WO2019148855A1 - 压缩机 - Google Patents

压缩机 Download PDF

Info

Publication number
WO2019148855A1
WO2019148855A1 PCT/CN2018/106019 CN2018106019W WO2019148855A1 WO 2019148855 A1 WO2019148855 A1 WO 2019148855A1 CN 2018106019 W CN2018106019 W CN 2018106019W WO 2019148855 A1 WO2019148855 A1 WO 2019148855A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
exhaust passage
cylinder
flared
axial
Prior art date
Application number
PCT/CN2018/106019
Other languages
English (en)
French (fr)
Inventor
古建新
李旺宏
李永贵
Original Assignee
珠海凌达压缩机有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海凌达压缩机有限公司, 珠海格力电器股份有限公司 filed Critical 珠海凌达压缩机有限公司
Publication of WO2019148855A1 publication Critical patent/WO2019148855A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings

Definitions

  • the invention relates to the technical field of compressors, and in particular to a compressor.
  • the cross-sectional area of the exhaust passage is constant, and a small eddy current is easily generated near the orifice of the exhaust passage (for example, as shown in FIG. 1 near the outlet of the exhaust passage), thereby Additional exhaust resistance is formed, which is not conducive to the smoothness of the exhaust gas; in addition, the exhaust passage structure of the existing compressor also has a problem that the exhaust pressure loss is excessively large. The existence of the above problems limits the further improvement of the energy efficiency of the compressor.
  • a compressor includes a cylinder and a flange disposed at an axial end of the cylinder, and the exhaust passage of the compressor includes a flange exhaust passage disposed in the flange and a cylinder exhaust passage disposed in the cylinder, wherein The portion of the exhaust passage that is at least close to the outer port of the flange exhaust passage is a flared passage, and the diameter of the flared passage gradually increases from the inside to the outside in the axial direction of the exhaust passage.
  • the flange exhaust passage is a flared hole
  • At least a portion of the cylinder venting passage cooperates with the flange venting passage to form a flared bore.
  • the flange includes a first flange disposed at a first end of the cylinder and a second flange disposed at a second end of the cylinder, the exhaust passage extending from the first flange to the second flange.
  • the inlet end and the outlet end of the exhaust passage each comprise a flared bore, wherein the inlet end of the exhaust passage is disposed on the second flange, and the outlet end of the exhaust passage is disposed on the first flange; and or,
  • the axial ends of the flange venting passages in the second flange each include a flared bore; and/or,
  • the axial ends of the cylinder exhaust passages each include a flared bore.
  • the axial dimension of the flared bore at the inlet end is smaller than the axial dimension of the flared bore at the outlet end; and/or,
  • the maximum diameter of the flange exhaust passage at the inlet end is smaller than the maximum diameter of the flange exhaust passage at the outlet end;
  • the minimum diameter of the flange exhaust passage at the inlet end is smaller than the minimum diameter of the flange exhaust passage at the outlet end;
  • the flange venting passage in the second flange further includes a cylindrical bore centrally located in the axial direction for engaging the flared bores at both axial ends; and/or,
  • the cylinder venting passage also includes a cylindrical bore centrally located in the axial direction for engaging the flared bores at both axial ends.
  • the first outer side of the first flange is provided with a first muffler; and/or
  • a second muffler is disposed on the axial outer side of the second flange.
  • the first flange and the first muffler are sealingly connected by the first axial end face sealing connection region, wherein the minimum width dimension L1 of the first axial end face sealing connection region satisfies: L1 ⁇ 0.5 mm; or,
  • the second flange and the second muffler are sealedly connected by the second axial end face sealing connection region, wherein the minimum width dimension L2 of the second axial end face sealing connection region satisfies: L2 ⁇ 0.5 mm.
  • the inner boundary of the minimum width dimension L1 of the first axial end face sealing joint region is defined by the orifice edge of the flared bore in the first flange; and/or
  • the inner boundary of the minimum width dimension L2 of the second axial end face sealing joint region is defined by the orifice edge of the flared bore in the second flange.
  • the cone angle ⁇ of the flared channel ranges from 10° ⁇ ⁇ ⁇ 30°.
  • the cylinder is a single cylinder or a double cylinder.
  • the compressor of the present invention by providing a horn-shaped hole at the end of the exhaust passage, the local gas flow area is effectively increased, the exhaust resistance is reduced, and the eddy current effect near the exhaust passage port is also improved. Thereby effectively improving the energy efficiency of the compressor.
  • FIG. 1 is a schematic view showing an exhaust process of a prior art compressor exhaust passage
  • FIG. 2 is a schematic view showing an exhaust process of an exhaust passage of a compressor according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic structural view of a compressor according to another preferred embodiment of the present invention.
  • FIG. 4 is a schematic view showing the outer structure of the compressor of FIG. 3.
