WO2019146035A1 - 状態解析システム及び状態解析装置 - Google Patents

状態解析システム及び状態解析装置 Download PDF

Info

Publication number
WO2019146035A1
WO2019146035A1 PCT/JP2018/002260 JP2018002260W WO2019146035A1 WO 2019146035 A1 WO2019146035 A1 WO 2019146035A1 JP 2018002260 W JP2018002260 W JP 2018002260W WO 2019146035 A1 WO2019146035 A1 WO 2019146035A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
air conditioner
unit
information
abnormality
Prior art date
Application number
PCT/JP2018/002260
Other languages
English (en)
French (fr)
Inventor
赳弘 古谷野
康敬 落合
航祐 田中
吉秋 小泉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/002260 priority Critical patent/WO2019146035A1/ja
Priority to EP18902989.5A priority patent/EP3745055B1/en
Priority to SG11202006851WA priority patent/SG11202006851WA/en
Priority to US16/960,762 priority patent/US11906185B2/en
Priority to AU2018404247A priority patent/AU2018404247B2/en
Priority to JP2019567460A priority patent/JP6976356B2/ja
Publication of WO2019146035A1 publication Critical patent/WO2019146035A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator

Definitions

  • the present invention relates to a state analysis system and a state analysis device for analyzing the state of an air conditioner.
  • Air conditioners that control the air environment of a space such as a room are widely used, and are indispensable for maintaining the comfort of the space. Therefore, the failure of the air conditioner directly leads to the user's discomfort. In addition, failure of the air conditioners disposed in the server room, the freezer warehouse, etc. may lead to a fatal loss in business. Therefore, in recent years, a technique for analyzing the condition of the air conditioner and knowing the failure of the air conditioner and the indication of the failure has attracted attention.
  • the air conditioner includes a refrigerant circuit in which a refrigerant circulates, and an abnormality in the air conditioner affects a refrigeration cycle diagram representing on the ph diagram a refrigeration cycle indicating a change in the state of the refrigerant.
  • a refrigeration cycle diagram representing on the ph diagram a refrigeration cycle indicating a change in the state of the refrigerant.
  • pressure is taken on the vertical axis and enthalpy is taken on the horizontal axis. Therefore, changes in pressure and enthalpy in each process of state change of the refrigerant are represented in the refrigeration cycle diagram.
  • Patent Document 1 when it determines with maintenance required from the non-overlapping rate between refrigerating-cycle figures, it is displayed on a display apparatus that maintenance of an air conditioner is required.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a state analysis system and a state analysis apparatus that allow a user to easily diagnose the cause and the degree of abnormality of the air conditioner. To aim.
  • a state analysis system includes a refrigerant circuit including a compressor and expansion means, a state detection unit for detecting a state of refrigerant in the refrigerant circuit as state data, and a control device for controlling the compressor and the expansion means.
  • Specification that indicates the state of the refrigerant at a specific location of the refrigerant circuit in the state space determined by the first parameter and the second parameter using the air conditioner having the A specific state calculation unit for obtaining state information, a normal area calculation unit for obtaining a normal area in a state space in which specific state information exists during operation of the air conditioner in a normal state using state data and control data, and a specific state And a display unit for displaying the specific state information obtained by the calculation unit and the normal area obtained by the normal area calculation unit.
  • the state analysis device indicates the state of the refrigerant in the refrigerant circuit, including the refrigerant circuit including the compressor and the expansion means, and the control device that controls the compressor and the expansion means. It is a state analyzer which analyzes using state data and control data which shows control contents by a control device, and displays an analysis result on a display part provided outside, and using state data and control data, the first parameter And a second parameter, using a specific state calculation unit for obtaining specific state information indicating the state of the refrigerant at a specific location of the refrigerant circuit in the state space, and using the state data and control data in the normal state of the air conditioner Normal region calculation unit for obtaining a normal region in the state space in which specific state information exists during operation, specific state information obtained in the specific state calculation unit, and normal region calculation The normal region determined in those having, a display processing unit for displaying on the display unit.
  • the position of the specific state information with respect to the normal area is It can be made visible to the user. Therefore, it is possible to make the user easily diagnose the cause of the abnormality of the air conditioner and the degree of the abnormality.
  • Embodiment 1 of this invention It is a block diagram of the state analysis system which concerns on Embodiment 1 of this invention. It is a block diagram which shows the functional structure of the state analysis system of FIG. Among the display examples of the specific state information and the normal area in the first embodiment of the present invention, it is an explanatory view of a case where the air conditioner is in a normal state. It is an explanatory view in case an abnormality of a refrigerant quantity is suspected among a display example of specific state information in a 1st embodiment of the present invention and a normal field. It is explanatory drawing in the case where the abnormality of the heat transfer in a condenser is suspected among the display examples of the specific condition information and the normal area
  • FIG. 1 is a configuration diagram of a state analysis system according to Embodiment 1 of the present invention.
  • the state analysis system 1000 includes an air conditioner 100, a management device 400, an information terminal 500, and a server device 600.
  • the air conditioner 100 adjusts an air environment such as temperature, humidity, cleanliness of air in a space to be air-conditioned such as a room.
  • the air conditioner 100 includes an outdoor unit 100A and an indoor unit 100B.
  • the outdoor unit 100A includes a compressor 101, an outdoor heat exchanger 102, a first expansion valve 106a, a second expansion valve 106b, a four-way valve 108, and a receiver 109.
  • the indoor unit 100B has an indoor heat exchanger 103. That is, in the air conditioner 100, the compressor 101, the outdoor heat exchanger 102, the first expansion valve 106a, the receiver 109, the second expansion valve 106b, and the indoor heat exchanger 103 are connected via the refrigerant pipe R, Form a circulating refrigerant circuit 200.
  • the outdoor unit 100A has an outdoor fan 104 attached to the outdoor heat exchanger 102 and promoting heat transfer of the outdoor heat exchanger 102.
  • the outdoor unit 100A includes a control device 140 and a state analysis device 300.
  • the indoor unit 100B has an indoor fan 105 attached to the indoor heat exchanger 103 and promoting heat transfer of the indoor heat exchanger 103.
  • the air conditioner 100 has refrigerant temperature sensors 121 to 125 and air temperature sensors 131 to 132.
  • the refrigerant temperature sensors 121 to 123 and the air temperature sensor 131 are provided in the outdoor unit 100A, and the refrigerant temperature sensors 124 and 125 and the air temperature sensor 132 are provided in the indoor unit 100B.
  • the compressor 101 is driven by, for example, an inverter, and compresses and discharges the sucked refrigerant.
  • the outdoor heat exchanger 102 is, for example, a fin-and-tube heat exchanger, and exchanges heat between air and a refrigerant.
  • the four-way valve 108 is connected to the discharge side of the compressor 101, that is, the outlet of the compressor 101 via a refrigerant pipe R.
  • the four-way valve 108 switches the flow path of the refrigerant in the refrigerant circuit 200. That is, the connection direction of the four-way valve 108 is switched by the control device 140, and the direction of the refrigerant flowing in the refrigerant circuit 200 is reversed. Thereby, the cooling operation and the heating operation can be switched.
  • the four-way valve 108 is in the connection direction indicated by the solid line in FIG. 1 during cooling operation in which cold energy is supplied to the indoor unit 100B. Therefore, during the cooling operation, the refrigerant circulates in the order of the compressor 101, the outdoor heat exchanger 102, the first expansion valve 106a, the receiver 109, the second expansion valve 106b, the indoor heat exchanger 103, and the compressor 101. At this time, the outdoor heat exchanger 102 functions as a condenser, and the indoor heat exchanger 103 functions as an evaporator.
  • the four-way valve 108 is in the connection direction indicated by the broken line in FIG. 1 during heating operation in which heat is supplied to the indoor unit 100B. Therefore, during the heating operation, the refrigerant circulates in the order of the compressor 101, the indoor heat exchanger 103, the second expansion valve 106b, the receiver 109, the first expansion valve 106a, the outdoor heat exchanger 102, and the compressor 101. At this time, the indoor heat exchanger 103 functions as a condenser, and the outdoor heat exchanger 102 functions as an evaporator.
  • the first expansion valve 106 a and the second expansion valve 106 b are, for example, electronic expansion valves, and decompress and expand the refrigerant.
  • One end of the first expansion valve 106 a is connected to the outdoor heat exchanger 102, and the other end is connected to the receiver 109.
  • One end of the second expansion valve 106 b is connected to the receiver 109, and the other end is connected to the indoor heat exchanger 103.
  • the receiver 109 temporarily stores the liquid refrigerant.
  • the receiver 109 is connected to the first expansion valve 106 a and the second expansion valve 106 b via the refrigerant pipe R. Further, part of the refrigerant pipe R connecting the inlet of the compressor 101 and the four-way valve 108 passes through the inside of the receiver 109. Therefore, the refrigerant flowing through the refrigerant pipe R in the receiver 109 exchanges heat with the refrigerant in the vicinity of the refrigerant pipe R in the receiver 109.
  • the indoor heat exchanger 103 is, for example, a fin-and-tube type heat exchanger, and exchanges heat between air and a refrigerant.
  • the refrigerant temperature sensor 121 is provided on the discharge side of the compressor 101 and measures the temperature of the refrigerant discharged from the compressor 101.
  • the refrigerant temperature sensor 122 is provided in the refrigerant pipe R between the outdoor heat exchanger 102 and the first expansion valve 106a, and measures the temperature of the refrigerant flowing between the outdoor heat exchanger 102 and the first expansion valve 106a.
  • the refrigerant temperature sensor 123 is provided in the outdoor heat exchanger 102, and measures the temperature of the refrigerant flowing through the outdoor heat exchanger 102.
  • the refrigerant temperature sensor 124 is provided in the indoor heat exchanger 103 and measures the temperature of the refrigerant flowing through the indoor heat exchanger 103.
  • the refrigerant temperature sensor 125 is provided in the refrigerant pipe R between the indoor heat exchanger 103 and the second expansion valve 106b, and measures the temperature of the refrigerant flowing between the indoor heat exchanger 103 and the second expansion valve 106b. .
  • the air temperature sensor 131 measures the outside air temperature which is the temperature of the air heat-exchanged with the refrigerant flowing through the outdoor heat exchanger 102.
  • the air temperature sensor 132 measures an indoor temperature which is a temperature of air which is heat-exchanged with the refrigerant flowing through the indoor heat exchanger 103.
  • controller 140 controls compressor 101, outdoor fan 104, indoor fan 105, first expansion valve 106a, and second expansion valve 106b. Control each actuator. Further, the control device 140 outputs control data indicating control content for each actuator to the state analysis device 300.
  • the state analysis device 300 is installed in the air conditioner 100 to be diagnosed.
  • FIG. 2 is a block diagram showing a functional configuration of the state analysis system of FIG.
  • the state analysis system 1000 is configured around a state analysis device 300.
  • the state detection unit 120 detects the state of the refrigerant in the refrigerant circuit 200 as state data.
  • the state detection unit 120 includes refrigerant temperature sensors 121 to 125 and air temperature sensors 131 to 132, as shown in FIG.
  • the expansion means 106 includes a first expansion valve 106 a and a second expansion valve 106 b.
  • the state analysis device 300 analyzes the state of the air conditioner using the state data and control data detected by the state detection unit 120. That is, the state analysis device 300 analyzes the state of the air conditioner 100 based on various data included in the signals transmitted from the control device 140, the refrigerant temperature sensors 121 to 125, the air temperature sensors 131 to 132, and the like. In addition, the state analysis device 300 causes at least one of the display unit 421 of the management device 400 and the display unit 521 of the information terminal 500 to display an analysis result of the state of the air conditioner.
  • the state analysis device 300 includes a specific state calculation unit 301, a normal area calculation unit 302, a storage unit 303, a display processing unit 304, and a communication unit 305.
  • the specific state calculation unit 301 obtains specific state information x indicating the state of the refrigerant at a specific location of the refrigerant circuit 200 in the state space determined by the first parameter and the second parameter, using the state data and the control data.
  • the specific state information x is determined by the first parameter and the second parameter.
  • the state data and control data are stored in the storage unit 303 or the server storage device 601 as operation data of the air conditioner 100.
  • the first parameter is the pressure of the refrigerant
  • the second parameter is enthalpy.
  • the state space corresponds to a ph diagram set on a coordinate plane having the pressure of the refrigerant and the enthalpy as axes. That is, the specific state information x is a point on the ph diagram given by the pressure of the refrigerant and the enthalpy.
  • the specific state calculation unit 301 can be set to obtain specific state information x corresponding to one specific part of the refrigerant circuit 200.
  • the specific state calculation unit 301 can also be set to obtain specific state information x for each of a plurality of specific places of the refrigerant circuit 200.
  • the normal area calculation unit 302 obtains the normal area X in the state space in which the specific state information x exists when the air conditioner 100 is operated in the normal state, using the state data and the control data.
  • the operation of the air conditioner 100 in the normal state refers to the operation of the air conditioner 100 in the normal state, and hereinafter referred to as the normal operation.
  • the normal region X is data indicating the region in which the specific state information x exists, when there is no abnormality in the air conditioner 100, that is, when there is no abnormality in each actuator, each sensor, and the like.
  • the normal region X is a region on the ph diagram.
  • the normal region calculating unit 302 obtains the normal region X corresponding to each of the plurality of pieces of specific state information x when the plurality of pieces of specific state information x is obtained by the specific state calculating unit 301.
  • the storage unit 303 stores various data used in the state analysis process of the air conditioner 100 together with the operation program of the state analysis device 300.
  • the storage unit 303 stores, as data, one or a plurality of operation coefficients included in an operation expression used when the normal region operation unit 302 calculates the specific state information x.
  • the storage unit 303 stores data of a predetermined initial operation coefficient at the time of product shipment and the like.
  • the display processing unit 304 displays the specific state information x calculated by the specific state calculation unit 301 and the normal area X calculated by the normal area calculation unit 302 on at least one of the display unit 421 and the display unit 521. Let The display processing unit 304 generates display data for displaying the specific state information x and the normal area X on the ph diagram.
  • the transmission destination of display data is set in advance, and the display processing unit 304 transmits the generated display data to the set transmission destination.
  • the transmission destination of the display data is set to at least one of the management device 400 and the information terminal 500. Therefore, the display processing unit 304 transmits the generated display data to at least one of the management device 400 and the information terminal 500 via the communication unit 305.
  • the communication unit 305 serves as an interface when the state analysis device 300 communicates with an external device. For example, the communication unit 305 mediates when the specific state calculation unit 301 and the normal area calculation unit 302 respectively receive state data and control data. In addition, the communication unit 305 mediates when the display processing unit 304 transmits display data.
  • the communication unit 305 may be able to perform communication via the information terminal 500.
  • the communication unit 305 may communicate with the information terminal 500 by a short distance wireless communication method such as WiFi (registered trademark) or Bluetooth (registered trademark).
  • the information terminal 500 is a relay device that transmits and receives signals on the telecommunication line 800, and communicates with the server device 600 connected to the telecommunication line 800.
  • the management device 400 is connected to the air conditioner 100 in a wired or wireless manner, and performs operation and management of the air conditioner 100. That is, the management device 400 is connected to the air conditioner 100 in information communication, that is, in a communicable manner.
  • the management device 400 is a remote controller for operating the air conditioner 100 or a central management device that manages an air conditioning system including the air conditioner 100.
  • the management device 400 is communicably connected to the control device 140 and the state analysis device 300.
  • the management device 400 is used when the user operates the air conditioner 100.
  • the management device 400 is also used by the user to grasp the operating state of the air conditioner 100.
  • the management device 400 includes an input unit 410, an output unit 420, and an output control unit 430.
  • the output unit 420 is configured of a display unit 421 and a notification unit 422.
  • the input unit 410 includes an operation button and the like, and receives an operation by the user. Further, the input unit 410 transmits an operation signal indicating the content of the operation by the user to the control device 140 or the state analysis device 300.
  • the input unit 410 transmits a diagnosis request signal to the state analysis device 300 when receiving an operation requesting execution of the state diagnosis of the air conditioner 100.
  • the display unit 421 is, for example, a liquid crystal display (LCD), and has a function of displaying the specific state information x and the normal area X.
  • the notification unit 422 includes a speaker and outputs sound or sound.
  • the output control unit 430 causes the display unit 421 to display a diagnostic image including the specific state information x and the normal region X based on the display data transmitted from the state analysis device 300.
  • an image display program for displaying a diagnostic image based on display data is installed in the management device 400.
  • the output control unit 430 displays the diagnostic image on which the specific state information x and the normal area X are displayed on the ph diagram. Displayed on 421.
  • the information terminal 500 is a communication terminal such as a mobile phone, a smartphone, a tablet PC (personal computer), a notebook PC, or a desktop PC. That is, the information terminal 500 is connected to the air conditioner 100 in information communication, that is, in a communicable manner.
  • the information terminal 500 includes an input unit 510, an output unit 520, and an output control unit 530.
  • the output unit 520 is configured of a display unit 521 and a notification unit 522.
  • the input unit 510 includes an operation button and the like, and receives an operation by the user. Further, the input unit 510 transmits an operation signal indicating the content of the operation by the user to the state analysis device 300.
  • the input unit 510 transmits a diagnosis request signal to the state analysis device 300 when receiving an operation requesting execution of the state diagnosis of the air conditioner 100.
  • the display unit 521 is formed of, for example, a liquid crystal display, and has a function of displaying the specific state information x and the normal area X.
  • the notification unit 522 includes a speaker and outputs sound or sound.
  • the output control unit 530 causes the display unit 521 to display a diagnostic image including the specific state information x and the normal region X based on the display data transmitted from the state analysis device 300.
  • an image display program for displaying a diagnostic image based on display data is installed in the information terminal 500.
  • the output control unit 530 displays a diagnostic image on which the specific state information x and the normal area X are displayed on the ph diagram. Display on 521.
  • the server device 600 is, for example, a storage processing device provided outside the air conditioner 100 and provided by a cloud service.
  • the server device 600 is communicably connected to the information terminal 500 and the state analysis device 300 via a telecommunication line 800 which is a network such as the Internet.
  • the server device 600 is a database that stores and accumulates various data such as data of analysis results by the state analysis device 300. Further, the server device 600 has a function of performing various arithmetic processing based on stored data.
  • the server device 600 includes a server storage device 601, a server communication device 602, and a machine learning device 603.
  • the server communication device 602 functions as an interface when devices in the server device 600 such as the machine learning device 603 and the server storage device 601 communicate with devices outside the server device 600 via the telecommunication line 800. And perform signal conversion and the like.
  • the server storage device 601 stores state data, control data, calculation coefficients included in calculation formulas used by the normal area calculation unit 302, and the like.
  • the machine learning device 603 is a device that performs processing based on machine learning on input data.
  • Machine learning is a method of extracting useful rules and judgment criteria by sequentially acquiring new knowledge and skills and reconstructing existing knowledge and skills.
  • the machine learning device 603 calculates the normal region X from the state data measured by each sensor, the control data, the analysis result from the state analysis device 300, etc. Calculate the operation coefficient of
  • the normal region calculation unit 302 may continuously use the initial calculation coefficient, but may rewrite and update the data of the calculation coefficient using the machine learning device 603 or the like.
  • the machine learning device 603 obtain an operation coefficient over time by processing based on machine learning, using various data related to the operation when the air conditioner 100 is normal and abnormal. Then, the operation coefficient obtained by the machine learning device 603 may be sent from the server device 600 to the state analysis device 300, and the operation coefficient of the storage unit 303 may be rewritten and updated. In this way, since a more appropriate normal region X can be obtained, the accuracy of the information displayed on the display portion 421 or 521 can be enhanced, and therefore, the diagnostic accuracy by the user can be enhanced.
  • FIG. 3 is an explanatory diagram of the case where the air conditioner is in the normal state among the display examples of the specific state information and the normal area in the first embodiment of the present invention.
  • the specific state information x and the normal area X are displayed on the ph diagram.
  • FIG. 3 shows a saturation line S composed of a saturated liquid gland and a saturated vapor line, a refrigeration cycle diagram Rc, an isotherm Tout corresponding to an outdoor temperature, and an isotherm Tin corresponding to an indoor temperature. ing.
