WO2019144903A1 - 一种宽带色散控制波导及控制方法 - Google Patents

一种宽带色散控制波导及控制方法 Download PDF

Info

Publication number
WO2019144903A1
WO2019144903A1 PCT/CN2019/072956 CN2019072956W WO2019144903A1 WO 2019144903 A1 WO2019144903 A1 WO 2019144903A1 CN 2019072956 W CN2019072956 W CN 2019072956W WO 2019144903 A1 WO2019144903 A1 WO 2019144903A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
layer
waveguide
broadband
core region
Prior art date
Application number
PCT/CN2019/072956
Other languages
English (en)
French (fr)
Inventor
张�林
郭宇昊
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to EP19744367.4A priority Critical patent/EP3745172A4/en
Priority to US16/965,195 priority patent/US11169324B2/en
Publication of WO2019144903A1 publication Critical patent/WO2019144903A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides

Definitions

  • the invention relates to a broadband dispersion control waveguide and a control method thereof, and belongs to the field of guided wave optics and micro-nano integrated optics.
  • a waveguide is a structure for guiding electromagnetic waves.
  • Common waveguide structures include parallel two-conductors, coaxial lines, parallel slab waveguides, rectangular waveguides, and optical fibers.
  • Dispersion refers to the phenomenon that the propagation speed of light of different frequencies in the medium is different when the light is transmitted in the waveguide. In the field of communication and the like, the dispersion causes the signal carried by the light to be distorted.
  • guided wave optics and micro-nano integrated optical technology are booming. How to control the dispersion of integrated optical waveguides to achieve dispersion compensation, low dispersion and dispersion-free transmission, supercontinuum and optical frequency comb generation Popular research.
  • the waveguide dispersion can be effectively changed, and the position and the number of controllable zero dispersion wavelengths can be obtained, thereby flexibly controlling the dispersion.
  • a "Waveguide-based dispersion device” is disclosed in the patent document published on Jul. 9, 2013, which discloses a structure in which a slot type waveguide is coupled to a strip type waveguide, and the structure is disclosed.
  • a mode transition mechanism has been introduced to enable dispersion control.
  • An on-chip two-octave supercontinuum generation enabled by advanced chromatic dispersion tailoring in slotted waveguides is disclosed in the patent publication No. 9110219 B1, the disclosure of which is incorporated herein by reference.
  • a type of slot-type waveguide structure which causes four dispersion zeros to appear as a function of wavelength variation, similar to a saddle shape, which enables more flexible dispersion control.
  • Four dispersion zeros are also publicly reported so far.
  • the core region is arranged in three layers from top to bottom in a high-low-high refractive index distribution.
  • the parameters used for the dispersion control of the waveguide are the height of the three material regions and the waveguide core region.
  • the width, a total of four, such a three-layer structure waveguide processing process is complex, the processing conditions are high, and the structure requires a relatively high ratio of the high refractive index material to the low refractive index material, and can be applied to the material combination of the structure Fewer, and the structure can produce up to 4 dispersion zeros.
  • the present invention proposes a new dispersion control method for the defects of the prior art, which can reduce the structural parameters required for dispersion control and reduce the requirements for processing conditions. .
  • the design of the waveguide up to five zero-dispersion wavelength points can be generated.
  • a novel optical waveguide structure proposed by the present invention comprises a waveguide core region on a substrate, the waveguide core region is provided with a cladding layer; and the waveguide core region is composed of two layers of different refractive index materials inside and outside.
  • the inner layer needs to be deposited and etched, and the outer layer only needs to be deposited.
  • the refractive index ratio of the two layers of different refractive index materials is ⁇ 1.15, and the waveguide can generate up to 5 dispersion zeros.
  • the two layers of different refractive index materials are selected from the same combination of the first combination, the second combination, and the third combination or between different combinations;
  • the first combination refers to a chalcogenide glass composition including a S-based glass having a low refractive index, a Se-based glass having a high refractive index, and a Te-based glass; the S-based glass including at least Ge 2 S 3 , As 2 S 3 , Ge x As y S z and Ge x P y S z , the Se-based glass comprising at least Ge 2 Se 3 , As 2 Se 3 , Ge x As y Se z , Ge x Sb y Se z and Ge x P y Se z
  • the second combination includes at least TiO 2 , HfO 2 , Al 2 O 3 , SiO 2 , Ga 2 O 3 , Ta 2 O 3 , Bi 2 O 3 ;