  • the present invention provides a compressor, such as a rotary compressor, as shown in Figures 2 and 3, the compressor comprising a cylinder 1 and a flange disposed at an axial end of the cylinder 1, such as a first flange (or Upper flange) 2 and/or second flange (or lower flange) 3, the exhaust passage of the compressor includes flange exhaust passages 21 and/or 31 and settings provided in flanges 2 and/or 3 a cylinder exhaust port 11 in the cylinder 1, wherein a portion of the exhaust passage that is at least close to an outer port of the flange exhaust passage 21 and/or 31 (that is, an end of the exhaust passage) is a flared hole, The aperture of the flared passage is gradually enlarged from the inside to the outside (that is, from the inside to the outside in the axial direction of the exhaust passage, that is, from the inside to the port of the exhaust passage), that is, an expanded shape.
  • the outer port of the flange exhaust port refers to the port away from the cylinder 1.
  • the structure whose diameter is gradually increased can realize the flow guiding and the flow rate change of the flowing gas, thereby reducing the exhaust resistance and improving the eddy current effect near the passage port. Therefore, the energy efficiency of the compressor can be improved.
  • the pressure loss during gas circulation is proportional to the velocity V 2 of the gas flow, generally, the flow rate A per revolution of the cylinder of the rotary compressor is constant, and the flow area of the gas (that is, the cross-sectional area of the exhaust passage) is increased. Large, the gas flow rate V will decrease, and the exhaust pressure loss will be small. Therefore, in the compressor of the present invention, since the cross-sectional area of the flared passage of the outer port portion of the flange exhaust passage is gradually increased, the exhaust pressure loss when the gas flows through the position is reduced, so that The exhaust pressure loss of the compressor of the present invention can be improved compared to the case where the exhaust passage cross-sectional area is constant in the prior art.
  • the flared passages are present at least in the vicinity of the outer ports of the flange exhaust passages 21 and/or 31.
  • the flared passage may extend inwardly along the axial direction of the exhaust passage, for example, extending to a thickness throughout the entire flange, that is, the entire flange exhaust passage 21 and/or 31 is a flared passage.
  • extending into the cylinder venting passage 11, that is, at least a portion of the cylinder venting passage 11 and the flange venting passages 21 and/or 31 together form a flared opening, as shown in FIGS. 2 and 3.
  • the flange comprises a first flange 2 disposed at a first end of the cylinder 1 (such as an upper end for a vertical compressor) and a second end disposed at the cylinder 1 (eg, for vertical compression)
  • the second flange 3 of the lower end of the machine, the exhaust passage penetrates from the first flange 2 to the second flange 3.
  • the compressed gas in the cylinder 1 is first discharged to the outside of the second flange 3 (as for the lower side of the vertical compressor), and then through the flange row in the second flange 3.
  • the air passage 31, the cylinder exhaust passage 11 in the cylinder 1, and the flange exhaust passage 21 in the first flange 2 are discharged to the outside of the first flange 2 (as for the upper side of the vertical compressor), In this process, effects such as reducing exhaust resistance, improving eddy current effects, and reducing exhaust pressure loss are achieved by corresponding flared holes.
  • the flared passage may be provided only at the outlet end or the inlet end of the exhaust passage.
  • the inlet end and the outlet end of the exhaust passage each comprise a flared bore, wherein the inlet end of the exhaust passage is for example arranged on the second flange 3, such as a flange exhaust in the second flange 3.
  • the outer port of the tunnel 31, the lower port in Figs. 2 and 3, the outlet end of the exhaust passage is, for example, disposed on the first flange 2, such as the flange exhaust passage 21 in the first flange 2.
  • the port, in Figure 2 and Figure 3, is the upper port.
  • the axial ends of the flange exhaust passage 31 in the second flange 3 each include a flared bore.
  • the axial dimension of both is, for example, 10%-50%, preferably 20%-40% of the flange thickness (ie axial dimension), and preferably close to the axially outer side of the second flange 3 (ie away from The length of a section of the flared passage of the cylinder 1 is greater than the axial dimension of the other section of the flared passage adjacent the axially inner side of the second flange 3 (i.e., near the cylinder 1).
  • the flange venting passage in the second flange 3 further includes a cylindrical bore centrally located in the axial direction, the diameter of which is, for example, d1 for engaging the horn-shaped bores at both axial ends. That is, both ends of the flange exhaust passage 31 in the second flange 3 form an expanded shape, thereby further reducing local exhaust resistance and exhaust pressure loss.
  • both axial ends of the cylinder exhaust passage 11 include a section of flared holes, the axial dimensions of which are, for example, 10% to 30% of the axial dimension of the cylinder.
  • the axial ends of the flange exhaust passage 31 in the second flange 3 each include a section of a flared hole, and at this time, the lower port of the cylinder exhaust passage 11 (ie, and the second The diameter of the port to which the flange vent 31 in the flange 3 abuts is equal to the upper port of the flange vent 31 in the second flange 3 (ie, the port that interfaces with the lower port of the cylinder vent 11)
  • the diameter, which is calculated as d3 forms a portion having a partial diameter enlargement inside the exhaust passage, and the portion where the partial diameter is enlarged does not have a sudden change in diameter, so that local exhaust resistance and exhaust pressure loss can be further reduced.