  • the specific state calculation unit 301 calculates specific state information x for each of three specific places in the refrigerant circuit 200, and the normal region calculation unit 302 corresponds to each of the three specific state information x. It is an example in the case of calculating the normal area
  • three specific points are three points: the inlet of the compressor 101, the outlet of the compressor 101, and the outlet of the condenser. That is, the three specific state information x includes inlet information a indicating the state of the refrigerant at the inlet of the compressor 101, outlet information b indicating the state of the refrigerant at the outlet of the compressor 101, and outlet information b at the outlet of the condenser. Condensation information c indicating the state of the refrigerant. That is, the normal area calculation unit 302 calculates the entrance information a, the exit information b, and the condensation information c as the three specific state information x.
  • the three normal regions X are determined in accordance with each of the entry information a, the exit information b, and the condensation information c, which are the three specific state information x.
  • the three normal regions X include an inlet region A where inlet information a is present during normal operation, an outlet region B where outlet information b is present during normal operation, and a condensation region C where condensation information c is present during normal operation. It is configured. That is, the specific state calculation unit 301 calculates the inlet area A, the outlet area B, and the condensation area C as the three normal areas X corresponding to each of the three specific state information x.
  • the user can visually confirm that the specific state information x falls within the normal region X, and can judge that the air conditioner 100 has no abnormality.
  • the isothermal line Tout corresponding to the outdoor temperature and the isothermal line Tin corresponding to the indoor temperature may not be displayed.
  • the user can visually grasp the relationship between the state of the air conditioner 100 and the air temperature around the air conditioner 100. .
  • FIG. 4 is an explanatory view of a case where an abnormality in the amount of refrigerant is suspected among the display examples of the specific state information and the normal region in the first embodiment of the present invention.
  • FIG. 5 is an explanatory view of a case in which an abnormality in heat transfer in the condenser is suspected among the display examples of the specific state information and the normal region in the first embodiment of the present invention.
  • FIG. 6 is an explanatory view of a case where an abnormality in heat transfer in the evaporator is suspected among the display examples of the specific state information and the normal region in the first embodiment of the present invention.
  • FIG. 4 is an explanatory view of a case where an abnormality in the amount of refrigerant is suspected among the display examples of the specific state information and the normal region in the first embodiment of the present invention.
  • FIG. 5 is an explanatory view of a case in which an abnormality in heat transfer in the condenser is suspected among the display examples of the specific state information and the normal region in the first embodiment of
  • FIG. 7 is an explanatory diagram of a case where an abnormality of the compressor is suspected among the display examples of the specific state information and the normal area in the first embodiment of the present invention.
  • FIG. 8 is an explanatory view in the case where an abnormality in which the compressor is compressing the liquid refrigerant is suspected among the display examples of the specific state information and the normal region in the first embodiment of the present invention.
  • FIG. 9 is an explanatory view of a case where abnormality of the expansion means or piping blockage is suspected among the display examples of the specific state information and the normal region in the first embodiment of the present invention.
  • the specific state information x and the normal area X are displayed on the ph diagram.
  • FIGS. 4 to 9 show a saturation line S and a refrigeration cycle figure Rc as in FIG. The method of identifying the cause of the abnormality of the air conditioner 100 will be described with reference to FIGS. 4 to 9.
  • the condensation information c becomes higher in enthalpy than the condensation region C. Therefore, in the case of the display as shown in FIG. 4, the user can recognize that there is a suspicion of an abnormality in the amount of refrigerant by visually recognizing that the condensation information c is deviated to the right side of the condensation region C.
  • the outlet information b has a higher pressure than the outlet region B
  • the condensation information c has a higher pressure than the condensation region C. Therefore, in the case of the display as shown in FIG. 5, the user visually identifies the exit information b outside the exit area B and the condensation information c outside the condensation area C. It can be recognized that there is a suspicion of heat transfer abnormality of the vessel.
  • the inlet information a When an abnormality in heat transfer in the evaporator is suspected, the inlet information a has a lower pressure than the inlet region A, as shown in FIG. Therefore, in the case of the display as shown in FIG. 6, the user recognizes that there is a suspicion of the heat transfer abnormality of the evaporator by visually recognizing that the inlet information a is off below the inlet region A. Can.
  • an abnormality of the indoor heat exchanger 103 during the cooling operation or an operation abnormality of the indoor fan 105, or an abnormality of the outdoor heat exchanger 102 during the heating operation or the outdoor fan 104 Abnormal operation is assumed.
  • the exit information b is higher in enthalpy than the exit area B as shown in FIG. 7. Therefore, in the case of the display as shown in FIG. 7, the user can recognize that there is a suspicion of an abnormality of the compressor 101 by visually recognizing that the exit information b is deviated to the right from the exit area B. .
  • the inlet information a is lower in enthalpy than the inlet region A. Therefore, in the case of the display as shown in FIG. 8, it is assumed that the user is suspected of the liquid refrigerant flowing into the compressor 101 by visually recognizing that the inlet information a deviates to the left from the inlet region A. It can be recognized.
  • the inlet information a has a higher pressure than the inlet region A
  • the outlet information b has a lower pressure than the outlet region B
  • the condensed information c Is lower than the condensation region C. Therefore, in the case of the display as shown in FIG. 9, the inlet information a deviates above the inlet region A, the outlet information b deviates below the outlet region B, and the condensation information c falls below the condensation region C. It is possible to recognize that there is a possibility that the expansion means 106 is abnormal or that the piping is clogged by visually observing the state of disengaging.
  • the abnormality of the expansion means 106 means that at least one of the first expansion valve 106 a and the second expansion valve 106 b has an abnormality.
  • occlusion is a condition where the obstruction
  • the user can diagnose the state of the air conditioner 100 based on the display of the specific state information x and the normal area X on the ph diagram. That is, the user looks at the diagnostic image at a glance by grasping the relationship between the position of the specific state information x with respect to the normal region X and the cause of the abnormality of the air conditioner 100, and the abnormality of the air conditioner 100 Factor and the degree of deterioration can be diagnosed.
  • the entry information a, the exit information b, and the condensation information c are displayed as the specific state information x on the display unit 421 or the display unit 521, and the entry region A and the exit as the normal region X. Region B and condensation region C are displayed.
  • the user visually recognizes the diagnostic image to find out that the amount of refrigerant enclosed in the refrigerant circuit 200 is abnormal, that of the condenser or the evaporator, that of the compressor 101, that the liquid refrigerant flows into the compressor 101 It is possible to diagnose an abnormality of the expansion means 106, an abnormality in which the refrigerant circuit 200 has a closed portion, and an operation abnormality of at least one of the outdoor fan 104 and the indoor fan 105. And when abnormality has generate
  • FIGS. 3 to 9 illustrate the case where the diagnosis image is displayed including the saturation line S.
  • the present invention is not limited to this, and the diagnosis image may not include the saturation line S.
  • the diagnostic image may not include the refrigeration cycle graphic Rc.
  • the diagnostic image includes the refrigeration cycle graphic Rc, the correspondence between the specific state information x and the normal region X becomes easy, so that the convenience of the user can be improved.
  • control device 140 and the state analysis device 300 cooperate with the hardware such as a circuit device for realizing each of the functions described above or an arithmetic device such as a microcomputer and the above-described functions in cooperation with such an arithmetic device. It can be configured by software to be realized.
  • the storage unit 303 can be configured by a random access memory (RAM) and a read only memory (ROM), a programmable ROM (PROM) such as a flash memory, or a hard disk drive (HDD).
  • RAM random access memory
  • ROM read only memory
  • PROM programmable ROM
  • HDD hard disk drive
  • FIG. 10 is a flowchart showing the operation of the state analysis system of FIGS. 1 and 2.
  • a state analysis method of the air conditioner 100 according to the first embodiment will be described with reference to FIG.
  • the case where a diagnostic image based on display data is displayed on the display unit 521 of the information terminal 500 will be described.
  • the state analysis device 300 stands by until a diagnosis request signal is transmitted from the management device 400 or the information terminal 500 (step S101 / NO).
  • the diagnosis request signal is transmitted (step S101 / YES)
  • the state analysis device 300 obtains the current specific state information x by the specific state calculation unit 301 (step S102).
  • the state analysis device 300 obtains the present normal region X by the normal region calculation unit 302 (step S103).
  • the state analysis apparatus 300 causes the display processing unit 304 to generate display data that is the basis of a diagnostic image that represents the specific state information x and the normal area X on the ph diagram (step S104), and generates The transmitted display data is transmitted to the information terminal 500 (step S105). Then, the information terminal 500 generates information of a diagnostic image based on the display data transmitted from the state analysis device 300 by the output control unit 530 (step S106), and the display unit 521 displays the specific state information x and the normal area. A diagnostic image including X is displayed (step S107). Then, the state analysis system 1000 proceeds to the process of step S101.
  • the information terminal 500 displays the diagnostic image on the display unit 521, and then the diagnostic image on the display unit 521 when an operation to trigger the image switching is performed by the user or when a predetermined time has elapsed. Switch to the home screen etc.
  • movement in case a diagnostic image is displayed on the display part 421 of the management apparatus 400 is the same as that of said description, it abbreviate
  • the state analysis apparatus 300 and the state analysis system 1000 display the specific state information x and the normal area X
  • the user can specify the position of the specific state information x with respect to the normal area X to the user. It can be made visible. Therefore, the user can easily diagnose the cause of the abnormality of the air conditioner and the degree of deterioration. That is, the state analysis system 1000 displays the specific state information x and the normal area X on the ph diagram. Therefore, since the user can grasp the position of the specific state information x with respect to the normal region X on the ph diagram at a glance, it is possible to obtain a highly accurate diagnostic result.
  • the state analysis device 300 can obtain specific state information x for each of a plurality of specific places in the refrigerant circuit 200 and a normal region X corresponding to each of the specific state information x. And since the state analysis device 300 and the state analysis system 1000 display the plurality of specific state information x and the plurality of normal areas X, the cause of the abnormality can be identified easily and accurately.
  • the user in order to identify the cause of the abnormality of the air conditioner 100 with high accuracy, the user needs to acquire specialized knowledge such as the degree of influence for each cause of the abnormality in advance. .
  • the positional relationship between the specific state information x and the normal region X and the cause of the abnormality of the air conditioner 100 are clearly associated. Therefore, the user can perform high-accuracy diagnosis of the air conditioner 100 without having expert knowledge, that is, the user looks at the deterioration state of the air conditioner 100 and the necessity of maintenance, etc. Therefore, convenience can be improved.
  • the display unit 421 or the display unit 521 can display an isothermal line indicating the temperature of the environment in which the air conditioner 100 is installed, together with the specific state information x and the normal region X. In this case, since the user can visually grasp the relationship between the state of the air conditioner 100 and the air temperature around the air conditioner 100, the ease of diagnosis can be enhanced.
  • the normal region calculation unit 302 may obtain the normal region X by further using the information of the design specification of the air conditioner 100. In this way, since a more appropriate normal region X can be obtained, the accuracy of the information displayed on the display unit can be improved, and the diagnostic accuracy by the user can be enhanced.
  • FIG. 11 is an explanatory view showing a display example of specific state information and a normal area according to the first modification of the first embodiment of the present invention.
  • the normal region X is configured at one level
  • a plurality of normal regions X in the diagnostic image correspond to the degree of normality of the air conditioner 100.
  • the normal region calculation unit 302 of the first modification is configured to perform level division of the normal region X in accordance with the degree of normality of the air conditioner 100.
  • the degree of normality decreases from the center to the outside. That is, in the normal area X, the degree of abnormality increases from the center to the outside.
  • the normal region X is divided into two levels.
  • the normal area operation section 302 is composed of a first inlet area A 1 and the second inlet region A 2 and the inlet region is constituted by A, the first outlet region B 1 and the second outlet area B 2 It was determined and the exit region B, and the first condensation zone C 1 and the condensation zone C, which is constituted by a second condensation zone C 2.
  • the inlet region A a second inlet region A 2, the degree of health than the first inlet area A 1 is reduced.
  • the second outlet region B 2 the degree of health than the first outlet area B 1 is being reduced.
  • the condensation zone C the second condensation zone C 2 is smaller degree of health than the first condensation zone C 1.
  • the display processing unit 304 generates display data using the normal region X divided into two levels. Therefore, as shown in FIG. 11, the output control unit 430 can cause the display unit 421 to display a diagnostic image including the normal region X divided into two levels. Similarly, the output control unit 530 can cause the display unit 521 to display a diagnostic image including the normal region X divided into two levels.
  • the normal area X may be divided into three or more levels. That is, the normal region calculation unit 302 calculates the normal region X divided into three or more levels, and the display processing unit 304 generates display data using the normal region X divided into three or more levels. You may thus, the output control unit 430 can cause the display unit 421 to display a diagnostic image including normal regions X divided into three or more levels. Similarly, the output control unit 530 can cause the display unit 521 to display a diagnostic image including the normal region X divided into three or more levels.
  • the state analysis device 300 and the state analysis system 1000 according to the first modification provide normal regions X divided into two or more levels by providing levels of a plurality of layers in the degree of normality of normal regions. Display. Therefore, the user can make a detailed diagnosis of the state of the air conditioner 100. That is, according to the state analysis system 1000 in the first modification, the user can more easily diagnose the degree of deterioration of the air conditioner 100 and the like, so it is possible to more accurately determine the necessity of maintenance and the like. Can.
  • inlet area A, outlet area B, and condensation area C were all divided into two or more levels was illustrated in the above-mentioned explanation, not only this but inlet area A, outlet area One or two of B and condensation zone C may be divided into two or more levels. That is, when a plurality of specific parts are set, at least one normal region X may be divided into two or more levels.
  • FIG. 12 is an explanatory view showing a display example of specific state information and a normal area according to the second modification of the first embodiment of the present invention.
  • the display unit 421 or the display unit 521 changes with time of the specific state information x It may be possible to display information indicating. That is, the display processing unit 304 may generate display data including not only the current specific state information x but also past specific state information x. In this case, the current and past specific state information x may be stored in the storage unit 303 or the server storage device 601.
  • the specific state calculation unit 301 stores the specific state information x calculated using the state data and the control data in the storage unit 303 or the server storage device 601 in time series for at least a fixed period in the past.
  • the fixed period is set according to the configuration of the air conditioner 100, the installation environment, and the like, and can be changed as appropriate.
  • the display processing unit 304 extracts the current specific state information x and the past specific state information x from among the plurality of pieces of specific state information x accumulated in the storage unit 303 or the server storage device 601. Then, the display processing unit 304 generates display data using past specific state information x together with the current specific state information x. Therefore, the display unit 421 or the display unit 521 can display past specific state information x as information indicating the secular change of the specific state information x.
  • the display processing unit 304 is configured to extract the specific state information x when going back by the reference period from the present and the specific state information x when going back by just the reference period from there. .
  • the reference period is set to 50 days.
  • the display processing unit 304 receives, from the storage unit 303 or the server storage device 601, entry information a, entry information a1 which is entry information a for 50 days before the present, and 100 days from the present And the entry information a2, which is the entry information a of Further, the display processing unit 304 extracts the exit information b, the exit information b1 which is the exit information b 50 days before the present, and the exit information b2 which is the exit information b 100 days before the present. Further, the display processing unit 304 extracts the condensation information c, the condensation information c1 which is the condensation information c 50 days before the present, and the condensation information c2 which is the condensation information c 100 days before the present.
  • the display processing unit 304 generates display data using each of the extracted information. Therefore, the state analysis device 300 uses the diagnostic image displayed on the display unit as the information indicating the secular change of the specific state information x, the entrance information a1 and a2, the exit information b1 and b2, and the condensation information c1 and c2, Can be included.
  • the display processing unit 304 also generates display data including the past refrigeration cycle graphic Rc as well as the current refrigeration cycle graphic Rc.
  • the display processing unit 304 combines the refrigeration cycle diagram Rc with the refrigeration cycle diagram Rc1 which is a refrigeration cycle diagram Rc 50 days before the present and the refrigeration cycle diagram Rc2 which is a refrigeration cycle diagram Rc 100 days before the present.
  • the state analysis device 300 can include the refrigeration cycle graphic Rc1 and the refrigeration cycle graphic Rc2 in the diagnostic image displayed on the display unit as information indicating the secular change of the specific state information x.
  • FIG. 12 illustrates the case where the reference period is set to 50 days
  • the present invention is not limited to this, and the elapsed time can be appropriately changed.
  • the case where two past specific state information x was displayed was illustrated in FIG. 12, not only this but three or more past specific state information x may be contained in a diagnostic image.
  • the state analysis device 300 and the state analysis system 1000 display the diagnostic image including the information indicating the secular change of the specific state information x on the display unit. That is, at least one of the display unit 421 and the display unit 521 displays information indicating the secular change of the specific state information x. Therefore, since the user can grasp the secular change of the degree of deterioration of the air conditioner 100 by visually recognizing the diagnostic image, the state of the air conditioner 100 can be diagnosed more accurately.
  • the secular change of the specific state information x differs depending on the specific part corresponding to the specific state information x.
  • the secular change of the exit information b and the condensed information c is relatively large, the secular change of the entrance information a is relatively small.
  • the plurality of pieces of specific state information x correspond to different specific parts. That is, as described with reference to FIGS. 4 to 9, each of the plurality of specific state information x is a variety of indicators for the abnormality of the air conditioner 100. Therefore, the user can know the tendency of deterioration of the air conditioner 100 or the like from the information indicating the secular change of the specific state information x.
  • FIG. 12 illustrates the case where the present refrigeration cycle graphic Rc and the past refrigeration cycle graphic Rc are included in the diagnostic image and displayed together with the present and past refrigeration cycle graphics Rc, but the present invention is not limited thereto.
  • the diagnostic image may be configured without including the past refrigeration cycle graphic Rc, or may be configured without including the current and past refrigeration cycle graphics Rc in the first place.
  • the diagnostic image includes the refrigeration cycle graphic Rc, the correspondence between the specific state information x and the normal region X becomes easy, and the tendency of the specific state information x to change over time can be easily grasped. It is possible to improve the quality.
  • the configuration of the second modification can also be applied to the configuration of the first modification.
  • FIG. 13 is a block diagram showing a functional configuration of a state analysis system according to Embodiment 2 of the present invention.
  • the overall configuration of the state analysis system according to the second embodiment is the same as that of FIG. 1 referred to in the first embodiment.
  • description is abbreviate
  • the state analysis system 1000A in the second embodiment includes, in the air conditioner 100, a state analysis device 300A that performs failure diagnosis and the like of the air conditioner 100 to be diagnosed.
  • the state analysis device 300A includes a state diagnosis unit 306 together with a specific state calculation unit 301, a normal area calculation unit 302, a storage unit 303, a display processing unit 304, and a communication unit 305.