  • the third combination includes at least Ge, SiC, Si, Ge x Si y , Diamond, GaN, AlN, Si x N y , InP, GaAs, LiNbO 3 .
  • the cross section of the optical resonant device and the optical interference device based on the above-described broadband dispersion control waveguide that is, the optical resonant device and the optical interference device, employs the cross section of the broadband dispersion control waveguide of the present invention.
  • the optical resonant device includes at least a microring resonator and an FP cavity
  • the optical interference device includes at least a Mach-Zehnder interferometer.
  • the dispersion control method using the above-described optical waveguide structure integrated on the chip is: first, designing a set of structural size parameters of the optical waveguide, the set of structural size parameters including the width W of the waveguide core region and the substrate contact surface, and the waveguide core region A The thickness H of the layer and the thickness C of the waveguide core B layer are then subjected to a dispersion curve according to the second derivative of the transmission constant of the light in the optical waveguide to the wavelength.
  • the dispersion curve is a dispersion curve having a maximum of 5 dispersion zeros, which is flat over a wide range of wavelengths over two octaves.
  • the dispersion curve is shifted integrally to the direction in which the anomalous dispersion value increases;
  • the dispersion curve is shifted overall to the direction in which the anomalous dispersion value increases;
  • the dispersion curve is rotated counterclockwise with the wavelength ⁇ 0 as the center of symmetry, and when the wavelength is smaller than ⁇ 0 , the direction of the anomalous dispersion is decreased.
  • the wavelength is greater than ⁇ 0 , Moves in the direction in which the anomalous dispersion value increases.
  • the inner layer and the outer layer are not etched, which reduces the processing steps required for the dispersion-controlled waveguide and reduces the processing conditions.
  • the structure can produce 5 dispersion zeros, resulting in a flat dispersion bandwidth of more than two octaves.
  • Figure 1-1 is a cross-sectional view showing the structure 1 of the optical waveguide structure of the present invention.
  • 1-2 is a schematic cross-sectional view showing the structure 2 of the optical waveguide structure of the present invention.
  • 1-3 are schematic cross-sectional views showing the structure 3 of the optical waveguide structure of the present invention.
  • Figure 2-1 is a displacement diagram of dispersion as a function of the width W of the contact area between the waveguide core and the substrate;
  • Figure 2-3 is a displacement diagram of dispersion as a function of the thickness C of the low refractive index material.
  • a broadband dispersion control waveguide proposed by the present invention includes a waveguide core region located above the substrate 3; the waveguide core region includes an A layer 1 and a B layer 2, and the sidewall of the A layer
  • the angle ⁇ ⁇ 90°, the A layer 1 and the B 2 layer are composed of materials having different refractive indexes, and the materials of the A layer 1 and the B layer 2 have a refractive index ratio ⁇ 1.15; characterized in that the A layer 1 Partially overlying the substrate 3, a combination of the A layer 1 and the substrate 3 is formed, the B layer 2 covering the upper surface of the assembly; the A layer 1 is rectangular or trapezoidal in cross section.
  • the upper portion of the substrate of the broadband dispersion control waveguide of the present invention has a through groove along the light transmission direction.
  • the formation of the through groove is recommended to use an etching liquid etching process, and therefore, in the through groove.
  • the material of the height range is made of the material 3 which is corroded by the selected etching liquid
  • the material 4 of the bottom of the substrate is made of a material which is not corrodible by the etching liquid.
  • the top of the substrate comprises a support layer of the waveguide core region.
  • the material of the support layer is preferably made of the same material as the material of the A layer.
  • the upper portion of the substrate of the broadband dispersion control waveguide of the present invention has a through groove along the light transmission direction.
  • the formation of the through groove is recommended to use an etching liquid etching process, and therefore, in the through groove.
  • the material of the height range is made of the material 3 which is corroded by the selected etching liquid
  • the material 4 of the bottom of the substrate is made of a material which is not corrodible by the etching liquid.
  • the top of the substrate comprises a support layer of the waveguide core region.
  • the material of the support layer is preferably made of the same material as the material of the A layer.
