WO2022205124A1 - 电磁波传输结构、器件及光芯片 - Google Patents

电磁波传输结构、器件及光芯片 Download PDF

Info

Publication number
WO2022205124A1
WO2022205124A1 PCT/CN2021/084521 CN2021084521W WO2022205124A1 WO 2022205124 A1 WO2022205124 A1 WO 2022205124A1 CN 2021084521 W CN2021084521 W CN 2021084521W WO 2022205124 A1 WO2022205124 A1 WO 2022205124A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
transmission structure
transmission
mode
wave transmission
Prior art date
Application number
PCT/CN2021/084521
Other languages
English (en)
French (fr)
Inventor
赖耘
宋彤彤
罗杰
褚宏晨
Original Assignee
南京星隐科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京星隐科技发展有限公司 filed Critical 南京星隐科技发展有限公司
Priority to PCT/CN2021/084521 priority Critical patent/WO2022205124A1/zh
Publication of WO2022205124A1 publication Critical patent/WO2022205124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/18Waveguides; Transmission lines of the waveguide type built-up from several layers to increase operating surface, i.e. alternately conductive and dielectric layers

Definitions

  • the present invention relates to the technical field of electromagnetic wave transmission, in particular to an electromagnetic wave transmission structure, a device and an optical chip.
  • Waveguides are important devices in the field of optics.
  • the waveguide is composed of a core layer and a cladding layer, the core layer is responsible for propagating light, and the cladding layer is responsible for blocking or reflecting light, so as to achieve the purpose of light propagating along the waveguide axis as a whole.
  • Traditional waveguides mainly include ordinary fiber waveguides and photonic crystal bandgap waveguides.
  • the wave In ordinary optical fiber waveguides, the wave is confined in the core layer by the total reflection effect from the dense medium to the thin medium.
  • the cladding of the waveguide itself does not propagate light, causing unnecessary space and material waste; on the other hand, during the fabrication process of the optical chip, crosstalk is easily formed between the waveguides, and it is necessary to form a sufficient spacing between the adjacent waveguides To reduce crosstalk, which is obviously not conducive to the integration of the optical path.
  • Photonic crystal bandgap waveguides use periodically arranged photonic crystals as the cladding of the waveguide, and use the energy band theory of photonic crystals to confine light to propagate in the core layer.
  • the cladding of photonic crystal bandgap waveguides is usually thick, and the cladding itself does not propagate light, which is prone to waste of space and materials, which is also not conducive to the integration of optical paths.
  • an electromagnetic wave transmission structure is provided.
  • An electromagnetic wave transmission structure comprising:
  • At least one first transmission structure and at least one second transmission structure, the second transmission structure and the first transmission structure are alternately arranged along a predetermined axis;
  • the first transmission structure is configured to transmit a first mode of electromagnetic waves at its operating frequency
  • the second transmission structure is configured to transmit a second mode of electromagnetic waves at its operating frequency
  • the first transmission structure is further configured to block electromagnetic wave transmission of the second mode in the direction of the predetermined axis
  • the second transmission structure is further configured to block the transmission of the electromagnetic waves in the direction of the predetermined axis.
  • the electromagnetic wave transmission in the first mode is described.
  • An electromagnetic wave transmission device includes the electromagnetic wave transmission structure described in the above embodiments, wherein each of the first transmission structures and each of the second transmission structures are respectively configured to form a channel.
  • An electromagnetic wave transmission device comprising a plurality of electromagnetic wave transmission structures described in the above embodiments, wherein at least one transmission structure in at least one of the electromagnetic wave transmission structures is a uniform dielectric waveguide structure; the electromagnetic wave transmission device is formed with at least one transmission structure.
  • a bent channel, the bent portion of the bent channel includes the uniform dielectric waveguide structure.
  • An optical chip includes the electromagnetic wave transmission device described in the above embodiments.
  • Fig. 1 is the working schematic diagram of common optical fiber waveguide
  • Fig. 2 is the working schematic diagram of photonic crystal bandgap waveguide
  • FIG. 3 is a schematic working diagram of an electromagnetic wave transmission structure according to an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a second transmission structure according to a preferred embodiment of the present application.
  • FIG. 5 is a schematic view of the size of the minimum repeating unit of the second transmission structure of the embodiment shown in FIG. 4;
  • Fig. 6 is the iso-frequency curve diagram of the second transmission structure of the embodiment shown in Fig. 4;
  • Fig. 7(a) is a working schematic diagram of the second transmission structure of the embodiment shown in Fig. 4;
  • FIG. 7 is a working schematic diagram when the first transmission structure is an air-guiding structure
  • Figures (d) and (f) of Figure 7 are respectively the dispersion curves under different thicknesses when the first transmission structure is an air-guiding structure
  • FIG. 8 is a schematic structural diagram of an electromagnetic wave transmission device according to an embodiment of the application.
  • Parts (a) to (d) of FIG. 9A respectively show schematic working diagrams of channels A1, B1, A2, and B2 in the embodiment shown in FIG. 8;
  • FIG. 9B respectively show schematic working diagrams of channels A3, B3, A4, and B4 in the embodiment shown in FIG. 8;
  • FIG. 10 is a schematic structural diagram of an electromagnetic wave transmission device according to another embodiment of the present application.
  • FIG. 11 respectively show the working schematic diagrams of each bending channel of the embodiment shown in FIG. 10;
  • FIG. 12 is a schematic structural diagram of an electromagnetic wave transmission device according to another embodiment of the application.
  • FIG. 13 is a working schematic diagram of the embodiment shown in FIG. 12 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • optical fiber is a fiber made of glass or plastic that acts as a means of transmitting light.
  • the transmission principle is the effect of total reflection of light.
  • optical fiber waveguides are very mature, such as single-mode fiber, multi-mode fiber, polarization-maintaining fiber and so on.
  • the photonic crystal bandgap waveguide 20 uses periodically arranged photonic crystals as the cladding layer 22 of the waveguide, and uses the energy band theory of photonic crystals to confine light to propagate in the core layer 21 , Also, because the refractive index of the core layer 21 is quite different from the effective refractive index of the cladding layer 22, it usually also has a larger numerical aperture.
  • the light incident on the end face of the core layer 21 will still have low coupling efficiency due to impedance mismatch; and the cladding layer 22 of the photonic crystal bandgap waveguide is usually thick, and the cladding layer 22 itself does not transmit light, and it is easy to The waste of space and materials is also not conducive to the integration of the optical path.
  • the present application provides an electromagnetic wave transmission structure with low crosstalk and high integration in an embodiment.
  • the electromagnetic wave transmission structure 30 includes at least one first transmission structure 31 and at least one second transmission structure 32 , and the second transmission structures 32 and the first transmission structures 31 are alternately arranged along a predetermined axis AX;
  • a transmission structure 31 is configured to transmit electromagnetic waves of the first mode at its operating frequency
  • the second transmission structure 32 is configured to transmit electromagnetic waves of the second mode at its operating frequency;
  • the first transmission structure 31 is also configured to The electromagnetic wave transmission of the second mode is blocked in the direction of the preset axis AX, and the second transmission structure 32 is further configured to block the electromagnetic wave transmission of the first mode in the direction of the preset axis AX.
  • the y direction is the direction of the preset axis AX
  • the x direction is the direction perpendicular to the preset axis AX (that is, the axis direction of the transmission structure)
  • the z direction is perpendicular to the outward surface of the paper .
  • the first transmission structures 31 and the second transmission structures 32 are alternately arranged along the y direction.
  • the distance between the adjacent first transmission structures 31 and the second transmission structures 32 is 0, so as to fully utilize the space and greatly improve the The degree of integration of electromagnetic wave transmission structures or devices.