  • the axial dimension of the flared opening at the inlet end is smaller than the axial dimension of the flared orifice at the outlet end, the ratio between the two is preferably 1.1-5; and/or the maximum diameter of the flange exhaust passage at the inlet end ( At the same time, the maximum diameter of the flared channel at the inlet end, d2, is smaller than the maximum diameter of the flange venting channel at the outlet end (also the maximum diameter of the flared channel at the outlet end) D2, and the ratio between the two is preferably d2/D2.
  • the maximum diameter of the flange exhaust passage at the inlet end (that is, the maximum diameter of the flared passage at the inlet end) d2 is greater than the upper port of the flange exhaust passage 31 in the second flange 3 (ie, with the cylinder
  • the size of the flared opening at the outlet end is larger than the size of the flared opening at the inlet end, so that the outlet end of the exhaust passage is more effective in improving the eddy current effect, reducing the exhaust resistance and the exhaust pressure loss.
  • the reason why the present invention is set as such is that the outlet end of the exhaust passage is more likely to generate a vortex effect than the inlet end, and the exhaust resistance and the exhaust pressure loss phenomenon are also more conspicuous.
  • the axially outer side (upper side in the drawing) of the first flange 2 is provided with a first muffler 6; and/or the axial outer side of the second flange 3 ( The lower side of the figure is provided with a second muffler 7.
  • the compressed gas in the cylinder 1 is first discharged into the second muffler 7, and then discharged into the first muffler 6 through the exhaust passage.
  • the first muffler 6 is airtightly abutted against the axial end face (upper end face) of the first flange 2 with its end face flange, thereby being in the first flange 2 and
  • a first axial end face sealing connection region 26 is formed between a muffler 6, the first axial end face sealing connection region 26 sealingly joining the first flange 2 and the first muffler 6 together.
  • the first axial end face sealing connection region 26 is a substantially annular band-shaped region, and the width dimension of each of the first axial end faces may be the same or different, wherein the direction of the width dimension is the radial direction of the first flange 2.
  • the minimum width dimension L1 of the first axial end face sealing connection region 26 satisfies: L1 ⁇ 0.5 mm, thereby satisfying the reliability of the sealed connection.
  • a second axial end face sealing connection region 37 is formed between the second flange 3 and the second muffler 7, and the second axial end face sealing connection region 37 connects the second flange 3 and the second muffler 7
  • the two are sealed together.
  • the second axial end face sealing connection region 37 is a substantially annular band-shaped region, and the width dimensions thereof may be the same or different, and the direction of the width dimension thereof is the radial direction of the second flange 3.
  • the minimum width dimension L2 of the second axial end face sealing connection region 37 satisfies: L2 ⁇ 0.5 mm, thereby satisfying the reliability of the sealed connection.
  • the inner boundary of the minimum width dimension L1 of the first axial end face sealing joint region 26 is defined by the orifice edge of the flared bore in the first flange 2, that is, the minimum width dimension L1 Present at the edge of the aperture of the corresponding flared aperture; and/or the inner boundary of the minimum width dimension L2 of the second axially-faced sealing connection region 37 is defined by the aperture edge of the flared aperture in the second flange 3. That is, the minimum width dimension L2 is present at the edge of the aperture of the corresponding flared channel. That is, when the corresponding flared channel is provided, the edge of the orifice can be partially expanded into the corresponding axial end face sealing connection region as long as the sealing property of the connection is not affected.
  • the maximum diameter of the horn-shaped holes can be increased as much as possible to obtain better effects in improving the eddy current effect, reducing the exhaust resistance and the exhaust pressure loss, and at the same time,
  • the taper angle ⁇ of the horn-shaped passage has a range of 10° ⁇ ⁇ ⁇ 30°.
  • the test results prove that when the taper angle ⁇ is taken in this range, the eddy current effect at the outer end of the orifice can be effectively improved, and the exhaust resistance and the exhaust pressure loss can be reduced, thereby improving the energy efficiency of the compressor.
  • the cylinder 1 may be a single cylinder (as shown in FIG. 3) or a double cylinder (as shown in FIG. 2), that is, the corresponding compressor may be a single cylinder type or a double cylinder. model.
  • the cylinder 1 includes a first cylinder 12, a second cylinder 14, and a partition 13 disposed between the first cylinder 12 and the second cylinder 14, wherein the cylinder exhaust The tunnel penetrates the first cylinder 12, the partition 13 and the second cylinder 14 in the axial direction.
  • the compressor of the present invention by providing a horn-shaped hole at the end of the exhaust passage, the local gas flow area is effectively increased, the exhaust resistance is reduced, and the vicinity of the exhaust passage port is also improved.
  • the eddy current effect effectively increases the energy efficiency of the compressor.

