WO2019146639A1 - Method and device for manufacturing ceramic-metal joined body, and ceramic-metal joined body - Google Patents

Method and device for manufacturing ceramic-metal joined body, and ceramic-metal joined body Download PDF

Info

Publication number
WO2019146639A1
WO2019146639A1 PCT/JP2019/002075 JP2019002075W WO2019146639A1 WO 2019146639 A1 WO2019146639 A1 WO 2019146639A1 JP 2019002075 W JP2019002075 W JP 2019002075W WO 2019146639 A1 WO2019146639 A1 WO 2019146639A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
metal
laminate
base material
ceramic base
Prior art date
Application number
PCT/JP2019/002075
Other languages
French (fr)
Japanese (ja)
Inventor
丈嗣 北原
長友 義幸
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2019146639A1 publication Critical patent/WO2019146639A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to a method of manufacturing a ceramic-metal joint body in which a metal layer made of copper or copper alloy is joined to the surface of a ceramic base material, a manufacturing apparatus, and ceramics forming a plurality of ceramic circuit boards by singulation. It relates to a metal joined body.
  • a ceramic circuit board as a wiring board for a thermoelectric element or an LED element, in which a ceramic-metal joined body in which a metal layer is joined to the surface of a ceramic plate is separated.
  • bonding between the ceramic plate and the metal plate constituting the metal layer is performed using a brazing material.
  • a laminate of a ceramic plate and a metal plate is sandwiched between a pair of pressure plates, and heating is performed while pressing in the stacking direction between the pressure plates.
  • the surplus portion of the brazing material melted by heating is pushed out from between the laminated ceramic substrate and the metal plate, adheres to the end face etc., and is solidified in a convex shape protruding in the surface direction and the lamination direction of the laminate, It forms a so-called fistula.
  • the laminated body joined by such a brazing material is positioned on the positioning jig when forming the mask for etching, but if the bumps are formed, the laminated body can not be accurately positioned.
  • a method for manufacturing a power module substrate described in Patent Document 1 is known.
  • this manufacturing method in the bonding step of heating the laminate between the pair of pressure plates and brazing the metal plate to the surface of the ceramic substrate, at least one surface of the pair of processed plates sandwiching the laminate is one A relief surface having a predetermined width spaced apart from the surface of the laminate along the two sides forming the corner is provided to form a brazing reservoir space between the surface and the relief surface of the laminate, and the molten brazing filler metal is accumulated. The flow into the space prevents the formation of bumps on the end face of the laminate.
  • a pair of laminates in which a metal plate is disposed on the surface of a ceramic substrate on which a scribe line is formed via a brazing material is provided with a relief surface on the periphery thereof.
  • the brazing material flowing out to the outside of the laminate flows into the wax accumulation space formed between the metal plate and the pressure plate and solidifies.
  • the etching rate of the brazing material is lower than the etching rate of the copper or copper alloy metal layer,
  • the brazing material has a slow etching rate, and even if the metal layers are etched and separated individually, the brazing material is likely to remain in the brazing space without being etched. If the brazing material remaining in the brazing material space is disposed directly above the scribe line, it is difficult to divide the ceramic substrate at the scribe line.
  • the present invention has been made in view of such circumstances, and it is a ceramic-metal that can suppress the solidification of the solder right above the scribe line of the laminate including the ceramic base material and the metal layer in which the scribe line is formed. It is an object of the present invention to provide a method of manufacturing a bonded body, a manufacturing apparatus, and a ceramic-metal bonded body.
  • a metal plate made of copper or copper alloy on the surface of a ceramic base material having one or more scribe lines for dividing into a plurality of ceramic substrates is a Cu—P brazing material Joining the metal plate to the surface of the ceramic base material to form a metal layer by sandwiching and heating a laminate formed by laminating through a pair of pressure plates; and the laminate Etching the metal layer along the scribe line to separate the metal layer into regions surrounded by the scribe line, and separating the metal layer from the surface of the laminate on the pressure surface of the pressure plate.
  • a relief surface having a predetermined width is disposed along two sides forming one corner of the pressure plate, and when the laminated body is held, the position just above the scribe line is avoided. And provided with a plurality, in the bonding step, forming a plurality of wax reservoir space between said surface and a plurality of the relief surface of the laminate.
  • each of the escape surfaces is provided so as not to be directly above the scribe line, that is, since no escape surface is formed in the region where the scribe line is formed, it will be directly above the scribe line. No accumulation space is formed. Therefore, since the molten wax in the bonding step solidifies in the braze pool space along the side of the laminate and avoiding directly above the scribe line, it prevents the formation of bumps on the side of the laminate, It is possible to suppress the solidification of the solder right above the scribe line, and the laminate can be appropriately singulated.
  • a metal plate made of copper or a copper alloy is Cu-P based on the surface of a ceramic base material on which one or more scribe lines for dividing a plurality of ceramic substrates are formed.
  • An apparatus for manufacturing a ceramic-metal joint body brazed by a brazing material comprising: a laminate in which the metal plate is laminated on the surface of the ceramic base material via the Cu—P brazing material.
  • the pressing surface of the pressing plate has a pair of pressing plates sandwiching in the stacking direction, and the pressing surface of the pressing plate has a relief surface of a predetermined width separated from the surface of the laminate when the pressing member sandwiches the stack.
  • a plurality of brazes are provided along two sides forming one corner and at positions avoiding directly above the scribe line, and a plurality of brazes are accumulated between the surface of the laminate and the plurality of escape surfaces. During it is formed.
  • the ceramic-metal bonded body of the present invention is bonded to the surface of the ceramic base material with a ceramic base material having one or more scribe lines for dividing into a plurality of ceramic substrates by a Cu-P based brazing material, copper or And a metal layer made of a copper alloy, and a surface of the metal layer opposite to the bonding surface with the ceramic base is along the two sides forming one corner and the scribe line is true.
  • the solidified Cu-P-based brazing material adheres to the solidified solder after melting at a position away from the top.
  • the ceramic-metal joint can be appropriately separated along the scribe line.
  • the present invention it is possible to suppress the solidification of the solder right above the scribe line of the laminate including the ceramic base material and the metal layer in which the scribe line is formed.
  • FIG. 1 is a perspective view showing a ceramic-metal joint according to an embodiment of the present invention. It is a perspective view which shows the principal part of the manufacturing apparatus of the ceramic-metal joined body shown in FIG. It is a perspective view which shows the manufacturing method of the ceramic-metal joined body shown in FIG.
  • FIG. 3 is a partial cross-sectional view taken along the line CC of FIG. 2; It is a longitudinal cross-sectional view which shows the example of a whole structure of a power module.
  • FIG. 1 is a cross-sectional view showing a ceramic-metal joined body 10 that becomes a plurality of power module substrates 100 (see FIG. 5) by being singulated.
  • the ceramic-metal joint body 10 is formed by brazing a substantially rectangular metal plate 30 to both surfaces of a substantially rectangular ceramic base material 20.
  • the solder marks 43 are formed from the end faces 11a and 11b to the surface (the surface of the metal plate 30 opposite to the bonding surface with the ceramic base 20) along the two sides forming the corner (positioning corner) 11
  • a rub (not shown) is formed on the end surfaces 12a and 12b of the opposite corner 12.
  • Each of the wax spots 43 located on these surfaces is not formed right above the scribe line 22 formed on the ceramic base material 20 described later.
  • the brazing material is solidified after melting the brazing material 40, and refers to a thin film-like deposit having a thickness of 0.1 mm or less and having a small unevenness.
  • the rubbish refers to a bump-like deposit having a thickness of 1 mm or more that partially protrudes.
  • the ceramic base material 20 is a substantially rectangular plate formed using AlN (aluminum nitride) as a base material.
  • the ceramic base material 20 may be made of, for example, a nitride-based ceramic such as AlN or Si 3 N 4 (silicon nitride), or an oxide-based ceramic such as Al 2 O 3 (alumina).
  • a scribe line 22 is formed on the surface of the ceramic base material 20.
  • the scribe line 22 is formed, for example, by linearly removing the surface of the ceramic base material 20 by irradiating a laser beam.
  • the scribe line 22 is a groove portion formed in the ceramic base material 20, and is a part that becomes a starting point of division of the ceramic base material 20.
  • the scribe lines 22 are, as indicated by the broken lines in FIG. 1 and the solid lines in FIG. 3, four scribe lines extending in the direction along the end face 11a and three lines extending in the direction along the end face 11b. Of scribe lines.
  • the metal plate 30 joined to the ceramic base material 20 and to be a metal layer is formed of copper or a copper alloy in substantially the same shape as the ceramic base material 20.
  • the brazing material 40 (see FIG. 3) for joining the ceramic base material 20 and the metal plate 30 has a substantially rectangular foil shape, and is formed of a Cu—P-based alloy in the present embodiment.
  • the brazing material 40 may contain, for example, Ag and Sn in addition to Cu and P.
  • the ceramic-metal joint 10 has a product portion 10A, the center of which constitutes the power module substrate 100, and an outer peripheral portion surrounding the product portion 10A, the dummy portion 10B.
  • the dummy portion 10B is formed between the outermost scribe line 22 and the four end faces and is set in a frame shape having a predetermined width, and is finally removed after being used for handling or the like in each manufacturing process. . That is, while holding the dummy portion 10B and handling the ceramic-metal bonding body 10, a predetermined circuit pattern P is formed on the ceramic-metal bonding body 10 (see FIG. 5), and processing such as division into pieces is performed. By doing this, the power module substrate 100 is formed.
  • the ceramic-metal joint 10 can be positioned using the end faces 11a and 11b in which no bumps are formed.
  • the wax stain 43 is a very thin flat deposit and does not disturb the positioning of the ceramic-metal joint 10, so it is not necessary to remove it.
  • FIG. 2 is a view showing a manufacturing apparatus 70 for performing a bonding process of the ceramic-metal joint 10.