  • the materials of the A layer and the B layer are selected from the same combination of the first combination, the second combination and the third combination or between different combinations;
  • the first combination refers to a chalcogenide glass composition including a S-based glass having a low refractive index, a Se-based glass having a high refractive index, and a Te-based glass; the S-based glass including at least Ge 2 S 3 , As 2 S 3 , Ge x As y S z and Ge x P y S z , the Se-based glass comprising at least Ge 2 Se 3 , As 2 Se 3 , Ge x As y Se z , Ge x Sb y Se z and Ge x P y Se z
  • the second combination includes at least TiO 2 , HfO 2 , Al 2 O 3 , SiO 2 , Ga 2 O 3 , Ta 2 O 3 , Bi 2 O 3 .
  • a method for implementing dispersion control using the wideband dispersion control waveguide proposed in the present invention first, designing a set of structural size parameters of an optical waveguide, the set of structural size parameters including a width W of the waveguide core region and the substrate contact surface, and a waveguide core region The thickness H of the A layer 1 and the thickness C of the waveguide core B layer 2 are then subjected to a dispersion curve according to the second derivative of the transmission constant of the light in the optical waveguide.
  • the resulting dispersion is obtained by reasonably adjusting the width W of the waveguide core-substrate contact surface, the thickness H of the waveguide core A layer 1 and the thickness C of the waveguide core B 2 layer.
  • the curve can be a dispersion curve with a maximum of 5 dispersion zeros, and the dispersion curve is flat over a wide range of wavelengths, i.e., the dispersion curve is flat over a wide range of wavelengths over two octaves.
  • the width W of the waveguide core region and the substrate contact surface can be increased, so that the dispersion curve is shifted integrally to the direction in which the anomalous dispersion value is increased; by increasing the waveguide core region A layer 1
  • the thickness H causes the dispersion curve to shift integrally toward the direction in which the anomalous dispersion value increases; by increasing the thickness C of the waveguide core B layer 2, the dispersion curve is rotated counterclockwise with the wavelength ⁇ 0 as the center of symmetry, when the wavelength is less than ⁇ 0 , moving in a direction in which the anomalous dispersion value decreases, and moving in a direction in which the anomalous dispersion value increases when the wavelength is larger than ⁇ 0 .
  • the core region of the selected optical waveguide structure consists of two layers of A and B layers, and the material of the outer B layer is Ge 15 Sb 20 S 65 with a refractive index of about 2.2.
  • the material 1 of the inner layer A is made of Ge 30 Sb 10 Se 60 , and its refractive index is about 2.65.
  • the refractive index contrast of the two layers is about 1.2
  • the material of the substrate 3 is CaF 2
  • the refractive index is about 1.43
  • the cladding is air.
  • the sidewall angle ⁇ of the waveguide core region is 87°.
  • the effective refractive index of the TE mode fundamental mode in the waveguide structure is calculated by the FEM algorithm, and the dispersion is calculated according to the obtained effective refractive index.
  • a dispersion can be obtained by the above method.
  • the curve has five zero-dispersion wavelength points of 2.94, 4.18, 7.36, 11.32, and 14.86 ⁇ m, respectively.
  • the dispersion curve is very flat, as shown by the solid line in the middle position in Figure 2-1, the difference between the maximum value and the minimum value of the dispersion is 23 ps/nm/km, and the corresponding bandwidth is 3 to 15 ⁇ m, more than two times the frequency. Cheng.
  • the dispersion curve is shifted integrally to the direction in which the anomalous dispersion value increases, and the translation amount is about 15 ps/nm/km, and vice versa. At 2200 nm, the curve shifts to the direction in which the anomalous dispersion value decreases. The amount of translation is about -15 ps/nm/km, as shown in Figure 2-1.
  • the overall average movement amount is about 6ps/nm/km, and when the wavelength is greater than 10 ⁇ m. , moving in the direction of decreasing anomalous dispersion value, the overall average movement amount is about -9 ps / nm / km, as shown in Figure 2-3.
  • Dispersion control can be achieved in the present invention by flexibly changing the values (W, H, and C) of the three structural parameters.
  • the optical resonator device and the optical interference device derived from the cross section of the optical waveguide structure of the present invention include at least a microring resonator, a Mach-Zehnder interferometer, and an FP cavity having a cross section of the optical waveguide structure of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光波导结构,波导芯区由折射率不同的内外两层(1,2)构成;不同折射率材料的折射率比值≥1.15。利用光波导结构进行色散控制的方法是,首先,由预设的光波导的一组结构尺寸参数,计算得到一条最多具有5个色散零点的色散曲线;然后,通过调整内层(1)与基底(3)接触面的宽度(W)、高折射率材料的厚度(H)和低折射率材料的厚度(C)中的一个或多个参数,从而实现色散控制。通过将波导结构的芯区变为内外两层(1,2),同时外层(2)不用进行刻蚀,减小了色散调控波导所需的加工步骤,降低了对加工条件的要求。并且波导结构可以产生最多5个色散零点,产生的平坦色散带宽超过两个倍频程。