Abstract

一种压缩机,包括气缸(1)和设置在气缸(1)轴向端部的法兰,压缩机的排气通道包括设置在法兰中的法兰排气孔道和设置在气缸(1)中的气缸排气孔道(11),其中,排气通道的至少靠近法兰排气孔道的外端口的部分为喇叭形孔道,在排气通道的轴向上,喇叭形孔道的孔径从内到外逐渐变大。该压缩机通过在排气通道的端部设置喇叭形孔道,有效加大了局部的气体流通面积,减小了排气阻力,同时还改善了排气通道端口附近的涡流效应,从而有效提高了压缩机的能效。

Description

压缩机 技术领域
本发明涉及压缩机技术领域,具体涉及一种压缩机。
背景技术
现有的压缩机产品结构中,排气通道的横截面积恒定不变,在排气通道的孔口附近(例如如图1所示,在排气通道的出口附近)容易产生微小涡流,从而会形成额外的排气阻力,不利于排气的顺畅性;另外,现有的压缩机的排气通道结构还存在排气压力损失偏大的问题。上述问题的存在都限制了压缩机能效的进一步提高。
发明内容
基于上述现状,本发明的主要目的在于提供一种压缩机,其能够改善排气通道的孔口附近的涡流效应,同时能减小排气阻力,从而保证能效的提高。
为实现上述目的,本发明采用的技术方案如下:
一种压缩机,包括气缸和设置在气缸轴向端部的法兰,压缩机的排气通道包括设置在法兰中的法兰排气孔道和设置在气缸中的气缸排气孔道,其中,排气通道的至少靠近法兰排气孔道的外端口的部分为喇叭形孔道,在排气通道的轴向上,喇叭形孔道的孔径从内到外逐渐变大。
优选地,法兰排气孔道为喇叭形孔道;或者,
气缸排气孔道的至少一部分与法兰排气孔道共同形成喇叭形孔道。
优选地,法兰包括设置在气缸的第一端部的第一法兰和设置在气缸的第二端部的第二法兰,排气通道从第一法兰贯通到第二法兰。
优选地,排气通道的入口端和出口端均包括喇叭形孔道,其中,排气通道的入口端设置在第二法兰上,排气通道的出口端设置在第一法兰上;和/或,
第二法兰中的法兰排气孔道的轴向两端均包括一段喇叭形孔道;和/或,
气缸排气孔道的轴向两端均包括一段喇叭形孔道。
优选地,入口端的喇叭形孔道的轴向尺寸小于出口端的喇叭形孔道的 轴向尺寸;和/或,
入口端的法兰排气孔道的最大直径小于出口端的法兰排气孔道的最大直径;和/或,
入口端的法兰排气孔道的最小直径小于出口端的法兰排气孔道的最小直径;和/或,
第二法兰中的法兰排气孔道还包括在轴向上位于中部的圆柱形孔道,用于衔接位于轴向两端的喇叭形孔道;和/或,
气缸排气孔道还包括在轴向上位于中部的圆柱形孔道,用于衔接位于轴向两端的喇叭形孔道。
优选地,第一法兰的轴向外侧设置有第一消音器;和/或,
第二法兰的轴向外侧设置有第二消音器。
优选地,第一法兰与第一消音器之间通过第一轴向端面密封连接区域进行密封连接,其中第一轴向端面密封连接区域的最小宽度尺寸L1满足:L1≥0.5mm;和/或,
第二法兰与第二消音器之间通过第二轴向端面密封连接区域进行密封连接,其中第二轴向端面密封连接区域的最小宽度尺寸L2满足:L2≥0.5mm。
优选地,第一轴向端面密封连接区域的最小宽度尺寸L1的内侧边界由第一法兰中的喇叭形孔道的孔口边缘限定;和/或,
第二轴向端面密封连接区域的最小宽度尺寸L2的内侧边界由第二法兰中的喇叭形孔道的孔口边缘限定。
优选地,喇叭形孔道的锥角β的范围为:10°≤β≤30°。
优选地,气缸为单气缸或双气缸。
本发明的压缩机中,通过在排气通道的端部设置喇叭形孔道,有效加大了局部的气体流通面积,减小了排气阻力,同时还改善了排气通道端口附近的涡流效应,从而有效提高了压缩机的能效。
附图说明
以下将参照附图对根据本发明的压缩机的优选实施方式进行描述。图中:
图1为现有技术的压缩机排气通道的排气过程示意图;
图2为根据本发明的一种优选实施方式的压缩机排气通道的排气过程示意图;
图3为根据本发明的另一种优选实施方式的压缩机的结构示意图;
图4为图3的压缩机的外形结构示意图。
其中,上述附图包括以下附图标记:
1、气缸;12、第一气缸;13、隔板;14、第二气缸;2、第一法兰;3、第二法兰;11、气缸排气孔道;6、第一消音器;7、第二消音器;26、第一轴向端面密封连接区域;37、第二轴向端面密封连接区域。
具体实施方式