  • the incident electromagnetic wave After the incident electromagnetic wave is incident into the first transmission structure 31, it can be transmitted in the first transmission structure 31 as the electromagnetic wave of the first mode, and the electromagnetic wave of the first mode has propagation components in both the x-direction and the y-direction, while the second transmission structure 32 can block the propagation of the electromagnetic wave of the first mode in the y direction, so that the electromagnetic wave of the first mode cannot be coupled into the second transmission structure 32 and thus be confined in the first transmission structure 31, and transmits along the x direction as a whole; the incident electromagnetic wave After the incident electromagnetic wave is incident into the second transmission structure 32, it can be transmitted in the second transmission structure 32 as the electromagnetic wave of the second mode, and the electromagnetic wave of the second mode has propagation components in both the x-direction and the y-direction, while the first transmission structure 31 can block the propagation of the electromagnetic wave of the second mode in the y direction, so that the electromagnetic wave of the second mode cannot be coupled into the first transmission structure 31 and thus be confined in the second transmission structure 32 and transmit in the
  • the operating frequency refers to the frequency at which the electromagnetic wave can be transmitted in the corresponding transmission structure, and the electromagnetic wave incident into the corresponding transmission structure can be blocked by the adjacent transmission structure in the y direction
  • the mode of the electromagnetic wave is Refers to the definite electromagnetic field distribution law that can exist independently under given boundary conditions.
  • the electromagnetic waves of the first mode are formed when the electromagnetic waves are incident at the operating frequency of the first transmission structure 31
  • the electromagnetic waves of the second mode are formed when the electromagnetic waves are incident at the operating frequency of the second transmission structure 32 .
  • the operating frequency of the second transmission structure 32 may be the same or different.
  • the above electromagnetic wave transmission structure 30, by making the first transmission structure 31 block the electromagnetic wave transmission of the second mode in the direction of the preset axis AX, and making the second transmission structure 32 block the electromagnetic wave of the first mode in the direction of the preset axis AX Transmission, while realizing multi-channel electromagnetic wave transmission, it can effectively solve the problem of easy crosstalk between ordinary optical fiber waveguides 10. Furthermore, the first transmission structure 31 and the second transmission structure 32 can both transmit electromagnetic waves. Set the direction of the axis AX to block the electromagnetic wave transmission in the adjacent transmission structure, so as to have the functions of the "core" and "cladding" in the traditional waveguide, realize the full use of space and materials, and is conducive to the integration of the optical path. The preparation cost of the electromagnetic wave transmission device can be reduced to a certain extent.
  • the propagation constant of the electromagnetic wave in the first mode has a first range
  • the propagation constant of the electromagnetic wave in the second mode has a second range
  • the first range and the second range have no overlapping parts.
  • the propagation constant refers to the component of the electromagnetic wave vector in the axial direction of the transmission structure, and is used to represent the variation of the electromagnetic wave phase per unit length.
  • the propagation constants of the first range and the second range have no overlapping parts, it can be achieved that when the propagation constant is within the first range, the energy band of the second transmission structure 32 is embodied as a forbidden band in the y-direction, and when the propagation constant is within the first range Within the second range, the energy band of the first transmission structure 31 is embodied as a forbidden band in the y direction, thereby ensuring that both the first transmission structure 31 and the second transmission structure 32 can transmit electromagnetic waves at the corresponding operating frequencies without crosstalk. .
  • the first transmission structure 31 includes an air-guiding structure. This arrangement, on the one hand, can facilitate the preparation of electromagnetic wave transmission devices; The coupling efficiency of a transmission structure 31 can further improve the performance of the electromagnetic wave transmission device.
  • the external incident medium can also be a uniform dielectric such as water or silicon dioxide, and air is used as an example here.
  • the first transmission structure 31 includes a uniform dielectric waveguide structure, and the refractive index of the dielectric waveguide structure is greater than 1.
  • the uniform dielectric waveguide structure may be an isotropic dielectric material, such as silicon, water, and the like.
  • silicon waveguides can also be used to block the transmission of electromagnetic waves in adjacent transmission structures in the y-direction, due to impedance mismatch, incident electromagnetic waves are easily reflected on the incident end face of silicon waveguides, resulting in the coupling of electromagnetic waves. Efficiency is reduced.
  • the second transmission structure 32 includes a photonic crystal
  • the photonic crystal is an artificial microstructure formed by periodically arranging media with different refractive indices.
  • the photonic crystal includes a plurality of minimum repeating units 320 arranged in an array.
  • the minimum repeating units 320 are periodically arranged both in the direction of the preset axis AX and in the direction perpendicular to the preset axis AX.
  • the minimum repeating unit 320 includes: a first dielectric material 321; a second dielectric material 322, the second dielectric material 322 is disposed in the first dielectric material 321, and the dielectric constant of the second dielectric material 322 is the same as the dielectric constant of the first dielectric material 321. Electric constants are different.
  • the dielectric constant of the first dielectric material 321 is smaller than that of the second dielectric material 322 .
  • the minimum repeating unit 320 may be a plane symmetric structure and the dielectric constant of the first dielectric material is smaller than that of the second dielectric material. Specifically, as shown in FIG. 5 , the center of the first dielectric material 321 coincides with the center of the second dielectric material 322 , and the symmetry plane of the smallest repeating unit 320 is parallel to the y direction and passes through the coincident center.
  • the electromagnetic waves can be made more uniform on both the electromagnetic wave incident surface and the electromagnetic wave exit surface of the minimum repeating unit 320, and by arranging the dielectric material with a higher dielectric constant at the center of the minimum repeating unit 320, the electromagnetic waves can be made more uniform.
  • a strong electromagnetic resonance mode is formed in the second dielectric material 322 to match the electromagnetic waves in the air, and the first dielectric material 321 with lower dielectric constant is arranged on both sides of the minimum repeating unit 320, which is beneficial to realize Smooth transition and perfect matching of the external electromagnetic wave and the electromagnetic wave resonance mode in the second dielectric material 322 . In this way, it is beneficial to improve the coupling efficiency of electromagnetic waves in the second transmission structure 32 .
  • the minimum repeating units 320 are arranged in an array form, the length of the first dielectric material 321 in the x-direction is a, the length in the y-direction is 0.6a, and the length of the second dielectric material 322 in the x-direction is 0.6 a, the length in the y direction is 0.4a.
  • the relative permittivity of the first dielectric material 321 can be 1
  • the relative permittivity of the second dielectric material 322 can be 12
  • a can be 6 mm, so that the iso-frequency curve of the photonic crystal can be obtained through simulation.
  • the horizontal axis in the iso-frequency curve represents the wave vector ⁇ ( ⁇ represents the propagation constant) in the transmission direction of the electromagnetic wave (ie the x direction), and the vertical axis represents the direction perpendicular to the electromagnetic wave transmission (ie the y direction). ) on the wave vector.
  • the equal frequency curve of the air guided wave structure (shown by the gray solid line) ) and the projections of the iso-frequency curve (shown by the black solid line) of the photonic crystal on the horizontal axis have no overlapping parts, so that the electromagnetic wave of the first mode and the electromagnetic wave of the second mode can be transmitted in the first transmission structure 31 and the second mode respectively.
  • There is no crosstalk transmission in the structure 32 which is beneficial to improve the integration degree of the electromagnetic wave transmission structure 30 .
  • the working schematic diagrams of the photonic crystal and the air-guiding wave structure can be seen in (a) and (b) of FIG. 7 .