Description

一种宽带色散控制波导及控制方法 技术领域
本发明涉及一种宽带色散控制波导及控制方法,它属于导波光学和微纳米集成光学领域。
背景技术
波导是指用来定向引导电磁波的结构,常见的波导结构有平行双导线、同轴线、平行平板波导、矩形波导和光纤等。色散是指光在波导中传输时,不同频率的光在介质中的传播速度不同的现象,在通信等领域,色散会导致光携带的信号发生畸变。当下,导波光学和微纳米集成光学技术蓬勃发展,如何对可集成的光波导进行色散控制,从而实现色散补偿、低色散以及无色散传输、超连续谱及光频率梳的产生等应用成为一项研究热门。在光波导中,通过设计波导结构,选择合适的材料,可有效地改变波导色散,获得位置以及数量可控的零色散波长,从而灵活地进行色散控制。公开号为US 8483529 B2,其公开日为2013年7月9日的专利文献中公开了一种《Waveguide-based dispersion device》,设计了一种slot型波导与strip型波导耦合的结构,该结构引入了一种模式转变机制,从而能进行色散控制。公开号为US 9110219 B1,其公开日为2015年8月18号的专利文献中公开了一种《On-chip two-octave supercontinuum generation enabled by advanced chromatic dispersion tailoring in slotted waveguides》,设计了一种改进型的slot型波导结构,这会使得色散值随着波长变化的曲线出现4个色散零点,类似于马鞍形,可更加灵活地实现色散控制,4个色散零点也是目前为止公开报导的,可获得的最多的零色散波长个数。在该类波导结构中,芯区从上到下以高-低-高的折射率分布方式排列了三层,该波导用于进行色散调控的参数为三个材料区域的高度和波导芯区的宽度,总共四个,这样的三层结构波导加工工艺复杂,对于加工条件的要求高,并且该结构要求高折射率材料与低折射率材料的比值相对较高,可适用于该结构的材料组合较少,并且该结构最多可产生4个色散零点。
发明内容
由于先前报道的用于进行色散调控的波导对加工条件的要求高,针对现有技术的缺陷,本发明提出新的色散控制方法,可减少色散调控所需的结构参数,降低对 加工条件的要求。同时基于本波导的设计,可以最多产生5个零色散波长点。
为了解决上述技术问题,本发明提出的一种新型光波导结构,包括位于基底上面的波导芯区,所述波导芯区设有包层;所述波导芯区由内外两层不同折射率的材料构成;内层需要进行沉积以及刻蚀两种工艺,外层则只需要进行沉积工艺,所述两层不同折射率的材料的折射率比值≥1.15,并且该波导可最多产生5个色散零点。
进一步讲,所述两层不同折射率的材料从以下的第一组合、第二组合和第三组合的同一种组合内或者不同种组合间选择;;
第一组合是指硫系玻璃组合,包括有低折射率的S基玻璃、高折射率的Se基玻璃和Te基玻璃;所述S基玻璃至少包括Ge 2S 3、As 2S 3、Ge xAs yS z和Ge xP yS z,所述Se基玻璃至少包括Ge 2Se 3、As 2Se 3、Ge xAs ySe z、Ge xSb ySe z和Ge xP ySe z,所述Te基玻璃至少包括Ge xSb yTe z、Ge xSe yTe z和As xSe yTe z;其中,x,y,z表示不同的摩尔百分比,且x+y+z=100。第二组合至少包括TiO 2、HfO 2、Al 2O 3、SiO 2、Ga 2O 3、Ta 2O 3、Bi 2O 3;第三组合至少包括Ge、SiC、Si、Ge xSi y、Diamond、GaN、AlN、Si xN y、InP、GaAs、LiNbO 3。所述第三组合中x,y表示不同的摩尔百分比,且x+y=100。
