WO2019144897A1 - 两区段独立温控的生物3d打印喷头、生物3d打印机及其工作方法 - Google Patents

两区段独立温控的生物3d打印喷头、生物3d打印机及其工作方法 Download PDF

Info

Publication number
WO2019144897A1
WO2019144897A1 PCT/CN2019/072933 CN2019072933W WO2019144897A1 WO 2019144897 A1 WO2019144897 A1 WO 2019144897A1 CN 2019072933 W CN2019072933 W CN 2019072933W WO 2019144897 A1 WO2019144897 A1 WO 2019144897A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
biological
humidity
cartridge
sensor
Prior art date
Application number
PCT/CN2019/072933
Other languages
English (en)
French (fr)
Inventor
张传杰
袁玉宇
邓坤学
唐学文
钟怀秋
Original Assignee
广州迈普再生医学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810073276.0A external-priority patent/CN108032517B/zh
Priority claimed from CN201810073278.XA external-priority patent/CN108105945A/zh
Application filed by 广州迈普再生医学科技股份有限公司 filed Critical 广州迈普再生医学科技股份有限公司
Publication of WO2019144897A1 publication Critical patent/WO2019144897A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air

Definitions

  • the invention relates to the technical field of 3D printing equipment, and more particularly to a two-zone independent temperature controlled biological 3D printing nozzle, a biological 3D printer and a working method thereof.
  • Bio 3D printing refers to a technique of bioengineering manufacturing such as a blood vessel stent and a tissue organ model using a biomaterial having good biocompatibility and by means of a multidimensional printing apparatus having a complicated forming motion.
  • the biological material is directly in contact with the printing nozzle of the printing device, and is extruded or sprayed by the printing nozzle to the molding platform of the printing device to obtain the required bioengineering.
  • the printing temperature pretreatment of the biological material is required, that is, the proper pre-temperature environment is provided for the final molding.
  • the control of the temperature of the biomaterial is often limited to uniform temperature control of all sections of the printhead.
  • extrusion of biomaterials from higher temperature printheads to lower temperature forming platforms can result in temperature dips that can reduce the survival rate of cells in biological materials.
  • the temperature control of the prior art print head does not allow temperature control of the tip of the head of the head, whereby the head of the head is prone to clogging.
  • the present invention has been made based on the above-mentioned problems to be solved in the prior art. It is an object of the present invention to provide a two-section, independently temperature controlled bio-3D printhead that overcomes at least one of the above-discussed deficiencies of the prior art. Another object of the present invention is to provide a bio 3D printer and a method of operating the same.
  • the present invention adopts the following technical solutions.
  • the invention provides a two-zone independent temperature-controlled biological 3D printing nozzle
  • the biological 3D printing nozzle comprises: a barrel for storing printing material; a nozzle extrusion component, the nozzle extrusion component a feeding tube communicating with the cartridge; a nozzle needle communicating with a discharge tube of the nozzle extrusion assembly; a first temperature control assembly, the cartridge and the feed tube being at least Partially housed in the first temperature control component such that the first temperature control component is capable of regulating the temperature of the cartridge and the feed tube; and a second temperature control component, the showerhead needle and the The discharge tubes are at least partially received within the second temperature control assembly such that the second temperature control assembly is capable of regulating the temperature of the spray head needle and the discharge tube.
  • the bio 3D print head further includes a heat insulation component disposed between the first temperature control component and the second temperature control component to prevent the first temperature control component and the The second temperature control components interfere with each other.
  • the first temperature control component comprises a barrel heating block, a first heating rod and a temperature sensing element, the first heating rod and the temperature sensing element being inserted into the barrel heating block, and The cartridge and the feed tube are inserted into the cartridge heating block such that the temperature of the cartridge and the feed tube can be regulated by the first heating rod and the temperature sensing element can measure The temperature of the cartridge and the feed tube is described.
  • the temperature sensing element comprises a first temperature sensor and a second temperature sensor, the distance between the second temperature sensor and the cartridge being greater than the distance between the first temperature sensor and the cartridge the distance.
  • the cartridge heating block includes a first barrel heating block portion and a second barrel heating block portion that are connected to each other and assembled together, the first barrel heating block portion having a height greater than the second a height of a portion of the heat generating block of the cartridge, such that the heat generating block of the cartridge is generally L-shaped, and the cartridge, the first heating rod and the first temperature sensor are inserted into the first block heating block portion.
  • the feed tube and the second temperature sensor are inserted into the second cartridge heat block portion and a portion of the feed tube extends into the first cartridge heat block portion to communicate with the cartridge.
  • the second temperature control component comprises a discharge tube heating block, a needle thermal block, a second heating rod and a third temperature sensor