本发明提供了一种压缩机,例如为旋转压缩机,如图2和图3所示,该压缩机包括气缸1和设置在气缸1轴向端部的法兰,如第一法兰(或上法兰)2和/或第二法兰(或下法兰)3,压缩机的排气通道包括设置在法兰2和/或3中的法兰排气孔道21和/或31和设置在气缸1中的气缸排气孔道11,其中,排气通道的至少靠近法兰排气孔道21和/或31的外端口的部分(也即排气通道的端部)为喇叭形孔道,该喇叭形孔道的孔径从内到外(是指在排气通道的轴向上从内到外,也即从排气通道的内部到端口)逐渐变大,即为一种扩张形孔道。其中,法兰排气孔道的外端口是指远离气缸1的端口。
由于排气通道的端部为喇叭形孔道,其孔径逐渐变大的结构能够对流过的气体实现导流和改变流速的作用,从而可减小排气阻力,同时改善通道端口附近的涡流效应,因此可提高压缩机的能效。
由于气体流通时的压力损失与气流的速度V 2成正比,通常,旋转压缩机的气缸每转的流量A是一定的,那么气体通流面积(也即排气通道的横截面积)S增大,气体流速V就会减小,于是排气压力损失就较小。因此,本发明的压缩机中,由于法兰排气孔道的外端口部分的喇叭形孔道的横截面积逐渐变大,因此气体流经该位置处时的排气压力损失就会减小,于是相比于现有技术中排气通道横截面积恒定的情况,本发明的压缩机的排气压力损失情况能够得到改善。
本发明中,喇叭形孔道至少存在于法兰排气孔道21和/或31的外端口附近。然而优选地,该喇叭形孔道可以沿排气通道的轴向向内侧延伸加长, 例如,延伸到贯穿整个法兰的厚度,也即,整个法兰排气孔道21和/或31为喇叭形孔道;或者,延伸到气缸排气孔道11中,也即,气缸排气孔道11的至少一部分与法兰排气孔道21和/或31共同形成喇叭形孔道,如图2和图3所示。
优选地,法兰包括设置在气缸1的第一端部(如对于立式压缩机而言的上端部)的第一法兰2和设置在气缸1的第二端部(如对于立式压缩机而言的下端部)的第二法兰3,排气通道从第一法兰2贯通到第二法兰3。例如,压缩机工作时,气缸1中的压缩气体先排到第二法兰3的外侧(如对于立式压缩机而言的下侧),然后再经由第二法兰3中的法兰排气孔道31、气缸1中的气缸排气孔道11和第一法兰2中的法兰排气孔道21排放到第一法兰2的外侧(如对于立式压缩机而言的上侧),在这个过程中,通过相应的喇叭形孔道实现减小排气阻力、改善涡流效应、减小排气压力损失等效果。
本发明的压缩机中,喇叭形孔道可以仅设置在排气通道的出口端或入口端。然而优选地,排气通道的入口端和出口端均包括喇叭形孔道,其中,排气通道的入口端例如设置在第二法兰3上,如为第二法兰3中的法兰排气孔道31的外端口,图2和图3中为下端口,排气通道的出口端则例如设置在第一法兰2上,如为第一法兰2中的法兰排气孔道21的外端口,图2和图3中为上端口。这种情况下,由于排气通道的两端均设置有喇叭形孔道,因此能够改善排气通道两端的涡流效应,并且同时减小两端的排气阻力和排气压力损失。
优选地,如图3所示,第二法兰3中的法兰排气孔道31的轴向两端均包括一段喇叭形孔道。二者的轴向尺寸例如均为法兰厚度(即轴向尺寸)的10%-50%,优选为20%-40%,并且优选地,靠近第二法兰3轴向外侧(也即远离气缸1的)的一段喇叭形孔道的轴向尺寸大于靠近第二法兰3轴向内侧的(也即靠近气缸1)另一段喇叭形孔道的轴向尺寸。进一步优选地,第二法兰3中的法兰排气孔道还包括在轴向上位于中部的圆柱形孔道,其直径例如为d1,用于衔接位于轴向两端的喇叭形孔道。也即,第二法兰3中的法兰排气孔道31的两端均形成扩张形孔道,从而可进一步减小局部的排气阻力和排气压力损失。
优选地,如图3所示,气缸排气孔道11的轴向两端均包括一段喇叭形孔道,二者的轴向尺寸例如均为汽缸轴向尺寸的10%-30%。并且优选地,气缸排气孔道11也包括在轴向上位于中部的圆柱形孔道,其直径例如为D0,用于衔接位于轴向两端的喇叭形孔道,如图2和图3所示,其中优选地,D0=d1。
优选地,如图3所示,第二法兰3中的法兰排气孔道31的轴向两端均包括一段喇叭形孔道,此时,气缸排气孔道11的下端口(即与第二法兰3中的法兰排气孔道31对接的端口)的直径等于第二法兰3中的法兰排气孔道31的上端口(即与气缸排气孔道11的下端口对接的端口)的直径,计为d3,从而在排气通道的内部形成一个局部直径扩大的部分,并且该局部直径扩大的部分不存在直径的突变,从而能够进一步减小局部的排气阻力和排气压力损失。
