WO2019146091A1 - 交流電気車の制御装置 - Google Patents

交流電気車の制御装置 Download PDF

Info

Publication number
WO2019146091A1
WO2019146091A1 PCT/JP2018/002593 JP2018002593W WO2019146091A1 WO 2019146091 A1 WO2019146091 A1 WO 2019146091A1 JP 2018002593 W JP2018002593 W JP 2018002593W WO 2019146091 A1 WO2019146091 A1 WO 2019146091A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
output
processing unit
arithmetic processing
Prior art date
Application number
PCT/JP2018/002593
Other languages
English (en)
French (fr)
Inventor
遼 下村
勝也 西川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/002593 priority Critical patent/WO2019146091A1/ja
Priority to JP2019567800A priority patent/JP7034182B2/ja
Publication of WO2019146091A1 publication Critical patent/WO2019146091A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/08Electric propulsion with power supply external to the vehicle using dc motors fed from ac supply lines

Definitions

  • the present invention relates to a control device for an AC electric vehicle that travels by receiving AC power supplied from an AC overhead wire.
  • Non-Patent Document 1 describes a technique of shifting the phase of a carrier wave given to a plurality of PWM (Pulse Width Modulation) converters by a predetermined phase as a countermeasure for suppressing harmonic current.
  • PWM Pulse Width Modulation
  • a PWM converter When a PWM converter is mounted on an AC electric vehicle, it is generally configured by connecting a plurality of PWM converters to a main transformer that receives AC power from an AC overhead wire.
  • the number of main transformers is two, each main transformer is provided with two secondary windings, and one PWM converter is connected to each of the two secondary windings.
  • there is an electromagnetic coupling interference between the two secondary windings of the main transformer and the total value of the currents generated by the two power converters is affected by the electromagnetic coupling interference.
  • the conditions of the two main transformers are the same or equal to each other, under the condition that the two power conversion devices are always connected, even if the above-described conventional method is used, harmonics can be generated. Suppression of the wave current was possible.
  • the present invention has been made in view of the above, and is an AC electric vehicle that can effectively suppress harmonic current regardless of the connection status of the main transformer and the PWM converter or the operation status of the PWM converter.
  • the purpose is to obtain a control device of
  • the present invention is mounted on an AC electric vehicle having a converter device for converting an AC voltage output from an AC overhead wire and applied through a main transformer into a DC voltage.
  • Control device for controlling the operation of the converter device.
  • the control device for an AC electric vehicle includes a converter output voltage, a converter input current, a filter output of an overhead wire voltage output by an AC overhead wire, and a first control amount calculated based on the converter output current, and a filter output of overhead wire voltage
  • a generation unit generating a converter voltage reference based on the second control amount calculated based on the converter input current, and a first correction calculated based on the filter output of the overhead wire voltage and the converter input current
  • a correction unit is provided to correct the converter voltage reference based on the quantity.
  • control apparatus for an AC electric vehicle it is possible to effectively suppress the harmonic current regardless of the connection condition of the main transformer and the PWM converter, or the operation condition of the PWM converter. Play.
  • Functional block diagram showing a configuration including a control device for an AC electric vehicle according to an embodiment Diagram for explaining the operation of the main part of the control device in the embodiment A block diagram showing an example of a hardware configuration for realizing the functions of the first operation processing unit to the eighth operation processing unit in the embodiment
  • Block diagram showing specific processing contents of signal input processing and AD conversion processing in the embodiment The figure which shows the structure of the control apparatus applied to the alternating current electric vehicle of a structure different from FIG. 1
  • the present embodiment discloses a technique capable of effectively suppressing the harmonic current regardless of the connection state of the main transformer and the PWM converter and the operation state of the PWM converter. Therefore, the number of PWM converters connected to the main transformer will be described as an example of only one minimum number.
  • the present invention is not limited by the following embodiments.
  • FIG. 1 is a functional block diagram showing a configuration including a control device 20 of an AC electric vehicle according to the embodiment.
  • the drive system of the AC electric vehicle is shown on the upper side
  • the control system 20 constituting the control system of the AC electric vehicle and mounted on the AC electric vehicle is shown on the lower side.
  • the drive system of the AC electric vehicle includes a panda graph 1, a main transformer 2, a converter device 3 which is a PWM converter, a filter capacitor 5, and a load 4.
  • the filter capacitor 5 is described as "FC5".
  • the AC power from the AC overhead wire 18 is input to the panda graph 1.
  • the AC power supplied from the panda graph 1 is input to the primary winding 2 a of the main transformer 2.
  • An alternating voltage generated in the secondary winding 2 b of the main transformer 2 is applied to the converter device 3.
  • Converter device 3 converts the applied AC voltage into a DC voltage.
  • the FC 5 smoothes the DC voltage of the converter device 3.
  • the load 4 is driven by the DC voltage smoothed by the FC 5.
  • the load 4 includes an inverter that converts a DC voltage output from the converter device 3 into an AC voltage, an AC motor to which an AC voltage of the inverter is applied, and a railway vehicle driven by the AC motor.
  • the control device 20 includes first to eighth operation processing units 21 to 28, a carrier generation unit 14, a PWM signal generation unit 15, and AD converters 6a to 6d. Prepare.
  • the first arithmetic processing unit 21 includes a filter 7 a, an adder / subtractor 11 a, and a constant voltage control unit 13.
  • the filter 7a is a low pass filter or a band pass filter.
  • the first arithmetic processing unit 21 calculates a DC voltage correction amount Vda based on the DC voltage reference Vd * generated internally and the actual converter output voltage Vd.
  • the converter output voltage Vd can use the detection value of the AD converter 6a that detects the voltage across the FC 5 as illustrated.
  • the second arithmetic processing unit 22 includes an operational amplifier 10a.
  • the operational amplifier 10a calculates a secondary current feedforward amount Isf which is a feedforward amount of the converter input current based on the converter output current IL.
  • the converter output current IL can use the detection value of the AD converter 6b which detects the current which flows into the direct current bus 16 which connects the converter apparatus 3 and the load 4 like illustration.
  • the third arithmetic processing unit 23 includes a filter 7 b and a basic sine wave generation unit 8.
  • the filter 7 b is a low pass filter or a band pass filter.
  • the third arithmetic processing unit 23 calculates a basic sine wave SWF based on the filter output Vs0 of the overhead wire voltage Vs.
  • the fourth arithmetic processing unit 24 includes an adder / subtractor 11 b, an adder / subtractor 11 c, a multiplier 12, and an operational amplifier 10 b.
  • the fourth arithmetic processing unit 24 calculates a first control amount Vsp based on the DC voltage correction amount Vda, the secondary current feedforward amount Isf, the basic sine wave SWF, and the converter input current Is.
  • the first control amount Vsp is used to generate a converter voltage reference Vc described later.
  • the DC voltage correction amount Vda is an output of the first arithmetic processing unit 21.
  • the secondary current feedforward amount Isf is an output of the second arithmetic processing unit 22.
  • the basic sine wave SWF is an output of the third arithmetic processing unit 23.
  • the converter input current Is can use the detection value of AD converter 6c which detects the electric current which flows into the input side of the converter apparatus 3 like illustration.
  • the fifth arithmetic processing unit 25 includes a cosine wave generation unit 9, an operational amplifier 10c, and an adder / subtractor 11d.
  • the fifth arithmetic processing unit 25 calculates a second control amount Vci based on the filter output Vs0 of the overhead wire voltage Vs and the converter input current Is.
  • the second control amount Vci is used to generate the converter voltage reference Vc together with the first control amount Vsp.
  • the converter input current Is can use the detection value of the AD converter 6c.
  • the filter output Vs0 of the overhead line voltage Vs can use the output of the filter 7b in the third arithmetic processing unit 23.
  • the sixth arithmetic processing unit 26 includes a first-order delay element 26a, a filter 26b, an operational amplifier 26c, an effective value calculating unit 26d, differentiators 26e and 26g, and a gain variable unit which is a first gain variable unit. 26f, multipliers 26h and 26j, and a gain variable unit 26i which is a second gain variable unit.
  • the filter 26 b is a band pass filter.
  • the first-order lag element 26a, the filter 26b, and the operational amplifier 26c constitute a specific harmonic component extraction unit 26A.
  • the specific harmonic component extraction unit 26A is an operation unit that extracts a specific harmonic component included in the converter input current Is. In alternating current electric vehicles, in order to prevent malfunction of ground devices, regulations on induction disturbances in specific frequency bands are strictly defined. Therefore, the sixth arithmetic processing unit 26 including the specific harmonic component extraction unit 26A controls so that the specific harmonic component does not increase.
  • variable gain calculation unit 26B is a calculation unit that calculates a variable gain to be applied to the operational amplifier 26c of the specific harmonic component extraction unit 26A.