  • the discharge tube heating block is sleeved on the discharge tube
  • the needle a heat conducting block is sleeved on the nozzle needle
  • the second heating rod and the third temperature sensor are respectively inserted into the discharge tube heating block
  • the needle heat conducting block abuts against the discharging tube heating block A manner of being detachably coupled to the discharge tube heating block.
  • the thermal insulation assembly includes a first thermal insulation gasket between the first temperature control assembly and the body of the showerhead extrusion assembly, and a body and the first portion of the nozzle extrusion assembly a second insulating gasket between the two temperature control components.
  • the bio 3D printing head further comprises a needle insulation sleeve sleeved on the nozzle needle.
  • the bio 3D print head further includes a housing, at least a portion of the barrel and the first temperature control assembly are mounted inside the housing, the housing and the first temperature control assembly Observation windows for observing the liquid level of the printing material in the cartridge are respectively formed.
  • the outer surface of the first temperature control component and/or the outer surface of the second temperature control component is coated with a heat insulating material.
  • the cartridge is detachably coupled to the feed tube, and/or the spray tip needle is removably coupled to the discharge tube.
  • the present invention also provides a bio 3D printer comprising the two-section independent temperature-controlled bio 3D printing head according to any one of the above technical solutions.
  • the bio 3D printer further includes a molding chamber and a humidity control system
  • the humidity control system includes a humidity sensor, a temperature sensor, a condensing dehumidifier, an adsorption dehumidifier, a humidifying module, and a central controller.
  • the biological 3D printing head is disposed in the molding chamber to perform a printing operation, and the humidity sensor, the temperature sensor, the condensing dehumidifier, and the adsorption dehumidifier are all disposed on the molding Inside the chamber, the humidification module is disposed outside the molding chamber and communicates with the molding chamber, and the central controller and the humidity sensor, the temperature sensor, the condensing dehumidification The adsorption dehumidifier and the humidification module are all electrically connected for controlling the operation of these components.
  • the humidification module includes an atomization tank that communicates with the molding chamber through an air flow passage, an ultrasonic transducer disposed in the atomization pool, and a first liquid level sensor disposed in the atomization pool. And a fan disposed in the air flow path, the first liquid level sensor is configured to detect a distance between a liquid level in the atomization pool and the ultrasonic transducer.
  • the humidity control system further includes a sterilizer disposed in the air flow passage for sterilizing the water mist from the atomization pool.
  • the humidity control system further includes a liquid storage tank for supplying water to the humidifying module and collecting condensed water generated by the condensing dehumidifier.
  • the atomization cell is in controllable communication with the reservoir via a first conduit, the condensing dehumidifier being in communication with the reservoir via a second conduit.
  • the humidity control system further includes an on-off valve disposed in the first conduit and electrically connected to the central controller, and the communication/closing of the first conduit is controlled by the on-off valve.
  • the humidity control system further includes a liquid refill alarm and a second liquid level sensor disposed in the liquid storage tank, the liquid refill alarm and the second liquid level sensor both being coupled to the central controller Electrically connected, the liquid refill alarm is alarmed when the second level sensor detects that the liquid level in the liquid storage tank is lower than a predetermined value.
  • the invention also provides a working method of a biological 3D printer according to any one of the above technical solutions, the working method comprising the following steps:
  • step S1 Sensing and collecting a current humidity value in the molding chamber through a humidity sensor of the humidity control system, comparing the collected current humidity value with a preset reference humidity value, when the current humidity Step S2 is performed when the value is less than the reference humidity value, and step S3 is performed when the current humidity value is greater than the reference humidity value;
  • the ultrasonic transducer of the humidity control system excites water in the atomization tank to generate water mist, which is pumped into the air flow passage by a fan and sterilized by a sterilizer, and then the water Fog flowing into the molding chamber to increase humidity in the molding chamber until the current humidity value is equal to the reference humidity value;
  • the temperature sensor of the humidity control system senses and collects a current temperature value in the molding chamber, and compares the collected current temperature value with a preset reference temperature value, when the current temperature If the value is greater than the reference temperature value, step S4 is performed, otherwise step S5 is performed;
  • the condensing dehumidifier of the humidity control system operates until the current humidity value in the molding chamber is equal to the reference humidity value
