3a中射频通道1011、1012、1013或者1014的相同或者类似的功能。
图4中示意出的天线装置102可以实现图2和图3a中天线装置102的相同或者类似的功能。图4中示意出的天线装置102包括多个第一天线阵列71和多个第二天线阵列72,第一天线阵列71和第二天线阵列72可以实现图3a中天线阵列1021、1022、1023或者1024的相同或者类似的功能。
与图3a中有所不同,图4中射频通道与天线阵列之间并非一一对应的关系。图4示意出的系统10还包括电桥单元103。电桥单元103包括第一模拟电桥40和第二模拟电桥60。
所述第一模拟电桥40包括第一输入端41和至少两个第一输出端42,所述第一输入端41与所述第一射频通道30相连,每个所述第一输出端42连接至一个第一天线阵列71。第一输出端42和第一天线阵列71之间是一一对应的连接关系,不同的第一输出端42连接到不同的第一天线阵列71,形成多路并列的天线架构。
所述第二模拟电桥60包括第二输入端61和至少两个第二输出端62,所述第二输入端62与所述第二射频通道50相连,每个所述第二输出端62连接至一个第二天线阵列72;第二输出端62和第二天线阵列72之间是一一对应的连接关系,不同的第二输出端62连接到不同的第二天线阵列72,形成多路并列的天线架构。
需要说明的是,第一输出端42与第一天线阵列71之间可以直接连接,也可以间接连接,间接连接时,第一输出端42和第一天线阵列71之间可以设置其它器件。第二输出端62与第二天线阵列72之间可以直接连接,也可以间接连接,间接连接时,第一输出端42和第一天线阵列71之间可以设置其它器件。
本实施方式中,通信装置从信号源(例如:基带控制单元)接收第一信号和第二信号。第一信号通过所述第一射频通道30发送至所述第一输入端41,通过第一输入端41进入第一模拟电桥40后,第一信号通过所述第一模拟电桥40分成至少两路第一分信号,所述至少两路第一分信号分别从所述至少两个第一输出端42输出到至少两个所述第一天线阵列71;第二信号通过所述第二射频通道50发送至所述第二输入端61,通过第二输入端61进入第二模拟电桥60后,第二信号通过所述第二模拟电桥60分成至少两路第二分信号,所述至少两路第二分信号分别从所述至少两个第二输出端62输出到至少两个所述第二天线阵列72。
所述至少两路第一分信号中的第一路第一分信号和所述至少两路第二分信号中的第一路第二分信号通过耦合器80被耦合至所述相位校正单元20。一个耦合器80位于所述第一路第一分信号对应的第一输出端,和第一路第一分信号对应的第一天线阵列之间;另一个耦合器80位于所述第一路第二分信号对应的第二输出端,和第一路第二分信号对应的第二天线阵列之间。此处所述第一路第一分信号可以为至少两路第一分信号中的任意一路,同样,第一路第二分信号可以为至少两路第二分信号中的任意一路。
相位较正单元20参考第一路第一分信号和第一路第二分信号的相位,对输入射频通道的信号的相位做调整,所述相位校正单元20将调整后的信号发送至对应的射频通道,以使所述第一路第一分信号和所述第一路第二分信号的相位相同。
通过模拟电桥和相位校正单元的设置,使得一个射频通道的信号可以分解为至少两路信号并能够驱动至少两个天线阵列,具体地,射频通道和对应覆盖的天线阵列的数量比为1:N,N大于等于2,可以实现利用较少的射频通道驱动较多的天线阵列。通过减少射频通道的数量而不减少天线阵列的数量以降低系统功耗,却保证系统的覆盖性能不会明显下降。
一种实施方式中,所述相位校正单元20将调整后的信号发送至对应的射频通道,包括:
所述相位校正单元20调整所述第一信号并将调整后的所述第一信号发送至所述第一射频通道30;或者
所述相位校正单元20调整所述第二信号并将调整后的所述第二信号发送至所述第二射频通道50;或者
所述相位校正单元20调整所述第一信号和所述第二信号,并将调整后的所述第一信号发送至所述第一射频通道30,将调整后的所述第二信号发送至所述第二射频通道50,即相位校正单元即调整第一信号又调整第二信号,并将调整后的信号发给第一射频通道30和第二射频通道50。
本实施方式限定了相位校正单元对信号进行相位校正的具体方式,可以根据不同的使用环境或需求对相位校正单元做设置,对应执行上述相应的校正方式,从而能够实现灵活进行相位校正
一种实施方式中,所述相位校正单元20周期性地对第一信号和第二信号中进行相位调整,发送调整后的信号至对应的射频通道。周期性地调整是指相位校正单元每一次调整相位之间间隔预设的时间,形成调节周期。调节周期的设置可以受到系统10所处的环境,例如温度、湿度、地理位置等因素影响,在不同的环境,例如温度、湿度、地理位置下,系统10可以设置不同的调节周期;或者,调节周期可以是固定的,例如射频装置101在出厂之前,就设置好调节周期。调节周期可以通过在射频装置101内设置计时单元来实现,计时单元可以为硬件,例如计时器芯片,计时单元也可以通过软件来实现。计时单元用于设置调节周期,并将调节周期信号传送至相位校正单元20。本实施方式采用周期性地调整相位,一方面避免过于频繁得进行相位校正,节约资源;另一方面避免经过过长时间,第一分信号或者第二分信号的相位发生变化导致第一路第一分信号和第一路第二分信号的相位不相同,而影响系统10的性能,例如覆盖或者容量。