  • the specific harmonic component extraction unit 26A of the sixth arithmetic processing unit 26 calculates the correction amount Vcg1 based on the converter input current Is and the second variable gain CG2.
  • the correction amount Vcg1 is used to correct the converter voltage reference Vc.
  • the variable gain calculation unit 26B of the sixth calculation processing unit 26 calculates a second variable gain CG2 based on the filter output Is1 of the harmonic component and the first variable gain CG1.
  • the filter output Is1 of the harmonic component uses the output of the filter 26b in the specific harmonic component extractor 26A.
  • the first variable gain CG1 is an output of the first gain variable unit 26f, and is calculated using the basic sine wave SWF. That is, the first variable gain CG1 is generated inside the variable gain calculation unit 26B.
  • the seventh arithmetic processing unit 27 includes a primary delay element 27a, a filter 27b, adders / subtractors 27c and 27e, and an operational amplifier 27d.
  • the filter 27 b is a band pass filter.
  • the seventh arithmetic processing unit 27 is an arithmetic unit that extracts harmonic components included in the return current.
  • the return current is a current flowing to the circuit portion on the ground side.
  • the current flowing out of the AC overhead wire 18 returns to the power supply side via a rail which is a circuit portion on the ground side. Rails have railway security equipment such as track circuits, ground terminals and level crossing control elements. For this reason, the seventh arithmetic processing unit 27 is provided so that harmonic components included in the return current do not affect the railway security equipment.
  • the seventh arithmetic processing unit 27 calculates the correction amount Vcg based on the correction amount Vcg1 and the correction amount Vcg2.
  • the correction amount Vcg1 is a correction amount generated by the sixth arithmetic processing unit 26.
  • the correction amount Vcg2 is a correction amount calculated using the converter input current Is in the seventh arithmetic processing unit 27.
  • the correction amount Vcg2, together with the correction amount Vcg1, is used to correct the converter voltage reference Vc.
  • the correction amount Vcg1 generated by the sixth arithmetic processing unit 26 and the correction amount Vcg2 generated by the seventh arithmetic processing unit 27 are added by the adder / subtractor 27e.
  • the output of the adder / subtractor 27e is input to the eighth arithmetic processing unit 28 as a correction amount Vcg.
  • the eighth arithmetic processing unit 28 includes adders / subtractors 11e and 11f.
  • the eighth arithmetic processing unit 28 calculates the converter voltage reference Vc and corrects the converter voltage reference Vc. Specifically, the adder / subtractor 11e calculates a converter voltage reference Vc based on the first control amount Vsp and the second control amount Vci. Further, the adder / subtractor 11 f corrects the converter voltage reference Vc using the correction amount Vcg with respect to the converter voltage reference Vc.
  • the corrected converter voltage reference Vc1 calculated by the eighth arithmetic processing unit 28 is output to the PWM signal generation unit 15.
  • the first arithmetic processing unit 21 to the eighth arithmetic processing unit 28 have a function of a generation unit that generates converter voltage reference Vc and a function of a correction unit that corrects converter voltage reference Vc.
  • the functions of the generation unit are embodied by the first to fifth operation processing units 21 to 25 and the adder / subtractor 11 e in the eighth operation processing unit 28.
  • the function of the correction unit is embodied by the sixth arithmetic processing unit 26, the seventh arithmetic processing unit 27, and the adder-subtractor 11f in the eighth arithmetic processing unit 28.
  • the adder-subtractor 27 e provided in the seventh arithmetic processing unit 27 may be provided in the eighth arithmetic processing unit 28.
  • the sixth arithmetic processing unit 26 outputs the correction amount Vcg1 to the eighth arithmetic processing unit 28, and the seventh arithmetic processing unit 27
  • the correction amount Vcg2 is output to the eighth arithmetic processing unit 28, and the correction amount Vcg1 and the correction amount Vcg2 are added by the eighth arithmetic processing unit 28.
  • the correction amount Vcg1 is referred to as "first correction amount Vcg1”
  • the correction amount Vcg2 is referred to as "second correction amount Vcg2".
  • the carrier generation unit 14 calculates the carrier SA used to generate the PWM signal based on the basic sine wave SWF.
  • the PWM signal generation unit 15 generates a PWM signal for driving a switching element (not shown) included in the converter device 3 based on the converter voltage reference Vc and the carrier SA.
  • the generation method of the PWM signal is known, and the description here is omitted.
  • FIG. 1 shows the configuration including the second arithmetic processing unit 22 that calculates the secondary current feedforward amount Isf, converter control is possible even if the second arithmetic processing unit 22 is omitted.
  • control device 20 Next, the more detailed operation of the control device 20 will be described with reference to FIG.
  • the converter output voltage Vd input to the control device 20 is converted to a digital signal by the AD converter 6a.
  • the converted digital signal is input to the filter 7 a in the first arithmetic processing unit 21.
  • the adder-subtractor 11a calculates the difference between the DC voltage reference Vd * and the output of the filter 7a.
  • the constant voltage control unit 13 calculates the DC voltage correction amount Vda based on the output of the adder / subtractor 11a.
  • the converter output current IL input to the control device 20 is converted into a digital signal by the AD converter 6 b.
  • the converted digital signal is multiplied by the gain G1 in the operational amplifier 10a in the second arithmetic processing unit 22, and the output of the operational amplifier 10a is calculated as the secondary current feedforward amount Isf.
  • the overhead wire voltage Vs input to the control device 20 is converted to a digital signal by the AD converter 6 d.
  • the converted digital signal is input to the filter 7b in the third arithmetic processing unit 23, and the filter output Vs0 of the overhead wire voltage Vs is generated. Further, the filter output Vs0 of the overhead wire voltage Vs is input to the basic sine wave generation unit 8, and the basic sine wave generation unit 8 calculates the basic sine wave SWF.
  • the converter input current Is input to the control device 20 is converted to a digital signal by the AD converter 6c.
  • the converted digital signal is input to the adder-subtractor 11 c in the fourth arithmetic processing unit 24.
  • the DC voltage correction amount Vda, the secondary current feedforward amount Isf, and the basic sine wave SWF which are the outputs of the first arithmetic processing unit 21 to the third arithmetic processing unit 23, are the fourth arithmetic processing unit It is input to 24.
  • the DC voltage correction amount Vda and the secondary current feedforward amount Isf are input to the adder-subtractor 11 b in the fourth arithmetic processing unit 24.
  • the addition output Isp of the adder / subtractor 11b is multiplied by the basic sine wave SWF by the multiplier 12, and the output of the multiplier 12 is calculated as the converter input current reference Is *. Further, the deviation .DELTA.Is between the converter input current Is converted to the digital signal by the AD converter 6c and the converter input current reference Is * is calculated by the adder-subtractor 11c. Then, the deviation ⁇ Is is multiplied by the gain G2 in the operational amplifier 10b, and the output of the operational amplifier 10b is calculated as the first control amount Vsp.
  • the converter input current Is converted to a digital signal by the AD converter 6 c is input to the cosine wave generation unit 9 in the fifth arithmetic processing unit 25.
  • a cosine wave CWF is generated in the cosine wave generation unit 9 based on the converter input current Is.
  • the cosine wave CWF is input to the operational amplifier 10c, and is multiplied by the gain G3 in the operational amplifier 10c.
  • the correction amount VL calculated by the operational amplifier 10c and the filter output Vs0 of the overhead wire voltage Vs output from the third operation processing unit 23 are input to the adder / subtractor 11d, and the filter output Vs0 of the overhead wire voltage Vs and the correction amount
  • the deviation from VL is calculated as a second control amount Vci.
  • Converter input current Is is input to filter 26b via first-order lag element 26a. If the response speed of the filter 26b is fast, the first-order lag element 26a can be omitted.
  • the filter 26b extracts the specific harmonic component Is1.
  • the specific harmonic component Is1 is a specific frequency component that affects the railway safety equipment among the frequency components included in the converter input current Is.
  • the specific frequency component may be one band or a plurality of bands.
  • the extracted specific harmonic component Is1 is input to the operational amplifier 26c and the effective value calculator 26d.
  • the effective value calculator 26d calculates the effective value Iscf of the specific harmonic component Is1.
  • the effective value Iscf of the specific harmonic component Is1 is input to the differentiator 26e.
  • the differentiator 26e performs differential processing on the effective value Iscf of the specific harmonic component Is1.
  • the output of the differentiator 26e is input to the multiplier 26h.
  • the basic sine wave SWF calculated by the third arithmetic processing unit 23 is input to the gain varying unit 26 f.
  • the gain varying unit 26f generates a first variable gain CG1 that changes more slowly than the period of the basic sine wave SWF, ie, in a cycle longer than the period of the basic sine wave SWF.
  • the period of the basic sine wave SWF is “T0”
  • the period of change of the first variable gain CG1 is “n ⁇ T0”.
  • n is a real number greater than one.
  • the first variable gain CG1 is input to the differentiator 26g. In the differentiator 26g, the first variable gain CG1 is differentiated.
  • the output of the differentiator 26g is input to the multiplier 26h.
  • the multiplier 26h multiplies the effective value Iscf of the specific harmonic component Is1 by the first variable gain CG1.