  • the manufacturing apparatus 70 includes a plurality of pressure plates 60 and a pressure plate 60, which apply pressure while heating the laminate 50 in which the metal plate 30 is laminated on both sides of the ceramic base 20 with the brazing material 40 interposed therebetween in the laminating direction. It has four cross-sectional L-shaped support
  • the pressure plate 60 brings the end surface 61a into contact with the inner surface of the substantially L-shaped columns 71a and 71b, and the end surface 61b. Are positioned by bringing them into contact with the inner surfaces of the substantially L-shaped columns 71a and 71d.
  • a plurality of ceramic-metal joints 10 are simultaneously manufactured by alternately laminating the plurality of pressure plates 60 and the stack 50.
  • the pressure plate 60 for example, a carbon plate excellent in flatness and thermal conductivity can be used.
  • a porous material such as a carbon plate
  • each ceramic base material 20 causes the end face 21a to abut against the support 71a and 71b, and the end face 21b corresponds to the support 71a, It is positioned using the positioning corner 21 so as to abut on 71 d.
  • each metal plate 30 is positioned using the positioning corner 31 so that the end face 31a forming the positioning corner 31 is in contact with the columns 71a and 71b and the end face 31b is in contact with the columns 71a and 71d. Be done.
  • Each brazing material 40 is also positioned using the positioning corner 41 such that the end face 41a forming the positioning corner 41 is in contact with the columns 71a and 71b, and the end face 41b is in contact with the columns 71a and 71d. .
  • each laminate 50 the respective members are laminated such that the end faces 21a, 31a, 41a overlap the end face 61a of the pressure plate 60, and the end faces 21b, 31b, 41b overlap the end face 61b of the pressure plate 60. Ru.
  • each support 71a, 71b, 71d in contact with each end surface since the width dimension of each surface of each support 71a, 71b, 71d in contact with each end surface is small, the positioning corner portions 21, 31, 41, 61 are positioned at two positions in the end surface of each side.
  • the three columns 71a, 71b, 71d are used to abut each other, but, for example, the width dimension of the surface of the column 71a in contact with each end surface forms the positioning corner portions 21, 31, 41, 61 It is also possible to position with only the support 71 a as long as the end surfaces can be reliably positioned.
  • the area of the pressure plate 60 is set to be larger than the area of the laminated body 50 (ceramic base material 20, metal plate 30, brazing material 40). Therefore, in the stacked body 50, the end faces which are not used for positioning are located inside the end faces of the pressure plate 60.
  • each pressure plate 60 On the surface of each pressure plate 60, as shown in FIG. 3 and FIG. 4, a plurality of relief surfaces 63 of a predetermined width separated from the laminate 50 along the two end faces 61a, 61b forming the positioning corner 61. It is provided. Specifically, two escape surfaces 63 are formed on the surface on the end surface 61 a side of the pressure plate 60 with a predetermined gap L 4, and on the surface on the end surface 61 b side of the pressure plate 60, three escape surfaces 63 are provided. The predetermined intervals L4 are mutually formed. The escape surfaces 63 are formed at positions avoiding directly above the scribe line 22 formed in the ceramic base material 20. That is, each escape surface 63 is formed so as not to overlap the scribe line 22.
  • Each relief surface 63 has a width slightly smaller than the width of the dummy portion 10B of the ceramic-metal joint 10, and is provided by, for example, a step forming a recess having a depth of 5 to 20% of the thickness of the pressure plate 60.
  • the thickness of the metal plate 30 is 0.6 mm
  • the thickness of the ceramic base material 20 is 0.635 mm
  • the thickness of the pressure plate 60 is 1 mm
  • the relief surface 63 of the pressure plate 60 is
  • the width L2 is 2 mm or more and 4 mm or less
  • the depth L3 is 0.05 mm or more and 2.0 mm or less.
  • the predetermined interval L4 is set to 1 mm or more and 2 mm or less.
  • a metal plate is formed on the surface of the ceramic base material 20 by heating the laminated body 50 formed by laminating the ceramic base material 20, the metal plate 30, and the brazing material 40 between the pair of pressure plates 60 using the manufacturing apparatus 70.
  • a bonding step of bonding 30 is performed.
  • the surplus portion of the brazing filler metal 40 which is melted and joins the ceramic base material 20 and the metal plate 30 is pushed out from between the ceramic base material 20 and the metal plate 30 as shown by arrow A in FIG. And flows into the stagnation space 52 through the end faces 21 b and 31 b.
  • a wax stain 43 with a small thickness is formed in the wax accumulation space 52 in accordance with the amount of surplus wax.
  • the wax accumulation space 52 draws in the surplus wax, no galling is formed on each of the end faces 21a, 21b, 31a, 31b. Since the solder accumulation space 52 is not formed right above the scribe line 22 of the ceramic-metal joint 10, the solder stain 43 is not formed right above the scribe line 22.
  • the ceramic-metal joint 10 manufactured in this manner positioning is performed using the end faces 11a and 11b (the end faces 21a, 21b, 31a, and 31b) of the corner portion 11 in which the wax is not formed.
  • a mask is printed on the surface of the metal plate 30 (metal layer)
  • an etching process is performed to etch.
  • the masks are provided to separate the metal plate 30 individually on the scribe lines 22 and to form a circuit pattern as needed.
  • the ceramic base material 20 of the ceramic-metal joined body 10 is divided along the scribe line 22.
  • the etching rate of the solder paste 43 is higher than the etching rate of the metal plate 30 made of copper or copper alloy. Because of the low speed, the etching rate of the solder marks 43 is low, and even if the metal plates 30 are etched and separated individually, there is a possibility that the solder marks 43 remain just above the scribe line 22 without being etched.
  • the ceramic-metal joint 10 can be reliably separated individually along the scribe line 22. As a result, it is possible to manufacture the power module substrate 100 in which the desired circuit pattern P or the like as shown in FIG. 5 is formed at an accurate position.
  • FIG. 5 is a cross-sectional view showing a power module 110 in which the power module substrate 100 is used.
  • the power module 110 is formed by bonding the cooler 113, soldering the electronic component 111, wire bonding and the like to the power module substrate 100.
  • the power module 110 includes a power module substrate 100, an electronic component 111 such as a semiconductor chip mounted on the surface of the power module substrate 100, and a cooler 113 joined to the back surface of the power module substrate 100. Ru.
  • the cooler 113 and the power module substrate 100 are joined by brazing, soldering, bolts or the like.
  • the ceramic-metal joint of the power module substrate since it is possible to prevent the formation of bumps on the end face of the ceramic-metal joint of the power module substrate, positioning in the subsequent process can be facilitated. Since the molten wax can be prevented from solidifying (the formation of the wax stain) right above the scribe line, the ceramic-metal joint can be reliably divided along the scribe line.
  • the pressure plate 60 having relief surfaces 63 formed on both sides and the pressure plate 60 having relief surfaces 63 formed on only one side are used in combination.
  • only the pressure plate 60 in which the escape surface 63 is formed on one side of the pressure plate 60 may be used in combination.
  • the bonding step is performed by overlapping a plurality of sets in which the stacked body 50 is held by the pair of pressure plates 60 in which the release surfaces 63 face each other.
  • AlN aluminum nitride
  • Ten ceramic-metal joints were manufactured for each of the conditions of Examples 1 to 8 and Comparative Example 1 shown in Table 1.
  • the thickness L1 of the Cu—P brazing filler metal foil, the width L2 of the relief surface of the pressure plate made of carbon, the depth L3 of the relief surface, and the width between the relief surfaces (the predetermined distance L4) are shown in Table 1 While changing in accordance with the conditions shown in the above, ten ceramics-metal joints were manufactured for each condition, and an experiment was conducted to evaluate whether or not the solder was solidified immediately above the scribe line. The obtained samples of Examples 1 to 8 and Comparative Example 1 will be described with reference to Table 1.
  • Examples 1 to 8 four scribe lines extending in the longitudinal direction and two scribe lines extending in the lateral direction were formed in the ceramic base material.
  • the relief surface of the pressure plate was formed three in the lateral direction and one in the longitudinal direction along the two sides forming the positioning corner and avoiding directly above the scribe line. That is, in Examples 1 to 8, the escape surface was divided to avoid directly above the scribe line.
  • Comparative Example 1 a relief surface was formed so as to surround the periphery of the ceramic base material. That is, in Comparative Example 1, the escape surface was continuous, was not divided as in Examples 1 to 8, and was formed directly above the scribe line.
  • Example 1 to 8 in which escape surfaces were formed along the two sides forming the positioning corner of the pressure plate and avoiding directly above the scribe line, the evaluation was “B” or higher in all. In particular, in each of Examples 1 to 5, the evaluation was “A”, and in all the ceramic-metal joints, no place where the wax was solidified was found just above the scribe line.
  • the width L2 of the relief surface and the height L3 of the relief surface affect the volume of the wax accumulation space for accumulating the excess brazing material, and a larger value both prevented the penetration of the brazing material onto the scribe line. That is, in Examples 1 to 3, the evaluation was “A” because the values of the width L2 and the height L3 were large and the volume of the brazed space was large. Although the values of the width L2 and the height L3 of the example 2 are smaller than those of the examples 1, 3 to 5, the evaluation is "A" because the thickness L1 of the brazing material foil is half that of the other examples. Met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention has: a joining step for clamping, by a pair of pressure plates, a laminate in which metal plates composed of copper or a copper alloy are laminated on surfaces of a ceramic base with a Cu-P-based brazing material interposed therebetween, applying heat, and thereby joining the metal plates to both surfaces of the ceramic base and forming metal layers; and an etching step for etching the laminate along scribe lines and separating the metal layers into regions surrounded by the scribe lines. A plurality of relief surfaces that have a prescribed width and are set apart from the surface of the laminate are provided on a pressing surface of the pressure plates, at positions that are located along two sides forming one corner of the pressure plate and that do not come immediately above the scribe lines when the laminate is clamped. During the joining step, a brazing material reservoir space is formed between the surface of the laminate and the plurality of relief surfaces. There are thereby provided a method and device for manufacturing a ceramic-metal joined body, and a ceramic-metal joined body, with which it is possible to inhibit a brazing material from hardening immediately above scribe lines of a laminate.