一种实施方式中,所述第一路第一分信号和所述至少两路第一分信号中的第二路第一分信号之间相位差为第一预设值;所述第一路第二分信号和所述至少两路第二分信号中的第二路第二分信号之间的相位差为第二预设值。
这里第二路第一分信号可以是所述至少两路第一分信号中除了第一路第一分信号以外的任意一路。也就是说,所述至少两路第一分信号中每一路与所述第一路第一分信号之间均可以有预设的相位差,所述至少两路第一分信号中每一路与所述第一路第一分信号之间的预设的相位差可以相同或者不同。例如,第一路第一分信号与其他路第一分信号之间的 相位差均为90度;或者,第一路第一分信号与其他路第一分信号之间的相位差分别是90度,180度,270度···。所述第一路第二分信号和所述至少两路第二分信号中的第二路第二分信号之间的相位差为第二预设值与上类似,在此不再赘述。
所述第一预设值可以通过第一模拟电桥40来实现,所述第二预设值可以通过第二模拟电桥60来实现。例如第一模拟电桥40为90度的2输入2输出的模拟电桥,第一信号经过第一模拟电桥后,输出的两路第一分信号之间具有90度的相位差。
通过第一预设值和第二预设值,使得所述至少两个所述第一天线阵列71和所述至少两个所述第二天线阵列72在只有射频通道30和射频通道50(关闭部分射频通道后)的驱动合成的波束的垂直指向,和每个第一天线阵列71和每个第二天线阵列72分别由一个射频通道驱动下(关闭射频通道前)合成的波束的垂直指向相同。从而关闭射频通道前后,小区没有发生变化,避免了UE切换或者重新接入,保证了用户体验。
请参阅图5,具体而言,所述至少两个第一输出端42之其中一个为第一端口421,所述至少两个第一输出端42之其中另一个为第二端口422,所述第一路第一分信号从所述第一端口421输出,所述第二路第一分信号从所述第二端口422输出;所述第一端口421与第一路第一移相器91相连,所述第一路第一移相器91用于调整所述第一路第一分信号,以使所述第一路第一分信号和所述第二路第一分信号之间的相位差至所述第一预设值;和/或所述第二端口422与第二路第一移相器相连92,所述第二路第一移相器92用于调整所述第二路第一分信号,以使所述第一路第一分信号和所述第二路第一分信号之间的相位差至所述第一预设值。
也就是说,第一端口421和第二端口422可以分别设置移相器91和移相器92,移相器91对第一路第一分信号进行相位调整,移相器92对第二路第一分信号进行相位调整,从而使得第一路第一分信号和第二路第一分信号之间的相位差至所述第一预设值;或者,可以只在第一端口421处设置移相器91,移相器91对第一路第一分信号进行相位调整,第二路第一分信号不进行相位调整,从而使第一路第一分信号和第二路第一分信号之间的相位差至所述第一预设值;或者,可以只在第二端口422处设置移相器92,移相器92对第二路第一分信号进行相位调整,第一路第一分信号不进行相位调整,从而使第一路第一分信号和第二路第一分信号之间的相位差至所述第一预设值。概括而言,要调整两路第一分信号之间的相位差,可以分别用移相器调整两路第一分信号,或者可以只用移相器调整其中一路第一分信号。
相似地,所述至少两个第二输出端62之其中一个为第三端口621,所述至少两个第二输出端62之其中另一个为第四端口622,所述第一路第二分信号从所述第三端口621输出,所述第二路第二分信号从所述第四端口622输出;所述第三端口621与第一路第二移相器93相连,所述第一路第二移相器93用于调整所述第一路第二分信号,以使所述第一路第二分信号和所述第二路第二分信号之间的相位差至所述第一预设值;和/或所述第四端口622与第二路第二移相器94相连,所述第二路第二移相器94用于调整所述第二路第二分信号,以使所述第一路第二分信号和所述第二路第二分信号之间的相位差至所述第二预设值。
也就是说,第三端口621和第四端口622可以分别设置移相器93和移相器94,移相器93对第一路第二分信号进行相位调整,移相器94对第二路第二分信号进行相位调整, 从而使得第一路第二分信号和第二路第二分信号之间的相位差至所述第二预设值;或者,可以只在第三端口621处设置移相器93,移相器93对第一路第二分信号进行相位调整,第二路第二分信号不进行相位调整,从而使第一路第二分信号和第二路第二分信号之间的相位差至所述第二预设值;或者,可以只在第四端口622处设置移相器94,移相器94对第二路第二分信号进行相位调整,第一路第二分信号不进行相位调整,从而使第一路第二分信号和第二路第二分信号之间的相位差至所述第二预设值。概括而言,要调整两路第二分信号之间的相位差,可以分别用移相器调整两路第二分信号,或者可以只用移相器调整其中一路第二分信号。
一种实施方式中,所述第一预设值与所述第二预设值相同。具体可以包括以下两种情况:
(1)至少两路第一分信号中的每一路与所述第一路第一分信号之间的相位差相同,为第一预设值,至少两路第二分信号中的每一路与所述第一路第二分信号之间的相位差相同,为第二预设值,第一预设值与第二预设值相同。例如,第一路第一分信号与其他路第一分信号之间的相位差均为90度,第一路第二分信号与其他路第二分信号之间的相位差也为90度。
(2)至少两个第一分信号中的每一路与所述第一路第一分信号之间均有相位差,但该相位差不同;至少两个第二分信号中的每一路与所述第一路第二分信号之间均有相位差,但该相位差不同;但是至少两个第一分信号中的每一路与所述第一路第一分信号之间相位差的集合与至少两个第二分信号中的每一路与所述第一路第二分信号之间相位差的集合是相同的。例如,第一路第一分信号与其他路第一分信号之间的相位差分别是90度,180度,270度···;第一路第二分信号与其他路第二分信号之间的相位差同样分别是90度,180度,270度···。
由于第一路第一分信号和第一路第二分信号的相位相同,通过所述第一预设值与所述第二预设值相同,使得其他路第一分信号的相位的集合和其他路第二分信号的相位的集合是相同的,也就是说,多路第一分信号和多路第二分信号是对应相同的。例如第一路第一分信号和第一路第二分信号的相位均是0度,其他路第一分信号的相位是90度,180度,270度···,其他路第二分信号的相位是90度,180度,270度···。这样能够提高系统10的规律性和稳定性,更好得控制多个第一天线阵列和多个第二天线阵列合成的波束的垂直指向与关闭射频通道前相同,以实现关闭射频通道前后小区没有发生变化。避免UE切换或者重新接入,保证了用户体验。
上述移相器可以为固定移相器或者可调移相器,可以为单独电子器件,也可以与其它元件集成在一起,例如集成在耦合器中的移相单元,或者集成在模拟电桥中。然而,调节相位差不限于通过移相器,本申请实施例还可以通过其它的方式实现,例如:模拟电桥本身就可以输出端口的相位差,即利用电桥内的电路架构实现至少一个第一输出端和至少一个第二输出端的相位差。
如图5所示,一种实施方式中,所述第一输入端41与第一功率放大器411相连,所述第一功率放大器411用于放大所述第一信号;所述第二输入端61与第二功率放大器611相连,所述第二功率放大器611用于放大所述第二信号。第一功率放大器411即可以设置在 第一射频通道30内,也可以设置在第一射频通道30和第一模拟电桥40之间。功率放大器用于对射频信号功率放大,可以提升信号强度。
一种实施方式中,所述第一模拟电桥40和/或所述第二模拟电桥60是单个模拟电桥或者模拟电桥组。本实施方式包括三种,第一:第一模拟电桥40是单个模拟电桥或者模拟电桥组;第二:所述第二模拟电桥60是单个模拟电桥或者模拟电桥组;第三:所述第一模拟电桥40和所述第二模拟电桥60均是单个模拟电桥或者模拟电桥组。
需要说明的是,为了描述方便,图4和图5以2个射频通道,电桥单元103包括2个模拟电桥为例进行了说明,实现中,可以有1个,2个或者以上的射频通道,电桥单元103可以包括1个模拟电桥,或者2个以上的模拟电桥。当电桥单元103包括2个以上的模拟电桥时,每个模拟电桥的输出的多路信号中的任意一路被耦合回相位校正单元20,相位校正单元20会调整所述2个以上模拟电桥对应的输出端的信号中的一个或者多个,以使所述2个以上模拟电桥的输出端的多路信号中的对应一路的相位相同;并且所述2个以上模拟电桥中的每个模拟电桥的1个或者多个输出端都具有移相器,以使每个模拟电桥输出端的信号的相位的集合相同,使得最终所有射频通道对应的天线阵列合成的波束的垂直指向与关闭射频通道之前,所述天线阵列合成的波束的垂直指向相同,从而关闭射频通道前后不改变小区。
当电桥单元103只有1个模拟电桥时,射频装置101可以不包括相位校正单元20,所述1个模拟电桥的1个或者多个输出端具有移相器,以使所述1个模拟电桥输出的多路信号形成预设的相位差。
图6是一种实施方式中的系统10的示意图。
图6中的系统10采用了上述图4或者图5中的模拟电桥的设计,当系统10容量需求较大时,需要开启所有射频通道,使所有射频通道与天线阵列形成一一对应的关系,从而能够发送或者接收较多的信息。由于模拟电桥的性能,从模拟电桥的一个输入端输入的信号会分成至少两路分别从模拟电桥的输出端输出,无法与天线阵列形成一一对应的关系。图6示出的系统10能够在引入模拟电桥时,使得射频通道与天线阵列仍然保持一一对应。
需要说明的是,本实施方式中,采用4个射频通道,2个两路输入两路输出的模拟电桥以及4个天线阵列的架构作为例子来说明。实际应用中,射频通道的数量,电桥装置中模拟电桥的输入端数量之和,输出端数量之和,以及天线阵列的数量相同即可。射频通道和天线阵列可以为1个或者多个,例如1个,2个,3个或者更多。模拟电桥可以为1个或者多个,例如1个,2个,3个或者更多。本申请实施例对此不做限定。