  • the output of the multiplier 26h is input to the gain varying unit 26i.
  • the output of the multiplier 26h is subjected to integration processing by the gain varying unit 26i. Further, in the gain varying section 26i, limit processing is performed so that the output of the integration processing does not exceed the maximum limit value and does not fall below the minimum limit value.
  • the maximum limit value is a real value not exceeding one.
  • the minimum limit value is a real value greater than 1 and smaller than the maximum limit value.
  • the maximum limit value will be referred to as "maximum gain”
  • minimum gain the minimum limit value
  • the multiplier 26 j multiplies the output of the gain variable unit 26 i by the default gain DG, which is a fixed value.
  • the value of the default gain DG is “1”.
  • the multiplier 26j generates a second variable gain CG2 that changes between the minimum gain and the maximum gain.
  • the second variable gain CG2 is applied to the operational amplifier 26c. That is, in the operational amplifier 26c, the second variable gain CG2 which is not a fixed value is applied to the specific harmonic component Is1 output from the filter 26b.
  • Converter input current Is is input to filter 27b via first-order lag element 27a.
  • the filter 27b extracts the fundamental frequency component Is0 from the converter input current Is.
  • the fundamental frequency is the frequency of the AC overhead wire 18.
  • the output of the primary delay element 27a not passing through the filter 27b and the output of the primary delay element 27a passing through the filter 27b are input to the adder / subtractor 27c and subtracted. Therefore, from the adder / subtractor 27c, a harmonic component obtained by removing the fundamental frequency component Is0 from the converter input current Is is output.
  • the harmonic component output from the adder / subtractor 27c is multiplied by the gain G5, and the output of the operational amplifier 27d is calculated as the correction amount Vcg2. Further, the adder / subtractor 27e adds the correction amount Vcg2 and the correction amount Vcg1 output from the sixth arithmetic processing unit 26, and the output of the adder / subtractor 27e is calculated as the correction amount Vcg.
  • the first control amount Vsp that is the output of the fourth arithmetic processing unit 24 and the second control amount Vci that is the output of the fifth arithmetic processing unit 25 are the adder-subtractor 11 e in the eighth arithmetic processing unit 28. Is input to In the adder-subtractor 11e, the first control amount Vsp and the second control amount Vcig are added, and the output of the adder-subtractor 11e is calculated as the converter voltage reference Vc.
  • the converter voltage reference Vc and the correction amount Vcg which is the output of the seventh arithmetic processing unit 27 are input to the adder-subtractor 11 f in the eighth arithmetic processing unit 28.
  • the converter voltage reference Vc and the correction amount Vcg are added, and the output of the adder-subtractor 11f is calculated as the converter voltage reference Vc1 after correction. That is, converter voltage reference Vc is corrected by correction amount Vcg.
  • the carrier generation unit 14 calculates the carrier SA used to generate the PWM signal based on the basic sine wave SWF input from the third arithmetic processing unit 23.
  • the PWM signal generation unit 15 generates a PWM signal for driving the converter device 3 based on the converter voltage reference Vc calculated by the eighth arithmetic processing unit 28 and the carrier SA calculated by the carrier generation unit 14. .
  • the generated PWM signal is output to converter device 3.
  • FIG. 2 is a diagram for explaining the operation of the main part of the control device 20 in the embodiment.
  • FIG. 2 is a diagram for explaining the operation of the variable gain calculation unit 26B in the sixth calculation processing unit 26 of the control device 20.
  • the time change waveform of the first variable gain CG1 is shown in the upper portion of FIG.
  • This waveform is an output waveform of the gain varying unit 26f.
  • the time-variation waveform of the differential value of the first variable gain CG1 is shown in the upper middle part of FIG.
  • This waveform is an output waveform of the differentiator 26g.
  • the time-varying waveform of the effective value Iscf of the specific harmonic component Is1 is shown in the middle part of FIG.
  • This waveform is an output waveform of the effective value calculator 26 d.
  • the time change waveform of the derivative value of effective value Iscf is shown by the middle and lower part of FIG. This waveform is an output waveform of the differentiator 26e.
  • the sign of the gain adjustment amount is a sign related to the product of the derivative of CG1 and the derivative of Iscf, and represents the sign of the output of the multiplier 26h in the variable gain computing unit 26B.
  • the output of the gain variable unit 26i is calculated by "1- (gain adjustment amount)" as shown in the table of FIG. Therefore, when the sign of the gain adjustment amount is positive, the output value of the gain variable unit 26i is smaller than 1, and control in the direction to lower the gain works. On the other hand, when the sign of the gain adjustment amount is negative, the output value of the gain varying unit 26i is larger than 1 and the control in the direction to increase the gain works. Thus, the direction of gain control is determined by the output of the multiplier 26h.
  • FIG. 2 shows the case where the cycle of change of the first variable gain CG1 is twice the cycle of the specific harmonic component Is1, the present invention is not limited to this example.
  • the period of the first variable gain CG1 may be longer than the period of the fundamental wave, that is, the wire voltage Vs.
  • FIG. 3 is a block diagram showing an example of a hardware configuration for realizing the functions of the first arithmetic processing unit 21 to the eighth arithmetic processing unit 28 in the embodiment.
  • FIG. 4 is a block diagram showing another example of a hardware configuration for realizing the functions of the first arithmetic processing unit 21 to the eighth arithmetic processing unit 28 in the embodiment.
  • FIG. 5 is a block diagram showing specific processing contents of signal input processing and AD conversion processing in the embodiment.
  • a processor 200 that performs arithmetic operations, and a memory 202 that stores programs read by the processor 200. And an interface 204 that inputs and outputs signals.
  • the processor 200 may be an arithmetic unit such as an arithmetic unit, a microprocessor, a microcomputer, a central processing unit (CPU), or a digital signal processor (DSP).
  • the memory 202 is a nonvolatile or volatile semiconductor memory such as a random access memory (RAM), a read only memory (ROM), a flash memory, an EPROM (erasable programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM).
  • RAM random access memory
  • ROM read only memory
  • flash memory an EPROM (erasable programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM).
  • a magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), BD (Blu-ray (registered trademark) Disk) can be exemplified.
  • the memory 202 stores programs for executing the functions of the first arithmetic processing unit 21 to the eighth arithmetic processing unit 28 and a table referred to by the processor 200.
  • the processor 200 transmits and receives necessary information through the interface 204, the processor 200 executes a program stored in the memory 202, and the processor 200 refers to a table stored in the memory 202 to perform the above-described arithmetic processing. It can be performed. An operation result by the processor 200 can be stored in the memory 202.
  • the processor 200 and the memory 202 shown in FIG. 3 may be replaced with the processing circuit 203 as shown in FIG.
  • the processing circuit 203 corresponds to a single circuit, a compound circuit, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination thereof.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • FIG. 5 shows specific processing contents of signal input processing and AD conversion processing in the embodiment.
  • the functional block 50 of signal input processing and AD conversion processing shown in FIG. 5 includes an AD conversion processing block 51 of converter output voltage Vd, an AD conversion processing block 52 of converter output current IL, an AD conversion processing block 53 of overhead wire voltage Vs, converter AD conversion processing block 54 of input current Is, signal input processing block 55 of DC voltage reference Vd *, input processing block 56 of gain constants G1 to G5, input processing block 57 of filter constant, and input processing block 58 of time constant It is a functional block that has been consolidated to be performed collectively by software.
  • the time constant input processing block 58 sets time constants in the operational amplifiers 10a, 10b, 10c, 26c, and 27d configured by a PI (Proportional-Integral) controller or a PID (Proportional-Integral-Differential) controller. It is a process.
  • PI Proportional-Integral
  • PID Proportional-Integral-Differential
  • converter voltage reference Vc generated based on first control amount Vsp and second control amount Vci is corrected by correction amount Vcg. Therefore, even if the phase of the carrier wave is not shifted for each PWM converter, regardless of the connection condition of the main transformer 2 and the converter device 3 or the operating condition of the converter device 3, It becomes possible to control effectively. Moreover, since suppression of harmonic current can be performed effectively, it becomes possible to improve robustness with respect to the change of the operating condition of an AC electric vehicle.
  • FIG. 6 is a diagram showing a configuration of a control device 20A applied to an AC electric vehicle having a configuration different from that of FIG.
  • the control device 20 of FIG. 1 is configured to monitor the voltage of the primary winding 2a of the main transformer 2 as the overhead wire voltage Vs, but as shown in FIG. 6, the tertiary winding of the main transformer 2 It may be configured to monitor the voltage of 2c. Even in the configuration in which the voltage of the tertiary winding 2c of the main transformer 2 is monitored, the same effect as that of the control device 20 can be obtained by configuring the control device 20A the same as or equivalent to that of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