Description

セラミックス-金属接合体の製造方法、製造装置及びセラミックス-金属接合体Method of manufacturing ceramic-metal joint, manufacturing apparatus and ceramic-metal joint
 本発明は、セラミックス母材の表面に銅又は銅合金からなる金属層が接合されたセラミックス-金属接合体の製造方法、製造装置及び個片化されることにより複数のセラミックス回路基板となるセラミックス-金属接合体に関する。本願は、2018年1月24日に出願された特願2018-009276号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method of manufacturing a ceramic-metal joint body in which a metal layer made of copper or copper alloy is joined to the surface of a ceramic base material, a manufacturing apparatus, and ceramics forming a plurality of ceramic circuit boards by singulation. It relates to a metal joined body. Priority is claimed on Japanese Patent Application No. 2018-009276, filed Jan. 24, 2018, the contents of which are incorporated herein by reference.
 従来、熱電素子やLED素子の配線基板として、セラミックス板の表面に金属層が接合されたセラミックス-金属接合体を個片化しセラミックス回路基板を用いることが提案されている。このセラミックス-金属接合体では、セラミックス板と金属層を構成する金属板との接合は、ろう材を用いて行われている。 Heretofore, it has been proposed to use a ceramic circuit board as a wiring board for a thermoelectric element or an LED element, in which a ceramic-metal joined body in which a metal layer is joined to the surface of a ceramic plate is separated. In this ceramic-metal bonded body, bonding between the ceramic plate and the metal plate constituting the metal layer is performed using a brazing material.
 例えば、セラミックス板及び金属板の積層体を一対の加圧板にて挟持して、加圧板間で積層方向に加圧しながら加熱する。加熱によって溶融したろう材の余剰分は、積層されたセラミックス基板と金属板との間から押し出されてその端面等に付着し、積層体の面方向及び積層方向に突出するこぶ状に固まって、いわゆるろうこぶを形成する。このようなろう材により接合された積層体は、エッチングのためのマスク形成の際に位置決め冶具に位置決めされるが、ろうこぶが形成されていると、積層体を正確に位置決めできない。 For example, a laminate of a ceramic plate and a metal plate is sandwiched between a pair of pressure plates, and heating is performed while pressing in the stacking direction between the pressure plates. The surplus portion of the brazing material melted by heating is pushed out from between the laminated ceramic substrate and the metal plate, adheres to the end face etc., and is solidified in a convex shape protruding in the surface direction and the lamination direction of the laminate, It forms a so-called fistula. The laminated body joined by such a brazing material is positioned on the positioning jig when forming the mask for etching, but if the bumps are formed, the laminated body can not be accurately positioned.
 このような積層体の端面にろうこぶが形成されることを抑制する技術として、例えば、特許文献1に記載のパワーモジュール用基板の製造方法が知られている。この製造方法では、積層体を一対の加圧板間で加熱してセラミックス基板の表面に金属板をろう付けする接合工程において、積層体を挟持する一対の加工板の少なくとも1つの表面において、1つの角部を形成する2辺に沿って積層体の表面から離間する所定幅の逃がし面を設けて、積層体の表面と逃がし面との間にろう溜まり空間を形成し、溶融したろうをろう溜まり空間に流れ込ませることにより、積層体の端面にろうこぶが形成されるのを防止している。 As a technique for suppressing the formation of bumps on the end face of such a laminate, for example, a method for manufacturing a power module substrate described in Patent Document 1 is known. In this manufacturing method, in the bonding step of heating the laminate between the pair of pressure plates and brazing the metal plate to the surface of the ceramic substrate, at least one surface of the pair of processed plates sandwiching the laminate is one A relief surface having a predetermined width spaced apart from the surface of the laminate along the two sides forming the corner is provided to form a brazing reservoir space between the surface and the relief surface of the laminate, and the molten brazing filler metal is accumulated. The flow into the space prevents the formation of bumps on the end face of the laminate.
 特許文献2に記載のようにセラミックス基板及び金属板をろう材を用いて接合して、これを個片化する場合、セラミックス基板に予めスクライブラインを設けておき、セラミックス基板に金属板をろう付けした後、エッチングする。 When joining a ceramic substrate and a metal plate using a brazing material as described in Patent Document 2 and dividing it into pieces, a scribe line is provided in advance on the ceramic substrate, and the metal plate is brazed to the ceramic substrate. After etching, etch.
特開2011-29320号公報JP, 2011-29320, A 特開2015-185606号公報JP, 2015-185606, A
 特許文献1に記載のパワーモジュールの製造方法において、スクライブラインが形成されたセラミックス基板の表面にろう材を介して金属板が配置された積層体を、その周縁に逃がし面が形成された一対の加圧板により挟持して加熱すると、積層体の外側に流れ出したろう材は、金属板と加圧板との間に形成されたろう溜まり空間に流れ込み、固化する。 In the method of manufacturing a power module described in Patent Document 1, a pair of laminates in which a metal plate is disposed on the surface of a ceramic substrate on which a scribe line is formed via a brazing material is provided with a relief surface on the periphery thereof. When held and heated by the pressure plate, the brazing material flowing out to the outside of the laminate flows into the wax accumulation space formed between the metal plate and the pressure plate and solidifies.
 この場合、金属層として銅又は銅合金が用いられ、ろう材としてCu-P系ろう材が用いられると、ろう材のエッチングレートが、銅又は銅合金からなる金属層のエッチングレートより低いため、ろう材のエッチング速度が遅く、金属層がエッチングされて個々に分離されたとしても、ろう材のみがエッチングされない状態でろう溜まり空間に残り易い。ろう溜まり空間に残ったろう材がスクライブラインの真上に配置された状態であると、セラミックス基板をスクライブラインで分割することが難しい。 In this case, if copper or a copper alloy is used as the metal layer and a Cu—P-based brazing material is used as the brazing material, the etching rate of the brazing material is lower than the etching rate of the copper or copper alloy metal layer, The brazing material has a slow etching rate, and even if the metal layers are etched and separated individually, the brazing material is likely to remain in the brazing space without being etched. If the brazing material remaining in the brazing material space is disposed directly above the scribe line, it is difficult to divide the ceramic substrate at the scribe line.
 本発明は、このような事情に鑑みてなされたもので、スクライブラインが形成されたセラミックス母材及び金属層からなる積層体のスクライブラインの真上でろうが固化することを抑制できるセラミックス-金属接合体の製造方法、製造装置及びセラミックス-金属接合体を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is a ceramic-metal that can suppress the solidification of the solder right above the scribe line of the laminate including the ceramic base material and the metal layer in which the scribe line is formed. It is an object of the present invention to provide a method of manufacturing a bonded body, a manufacturing apparatus, and a ceramic-metal bonded body.
 本発明のセラミックス-金属接合体の製造方法は、複数のセラミックス基板に分割するための1以上のスクライブラインを有するセラミックス母材の表面に銅又は銅合金からなる金属板がCu-P系ろう材を介して積層されてなる積層体を一対の加圧板により挟持して加熱することにより、前記セラミックス母材の前記表面に前記金属板を接合して金属層を形成する接合工程と、前記積層体を前記スクライブラインに沿ってエッチングして前記金属層を前記スクライブラインにより囲まれた領域ごとに分離するエッチング工程と、を有し、前記加圧板の加圧面に、前記積層体の表面から離間する所定幅の逃がし面が前記加圧板の1つの角部を形成する2辺に沿って、かつ前記積層体を挟持したときに前記スクライブラインの真上を避ける位置に複数設けられており、前記接合工程において、前記積層体の前記表面と複数の前記逃がし面との間に複数のろう溜まり空間を形成する。 In the method for producing a ceramic-metal bonded body according to the present invention, a metal plate made of copper or copper alloy on the surface of a ceramic base material having one or more scribe lines for dividing into a plurality of ceramic substrates is a Cu—P brazing material Joining the metal plate to the surface of the ceramic base material to form a metal layer by sandwiching and heating a laminate formed by laminating through a pair of pressure plates; and the laminate Etching the metal layer along the scribe line to separate the metal layer into regions surrounded by the scribe line, and separating the metal layer from the surface of the laminate on the pressure surface of the pressure plate. A relief surface having a predetermined width is disposed along two sides forming one corner of the pressure plate, and when the laminated body is held, the position just above the scribe line is avoided. And provided with a plurality, in the bonding step, forming a plurality of wax reservoir space between said surface and a plurality of the relief surface of the laminate.
 本発明では、逃がし面のそれぞれは、スクライブラインの真上を避けて設けられている、すなわち、スクライブラインが形成されている領域に逃がし面が形成されていないので、スクライブラインの真上にろう溜まり空間が形成されない。したがって、接合工程において溶融したろうは、積層体の側面を伝ってスクライブラインの真上を避けたろう溜まり空間にて固化するので、積層体の側面にろうこぶが形成されることを抑制する他、スクライブラインの真上でろうが固化することを抑制でき、積層体を適切に個片化できる。 In the present invention, each of the escape surfaces is provided so as not to be directly above the scribe line, that is, since no escape surface is formed in the region where the scribe line is formed, it will be directly above the scribe line. No accumulation space is formed. Therefore, since the molten wax in the bonding step solidifies in the braze pool space along the side of the laminate and avoiding directly above the scribe line, it prevents the formation of bumps on the side of the laminate, It is possible to suppress the solidification of the solder right above the scribe line, and the laminate can be appropriately singulated.
 本発明のセラミックス-金属接合体の製造装置は、複数のセラミックス基板を分割するための1以上のスクライブラインが形成されたセラミックス母材の表面に銅又は銅合金からなる金属板がCu-P系ろう材によりろう付けされてなるセラミックス-金属接合体を製造するための装置であって、前記セラミックス母材の前記表面に前記Cu-P系ろう材を介して前記金属板を積層した積層体を積層方向に挟持する一対の加圧板を有し、前記加圧板の加圧面には、前記積層体を挟持したときに、前記積層体の表面から離間する所定幅の逃がし面が前記加圧板の1つの角部を形成する2辺に沿って、かつ前記スクライブラインの真上を避ける位置に複数設けられており、前記積層体の前記表面と複数の前記逃がし面との間に複数のろう溜まり空間が形成される。 In the apparatus for manufacturing a ceramic-metal bonded body according to the present invention, a metal plate made of copper or a copper alloy is Cu-P based on the surface of a ceramic base material on which one or more scribe lines for dividing a plurality of ceramic substrates are formed. An apparatus for manufacturing a ceramic-metal joint body brazed by a brazing material, comprising: a laminate in which the metal plate is laminated on the surface of the ceramic base material via the Cu—P brazing material. The pressing surface of the pressing plate has a pair of pressing plates sandwiching in the stacking direction, and the pressing surface of the pressing plate has a relief surface of a predetermined width separated from the surface of the laminate when the pressing member sandwiches the stack. A plurality of brazes are provided along two sides forming one corner and at positions avoiding directly above the scribe line, and a plurality of brazes are accumulated between the surface of the laminate and the plurality of escape surfaces. During it is formed.