  • the operating frequencies corresponding to the first transmission structure 31 and the second transmission structure 32 will also be extended to other frequency bands accordingly.
  • the optimal operating frequency of the second transmission structure 32 is 14.8 GHz, which is in the microwave band; and when a is 6 ⁇ m, the optimal operating frequency of the second transmission structure 32 It corresponds to 14.8THz, which is in the vicinity of the terahertz band; and when a is 200 nm, the optimal operating frequency of the second transmission structure 32 corresponds to around 444THz, which is in the visible light band. Therefore, the electromagnetic wave transmission structure of the present invention also has excellent performance applicable to all wave bands.
  • the second transmission structure 32 has a predetermined thickness along the direction of the predetermined axis AX, the second transmission structure 32 is further configured to transmit electromagnetic waves of the third mode, and the first transmission structure 31 is further configured to The electromagnetic wave transmission of the third mode is blocked in the direction of the preset axis AX.
  • the propagation constant of the electromagnetic wave in the first mode has a first range
  • the propagation constant of the electromagnetic wave in the second mode has a second range
  • the propagation constant of the electromagnetic wave in the third mode has a third range
  • the first range and the second range have no range. Overlapping parts, the first range and the third range have no overlapping parts.
  • the second transmission structure 32 shown in FIG. 4 please refer to (c) and (e) of FIG. 7 , where the horizontal axis represents the propagation constant, and the vertical axis represents the normalized frequency.
  • the second transmission structure 32 transmits one mode of electromagnetic waves
  • the second transmission structure 32 can transmit two different modes of electromagnetic waves. It can be known that the second transmission structure 32 can transmit multiple modes of electromagnetic waves as the thickness changes.
  • the two different modes of electromagnetic waves can be respectively Denoted as the electromagnetic wave of the second mode and the electromagnetic wave of the third mode; correspondingly, please refer to (d) and (f) of FIG. 7 , the first transmission structure 31 is an air waveguide. When its thickness is 4b, the first transmission structure 31 is an air waveguide. A transmission structure 31 transmits one mode of electromagnetic waves, when its thickness is 5b, the first transmission structure 31 still transmits one mode of electromagnetic waves, and the mode of electromagnetic waves can be recorded as the first mode of electromagnetic waves.
  • the value range of the propagation constant of the electromagnetic wave in the second mode does not overlap with the value range of the propagation constant of the electromagnetic wave in the first mode.
  • the value range of the propagation constant does not overlap with the value range of the propagation constant of the electromagnetic wave of the first mode.
  • the first transmission structure 31 when the thickness of the first transmission structure 31 is thick enough, for example, when the thickness is 10b, the first transmission structure 31 can also transmit electromagnetic waves of other modes, which can be recorded as electromagnetic waves of the fourth mode.
  • the second transmission structure 32 is further configured to block the electromagnetic wave transmission of the fourth mode in the direction of the preset axis AX.
  • the propagation constant of the electromagnetic wave of the fourth mode has a fourth range, the fourth range and the second range have no overlapping part, and the fourth range and the third range also have no overlapping part.
  • the present application also provides a highly integrated electromagnetic wave transmission device according to the above electromagnetic wave transmission structure.
  • the electromagnetic wave transmission device includes an electromagnetic wave transmission structure 30 as previously described, wherein each of the first transmission structures 31 and each of the second transmission structures 32 are respectively configured to form a channel. Next, the effect of the electromagnetic wave transmission device will be described through a specific experimental embodiment.
  • the electromagnetic wave transmission device has a length of 30a in the x-direction, and is configured with eight channels A1, B1, A2, B2, A3, B3, A4, and B4, wherein the thickness of each channel (that is, the y-direction
  • the length of the electromagnetic wave transmission device can be different, the first transmission structure 31 of the electromagnetic wave transmission device adopts an air waveguide, and the second transmission structure 32 adopts the photonic crystal shown in FIG. 5 .
  • FIG. 9A respectively show the working schematic diagrams of the channels A1, B1, A2 and B2 of the electromagnetic wave transmission device, and (e) to (h) of FIG.
  • the above electromagnetic wave transmission device makes full use of each channel, avoiding the waste of space and materials. Compared with the traditional waveguide array of the same volume, it has a high degree of integration and has more channels; in addition, each channel can be The electromagnetic waves incident at different angles are transmitted with low loss, thereby greatly improving the numerical aperture and coupling efficiency of electromagnetic wave transmission devices.
  • the present application further provides another electromagnetic wave transmission device according to the above electromagnetic wave transmission structure.
  • the electromagnetic wave transmission device includes a plurality of electromagnetic wave transmission structures 30 as described above, wherein at least one transmission structure in the at least one electromagnetic wave transmission structure 30 is a uniform dielectric waveguide structure; at least one bending channel is formed in the electromagnetic wave transmission device , the bent portion of the bent channel includes a uniform dielectric waveguide structure.
  • the material of the uniform dielectric waveguide structure can be air, silicon, water, or the like.
  • the electromagnetic wave transmission that realizes the electromagnetic wave bending at a large angle can be prepared by rationally arranging the above transmission structures device, wherein the first transmission structure 31 adopts an air waveguide, and the second transmission structure 32 adopts the photonic crystal waveguide shown in FIG. 6 .
  • the effect of the electromagnetic wave transmission device will be clarified through two specific experimental examples. During the experiment, the electromagnetic wave transmission device was placed on a metal plate, and a metal plate was also pressed above the electromagnetic wave transmission device, so as to ensure the transmission of electromagnetic waves in a structure that can be approximated as two-dimensional.
  • the electromagnetic wave transmission device has three bending channels I1-O1, I2-O2, and I3-O3, and the bending angle of each bending channel is 90°, wherein each bending
  • the folded parts are all air-guiding structures, and the direction of the arrow in the figure indicates the transmission direction of the electromagnetic wave.
  • Figures (a) to (c) of FIG. 11 respectively show the working schematic diagrams of each bending channel of the electromagnetic wave transmission device, wherein the vertical axis represents the electromagnetic wave intensity, and the horizontal axis represents the distance between L-H. It can be seen that the experimental results are basically consistent with the simulation results.
  • Each bent channel can still effectively transmit electromagnetic waves to the output end after being bent at a large angle, and crosstalk between adjacent bent channels basically does not occur.
  • the present application also provides another electromagnetic wave transmission device according to the above electromagnetic wave transmission structure.
  • the electromagnetic wave transmission device has I4-O4, a channel that enables electromagnetic waves to traverse the loop transmission, including multiple bending angles of 90°, wherein the structure of each bending angle is an air-guided wave structure, the arrow in the figure The direction indicates the transmittable direction of the electromagnetic wave.
  • FIG. 13 is a working schematic diagram of the electromagnetic wave transmission device, wherein the vertical axis represents the electromagnetic wave intensity, and the horizontal axis represents the distance between L-H. It can be seen that the experimental results are basically consistent with the simulation results, and the traversal loop channel can still effectively transmit electromagnetic waves to the output end after many times of large-angle bending.
  • the present application also provides an optical chip according to the above electromagnetic wave transmission device.
  • the optical chip may include an electromagnetic wave transmission device as shown in FIGS. 10 and 12 .
  • the respective operating frequencies can be adapted to the infrared or visible light band.
  • the above-mentioned optical chip can realize the effective transmission of optical signals to various components located in different directions, thereby improving the performance of the optical chip.