图6示意出的射频装置101包括两个第一射频通道30,两个第二射频通道50,信号处理单元412,信号处理单元612和相位校正单元20。
图6中示意出的电桥装置103包括第一模拟电桥40和第二模拟电桥60,第一模拟电桥40包括两个第一输入端41和两个第一输出端42,所述两个第一输出端42为第一端口421和第二端口422。第二模拟电桥60包括两个第二输入端61和两个第二输出端62,所述两个第二输出端62为第三端口621的信号和第四端口622;电桥装置103还包括放大器,耦合器,移相器。两个第一输入端41和两个第二输入端61均设有功率放大器411。两个第一输出端42和两个第二输出端62均设置耦合器80。
图6中示意出的天线装置包括两个第一天线阵列71和两个第二天线阵列72。
需要说明的是,图6中示意出的与图4或者图5相同标号的装置或者组件可以实现与图4或者图5中相同或者类似的功能。
本实施方式中,每个模拟电桥都包括两个输入端和两个输出端。四个射频通道分别驱动四个天线阵列,且通过四路独立的信号支路实现一对一的驱动,如图6中带箭头的虚线所标示的方向为信号的流向,包括四条接近平行的虚线。具体地,所述第一射频通道30、所述第一输入端41和所述第一输出端42一一对应连接形成两路并列的第一信号支路。所有的所述第二射频通道50均打开的状态下,所述第二射频通道50、所述第二输入端61和所述第二输出端62一一对应连接形成两路并列的第二信号支路。
当所述两个第一射频通道均打开的状态下,所述信号处理单元对412所有的所述第一射频通道30的信号进行预加权处理,以实现所述两个第一射频通道30的信号分别从所述两路并列的第一信号支路传送至不同的第一天线阵列71。当所述两个第二射频通道50均打开的状态下,所述信号处理单元612对所有的所述第二射频通道50的信号进行预加权处理,以实现所述两个第二射频通道50的信号分别从所述两路并列的第二信号支路传送至不同的第二天线阵列72。信号处理单元412、612可以通过软件来实现,或者可以为硬体电路架构。
一种实施方式中,所述信号处理单元412、612通过反补电桥的方式对所述第一射频通道30和第二射频通道50的信号进行预加权处理,所述信号处理单元412、612的反补电桥分别是第一模拟电桥40和第二模拟电桥60的逆矩阵,举例说明,一种实施方式中,反补电桥的算法如下:
所述第一模拟电桥40的矩阵为:
Figure PCTCN2019073228-appb-000005
其中,j为复数。
反补电桥的信号的矩阵为第一模拟电桥40的逆矩阵,为:
Figure PCTCN2019073228-appb-000006
通过所述反补电桥预加权前的所述第一模拟电桥40输出信号中的一路信号表达为:
Figure PCTCN2019073228-appb-000007
通过所述反补电桥预加权后的所述第一射频通道30的输入信号,即对应上述第一模拟
电桥40的一路输出信号的输入信号为:
Figure PCTCN2019073228-appb-000008
可见,通过反补电桥预加权后,每一个信号支路中的射频通道输入的信号与模拟电桥输出的信号是一致的,实现了每一路信号支路的输入端和输出端的信号的一致性。
需要说明的是,实现中,第一模拟电桥40和第二模拟电桥60的矩阵可以有除了上述举例中的其他形式,本申请实施例对此不作限定。
相位校正单元20可以参考第一端口421和第三端口621耦合回的信号,或者相位校正单元20也可以参考第二端口422和第四端口622耦合回的信号。第一、第二、第三、第四端口均可以连接至相位校正单元20,相位校正单元20参考第一、第二、第三、第四端口信号的相位对输入两个第一射频通道30的信号和输入两个第二射频通道50的信号做调节,并将调整后的信号发送至对应的射频通道(指两个第一射频通道30和两个第二射频通道50),调整后,第一、第二、第三、第四端口输出的信号的相位对齐。本实施方式中,相位校正单元20可以参考第一、第二、第三、第四端口的所有信号对输入射频通道的信号进行相位调节,使得这四个端口的信号的相位对齐一个统一的相位值。也可以只参考第一、第二、第三、第四端口其中三个端口的信号对输入射频通道的信号进行相位调节,使所参考的三个端口的信号的相位以另一个端口的相位值为基准进行对齐。
相位校正单元20对信号进行校正的细节与图4所示的实施方式可以是一致的,不再赘述。
图7是本申请另一实施例提供系统10的示意图。
本实施方式与图6所示的实施方式的区别在于,本实施方式中,通信装置关闭了两个射频通道,即第一射频通道30和第二射频通道50的数量均为一个,相应地,第一模拟电桥40的第一输入端41和第二模拟电桥60的第二输入端61的数量也均为一个,但是第一模拟电桥40和第二模拟电桥60的输出端并未关闭,即仍然具有两个第一输出端42和两个第二输出端62,天线阵列也未关闭,即仍然具有两个第一天线阵列711和两个第二天线阵列72。本实施方式实现了一路输入信号驱动两路天线阵列,如图7中带箭头的虚线所标示的方向为信号的流向。关闭了两个射频通道,可以起到节能的作用,但是本实施方式中,依然使用四个天线阵列(两个第一天线阵列711和两个第二天线阵列72)完成信号的发射,天线系统的覆盖性能并未明显降低。