 本発明のセラミックス-金属接合体は、複数のセラミックス基板に分割するための1以上のスクライブラインを有するセラミックス母材と、前記セラミックス母材の表面にCu-P系ろう材により接合され、銅又は銅合金からなる金属層と、を備え、前記金属層における前記セラミックス母材との接合面と反対側の面には、1つの角部を形成する2辺に沿い、かつ、前記スクライブラインの真上を避けた位置に前記Cu-P系ろう材が溶融後に固化したろうが付着している。 The ceramic-metal bonded body of the present invention is bonded to the surface of the ceramic base material with a ceramic base material having one or more scribe lines for dividing into a plurality of ceramic substrates by a Cu-P based brazing material, copper or And a metal layer made of a copper alloy, and a surface of the metal layer opposite to the bonding surface with the ceramic base is along the two sides forming one corner and the scribe line is true. The solidified Cu-P-based brazing material adheres to the solidified solder after melting at a position away from the top.
 本発明では、スクライブラインの真上でろうが固化しないので、スクライブラインに沿ってセラミックス-金属接合体を適切に個片化できる。 In the present invention, since the braze does not solidify right above the scribe line, the ceramic-metal joint can be appropriately separated along the scribe line.
 本発明によれば、スクライブラインが形成されたセラミックス母材及び金属層からなる積層体のスクライブラインの真上でろうが固化することを抑制できる。 According to the present invention, it is possible to suppress the solidification of the solder right above the scribe line of the laminate including the ceramic base material and the metal layer in which the scribe line is formed.
本発明の一実施形態に係るセラミックス-金属接合体を示す斜視図である。FIG. 1 is a perspective view showing a ceramic-metal joint according to an embodiment of the present invention. 図1に示すセラミックス-金属接合体の製造装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the manufacturing apparatus of the ceramic-metal joined body shown in FIG. 図1に示すセラミックス-金属接合体の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the ceramic-metal joined body shown in FIG. 図2のC-C線に沿う部分断面図である。FIG. 3 is a partial cross-sectional view taken along the line CC of FIG. 2; パワーモジュールの全体構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of a whole structure of a power module.
 以下、本発明の一実施形態について図面を用いて説明する。 Hereinafter, an embodiment of the present invention will be described using the drawings.
[セラミックス-金属接合体の構成]
 図1は、個片化されることにより複数のパワーモジュール用基板100(図5参照)となるセラミックス-金属接合体10を示す断面図である。
[Composition of ceramics-metal joint]
FIG. 1 is a cross-sectional view showing a ceramic-metal joined body 10 that becomes a plurality of power module substrates 100 (see FIG. 5) by being singulated.
 セラミックス-金属接合体10は、略矩形のセラミックス母材20の両表面に略矩形の金属板30がろう付けされてなる。角部(位置決め角部)11を形成する2辺に沿って、端面11a,11bから表面(セラミックス母材20との接合面とは反対側の金属板30の表面)にろう染み43が形成されるとともに、反対側の角部12の端面12a,12bにはろうこぶ(図示省略)が形成されている。これら表面に位置するろう染み43のそれぞれは、後述するセラミックス母材20に形成されているスクライブライン22の真上には、形成されていない。 The ceramic-metal joint body 10 is formed by brazing a substantially rectangular metal plate 30 to both surfaces of a substantially rectangular ceramic base material 20. The solder marks 43 are formed from the end faces 11a and 11b to the surface (the surface of the metal plate 30 opposite to the bonding surface with the ceramic base 20) along the two sides forming the corner (positioning corner) 11 In addition, on the end surfaces 12a and 12b of the opposite corner 12, a rub (not shown) is formed. Each of the wax spots 43 located on these surfaces is not formed right above the scribe line 22 formed on the ceramic base material 20 described later.
 ここで、ろう染みとは、ろう材40が溶融した後固化したものであり、厚さが0.1mm以下であって、凹凸の小さい薄膜状の付着物を呼ぶ。ろうこぶとは、部分的に突出する厚さ1mm以上のこぶ状の付着物を呼ぶ。 Here, the brazing material is solidified after melting the brazing material 40, and refers to a thin film-like deposit having a thickness of 0.1 mm or less and having a small unevenness. The rubbish refers to a bump-like deposit having a thickness of 1 mm or more that partially protrudes.
 セラミックス母材20は、本実施形態ではAlN(窒化アルミニウム)を母材として形成された略矩形板である。セラミックス母材20は、例えばAlN、Si(窒化珪素)等の窒化物系セラミックス、若しくはAl(アルミナ)等の酸化物系セラミックスから形成されていてもよい。 In the present embodiment, the ceramic base material 20 is a substantially rectangular plate formed using AlN (aluminum nitride) as a base material. The ceramic base material 20 may be made of, for example, a nitride-based ceramic such as AlN or Si 3 N 4 (silicon nitride), or an oxide-based ceramic such as Al 2 O 3 (alumina).
 セラミックス母材20の表面には、スクライブライン22が形成されている。スクライブライン22は、例えば、レーザ光を照射することにより、セラミックス母材20の表面を線状に除去して形成される。スクライブライン22は、セラミックス母材20に形成される溝部であり、セラミックス母材20の分割の起点となる部位である。スクライブライン22は、セラミックス母材20の表面において、図1の破線及び図3の実線で示すように、端面11aに沿う方向に延びる4本のスクライブラインと、端面11bに沿う方向に延びる3本のスクライブラインとからなる。 A scribe line 22 is formed on the surface of the ceramic base material 20. The scribe line 22 is formed, for example, by linearly removing the surface of the ceramic base material 20 by irradiating a laser beam. The scribe line 22 is a groove portion formed in the ceramic base material 20, and is a part that becomes a starting point of division of the ceramic base material 20. The scribe lines 22 are, as indicated by the broken lines in FIG. 1 and the solid lines in FIG. 3, four scribe lines extending in the direction along the end face 11a and three lines extending in the direction along the end face 11b. Of scribe lines.
 セラミックス母材20に接合され、金属層となる金属板30は、銅又は銅合金により、セラミックス母材20と略同形状に形成されている。 The metal plate 30 joined to the ceramic base material 20 and to be a metal layer is formed of copper or a copper alloy in substantially the same shape as the ceramic base material 20.
 セラミックス母材20と金属板30とを接合するろう材40(図3参照)は、略矩形箔状であり、本実施形態ではCu-P系合金により形成されている。ろう材40は、例えばCu及びPの他、AgやSnを含んでいてもよい。 The brazing material 40 (see FIG. 3) for joining the ceramic base material 20 and the metal plate 30 has a substantially rectangular foil shape, and is formed of a Cu—P-based alloy in the present embodiment. The brazing material 40 may contain, for example, Ag and Sn in addition to Cu and P.
 セラミックス-金属接合体10は、中心部がパワーモジュール用基板100を構成する製品部10A、製品部10Aを囲む外周部がダミー部10Bに設定されている。ダミー部10Bは、最も外側のスクライブライン22と4つの端面との間に形成され、所定幅の枠状に設定されており、各製造工程におけるハンドリング等に用いられた後、最終的に取り除かれる。すなわち、ダミー部10Bを把持してセラミックス-金属接合体10をハンドリングしながら、セラミックス-金属接合体10に所定の回路パターンPを形成し(図5参照)、個片に分割する等の加工を行うことにより、パワーモジュール用基板100が形成される。 The ceramic-metal joint 10 has a product portion 10A, the center of which constitutes the power module substrate 100, and an outer peripheral portion surrounding the product portion 10A, the dummy portion 10B. The dummy portion 10B is formed between the outermost scribe line 22 and the four end faces and is set in a frame shape having a predetermined width, and is finally removed after being used for handling or the like in each manufacturing process. . That is, while holding the dummy portion 10B and handling the ceramic-metal bonding body 10, a predetermined circuit pattern P is formed on the ceramic-metal bonding body 10 (see FIG. 5), and processing such as division into pieces is performed. By doing this, the power module substrate 100 is formed.
 このような加工を行う際に、ろうこぶが形成されていない端面11a,11bを用いて、セラミックス-金属接合体10の位置決めができる。このとき、ろう染み43は極めて薄い平坦な付着物であり、セラミックス-金属接合体10の位置決めを妨げないので、除去する必要がない。 When such processing is performed, the ceramic-metal joint 10 can be positioned using the end faces 11a and 11b in which no bumps are formed. At this time, the wax stain 43 is a very thin flat deposit and does not disturb the positioning of the ceramic-metal joint 10, so it is not necessary to remove it.
 一方、位置決め角部11とは対角上の角部12を形成する2辺に沿う端面12a,12bは位置決めに利用されないことから、たとえこれら端面12a,12bにろうこぶが形成されていても、除去する必要はない。 On the other hand, since the end faces 12a and 12b along the two sides forming the corner 12 on the diagonal with the positioning corner 11 are not used for positioning, even if a hump is formed on the end faces 12a and 12b, There is no need to remove it.
[製造装置の構成]
 図2は、セラミックス-金属接合体10の接合工程を行う製造装置70を示す図である。
[Configuration of manufacturing equipment]
FIG. 2 is a view showing a manufacturing apparatus 70 for performing a bonding process of the ceramic-metal joint 10.
 製造装置70は、セラミックス母材20の両面にろう材40を介して金属板30を積層した積層体50を、積層方向に挟んで加熱しながら加圧する複数の加圧板60と、加圧板60及び積層体50を保持する4本の断面L字状の支柱71a,71b,71c,71dとを有する。加圧板60は、位置決め角部61を支柱71aに当接させることにより位置決めされている。 The manufacturing apparatus 70 includes a plurality of pressure plates 60 and a pressure plate 60, which apply pressure while heating the laminate 50 in which the metal plate 30 is laminated on both sides of the ceramic base 20 with the brazing material 40 interposed therebetween in the laminating direction. It has four cross-sectional L-shaped support | pillar 71a, 71b, 71c, 71d holding the laminated body 50. As shown in FIG. The pressure plate 60 is positioned by bringing the positioning corner portion 61 into contact with the support 71 a.
 具体的には、加圧板60は、位置決め角部61を形成する2つの端面61a,61bのうち、端面61aを略L字状の支柱71a,71bの内側の面に当接させるとともに、端面61bを略L字状の支柱71a,71dの内側の面に当接させることにより位置決めされている。 Specifically, of the two end surfaces 61a and 61b forming the positioning corner portion 61, the pressure plate 60 brings the end surface 61a into contact with the inner surface of the substantially L-shaped columns 71a and 71b, and the end surface 61b. Are positioned by bringing them into contact with the inner surfaces of the substantially L-shaped columns 71a and 71d.
 製造装置70においては、複数の加圧板60と積層体50とを交互に積層することにより、複数のセラミックス-金属接合体10が同時に製造される。加圧板60としては、平面度及び熱伝導性に優れる、例えば、カーボンプレートを用いることができる。カーボンプレートのような多孔質材を加圧板60として用いる場合には、ろう材40が溶融することにより生じる溶融ろうが染み込まない材料であることが好ましい。 In the manufacturing apparatus 70, a plurality of ceramic-metal joints 10 are simultaneously manufactured by alternately laminating the plurality of pressure plates 60 and the stack 50. As the pressure plate 60, for example, a carbon plate excellent in flatness and thermal conductivity can be used. In the case where a porous material such as a carbon plate is used as the pressure plate 60, it is preferable that the material not be impregnated with molten wax generated by melting the brazing material 40.