交流電気車の制御装置(20)は、コンバータ出力電圧Vd、コンバータ入力電流Is、交流架線(18)が出力する架線電圧Vsのフィルタ出力、及びコンバータ出力電流ILに基づいて算出される第1の制御量Vspと、架線電圧Vsのフィルタ出力、及びコンバータ入力電流Isに基づいて算出される第2の制御量Vciとに基づいてコンバータ電圧基準Vcを生成する生成部(21~25,28)、並びに、架線電圧Vsのフィルタ出力、及びコンバータ入力電流Isに基づいて算出される補正量Vcgに基づいてコンバータ電圧基準Vcを補正する補正部(26~28)を備える。

Description

交流電気車の制御装置
 本発明は、交流架線から供給される交流電力を受電して走行する交流電気車の制御装置に関する。
 交流電気車においては、地上機器の誤動作を防止するため、特定の周波数帯における誘導障害に対する規制が厳しく決められている。このため、交流電気車の制御装置では、高調波電流の抑制を高精度に達成することが求められている。
 下記非特許文献1には、高調波電流の抑制対策として、複数のPWM(Pulse Width Modulation)コンバータに与える搬送波の位相を予め定められた位相分だけずらす技術が記載されている。複数のPWMコンバータにおいて、PWMコンバータ毎に搬送波の位相をずらすようにすれば、複数のPWMコンバータから発生する高調波成分が特定の周波数帯でキャンセルされるようになる。これにより、当該特定の周波数帯における高調波成分の低減が可能となる。
「鉄道車両用PWMコンバータの技術(5)」 8~11頁 鉄道車両と技術 1999年9月
 交流電気車にPWMコンバータを搭載する場合、交流架線からの交流電力を受電する主変圧器に複数台のPWMコンバータを接続して構成することが一般的である。
 ここで、主変圧器の台数が2台であり、各主変圧器には2つの2次巻線が設けられ、当該2つの2次巻線のそれぞれに1台ずつのPWMコンバータが接続される場合を考える。この場合、主変圧器の2つの2次巻線間には電磁気的な結合干渉が存在し、2台の電力変換装置が発生する電流の合算値は、電磁気的結合干渉の影響を受けることになる。しかしながら、2台の主変圧器の条件は2台共に同一もしくは同等の条件になるため、2台の電力変換装置が常時接続されている条件下においては、上述した従来手法を用いても、高調波電流の抑制は可能であった。
 一方、2台の主変圧器のうちの1台において、1台のPWMコンバータのみが2次巻線に接続される場合、もしくは、2台の主変圧器のそれぞれにおいて、2つの2次巻線のそれぞれに1台ずつのPWMコンバータが接続されていても1台の主変圧器のうちの1台のPWMコンバータが故障等をして動作を停止した場合には、2台の主変圧器の電磁気的な条件が異なることになる。このため、上述した従来手法のみでは、高調波電流の抑制が不十分な場合が想定され、高調波電流の抑制を効果的に行うことができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、主変圧器とPWMコンバータの接続状況又はPWMコンバータの動作状況に関わらず、高調波電流の抑制を効果的に行うことができる交流電気車の制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、交流架線から出力され、主変圧器を介して印加される交流電圧を直流電圧に変換するコンバータ装置を有する交流電気車に搭載され、コンバータ装置の動作を制御する交流電気車の制御装置である。交流電気車の制御装置は、コンバータ出力電圧、コンバータ入力電流、交流架線が出力する架線電圧のフィルタ出力、及びコンバータ出力電流に基づいて算出される第1の制御量と、架線電圧のフィルタ出力、及びコンバータ入力電流に基づいて算出される第2の制御量とに基づいてコンバータ電圧基準を生成する生成部、並びに、架線電圧のフィルタ出力、及びコンバータ入力電流に基づいて算出される第1の補正量に基づいてコンバータ電圧基準を補正する補正部を備える。
 本発明に係る交流電気車の制御装置によれば、主変圧器とPWMコンバータの接続状況、又はPWMコンバータの動作状況に関わらず、高調波電流の抑制を効果的に行うことができるという効果を奏する。
実施の形態に係る交流電気車の制御装置を含む構成を示す機能ブロック図 実施の形態における制御装置の要部動作の説明に供する図 実施の形態における第1の演算処理部~第8の演算処理部の機能を実現するためのハードウェア構成の一例を示すブロック図 実施の形態における第1の演算処理部~第8の演算処理部の機能を実現するためのハードウェア構成の他の例を示すブロック図 実施の形態における信号入力処理及びAD変換処理の具体的な処理内容を示すブロック図 図1とは異なる構成の交流電気車に適用される制御装置の構成を示す図
 以下に添付図面を参照し、本発明の実施の形態に係る交流電気車の制御装置について詳細に説明する。本実施の形態では、主変圧器とPWMコンバータの接続状況、及びPWMコンバータの動作状況に関わらず、高調波電流の抑制を効果的に達成することができる技術を開示する。このため、主変圧器に接続されるPWMコンバータの数は、ミニマム台数である1台のみを例示した説明とする。なお、以下の実施の形態により、本発明が限定されるものではない。
実施の形態.
 図1は、実施の形態に係る交流電気車の制御装置20を含む構成を示す機能ブロック図である。図1において、上段側には交流電気車の駆動系が示され、下段側には交流電気車の制御系を構成し、交流電気車に搭載される制御装置20が示されている。
 交流電気車の駆動系は、図1に示すように、パンダグラフ1と、主変圧器2と、PWMコンバータであるコンバータ装置3と、フィルタコンデンサ5と、負荷4とを含む。以下、フィルタコンデンサ5は、「FC5」と表記する。
 パンダグラフ1には、交流架線18からの交流電力が入力される。主変圧器2の1次巻線2aには、パンダグラフ1から供給される交流電力が入力される。コンバータ装置3には、主変圧器2の2次巻線2bに生じた交流電圧が印加される。コンバータ装置3は、印加された交流電圧を直流電圧に変換する。FC5は、コンバータ装置3の直流電圧を平滑化する。負荷4は、FC5にて平滑化された直流電圧にて駆動される。負荷4には、コンバータ装置3から出力される直流電圧を交流電圧に変換するインバータと、インバータの交流電圧が印加される交流モータと、交流モータにて駆動される鉄道車両とが含まれる。
 次に、制御装置20の構成、及び制御装置20を構成する各部の機能について説明する。制御装置20は、図1に示すように、第1の演算処理部21~第8の演算処理部28と、キャリア生成部14と、PWM信号生成部15と、AD変換器6a~6dとを備える。
 第1の演算処理部21は、フィルタ7aと、加減算器11aと、定電圧制御部13とを備える。フィルタ7aは、ローパスフィルタ又はバンドパスフィルタである。第1の演算処理部21は、内部で生成される直流電圧基準Vd*と、実際のコンバータ出力電圧Vdとに基づき、直流電圧補正量Vdaを算出する。コンバータ出力電圧Vdは、図示のように、FC5の両端電圧を検出するAD変換器6aの検出値を用いることができる。
 第2の演算処理部22は、演算増幅器10aを備える。演算増幅器10aにおいて、図中の「G1」はゲイン値を表している。なお、他の演算増幅器においても、各ゲイン値を同様に表記する。演算増幅器10aは、コンバータ出力電流ILに基づいてコンバータ入力電流のフィードフォワード量である2次電流フィードフォワード量Isfを算出する。コンバータ出力電流ILは、図示のように、コンバータ装置3と負荷4とを繋ぐ直流母線16に流れる電流を検出するAD変換器6bの検出値を用いることができる。
 第3の演算処理部23は、フィルタ7bと、基本正弦波生成部8とを備える。フィルタ7bは、ローパスフィルタ又はバンドパスフィルタである。第3の演算処理部23は、架線電圧Vsのフィルタ出力Vs0に基づいて基本正弦波SWFを算出する。