本实施方式通过第一模拟电桥40和第二模拟电桥60的设置,使得第一射频通道30和第二射频通道50的信号分别经过第一模拟电桥40和第二模拟电桥60后,被分为两个第一分信号和两个第二分信号,并利用相位校正单元20对信号的相位调整,使得两个第一分信号分别驱动两个第一天线阵列71,两个第二分信号分别驱动两个第二天线阵列72,这样一个射频通道的信号可以分解为至少两路信号并能够发送至至少两个天线阵列。可以实现 用较少的射频通道驱动较多的驱动天线阵列,降低系统10的功耗,实现节能。
本实施方式中,两个第一输出端42和两个第二输出端62均设置耦合器80,即通信装置包括4个耦合器80,两个第一输出端42和两个第二输出端62输出的信号均通过耦合器80后再输送至第一天线阵列71和第二天线阵列72。通信装置还包括两个移相器90,分别设置在其中一个第一输出端42和其中一个第二输出端62。移相器90的设置用于改变信号的相位,使得两个第一输出端42处的信号的相位差为第一预设值,及使得两个第二输出端62处的信号的相位差为第二预设值。第一预设值和第二预设值可以相等。
图6和图7以2输入2输出的模拟电桥为例,实现中该模拟电桥可以N路输入,M路输出,M大于等于N;该模拟电桥可以是单个电桥或者模拟电桥组,下面示意出了一种模拟电桥组的结构。
请参阅图8,模拟电桥组103包括四个电桥,分别为第一电桥40a、第二电桥40b、第二电桥60a和第四电桥60b,从第一电桥40a的一个输入端41输入的信号i0进入第一电桥40a后,分为两路信号i1和i2。其中第一路信号i1从第一电桥40a输出并从第二电桥40b的输入端进入第二电桥40b。第一路信号i1在第二电桥40b内分别两路信号i3和i4,因此,第二电桥40b的第一输出端421输出信号i3,第二电桥40b的第二输出端422输出信号i4。其中第二路信号i2从第一电桥40a输出并从第四电桥60b的输入端进入第四电桥60b。第二路信号i2在第四电桥60b内分别两路信号i5和i6,因此,第四电桥60b的第一输出端621输出信号i5,第四电桥60b的第二输出端622输出信号i6。这样,一个信号i0从模拟电桥组103输入,可以分解为四个输出信号i3、i4、i5、i6。
结合上述图4至图8中任一幅图的描述,本申请实施例提供了以下通信装置:
本申请实施例提供了一种通信装置,该通信装置包括射频装置101和电桥单元103。该通信装置可以是RRU、RFU或者其他具备能够完成数字信号或者中频信号与射频信号之间的转换的装置。
本申请实施例提供了一种通信装置,该通信装置包括天线装置102和电桥单元103。该通信装置可以是天线或者其他能够将射频信号发射到空中或者接收外界的射频信号的装置。
本申请实施例提供了一种通信装置,该通信装置包括射频装置101,电桥单元103和天线装置102。该通信装置可以是AAU或者其他能够将数字信号或者中频信号转换成射频信号兵发射到空中的装置。
本文中,需要说明的是:
本申请中的术语“第一”、“第二”等仅是为了区分不同的对象,“第一”、“第二”并不对其修饰的对象的实际顺序或功能进行限定。例如,“第一天线阵列”和“第二天线阵列”中的“第一”、“第二”,仅仅是为了区分这两者分别是对应第一射频通道和第二射频通道的,“第一”和“第二”本身并不对其实际先后顺序或者功能进行限定。
本申请中出现的“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”等表述,仅用于表示举例子、例证或说明。本申请中被描述为“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”的任何实施例或设计方案都不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用这些词旨在以具体方式呈现相关概念。
本申请中出现的术语“和/或”,仅仅是一种描述对象之间的关联关系,表示对象间可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,如无特别说明,则一般表示前后对象之间是一种“或”的关系。
本申请中出现的术语“多个”,可以是2个,3个或者更多;以及“以上”、“以下”包括本数。
在本申请中可能出现的对各种设备/网元/系统/装置/信号/操作/组件等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种通信装置,其特征在于,包括相位校正单元、第一射频通道、第一模拟电桥、第二射频通道和第二模拟电桥,
    所述第一模拟电桥包括第一输入端和至少两个第一输出端,所述第一输入端与所述第一射频通道相连,每个所述第一输出端连接至一个第一天线阵列;
    所述第二模拟电桥包括第二输入端和至少两个第二输出端,所述第二输入端与所述第二射频通道相连,每个所述第二输出端连接至一个第二天线阵列;