基于上述宽带色散控制波导的光学谐振器件及光学干涉器件,即光学谐振器件和光学干涉器件的横截面采用本发明的宽带色散控制波导的横截面。所述光学谐振器件至少包括微环谐振腔和FP腔,所述光学干涉器件至少包括马赫增德尔干涉仪。
利用上述芯片上集成的光波导结构的色散控制方法是:首先,设计光波导的一组结构尺寸参数,所述一组结构尺寸参数包括波导芯区与基底接触面的宽度W、波导芯区A层的厚度H和波导芯区B层的厚度C,然后,根据光在该光波导内的传输常数对波长的二阶导数得到一条色散曲线。所述色散曲线是一条具有最多5个色散零点的色散曲线,所述色散曲线在两个倍频程的宽带波长范围内平坦。
通过增大波导芯区与基底接触面的宽度W,使得色散曲线向反常色散值增大的方向整体平移;
通过增大波导芯区A层的厚度H,使得色散曲线向反常色散值增大的方向整体平移;
通过增大波导芯区B层的厚度C,使得色散曲线以波长λ 0作为对称中心逆时针旋转,在波长小于λ 0时,向反常色散值减小的方向移动,在波长大于λ 0时,向反常色散值增大的方向移动。
与现有技术相比,本发明的有益效果是:
通过将前人设计的色散控制光波导的芯区变为内外两层,同时外层不用进行刻蚀,减小了色散控制波导所需的加工步骤,降低了对加工条件的要求。并且该结构可以产生5个色散零点,产生的平坦色散带宽超过两个倍频程。
附图说明
图1-1是本发明光波导结构的结构1横截面图示意图;
图1-2是本发明光波导结构的结构2横截面图示意图;
图1-3是本发明光波导结构的结构3横截面图示意图;
图2-1是色散随着波导芯区与基底接触面宽度W变化的位移图;
图2-2是色散随着高折射率材料的厚度H变化的位移图;
图2-3是色散随着低折射率材料的厚度C变化的位移图。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
如图1-1所示,本发明提出的一种宽带色散控制波导,包括位于基底3上面的波导芯区;所述波导芯区包括A层1和B层2,所述A层的侧壁角度α≤90°,所述A层1和B 2层由不同折射率的材料构成,所述A层1和B层2的材料的折射率比值≥1.15;其特征在于,所述A层1局部覆盖于所述基底3之上,从而形成了A层1和基底3的组合体,所述B层2覆盖住所述组合体的上面;所述A层1的横截面为矩形或梯形。
如图1-2所示,本发明宽带色散控制波导的所述基底的上部具有沿光传输方向的通槽,本发明中该通槽的形成建议采用腐蚀液腐蚀工艺,因此,在该通槽高度范围的材料采用所选择的腐蚀液可腐蚀的材料3,而基底底部的材料4采用该腐蚀液不可腐蚀的材料。另外,所述基底的顶部包括波导芯区的支撑层,为了加工方便,该支撑层的材料最好采用与A层材料相同的材料。
如图1-3所示,本发明宽带色散控制波导的所述基底的上部具有沿光传输方向的通槽,本发明中该通槽的形成建议采用腐蚀液腐蚀工艺,因此,在该通槽高度范围的材料采用所选择的腐蚀液可腐蚀的材料3,而基底底部的材料4采用该腐蚀液不可腐蚀的材料。另外,所述基底的顶部包括波导芯区的支撑层,为了加工方便,该支撑层的材料最好采用与A层材料相同的材料。
本发明中,所述A层和B层的材料从以下的第一组合、第二组合和第三组合的同一种组合内或者不同种组合间选择;
第一组合是指硫系玻璃组合,包括有低折射率的S基玻璃、高折射率的Se基玻璃和Te基玻璃;所述S基玻璃至少包括Ge 2S 3、As 2S 3、Ge xAs yS z和Ge xP yS z,所述Se基玻璃至少包括Ge 2Se 3、As 2Se 3、Ge xAs ySe z、Ge xSb ySe z和Ge xP ySe z,所述Te基玻璃至少包括Ge xSb yTe z、Ge xSe yTe z和As xSe yTe z;其中,x,y,z表示不同的摩尔百分比,且x+y+z=100。
第二组合至少包括TiO 2、HfO 2、Al 2O 3、SiO 2、Ga 2O 3、Ta 2O 3、Bi 2O 3