 第4の演算処理部24は、加減算器11bと、加減算器11cと、乗算器12と、演算増幅器10bとを備える。第4の演算処理部24は、直流電圧補正量Vda、2次電流フィードフォワード量Isf、基本正弦波SWF、及びコンバータ入力電流Isに基づいて、第1の制御量Vspを算出する。第1の制御量Vspは、後述するコンバータ電圧基準Vcの生成に用いられる。直流電圧補正量Vdaは、第1の演算処理部21の出力である。2次電流フィードフォワード量Isfは、第2の演算処理部22の出力である。基本正弦波SWFは、第3の演算処理部23の出力である。コンバータ入力電流Isは、図示のように、コンバータ装置3の入力側に流れる電流を検出するAD変換器6cの検出値を用いることができる。
 第5の演算処理部25は、余弦波生成部9と、演算増幅器10cと、加減算器11dとを備える。第5の演算処理部25は、架線電圧Vsのフィルタ出力Vs0と、コンバータ入力電流Isとに基づいて、第2の制御量Vciを算出する。第2の制御量Vciは、第1の制御量Vspと共にコンバータ電圧基準Vcの生成に用いられる。コンバータ入力電流Isは、AD変換器6cの検出値を用いることができる。架線電圧Vsのフィルタ出力Vs0は、第3の演算処理部23におけるフィルタ7bの出力を用いることができる。
 第6の演算処理部26は、1次遅れ要素26aと、フィルタ26bと、演算増幅器26cと、実効値演算部26dと、微分器26e,26gと、第1のゲイン可変部であるゲイン可変部26fと、乗算器26h,26jと、第2のゲイン可変部であるゲイン可変部26iとを備える。フィルタ26bは、バンドパスフィルタである。
 第6の演算処理部26において、1次遅れ要素26a、フィルタ26b、及び演算増幅器26cは、特定高調波成分抽出部26Aを構成する。特定高調波成分抽出部26Aは、コンバータ入力電流Isに含まれる特定の高調波成分を抽出する演算部である。交流電気車においては、地上機器の誤動作を防止するため、特定の周波数帯における誘導障害に対する規制が厳格に定められている。このため、特定高調波成分抽出部26Aを含む第6の演算処理部26によって、特定の高調波成分が大きくならないように制御する。
 また、第6の演算処理部26において、実効値演算部26d、微分器26e,26g、ゲイン可変部26f,26i、及び乗算器26h,26jは、可変ゲイン演算部26Bを構成する。可変ゲイン演算部26Bは、特定高調波成分抽出部26Aの演算増幅器26cに付与する可変ゲインを演算する演算部である。
 第6の演算処理部26の特定高調波成分抽出部26Aは、コンバータ入力電流Isと、第2の可変ゲインCG2とに基づいて、補正量Vcg1を算出する。補正量Vcg1は、コンバータ電圧基準Vcの補正に用いられる。第6の演算処理部26の可変ゲイン演算部26Bは、高調波成分のフィルタ出力Is1と、第1の可変ゲインCG1とに基づいて、第2の可変ゲインCG2を演算する。高調波成分のフィルタ出力Is1は、特定高調波成分抽出部26Aにおけるフィルタ26bの出力を用いる。第1の可変ゲインCG1は、第1のゲイン可変部26fの出力であり、基本正弦波SWFを用いて算出される。すなわち、第1の可変ゲインCG1は、可変ゲイン演算部26Bの内部で生成される。
 第7の演算処理部27は、1次遅れ要素27aと、フィルタ27bと、加減算器27c,27eと、演算増幅器27dとを備える。フィルタ27bは、バンドパスフィルタである。
 第7の演算処理部27は、帰線電流に含まれる高調波成分を抽出する演算部である。帰線電流とは、アース側の回路部位に流れる電流である。交流電気車の場合、交流架線18から流出した電流は、アース側の回路部位であるレールを介して電源側に戻る。レールには、軌道回路、地上子、踏切制御子といった鉄道保安設備がある。このため、帰線電流に含まれる高調波成分が鉄道保安設備に影響を与えないように、第7の演算処理部27が設けられている。なお、帰線電流に含まれる高調波成分の低減技術として、複数のPWMコンバータ間において、搬送波の位相をずらす技術、搬送波の立ち上がり周期と搬送波の立ち下がり周期とを異ならせるといった技術が公知である。これらの公知技術を用いる場合、第7の演算処理部27は省略可能である。
 第7の演算処理部27は、補正量Vcg1と、補正量Vcg2とに基づいて補正量Vcgを算出する。補正量Vcg1は、第6の演算処理部26が生成する補正量である。補正量Vcg2は、第7の演算処理部27の内部において、コンバータ入力電流Isを用いて算出される補正量である。補正量Vcg2は、補正量Vcg1と共に、コンバータ電圧基準Vcの補正に用いられる。第6の演算処理部26が生成する補正量Vcg1と、第7の演算処理部27が生成する補正量Vcg2とは加減算器27eで加算される。加減算器27eの出力は、補正量Vcgとして第8の演算処理部28に入力される。
 第8の演算処理部28は、加減算器11e,11fを備える。第8の演算処理部28は、コンバータ電圧基準Vcの算出と、コンバータ電圧基準Vcの補正とを行う。具体的に、加減算器11eは、第1の制御量Vspと、第2の制御量Vciとに基づいて、コンバータ電圧基準Vcを算出する。また、加減算器11fは、コンバータ電圧基準Vcに対して、補正量Vcgを用いて、コンバータ電圧基準Vcを補正する。第8の演算処理部28によって算出された補正後のコンバータ電圧基準Vc1は、PWM信号生成部15に出力される。
 以上の説明の通り、第1の演算処理部21~第8の演算処理部28は、コンバータ電圧基準Vcを生成する生成部の機能と、コンバータ電圧基準Vcを補正する補正部の機能とを有する。第1の演算処理部21~第5の演算処理部25と、第8の演算処理部28内の加減算器11eとによって、生成部の機能が具現される。また、第6の演算処理部26と、第7の演算処理部27と、第8の演算処理部28内の加減算器11fとによって、補正部の機能が具現される。
 なお、図1において、第7の演算処理部27に設けられている加減算器27eは、第8の演算処理部28に設けられていてもよい。加減算器27eが第8の演算処理部28に設けられている場合、第6の演算処理部26からは補正量Vcg1が第8の演算処理部28に出力され、第7の演算処理部27からは補正量Vcg2が第8の演算処理部28に出力され、補正量Vcg1と補正量Vcg2とが、第8の演算処理部28で加算される。この構成の場合、補正量Vcg1を「第1の補正量Vcg1」と呼び、補正量Vcg2を「第2の補正量Vcg2」と呼ぶ。
 キャリア生成部14は、基本正弦波SWFに基づいてPWM信号の生成に用いるキャリアSAを算出する。
 PWM信号生成部15は、コンバータ電圧基準VcとキャリアSAとに基づき、コンバータ装置3に具備される図示しないスイッチング素子を駆動するためのPWM信号を生成する。PWM信号の生成手法は公知であり、ここでの説明は割愛する。
 なお、図1では、2次電流フィードフォワード量Isfを算出する第2の演算処理部22を有する構成を示したが、第2の演算処理部22を省略してもコンバータ制御は可能である。
 次に、制御装置20のより詳細な動作について、図1を参照して説明する。
(第1の演算処理部21の動作)
 制御装置20に入力されたコンバータ出力電圧Vdは、AD変換器6aにてディジタル信号に変換される。変換されたディジタル信号は、第1の演算処理部21内のフィルタ7aに入力される。加減算器11aでは、直流電圧基準Vd*とフィルタ7aの出力との差分が算出される。定電圧制御部13では、加減算器11aの出力に基づいて直流電圧補正量Vdaが算出される。
(第2の演算処理部22の動作)
 制御装置20に入力されたコンバータ出力電流ILは、AD変換器6bにてディジタル信号に変換される。変換されたディジタル信号は、第2の演算処理部22内の演算増幅器10aにてゲインG1が乗じられ、演算増幅器10aの出力が2次電流フィードフォワード量Isfとして算出される。
(第3の演算処理部23の動作)
 制御装置20に入力された架線電圧Vsは、AD変換器6dにてディジタル信号に変換される。変換されたディジタル信号は、第3の演算処理部23内のフィルタ7bに入力され、架線電圧Vsのフィルタ出力Vs0が生成される。また、架線電圧Vsのフィルタ出力Vs0が基本正弦波生成部8に入力され、基本正弦波生成部8によって基本正弦波SWFが算出される。
(第4の演算処理部24の動作)