 このような製造装置70において、各セラミックス母材20は、位置決め角部21を形成する2つの端面21a,21bのうち、端面21aを支柱71a,71bに当接させるとともに、端面21bを支柱71a,71dに当接させるように、位置決め角部21を用いて位置決めされる。同様に、各金属板30は、位置決め角部31を形成する端面31aを支柱71a,71bに当接させるとともに端面31bを支柱71a,71dに当接させるように、位置決め角部31を用いて位置決めされる。 In such a manufacturing apparatus 70, among the two end faces 21a and 21b forming the positioning corner portion 21, each ceramic base material 20 causes the end face 21a to abut against the support 71a and 71b, and the end face 21b corresponds to the support 71a, It is positioned using the positioning corner 21 so as to abut on 71 d. Similarly, each metal plate 30 is positioned using the positioning corner 31 so that the end face 31a forming the positioning corner 31 is in contact with the columns 71a and 71b and the end face 31b is in contact with the columns 71a and 71d. Be done.
 各ろう材40も、位置決め角部41を形成する端面41aを支柱71a,71bに当接させるとともに、端面41bを支柱71a,71dに当接させるように、位置決め角部41を用いて位置決めされる。 Each brazing material 40 is also positioned using the positioning corner 41 such that the end face 41a forming the positioning corner 41 is in contact with the columns 71a and 71b, and the end face 41b is in contact with the columns 71a and 71d. .
 つまり、各積層体50において、各端面21a,31a,41aが加圧板60の端面61aに重なるとともに、各端面21b,31b,41bが加圧板60の端面61bに重なるように、各部材が積層される。 That is, in each laminate 50, the respective members are laminated such that the end faces 21a, 31a, 41a overlap the end face 61a of the pressure plate 60, and the end faces 21b, 31b, 41b overlap the end face 61b of the pressure plate 60. Ru.
 本実施形態では、各位置決め角部21,31,41,61の位置決めは、上記各端面に当接する各支柱71a,71b,71dの各面の幅寸法が小さいため、各辺の端面を2箇所ずつ当接させるように3つの支柱71a,71b,71dを用たが、例えば、上記各端面に当接する支柱71aの面の幅寸法が位置決め角部21,31,41,61を形成する上記各端面のそれぞれを確実に位置決めできる程度の幅であれば、支柱71aのみで位置決めすることも可能である。 In this embodiment, since the width dimension of each surface of each support 71a, 71b, 71d in contact with each end surface is small, the positioning corner portions 21, 31, 41, 61 are positioned at two positions in the end surface of each side. The three columns 71a, 71b, 71d are used to abut each other, but, for example, the width dimension of the surface of the column 71a in contact with each end surface forms the positioning corner portions 21, 31, 41, 61 It is also possible to position with only the support 71 a as long as the end surfaces can be reliably positioned.
 加圧板60の面積は、積層体50(セラミックス母材20、金属板30、ろう材40)の面積よりも大きく設定されている。したがって、積層体50において、位置決めに用いられていない各端面は、加圧板60の各端面よりも内側に位置している。 The area of the pressure plate 60 is set to be larger than the area of the laminated body 50 (ceramic base material 20, metal plate 30, brazing material 40). Therefore, in the stacked body 50, the end faces which are not used for positioning are located inside the end faces of the pressure plate 60.
 各加圧板60の表面には、図3及び図4に示すように、位置決め角部61を形成する2つの端面61a,61bに沿って、積層体50から離間する所定幅の逃がし面63が複数設けられている。具体的には、加圧板60の端面61a側の表面には、所定間隔L4を開けて2つの逃がし面63が形成され、加圧板60の端面61b側の表面には、3つの逃がし面63が相互に所定間隔L4を開けて形成されている。これら逃がし面63は、セラミックス母材20に形成されたスクライブライン22の真上を避けた位置に形成されている。つまり、各逃がし面63は、スクライブライン22に重ならないように形成されている。 On the surface of each pressure plate 60, as shown in FIG. 3 and FIG. 4, a plurality of relief surfaces 63 of a predetermined width separated from the laminate 50 along the two end faces 61a, 61b forming the positioning corner 61. It is provided. Specifically, two escape surfaces 63 are formed on the surface on the end surface 61 a side of the pressure plate 60 with a predetermined gap L 4, and on the surface on the end surface 61 b side of the pressure plate 60, three escape surfaces 63 are provided. The predetermined intervals L4 are mutually formed. The escape surfaces 63 are formed at positions avoiding directly above the scribe line 22 formed in the ceramic base material 20. That is, each escape surface 63 is formed so as not to overlap the scribe line 22.
 各逃がし面63は、セラミックス-金属接合体10のダミー部10Bの幅より若干小さい幅で、例えば、加圧板60の板厚の5~20%の深さの凹部を形成する段付加工により設けられる。積層体50と加圧板60とが積層されることにより、逃がし面63と積層体50のダミー部10Bの表面との間に、ろう溜まり空間52が形成される。 Each relief surface 63 has a width slightly smaller than the width of the dummy portion 10B of the ceramic-metal joint 10, and is provided by, for example, a step forming a recess having a depth of 5 to 20% of the thickness of the pressure plate 60. Be By laminating the laminated body 50 and the pressure plate 60, a brazing space 52 is formed between the escape surface 63 and the surface of the dummy portion 10B of the laminated body 50.
 例えば、本実施形態では、金属板30の厚さは0.6mm、セラミックス母材20の厚さは0.635mm、加圧板60の厚さは1mmに設定され、加圧板60の逃がし面63は、幅L2が2mm以上4mm以下、深さL3が0.05mm以上2.0mm以下、の大きさで設けられる。所定間隔L4は、1mm以上2mm以下に設定される。 For example, in the present embodiment, the thickness of the metal plate 30 is 0.6 mm, the thickness of the ceramic base material 20 is 0.635 mm, the thickness of the pressure plate 60 is 1 mm, and the relief surface 63 of the pressure plate 60 is The width L2 is 2 mm or more and 4 mm or less, and the depth L3 is 0.05 mm or more and 2.0 mm or less. The predetermined interval L4 is set to 1 mm or more and 2 mm or less.
[セラミックス-金属接合体の製造方法]
 製造装置70を用いて、セラミックス母材20、金属板30、及びろう材40を積層してなる積層体50を一対の加圧板60間で加熱することにより、セラミックス母材20の表面に金属板30を接合する接合工程を行う。このとき、溶融してセラミックス母材20と金属板30とを接合したろう材40の余剰分は、図4に矢印Aで示すように、セラミックス母材20と金属板30との間から押し出されて、各端面21b,31bを通じてろう溜まり空間52へと流れ込む。
[Method of manufacturing ceramic-metal joint]
A metal plate is formed on the surface of the ceramic base material 20 by heating the laminated body 50 formed by laminating the ceramic base material 20, the metal plate 30, and the brazing material 40 between the pair of pressure plates 60 using the manufacturing apparatus 70. A bonding step of bonding 30 is performed. At this time, the surplus portion of the brazing filler metal 40 which is melted and joins the ceramic base material 20 and the metal plate 30 is pushed out from between the ceramic base material 20 and the metal plate 30 as shown by arrow A in FIG. And flows into the stagnation space 52 through the end faces 21 b and 31 b.
 これにより、ろう溜まり空間52には、余剰ろうの量に応じて厚さの小さいろう染み43が形成される。このように、ろう溜まり空間52が余剰ろうを引き込むことにより、各端面21a,21b,31a,31bにはろうこぶが形成されない。セラミックス-金属接合体10のスクライブライン22の真上にろう溜まり空間52が形成されていないので、スクライブライン22の真上には、ろう染み43が形成されない。 As a result, a wax stain 43 with a small thickness is formed in the wax accumulation space 52 in accordance with the amount of surplus wax. As described above, when the wax accumulation space 52 draws in the surplus wax, no galling is formed on each of the end faces 21a, 21b, 31a, 31b. Since the solder accumulation space 52 is not formed right above the scribe line 22 of the ceramic-metal joint 10, the solder stain 43 is not formed right above the scribe line 22.
 このように製造されたセラミックス-金属接合体10に対して、ろうこぶが形成されていない角部11の各端面11a,11b(各端面21a,21b,31a,31b)を用いて位置決めしながら、金属板30(金属層)の表面にマスクを印刷した後、エッチングするエッチング工程を行う。マスクは、各スクライブライン22の真上で金属板30を個々に分離するとともに、必要に応じて回路パターンを形成するように設けられる。そして、エッチング後にセラミックス-金属接合体10のセラミックス母材20をスクライブライン22に沿って分割する。 With respect to the ceramic-metal joint 10 manufactured in this manner, positioning is performed using the end faces 11a and 11b (the end faces 21a, 21b, 31a, and 31b) of the corner portion 11 in which the wax is not formed. After a mask is printed on the surface of the metal plate 30 (metal layer), an etching process is performed to etch. The masks are provided to separate the metal plate 30 individually on the scribe lines 22 and to form a circuit pattern as needed. Then, after the etching, the ceramic base material 20 of the ceramic-metal joined body 10 is divided along the scribe line 22.
 セラミックス-金属接合体10(金属板30)におけるスクライブライン22の真上にろう染み43が形成されていると、ろう染み43のエッチングレートが、銅又は銅合金からなる金属板30のエッチングレートより低いため、ろう染み43のエッチング速度が遅く、金属板30がエッチングされて個々に分離されたとしても、ろう染み43のみがエッチングされない状態でスクライブライン22の真上に残るおそれがある。 When the solder paste 43 is formed right above the scribe line 22 in the ceramic-metal joint 10 (metal plate 30), the etching rate of the solder paste 43 is higher than the etching rate of the metal plate 30 made of copper or copper alloy. Because of the low speed, the etching rate of the solder marks 43 is low, and even if the metal plates 30 are etched and separated individually, there is a possibility that the solder marks 43 remain just above the scribe line 22 without being etched.
 これに対し、本実施形態では、ろう染み43がスクライブライン22の真上に形成されていないので、スクライブライン22に沿ってセラミックス-金属接合体10を確実に個々に分離できる。これにより、図5に示すような所望の回路パターンP等が正確な位置に形成されたパワーモジュール用基板100を製造できる。 On the other hand, in the present embodiment, since the wax stain 43 is not formed immediately above the scribe line 22, the ceramic-metal joint 10 can be reliably separated individually along the scribe line 22. As a result, it is possible to manufacture the power module substrate 100 in which the desired circuit pattern P or the like as shown in FIG. 5 is formed at an accurate position.
[パワーモジュールの構成]
 図5は、パワーモジュール用基板100が用いられたパワーモジュール110を示す断面図である。
[Configuration of power module]
FIG. 5 is a cross-sectional view showing a power module 110 in which the power module substrate 100 is used.
 パワーモジュール用基板100に対して、冷却器113の接合、電子部品111のはんだ付け、ワイヤボンディング等が行われることにより、パワーモジュール110が形成される。パワーモジュール110は、パワーモジュール用基板100と、パワーモジュール用基板100の表面に搭載された半導体チップ等の電子部品111と、パワーモジュール用基板100の裏面に接合された冷却器113とから構成される。冷却器113とパワーモジュール用基板100との間は、ろう付け、はんだ付け、ボルト等によって接合される。 The power module 110 is formed by bonding the cooler 113, soldering the electronic component 111, wire bonding and the like to the power module substrate 100. The power module 110 includes a power module substrate 100, an electronic component 111 such as a semiconductor chip mounted on the surface of the power module substrate 100, and a cooler 113 joined to the back surface of the power module substrate 100. Ru. The cooler 113 and the power module substrate 100 are joined by brazing, soldering, bolts or the like.