  • the state diagnosis unit 306 determines whether or not there is an abnormality in the air conditioner 100 based on the positional relationship between the specific state information x and the normal region X. Then, the state diagnosis unit 306 determines whether or not the specific state information x exists outside the normal region X. Here, the presence of the specific state information x outside the normal region X indicates that an abnormality has occurred in the air conditioner 100 as in the first embodiment. That is, when the specific state information x deviates from the normal area X, the state diagnosis unit 306 determines that the air conditioner 100 has an abnormality.
  • the state diagnosis unit 306 When at least one of the plurality of pieces of specified state information x is out of the normal region X corresponding to each of the plurality of specified portions, the state diagnosis unit 306 has an abnormality in the air conditioner 100. It is determined that there is For example, the situation is as shown in FIGS. 4 to 9 referred to in the first embodiment. On the other hand, as illustrated in FIG. 3, when all of the plurality of specific state information x exist in the normal region X corresponding to each, the state diagnosis unit 306 determines that the air conditioner 100 is in the normal state. Do.
  • condition diagnosis unit 306 determines that the air conditioner 100 has an abnormality
  • an abnormality signal indicating that the air conditioner 100 has an abnormality is transmitted to the management device 400 and the information terminal 500 via the communication unit 305. Send to at least one of
  • the output control unit 430 causes the display unit 421 to display abnormality information indicating that an abnormality has occurred in the air conditioner 100.
  • the output control unit 530 causes the display unit 521 to display the abnormality information.
  • the output control unit 430 may notify the notification unit 422 of notification information indicating that the air conditioner 100 has an abnormality.
  • the output control unit 530 may cause the notification unit 522 to notify the notification information.
  • the output control unit 430 and the output control unit 530 may display both the abnormality information and the notification information when the abnormality signal is transmitted from the state diagnosis unit 306. May be performed.
  • the notification information may be a beep or the like, or may be an audio of a content such as “an error has occurred”.
  • a normal signal indicating that the air conditioner 100 is in a normal state is one of the management device 400 and the information terminal 500. It may be sent to at least one.
  • the output control unit 430 may display normal information to the effect that the air conditioner 100 is in the normal state on the display unit 421 according to the normal signal, and the air conditioner 100 is in the normal state.
  • the notification unit 422 may be notified of normal notification information to the effect.
  • the output control unit 530 may cause the display unit 521 to display normality information in response to the normality signal, or may cause the notification unit 522 to notify of normality notification information.
  • the display unit 421 or the display unit 521 is configured to display a diagnostic image including the specific state information x and the normal region X, as in the first embodiment. Therefore, the abnormal information or the normal information may be displayed on the same screen as the diagnostic image.
  • FIG. 14 is a flowchart showing a state determination process of the air conditioner 100 in the operation by the state analysis system of FIG. 13. A method of determining the state of the air conditioner 100 according to the second embodiment will be described with reference to FIG. Here, a case where the abnormality information is displayed on the display unit 521 of the information terminal 500 will be described.
  • the state analysis device 300A executes the series of processes of steps S101 to S103 as in the case of FIG.
  • the state diagnosis unit 306 determines whether or not the specific state information x exists outside the normal region X (step S201).
  • the state diagnosis unit 306 generates an abnormal signal and transmits it to the information terminal 500 (step S202).
  • the state analysis system 1000 proceeds to the process of step S101.
  • the output control unit 530 causes the display unit 521 to display the abnormality information (step S203). Then, the state analysis system 1000 proceeds to the process of step S101.
  • reporting part 522 are the same as the case of FIG.
  • the determination processing by the state diagnosis unit 306 and the transmission processing of the abnormal signal or the normal signal are the generation processing and transmission processing of display data by the display processing unit 304 (step in FIG. 10). It is performed in parallel with S104 and S105).
  • the output control unit 430 and the output control unit 530 execute the above-described display process or notification process (corresponding to step S203 in FIG. 14) in parallel with the diagnostic image generation process and display process (steps S106 and S107 in FIG. 10). Run with Then, in the second embodiment, the abnormality information or the normal information is displayed on the same screen as the diagnostic image.
  • the state analysis device 300A and the state analysis system 1000A determine the positional relationship between the specific state information x and the normal region X when determining whether the air conditioner 100 has an abnormality. Use Therefore, the presence or absence of abnormality of the air conditioner 100 can be determined accurately. Then, when the specific state information x deviates from the normal region X, it is determined that there is an abnormality in the air conditioner 100, so it is possible to determine with high accuracy whether or not there is an abnormality in the specific part.
  • the state analysis device 300A can obtain specific state information x for each of a plurality of specific places and a normal area X corresponding to each of the specific state information x. Then, the state analysis device 300A and the state analysis system 1000A determine the presence or absence of an abnormality of the air conditioner 100 from the positional relationship between the specific state information x and the normal region X corresponding to each of the plurality of specific places. Therefore, since the highly accurate determination which does not depend on the cause of the abnormality of the air conditioner 100 can be performed, it is possible to prompt the user to take appropriate measures.
  • the state analysis system 1000A includes an output unit that outputs the result of the process by the state diagnosis unit 306, and the output unit is abnormal in the air conditioner 100 when the specific state information x exists outside the normal region X.
  • Output information indicating that has occurred. That is, when the specific state information x exists outside the normal region X, the output unit is configured to perform display of abnormality information or notification of notification information. Therefore, the user can easily grasp the result of the determination made by the state analysis device 300A visually or aurally, so that the usability can be improved.
  • Patent Document 1 in the method of uniformly determining the necessity of maintenance by comparing the non-overlapping rate between refrigeration cycle figures with a reference value, determination is made based on the cause of the failure that associates the reference values. The results are different. The reason is that the influence on the non-overlapping rate between the refrigeration cycle figures is different depending on the cause of the abnormality of the air conditioner. For example, if the factor that the non-overlapping rate becomes relatively large is taken as a criterion, the factor that the non-overlapping rate becomes relatively smaller will be missed. On the other hand, when the factor that the non-overlapping rate relatively decreases is taken as a reference, an erroneous determination may occur due to the factor that the non-overlapping rate relatively increases. That is, in the configuration of Patent Document 1, it is not possible to accurately determine the necessity of maintenance.
  • the state analysis device 300A of the second embodiment obtains the specific state information x and the normal area X according to the specific location of the refrigerant circuit 200, the comparison process between the specific state information x and the normal area X is performed. Since the determination can be performed for each specific location, it is possible to reduce the erroneous determination. The other effects are the same as in the first embodiment.
  • FIG. 13 illustrates the case where the state analysis device 300A includes the display processing unit 304
  • the state analysis device 300A may be configured without the display processing unit 304. Even with this configuration, the user can be notified of an abnormality of the air conditioner 100 by highly accurate determination based on the positional relationship between the specific state information x and the normal area X. Therefore, since maintenance of the air conditioner 100 can be urged to the user, a failure or the like of the air conditioner 100 can be prevented in advance.
  • the configuration of the modification 1 may be applied to the configuration of the second embodiment. That is, the display content or the notification content may be changed for each level in the normal area X where the specific state information x exists.
  • the configuration of the second modification may be applied to the configuration of the third embodiment.
  • FIG. 15 is a block diagram showing a functional configuration of a state analysis system according to Embodiment 3 of the present invention.
  • the overall configuration of the state analysis system according to the third embodiment is the same as that of FIG. 1 referred to in the first embodiment.
  • description is abbreviate
  • the state analysis system 1000B in the third embodiment includes, in the air conditioner 100, a state analysis device 300B that performs failure diagnosis and the like of the air conditioner 100 to be diagnosed.
  • the state analysis device 300B includes a state diagnosis unit 306B together with a specific state calculation unit 301, a normal area calculation unit 302, a storage unit 303, a display processing unit 304, and a communication unit 305.
  • the state diagnosis unit 306B specifies the cause of the abnormality of the air conditioner 100 based on the positional relationship between the specific state information x and the normal area X.
  • the state diagnosis unit 306 determines that the air conditioner 100 is abnormal when at least one of the plurality of specific state information x is out of the normal region X corresponding to each of the plurality of specific parts. Identify the cause of Then, the state diagnosis unit 306B transmits factor data indicating the identification result of the cause of the abnormality to at least one of the management device 400 and the information terminal 500 via the communication unit 305.
  • the state diagnosis unit 306B specifies that the abnormality in the amount of refrigerant sealed in the refrigerant circuit 200 is the cause.
  • the state diagnosis unit 306B specifies that the abnormality of the condenser or the abnormality of the fan attached to the condenser is the cause.
  • the state diagnosis unit 306B identifies that the cause is an abnormality of the evaporator or an abnormality of a fan attached to the evaporator.
  • the state diagnosis unit 306B specifies that the abnormality of the compressor 101 is a factor.
  • the state diagnosis unit 306B specifies that the liquid refrigerant is flowing into the compressor 101 as a factor.
  • the state diagnosis unit 306B identifies the cause of the abnormality of the expansion means 106 or the abnormality that the blocked portion exists in the refrigerant circuit 200.
  • the output control unit 430 causes the display unit 421 to display abnormality factor information indicating the cause of the abnormality in the air conditioner 100.
  • the output control unit 530 causes the display unit 521 to display abnormality factor information.
  • the output control unit 430 may cause the notification unit 422 to notify factor notification information that indicates the cause of the abnormality of the air conditioner 100.
  • the output control unit 530 may cause the notification unit 522 to notify factor notification information.
  • the output control unit 430 and the output control unit 530 may display both the abnormal factor information and the notification of the factor notification information when the factor data is transmitted from the state diagnosis unit 306. One may be performed.
  • the display unit 421 or the display unit 521 is configured to display a diagnostic image including the specific state information x and the normal region X. Therefore, the abnormality factor information may be displayed on the same screen as the diagnostic image.
  • FIG. 16 is a flowchart showing the condition diagnosis processing of the air conditioner 100 in the operation by the condition analysis system of FIG.
  • the state diagnosis method for the air conditioner 100 according to the third embodiment will be described with reference to FIG.
  • the case where abnormality factor information is displayed on the display unit 521 of the information terminal 500 will be described.
  • the state analysis device 300A executes the series of processes in steps S101 to S103 and S201 in the same manner as in the case of FIG.
  • the state diagnosis unit 306B specifies the cause of the abnormality of the air conditioner 100 (step S301).
  • the state diagnosis unit 306B generates factor data indicating the identification result of the cause of the abnormality, and transmits the factor data to the information terminal 500 (step S302).
  • the output control unit 530 causes the display unit 521 to display abnormality factor information (step S303). Then, the state analysis system 1000 proceeds to the process of step S101.
  • the operation when abnormality factor information is displayed on the display unit 421 and the operation when factor notification information is notified from the notification unit 422 or the notification unit 522 are the same as in the case of FIG.
  • the determination process by the state diagnosis unit 306B and the transmission process of factor data are the generation process and transmission process of display data by the display processing unit 304 (steps S104 and S105 in FIG. 10). Done in parallel with the output control unit 430 and the output control unit 530 execute the above-described display process or notification process (corresponding to step S303 in FIG. 16) in parallel with the diagnostic image generation process and the display process (steps S106 and S107 in FIG. 10). Run with Then, in the third embodiment, the abnormality factor information is displayed on the same screen as the diagnostic image.
  • the state analysis device 300B and the state analysis system 1000B use the positional relationship between the specific state information x and the normal region X when specifying the cause of the abnormality in the air conditioner 100. . Therefore, the cause of the abnormality of the air conditioner 100 can be identified accurately. Further, the state analysis device 300B can obtain specific state information x for each of a plurality of specific places and a normal area X corresponding to each of the specific state information x. Then, the state analysis device 300B and the state analysis system 1000B integrate the positional relationship between the specific state information x and the normal area X corresponding to each of the plurality of specific places, and specify the cause of the abnormality of the air conditioner 100. . Therefore, highly accurate diagnosis can be performed on various factors related to the abnormality of the air conditioner 100.
  • the state analysis system 1000B includes an output unit that outputs the result of the process performed by the state diagnosis unit 306B, and the output unit outputs information indicating the cause of the abnormality of the air conditioner 100 identified in the state diagnosis unit 306B. . Therefore, the user can easily recognize the state of the air conditioner 100 visually or aurally, so that the convenience of the user can be improved.
  • the user in order to appropriately extract the cause of the abnormality of the air conditioner 100, the user needs to acquire specialized knowledge such as the degree of influence for each cause of the abnormality in advance.
  • the state analysis system 1000B the user can easily know the cause of the abnormality based on the information from the output unit, and therefore, a highly accurate diagnosis result can be obtained without having specialized knowledge. be able to.
  • FIG. 15 illustrates the case where the state analysis device 300B includes the display processing unit 304
  • the present invention is not limited to this, and the state analysis device 300B may be configured without the display processing unit 304. Even with this configuration, it is possible to notify the user of the cause of the abnormality of the air conditioner 100 by highly accurate diagnosis processing based on the positional relationship between the specific state information x and the normal region X. Therefore, the user can perform focused maintenance in such a manner as to check a specific part of the air conditioner 100.
  • the configuration of the third embodiment can be used in combination with the configuration of the second embodiment described above. In addition, the configuration of the first modification may be applied to the configuration of the third embodiment.
  • the content of the abnormal factor information or the factor notification information may be changed for each level in the normal area X where the specific state information x exists.
  • the configuration of the second modification may be applied to the configuration of the third embodiment. The other effects are the same as in the first and second embodiments.
  • FIG. 17 is a configuration diagram of a state analysis system according to Embodiment 4 of the present invention.
  • FIG. 18 is a block diagram showing a functional configuration of the state analysis system of FIG.
  • the condition analysis system of the fourth embodiment is characterized in that the condition analysis device is not provided inside the air conditioner.
  • the same members of the present embodiment as those of the first to third embodiments described above are designated by the same reference numerals and the description thereof will be omitted.
  • the condition analysis system 1000C of the fourth embodiment includes an air conditioner 100C, a management device 400C, an information terminal 500C, and a server device 600.
  • the air conditioner 100C is configured the same as the air conditioner 100 according to the first to third embodiments except that the state analysis device 300 is not provided.
  • the management device 400C has a communication processing unit 440 that relays data communication between the air conditioner 100 and the information terminal 500C.
  • the communication processing unit 440 causes state data and control data to be accumulated once in the internal memory of the management device 400C, and then transfers the state data and control data to the state analysis device 300 provided in the information terminal 500C.
  • communication processing unit 440 acquires state data from state detection unit 120 including refrigerant temperature sensors 121 to 125 and air temperature sensors 131 to 132, and receives the acquired state data in state analysis device 300 of information terminal 500C. hand over. Further, the communication processing unit 440 acquires control data indicating control content for each actuator of the control device 140 from the air conditioner 100C, and passes the acquired control data to the state analysis device 300 of the information terminal 500C. And information terminal 500C has state analysis device 300 which analyzes the state of air conditioner 100C using the state data and control data which acquire via control device 400C.
  • smart phones that have been widely spread in recent years can be equipped with high-performance applications. That is, when the information terminal 500C is a smartphone, the state analysis device 300 is installed as an application of the smartphone.
  • FIG.17 and FIG.18 illustrated the case where the information terminal 500C has the state analysis apparatus 300 comprised similarly to the case of Embodiment 1, it is not limited to this.
  • the information terminal 500C may include the state analysis device 300A of the second embodiment or the state analysis device 300B of the third embodiment. That is, the state analysis system 1000C may apply a configuration in which two or more of them are combined, in addition to the configuration of the first modification, the second modification, the second embodiment, or the third embodiment.
  • the air conditioner 100C can be made inexpensive as compared with the configurations of the first to third embodiments. It can be manufactured.
  • the state analysis system 1000C may be provided with the state analysis device 300, the state analysis device 300A, or the state analysis device 300B in the management device 400C.
  • the operation of the state analysis system 1000C of the fourth embodiment is the same as that of the first to third embodiments.
  • Embodiment 5 The overall configuration and functional configuration of the state analysis system according to the fifth embodiment are the same as FIGS. 1, 2, 13, 15, 17, and 18 referred to in the first to fourth embodiments. It is similar.
  • the state analysis of the air conditioner is performed when the execution of the state analysis is requested from the outside is illustrated. That is, in the above-described first to fourth embodiments, an example in which the state analysis of the air conditioner is performed according to the user's implementation request is shown.
  • the condition analysis of the air conditioner is performed, for example, at a constant time period, not on the user's request for implementation.
  • the same members of the present embodiment as those of the first to fourth embodiments described above are designated by the same reference numerals and the description thereof is omitted.
  • the reference numerals used in Embodiment 1 are used unless otherwise stated.
  • the state analysis device 300 of the fifth embodiment has a function of managing time or a function of measuring time. Therefore, the state analysis system 1000 is configured to perform the state analysis process of the air conditioner 100 at the same time every day. In addition, the state analysis system 1000 is configured to perform the state analysis process of the air conditioner 100 every set time. The set time is set to, for example, 24 hours and can be changed as appropriate.
  • FIG. 19 is a flowchart showing the operation of the state analysis system according to the fifth embodiment of the present invention.
  • a state diagnosis method in the case where the state analysis process is performed every set time will be described.
  • description is abbreviate
  • the state analysis system 1000 is configured to perform the state analysis process of the air conditioner 100 for each set time.
  • the state analysis system 1000 executes a series of processes of steps S102 to S107 in response to the user's instruction operation of periodic diagnosis. Then, the state analysis system 1000 waits until the set time has elapsed since the state analysis process of the air conditioner 100 is started (step S108). When the set time has passed, the state analysis system 1000 proceeds to the process of step S102.
  • the state analysis process is performed at the same time every day, when the designated time comes, a series of processes of steps S102 to S107 are performed.
  • the designated time may be set for each day of the week or date. Also, multiple designated times may be set for one day. And the setting number of designated time may be changed for every day of the week or date.
  • the state detection unit 120 is not limited to the above configuration.
  • the state detection unit 120 may have a refrigerant temperature sensor provided on the suction side of the compressor 101 instead of the refrigerant temperature sensor 121 and measuring the temperature of the refrigerant drawn into the compressor 101.
  • Each sensor of the state detection unit 120 is not limited to a temperature sensor, and the state detection unit 120 may include a pressure sensor that measures the pressure of the refrigerant, or an infrared camera that measures the temperature of the noncontact portion.
  • the server device 600 is exemplified as a cloud server based on cloud computing. However, the present invention is not limited to this, and the server device 600 may be a physical server such as a Web server.
  • the refrigerant circuit 200 is not limited to the configurations shown in FIGS. 1 and 17, and the air conditioner 100 can be equipped with the refrigerant circuit 200 having various configurations. Then, the state analysis device 300 can analyze the states of the refrigerant circuits 200 having various configurations in the same manner as described above.
  • FIG. 1 illustrates the case where the expansion means 106 is configured by the first expansion valve 106a and the second expansion valve 106b
  • the invention is not limited to this, and the expansion means 106 may be, for example, an electronic expansion valve 1 It may be two expansion valves.
  • the case where three specific places were set was illustrated as a specific example in the above-mentioned explanation, not only this but the number of setting of a specific place is one, two or four or more. May be