 制御装置20に入力されたコンバータ入力電流Isは、AD変換器6cにてディジタル信号に変換される。変換されたディジタル信号は、第4の演算処理部24内の加減算器11cに入力される。また、第1の演算処理部21~第3の演算処理部23による各出力である、直流電圧補正量Vda、2次電流フィードフォワード量Isf、及び基本正弦波SWFは、第4の演算処理部24に入力される。ここで、直流電圧補正量Vdaと2次電流フィードフォワード量Isfは、第4の演算処理部24内の加減算器11bに入力される。加減算器11bの加算出力Ispは、乗算器12によって基本正弦波SWFと乗算され、乗算器12の出力がコンバータ入力電流基準Is*として算出される。また、AD変換器6cにてディジタル信号に変換されたコンバータ入力電流Isとコンバータ入力電流基準Is*との偏差ΔIsが加減算器11cで算出される。そして、演算増幅器10bにて偏差ΔIsにゲインG2が乗じられ、演算増幅器10bの出力が第1の制御量Vspとして算出される。
(第5の演算処理部25の動作)
 AD変換器6cにてディジタル信号に変換されたコンバータ入力電流Isは、第5の演算処理部25内の余弦波生成部9に入力される。第5の演算処理部25では、コンバータ入力電流Isに基づき余弦波生成部9にて余弦波CWFが生成される。余弦波CWFは演算増幅器10cに入力され、演算増幅器10cにてゲインG3が乗じられる。演算増幅器10cにて算出された補正量VLと、第3の演算処理部23から出力された架線電圧Vsのフィルタ出力Vs0とが加減算器11dに入力され、架線電圧Vsのフィルタ出力Vs0と補正量VLとの偏差が第2の制御量Vciとして算出される。
(第6の演算処理部26の動作)
 コンバータ入力電流Isは、1次遅れ要素26aを介してフィルタ26bに入力される。フィルタ26bの応答速度が速い場合には、1次遅れ要素26aを省略することができる。フィルタ26bでは、特定高調波成分Is1が抽出される。特定高調波成分Is1は、前述したように、コンバータ入力電流Isに含まれる周波数成分の中で、鉄道保安設備に影響を与える特定の周波数成分である。なお、特定の周波数成分は、1つの帯域であっても複数の帯域であってもよい。抽出された特定高調波成分Is1は、演算増幅器26cと、実効値演算部26dとに入力される。
 実効値演算部26dでは、特定高調波成分Is1の実効値Iscfが算出される。特定高調波成分Is1の実効値Iscfは、微分器26eに入力される。微分器26eでは、特定高調波成分Is1の実効値Iscfに対して微分処理が施される。微分器26eの出力は、乗算器26hに入力される。
 ゲイン可変部26fには、第3の演算処理部23によって算出された基本正弦波SWFが入力される。ゲイン可変部26fでは、基本正弦波SWFの周期よりも緩やか、すなわち基本正弦波SWFの周期よりも長い周期で変化する第1の可変ゲインCG1が生成される。基本正弦波SWFの周期を「T0」とするとき、第1の可変ゲインCG1の変化の周期は「n×T0」である。ここで、nは1よりも大きい実数である。第1の可変ゲインCG1は、微分器26gに入力される。微分器26gでは、第1の可変ゲインCG1に対して微分処理が施される。微分器26gの出力は、乗算器26hに入力される。
 乗算器26hでは、特定高調波成分Is1の実効値Iscfと、第1の可変ゲインCG1とが乗算される。乗算器26hの出力は、ゲイン可変部26iに入力される。乗算器26hの出力は、ゲイン可変部26iにて積分処理が施される。また、ゲイン可変部26iでは、積分処理の出力が、最大側のリミット値を超えず、且つ最小側のリミット値を下回らないようにリミット処理が施される。最大側のリミット値は、1を超えない実数値である。最小側のリミット値は、1より大きく、且つ最大側のリミット値よりも小さい実数値である。以下、最大側のリミット値を「最大ゲイン」と呼び、最小側のリミット値を「最小ゲイン」と呼ぶ。
 乗算器26jでは、固定値であるデフォルトゲインDGに対してゲイン可変部26iの出力が乗算される。ここでの説明では、デフォルトゲインDGの値は“1”とする。
 このようにして、乗算器26jからは、最小ゲインと、最大ゲインとの間で変化する第2の可変ゲインCG2が生成される。
 第2の可変ゲインCG2は、演算増幅器26cに付与される。すなわち、演算増幅器26cでは、フィルタ26bから出力される特定高調波成分Is1に対して、固定値ではない第2の可変ゲインCG2が付与される。
(第7の演算処理部27の動作)
 コンバータ入力電流Isは、1次遅れ要素27aを介してフィルタ27bに入力される。フィルタ27bの応答速度が速い場合には、1次遅れ要素27aを省略することができる。フィルタ27bでは、コンバータ入力電流Isから基本周波数成分Is0が抽出される。なお、基本周波数は、交流架線18の周波数である。加減算器27cには、フィルタ27bを介さない1次遅れ要素27aの出力と、フィルタ27bを介した1次遅れ要素27aの出力とが入力されて減算される。従って、加減算器27cからは、コンバータ入力電流Isから基本周波数成分Is0を除いた高調波成分が出力される。演算増幅器27dでは、加減算器27cから出力される高調波成分に対して、ゲインG5が乗じられ、演算増幅器27dの出力が補正量Vcg2として算出される。また、加減算器27eでは、補正量Vcg2と、第6の演算処理部26から出力される補正量Vcg1とが加算され、加減算器27eの出力が補正量Vcgとして算出される。
(第8の演算処理部28の動作)
 第4の演算処理部24の出力である第1の制御量Vsp、及び第5の演算処理部25の出力である第2の制御量Vciは、第8の演算処理部28内の加減算器11eに入力される。加減算器11eでは、第1の制御量Vspと第2の制御量Vcigとが加算され、加減算器11eの出力がコンバータ電圧基準Vcとして算出される。また、コンバータ電圧基準Vc及び第7の演算処理部27の出力である補正量Vcgは、第8の演算処理部28内の加減算器11fに入力される。加減算器11fでは、コンバータ電圧基準Vcと補正量Vcgとが加算され、加減算器11fの出力が補正後のコンバータ電圧基準Vc1として算出される。すなわち、コンバータ電圧基準Vcは、補正量Vcgによって補正される。
(キャリア生成部14の動作)
 キャリア生成部14では、第3の演算処理部23から入力された基本正弦波SWFに基づき、PWM信号の生成に用いるキャリアSAが算出される。
(PWM信号生成部15の動作)
 PWM信号生成部15では、第8の演算処理部28で算出されたコンバータ電圧基準Vcと、キャリア生成部14で算出されたキャリアSAとに基づき、コンバータ装置3を駆動するPWM信号が生成される。生成されたPWM信号は、コンバータ装置3に向けて出力される。
 次に、実施の形態における制御装置20の要部動作について、図2を参照して説明する。図2は、実施の形態における制御装置20の要部動作の説明に供する図である。特に、図2は、制御装置20の第6の演算処理部26における可変ゲイン演算部26Bの動作説明に供する図である。
 図2の上段部には、第1の可変ゲインCG1の時間変化波形が示されている。この波形は、ゲイン可変部26fの出力波形である。図2の中上段部には、第1の可変ゲインCG1の微分値の時間変化波形が示されている。この波形は、微分器26gの出力波形である。図2の中段部には、特定高調波成分Is1の実効値Iscfの時間変化波形が示されている。この波形は、実効値演算部26dの出力波形である。図2の中下段部には、実効値Iscfの微分値の時間変化波形が示されている。この波形は、微分器26eの出力波形である。
 また、図2の下段部には、ゲイン調整量の符号及びゲイン制御の方向に関する図表が示されている。ゲイン調整量の符号は、CG1の微分値と、Iscfの微分値との乗算値に関する符号であり、可変ゲイン演算部26Bにおける乗算器26hの出力の符号を表している。
 図2において、時刻t0から時刻t1の期間では、CG1の微分値の符号は正であり、Iscfの微分値の符号は正である。このため、この期間において、ゲイン調整量の符号は正である。
 時刻t1から時刻t2の期間では、CG1の微分値の符号は負であり、Iscfの微分値の符号も負である。このため、この期間において、ゲイン調整量の符号は正である。