 以上説明したように、パワーモジュール用基板のセラミックス-金属接合体の端面にろうこぶが形成されるのを防止できるため、後工程における位置決めを容易にできる。溶融したろうがスクライブラインの真上で固化すること(ろう染みが形成されること)を抑制できるので、スクライブラインに沿って確実にセラミックス-金属接合体を分割できる。 As described above, since it is possible to prevent the formation of bumps on the end face of the ceramic-metal joint of the power module substrate, positioning in the subsequent process can be facilitated. Since the molten wax can be prevented from solidifying (the formation of the wax stain) right above the scribe line, the ceramic-metal joint can be reliably divided along the scribe line.
[実施形態の変形]
 本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
[Modification of the embodiment]
The present invention is not limited to the configuration of the above-described embodiment, and various changes can be made in the detailed configuration without departing from the spirit of the present invention.
 例えば、上記実施形態では図に示すように、両面に逃がし面63が形成された加圧板60と片面のみに逃がし面63が形成された加圧板60とを組み合わせて用いたが、これに限らず、例えば、加圧板60の片面に逃がし面63が形成された加圧板60のみを組み合わせて用いてもよい。この場合、図3に示すように、逃がし面63を向かい合わせた一対の加圧板60により積層体50を挟持した複数組を重ねて接合工程がなされる。 For example, as shown in the drawings, in the above embodiment, the pressure plate 60 having relief surfaces 63 formed on both sides and the pressure plate 60 having relief surfaces 63 formed on only one side are used in combination. For example, only the pressure plate 60 in which the escape surface 63 is formed on one side of the pressure plate 60 may be used in combination. In this case, as shown in FIG. 3, the bonding step is performed by overlapping a plurality of sets in which the stacked body 50 is held by the pair of pressure plates 60 in which the release surfaces 63 face each other.
 AlN(窒化アルミニウム)を母材として形成された164.9mm×76.9mmの略矩形板のセラミックス母材の両面にCu-P系ろう材を介して銅合金からなる金属板を積層した積層体を、一対の加圧板により挟持して、加圧した状態で加熱し、セラミックス-金属接合体を製造した。セラミックス-金属接合体は、表1に示す実施例1~8および比較例1の各条件につき、各10個製造した。 A laminated body in which a metal plate made of a copper alloy is laminated on both sides of a 164.9 mm × 76.9 mm substantially rectangular ceramic base material formed using AlN (aluminum nitride) as a base material via a Cu-P based brazing material. Were held between a pair of pressure plates and heated in a pressurized state to produce a ceramic-metal joint. Ten ceramic-metal joints were manufactured for each of the conditions of Examples 1 to 8 and Comparative Example 1 shown in Table 1.
 具体的には、Cu-P系ろう材箔の厚さL1、カーボン製の加圧板における逃がし面の幅L2、逃がし面の深さL3及び逃がし面間の幅(上記所定間隔L4)を表1に示す条件に合わせて変更しながら、セラミックス-金属接合体を条件ごとに10個製造し、スクライブラインの真上にろうが固化しているか否かについて評価する実験を行った。得られた実施例1~8及び比較例1のサンプルについて、表1を参照しながら説明する。 Specifically, the thickness L1 of the Cu—P brazing filler metal foil, the width L2 of the relief surface of the pressure plate made of carbon, the depth L3 of the relief surface, and the width between the relief surfaces (the predetermined distance L4) are shown in Table 1 While changing in accordance with the conditions shown in the above, ten ceramics-metal joints were manufactured for each condition, and an experiment was conducted to evaluate whether or not the solder was solidified immediately above the scribe line. The obtained samples of Examples 1 to 8 and Comparative Example 1 will be described with reference to Table 1.
 実施例1~8においては、セラミックス母材に、縦方向に延びる4本のスクライブラインと、横方向に延びる2本のスクライブラインを形成した。加圧板の逃がし面は、位置決め角部を形成する2辺に沿って、かつ、スクライブラインの真上を避けて、横方向に3つ、縦方向に1つ形成した。すなわち、実施例1~8においては、スクライブラインの真上を避けるために逃がし面を分割した。 In Examples 1 to 8, four scribe lines extending in the longitudinal direction and two scribe lines extending in the lateral direction were formed in the ceramic base material. The relief surface of the pressure plate was formed three in the lateral direction and one in the longitudinal direction along the two sides forming the positioning corner and avoiding directly above the scribe line. That is, in Examples 1 to 8, the escape surface was divided to avoid directly above the scribe line.
 一方、比較例1においては、セラミックス母材の周囲を囲むように逃がし面を形成した。すなわち、比較例1においては、逃がし面は連続しており、実施例1~8のように分割されておらず、スクライブラインの真上に形成された。 On the other hand, in Comparative Example 1, a relief surface was formed so as to surround the periphery of the ceramic base material. That is, in Comparative Example 1, the escape surface was continuous, was not divided as in Examples 1 to 8, and was formed directly above the scribe line.
 (評価)
 表1に示す各条件下において製造された10個のセラミックス-金属接合体を観察し、セラミックス母材に形成されたスクライブラインの真上にろうが固化している箇所が認められる場合を「不良」、スクライブラインの真上にろうが固化している箇所が認められない場合を「良好」と判断した。この際、10個全てのセラミックス-金属接合体において「良好」と判断された場合を「A」と判定し、「不良」と判定された数が5個以下で、かつ固化したろうの厚みが0.1mm(スクライブラインにおける分割に影響がない厚み)以下の場合を「B」と判定し、10個すべてのセラミックス-金属接合体において「不良」と判断された場合を「C」と判定した。
(Evaluation)
If 10 ceramic-metal joints manufactured under each condition shown in Table 1 are observed, and a place where the wax is solidified is found just above the scribe line formed in the ceramic base material The case where no place where the braze had solidified was found just above the scribe line was judged as “good”. Under the present circumstances, when judged as "good" in all 10 ceramic-metal joined bodies, it is judged as "A", the number judged as "defective" is 5 or less, and the thickness of solidified wax is The case of 0.1 mm (thickness that does not affect the division in the scribe line) or less was judged as "B", and the case where it was judged as "defect" in all 10 ceramic-metal joints was judged as "C" .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 加圧板の位置決め角部を形成する2辺に沿って、かつ、スクライブラインの真上を避けて逃がし面が形成された実施例1~8は、いずれも評価が「B」以上であった。特に実施例1~5は、いずれも評価が「A」であり、全てのセラミックス-金属接合体においてスクライブラインの真上にろうが固化している箇所が認められなかった。 In Examples 1 to 8 in which escape surfaces were formed along the two sides forming the positioning corner of the pressure plate and avoiding directly above the scribe line, the evaluation was “B” or higher in all. In particular, in each of Examples 1 to 5, the evaluation was “A”, and in all the ceramic-metal joints, no place where the wax was solidified was found just above the scribe line.
 逃がし面の幅L2及び逃がし面の高さL3は、余剰ろう材を溜めるろう溜まり空間の体積に影響し、ともに値が大きい方がスクライブライン上へのろう材の侵入を防止できた。つまり、実施例1,3~5は、これら幅L2及び高さL3の値が大きく、ろう溜まり空間の体積が大きいため、評価が「A」であった。実施例2は、実施例1,3~5に比べて幅L2及び高さL3の値が小さいが、ろう材箔の厚さL1が他の実施例の半分であるから、評価が「A」であった。 The width L2 of the relief surface and the height L3 of the relief surface affect the volume of the wax accumulation space for accumulating the excess brazing material, and a larger value both prevented the penetration of the brazing material onto the scribe line. That is, in Examples 1 to 3, the evaluation was “A” because the values of the width L2 and the height L3 were large and the volume of the brazed space was large. Although the values of the width L2 and the height L3 of the example 2 are smaller than those of the examples 1, 3 to 5, the evaluation is "A" because the thickness L1 of the brazing material foil is half that of the other examples. Met.
 実施例7及び8は、幅L2又は高さL3が小さく、ろう溜まり空間の体積が小さいため、溶融したろうがスクライブライン上に拡散し、一部のスクライブラインの真上で固化していたので、評価が「B」であった。 In Examples 7 and 8, since the width L2 or the height L3 is small and the volume of the braze pool space is small, the molten braze spreads on the scribe line and solidifies right above a part of the scribe lines. , The evaluation was "B".
 逃がし面間の幅L4が小さいと、溶融したろうがスクライブライン上に拡散し易い。つまり、実施例6は、幅L2及び高さL3の値が大きいものの、逃がし面間の幅L4が小さいため、溶融したろうがスクライブライン上に拡散し、一部のスクライブラインの真上で固化していたので、評価が「B」であった。 If the width L4 between the escape surfaces is small, the molten wax tends to diffuse onto the scribe line. That is, in Example 6, although the values of the width L2 and the height L3 are large, the width L4 between the escape surfaces is small, the molten wax diffuses onto the scribe line and solidifies right above the partial scribe line. The evaluation was "B" because
 比較例1は、逃がし面が分割されていない、すなわち、逃がし面がスクライブラインの真上に形成されているため、全てのセラミックス-金属接合体においてスクライブラインの真上にろうが固化している箇所が認められ、評価が「C」であった。 In Comparative Example 1, since the escape surface is not divided, that is, the escape surface is formed just above the scribe line, the wax is solidified immediately above the scribe line in all the ceramic-metal joints. A part was recognized and evaluation was "C".
 スクライブラインが形成されたセラミックス母材及び金属層からなる積層体のスクライブラインの真上でろうが固化することを抑制できる。 It is possible to suppress the solidification of the solder right above the scribe line of the laminate including the ceramic base material and the metal layer in which the scribe line is formed.
10 セラミックス-金属接合体
10A 製品部
10B ダミー部
11 角部(位置決め角部)
11a,11b 端面
20 セラミックス母材
21 位置決め角部
21a,21b 端面
22 スクライブライン
30 金属板
31 位置決め角部
31a,31b 端面
40 ろう材
41 位置決め角部
41a,41b 端面
43 ろう染み
50 積層体
52 ろう溜まり空間
60 加圧板
61 位置決め角部
61a,61b 端面
63 逃がし面
70 製造装置
71a,71b,71c,71d 支柱
100 パワーモジュール用基板
110 パワーモジュール
111 電子部品
112 はんだ材
113 冷却器
113a 流路
P 回路パターン
10 Ceramics-Metal Joint 10A Product Part 10B Dummy Part 11 Corner Part (Positioning Corner Part)
11a, 11b End face 20 Ceramic base material 21 Positioning corner 21a, 21b End face 22 Scribe line 30 Metal plate 31 Positioning corner 31a, 31b End face 40 Braze material 41 Positioning corner 41a, 41b End face 43 Wax stain 50 Stack 52 Wax body Space 60 Pressure plate 61 Positioning corner 61a, 61b End face 63 Relief surface 70 Manufacturing device 71a, 71b, 71c, 71d Support 100 Power module substrate 110 Power module 111 Electronic component 112 Solder material 113 Cooler 113a Flow path P Circuit pattern