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒回路の特定箇所での冷媒の状態を示す特定状態情報を求める特定状態演算部(301)と、空気調和機の正常運転時に特定状態情報が存在する状態空間内の正常領域を求める正常領域演算部(302)と、を備えた状態解析装置及び状態解析システム(1000)。状態解析装置及び状態解析システム(1000)は、特定状態情報及び正常領域を表示部に表示させる。

Description

状態解析システム及び状態解析装置
 本発明は、空気調和機の状態を解析する状態解析システム及び状態解析装置に関する。
 部屋などの空間の空気環境を制御する空気調和機は広く普及しており、空間の快適性を保つ上で必要不可欠なものとなっている。したがって、空気調和機の故障は、利用者の不快に直結する。また、サーバールーム及び冷凍倉庫などに配置された空気調和機の故障は、業務上、致命的な損失に繋がりかねない。そのため、近年、空気調和機の状態を解析し、空気調和機の故障及び故障の徴候などを知るための技術が着目されている。
 空気調和機は、冷媒が循環する冷媒回路を含んでおり、空気調和機の異常は、冷媒の状態変化を示す冷凍サイクルをp-h線図上に表した冷凍サイクル図形に影響を与える。ここで、p-h線図は、縦軸に圧力をとり、横軸にエンタルピをとる。よって、冷凍サイクル図形には、冷媒の状態変化の各過程における圧力とエンタルピとの変化が表される。
 そこで、従来は、現在の運転状態に基づいた冷凍サイクル図形と、予め記憶された正常状態における冷凍サイクル図形とを、同一のp-h線図上に表示する、という手法も採られている(例えば、特許文献1参照)。特許文献1では、冷凍サイクル図形間の非重複率からメンテナンスが必要であると判定した場合、空気調和機のメンテナンスが必要であることを表示装置へ表示するようになっている。
特開2015-92121号公報
 しかしながら、現在における冷凍サイクル図形と、正常状態における冷凍サイクル図形との形状の違いは、空気調和機の異常の要因及び異常の程度によって異なる。そして、冷凍サイクル図形には、冷媒回路の内外における様々な環境が反映されるため、冷凍サイクル図形間の形状の違い又は非重複率をもとに、空気調和機の状態を診断することは困難である。すなわち、特許文献1の構成には、空気調和機の異常の要因及び異常の程度をユーザに容易に診断させることができない、という課題がある。
 本発明は、上記のような課題を解決するためになされたものであり、空気調和機の異常の要因及び異常の程度をユーザに容易に診断させる状態解析システム及び状態解析装置を提供することを目的とする。
 本発明に係る状態解析システムは、圧縮機と膨張手段とを含む冷媒回路と、冷媒回路における冷媒の状態を状態データとして検出する状態検出部と、圧縮機及び膨張手段を制御する制御装置と、を有する空気調和機と、状態データ及び制御装置による制御内容を示す制御データを用い、第1パラメータと第2パラメータとにより定まる状態空間内において、冷媒回路の特定箇所での冷媒の状態を示す特定状態情報を求める特定状態演算部と、状態データ及び制御データを用い、空気調和機の正常状態での運転時に特定状態情報が存在する状態空間内の正常領域を求める正常領域演算部と、特定状態演算部において求められた特定状態情報、及び正常領域演算部において求められた正常領域を表示する表示部と、を備えたものである。
 本発明に係る状態解析装置は、圧縮機と膨張手段とを含む冷媒回路と、圧縮機及び膨張手段を制御する制御装置と、を有する空気調和機の状態を、冷媒回路における冷媒の状態を示す状態データと制御装置による制御内容を示す制御データとを用いて解析し、解析結果を外部に設けられた表示部に表示させる状態解析装置であって、状態データ及び制御データを用い、第1パラメータと第2パラメータとにより定まる状態空間内において、冷媒回路の特定箇所での冷媒の状態を示す特定状態情報を求める特定状態演算部と、状態データ及び制御データを用い、空気調和機の正常状態での運転時に特定状態情報が存在する状態空間内の正常領域を求める正常領域演算部と、特定状態演算部において求められた特定状態情報、及び正常領域演算部において求められた正常領域を、表示部に表示させる表示処理部と、を有するものである。
 本発明によれば、冷媒回路の特定箇所に応じた特定状態情報と、空気調和機の正常運転時に特定状態情報が存在する正常領域とを表示させることから、正常領域に対する特定状態情報の位置をユーザに視認させることができる。よって、空気調和機の異常の要因及び異常の程度をユーザに容易に診断させることができる。
本発明の実施の形態1に係る状態解析システムの構成図である。 図1の状態解析システムの機能的構成を示すブロック図である。 本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、空気調和機が正常状態にある場合の説明図である。 本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、冷媒量の異常が疑われる場合の説明図である。 本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、凝縮器における伝熱の異常が疑われる場合の説明図である。 本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、蒸発器における伝熱の異常が疑われる場合の説明図である。 本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、圧縮機の異常が疑われる場合の説明図である。 本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、圧縮機が液冷媒を圧縮している異常が疑われる場合の説明図である。 本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、膨張手段の異常又は配管閉塞が疑われる場合の説明図である。 図1及び図2の状態解析システムによる動作を示すフローチャートである。 本発明の実施の形態1の変形例1に係る特定状態情報及び正常領域の表示例を示す説明図である。 本発明の実施の形態1の変形例2に係る特定状態情報及び正常領域の表示例を示す説明図である。 本発明の実施の形態2に係る状態解析システムの機能的な構成を示すブロック図である。 図13の状態解析システムによる動作のうち、空気調和機100の状態判定処理を示すフローチャートである。 本発明の実施の形態3に係る状態解析システムの機能的な構成を示すブロック図である。 図15の状態解析システムによる動作のうち、空気調和機100の状態診断処理を示すフローチャートである。 本発明の実施の形態4に係る状態解析システムの構成図である。 図17の状態解析システムの機能的構成を示すブロック図である。 本発明の実施の形態5に係る状態解析システムの動作を示すフローチャートである。
実施の形態1.
 図1は、本発明の実施の形態1に係る状態解析システムの構成図である。図1に示すように、状態解析システム1000は、空気調和機100と、管理装置400と、情報端末500と、サーバ装置600と、により構成されている。
 空気調和機100は、部屋などの空調対象空間の空気の温度、湿度、及び清浄度などといった空気環境を調整する。空気調和機100は、室外機100Aと室内機100Bとにより構成されている。室外機100Aは、圧縮機101と、室外熱交換器102と、第1膨張弁106aと、第2膨張弁106bと、四方弁108と、レシーバ109と、を有している。室内機100Bは、室内熱交換器103を有している。すなわち、空気調和機100は、圧縮機101と室外熱交換器102と第1膨張弁106aとレシーバ109と第2膨張弁106bと室内熱交換器103とが冷媒配管Rを介して連結され、冷媒が循環する冷媒回路200を形成している。
 室外機100Aは、室外熱交換器102に付設され、室外熱交換器102の伝熱を促進する室外ファン104を有している。本実施の形態1において、室外機100Aは、制御装置140と、状態解析装置300と、を有している。室内機100Bは、室内熱交換器103に付設され、室内熱交換器103の伝熱を促進する室内ファン105を有している。
 また、空気調和機100は、冷媒温度センサ121~125と、空気温度センサ131~132と、を有している。冷媒温度センサ121~123と空気温度センサ131とは、室外機100Aに設けられ、冷媒温度センサ124及び125と空気温度センサ132とは、室内機100Bに設けられている。
 圧縮機101は、例えばインバータによって駆動され、吸入した冷媒を圧縮して吐出する。室外熱交換器102は、例えばフィンアンドチューブ型熱交換器からなり、空気と冷媒との間で熱交換させる。
 四方弁108は、圧縮機101の吐出側、つまり圧縮機101の出口に冷媒配管Rを介して接続されている。四方弁108は、冷媒回路200における冷媒の流路を切り替える。すなわち、四方弁108は、制御装置140によって接続方向が切り替えられ、冷媒回路200内を流れる冷媒の方向が反転する。これにより、冷房運転と暖房運転とを切り替えることができる。
 四方弁108は、室内機100Bに冷熱が供給される冷房運転時において、図1の実線の接続方向となる。したがって、冷房運転時において、冷媒は、圧縮機101、室外熱交換器102、第1膨張弁106a、レシーバ109、第2膨張弁106b、室内熱交換器103、圧縮機101の順に循環する。このとき、室外熱交換器102が凝縮器として機能し、室内熱交換器103が蒸発器として機能する。
 四方弁108は、室内機100Bに温熱が供給される暖房運転時において、図1の破線の接続方向となる。したがって、暖房運転時において、冷媒は、圧縮機101、室内熱交換器103、第2膨張弁106b、レシーバ109、第1膨張弁106a、室外熱交換器102、圧縮機101の順に循環する。このとき、室内熱交換器103が凝縮器として機能し、室外熱交換器102が蒸発器として機能する。
 第1膨張弁106a及び第2膨張弁106bは、例えば電子膨張弁からなり、冷媒を減圧して膨張させる。第1膨張弁106aは、一端が室外熱交換器102に接続され、他端がレシーバ109に接続されている。第2膨張弁106bは、一端がレシーバ109に接続され、他端が室内熱交換器103に接続されている。
 レシーバ109は、液冷媒を一時的に貯留する。レシーバ109は、冷媒配管Rを介して第1膨張弁106aと第2膨張弁106bとに接続されている。また、圧縮機101の入口と四方弁108とを接続している冷媒配管Rの一部は、レシーバ109内を通過している。したがって、レシーバ109内の冷媒配管Rを流れる冷媒は、レシーバ109内の冷媒配管R周囲の冷媒との間で熱交換する。室内熱交換器103は、例えばフィンアンドチューブ型熱交換器からなり、空気と冷媒との間で熱交換させる。
 冷媒温度センサ121は、圧縮機101の吐出側に設けられ、圧縮機101から吐出される冷媒の温度を計測する。冷媒温度センサ122は、室外熱交換器102と第1膨張弁106aとの間の冷媒配管Rに設けられ、室外熱交換器102と第1膨張弁106aとの間を流れる冷媒の温度を計測する。冷媒温度センサ123は、室外熱交換器102に設けられ、室外熱交換器102を流れる冷媒の温度を計測する。冷媒温度センサ124は、室内熱交換器103に設けられ、室内熱交換器103を流れる冷媒の温度を計測する。冷媒温度センサ125は、室内熱交換器103と第2膨張弁106bとの間の冷媒配管Rに設けられ、室内熱交換器103と第2膨張弁106bとの間を流れる冷媒の温度を計測する。空気温度センサ131は、室外熱交換器102を流れる冷媒と熱交換される空気の温度である外気温度を計測する。空気温度センサ132は、室内熱交換器103を流れる冷媒と熱交換される空気の温度である室内温度を計測する。
 制御装置140は、冷媒温度センサ121~125、空気温度センサ131~132からの出力をもとに、圧縮機101、室外ファン104、室内ファン105、第1膨張弁106a、及び第2膨張弁106bなどの各アクチュエータを制御する。また、制御装置140は、各アクチュエータに対する制御内容を示す制御データを状態解析装置300に出力する。本実施の形態1において、状態解析装置300は、診断対象となる空気調和機100内に設置されている。
 図2は、図1の状態解析システムの機能的構成を示すブロック図である。図2に示すように、状態解析システム1000は、状態解析装置300を中心として構成されている。状態検出部120は、冷媒回路200における冷媒の状態を、状態データとして検出する。本実施の形態1において、状態検出部120は、図2に示すように、冷媒温度センサ121~125と、空気温度センサ131~132と、を含んでいる。膨張手段106は、第1膨張弁106aと、第2膨張弁106bと、を含んでいる。
 状態解析装置300は、状態検出部120において検出された状態データと制御データとを用いて空気調和機の状態を解析する。すなわち、状態解析装置300は、制御装置140、冷媒温度センサ121~125、及び空気温度センサ131~132などから送られる信号に含まれる各種データに基づいて、空気調和機100の状態を解析する。また、状態解析装置300は、空気調和機の状態の解析結果を、管理装置400の表示部421及び情報端末500の表示部521のうちの少なくとも1つに表示させる。
 より具体的に、状態解析装置300は、特定状態演算部301と、正常領域演算部302と、記憶部303と、表示処理部304と、通信部305と、を有している。特定状態演算部301は、状態データ及び制御データを用い、第1パラメータと第2パラメータとにより定まる状態空間内において、冷媒回路200の特定箇所での冷媒の状態を示す特定状態情報xを求める。特定状態情報xは、第1パラメータと第2パラメータとにより定まる。状態データ及び制御データは、記憶部303又はサーバ記憶装置601に、空気調和機100の運転データとして蓄えられる。
 本実施の形態1において、第1パラメータは冷媒の圧力であり、第2パラメータはエンタルピである。そして、状態空間は、冷媒の圧力とエンタルピとを軸とする座標平面に設定されるp-h線図に相当する。すなわち、特定状態情報xは、冷媒の圧力とエンタルピとにより与えられるp-h線図上の点である。特定状態演算部301は、冷媒回路200の1つの特定箇所に対応する特定状態情報xを求めるように設定することができる。また、特定状態演算部301は、冷媒回路200の複数の特定箇所ごとの特定状態情報xを求めるように設定することもできる。
 正常領域演算部302は、状態データ及び制御データを用い、空気調和機100の正常状態での運転時に特定状態情報xが存在する状態空間内の正常領域Xを求める。ここで、空気調和機100の正常状態での運転時とは、空気調和機100が異常のない状態で運転しているときのことであり、以降では正常運転時という。すなわち、正常領域Xは、空気調和機100に異常がない場合、つまり各アクチュエータ及び各センサなどに異常がない場合に、特定状態情報xが存在する領域を示すデータである。本実施の形態1において、正常領域Xは、p-h線図上の領域である。正常領域演算部302は、特定状態演算部301によって複数の特定状態情報xが求められる場合、複数の特定状態情報xの各々に対応する正常領域Xを求める。
 記憶部303には、状態解析装置300の動作プログラムと共に、空気調和機100の状態解析処理に用いられる種々のデータが記憶されている。例えば、記憶部303には、正常領域演算部302が特定状態情報xを演算する際に用いる演算式に含まれる1又は複数の演算係数がデータとして記憶されている。記憶部303には、製品出荷時などに、予め定められた初期の演算係数のデータが記憶される。
 表示処理部304は、特定状態演算部301において演算された特定状態情報x、及び正常領域演算部302において演算された正常領域Xを、表示部421及び表示部521のうちの少なくとも1つに表示させる。表示処理部304は、p-h線図上に特定状態情報x及び正常領域Xを表示させるための表示データを生成する。
 状態解析装置300では、表示データの送信先が予め設定されており、表示処理部304は、生成した表示データを設定された送信先へ送信する。本実施の形態1では、表示データの送信先が、管理装置400及び情報端末500のうちの少なくとも1つに設定される。したがって、表示処理部304は、生成した表示データを、通信部305を介して、管理装置400及び情報端末500のうちの少なくとも1つに送信する。
 通信部305は、状態解析装置300が外部機器と通信を行う際のインタフェイスとなる。例えば、通信部305は、特定状態演算部301及び正常領域演算部302が、それぞれ、状態データ及び制御データを受信する際に仲介する。また、通信部305は、表示処理部304が表示データを送信する際に仲介する。
 通信部305は、サーバ装置600と通信をする際、情報端末500を経由した通信ができるようにしてもよい。この場合、通信部305は、WiFi(登録商標)又はBluetooth(登録商標)などの近距離の無線通信方式により、情報端末500と通信するとよい。そして、情報端末500は、電気通信回線800における信号を送受する中継装置となり、電気通信回線800に接続されたサーバ装置600と通信を行う。