    第一信号通过所述第一射频通道发送至所述第一输入端,通过所述第一模拟电桥分成至少两路第一分信号,所述至少两路第一分信号分别从所述至少两个第一输出端输出到至少两个所述第一天线阵列;
    第二信号通过所述第二射频通道发送至所述第二输入端,通过所述第二模拟电桥分成至少两路第二分信号,所述至少两路第二分信号分别从所述至少两个第二输出端输出到至少两个所述第二天线阵列;
    所述至少两路第一分信号中的第一路第一分信号和所述至少两路第二分信号中的第一路第二分信号分别通过耦合器被耦合至所述相位校正单元,所述相位校正单元将调整后的信号发送至对应的射频通道,以使所述第一路第一分信号和所述第一路第二分信号的相位相同。
  2. 根据权利要求1所述的通信装置,其特征在于,所述通信装置还包括:
    天线单元,所述天线单元包括所述至少两个所述第一天线阵列和所述至少两个所述第二天线阵列。
  3. 一种通信装置,其特征在于,包括天线单元、第一模拟电桥和第二模拟电桥,
    所述天线单元包括至少两个第一天线阵列和至少两个第二天线阵列;
    所述第一模拟电桥包括第一输入端和至少两个第一输出端,所述第一输入端与第一射频通道相连,每个所述第一输出端连接至一个所述第一天线阵列;
    所述第二模拟电桥包括第二输入端和至少两个第二输出端,所述第二输入端与第二射频通道相连,每个所述第二输出端连接至一个所述第二天线阵列;
    第一信号通过所述第一射频通道发送至所述第一输入端,通过所述第一模拟电桥分成至少两路第一分信号,所述至少两路第一分信号分别从所述至少两个第一输出端输出到至少两个所述第一天线阵列;
    第二信号通过所述第二射频通道发送至所述第二输入端,通过所述第二模拟电桥分成至少两路第二分信号,所述至少两路第二分信号分别从所述至少两个第二输出端输出到至少两个所述第二天线阵列;
    所述至少两路第一分信号中的第一路第一分信号和所述至少两路第二分信号中的第一路第二分信号通过耦合器被耦合至所述相位校正单元,所述相位校正单元将调整后的信号发送至对应的射频通道,以使所述第一路第一分信号和所述第一路第二分信号的相位相同。
  4. 根据权利要求1至3任一项所述的通信装置,其特征在于,所述相位校正单元将调整后的信号发送至对应的射频通道,包括:
    所述相位校正单元调整所述第一信号并将调整后的所述第一信号发送至所述第一射频通道;或者,
    所述相位校正单元调整所述第二信号并将调整后的所述第二信号发送至所述第二射频通道;或者,
    所述相位校正单元调整所述第一信号和所述第二信号,并将调整后的所述第一信号发送至所述第一射频通道,将调整后的所述第二信号发送至所述第二射频通道。
  5. 根据权利要求1至4任一项所述的通信装置,其特征在于,所述第一路第一分信号和所述至少两路第一分信号中的第二路第一分信号之间相位差为第一预设值;
    所述第一路第二分信号和所述至少两路第二分信号中的第二路第二分信号之间的相位差为第二预设值。
  6. 根据权利要求5所述的通信装置,其特征在于,
    所述至少两个第一输出端之其中一个为第一端口,所述至少两个第一输出端之其中另一个为第二端口,所述第一路第一分信号从所述第一端口输出,所述第二路第一分信号从所述第二端口输出;
    所述第一端口与第一路第一移相器相连,所述第一路第一移相器用于调整所述第一路第一分信号,以使所述第一路第一分信号和所述第二路第一分信号之间的相位差至所述第一预设值;和/或所述第二端口与第二路第一移相器相连,所述第二路第一移相器用于调整所述第二路第一分信号,以使所述第一路第一分信号和所述第二路第一分信号之间的相位差至所述第一预设值。
  7. 根据权利要求6所述的通信装置,其特征在于,
    所述至少两个第二输出端之其中一个为第三端口,所述至少两个第二输出端之其中另一个为第四端口,所述第一路第二分信号从所述第三端口输出,所述第二路第二分信号从所述第四端口输出;
    所述第三端口与第一路第二移相器相连,所述第一路第二移相器用于调整所述第一路第二分信号,以使所述第一路第二分信号和所述第二路第二分信号之间的相位差至所述第一预设值;和/或所述第四端口与第二路第二移相器相连,所述第二路第二移相器用于调整所述第二路第二分信号,以使所述第一路第二分信号和所述第二路第二分信号之间的相位差至所述第二预设值。
  8. 根据权利要求5至7任一项所述的通信装置,其特征在于,所述第一预设值与所述第二预设值相同。
  9. 根据权利要求1至8任一项所述的通信装置,其特征在于,所述第一输入端与第一功率放大器相连,所述第一功率放大器用于放大所述第一信号;所述第二输入端与第二功率放大器相连,所述第二功率放大器用于放大所述第二信号。
  10. 根据权利要求1至9任一项所述的通信装置,其特征在于,所述第一模拟电桥和/或所述第二模拟电桥是单个模拟电桥或者模拟电桥组。