Abstract

本发明涉及一种电磁波传输结构、器件及光芯片。该电磁波传输结构包括至少一个第一传输结构和至少一个第二传输结构,第二传输结构与第一传输结构沿一预设轴线交替排列;其中,第一传输结构被配置为在其工作频率下传输第一模式的电磁波,第二传输结构被配置为在其工作频率下传输第二模式的电磁波;并且,第一传输结构还被配置为在预设轴线的方向上阻隔第二模式的电磁波传输,第二传输结构还被配置为在预设轴线的方向上阻隔第一模式的电磁波传输。上述电磁波传输器件可实现无串扰的多通道电磁波传输,并可实现空间和材料的充分利用,提高集成度。

Description

电磁波传输结构、器件及光芯片 技术领域
本发明涉及电磁波传输技术领域,特别是涉及电磁波传输结构、器件及光芯片。
背景技术
波导是光学领域的重要器件。波导由芯层和包层构成,芯层负责传播光,包层负责阻挡或反射光,以达到光总体沿着波导轴向传播的目的。传统的波导主要包括普通光纤波导和光子晶体带隙波导。
普通光纤波导是通过波密介质到波疏介质的全反射效应将波束缚在芯层传播。然而波导的包层本身不传播光,造成了一些非必要的空间和材料浪费;另一方面,在光芯片的制备过程中,波导之间容易形成串扰,需要使相邻的波导形成足够的间距来降低串扰,而这明显不利于光路的集成。
光子晶体带隙波导则是将周期排布的光子晶体作为波导的包层,利用光子晶体的能带理论,使光限制在芯层中传播。然而,光子晶体带隙波导的包层通常较厚,且包层本身并不传播光,也容易造成空间和材料的浪费,同样不利于光路的集成。
发明内容
根据本申请的各种实施例,提供一种电磁波传输结构。
一种电磁波传输结构,包括:
至少一个第一传输结构和至少一个第二传输结构,所述第二传输结构与所述第一传输结构沿一预设轴线交替排列;
其中,
所述第一传输结构被配置为在其工作频率下传输第一模式的电磁波,所述第二传输结构被配置为在其工作频率下传输第二模式的电磁波;
并且,
所述第一传输结构还被配置为在所述预设轴线的方向上阻隔所述第二模式的电磁波传输,所述第二传输结构还被配置为在所述预设轴线的方向上阻隔所述第一模式的电磁波传输。
一种电磁波传输器件,包括上述实施例所述的电磁波传输结构,其中,每个所述第一传输结构和每个所述第二传输结构分别被配置为形成一个信道。
一种电磁波传输器件,包括多个上述实施例所述的电磁波传输结构,其中至少一个所述电磁波传输结构中的至少一个传输结构为均匀的电介质导波结构;所述电磁波传输器件中形成有至少一条弯折信道,所述弯折信道的弯折部分包括所述均匀的电介质导波结构。
一种光芯片,包括上述实施例所述的电磁波传输器件。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为普通光纤波导的工作示意图;
图2为光子晶体带隙波导的工作示意图;
图3为本申请一实施例的电磁波传输结构的工作示意图;
图4为本申请一优选实施例的第二传输结构的结构示意图;
图5为图4所示实施例的第二传输结构的最小重复单元的尺寸示意图;
图6为图4所示实施例的第二传输结构的等频率曲线图;
图7的(a)图为图4所示实施例的第二传输结构的工作示意图;
图7的(b)图为第一传输结构为空气导波结构时的工作示意图;
图7的(c)图和(e)分别为图4所示实施例的第二传输结构在不同厚度下的色散曲线图;
图7的(d)图和(f)图分别为第一传输结构为空气导波结构时在不同厚度下的色散曲线图;
图8为本申请一实施例的电磁波传输器件的结构示意图;
图9A的(a)图至(d)图分别示出了图8所示实施例的信道A1、B1、A2、B2的工作示意图;
图9B的(e)图至(h)图分别示出了图8所示实施例的信道A3、B3、A4、B4的工作示意图;
图10为本申请另一实施例的电磁波传输器件的结构示意图;
图11的(a)图至(c)图分别示出了图10所示实施例的各弯折信道的工作示意图;
图12为本申请又一实施例的电磁波传输器件的结构示意图;
图13为图12所示实施例的工作示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本 文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
光纤是一种由玻璃或塑料制成的纤维,可作为光传导工具。其传输原理是光的全反射效应。目前光纤波导已非常成熟,例如有单模光纤,多模光纤,保偏光纤等。然而,如图1所示,传统光纤波导需要很厚但并不用于传播所需电磁波的包层,从而易造成空间和材料浪费,且光纤彼此靠近时容易形成串扰,需要使相邻的波导形成足够的间距来降低串扰,其中串扰是指一个信号在传输通道上传输时,因电磁耦合而对相邻的传输线产生不期望的影响,被干扰信号表现为被注入了一定的耦合电压和耦合电流。因此,传统光纤明显不利于光路的集成。
另一方面,如图2所示,光子晶体带隙波导20则是将周期排布的光子晶体作为波导的包层22,利用光子晶体的能带理论,使光限制在芯层21中传播,又因为其芯层21的折射率与包层22的有效折射率相差较大,所以通常还可具备较大的数值孔径。然而,入射至芯层21端面的光线仍会因为阻抗不匹配而导致光线的耦合效率较低;且光子晶体带隙波导的包层22通常较厚,包层22本身并不传播光,也容易造成空间和材料的浪费,同样 不利于光路的集成。
针对上述问题,本申请在一实施方式中提供了一种低串扰且集成度高的电磁波传输结构。