 管理装置400は、空気調和機100と有線又は無線で接続され、空気調和機100の操作及び管理を行うものである。すなわち、管理装置400は、空気調和機100と情報的に、つまり通信可能に接続されている。管理装置400は、空気調和機100の操作用のリモートコントローラ、又は空気調和機100を含む空調システムを管理する集中管理装置などである。本実施の形態1において、管理装置400は、制御装置140と状態解析装置300とに通信可能に接続されている。管理装置400は、ユーザが空気調和機100を操作する際に利用される。また、管理装置400は、ユーザが空気調和機100の動作状態を把握するために利用される。
 図2に示すように、管理装置400は、入力部410と、出力部420と、出力制御部430と、を有している。出力部420は、表示部421と報知部422とにより構成されている。入力部410は、操作ボタンなどを含んで構成され、ユーザによる操作を受け付ける。また、入力部410は、ユーザによる操作内容を示す操作信号を制御装置140又は状態解析装置300に送信する。入力部410は、空気調和機100の状態診断の実施を要求する操作を受け付けたとき、状態解析装置300に診断要求信号を送信する。
 表示部421は、例えば液晶ディスプレイ(LCD:Liquid Crystal Display)からなり、特定状態情報x及び正常領域Xを表示する機能を有している。報知部422は、スピーカを含んで構成され、音又は音声を出力する。出力制御部430は、状態解析装置300から送信される表示データをもとに、特定状態情報x及び正常領域Xを含む診断画像を表示部421に表示させる。ここで、管理装置400には、表示データをもとに診断画像を表示する画像表示プログラムがインストールされているものとする。本実施の形態1において、出力制御部430は、表示処理部304から表示データが送信されると、p-h線図上に特定状態情報x及び正常領域Xを表示させた診断画像を表示部421に表示させる。
 情報端末500は、携帯電話、スマートフォン、タブレットPC(パーソナルコンピュータ)、ノートPC、又はデスクトップPCなどの通信端末である。すなわち、情報端末500は、空気調和機100と情報的に、つまり通信可能に接続されている。図2に示すように、情報端末500は、入力部510と、出力部520と、出力制御部530と、を有している。出力部520は、表示部521と報知部522とにより構成されている。入力部510は、操作ボタンなどを含んで構成され、ユーザによる操作を受け付ける。また、入力部510は、ユーザによる操作内容を示す操作信号を状態解析装置300に送信する。入力部510は、空気調和機100の状態診断の実施を要求する操作を受け付けたとき、状態解析装置300に診断要求信号を送信する。
 表示部521は、例えば液晶ディスプレイからなり、特定状態情報x及び正常領域Xを表示する機能を有している。報知部522は、スピーカを含んで構成され、音又は音声を出力する。出力制御部530は、状態解析装置300から送信される表示データをもとに、特定状態情報x及び正常領域Xを含む診断画像を表示部521に表示させる。ここで、情報端末500には、表示データをもとに診断画像を表示する画像表示プログラムがインストールされているものとする。本実施の形態1において、出力制御部530は、表示処理部304から表示データが送信されると、p-h線図上に特定状態情報x及び正常領域Xを表示させた診断画像を表示部521に表示させる。
 サーバ装置600は、例えば、空気調和機100の外部に設けられ、クラウドサービスにより提供される記憶処理装置である。サーバ装置600は、インターネットなどのネットワークである電気通信回線800を介して、情報端末500及び状態解析装置300と通信可能に接続されている。サーバ装置600は、状態解析装置300による解析結果のデータなど、各種のデータを記憶して蓄積するデータベースとなる。また、サーバ装置600は、記憶されたデータに基づいて、種々の演算処理を行う機能を有している。
 サーバ装置600は、サーバ記憶装置601と、サーバ通信装置602と、機械学習装置603と、を有している。サーバ通信装置602は、機械学習装置603及びサーバ記憶装置601などのサーバ装置600内の装置が、電気通信回線800を介して、サーバ装置600の外部の装置と通信を行う際のインタフェイスとして機能し、信号変換などを行う。サーバ記憶装置601は、状態データ、制御データ、及び正常領域演算部302が用いる演算式に含まれる演算係数などを記憶する。
 機械学習装置603は、入力されたデータについて、機械学習による処理を行う装置である。機械学習とは、新しい知識及び技能を逐次獲得すると共に、既存の知識および技能を再構成することで、有用な規則及び判断基準などを抽出する手法である。本実施の形態1において、機械学習装置603は、各センサにより計測される状態データ、制御データ、及び状態解析装置300からの解析結果などから、正常領域演算部302が正常領域Xを演算するための演算係数を算出する。
 ところで、正常領域演算部302は、初期の演算係数を継続的に用いるようにしてもよいが、機械学習装置603などにより、演算係数のデータを書き換えて更新するようにしてもよい。例えば、空気調和機100の正常時および異常時における運転に係る各種データを入力として、機械学習装置603が、機械学習に基づく処理により、演算係数を経時的に求めるとよい。そして、機械学習装置603が求めた演算係数が、サーバ装置600から状態解析装置300へ送られるようにし、記憶部303の演算係数が書き替えられて更新されるようにするとよい。このようにすれば、より適切な正常領域Xを求めることができることから、表示部421又は521に表示される情報の正確性が高まるため、ユーザによる診断精度を高めることができる。
 図3は、本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、空気調和機が正常状態にある場合の説明図である。図3では、p-h線図上に特定状態情報x及び正常領域Xが表示されている。また、図3には、飽和液腺と飽和蒸気線とからなる飽和線Sと、冷凍サイクル図形Rcと、室外温度に対応する等温線Toutと、室内温度に対応する等温線Tinと、を示している。
 ここで、図3は、特定状態演算部301が、冷媒回路200における3つの特定箇所ごとの特定状態情報xを演算し、正常領域演算部302が、3つの特定状態情報xの各々に対応する正常領域Xを演算する場合の例である。したがって、特定状態情報xは3つ存在し、3つの特定状態情報xは、それぞれ、冷媒回路200の3つの特定箇所での冷媒の状態により決定される。
 また、3つの特定箇所は、圧縮機101の入口、圧縮機101の出口、及び凝縮器の出口の3箇所となっている。つまり、3つの特定状態情報xは、圧縮機101の入口での冷媒の状態を示す入口情報aと、圧縮機101の出口での冷媒の状態を示す出口情報bと、凝縮器の出口での冷媒の状態を示す凝縮情報cと、により構成されている。すなわち、正常領域演算部302は、3つの特定状態情報xとして、入口情報aと出口情報bと凝縮情報cとを演算する。
 正常領域Xは、3つの特定状態情報xである入口情報a、出口情報b、及び凝縮情報cのそれぞれに応じて3つ定まる。3つの正常領域Xは、正常運転時に入口情報aが存在する入口領域Aと、正常運転時に出口情報bが存在する出口領域Bと、正常運転時に凝縮情報cが存在する凝縮領域Cと、により構成されている。すなわち、特定状態演算部301は、3つの特定状態情報xの各々に対応する3つの正常領域Xとして、入口領域Aと出口領域Bと凝縮領域Cとを演算する。
 そして、図3のような表示の場合、ユーザは、特定状態情報xが正常領域X内に収まっていることを視覚的に確認し、空気調和機100に異常がないと判断することができる。ここで、図3では、室外温度に対応する等温線Tout、及び室内温度に対応する等温線Tinは表示しなくてもよい。ただし、診断画像上に等温線Toutと等温線Tinとを表示すれば、ユーザは、空気調和機100の状態と空気調和機100の周囲の空気温度との関係を視覚的に把握することができる。
 次に、空気調和機100に異常がある場合の表示例について説明する。図4は、本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、冷媒量の異常が疑われる場合の説明図である。図5は、本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、凝縮器における伝熱の異常が疑われる場合の説明図である。図6は、本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、蒸発器における伝熱の異常が疑われる場合の説明図である。図7は、本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、圧縮機の異常が疑われる場合の説明図である。図8は、本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、圧縮機が液冷媒を圧縮している異常が疑われる場合の説明図である。図9は、本発明の実施の形態1における特定状態情報及び正常領域の表示例のうち、膨張手段の異常又は配管閉塞が疑われる場合の説明図である。図4~図9では、p-h線図上に特定状態情報x及び正常領域Xが表示されている。また、図4~図9には、図3と同様、飽和線Sと冷凍サイクル図形Rcとを示している。図4~図9を参照して、空気調和機100の異常の要因の特定方法について説明する。
 冷媒量の異常が疑われる場合は、図4に示すとおり、凝縮情報cが凝縮領域Cに比べて高エンタルピとなる。したがって、図4のような表示の場合、ユーザは、凝縮情報cが凝縮領域Cよりも右側に外れている様子を視認することで、冷媒量の異常の疑いがあると認識することができる。
 凝縮器における伝熱の異常が疑われる場合は、図5に示すとおり、出口情報bが出口領域Bに比べて高圧になり、かつ凝縮情報cが凝縮領域Cに比べて高圧となる。したがって、図5のような表示の場合、ユーザは、出口情報bが出口領域Bよりも上側に外れ、かつ凝縮情報cが凝縮領域Cよりも上側に外れている様子を視認することで、凝縮器の伝熱異常の疑いがあると認識することができる。ここで、凝縮器の伝熱異常の要因としては、冷房運転時における室外熱交換器102の異常もしくは室外ファン104の動作異常、又は暖房運転時における室内熱交換器103の異常もしくは室内ファン105の動作異常が想定される。
 蒸発器における伝熱の異常が疑われる場合は、図6に示すとおり、入口情報aが入口領域Aに比べて低圧となる。したがって、図6のような表示の場合、ユーザは、入口情報aが入口領域Aよりも下側に外れている様子を視認することで、蒸発器の伝熱異常の疑いがあると認識することができる。ここで、蒸発器の伝熱異常の要因としては、冷房運転時における室内熱交換器103の異常もしくは室内ファン105の動作異常、又は暖房運転時における室外熱交換器102の異常もしくは室外ファン104の動作異常が想定される。
 圧縮機101の異常が疑われる場合は、図7に示すとおり、出口情報bが出口領域Bに比べて高エンタルピとなる。したがって、図7のような表示の場合、ユーザは、出口情報bが出口領域Bよりも右側に外れている様子を視認することで、圧縮機101の異常の疑いがあると認識することができる。
 圧縮機101が液冷媒を圧縮している状況が疑われる場合、図8に示すとおり、入口情報aは入口領域Aに比べて低エンタルピとなる。したがって、図8のような表示の場合、ユーザは、入口情報aが入口領域Aよりも左側に外れている様子を視認することで、圧縮機101に液冷媒が流入している疑いがあると認識することができる。
 膨張手段106の異常又は配管閉塞が疑われる場合は、図9に示すとおり、入口情報aが入口領域Aに比べて高圧となり、出口情報bが出口領域Bに比べて低圧となり、かつ凝縮情報cが凝縮領域Cに比べて低圧となる。したがって、図9のような表示の場合、入口情報aが入口領域Aよりも上側に外れ、出口情報bが出口領域Bよりも下側に外れ、かつ凝縮情報cが凝縮領域Cよりも下側に外れている様子を視認することで、膨張手段106の異常又は配管閉塞の疑いがあると認識することができる。本実施の形態1において、膨張手段106の異常とは、第1膨張弁106a及び第2膨張弁106bのうちの少なくとも1つに異常が発生していることである。また、配管閉塞とは、冷媒回路200に冷媒の循環を妨げる箇所である閉塞部が存在する状況である。
 上述のとおり、ユーザは、p-h線図上の特定状態情報x及び正常領域Xの表示をもとに、空気調和機100の状態を診断することができる。すなわち、ユーザは、正常領域Xに対する特定状態情報xの位置と、空気調和機100の異常の要因との関連性を把握しておくことにより、診断画像を一見して、空気調和機100の異常の要因及び劣化の程度などを診断することができる。
 図3~図9の例では、表示部421又は表示部521に、特定状態情報xとして、入口情報aと出口情報bと凝縮情報cとが表示され、正常領域Xとして、入口領域Aと出口領域Bと凝縮領域Cとが表示される。よって、ユーザは、診断画像を視認することにより、冷媒回路200に封入されている冷媒量の異常、凝縮器又は蒸発器の異常、圧縮機101の異常、圧縮機101に液冷媒が流入する異常、膨張手段106の異常、冷媒回路200に閉塞部がある異常、室外ファン104及び室内ファン105のうちの少なくとも1つの動作異常について診断することができる。そして、空気調和機100に異常が発生している場合、ユーザは、異常の要因を容易に特定することができる。
 ここで、図3~図9では、診断画像に飽和線Sを含めて表示する場合を例示したが、これに限らず、診断画像には飽和線Sを含めなくてもよい。また、図3~図9では、診断画像に冷凍サイクル図形Rcを含めて表示する場合を例示したが、これに限らず、診断画像には冷凍サイクル図形Rcを含めなくてもよい。ただし、診断画像が冷凍サイクル図形Rcを含んでいる方が、特定状態情報xと正常領域Xとの対応づけが容易となるため、ユーザの利便性の向上を図ることができる。
 ここで、制御装置140及び状態解析装置300は、上記の各機能を実現する回路デバイスのようなハードウェア、もしくは、マイコンなどの演算装置と、こうした演算装置と協働して上記の各機能を実現させるソフトウェアとによって構成することができる。記憶部303は、RAM(Random Access Memory)及びROM(Read Only Memory)、フラッシュメモリ等のPROM(Programmable ROM)、又はHDD(Hard Disk Drive)等により構成することができる。
 図10は、図1及び図2の状態解析システムによる動作を示すフローチャートである。図10を参照して、本実施の形態1における空気調和機100の状態解析方法について説明する。ここでは、表示データに基づく診断画像が、情報端末500の表示部521に表示される場合について説明する。
 状態解析装置300は、管理装置400又は情報端末500から診断要求信号が送信されるまで待機する(ステップS101/NO)。状態解析装置300は、診断要求信号が送信されると(ステップS101/YES)、特定状態演算部301により、現在の特定状態情報xを求める(ステップS102)。次いで、状態解析装置300は、正常領域演算部302により、現在の正常領域Xを求める(ステップS103)。
 次に、状態解析装置300は、表示処理部304により、特定状態情報x及び正常領域Xをp-h線図上に表す診断画像のもととなる表示データを生成し(ステップS104)、生成した表示データを情報端末500へ送信する(ステップS105)。すると、情報端末500は、出力制御部530により、状態解析装置300から送信された表示データに基づいて診断画像の情報を生成し(ステップS106)、表示部521に、特定状態情報xと正常領域Xとを含む診断画像を表示させる(ステップS107)。そして、状態解析システム1000は、ステップS101の処理へ移行する。
 なお、情報端末500は、表示部521に診断画像を表示させた後、画像切替の契機となる操作がユーザにより行われたとき、又は一定の時間が経過したときに、表示部521の診断画像をホーム画面などに切り替える。なお、管理装置400の表示部421に診断画像が表示される場合の動作は、上記の説明と同様であるため省略する。
 以上のように、本実施の形態1における状態解析装置300及び状態解析システム1000は、特定状態情報xと正常領域Xとを表示させることから、正常領域Xに対する特定状態情報xの位置をユーザに視認させることができる。そのため、空気調和機の異常の要因及び劣化の程度をユーザに容易に診断させることができる。すなわち、状態解析システム1000は、p-h線図上に特定状態情報xと正常領域Xとを表示する。よって、ユーザは、p-h線図上での正常領域Xに対する特定状態情報xの位置を一見して把握することができるため、高精度の診断結果を得ることができる。