Claims (3)

  1.  複数のセラミックス基板に分割するための1以上のスクライブラインを有するセラミックス母材の表面に銅又は銅合金からなる金属板がCu-P系ろう材を介して積層されてなる積層体を一対の加圧板により挟持して加熱することにより、前記セラミックス母材の前記表面に前記金属板を接合して金属層を形成する接合工程と、
     前記積層体を前記スクライブラインに沿ってエッチングして前記金属層を前記スクライブラインにより囲まれた領域ごとに分離するエッチング工程と、を有し、
     前記加圧板の加圧面に、前記積層体の表面から離間する所定幅の逃がし面が前記加圧板の1つの角部を形成する2辺に沿って、かつ前記積層体を挟持したときに前記スクライブラインの真上を避ける位置に複数設けられており、前記接合工程において、前記積層体の前記表面と複数の前記逃がし面との間に複数のろう溜まり空間を形成することを特徴とするセラミックス-金属接合体の製造方法。
    A pair of metal plates made of copper or copper alloy is laminated via a Cu-P brazing material on the surface of a ceramic base material having one or more scribe lines for dividing into a plurality of ceramic substrates. A bonding step of bonding the metal plate to the surface of the ceramic base material to form a metal layer by sandwiching and heating by a pressure plate;
    Etching the laminate along the scribe line to separate the metal layer into regions surrounded by the scribe line;
    The scribing when the relief surface having a predetermined width separated from the surface of the laminate is held along the two sides forming one corner of the pressure plate and the laminate is sandwiched on the pressure surface of the pressure plate. A plurality of ceramics are provided at positions avoiding directly above the line, and in the bonding step, a plurality of brazing pool spaces are formed between the surface of the laminate and the plurality of escape surfaces. Method of manufacturing metal bonded body.
  2.  複数のセラミックス基板を分割するための1以上のスクライブラインが形成されたセラミックス母材の表面に銅又は銅合金からなる金属板がCu-P系ろう材によりろう付けされてなるセラミックス-金属接合体を製造するための装置であって、
     前記セラミックス母材の前記表面に前記Cu-P系ろう材を介して前記金属板を積層した積層体を積層方向に挟持する一対の加圧板を有し、
     前記加圧板の加圧面には、前記積層体を挟持したときに、前記積層体の表面から離間する所定幅の逃がし面が前記加圧板の1つの角部を形成する2辺に沿って、かつ前記スクライブラインの真上を避ける位置に複数設けられており、前記積層体の前記表面と複数の前記逃がし面との間に複数のろう溜まり空間が形成されることを特徴とするセラミックス-金属接合体の製造装置。
    A ceramic-metal joint body in which a metal plate made of copper or copper alloy is brazed with a Cu-P brazing material on the surface of a ceramic base material on which one or more scribe lines for dividing a plurality of ceramic substrates are formed. A device for producing
    It has a pair of pressure plates which sandwich in the laminating direction a laminated body in which the metal plate is laminated on the surface of the ceramic base material via the Cu-P brazing filler metal,
    On the pressure surface of the pressure plate, a relief surface having a predetermined width, which is separated from the surface of the laminate when the laminated body is held, extends along two sides forming one corner of the pressure plate, and A plurality of ceramic-metal junctions, wherein a plurality of brazing material spaces are provided at positions avoiding directly above the scribe line, and a plurality of brazing fluid collecting spaces are formed between the surface of the laminate and the plurality of escape surfaces. Body manufacturing equipment.
  3.  複数のセラミックス基板に分割するための1以上のスクライブラインを有するセラミックス母材と、
     前記セラミックス母材の表面にCu-P系ろう材により接合され、銅又は銅合金からなる金属層と、を備え、
     前記金属層における前記セラミックス母材との接合面と反対側の面には、1つの角部を形成する2辺に沿い、かつ、前記スクライブラインの真上を避けた位置に前記Cu-P系ろう材が溶融後に固化したろうが付着していることを特徴とするセラミックス-金属接合体。
    A ceramic base material having one or more scribe lines for dividing into a plurality of ceramic substrates;
    And a metal layer bonded to the surface of the ceramic base material with a Cu-P-based brazing material and made of copper or a copper alloy,
    The Cu-P system is located on a surface of the metal layer opposite to the bonding surface with the ceramic base, along the two sides forming one corner and avoiding directly above the scribe line. A ceramic-metal joint characterized in that a braze material adheres after solidification and solidified after melting.
PCT/JP2019/002075 2018-01-24 2019-01-23 Method and device for manufacturing ceramic-metal joined body, and ceramic-metal joined body WO2019146639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-009276 2018-01-24
JP2018009276A JP7020137B2 (en) 2018-01-24 2018-01-24 Ceramic-metal joint manufacturing method, manufacturing equipment and ceramic-metal joint