如图3所示,电磁波传输结构30包括至少一个第一传输结构31和至少一个第二传输结构32,第二传输结构32与第一传输结构31沿一预设轴线AX交替排列;其中,第一传输结构31被配置为在其工作频率下传输第一模式的电磁波,第二传输结构32被配置为在其工作频率下传输第二模式的电磁波;并且,第一传输结构31还被配置为在预设轴线AX的方向上阻隔第二模式的电磁波传输,第二传输结构32还被配置为在预设轴线AX的方向上阻隔第一模式的电磁波传输。
具体的,以图3所示为例,y方向即为预设轴线AX的方向,x方向即为垂直于预设轴线AX的方向(也即传输结构的轴线方向),z方向垂直纸面向外。第一传输结构31和第二传输结构32沿y方向交替排列,优选的,相邻的第一传输结构31和第二传输结构32之间的间距为0,以实现空间的充分利用,大大提升电磁波传输结构或器件的集成度。
入射电磁波入射进第一传输结构31后,可在第一传输结构31中以第一模式的电磁波传输,且第一模式的电磁波在x方向和y方向上均具备传播分量,而第二传输结构32在y方向上可阻隔第一模式的电磁波传播,使得第一模式的电磁波无法耦合进第二传输结构32从而被限制在第一传输结构31内,并在整体上沿x方向传输;入射电磁波入射电磁波入射进第二传输结构32后,可在第二传输结构32中以第二模式的电磁波传输,且第二模式的电磁波在x方向和y方向上均具备传播分量,而第一传输结构31在y方向上可阻隔第二模式的电磁波传播,使得第二模式的电磁波无法耦合进第一传输结构31从而被限制在第二传输结构32内,并在整体上沿x方向传输。通过上述方式可消除相邻传输结构间的串扰,即使相邻传输结构间的间距为0,也能实现电磁波的无串扰传输,与传统的波导阵列相比, 大大提升了电磁波传输结构的集成度。
需要指出的是,工作频率是指使电磁波能在相应传输结构中传输,且使入射进相应传输结构的电磁波能被相邻传输结构在y方向上阻隔传输的入射电磁波的频率,电磁波的模式则是指在给定边界条件下可独立存在的确定的电磁场分布规律。其中,第一模式的电磁波是电磁波在第一传输结构31的工作频率入射下形成,第二模式的电磁波是电磁波在第二传输结构32的工作频率入射下形成,第一传输结构31的工作频率和第二传输结构32的工作频率可以相同也可以不同。
上述电磁波传输结构30,通过使第一传输结构31在预设轴线AX的方向上阻隔第二模式的电磁波传输,以及使第二传输结构32在预设轴线AX的方向上阻隔第一模式的电磁波传输,可在实现多通道的电磁波传输的同时,有效地解决普通光纤波导10间易发生串扰的问题,进而,第一传输结构31和第二传输结构32均既可以传输电磁波,又能在预设轴线AX的方向上阻隔相邻传输结构中的电磁波传输,从而兼具传统波导中“芯层”和“包层”的作用,实现了空间和材料的充分利用,有利于光路的集成,也能在一定程度上降低电磁波传输器件的制备成本。
进一步的,第一模式的电磁波的传播常数具有第一范围,第二模式的电磁波的传播常数具有第二范围,第一范围和第二范围无重合部分。具体的,传播常数是指电磁波波矢在传输结构轴向上的分量,用于表示单位长度内电磁波相位的变化量。通过使第一范围与第二范围的传播常数无重合部分,可实现在传播常数处于第一范围内时,第二传输结构32的能带在y方向上体现为禁带,而在传播常数处于第二范围内时,第一传输结构31的能带在y方向上体现为禁带,从而保证第一传输结构31和第二传输结构32均能在相应的工作频率下传输电磁波而不发生串扰。
在一实施例中,第一传输结构31包括空气导波结构。如此设置,一方面可方便电磁波传输器件的制备,另一方面在外部入射介质也为空气时, 空气导波结构可与外部入射介质形成极佳的阻抗匹配,从而有利于提升电磁波射入到第一传输结构31时的耦合效率,进而提升电磁波传输器件的性能,当然,外部入射介质也可以是水、二氧化硅等均匀的电介质,此处仅以空气举例。在另一实施例中,第一传输结构31包括均匀的电介质导波结构,电介质导波结构的折射率大于1。其中,均匀的电介质导波结构可以是各向同性的电介质材料,如硅、水等。以硅为例,虽然硅波导也可用于阻隔相邻传输结构中的电磁波在y方向上传输,但由于阻抗的不匹配,入射的电磁波容易在硅波导的射入端面形成反射,导致电磁波的耦合效率降低。
在一实施例中,第二传输结构32包括光子晶体,光子晶体是由不同折射率的介质周期性排列而成的人工微结构。
在一具体实施例中,如图4所示,光子晶体包括多个阵列排布的最小重复单元320。具体的,最小重复单元320在预设轴线AX的方向上和垂直于预设轴线AX的方向上均呈周期性排布。最小重复单元320包括:第一电介质材料321;第二电介质材料322,第二电介质材料322设置在第一电介质材料321内,且第二电介质材料322的介电常数与第一电介质材料321的介电常数不同。优选的,第一电介质材料321的介电常数小于第二电介质材料322的介电常数。
以图4和图5所示为例,最小重复单元320可以是平面对称结构且第一电介质材料的介电常数小于第二电介质材料的介电常数。具体的,如图5所示,第一电介质材料321的中心与第二电介质材料322的中心重合,最小重复单元320的对称平面平行于y方向并经过该重合中心。通过上述设置,可使电磁波在最小重复单元320的电磁波射入面和电磁波射出面上都更为均匀,而通过将较高介电常数的电介质材料设置在最小重复单元320的中心,可以使电磁波在第二电介质材料322中形成较强的电磁共振模态来匹配空气中的电磁波,并且,将具有较低介电常数的第一电介质材 料321设于最小重复单元320的两侧,有利于实现外界电磁波和第二电介质材料322中的电磁波共振模态的平滑过渡和完美匹配。如此,有利于提高电磁波在第二传输结构32中的耦合效率。