 また、状態解析装置300は、冷媒回路200における複数の特定箇所ごとの特定状態情報xと、各特定状態情報xの各々に対応する正常領域Xとを求めることができる。そして、状態解析装置300及び状態解析システム1000は、複数の特定状態情報xと複数の正常領域Xとを表示させるため、異常の要因の特定を容易に且つ精度よく行うことができる。ところで、従来の構成の場合、空気調和機100の異常の要因を精度よく特定するためには、ユーザは、異常の要因ごとの影響度等の専門的な知識を予め習得しておく必要がある。この点、状態解析システム1000では、上記の通り、特定状態情報xと正常領域Xとの位置関係と、空気調和機100の異常の要因とが、明確に対応づけられている。そのため、ユーザは、専門的な知識を持たなくとも、空気調和機100の高精度な診断を行うことができるため、すなわち、ユーザは、空気調和機100の劣化状態及びメンテナンスの必要性などを一見して知ることができるため、利便性の向上を図ることができる。
 さらに、表示部421又は表示部521は、特定状態情報x及び正常領域Xと共に、空気調和機100が設置された環境の温度を示す等温線を表示することができる。この場合、空気調和機100の状態と空気調和機100の周囲の空気温度との関係を、ユーザに、視覚的に把握させることができるため、診断の容易性を高めることができる。
 ところで、正常領域演算部302は、空気調和機100の設計仕様の情報をさらに用いて正常領域Xを求めるようにしてもよい。このようにすれば、より適切な正常領域Xを求めることができることから、表示部に表示される情報の正確性が高まるため、ユーザによる診断精度を高めることができる。
<変形例1>
 図11は、本発明の実施の形態1の変形例1に係る特定状態情報及び正常領域の表示例を示す説明図である。上記の説明では、正常領域Xが1つのレベルで構成されている場合を例示したが、本変形例1では、診断画像における正常領域Xが、空気調和機100の正常性の程度に応じた複数のレベルに分かれている。つまり、本変形例1の正常領域演算部302は、空気調和機100の正常性の程度に応じて正常領域Xのレベル分けを行うようになっている。なお、正常領域Xは、中心部から外側に向けて正常性の程度が小さくなっている。つまり、正常領域Xは、中心部から外側に向けて異常の程度が大きくなっている。
 ここで、図11の基本的な構成は、図3~図9の場合と同様であり、図11では、正常領域Xが2つのレベルに分かれている。この場合、正常領域演算部302は、第1入口領域Aと第2入口領域Aとにより構成された入口領域Aと、第1出口領域Bと第2出口領域Bとにより構成された出口領域Bと、第1凝縮領域Cと第2凝縮領域Cとにより構成された凝縮領域Cとを求める。
 入口領域Aにおいて、第2入口領域Aは、第1入口領域Aよりも正常性の程度が小さくなっている。出口領域Bにおいて、第2出口領域Bは、第1出口領域Bよりも正常性の程度が小さくなっている。凝縮領域Cにおいて、第2凝縮領域Cは、第1凝縮領域Cよりも正常性の程度が小さくなっている。
 表示処理部304は、2つのレベルに分かれた正常領域Xを用いて表示データを生成する。したがって、出力制御部430は、図11のように、2つのレベルに分かれた正常領域Xを含む診断画像を表示部421に表示させることができる。同様に、出力制御部530は、2つのレベルに分かれた正常領域Xを含む診断画像を表示部521に表示させることができる。
 もっとも、正常領域Xは、3つ以上のレベルに分けてもよい。すなわち、正常領域演算部302が、3つ以上のレベルに分かれた正常領域Xを演算し、表示処理部304は、3つ以上のレベルに分かれた正常領域Xを用いて表示データを生成するようにしてもよい。これにより、出力制御部430は、3つ以上のレベルに分かれた正常領域Xを含む診断画像を表示部421に表示させることができる。同様に、出力制御部530は、3つ以上のレベルに分かれた正常領域Xを含む診断画像を表示部521に表示させることができる。
 以上のように、本変形例1における状態解析装置300及び状態解析システム1000は、正常領域の正常性の程度に複数階層のレベルを設けることで、2つ以上のレベルに分かれた正常領域Xを表示させる。そのため、ユーザに、空気調和機100の状態を細かく診断させることができる。つまり、本変形例1における状態解析システム1000によれば、ユーザは、空気調和機100の劣化の程度などをさらに容易に診断することができるため、メンテナンスの必要性などをより精度よく判断することができる。
 ところで、上記の説明では、入口領域Aと出口領域Bと凝縮領域Cとが、何れも、2つ以上のレベルに分かれている場合を例示したが、これに限らず、入口領域A、出口領域B、及び凝縮領域Cのうちの1つ又は2つが、2つ以上のレベルに分かれていてもよい。すなわち、複数の特定箇所が設定されている場合、少なくとも1つの正常領域Xが2つ以上のレベルに分けられていればよい。
<変形例2>
 図12は、本発明の実施の形態1の変形例2に係る特定状態情報及び正常領域の表示例を示す説明図である。上記の説明では、表示部421又は表示部521が現在の特定状態情報xだけを表示する場合を例示したが、これに限らず、表示部421又は表示部521は、特定状態情報xの経年変化を示す情報を表示するようにしてもよい。すなわち、表示処理部304は、現在の特定状態情報xだけではなく、過去の特定状態情報xを含む表示データを生成してもよい。この場合、現在及び過去の特定状態情報xは、記憶部303又はサーバ記憶装置601に蓄積されるとよい。
 より具体的に、特定状態演算部301は、状態データ及び制御データを用いて演算する特定状態情報xを、少なくとも過去の一定期間分、時系列に沿って記憶部303又はサーバ記憶装置601に蓄積させる。ここで、一定期間は、空気調和機100の構成及び設置環境などに応じて設定され、適宜変更することができる。
 表示処理部304は、記憶部303又はサーバ記憶装置601に蓄積されている複数の特定状態情報xの中から、現在の特定状態情報xと、過去の特定状態情報xとを抽出する。そして、表示処理部304は、現在の特定状態情報xと共に、過去の特定状態情報xを用いて表示データを生成する。したがって、表示部421又は表示部521は、特定状態情報xの経年変化を示す情報として、過去の特定状態情報xを表示することができる。
 図12の例において、表示処理部304は、現在から基準期間だけ遡ったときの特定状態情報xと、そこからさらに基準期間だけ遡ったときの特定状態情報xとを抽出するようになっている。図12では、基準期間が50日に設定されている。
 より具体的に、図12の場合、表示処理部304は、記憶部303又はサーバ記憶装置601から、入口情報aと、現在から50日前の入口情報aである入口情報a1と、現在から100日前の入口情報aである入口情報a2とを抽出する。また、表示処理部304は、出口情報bと、現在から50日前の出口情報bである出口情報b1と、現在から100日前の出口情報bである出口情報b2とを抽出する。さらに、表示処理部304は、凝縮情報cと、現在から50日前の凝縮情報cである凝縮情報c1と、現在から100日前の凝縮情報cである凝縮情報c2とを抽出する。
 そして、表示処理部304は、抽出した各情報を用いて表示データを生成する。よって、状態解析装置300は、表示部に表示させる診断画像に、特定状態情報xの経年変化を示す情報として、入口情報a1及びa2と、出口情報b1及びb2と、凝縮情報c1及びc2と、を含めることができる。
 また、表示処理部304は、現在の冷凍サイクル図形Rcと共に、過去の冷凍サイクル図形Rcを含む表示データを生成する。図12の場合、表示処理部304は、冷凍サイクル図形Rcと共に、現在から50日前の冷凍サイクル図形Rcである冷凍サイクル図形Rc1と、現在から100日前の冷凍サイクル図形Rcである冷凍サイクル図形Rc2とを含む表示データを生成する。よって、状態解析装置300は、表示部に表示させる診断画像に、特定状態情報xの経年変化を示す情報として、冷凍サイクル図形Rc1と冷凍サイクル図形Rc2とを含めることができる。
 ところで、図12では、基準期間が50日に設定された場合を例示しているが、これに限らず、経過時間は適宜変更することができる。また、図12では、過去の2つの特定状態情報xを表示する場合を例示したが、これに限らず、診断画像には、過去の3つ以上の特定状態情報xが含まれてもよい。
 以上のように、本変形例2における状態解析装置300及び状態解析システム1000は、特定状態情報xの経年変化を示す情報を含む診断画像を表示部に表示させる。つまり、表示部421及び表示部521のうちの少なくとも一方は、特定状態情報xの経年変化を示す情報を表示する。したがって、ユーザは、診断画像を視認することにより、空気調和機100の劣化度合の経年変化を把握することができるため、空気調和機100の状態をさらに精度よく診断することができる。
 また、特定状態情報xの経年変化は、特定状態情報xに対応する特定箇所によって異なる。例えば、図12の例では、出口情報b及び凝縮情報cの経年変化は相対的に大きいが、入口情報aの経年変化は相対的に小さくなっている。ここで、複数の特定状態情報xは、それぞれ、異なる特定箇所に対応している。つまり、複数の特定状態情報xは、それぞれ、図4~図9を参照して述べたように、空気調和機100の異常についての様々な指標となっている。したがって、ユーザは、特定状態情報xの経年変化を示す情報から、空気調和機100の劣化の傾向などを知ることができる。
 ここで、図12では、現在及び過去の冷凍サイクル図形Rcと共に、過去の冷凍サイクル図形Rcを診断画像に含めて表示する場合を例示したが、これに限定されない。診断画像は、過去の冷凍サイクル図形Rcを含まずに構成してもよく、そもそも、現在及び過去の冷凍サイクル図形Rcを含めずに構成してもよい。ただし、診断画像が冷凍サイクル図形Rcを含んでいる方が、特定状態情報xと正常領域Xとの対応づけが容易となり、特定状態情報xの経年変化の傾向も捉えやすくなるため、ユーザの利便性の向上を図ることができる。なお、変形例2の構成は、変形例1の構成にも適用することができる。
実施の形態2.
 図13は、本発明の実施の形態2に係る状態解析システムの機能的な構成を示すブロック図である。本実施の形態2に係る状態解析システムの全体的な構成は、実施の形態1で参照した図1と同様である。前述した実施の形態1と同等の構成部材については同一の符号を用いて説明は省略する。
 本実施の形態2における状態解析システム1000Aは、空気調和機100内に、診断対象となる空気調和機100の故障診断などを行う状態解析装置300Aを有している。状態解析装置300Aは、特定状態演算部301、正常領域演算部302、記憶部303、表示処理部304、及び通信部305と共に、状態診断部306を有している。
 状態診断部306は、特定状態情報xと正常領域Xとの位置関係に基づいて、空気調和機100に異常があるか否かを判定する。そして、状態診断部306は、特定状態情報xが正常領域Xの外に存在するか否かを判定する。ここで、特定状態情報xが正常領域Xの外に存在することは、実施の形態1と同様、空気調和機100に異常が発生していることを示す。すなわち、状態診断部306は、特定状態情報xが正常領域Xから逸脱したことをもって、空気調和機100に異常があると判定する。
 複数の特定箇所が設定されている場合において、状態診断部306は、複数の特定状態情報xのうちの少なくとも1つが、各々に対応する正常領域Xから外れているとき、空気調和機100に異常があると判定する。例えば、実施の形態1で参照した図4~図9のような状況である。一方、図3のように、複数の特定状態情報xの何れもが、各々に対応する正常領域X内に存在する場合、状態診断部306は、空気調和機100が正常な状態であると判定する。
 状態診断部306は、空気調和機100に異常があると判定したとき、空気調和機100に異常があることを示す異常信号を、通信部305を介して、管理装置400及び情報端末500のうちの少なくとも1つに送信する。
 出力制御部430は、状態診断部306から異常信号が送信されると、空気調和機100に異常が発生している旨の異常情報を表示部421に表示させる。同様に、出力制御部530は、状態診断部306から異常信号が送信されると、表示部521に異常情報を表示させる。出力制御部430は、状態診断部306から異常信号が送信されたとき、空気調和機100に異常が発生している旨の報知情報を報知部422に報知させてもよい。同様に、出力制御部530は、状態診断部306から異常信号が送信されたとき、報知部522に報知情報を報知させてもよい。
 ここで、出力制御部430及び出力制御部530は、状態診断部306から異常信号が送信されたとき、異常情報の表示と報知情報の報知との双方を行うようにしてもよく、何れか一方を行うようにしてもよい。なお、報知情報は、ビープ音などでもよく、「異常が発生しています」といった内容の音声であってもよい。
 ところで、状態診断部306は、空気調和機100が正常な状態であると判定したとき、空気調和機100が正常な状態であることを示す正常信号を、管理装置400及び情報端末500のうちの少なくとも1つに送信してもよい。この場合、出力制御部430は、正常信号に応じて、空気調和機100が正常な状態である旨の正常情報を表示部421に表示してもよく、空気調和機100が正常な状態である旨の正常報知情報を報知部422に報知させてもよい。同様に、出力制御部530は、正常信号に応じて、表示部521に正常情報を表示させてもよく、報知部522に正常報知情報を報知させてもよい。
 本実施の形態2において、表示部421又は表示部521は、実施の形態1と同様、特定状態情報xと正常領域Xとを含む診断画像を表示するようになっている。そのため、異常情報又は正常情報は、診断画像と同一の画面上に表示するとよい。
 図14は、図13の状態解析システムによる動作のうち、空気調和機100の状態判定処理を示すフローチャートである。図14を参照して、本実施の形態2における空気調和機100の状態判定方法について説明する。ここでは、異常情報が情報端末500の表示部521に表示される場合について説明する。
 状態解析装置300Aは、ステップS101~S103の一連の処理を図10の場合と同様に実行する。次に、状態診断部306は、特定状態情報xが正常領域Xの外に存在するか否かを判定する(ステップS201)。状態診断部306は、特定状態情報xが正常領域Xの外に存在する場合(ステップS201/YES)、異常信号を生成して情報端末500へ送信する(ステップS202)。一方、特定状態情報xが正常領域X内に存在する場合(ステップS201/NO)、状態解析システム1000は、ステップS101の処理へ移行する。
 出力制御部530は、状態診断部306から異常信号が送信されると、表示部521に異常情報を表示させる(ステップS203)。そして、状態解析システム1000は、ステップS101の処理へ移行する。なお、異常情報が表示部421に表示される場合の動作、及び報知情報が報知部422又は報知部522から報知される場合の動作は、図14の場合と同様であるため省略する。
 ここで、状態診断部306による判定処理及び異常信号又は正常信号の送信処理(図14のステップS201及びS202に対応)は、表示処理部304による表示データの生成処理及び送信処理(図10のステップS104及びS105)と並行して行われる。また、出力制御部430及び出力制御部530は、上記の表示処理又は報知処理(図14のステップS203に対応)を、診断画像の生成処理及び表示処理(図10のステップS106及びS107)と並行で実行する。そして、本実施の形態2において、異常情報又は正常情報は、診断画像と同一の画面上に表示される。
 以上のように、本実施の形態2における状態解析装置300A及び状態解析システム1000Aは、空気調和機100に異常があるか否かを判定する際、特定状態情報xと正常領域Xとの位置関係を利用する。そのため、空気調和機100の異常の有無を精度よく判定することができる。そして、特定状態情報xが正常領域Xから逸脱したことをもって、空気調和機100に異常があると判定するため、特定箇所の異常の有無を高精度に判定することができる。
 また、状態解析装置300Aは、複数の特定箇所ごとの特定状態情報xと、各特定状態情報xの各々に対応する正常領域Xとを求めることができる。そして、状態解析装置300A及び状態解析システム1000Aは、複数の特定箇所のそれぞれに対応する特定状態情報xと正常領域Xとの位置関係から、空気調和機100の異常の有無を判定する。よって、空気調和機100の異常の要因に左右されない高精度な判定を行うことができるため、ユーザに適切な処置を促すことができる。
 さらに、状態解析システム1000Aは、状態診断部306による処理の結果を出力する出力部を備え、出力部は、特定状態情報xが正常領域Xの外に存在する場合に、空気調和機100に異常が発生している旨の情報を出力する。すなわち、出力部は、特定状態情報xが正常領域Xの外に存在する場合に、異常情報の表示、又は報知情報の報知を行うようになっている。したがって、ユーザは、状態解析装置300Aによる判定の結果を、視覚又は聴覚により、容易に把握することができるため、ユーザビリティーの向上を図ることができる。