第三组合至少包括Ge、SiC、Si、Ge xSi y、Diamond、GaN、AlN、Si xN y、InP、GaAs、LiNbO 3;所述第三组合中x,y表示不同的摩尔百分比,且x+y=100。
利用本发明中提出的宽带色散控制波导实现色散控制的方法,首先,设计光波导的一组结构尺寸参数,所述一组结构尺寸参数包括波导芯区与基底接触面的宽度W、波导芯区A层1的厚度H和波导芯区B层2的厚度C,然后,根据光在该光波导内的传输常数对波长的二阶导数得到一条色散曲线。
通过合理的调整波导芯区与基底接触面的宽度W、波导芯区A层1的厚度H和波导芯区B 2层的厚度C中的一个或多个参数的数值,所得到的所述色散曲线可以是一条具有最多5个色散零点的色散曲线,而且该色散曲线在宽带波长范围内较为平坦,即所述色散曲线在两个倍频程的宽带波长范围内平坦。
在所得到的的色散曲线的基础上,可以通过增大波导芯区与基底接触面的宽度W,使得色散曲线向反常色散值增大的方向整体平移;通过增大波导芯区A层1的厚度H,使得色散曲线向反常色散值增大的方向整体平移;通过增大波导芯区B层2的厚度C,使得色散曲线以波长λ 0作为对称中心逆时针旋转,在波长小于λ 0时,向反常色散值减小的方向移动,在波长大于λ 0时,向反常色散值增大的方向移动。
实施例:
如图1-1所示,所选光波导结构芯区由两种材料构成两层A层和B层结构,外层B层的材料2选用Ge 15Sb 20S 65,其折射率约为2.2,内层A层的材料1选用Ge 30Sb 10Se 60,其折射率约为2.65,二者的折射率对比度约1.2,基底3的材料选用CaF 2,折射率约为1.43,包层为空气,波导芯区的侧壁角度α为87°。采用FEM算法计算该波导结构中的TE模式基模的有效折射率,并且根据得到的有效折射率计算得到色散。首先,预设一组参数,包括波导芯区与基底3接触面宽度W=2350nm,A层1的高度H=1800nm,B层2的高度C=1350nm,通过上述方法可得到一条色散随波长变化的曲线,该曲线具有5个零色散波长点,分别为2.94,4.18,7.36,11.32和14.86μm。并且该色散曲线十分平坦,如图2-1中中间位置的实线所示,色散最大值与最小值的差值为23ps/nm/km,对应的带宽为3到15μm,超过两个倍频程。
仅增大波导芯区与基底3接触面的宽度至W=2500nm,该色散曲线向反常色散值增大的方向整体平移,平移量约为15ps/nm/km,反之减小该宽度至W=2200nm,该曲线向反常色散值减小的方向整体平移,平移量约为-15ps/nm/km,如图2-1所示。
仅增大高折射率材料(即内层材料1)的厚度至H=1900nm,该曲线向色散值增大的方向整体平移,平移量约为12ps/nm/km,反之减小该厚度至H=1700nm,该曲线向反常色散值减小的方向整体平移,平移量约为-12ps/nm/km,如图2-2所示。
仅增大低折射率材料(即B层)的厚度至C=1400nm,使得色散曲线以特定波长λ 0=10μm作为对称中心逆时针旋转,在波长小于10μm时,向反常色散值减小的方向移动,整体平均移动量约为-6ps/nm/km,在波长大于10μm时,向反常色散值增大的方向移动,整体平均移动量约为9ps/nm/km,反之减小该厚度至C=1300nm,使得色散曲线以波长为10μm作为对称中心顺时针旋转,在波长小于10μm时,向反常色散值增大的方向移动,整体平均移动量约为6ps/nm/km,在波长大于10μm时,向反常色散值减小的方向移动,整体平均移动量约为-9ps/nm/km,如图2-3所示。
本发明中通过灵活地改变三个结构参数的数值(W、H和C)可以实现色散控制。
基于本发明的光波导结构横截面衍生出的光学谐振器件及光学干涉器件,至少包括有横截面采用本发明光波导结构横截面的微环谐振腔、马赫增德尔干涉仪和FP腔。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (10)