进一步的,最小重复单元320以的阵列形式排布,第一电介质材料321在x方向上的长度为a,y方向上的长度为0.6a,第二电介质材料322在x方向上的长度为0.6a,y方向上的长度为0.4a。优选的,第一电介质材料321的相对介电常数可以为1,第二电介质材料322的相对介电常数可以为12,a可取6mm,从而通过仿真可以得到光子晶体的等频率曲线图。
具体的,如图6所示,等频率曲线图中横轴表示电磁波传输方向(即x方向)上的波矢β(β即表示传播常数),纵轴表示垂直于电磁波传输方向(即y方向)上的波矢。可以看到,当第一传输结构31为空气导波结构且第一传输结构31和第二传输结构32的工作频率均取14.8GHz时,空气导波结构的等频率曲线(灰实线示出)以及光子晶体的等频率曲线(黑实线示出)在横轴上的投影无重合部分,从而可使第一模式的电磁波和第二模式的电磁波分别在第一传输结构31和第二传输结构32中无串扰的传输,进而有利于提高电磁波传输结构30的集成度。其中,光子晶体和空气导波结构的工作示意图可参见图7的(a)图和(b)图。
值得一提的是,随着尺寸的等比例变化,第一传输结构31和第二传输结构32对应的工作频率也会相应地扩展到其他波段。以第二传输结构32为例,当a取6mm时,第二传输结构32的最佳工作频率为14.8GHz,处于微波波段;而当a取6μm时,第二传输结构32的最佳工作频率对应为14.8THz,处于太赫兹波段附近;而当a取200nm时,第二传输结构32的最佳工作频率对应在444THz附近,处于可见光波段。因此,本发明的电磁波传输结构还具备全波段适用的优异性能。
在一优选实施例中,第二传输结构32沿预设轴线AX的方向具有一预设厚度,第二传输结构32还被配置为传输第三模式的电磁波,第一传输结 构31还被配置为在预设轴线AX的方向上阻隔第三模式的电磁波传输。进一步的,第一模式的电磁波的传播常数具有第一范围,第二模式的电磁波的传播常数具有第二范围,第三模式的电磁波的传播常数具有第三范围,第一范围和第二范围无重合部分,第一范围和第三范围无重合部分。
具体的,仍旧以图4所示的第二传输结构32为例,请参考图7的(c)图和(e)图,其中横轴表示传播常数,纵轴表示归一化频率。可以看到,第二传输结构32的厚度(即y方向上的长度)为4b时(b=0.6a),第二传输结构32传输一种模式的电磁波,而当第二传输结构32的厚度为5b时,第二传输结构32可传输两种不同模式的电磁波,可知第二传输结构32随着厚度的变化,可以传输多种模式的电磁波,进一步的,该两种不同模式的电磁波可分别记为第二模式的电磁波和第三模式的电磁波;对应的,请参考图7的(d)图和(f)图,第一传输结构31为空气波导,当它的厚度为4b时,第一传输结构31传输一种模式的电磁波,当它的厚度为5b时,第一传输结构31仍旧传输一种模式的电磁波,该模式的电磁波可记为第一模式的电磁波。结合图7的(e)图和(f)图可知,第二模式的电磁波的传播常数的取值范围与第一模式的电磁波的传播常数的取值范围无重合部分,第三模式的电磁波的传播常数的取值范围与第一模式的电磁波的传播常数的取值范围无重合部分。
需要指出的是,当第一传输结构31的厚度足够厚时,例如厚度为10b的时候,第一传输结构31中也可传输其他模式的电磁波,可记为第四模式的电磁波。此时,第二传输结构32还被配置为在预设轴线AX的方向上阻隔第四模式的电磁波传输。进一步的,第四模式的电磁波的传播常数具有第四范围,第四范围与第二范围无重合部分,第四范围与第三范围也无重合部分。
本申请根据上述电磁波传输结构还提供了一种高集成的电磁波传输器件。该电磁波传输器件包括如前文所述的电磁波传输结构30,其中,每个 第一传输结构31和每个第二传输结构32分别被配置为形成一个信道。接下来通过一具体的实验实施例来说明该电磁波传输器件的效果。
如图8所示,该电磁波传输器件在x方向上的长度为30a,且配置有A1、B1、A2、B2、A3、B3、A4、B4八个通道,其中各个通道的厚度(即y方向上的长度)可以不同,电磁波传输器件的第一传输结构31采用空气波导,第二传输结构32采用图5所示的光子晶体。进一步的,图9A的(a)图至(d)图分别示出了该电磁波传输器件的信道A1、B1、A2、B2的工作示意图,图9B的(e)图至(h)图分别示出了该电磁波传输器件的信道A3、B3、A4、B4的工作示意图,其中,纵轴表示电磁波强度,横轴表示L-H间的距离。可以看到,实验结果与仿真结果基本一致,每个信道都能独立的将电磁波传输至输出端,且相邻信道间基本不会发生串扰现象。
上述电磁波传输器件充分利用了每一条信道,避免了空间和材料的浪费,相比于同体积的传统波导阵列,集成度高且具备更多的信道数;除此之外,每个信道均可低损耗地传输不同角度入射的电磁波,从而大大提升了电磁波传输器件的数值孔径以及耦合效率。
本申请根据上述电磁波传输结构还提供了另一种电磁波传输器件。该电磁波传输器件包括多个如前文所述的电磁波传输结构30,其中,至少一个电磁波传输结构30中的至少一个传输结构为均匀的电介质导波结构;电磁波传输器件中形成有至少一条弯折信道,弯折信道的弯折部分包括均匀的电介质导波结构。均匀的电介质波导结构的材质可以是空气、硅、水等。
由于本发明的第一传输结构31和第二传输结构32可在y方向上实现相邻传输结构中的电磁波阻隔,从而通过合理布置上述传输结构即可制备得到实现电磁波大角度弯折的电磁波传输装置,其中第一传输结构31采用空气波导,第二传输结构32采用图6所示的光子晶体波导。接下来通过两个具体的实验实施例来阐明该电磁波传输器件的效果。实验时,在电磁波传输器件放置在一金属板上,并在电磁波传输器件的上方也压设有金属板, 从而保证电磁波在一个可近似为二维的结构中传输。