 ここで、特許文献1のように、冷凍サイクル図形間の非重複率と基準値との比較により、メンテナンスの要否を画一的に判定する手法では、基準値を対応づける故障の要因によって判定結果が違ってくる。なぜなら、冷凍サイクル図形間の非重複率に与える影響は、空気調和機の異常の要因によって異なるためである。例えば、非重複率が相対的に大きくなる要因を基準にとると、非重複率が相対的に小さくなる要因を取りこぼすことになる。一方、非重複率が相対的に小さくなる要因を基準にとると、非重複率が相対的に大きくなる要因による誤判定が生じる。すなわち、特許文献1の構成では、メンテナンスの要否の判定を精度よく行うことができない。
 この点、本実施の形態2の状態解析装置300Aは、冷媒回路200の特定箇所に応じた特定状態情報x及び正常領域Xを求めることから、特定状態情報xと正常領域Xとの比較処理を特定箇所ごとに行うことができるため、誤判定を低減することができる。他の効果については、実施の形態1と同様である。
 ところで、図13では、状態解析装置300Aが表示処理部304を有する場合を例示したが、これに限らず、状態解析装置300Aは、表示処理部304を設けずに構成してもよい。このようにしても、特定状態情報xと正常領域Xとの位置関係に基づく高精度な判定により、ユーザに空気調和機100の異常を知らせることができる。よって、空気調和機100のメンテナンスをユーザに促すことができるため、空気調和機100の故障などを未然に防ぐことができる。また、本実施の形態2の構成に、変形例1の構成を適用してもよい。すなわち、特定状態情報xが存在する正常領域X内のレベルごとに、表示内容又は報知内容を変更してもよい。加えて、本実施の形態3の構成に、変形例2の構成を適用してもよい。
実施の形態3.
 図15は、本発明の実施の形態3に係る状態解析システムの機能的な構成を示すブロック図である。本実施の形態3に係る状態解析システムの全体的な構成は、実施の形態1で参照した図1と同様である。上述した実施の形態1及び2と同等の構成部材については同一の符号を用いて説明は省略する。
 本実施の形態3における状態解析システム1000Bは、空気調和機100内に、診断対象となる空気調和機100の故障診断などを行う状態解析装置300Bを有している。状態解析装置300Bは、特定状態演算部301、正常領域演算部302、記憶部303、表示処理部304、及び通信部305と共に、状態診断部306Bを有している。
 状態診断部306Bは、特定状態情報xと正常領域Xとの位置関係に基づき、特定状態情報xが正常領域Xの外に存在する場合に、空気調和機100の異常の要因を特定する。状態診断部306は、複数の特定箇所が設定されている場合、複数の特定状態情報xのうちの少なくとも1つが、各々に対応する正常領域Xから外れているときに、空気調和機100の異常の要因を特定する。そして、状態診断部306Bは、異常の要因の特定結果を示す要因データを、通信部305を介して、管理装置400及び情報端末500のうちの少なくとも1つに送信する。
 例えば、状態診断部306Bは、特定状態情報xと正常領域Xとの位置関係が図4のような場合、冷媒回路200に封入されている冷媒量の異常が要因であると特定する。状態診断部306Bは、特定状態情報xと正常領域Xとの位置関係が図5のような場合、凝縮器の異常、又は凝縮器に付設されたファンの異常が要因であると特定する。状態診断部306Bは、特定状態情報xと正常領域Xとの位置関係が図6のような場合、蒸発器の異常、又は蒸発器に付設されたファンの異常が要因であると特定する。状態診断部306Bは、特定状態情報xと正常領域Xとの位置関係が図7のような場合、圧縮機101の異常が要因であると特定する。状態診断部306Bは、特定状態情報xと正常領域Xとの位置関係が図8のような場合、圧縮機101に液冷媒が流入していることが要因であると特定する。状態診断部306Bは、特定状態情報xと正常領域Xとの位置関係が図9のような場合、膨張手段106の異常又は冷媒回路200に閉塞部がある異常が要因であると特定する。
 出力制御部430は、状態診断部306から要因データが送信されると、空気調和機100の異常の要因を示す異常要因情報を表示部421に表示させる。同様に、出力制御部530は、状態診断部306から要因データが送信されると、表示部521に異常要因情報を表示させる。出力制御部430は、状態診断部306から要因情報が送信されたとき、空気調和機100の異常の要因を知らせる要因報知情報を報知部422に報知させてもよい。同様に、出力制御部530は、状態診断部306から要因データが送信されたとき、報知部522に要因報知情報を報知させてもよい。もっとも、出力制御部430及び出力制御部530は、状態診断部306から要因データが送信されたとき、異常要因情報の表示と要因報知情報の報知との双方を行うようにしてもよく、何れか一方を行うようにしてもよい。
 本実施の形態3では、実施の形態1と同様、表示部421又は表示部521が、特定状態情報xと正常領域Xとを含む診断画像を表示するようになっている。そのため、異常要因情報は、診断画像と同一の画面上に表示するとよい。
 図16は、図15の状態解析システムによる動作のうち、空気調和機100の状態診断処理を示すフローチャートである。図16を参照して、本実施の形態3における空気調和機100の状態診断方法について説明する。ここでは、異常要因情報が情報端末500の表示部521に表示される場合について説明する。
 状態解析装置300Aは、ステップS101~S103及びS201の一連の処理を図14の場合と同様に実行する。次に、状態診断部306Bは、特定状態情報xが正常領域Xの外に存在する場合(ステップS201/YES)、空気調和機100の異常の要因を特定する(ステップS301)。そして、状態診断部306Bは、異常の要因の特定結果を示す要因データを生成し、情報端末500へ送信する(ステップS302)。
 出力制御部530は、状態診断部306Bから要因データが送信されると、表示部521に異常要因情報を表示させる(ステップS303)。そして、状態解析システム1000は、ステップS101の処理へ移行する。なお、異常要因情報が表示部421に表示される場合の動作、及び要因報知情報が報知部422又は報知部522から報知される場合の動作は、図16の場合と同様であるため省略する。
 なお、状態診断部306Bによる判定処理及び要因データの送信処理(図16のステップS201及びS301に対応)は、表示処理部304による表示データの生成処理及び送信処理(図10のステップS104及びS105)と並行して行われる。また、出力制御部430及び出力制御部530は、上記の表示処理又は報知処理(図16のステップS303に対応)を、診断画像の生成処理及び表示処理(図10のステップS106及びS107)と並行で実行する。そして、本実施の形態3において、異常要因情報は、診断画像と同一の画面上に表示される。
 以上のように、本実施の形態3における状態解析装置300B及び状態解析システム1000Bは、空気調和機100に異常の要因を特定する際、特定状態情報xと正常領域Xとの位置関係を利用する。そのため、空気調和機100の異常の要因を精度よく特定することができる。また、状態解析装置300Bは、複数の特定箇所ごとの特定状態情報xと、各特定状態情報xの各々に対応する正常領域Xとを求めることができる。そして、状態解析装置300B及び状態解析システム1000Bは、複数の特定箇所のそれぞれに対応する特定状態情報xと正常領域Xとの位置関係を総合して、空気調和機100の異常の要因を特定する。よって、空気調和機100の異常に関する種々の要因について、高精度な診断を行うことができる。
 さらに、状態解析システム1000Bは、状態診断部306Bによる処理の結果を出力する出力部を備え、出力部は、状態診断部306Bにおいて特定された空気調和機100の異常の要因を示す情報を出力する。よって、ユーザは、空気調和機100の状態を、視覚又は聴覚により簡単に認識することができるため、ユーザの利便性の向上を図ることができる。
 ここで、従来の構成では、空気調和機100の異常の要因を適切に抽出するために、ユーザは、異常の要因ごとの影響度などの専門的な知識を予め習得しておく必要がある。これに対し、状態解析システム1000Bによれば、ユーザは、出力部からの情報により、異常の要因を容易に知ることができるため、専門的な知識を持たなくとも、高精度な診断結果を得ることができる。
 ところで、図15では、状態解析装置300Bが表示処理部304を有する場合を例示したが、これに限らず、状態解析装置300Bは、表示処理部304を設けずに構成してもよい。このようにしても、特定状態情報xと正常領域Xとの位置関係に基づく高精度な診断処理により、ユーザに空気調和機100の異常の要因を知らせることができる。よって、ユーザは、空気調和機100の特定箇所の確認を行うといった具合に、的を絞ったメンテナンスを行うことができる。なお、本実施の形態3の構成は、前述した実施の形態2の構成と組み合わせて用いることができる。また、本実施の形態3の構成に、変形例1の構成を適用してもよい。すなわち、特定状態情報xが存在する正常領域X内のレベルごとに、異常要因情報又は要因報知情報の内容を変更してもよい。加えて、本実施の形態3の構成に、変形例2の構成を適用してもよい。他の効果については、実施の形態1及び2と同様である。
実施の形態4.
 図17は、本発明の実施の形態4に係る状態解析システムの構成図である。図18は、図17の状態解析システムの機能的構成を示すブロック図である。本実施の形態4の状態解析システムは、状態解析装置が空気調和機の内部に設けられていない点に特徴がある。上述した実施の形態1~3と同等の構成部材については同一の符号を用いて説明は省略する。
 本実施の形態4の状態解析システム1000Cは、空気調和機100Cと、管理装置400Cと、情報端末500Cと、サーバ装置600と、により構成されている。空気調和機100Cは、状態解析装置300を有しない点を除き、実施の形態1~3の空気調和機100と同様に構成されている。
 管理装置400Cは、空気調和機100と情報端末500Cとの間のデータ通信を中継する通信処理部440を有している。通信処理部440は、管理装置400Cの内部メモリなどに、状態データ及び制御データを一度集積させた後、情報端末500Cに備わる状態解析装置300に転送する。
 すなわち、通信処理部440は、冷媒温度センサ121~125と空気温度センサ131~132とを含む状態検出部120から状態データを取得し、取得した状態データを情報端末500Cの状態解析装置300に受け渡す。また、通信処理部440は、空気調和機100Cから、制御装置140の各アクチュエータに対する制御内容を示す制御データを取得し、取得した制御データを情報端末500Cの状態解析装置300に受け渡す。そして、情報端末500Cは、空気調和機100Cの状態を、管理装置400Cを介して取得する状態データ及び制御データを用いて解析する状態解析装置300を有している。
 例えば、近年広く普及しているスマートフォンには、高機能なアプリケーションを搭載することができる。つまり、情報端末500Cがスマートフォンである場合、状態解析装置300は、スマートフォンのアプリケーションとして搭載される。
 ところで、図17及び図18では、情報端末500Cが実施の形態1の場合と同様に構成された状態解析装置300を有する場合を例示したが、これに限定されない。情報端末500Cは、実施の形態2の状態解析装置300A、又は実施の形態3の状態解析装置300Bを有するようにしてもよい。すなわち、状態解析システム1000Cは、変形例1、変形例2、実施の形態2、又は実施の形態3の構成の他、これらのうちの2つ以上を組み合わせた構成を適用してもよい。
 以上のように、本実施の形態4によれば、状態解析装置300が情報端末500C内に設けられているため、実施の形態1~3の構成と比較して、空気調和機100Cを安価に製造することができる。もっとも、状態解析システム1000Cは、状態解析装置300、状態解析装置300A、又は状態解析装置300Bが、管理装置400Cに設けられてもよい。本実施の形態4の状態解析システム1000Cの動作は、実施の形態1~3の場合と同様である。
実施の形態5.
 本実施の形態5に係る状態解析システムの全体的な構成及び機能的な構成は、実施の形態1~4で参照した図1、図2、図13、図15、図17、及び図18と同様である。上述した実施の形態1~4では、外部から状態解析の実施が要求されたときに、空気調和機の状態解析を実施する場合を例示している。つまり、上述した実施の形態1~4では、ユーザの実施要求に応じて空気調和機の状態解析を実施する例を示している。これに対し、本実施の形態5は、ユーザの実施要求ではなく、例えば、一定の時間周期で空気調和機の状態解析を実施する。上述した実施の形態1~4と同等の構成部材については同一の符号を用いて説明は省略する。以下、特に言及しない限り、実施の形態1で用いた符号を用いるものとする。
 本実施の形態5の状態解析装置300は、時刻を管理する機能、又は時間を計時する機能を有している。したがって、状態解析システム1000は、毎日同時刻に、空気調和機100の状態解析処理を行うように構成される。また、状態解析システム1000は、設定時間ごとに、空気調和機100の状態解析処理を行うように構成される。設定時間は、例えば24時間に設定され、適宜変更することができる。
 図19は、本発明の実施の形態5に係る状態解析システムの動作を示すフローチャートである。ここでは、設定時間ごとに状態解析処理を行う場合の状態診断方法について説明する。図10と同様の工程については、同一の符号を用いて説明は省略する。状態解析システム1000は、設定時間ごとに、空気調和機100の状態解析処理を行うように構成される。
 状態解析システム1000は、ユーザによる定期診断の指示操作に応じて、ステップS102~S107の一連の処理を実行する。そして、状態解析システム1000は、空気調和機100の状態解析処理を開始してから設定時間が経過するまで待機する(ステップS108)。状態解析システム1000は、設定時間が経過すると、ステップS102の処理へ移行する。なお、毎日同時刻に状態解析処理を行う場合は、指定時刻になったときに、ステップS102~S107の一連の処理を実行する。指定時刻は、曜日又は日付ごとに設定してもよい。また、指定時刻は、一日に複数設定してもよい。そして、指定時刻の設定数は、曜日又は日付ごとに変化させてもよい。上記の動作説明は、実施の形態1の構成を適用した場合を想定して行ったが、実施の形態2~4の構成を適用した場合は、各実施の形態のそれぞれの動作と同様になる。
 上述した実施の形態は、状態解析装置及び状態解析システムにおける好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、状態検出部120は、上記の構成に限定されない。一例として、状態検出部120は、冷媒温度センサ121の代わりに、圧縮機101の吸入側に設けられ、圧縮機101に吸入される冷媒の温度を計測する冷媒温度センサを有していてもよい。状態検出部120の各センサは、温度センサに限らず、状態検出部120は、冷媒の圧力を計測する圧力センサ、又は非接触部の温度を計測する赤外線カメラなどを含んでいてもよい。上記各実施の形態では、サーバ装置600が、クラウドコンピューティングに基づくクラウドサーバである場合を例示したが、これに限らず、サーバ装置600は、Webサーバ等の物理サーバであってもよい。
 冷媒回路200は、図1及び図17の構成に限らず、空気調和機100は、様々な構成の冷媒回路200を搭載することができる。そして、状態解析装置300は、様々な構成の冷媒回路200の状態を、上記同様に解析することができる。例えば、図1では、膨張手段106が第1膨張弁106aと第2膨張弁106bとにより構成されている場合を例示したが、これに限らず、膨張手段106は、例えば電子膨張弁からなる1つの膨張弁であってもよい。なお、上記の説明では、具体例として、3つの特定箇所が設定されている場合を例示したが、これに限らず、特定箇所の設定数は、1つ、2つ、又は4つ以上であってもよい。
 11 圧縮機、100、100C 空気調和機、100A 室外機、100B 室内機、101 圧縮機、102 室外熱交換器、103 室内熱交換器、104 室外ファン、105 室内ファン、106 膨張手段、106a 第1膨張弁、106b 第2膨張弁、108 四方弁、109 レシーバ、120 状態検出部、121~125 冷媒温度センサ、131~132 空気温度センサ、140 制御装置、200 冷媒回路、300、300A、300B 状態解析装置、301 特定状態演算部、302 正常領域演算部、303 記憶部、304 表示処理部、305 通信部、306、306B 状態診断部、400、400C 管理装置、410、510 入力部、420、520 出力部、421、521 表示部、422、522 報知部、430、530 出力制御部、440 通信処理部、500、500C 情報端末、600 サーバ装置、601 サーバ記憶装置、602 サーバ通信装置、603 機械学習装置、800 電気通信回線、1000、1000A、1000B、1000C 状態解析システム、A 入口領域、A1 第1入口領域、A2 第2入口領域、B 出口領域、B1 第1出口領域、B2 第2出口領域、C 凝縮領域、C1 第1凝縮領域、C2 第2凝縮領域、R 冷媒配管、Rc、Rc1、Rc2 冷凍サイクル図形、S 飽和線、Tin、Tout 等温線、X 正常領域、a、a1、a2 入口情報、b、b1、b2 出口情報、c、c1、c2 凝縮情報、x 特定状態情報。