优选地,入口端的喇叭形孔道的轴向尺寸小于出口端的喇叭形孔道的轴向尺寸,二者之间的比值优选为1.1-5;和/或,入口端的法兰排气孔道的最大直径(同时也就是入口端的喇叭形孔道的最大直径)d2小于出口端的法兰排气孔道的最大直径(同时也就是出口端的喇叭形孔道的最大直径)D2,二者之间的比值优选为d2/D2=1.3-2;和/或,入口端的法兰排气孔道31的最小直径d1小于出口端的法兰排气孔道21的最小直径D1,二者之间的比值优选为d1/D1=1.1-1.6;和/或,入口端的法兰排气孔道的最大直径(同时也就是入口端的喇叭形孔道的最大直径)d2大于第二法兰3中的法兰排气孔道31的上端口(即与气缸排气孔道11的下端口对接的端口)的直径d3,二者之间的比值优选为d2/d3=1.05-1.2。也即,出口端的喇叭形孔道的尺寸大于入口端的喇叭形孔道的尺寸,从而使得排气通道的出口端在改善涡流效应、减小排气阻力和排气压力损失等方面的效果更明显。本发明中之所以如此设置,是因为本发明发现排气通道出口端相比于入口端更容易产生涡流效应、同时排气阻力和排气压力损失现象也更明显。
优选地,如图2和图3所示,第一法兰2的轴向外侧(图中为上侧)设置有第一消音器6;和/或,第二法兰3的轴向外侧(图中为下侧)设置有第二消音器7。气缸1中的压缩气体首先排放到第二消音器7中,然后经排气通道排放到第一消音器6中。
优选地,如图2和图3所示,第一消音器6以其端面凸缘气密地抵靠第一法兰2的轴向端面(上端面),从而在第一法兰2与第一消音器6之间形成了第一轴向端面密封连接区域26,该第一轴向端面密封连接区域26将第一法兰2与第一消音器6二者密封连接在一起。该第一轴向端面密封连接区域26为大致环形的带状区域,其各处的宽度尺寸可以相同,也可以不相同,其中,其宽度尺寸的方向为第一法兰2的径向。其中,如图3所示,第一轴向端面密封连接区域26的最小宽度尺寸L1满足:L1≥0.5mm,从而满足密封连接的可靠性。
类似地,第二法兰3与第二消音器7之间形成有第二轴向端面密封连接区域37,该第二轴向端面密封连接区域37将第二法兰3与第二消音器7二者密封连接在一起。该第二轴向端面密封连接区域37为大致环形的带状区域,其各处的宽度尺寸可以相同,也可以不相同,其中,其宽度尺寸的方向为第二法兰3的径向。其中,如图3所示,第二轴向端面密封连接区域37的最小宽度尺寸L2满足:L2≥0.5mm,从而满足密封连接的可靠性。
优选地,如图3所示,第一轴向端面密封连接区域26的最小宽度尺寸L1的内侧边界由第一法兰2中的喇叭形孔道的孔口边缘限定,也即,最小宽度尺寸L1存在于相应的喇叭形孔道的孔口边缘处;和/或,第二轴向端面密封连接区域37的最小宽度尺寸L2的内侧边界由第二法兰3中的喇叭形孔道的孔口边缘限定,也即,最小宽度尺寸L2存在于相应的喇叭形孔道的孔口边缘处。也即,在设置相应的喇叭形孔道时,其孔口边缘可以部分地扩张到相应的轴向端面密封连接区域中,只要不影响连接的密封性即可。
具体地,在设置相应的喇叭形孔道时,可以尽量加大喇叭形孔道的最大直径,以便在改善涡流效应、减小排气阻力和排气压力损失等方面得到更好的效果,然而同时又要保证相应的消音器与法兰之间的连接密封性,为此,应保证相应的喇叭形孔道的孔口边缘外侧有足够宽的密封连接区域,例如以确保L1≥0.5mm、L2≥0.5mm为限度。
本发明的压缩机中,喇叭形孔道的锥角β的范围为:10°≤β≤30°。试验结果证明,当锥角β按此范围取值时,能够有效地改善孔口外端的涡流效应、减小排气阻力和排气压力损失,从而对提高压缩机的能效有利。
本发明的压缩机中,气缸1可以为单气缸(如图3所示)或双气缸(如 图2所示),也即,相应的压缩机可以为单缸机型,也可以为双缸机型。
对于双缸机型而言,如图2所示,气缸1包括第一气缸12、第二气缸14、以及设置在第一气缸12和第二气缸14之间的隔板13,其中气缸排气孔道沿轴向贯穿第一气缸12、隔板13和第二气缸14。
综上,本发明的压缩机中,通过在排气通道的端部设置喇叭形孔道,有效加大了局部的气体流通面积,减小了排气阻力,同时还改善了排气通道端口附近的涡流效应,从而有效提高了压缩机的能效。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本发明的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本发明的权利要求范围内。