 時刻t2から時刻t3の期間では、CG1の微分値の符号は負であり、Iscfの微分値の符号は正である。このため、この期間において、ゲイン調整量の符号は負である。
 時刻t3から時刻t4の期間では、CG1の微分値の符号は正であり、Iscfの微分値の符号は負である。このため、この期間において、ゲイン調整量の符号は負である。
 乗算器26hの出力であるゲイン調整量に対して、ゲイン可変部26iの出力は、図2の表中に示すように、「1-(ゲイン調整量)」で演算される。このため、ゲイン調整量の符号が正の場合には、ゲイン可変部26iの出力値は1よりも小さく、ゲインを下げる方向の制御が働く。一方、ゲイン調整量の符号が負の場合には、ゲイン可変部26iの出力値は1よりも大きく、ゲインを上げる方向の制御が働く。このように、乗算器26hの出力によって、ゲイン制御の方向が決定される。
 上記の制御によれば、特定高調波成分Is1の実効値Iscfが増加傾向にあるときでも、第1の可変ゲインCG1が増加傾向にある場合には、ゲイン調整量の符号が正となって、ゲイン値が下げられる。これにより、特定高調波成分Is1の増加が抑えられる。これとは逆に、特定高調波成分Is1の実効値Iscfが減少傾向にあるときに、第1の可変ゲインCG1が減少傾向にある場合には、ゲイン調整量の符号が負となって、ゲイン値が上げられる。これにより、ゲイン値が必要以上に抑制される状況を回避しつつ、高調波電流の抑制を効果的に行うことができる。
 なお、図2では、第1の可変ゲインCG1の変化の周期が特定高調波成分Is1の周期の2倍である場合を示しているが、この例に限定されない。第1の可変ゲインCG1の周期は、基本波すなわち架線電圧Vsの周期よりも長ければよい。
 次に、実施の形態における制御装置20の機能を実現するためのハードウェア構成について、図3~図5の各図面を参照して説明する。図3は、実施の形態における第1の演算処理部21~第8の演算処理部28の機能を実現するためのハードウェア構成の一例を示すブロック図である。図4は、実施の形態における第1の演算処理部21~第8の演算処理部28の機能を実現するためのハードウェア構成の他の例を示すブロック図である。図5は、実施の形態における信号入力処理及びAD変換処理の具体的な処理内容を示すブロック図である。
 第1の演算処理部21~第8の演算処理部28の機能を実現する場合には、図3に示すように、演算を行うプロセッサ200、プロセッサ200によって読みとられるプログラムが保存されるメモリ202、及び信号の入出力を行うインタフェース204を含む構成とすることができる。
 プロセッサ200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ202には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disk)を例示することができる。
 メモリ202には、第1の演算処理部21~第8の演算処理部28の機能を実行するプログラム、及びプロセッサ200によって参照されるテーブルが格納されている。プロセッサ200は、インタフェース204を介して必要な情報を授受し、メモリ202に格納されたプログラムをプロセッサ200が実行し、メモリ202に格納されたテーブルをプロセッサ200が参照することにより、上述した演算処理を行うことができる。プロセッサ200による演算結果は、メモリ202に記憶することができる。
 また、図3に示すプロセッサ200及びメモリ202は、図4のように処理回路203に置き換えてもよい。処理回路203は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
 図5には、実施の形態における信号入力処理及びAD変換処理の具体的な処理内容を示している。図5に示す信号入力処理及びAD変換処理の機能ブロック50は、コンバータ出力電圧VdのAD変換処理ブロック51、コンバータ出力電流ILのAD変換処理ブロック52、架線電圧VsのAD変換処理ブロック53、コンバータ入力電流IsのAD変換処理ブロック54、直流電圧基準Vd*の信号入力処理ブロック55、ゲイン定数G1~G5の入力処理ブロック56、フィルタ定数の入力処理ブロック57、及び時定数の入力処理ブロック58をソフトウェアにて一括して行うように集約した機能ブロックである。なお、時定数の入力処理ブロック58は、PI(Proportional-Integral)制御器、又はPID(Proportional-Integral-Differential)制御器で構成した演算増幅器10a,10b,10c,26c,27dにおける時定数の設定処理である。
 ここで、第1の演算処理部21~第8の演算処理部28の演算機能をFPGAで実現する場合、各演算に用いる定数をFPGAに組み込んでおくことが考えられる。しかしながら、FPGA論理の変更はソフトウェア論理の変更に比べて特殊な器材が必要となり、作業が煩雑になる。このため、例えば調整の段階で各制御器の定数を変更しようとした際に簡単に変更作業が行えず、調整に時間がかかる。
 一方、図5に示すように、制御演算で用いるゲイン定数G1~G5、フィルタ定数、及び時定数の設定又は変更を集約し、且つ、ソフトウェアから読み込む構成としておけば、調整に時間がかかるという問題は発生しない。すなわち、本実施の形態に係る制御装置20では、ゲイン定数、フィルタ定数、及び時定数の設定又は変更が、ソフトウェアの変更で実現できる。これにより、FPGA組込み定数の変更のような特別な器材又は手順が不要となり、調整の容易化、調整時間の短縮化を図ることができる。
 以上説明したように、実施の形態に係る交流電気車の制御装置によれば、第1の制御量Vspと、第2の制御量Vciとに基づいて生成したコンバータ電圧基準Vcを、補正量Vcgに基づいて補正するので、PWMコンバータ毎に搬送波の位相をずらすことを行わなくても、主変圧器2とコンバータ装置3の接続状況、又はコンバータ装置3の動作状況に関わらず、高調波電流の抑制を効果的に行うことが可能となる。また、高調波電流の抑制を効果的に行うことができるので、交流電気車の運転状況の変化に対してロバスト性を高めることが可能となる。
 図6は、図1とは異なる構成の交流電気車に適用される制御装置20Aの構成を示す図である。図1の制御装置20では、架線電圧Vsとして主変圧器2における1次巻線2aの電圧をモニタするように構成されているが、図6のように、主変圧器2における3次巻線2cの電圧をモニタするように構成されていてもよい。主変圧器2の3次巻線2c電圧をモニタする構成であっても、制御装置20Aを図1と同一または同等に構成することで、制御装置20と同様な効果が得られる。
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 パンダグラフ、2 主変圧器、2a 1次巻線、2b 2次巻線、2c 3次巻線、3 コンバータ装置、4 負荷、5 フィルタコンデンサ、6a~6d AD変換器、7a,7b,26b,27b フィルタ、8 基本正弦波生成部、9 余弦波生成部、10a~10c,26c,27d 演算増幅器、11a~11f,27c,27e 加減算器、12,26h,26j 乗算器、13 定電圧制御部、14 キャリア生成部、15 PWM信号生成部、16 直流母線、18 交流架線、20 制御装置、21 第1の演算処理部、22 第2の演算処理部、23 第3の演算処理部、24 第4の演算処理部、25 第5の演算処理部、26 第6の演算処理部、26A 特定高調波成分抽出部、26B 可変ゲイン演算部、26a,27a 1次遅れ要素、26d 実効値演算部、26e,26g 微分器、26f,26i ゲイン可変部、27 第7の演算処理部、28 第8の演算処理部、50 信号入力処理及びAD変換処理の機能ブロック、51 コンバータ出力電圧VdのAD変換処理ブロック、52 コンバータ出力電流ILのAD変換処理ブロック、53 架線電圧VsのAD変換処理ブロック、54 コンバータ入力電流IsのAD変換処理ブロック、55 直流電圧基準Vd*の信号入力処理ブロック、56 ゲイン定数G1~G5の入力処理ブロック、57 フィルタ定数の入力処理ブロック、58 時定数の入力処理ブロック、200 プロセッサ、202 メモリ、203 処理回路、204 インタフェース。