PCT/CN2019/073228 2018-01-31 2019-01-25 通信装置 WO2019149153A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19748400.9A EP3739763B1 (en) 2018-01-31 2019-01-25 Communication apparatus
CN201980011039.4A CN111670545B (zh) 2018-01-31 2019-01-25 通信装置和基站
US16/939,315 US11336326B2 (en) 2018-01-31 2020-07-27 Communication method and apparatus with reduced power consumption in a multi-antenna environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810100070.2 2018-01-31
CN201810100070.2A CN110098847B (zh) 2018-01-31 2018-01-31 通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/939,315 Continuation US11336326B2 (en) 2018-01-31 2020-07-27 Communication method and apparatus with reduced power consumption in a multi-antenna environment

Publications (1)

Publication Number Publication Date
WO2019149153A1 true WO2019149153A1 (zh) 2019-08-08

Family

ID=67443434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073228 WO2019149153A1 (zh) 2018-01-31 2019-01-25 通信装置

Country Status (4)

Country Link
US (1) US11336326B2 (zh)
EP (1) EP3739763B1 (zh)
CN (2) CN110098847B (zh)
WO (1) WO2019149153A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030633A4 (en) * 2019-09-30 2022-11-16 Huawei Technologies Co., Ltd. COMMUNICATION DEVICE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583455B (zh) * 2019-09-29 2022-05-06 上海华为技术有限公司 一种信号处理方法以及基站
CN111565057B (zh) * 2020-06-23 2020-10-30 锐石创芯(深圳)科技有限公司 一种射频前端模块、天线装置及通信终端
CN115395968A (zh) * 2021-05-25 2022-11-25 华为技术有限公司 射频电路和通信装置
CN115915168A (zh) * 2021-08-12 2023-04-04 上海华为技术有限公司 一种信号处理方法及相关装置
CN114614783A (zh) * 2022-03-24 2022-06-10 重庆大学 耦合阵列功率放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1583174A2 (en) * 2004-03-30 2005-10-05 Fujitsu Limited Phase calibration method and apparatus
CN201378631Y (zh) * 2008-12-08 2010-01-06 成都九洲电子信息系统有限责任公司 一种rfid定向天线阵列
CN103477570A (zh) * 2011-08-02 2013-12-25 松下电器产业株式会社 相控阵发送装置
CN105098383A (zh) * 2014-05-14 2015-11-25 华为技术有限公司 多波束天线系统及其相位调节方法和双极化天线系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1403065B1 (it) * 2010-12-01 2013-10-04 Andrew Wireless Systems Gmbh Distributed antenna system for mimo signals.