  1. 一种宽带色散控制波导,包括位于基底上面的波导芯区,所述波导芯区设有包层;所述波导芯区包括A层和B层,所述A层和B层由不同折射率的材料构成,所述A层和B层的材料的折射率比值≥1.15;其特征在于,所述A层局部覆盖于所述基底之上,从而形成了A层和基底的组合体,所述B层覆盖住所述组合体的上面;所述A层的横截面为矩形或梯形。
  2. 根据权利要求1所述宽带色散控制波导,其特征在于,所述基底的上部具有沿光传输方向的通槽。
  3. 根据权利要求2所述宽带色散控制波导,其特征在于,所述基底的顶部包括波导芯区的支撑层。
  4. 根据权利要求1所述宽带色散控制波导,其特征在于,所述A层和B层的材料从以下的第一组合、第二组合和第三组合的同一种组合内或者不同种组合间选择;
    第一组合是指硫系玻璃组合,包括有低折射率的S基玻璃、高折射率的Se基玻璃和Te基玻璃;
    第二组合至少包括TiO 2、HfO 2、Al 2O 3、SiO 2、Ga 2O 3、Ta 2O 3、Bi 2O 3
    第三组合至少包括Ge、SiC、Si、Ge xSi y、Diamond、GaN、AlN、Si xN y、InP、GaAs、LiNbO 3
  5. 根据权利要求4所述宽带色散控制波导,其特征在于,所述S基玻璃至少包括Ge 2S 3、As 2S 3、Ge xAs yS z和Ge xP yS z,所述Se基玻璃至少包括Ge 2Se 3、As 2Se 3、Ge xAs ySe z、Ge xSb ySe z和Ge xP ySe z,所述Te基玻璃至少包括Ge xSb yTe z、Ge xSe yTe z和As xSe yTe z;其中,x,y,z表示不同的摩尔百分比,且x+y+z=100;所述第三组合中x,y表示不同的摩尔百分比,且x+y=100。
  6. 一种基于宽带色散控制波导的光学谐振器件及光学干涉器件,其特征在于,光学谐振器件和光学干涉器件的横截面采用如权利要求1-5任一所述的宽带色散控制波导的横截面。
  7. 根据权利要求6所示基于宽带色散控制波导的光学谐振器件及光学干涉器件,其特征在于,所述光学谐振器件至少包括微环谐振腔和FP腔,所述光学干涉器件至少包括马赫增德尔干涉仪。
  8. 一种基于宽带色散控制波导的色散控制方法,其特征在于,利用如权利要求1至5中任一所述宽带色散控制波导,首先,设计光波导的一组结构尺寸参数,所述一组结构尺寸参数包括波导芯区与基底接触面的宽度W、波导芯区A层的厚度H和波导芯区B层的厚度C,然后,根据光在该光波导内的传输常数对波长的二阶导数得到一条色散曲线。
  9. 根据权利要求8所述基于宽带色散控制波导的色散控制方法,其特征在于,所述色散曲线是一条最多具有5个色散零点的色散曲线,所述色散曲线在两个倍频程的宽带波长范围内平坦。
  10. 根据权利要求9所述基于宽带色散控制波导的色散控制方法,其特征在于,通过增大波导芯区与基底接触面的宽度W,使得色散曲线向反常色散值增大的方向整体平移;
    通过增大波导芯区A层的厚度H,使得色散曲线向反常色散值增大的方向整体平移;
    通过增大波导芯区B层的厚度C,使得色散曲线以波长λ 0作为对称中心逆时针旋转,在波长小于λ 0时,向反常色散值减小的方向移动,在波长大于λ 0时,向反常色散值增大的方向移动。
PCT/CN2019/072956 2018-01-27 2019-01-24 一种宽带色散控制波导及控制方法 WO2019144903A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19744367.4A EP3745172A4 (en) 2018-01-27 2019-01-24 WIDE BAND DISPERSION CONTROL WAVEGUIDE AND CONTROL PROCESS
US16/965,195 US11169324B2 (en) 2018-01-27 2019-01-24 Broadband dispersion controlling waveguide and controlling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810087623.5A CN108415122B (zh) 2018-01-27 2018-01-27 一种宽带色散控制波导及控制方法
CN201810087623.5 2018-01-27