Claims (7)

  1.  交流架線から出力され、主変圧器を介して印加される交流電圧を直流電圧に変換するコンバータ装置を有する交流電気車に搭載され、前記コンバータ装置の動作を制御する交流電気車の制御装置であって、
     コンバータ出力電圧、コンバータ入力電流、前記交流架線が出力する架線電圧のフィルタ出力、及びコンバータ出力電流に基づいて算出される第1の制御量と、前記架線電圧のフィルタ出力、及び前記コンバータ入力電流に基づいて算出される第2の制御量とに基づいてコンバータ電圧基準を生成する生成部と、
     前記架線電圧のフィルタ出力、及び前記コンバータ入力電流に基づいて算出される第1の補正量に基づいて前記コンバータ電圧基準を補正する補正部と、
     を備えたことを特徴とする交流電気車の制御装置。
  2.  前記第1の補正量は、前記コンバータ入力電流に含まれる特定の高調波成分と、前記特定の高調波成分の実効値と、前記架線電圧のフィルタ出力に基づいて算出された第1の可変ゲインと、前記第1の可変ゲインに基づいて算出された第2の可変ゲインとに基づいて算出されることを特徴とする請求項1に記載の交流電気車の制御装置。
  3.  前記第1の可変ゲインは、前記架線電圧の周期よりも長い周期で変化するゲインであることを特徴とする請求項2に記載の交流電気車の制御装置。
  4.  前記第2の可変ゲインは、最大側のリミット値を超えず、且つ最小側のリミット値を下回らないようにリミット処理が施されたゲインであることを特徴とする請求項2又は3に記載の交流電気車の制御装置。
  5.  前記補正部は、前記特定の高調波成分の実効値の微分値と、前記第1の可変ゲインの微分値との乗算結果に基づいて、前記第1の補正量を増減させるゲイン制御の方向を決定することを特徴とする請求項3又は4に記載の交流電気車の制御装置。
  6.  前記補正部は、前記架線電圧のフィルタ出力、及び前記コンバータ入力電流に基づいて第2の補正量を算出し、前記第1の補正量と前記第2の補正量とに基づいて前記コンバータ電圧基準を補正することを特徴とする請求項1から5の何れか1項に記載の交流電気車の制御装置。
  7.  前記第2の補正量は、前記コンバータ入力電流から基本周波数成分を除いた高調波成分に基づいて算出されることを特徴とする請求項6に記載の交流電気車の制御装置。
PCT/JP2018/002593 2018-01-26 2018-01-26 交流電気車の制御装置 WO2019146091A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/002593 WO2019146091A1 (ja) 2018-01-26 2018-01-26 交流電気車の制御装置
JP2019567800A JP7034182B2 (ja) 2018-01-26 2018-01-26 交流電気車の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002593 WO2019146091A1 (ja) 2018-01-26 2018-01-26 交流電気車の制御装置

Publications (1)

Publication Number Publication Date
WO2019146091A1 true WO2019146091A1 (ja) 2019-08-01

Family

ID=67396007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002593 WO2019146091A1 (ja) 2018-01-26 2018-01-26 交流電気車の制御装置

Country Status (2)

Country Link
JP (1) JP7034182B2 (ja)
WO (1) WO2019146091A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154203A (ja) * 1995-11-29 1997-06-10 Mitsubishi Electric Corp 交流電気車の制御装置
JPH10229609A (ja) * 1997-02-17 1998-08-25 Hitachi Ltd 交流電気車の制御装置
JP2000217202A (ja) * 1999-01-22 2000-08-04 Hitachi Ltd 交流電気車の制御装置
WO2015193964A1 (ja) * 2014-06-17 2015-12-23 三菱電機株式会社 電気車の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154203A (ja) * 1995-11-29 1997-06-10 Mitsubishi Electric Corp 交流電気車の制御装置
JPH10229609A (ja) * 1997-02-17 1998-08-25 Hitachi Ltd 交流電気車の制御装置
JP2000217202A (ja) * 1999-01-22 2000-08-04 Hitachi Ltd 交流電気車の制御装置
WO2015193964A1 (ja) * 2014-06-17 2015-12-23 三菱電機株式会社 電気車の制御装置

Also Published As

Publication number Publication date
JPWO2019146091A1 (ja) 2021-01-28
JP7034182B2 (ja) 2022-03-11

Similar Documents

Publication Publication Date Title
JP5822732B2 (ja) 3レベル電力変換装置
KR101074553B1 (ko) 인버터 장치
JP5712987B2 (ja) 電力変換装置の制御方法
JP6544170B2 (ja) 3レベルインバータの制御装置
JP5622437B2 (ja) 中性点クランプ式電力変換装置
JP2016158323A (ja) アクティブフィルタを備えた高調波抑制装置
JP5198232B2 (ja) 電力変換装置
CN111357186A (zh) 电力变换系统
JP4868585B2 (ja) 交流励磁発電電動機の制御装置
JP6276368B2 (ja) 力率改善コンバータ及びその制御方法
WO2019146091A1 (ja) 交流電気車の制御装置
KR101819672B1 (ko) 능동 직류단 회로를 포함하는 전력 보상 장치 및 능동 직류단 회로를 이용하는 전력 보상 방법
WO2022102099A1 (ja) 電力変換器の制御装置
CN110649797B (zh) 一种用于减少电力电子设备中的共模电流的方法
JP2013046431A (ja) チョッパ装置
JP2016013022A (ja) スイッチング制御装置
JP6098629B2 (ja) 電力変換装置
EP4120528A1 (en) Power converter
Kus et al. Study of the Input Current Harmonic Distortion of Voltage-Source Active Rectifiers
JP7344845B2 (ja) 鉄道車両用アクティブフィルタ装置およびそれを備える鉄道車両
US20220393569A1 (en) Controller of power conversion device
JP6685723B2 (ja) 電気車制御装置
CN112136271A (zh) 用于功率转换的系统和方法
CN106160433A (zh) 一种用于控制变流器的反馈系统和储能系统
Chaturvedi et al. Source Current Feedback based Virtual Impedance Control for Three Phase Interleaved DC-DC Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902265

Country of ref document: EP

Kind code of ref document: A1