Claims (10)

  1. 一种压缩机,其特征在于,包括气缸(1)和设置在所述气缸(1)轴向端部的法兰,所述压缩机的排气通道包括设置在所述法兰中的法兰排气孔道和设置在所述气缸(1)中的气缸排气孔道(11),其中,所述排气通道的至少靠近所述法兰排气孔道的外端口的部分为喇叭形孔道,在所述排气通道的轴向上,所述喇叭形孔道的孔径从内到外逐渐变大。
  2. 根据权利要求1所述的压缩机,其特征在于,所述法兰排气孔道为喇叭形孔道;或者,
    所述气缸排气孔道(11)的至少一部分与所述法兰排气孔道共同形成喇叭形孔道。
  3. 根据权利要求1所述的压缩机,其特征在于,所述法兰包括设置在所述气缸(1)的第一端部的第一法兰(2)和设置在所述气缸(1)的第二端部的第二法兰(3),所述排气通道从所述第一法兰(2)贯通到所述第二法兰(3)。
  4. 根据权利要求3所述的压缩机,其特征在于,所述排气通道的入口端和出口端均包括喇叭形孔道,其中,所述排气通道的入口端设置在所述第二法兰(3)上,所述排气通道的出口端设置在所述第一法兰(2)上;和/或,
    所述第二法兰(3)中的法兰排气孔道的轴向两端均包括一段喇叭形孔道;和/或,
    所述气缸排气孔道(11)的轴向两端均包括一段喇叭形孔道。
  5. 根据权利要求4所述的压缩机,其特征在于,所述入口端的喇叭形孔道的轴向尺寸小于所述出口端的喇叭形孔道的轴向尺寸;和/或,
    所述入口端的法兰排气孔道的最大直径小于所述出口端的法兰排气孔道的最大直径;和/或,
    所述入口端的法兰排气孔道的最小直径小于所述出口端的法兰排气孔道的最小直径;和/或,
    所述第二法兰(3)中的法兰排气孔道还包括在轴向上位于中部的圆柱形孔道,用于衔接位于轴向两端的喇叭形孔道;和/或,
    所述气缸排气孔道(11)还包括在轴向上位于中部的圆柱形孔道,用 于衔接位于轴向两端的喇叭形孔道。
  6. 根据权利要求3所述的压缩机,其特征在于,所述第一法兰(2)的轴向外侧设置有第一消音器(6);和/或,
    所述第二法兰(3)的轴向外侧设置有第二消音器(7)。
  7. 根据权利要求6所述的压缩机,其特征在于,所述第一法兰(2)与所述第一消音器(6)之间通过第一轴向端面密封连接区域(26)进行密封连接,其中,所述第一轴向端面密封连接区域(26)的最小宽度尺寸L1满足:L1≥0.5mm;和/或,
    所述第二法兰(3)与所述第二消音器(7)之间通过第二轴向端面密封连接区域(37)进行密封连接,其中,所述第二轴向端面密封连接区域(37)的最小宽度尺寸L2满足:L2≥0.5mm。
  8. 根据权利要求7所述的压缩机,其特征在于,所述第一轴向端面密封连接区域(26)的最小宽度尺寸L1的内侧边界由所述第一法兰(2)中的喇叭形孔道的孔口边缘限定;和/或,
    所述第二轴向端面密封连接区域(37)的最小宽度尺寸L2的内侧边界由所述第二法兰(3)中的喇叭形孔道的孔口边缘限定。
  9. 根据权利要求1至8中任一项所述的压缩机,其特征在于,所述喇叭形孔道的锥角β的范围为:10°≤β≤30°。
  10. 根据权利要求1至8中任一项所述的压缩机,其特征在于,所述气缸(1)为单气缸或双气缸。
PCT/CN2018/106019 2018-01-31 2018-09-17 压缩机 WO2019148855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810096027.3 2018-01-31
CN201810096027.3A CN108194326B (zh) 2018-01-31 2018-01-31 一种压缩机