在一实施例中,如图10所示,该电磁波传输器件具备I1-O1、I2-O2、I3-O3三条弯折信道,每条弯折信道的弯折角度均为90°,其中各弯折部分均为空气导波结构,图中箭头方向表示电磁波的可传输方向。图11的(a)图至(c)图分别示出了该电磁波传输器件的各弯折信道的工作示意图,其中,纵轴表示电磁波强度,横轴表示L-H间的距离。可以看到,实验结果与仿真结果基本一致,每条弯折信道在历经大角度弯折后仍能有效地将电磁波传输至输出端,且相邻弯折信道间基本不会发生串扰现象。
本申请根据上述电磁波传输结构还提供了又一种电磁波传输器件。如图12所示,该电磁波传输器件具备I4-O4这一使电磁波实现遍历回路传输的信道,包括多个90°的弯折角,其中各弯折角的结构均为空气导波结构,图中箭头方向表示电磁波的可传输方向。图13为该电磁波传输器件的工作示意图,其中,纵轴表示电磁波强度,横轴表示L-H间的距离。可以看到,实验结果与仿真结果基本一致,该遍历回路信道在历经多次大角度弯折后仍能有效地将电磁波传输至输出端。
本申请还根据上述电磁波传输器件提供了一种光芯片。该光芯片可包括如图10和图12所示的电磁波传输器件。通过调整第一传输结构31和第二传输结构32的尺寸可使各自的工作频率适配至红外或可见光波段。
上述光芯片,能够实现光信号向位于不同方位的各个元件的有效传递,进而提升光芯片的性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若 干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种电磁波传输结构,其特征在于,包括:
    至少一个第一传输结构和至少一个第二传输结构,所述第二传输结构与所述第一传输结构沿一预设轴线交替排列;
    其中,
    所述第一传输结构被配置为在其工作频率下传输第一模式的电磁波,所述第二传输结构被配置为在其工作频率下传输第二模式的电磁波;
    并且,
    所述第一传输结构还被配置为在所述预设轴线的方向上阻隔所述第二模式的电磁波传输,所述第二传输结构还被配置为在所述预设轴线的方向上阻隔所述第一模式的电磁波传输。
  2. 根据权利要求1所述的电磁波传输结构,其特征在于,相邻的所述第一传输结构和所述第二传输结构之间的间距为0。
  3. 根据权利要求1所述的电磁波传输结构,其特征在于,
    所述第一模式的电磁波的传播常数具有第一范围,所述第二模式的电磁波的传播常数具有第二范围,所述第一范围和所述第二范围无重合部分。
  4. 根据权利要求1所述的电磁波传输结构,其特征在于,所述第一传输结构包括空气导波结构。
  5. 根据权利要求1所述的电磁波传输结构,其特征在于,所述第一传输结构包括均匀的电介质导波结构,所述电介质导波结构的折射率大于1。
  6. 根据权利要求1-5中任一项所述的电磁波传输结构,其特征在于,所述第二传输结构包括光子晶体。
  7. 根据权利要求6所述的电磁波传输结构,其特征在于,所述光子晶体包括多个阵列排布的最小重复单元,所述最小重复单元包括:
    第一电介质材料;
    第二电介质材料,所述第二电介质材料设置在所述第一电介质材料内, 且所述第二电介质材料的介电常数与所述第一电介质材料的介电常数不同。
  8. 根据权利要求7所述的电磁波传输结构,其特征在于,所述最小重复单元为平面对称结构,且所述第一电介质材料的介电常数小于所述第二电介质材料的介电常数。
  9. 根据权利要求1所述的电磁波传输结构,其特征在于,所述第二传输结构沿所述预设轴线的方向具有一预设厚度,所述第二传输结构还被配置为传输第三模式的电磁波,所述第一传输结构还被配置为在所述预设轴线的方向上阻隔所述第三模式的电磁波传输。
  10. 根据权利要求9所述的电磁波传输结构,其特征在于,所述第一模式的电磁波的传播常数具有第一范围,所述第二模式的电磁波的传播常数具有第二范围,所述第三模式的电磁波的传播常数具有第三范围,所述第一范围和所述第二范围无重合部分,所述第一范围和所述第三范围无重合部分。
  11. 一种电磁波传输器件,其特征在于,包括如权利要求1-10中任一项所述的电磁波传输结构,其中,每个所述第一传输结构和每个所述第二传输结构分别被配置为形成一个信道。
  12. 一种电磁波传输器件,其特征在于,包括:
    多个如权利要求1-10中任一项所述的电磁波传输结构,其中至少一个所述电磁波传输结构中的至少一个传输结构为均匀的电介质导波结构;
    所述电磁波传输器件中形成有至少一条弯折信道,所述弯折信道的弯折部分包括所述均匀的电介质导波结构。
  13. 一种光芯片,其特征在于,包括如权利要求12所述的电磁波传输器件。
PCT/CN2021/084521 2021-03-31 2021-03-31 电磁波传输结构、器件及光芯片 WO2022205124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084521 WO2022205124A1 (zh) 2021-03-31 2021-03-31 电磁波传输结构、器件及光芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084521 WO2022205124A1 (zh) 2021-03-31 2021-03-31 电磁波传输结构、器件及光芯片