Publications (1)

Publication Number Publication Date
WO2019144903A1 true WO2019144903A1 (zh) 2019-08-01

Family

ID=63127247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072956 WO2019144903A1 (zh) 2018-01-27 2019-01-24 一种宽带色散控制波导及控制方法

Country Status (4)

Country Link
US (1) US11169324B2 (zh)
EP (1) EP3745172A4 (zh)
CN (1) CN108415122B (zh)
WO (1) WO2019144903A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415122B (zh) * 2018-01-27 2020-05-29 天津大学 一种宽带色散控制波导及控制方法
CN111090146A (zh) * 2019-11-22 2020-05-01 天津大学 一种宽带温度不敏感和低色散的铌酸锂光波导结构及其应用
US11226537B2 (en) * 2020-02-06 2022-01-18 Palo Alto Research Center Incorporated Multi-layer optical device exhibiting anomalous dispersion
CN113031365B (zh) * 2021-04-12 2022-12-06 北京邮电大学 一种铝镓砷波导结构及利用该波导产生超连续谱的方法
CN113777704B (zh) * 2021-08-02 2023-08-04 国科大杭州高等研究院 一种色散补偿波导
US11994714B2 (en) * 2021-09-30 2024-05-28 Globalfoundries U.S. Inc. Photonic integrated circuit structure with at least one tapered sidewall liner adjacent to a waveguide core
CN114200577A (zh) * 2021-12-14 2022-03-18 天津大学 光波导器件及其设计方法、超连续谱产生装置
CN115128731B (zh) * 2022-07-13 2024-02-27 天津大学 光波导结构、色散控制方法、制备方法及集成光源装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007817A1 (en) * 2005-06-28 2008-01-10 California Institute Of Technology Bremsstrahlung laser ("blaser")
US8483529B2 (en) 2010-02-04 2013-07-09 University Of Southern California Waveguide-based dispersion device
CN103926688A (zh) * 2014-03-31 2014-07-16 浙江大学 一种基于mems硅基中红外波段光调制器
US9110219B1 (en) 2012-01-11 2015-08-18 University Of Southern California On-chip two-octave supercontinuum generation enabled by advanced chromatic dispersion tailoring in slotted waveguides
CN104991308A (zh) * 2015-07-27 2015-10-21 中国科学院半导体研究所 一种波导结构
CN105629380A (zh) * 2016-03-16 2016-06-01 天津大学 用于色散控制的芯片上集成的光波导结构及色散控制方法
CN108415122A (zh) * 2018-01-27 2018-08-17 天津大学 一种宽带色散控制波导及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665273B2 (ja) * 2001-05-11 2005-06-29 株式会社日立製作所 波長分散補償器、及びそれを用いた光伝送システム
WO2009107812A1 (ja) * 2008-02-29 2009-09-03 株式会社フジクラ 基板型光導波路素子、波長分散補償素子、光フィルタ、光共振器、およびそれらの設計方法
CN101952753B (zh) * 2008-02-29 2013-02-06 株式会社藤仓 光波导元件、波长色散补偿元件及其设计方法、滤光器及其设计方法、以及光谐振器及其设计方法
US9766484B2 (en) * 2014-01-24 2017-09-19 Cisco Technology, Inc. Electro-optical modulator using waveguides with overlapping ridges
CN107450124B (zh) * 2016-05-30 2020-10-09 天津大学 一种宽带色散控制光纤及其色散控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007817A1 (en) * 2005-06-28 2008-01-10 California Institute Of Technology Bremsstrahlung laser ("blaser")
US8483529B2 (en) 2010-02-04 2013-07-09 University Of Southern California Waveguide-based dispersion device
US9110219B1 (en) 2012-01-11 2015-08-18 University Of Southern California On-chip two-octave supercontinuum generation enabled by advanced chromatic dispersion tailoring in slotted waveguides
CN103926688A (zh) * 2014-03-31 2014-07-16 浙江大学 一种基于mems硅基中红外波段光调制器
CN104991308A (zh) * 2015-07-27 2015-10-21 中国科学院半导体研究所 一种波导结构
CN105629380A (zh) * 2016-03-16 2016-06-01 天津大学 用于色散控制的芯片上集成的光波导结构及色散控制方法
CN108415122A (zh) * 2018-01-27 2018-08-17 天津大学 一种宽带色散控制波导及控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN PENGXIN: "Silicon based micrring resonator of the applications", INFORMATION SCIENCE, CHINA DOCTORAL DISSERTATIONS, no. 1, 15 January 2016 (2016-01-15), pages 1 - 112, XP009522065, ISSN: 1674-022X *
See also references of EP3745172A4

Also Published As

Publication number Publication date
US20210063639A1 (en) 2021-03-04
US11169324B2 (en) 2021-11-09
EP3745172A4 (en) 2021-10-13
EP3745172A1 (en) 2020-12-02
CN108415122B (zh) 2020-05-29
CN108415122A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
WO2019144903A1 (zh) 一种宽带色散控制波导及控制方法
US9939709B2 (en) Optical waveguide element and optical modulator using the same
CA1306629C (en) Waveguide type optical device
US6853791B2 (en) Waveguide bends and splitters in slab photonic crystals with noncircular holes
Hou et al. Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals
US20040086244A1 (en) Optical waveguide structure
Bozhevolnyi et al. Channelling surface plasmons
Srivastava et al. Design of photonic band gap filter
CN110927871A (zh) 宽带温度不敏感及低色散的光波导结构及其设计方法
US7099548B2 (en) Reduction of polarization dependence in planar optical waveguides
CN111090146A (zh) 一种宽带温度不敏感和低色散的铌酸锂光波导结构及其应用
KR101023254B1 (ko) 플라즈몬 투과 필터
Lodewijks et al. Low loss high refractive index niobium oxide waveguide platform for visible light applications
Gao et al. Wideband slow light in one-dimensional chirped holey grating waveguide
JPH11248951A (ja) 光導波路及びその製造方法
CN109188599A (zh) 一种1530nm到1580nm波段范围内的双槽型大负色散波导
CN109407349B (zh) 一种片上集成改变石墨烯能带的结构及其制备方法
CN115128731B (zh) 光波导结构、色散控制方法、制备方法及集成光源装置
WO2022205124A1 (zh) 电磁波传输结构、器件及光芯片
Shinya et al. Single-mode transmission in commensurate width-varied line-defect SOI photonic crystal waveguides
Qi et al. TE-pass polarizer based on asymmetrical directional couplers on thin-film lithium niobate
JP3889697B2 (ja) 光バンドパスフィルタ
Memon et al. Exploring silicon oxycarbide films for photonic waveguides
Amsir et al. Numerical Study of the Effect of Material Type on the Properties of Photonic Crystal Fibers
US20030169970A1 (en) Photonic signal transmitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019744367

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019744367

Country of ref document: EP

Effective date: 20200827