Claims (26)

  1.  圧縮機と膨張手段とを含む冷媒回路と、前記冷媒回路における冷媒の状態を状態データとして検出する状態検出部と、前記圧縮機及び前記膨張手段を制御する制御装置と、を有する空気調和機と、
     前記状態データ及び前記制御装置による制御内容を示す制御データを用い、第1パラメータと第2パラメータとにより定まる状態空間内において、前記冷媒回路の特定箇所での冷媒の状態を示す特定状態情報を求める特定状態演算部と、
     前記状態データ及び前記制御データを用い、前記空気調和機の正常状態での運転時に前記特定状態情報が存在する前記状態空間内の正常領域を求める正常領域演算部と、
     前記特定状態演算部において求められた前記特定状態情報、及び前記正常領域演算部において求められた前記正常領域を表示する表示部と、を備えた、
     状態解析システム。
  2.  前記特定状態情報と前記正常領域との位置関係に基づいて、前記空気調和機に異常があるか否かを判定する状態診断部を有する、
     請求項1に記載の状態解析システム。
  3.  前記状態診断部は、
     前記特定状態情報が前記正常領域の外に存在する場合に、前記空気調和機に異常があると判定する、
     請求項2に記載の状態解析システム。
  4.  前記表示部は、
     前記特定状態情報が前記正常領域の外に存在する場合に、前記空気調和機に異常が発生している旨の情報を表示する、
     請求項2又は3に記載の状態解析システム。
  5.  前記状態診断部は、
     前記特定状態情報と前記正常領域との位置関係に基づいて、前記空気調和機の異常の要因を特定するものであり、
     前記表示部は、
     前記状態診断部において特定された前記空気調和機の異常の要因を示す情報を表示する、
     請求項2~4の何れか一項に記載の状態解析システム。
  6.  圧縮機と膨張手段とを含む冷媒回路と、前記冷媒回路における冷媒の状態を状態データとして検出する状態検出部と、前記圧縮機及び前記膨張手段を制御する制御装置と、を有する空気調和機と、
     前記状態データ及び制御装置による制御内容を示す制御データを用い、第1パラメータと第2パラメータとにより定まる状態空間内において、前記冷媒回路の特定箇所での冷媒の状態を示す特定状態情報を求める特定状態演算部と、
     前記状態データ及び前記制御データを用い、前記空気調和機の正常状態での運転時に前記特定状態情報が存在する前記状態空間内の正常領域を求める正常領域演算部と、
     前記特定状態情報と前記正常領域との位置関係に基づいて、前記空気調和機に異常があるか否かを判定する状態診断部と、を備えた、
     状態解析システム。
  7.  前記状態診断部は、
     前記特定状態情報が前記正常領域の外に存在する場合に、前記空気調和機に異常があると判定する、
     請求項6に記載の状態解析システム。
  8.  前記状態診断部による処理の結果を出力する出力部を備え、
     前記出力部は、
     前記特定状態情報が前記正常領域の外に存在する場合に、前記空気調和機に異常が発生している旨の情報を出力する、
     請求項7に記載の状態解析システム。
  9.  前記状態診断部による処理の結果の情報を出力する出力部を備え、
     前記状態診断部は、
     前記特定状態情報と前記正常領域との位置関係に基づいて、前記空気調和機の異常の要因を特定するものであり、
     前記出力部は、
     前記状態診断部において特定された前記空気調和機の異常の要因を示す情報を出力する、
     請求項6~8の何れか一項に記載の状態解析システム。
  10.  前記冷媒回路は、凝縮器と蒸発器とを含み、
     前記状態診断部は、
     前記空気調和機の異常の要因として、
     前記冷媒回路に封入されている冷媒量の異常、
     前記凝縮器又は前記蒸発器の異常、
     前記圧縮機の異常、
     前記圧縮機に液冷媒が流入する異常、
     前記膨張手段の異常、
     及び前記冷媒回路に閉塞部がある異常、
    のうちの少なくとも1つを特定する、
     請求項5又は9に記載の状態解析システム。
  11.  前記冷媒回路は、凝縮器と蒸発器とを含み、
     前記空気調和機は、
     前記凝縮器及び前記蒸発器のそれぞれに付設されたファンを有し、
     前記状態診断部は、
     前記空気調和機の異常の要因として、
     前記凝縮器に付設されたファンの異常、
     及び前記蒸発器に付設されたファンの異常、
    のうちの少なくとも1つを特定する、
     請求項5、9、10の何れか一項に記載の状態解析システム。
  12.  前記出力部は、
     前記特定状態演算部において求められた前記特定状態情報、及び前記正常領域演算部において求められた前記正常領域を表示する表示部を含む、
     請求項8又は9に記載の状態解析システム。
  13.  前記第1パラメータは冷媒の圧力であり、
     前記第2パラメータはエンタルピであり、
     前記表示部は、
     前記特定状態情報及び前記正常領域をp-h線図上に表示する、
     請求項1~5、12の何れか一項に記載の状態解析システム。
  14.  前記表示部は、
     前記特定状態情報および前記正常領域と共に、
     前記空気調和機が設置された環境の温度を示す等温線を表示する、
     請求項1~5、12、13の何れか一項に記載の状態解析システム。
  15.  前記状態データと前記制御データとを記憶する記憶部を有し、
     前記特定状態情報は、前記記憶部あるいは前記空気調和機の外部に設けられたサーバ装置に蓄積され、
     前記表示部は、
     前記特定状態情報の経年変化を示す情報を表示する、
     請求項1~5、12~14の何れか一項に記載の状態解析システム。
  16.  前記表示部は、
     前記空気調和機に情報的に接続された、
     リモートコントローラ、集中管理装置、携帯電話、及びパーソナルコンピュータのうちの少なくとも1つに設けられている、
     請求項1~5、12~15の何れか一項に記載の状態解析システム。
  17.  前記状態データと前記制御データとを記憶する記憶部を有し、
     前記正常領域演算部は、
     前記記憶部に蓄積された前記状態データ及び前記制御データを用いて前記正常領域を求める、
     請求項1~16の何れか一項に記載の状態解析システム。
  18.  前記状態データと前記制御データとは、前記空気調和機の外部に設けられたサーバ装置に蓄積され、
     前記正常領域演算部は、
     前記サーバ装置に蓄積された前記状態データ及び前記制御データを用いて前記正常領域を求める、
     請求項1~17の何れか一項に記載の状態解析システム。
  19.  前記正常領域演算部は、
     前記空気調和機の設計仕様の情報を用いて前記正常領域を求める、
     請求項1~18の何れか一項に記載の状態解析システム。
  20.  前記正常領域演算部は、
     前記状態データと前記制御データとを用いた機械学習に基づいて前記正常領域を求める、
     請求項1~19の何れか一項に記載の状態解析システム。
  21.  前記正常領域演算部は、
     前記空気調和機の異常の程度に応じて前記正常領域のレベル分けを行う、
     請求項1~20の何れか一項に記載の状態解析システム。
  22.  前記特定状態演算部は、
     前記冷媒回路の複数の特定箇所ごとの前記特定状態情報を求めるものであり、
     前記正常領域演算部は、
     前記各前記特定状態情報の各々に対応する前記正常領域を求めるものである、
     請求項1~21の何れか一項に記載の状態解析システム。
  23.  前記冷媒回路は、凝縮器を含み、
     前記特定状態演算部は、
     前記各特定状態情報として、
     前記圧縮機の入口における冷媒の状態を示す入口情報と、
     前記圧縮機の出口における冷媒の状態を示す出口情報と、
     前記凝縮器の出口における冷媒の状態を示す凝縮情報と、を求めるものであり、
     前記正常領域演算部は、
     前記各正常領域として、
     前記空気調和機の正常状態での運転時に前記入口情報が存在する入口領域と、
     前記空気調和機の正常状態での運転時に前記出口情報が存在する出口領域と、
     前記空気調和機の正常状態での運転時に前記凝縮情報が存在する凝縮領域と、を求めるものである、
     請求項22に記載の状態解析システム。
  24.  外部から状態解析の実施が要求されたときに前記空気調和機の状態解析を実施する、
     請求項1~23の何れか一項に記載の状態解析システム。
  25.  一定の時間周期で前記空気調和機の状態解析を実施する、
     請求項1~23の何れか一項に記載の状態解析システム。
  26.  圧縮機と膨張手段とを含む冷媒回路と、前記圧縮機及び前記膨張手段を制御する制御装置と、を有する空気調和機の状態を、前記冷媒回路における冷媒の状態を示す状態データと前記制御装置による制御内容を示す制御データとを用いて解析し、解析結果を外部に設けられた表示部に表示させる状態解析装置であって、
     前記状態データ及び前記制御データを用い、第1パラメータと第2パラメータとにより定まる状態空間内において、前記冷媒回路の特定箇所での冷媒の状態を示す特定状態情報を求める特定状態演算部と、
     前記状態データ及び前記制御データを用い、前記空気調和機の正常状態での運転時に前記特定状態情報が存在する前記状態空間内の正常領域を求める正常領域演算部と、
     前記特定状態演算部において求められた前記特定状態情報、及び前記正常領域演算部において求められた正常領域を、前記表示部に表示させる表示処理部と、を有する、
     状態解析装置。
PCT/JP2018/002260 2018-01-25 2018-01-25 状態解析システム及び状態解析装置 WO2019146035A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/002260 WO2019146035A1 (ja) 2018-01-25 2018-01-25 状態解析システム及び状態解析装置
EP18902989.5A EP3745055B1 (en) 2018-01-25 2018-01-25 State analysis system and state analysis device
SG11202006851WA SG11202006851WA (en) 2018-01-25 2018-01-25 State analyzer system and state analysis device
US16/960,762 US11906185B2 (en) 2018-01-25 2018-01-25 State analyzer system and state analysis device
AU2018404247A AU2018404247B2 (en) 2018-01-25 2018-01-25 State analyzer system and state analysis device
JP2019567460A JP6976356B2 (ja) 2018-01-25 2018-01-25 状態解析システム及び状態解析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002260 WO2019146035A1 (ja) 2018-01-25 2018-01-25 状態解析システム及び状態解析装置

Publications (1)

Publication Number Publication Date
WO2019146035A1 true WO2019146035A1 (ja) 2019-08-01

Family

ID=67395864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002260 WO2019146035A1 (ja) 2018-01-25 2018-01-25 状態解析システム及び状態解析装置

Country Status (6)

Country Link
US (1) US11906185B2 (ja)
EP (1) EP3745055B1 (ja)
JP (1) JP6976356B2 (ja)
AU (1) AU2018404247B2 (ja)
SG (1) SG11202006851WA (ja)
WO (1) WO2019146035A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066405A (ja) * 2019-10-28 2021-04-30 株式会社東芝 車両用空調装置の診断装置および診断方法
CN112833596A (zh) * 2021-01-21 2021-05-25 四川长虹空调有限公司 一种制冷系统制冷剂状态的判定方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297974A (ja) * 1987-05-29 1988-12-05 株式会社東芝 冷凍機の特性診断装置
JPH01174870A (ja) * 1987-12-28 1989-07-11 Toshiba Corp 冷凍機診断装置
US20050061008A1 (en) * 2003-09-24 2005-03-24 A. Ben-Nakhi Method and apparatus for monitoring an air conditioning / refrigeration unit
JP2008232580A (ja) * 2006-03-23 2008-10-02 Daikin Ind Ltd 冷凍装置
JP2008249234A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置
JP2011007457A (ja) * 2009-06-29 2011-01-13 Denso Corp ヒートポンプ式給湯機
JP2013155970A (ja) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd 冷凍装置の監視システム
JP2015092121A (ja) 2013-11-08 2015-05-14 東日本旅客鉄道株式会社 車両用空気調和機のメンテナンス時期判定方法および空気調和機
US20160169572A1 (en) * 2014-12-16 2016-06-16 Johnson Controls Technology Company Fault detection and diagnostic system for a refrigeration circuit
JP2017040396A (ja) * 2015-08-18 2017-02-23 関東精機株式会社 冷却装置
JP2017207265A (ja) * 2016-05-20 2017-11-24 パナソニックIpマネジメント株式会社 劣化推定方法及び劣化推定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7490477B2 (en) * 2003-04-30 2009-02-17 Emerson Retail Services, Inc. System and method for monitoring a condenser of a refrigeration system
JP4396286B2 (ja) * 2004-01-21 2010-01-13 三菱電機株式会社 機器診断装置および機器監視システム
US7987679B2 (en) * 2005-02-24 2011-08-02 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
AU2007228009B2 (en) * 2006-03-23 2010-09-30 Daikin Industries, Ltd. Refrigeration system and refrigeration system analyzer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297974A (ja) * 1987-05-29 1988-12-05 株式会社東芝 冷凍機の特性診断装置
JPH01174870A (ja) * 1987-12-28 1989-07-11 Toshiba Corp 冷凍機診断装置
US20050061008A1 (en) * 2003-09-24 2005-03-24 A. Ben-Nakhi Method and apparatus for monitoring an air conditioning / refrigeration unit
JP2008232580A (ja) * 2006-03-23 2008-10-02 Daikin Ind Ltd 冷凍装置
JP2008249234A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置
JP2011007457A (ja) * 2009-06-29 2011-01-13 Denso Corp ヒートポンプ式給湯機
JP2013155970A (ja) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd 冷凍装置の監視システム
JP2015092121A (ja) 2013-11-08 2015-05-14 東日本旅客鉄道株式会社 車両用空気調和機のメンテナンス時期判定方法および空気調和機
US20160169572A1 (en) * 2014-12-16 2016-06-16 Johnson Controls Technology Company Fault detection and diagnostic system for a refrigeration circuit
JP2017040396A (ja) * 2015-08-18 2017-02-23 関東精機株式会社 冷却装置
JP2017207265A (ja) * 2016-05-20 2017-11-24 パナソニックIpマネジメント株式会社 劣化推定方法及び劣化推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745055A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066405A (ja) * 2019-10-28 2021-04-30 株式会社東芝 車両用空調装置の診断装置および診断方法
JP7358194B2 (ja) 2019-10-28 2023-10-10 株式会社東芝 車両用空調装置の診断装置および診断方法
CN112833596A (zh) * 2021-01-21 2021-05-25 四川长虹空调有限公司 一种制冷系统制冷剂状态的判定方法

Also Published As

Publication number Publication date
JPWO2019146035A1 (ja) 2020-11-19
AU2018404247A1 (en) 2020-08-06
EP3745055A4 (en) 2021-01-20
US11906185B2 (en) 2024-02-20
JP6976356B2 (ja) 2021-12-08
EP3745055B1 (en) 2024-03-06
AU2018404247B2 (en) 2021-09-09
EP3745055A1 (en) 2020-12-02
SG11202006851WA (en) 2020-08-28
US20200340702A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US11009245B2 (en) Method and system for proactively and remotely diagnosing an HVAC system
CN109937331B (zh) 空调机以及空调系统
US20130197698A1 (en) HVAC System Fault Root Cause Self-Determination
WO2019220507A1 (ja) 故障診断システム
KR101517084B1 (ko) 공기조화기용 제어장치
US11860648B2 (en) Device management system with improved ability to identify cause of anomaly in device
JP4518208B2 (ja) 空気調和装置の遠隔管理システムおよび遠隔管理方法
WO2019146035A1 (ja) 状態解析システム及び状態解析装置
JPWO2018220760A1 (ja) 空気調和機故障診断装置
CN109520082A (zh) 空调器控制方法、空调器及计算机可读存储介质
WO2022262629A1 (zh) 基于物联网空调的远程监控系统及其控制方法
CN114877488A (zh) 一种空调系统及其脏堵确定方法
WO2017163294A1 (ja) 冷媒不足予測装置、冷媒不足予測方法およびプログラム
US11722331B2 (en) Device management system
US20200400326A1 (en) Air-treatment assemblies and methods for monitoring performance
US8810419B2 (en) Refrigerant charge level detection
JP2005309724A (ja) 異常診断システム及び異常診断方法
CN110701727B (zh) 用于检测hvac系统中故障的方法和系统以及存储器
JP2006266609A (ja) 空調機の異常診断システム
JP2017053551A (ja) 遠隔監視装置、遠隔監視方法及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018404247

Country of ref document: AU

Date of ref document: 20180125

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018902989

Country of ref document: EP

Effective date: 20200825