Publications (1)

Publication Number Publication Date
WO2019146639A1 true WO2019146639A1 (en) 2019-08-01

Family

ID=67394987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002075 WO2019146639A1 (en) 2018-01-24 2019-01-23 Method and device for manufacturing ceramic-metal joined body, and ceramic-metal joined body

Country Status (3)

Country Link
JP (1) JP7020137B2 (en)
TW (1) TW201942092A (en)
WO (1) WO2019146639A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076532A (en) * 2000-08-28 2002-03-15 Kyocera Corp Ceramic circuit board
JP2003142785A (en) * 2001-11-08 2003-05-16 Denki Kagaku Kogyo Kk Multi-pattern mother plate for circuit board, and manufacturing method thereof
JP2010050164A (en) * 2008-08-19 2010-03-04 Mitsubishi Materials Corp Method of manufacturing board for power module
JP2011029320A (en) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp Method and device of manufacturing substrate for power module, and manufacture intermediate
JP2011029319A (en) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp Method of manufacturing substrate for power module, and manufacture intermediate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169030A (en) * 1992-11-30 1994-06-14 Kyocera Corp Electronic component package, electronic component package board and manufacture of electronic component package board
JP5050549B2 (en) 2007-02-08 2012-10-17 三菱マテリアル株式会社 Power module substrate manufacturing method
JPWO2009154295A1 (en) 2008-06-20 2011-12-01 日立金属株式会社 Ceramic aggregate substrate, manufacturing method thereof, ceramic substrate, and ceramic circuit substrate
JP6108734B2 (en) 2012-09-18 2017-04-05 Ngkエレクトロデバイス株式会社 Electronic component element storage package
JP6398243B2 (en) 2014-03-20 2018-10-03 三菱マテリアル株式会社 Power module substrate manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076532A (en) * 2000-08-28 2002-03-15 Kyocera Corp Ceramic circuit board
JP2003142785A (en) * 2001-11-08 2003-05-16 Denki Kagaku Kogyo Kk Multi-pattern mother plate for circuit board, and manufacturing method thereof
JP2010050164A (en) * 2008-08-19 2010-03-04 Mitsubishi Materials Corp Method of manufacturing board for power module
JP2011029320A (en) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp Method and device of manufacturing substrate for power module, and manufacture intermediate
JP2011029319A (en) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp Method of manufacturing substrate for power module, and manufacture intermediate

Also Published As

Publication number Publication date
JP7020137B2 (en) 2022-02-16
TW201942092A (en) 2019-11-01
JP2019127408A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
TWI601465B (en) A method of manufacturing a power module substrate
CN106165090A (en) Power module substrate unit and power model
JP6853455B2 (en) Manufacturing method of board for power module
KR102163533B1 (en) Apparatus and method for producing (metallic plate)-(ceramic plate) laminate, and apparatus and method for producing substrate for power modules
TW201626510A (en) Substrate for power module and method for manufacturing the same
JP5251772B2 (en) Power module substrate manufacturing method and manufacturing intermediate
TWI762663B (en) Manufacturing method of ceramic-metal layer bonded body, manufacturing method of ceramic circuit board, and metal plate bonding ceramic base plate
WO2019146639A1 (en) Method and device for manufacturing ceramic-metal joined body, and ceramic-metal joined body
JP5056811B2 (en) Power module substrate manufacturing method, manufacturing apparatus, and manufacturing intermediate
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP7147232B2 (en) Manufacturing method for ceramic-metal bonded body, manufacturing method for multi-cavity ceramic-metal bonded body, ceramic-metal bonded body and multi-cavity ceramic-metal bonded body
KR20120021154A (en) Manufacturing method of substrate for power module equiptted with heat sink, substrate for power module equiptted with heat sink, and power module
TWI770346B (en) Method for manufacturing power module substrate and ceramic-copper joint
CN111771275B (en) Insulated circuit board
JP5131205B2 (en) Power module substrate manufacturing method
JP5131204B2 (en) Power module substrate manufacturing method
JP2020129631A (en) Insulation circuit board and manufacturing method thereof
JP2013143465A (en) Heat sink fitted power module board manufacturing method and manufacturing apparatus
JP2008124134A (en) Thermoelectric conversion module, and manufacturing method thereof
JP5887907B2 (en) Power module substrate manufacturing method and manufacturing apparatus
JP6123440B2 (en) Method and apparatus for manufacturing divided body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743849

Country of ref document: EP

Kind code of ref document: A1