Publications (1)

Publication Number Publication Date
WO2022205124A1 true WO2022205124A1 (zh) 2022-10-06

Family

ID=83455392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084521 WO2022205124A1 (zh) 2021-03-31 2021-03-31 电磁波传输结构、器件及光芯片

Country Status (1)

Country Link
WO (1) WO2022205124A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144406A (zh) * 1995-03-28 1997-03-05 株式会社村田制作所 平面介质传输线和使用该传输线的集成电路
US20030013304A1 (en) * 2001-05-17 2003-01-16 Optronx, Inc. Method for forming passive optical coupling device
CN107577009A (zh) * 2017-09-30 2018-01-12 华中科技大学 一种基于泄漏模波导的在线模式分辨器
US10061088B1 (en) * 2017-01-06 2018-08-28 Seagate Technology Llc Optical spatial mode filter for removing fundamental mode components in a HAMR light path
CN110554457A (zh) * 2018-06-04 2019-12-10 波音公司 平面电介质结构中的多维光学波导

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144406A (zh) * 1995-03-28 1997-03-05 株式会社村田制作所 平面介质传输线和使用该传输线的集成电路
US20030013304A1 (en) * 2001-05-17 2003-01-16 Optronx, Inc. Method for forming passive optical coupling device
US10061088B1 (en) * 2017-01-06 2018-08-28 Seagate Technology Llc Optical spatial mode filter for removing fundamental mode components in a HAMR light path
CN107577009A (zh) * 2017-09-30 2018-01-12 华中科技大学 一种基于泄漏模波导的在线模式分辨器
CN110554457A (zh) * 2018-06-04 2019-12-10 波音公司 平面电介质结构中的多维光学波导

Similar Documents

Publication Publication Date Title
WO2020119009A1 (zh) 基于光相控阵的硅基集成光学可调延时线
CN105829933A (zh) 波导偏振分离和偏振转换器
WO2019144903A1 (zh) 一种宽带色散控制波导及控制方法
CN109407229A (zh) 一种端面耦合器
CN107015309B (zh) 一种低损耗宽频带太赫兹波渐变光子晶体滤波器
CN110333568B (zh) 一种开口型mim波导结构
CN108415121A (zh) 一种高双折射双芯光子晶体光纤偏振分束器
Song et al. Ultracompact photonic circuits without cladding layers
CN114114540B (zh) 一种高效紧凑型绝热模式转换器的设计方法
CN102289032A (zh) 一种太赫兹光子晶体光纤耦合器
Xie et al. High-efficiency broadband photonic crystal fiber metalens with a large numerical aperture
WO2022205124A1 (zh) 电磁波传输结构、器件及光芯片
CN103645541A (zh) 一种太赫兹偏振分束器
CN105954830A (zh) 一种宽带单偏振单模光子晶体光纤
CN208207272U (zh) 一种高双折射双芯光子晶体光纤偏振分束器
US11733452B2 (en) Terahertz polarization beam splitter based on two-core negative curvature optical fiber
CN102062898A (zh) 基于光纤到户应用的光子晶体三重波分复用器
KR101023254B1 (ko) 플라즈몬 투과 필터
CN115144962B (zh) 电磁波传输结构、器件及光芯片
CN208044121U (zh) 一种低损耗空心光纤
CN112596254B (zh) 基于光子晶体的紧凑型偏振分束器
US7236662B2 (en) Mode converter device using omnidirectional reflectors
CN210166532U (zh) 一种双芯太赫兹光纤耦合器
US11635570B1 (en) Multi-mode multi-pass delay
CN115144963B (zh) 波导结构、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933792

Country of ref document: EP

Kind code of ref document: A1