Publications (1)

Publication Number Publication Date
WO2019148855A1 true WO2019148855A1 (zh) 2019-08-08

Family

ID=62591605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106019 WO2019148855A1 (zh) 2018-01-31 2018-09-17 压缩机

Country Status (2)

Country Link
CN (1) CN108194326B (zh)
WO (1) WO2019148855A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074970A4 (en) * 2020-02-10 2023-01-18 Daikin Industries, Ltd. COMPRESSOR

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194326B (zh) * 2018-01-31 2019-11-22 珠海格力电器股份有限公司 一种压缩机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532977A (en) * 1978-08-30 1980-03-07 Mitsutoyo Gomme Kk Tube connection structure for compressor
CN1648450A (zh) * 2004-01-29 2005-08-03 东芝开利株式会社 密闭型往复式压缩机
US20090028733A1 (en) * 2007-07-25 2009-01-29 Freudenberg-Nok General Partnership Compressor Valve Plate Assembly with Integrated Gasket
CN105804974A (zh) * 2016-05-11 2016-07-27 珠海凌达压缩机有限公司 一种压缩机泵体结构、压缩机及空调器
CN106704200A (zh) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 压缩机、泵体和泵体排气件
CN108194326A (zh) * 2018-01-31 2018-06-22 珠海凌达压缩机有限公司 一种压缩机
CN207989273U (zh) * 2018-01-31 2018-10-19 珠海凌达压缩机有限公司 一种压缩机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353058C (zh) * 2006-03-03 2007-12-05 邬志昂 一种压缩机气阀
CN105201790A (zh) * 2015-10-27 2015-12-30 珠海凌达压缩机有限公司 一种泵体结构及压缩机
CN107559176B (zh) * 2017-08-22 2024-02-27 珠海格力电器股份有限公司 泵体组件及具有其的压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532977A (en) * 1978-08-30 1980-03-07 Mitsutoyo Gomme Kk Tube connection structure for compressor
CN1648450A (zh) * 2004-01-29 2005-08-03 东芝开利株式会社 密闭型往复式压缩机
US20090028733A1 (en) * 2007-07-25 2009-01-29 Freudenberg-Nok General Partnership Compressor Valve Plate Assembly with Integrated Gasket
CN105804974A (zh) * 2016-05-11 2016-07-27 珠海凌达压缩机有限公司 一种压缩机泵体结构、压缩机及空调器
CN106704200A (zh) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 压缩机、泵体和泵体排气件
CN108194326A (zh) * 2018-01-31 2018-06-22 珠海凌达压缩机有限公司 一种压缩机
CN207989273U (zh) * 2018-01-31 2018-10-19 珠海凌达压缩机有限公司 一种压缩机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074970A4 (en) * 2020-02-10 2023-01-18 Daikin Industries, Ltd. COMPRESSOR

Also Published As

Publication number Publication date
CN108194326B (zh) 2019-11-22
CN108194326A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2019148855A1 (zh) 压缩机
CN107429709B (zh) 用于使用文丘里效应产生真空的装置
WO2018171551A1 (zh) 压缩机用滑阀及具有其的螺杆压缩机
WO2021027414A1 (zh) 压缩机用排气管及压缩机
CN207989273U (zh) 一种压缩机
CN103940002B (zh) 缓冲装置及具有其的空调室外机
CN205560096U (zh) 膨胀节
WO2018072517A1 (zh) 空调器及其螺杆压缩机
WO2018076691A1 (zh) 储液器和具有其的压缩机组件
TWI567300B (zh) 轉換具有密封液體排放孔之液環泵之方法
JP2018500501A (ja) 弁の近くにおける空気流乱流および圧力変動のうちの少なくとも一方を減じるシステムおよび方法
CN109058109A (zh) 一种压缩机及空调器
CN110779196B (zh) 换热管及换热器
CN205136940U (zh) 管路消声器
CN210423042U (zh) 有效降噪的排气管及压缩机
CN104632625B (zh) 双级增焓压缩机及空调器
US10989076B2 (en) Turbo housing element
CN207485636U (zh) 压缩机阀板
KR20110014263A (ko) 복수의 압축기를 구비하는 공기조화기용 냉매 흐름 제어 장치
CN106089656A (zh) 压缩机及其气缸总成
JP2010196857A (ja) 四方切換弁
CN105351666A (zh) 管路消声器
CN216554393U (zh) 变容转子式压缩机、空调器
CN205349661U (zh) 压缩机的消音器及压缩机
CN209100282U (zh) 一种压缩机的吸气结构及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903336

Country of ref document: EP

Kind code of ref document: A1