KR101195778B1 (ko) * 2003-05-17 2012-11-05 큐인텔 테크놀로지 리미티드 조정가능한 전기적인 틸트를 갖는 위상 어레이 안테나시스템
GB2485543B (en) * 2010-11-17 2014-03-12 Socowave Technologies Ltd Mimo antenna calibration device,integrated circuit and method for compensating phase mismatch
KR20120071116A (ko) * 2010-12-22 2012-07-02 한국전자통신연구원 다중입출력 증폭기 및 다중입출력 증폭방법
KR101895079B1 (ko) * 2012-05-31 2018-09-04 엘에스전선 주식회사 하이브리드 커플러 및 이를 이용한 다중 입출력 기지국 시스템
US9344138B2 (en) * 2012-10-22 2016-05-17 Emhiser Research, Inc. Method and system for providing improved high power RF splitter/combiner
US9516563B2 (en) * 2013-01-21 2016-12-06 Intel Corporation Apparatus, system and method of handover of a beamformed link
US9319094B2 (en) * 2013-11-27 2016-04-19 Broadcom Corporation Wireless transceiver with circulator and active cancellation and methods for use therewith
WO2016125743A1 (ja) * 2015-02-02 2016-08-11 三菱電機株式会社 アンテナ装置及びアンテナ励振方法
CN105139047B (zh) * 2015-08-19 2018-07-31 南京理工大学 变极化的无芯片rfid系统
US10171126B2 (en) * 2015-08-31 2019-01-01 Intel IP Corporation Apparatus for uplink multi-antenna communication based on a hybrid coupler and a tunable phase shifter
CN106602265B (zh) * 2016-09-22 2023-08-22 京信通信技术(广州)有限公司 波束成形网络及其输入结构、输入输出方法及三波束天线
CN206040984U (zh) * 2016-09-28 2017-03-22 广东工业大学 一种紧凑型宽带端射阵列天线
CN106936450B (zh) * 2017-03-22 2019-10-11 中车青岛四方车辆研究所有限公司 多数据模块共用射频天线通信系统及通信方法
US9948408B1 (en) * 2017-05-02 2018-04-17 Facebook, Inc. Antenna array calibration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1583174A2 (en) * 2004-03-30 2005-10-05 Fujitsu Limited Phase calibration method and apparatus
CN201378631Y (zh) * 2008-12-08 2010-01-06 成都九洲电子信息系统有限责任公司 一种rfid定向天线阵列
CN103477570A (zh) * 2011-08-02 2013-12-25 松下电器产业株式会社 相控阵发送装置
CN105098383A (zh) * 2014-05-14 2015-11-25 华为技术有限公司 多波束天线系统及其相位调节方法和双极化天线系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030633A4 (en) * 2019-09-30 2022-11-16 Huawei Technologies Co., Ltd. COMMUNICATION DEVICE
US12047107B2 (en) 2019-09-30 2024-07-23 Huawei Technologies Co., Ltd. Communication apparatus

Also Published As

Publication number Publication date
CN110098847A (zh) 2019-08-06
CN110098847B (zh) 2020-07-14
CN111670545A (zh) 2020-09-15
EP3739763A4 (en) 2021-03-24
EP3739763A1 (en) 2020-11-18
EP3739763B1 (en) 2023-10-04
CN111670545B (zh) 2021-10-22
US11336326B2 (en) 2022-05-17
US20200358473A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019149153A1 (zh) 通信装置
JP7182634B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
US10454508B2 (en) Multiway switch, radio frequency system, and wireless communication device
RU2405257C2 (ru) Способ и система базовой станции для объединения сигналов восходящего направления в режиме секторного разделения
JP2021505060A (ja) マルチウェイスイッチ、無線周波数システム、およびワイヤレス通信装置
US8325789B2 (en) Wireless communication apparatus, antenna calibration method and program
CN102761352A (zh) 一种fdd-lte室内覆盖系统及信号传输方法
JP7078738B2 (ja) マルチウェイスイッチ、無線周波数システム、およびワイヤレス通信装置
WO2013097395A1 (zh) 有源天线装置及其收发信号的方法
WO2016090901A1 (zh) 多输入多输出mimo基站
US20200153476A1 (en) Dynamically adjustable radio-frequency (rf) front-end
WO2015067152A1 (zh) 天线系统、天线和基站
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
US20240154663A1 (en) Beam Forming and Beam Steering Using Antenna Arrays
WO2018121508A1 (zh) 一种天线系统
US11641228B2 (en) Flexible beamforming architecture
CN202713297U (zh) 远端机和直放站系统
US20180343536A1 (en) SYSTEM AND METHOD FOR POWER-EFFICIENT IoT DEVICES
EP2733976A1 (en) System, device, and method for transmitting multi-input-multi-output signals
CN217363063U (zh) 一种5g nr移频双路的mimo功率自平衡系统
US10715261B2 (en) Method and apparatus for antenna array calibration using on-board receiver
WO2021134366A1 (zh) 一种天线收发模块、多输入多输出天线收发系统和基站
CN101499838A (zh) 用于多天线系统的信号接收方法和装置
WO2024077500A1 (zh) 一种通信设备及基站
US20230362849A1 (en) Network access device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748400

Country of ref document: EP

Effective date: 20200812