  • the adsorption dehumidifier of the humidity control system operates until the current humidity value in the molding chamber is equal to the reference humidity value.
  • the ultrasonic transducer when the ultrasonic transducer is triggered, the liquid level in the atomization pool and the ultrasonic transducer are detected by a first liquid level sensor of the humidity control system
  • the distance between the ultrasonic transducers when the distance is less than the predetermined distance otherwise the water in the liquid storage tank is replenished into the atomization tank until the liquid level in the atomization tank is exchanged with the ultrasonic wave
  • the ultrasonic transducer begins to operate after the distance between the energizers is less than the predetermined distance.
  • the condensed water generated by the condensing dehumidifier is drained to the liquid storage tank through the second conduit.
  • the liquid level of the liquid storage tank is detected in real time by a second liquid level sensor of the humidity control system, and the liquid filling alarm is triggered when the liquid level is less than a predetermined value.
  • the present invention provides a two-zone independent temperature-controlled biological 3D printing nozzle, a biological 3D printer and a working method thereof.
  • the two-zone independent temperature-controlled biological 3D printing nozzle controls the temperature of the feeding tube (cylinder section) of the barrel and the nozzle extrusion assembly through the first temperature control component and controls the nozzle needle and the nozzle extrusion through the second temperature control component
  • the temperature of the discharge tube (needle section) of the assembly is realized, thereby achieving independent temperature control of the two sections of the biological 3D printing nozzle, and implementing gradient temperature control on the printing nozzle, overcoming the prior art due to temperature dip against the organism
  • the adverse effects of the material and the effective prevention of clogging of the nozzle needle are examples of the material and the effective prevention of clogging of the nozzle needle.
  • FIG. 1 is a perspective view showing the structure of a two-zone independent temperature-controlled bio 3D printing head according to an embodiment of the present invention.
  • FIG. 2 is a schematic exploded view of the bio 3D printing head of FIG. 1.
  • FIG. 3 is another exploded structural view of the bio 3D printing head of FIG. 1, in which part of the structure of the bio 3D printing head is omitted with respect to FIG. 2.
  • FIG. 4 is a block diagram showing the structure of a humidity control system of a bio 3D printing head according to the present invention.
  • a two-zone independent temperature-controlled bio 3D printing head includes a housing 1, a cartridge 2, a nozzle extrusion assembly 3, and a nozzle needle 4 assembled together.
  • the casing 1 has a rectangular parallelepiped shape and the inside of the casing 1 forms an installation space.
  • the remaining components are mounted above Within the installation space.
  • the housing 1 includes a first housing portion 11 and a second housing portion 12 that are detachably fastened together, the volume of the first housing portion 11 being greater than the volume of the second housing portion 12.
  • the cartridge 2 is inserted into the first temperature control assembly 5 housed in the first housing portion 11 and a portion of the cartridge 2 protrudes from the housing 1.
  • the side wall of the first housing portion 11 is formed with a housing observation window 11w for observing the liquid level of the printing material in the cartridge 2, the housing observation window 11w having an elongated shape and extending along the insertion direction of the cartridge 2 Sufficient length.
  • the nozzle extrusion assembly 3 is clamped between the first housing portion 11 and the second housing portion 12 and a portion of the nozzle extrusion assembly 3 projects from the housing 1.
  • the head needle 4 mounted to the head extrusion unit 3 also protrudes from the housing 1.
  • the cartridge 2 has a cylindrical storage portion for storing the printing material, and the cartridge 2 is detachably coupled to the feed tube 32 of the nozzle extrusion unit 3.
  • the bottom of the cartridge 2 is in communication with the feed tube 32 of the spray head extrusion assembly 3 such that the print material from the cartridge 2 can enter the body 31 of the spray head extrusion assembly 3 via the feed tube 32.
  • the cartridge 2 is connected to the feed tube 32 of the spray head extrusion assembly 3 by means of a threaded connection, which facilitates quick and easy replacement of the cartridge 2.
  • the head extrusion assembly 3 includes a main body 31 and a feed tube 32 and a discharge tube 33 disposed at the bottom of the main body 31.
  • the inside of the main body 31 is provided with a rotatable screw to extrude the printing material from the cartridge 2 via the feed pipe 32 from the discharge pipe 33 by the rotation of the screw.
  • the feed tube 32 is disposed at a side wall of the bottom of the body 31 and extends toward the cartridge 2.
  • the feed tube 32 has a bent structure as shown in FIGS. 2 and 3.
  • the discharge pipe 33 is provided at the bottom wall of the bottom of the main body 31 and extends toward the head needle 4.
  • the head 4 is made of a metal material having a large thermal conductivity.
  • the nozzle needle 4 is detachably coupled to the discharge tube 33 of the nozzle extrusion assembly 3 such that the nozzle needle 4 communicates with the discharge tube 33 of the nozzle extrusion assembly 3.
  • the printing material is pushed to the head needle 4 by the rotation of the screw in the main body 31 and ejected from the head needle 4.
  • the spray head needle 4 is coupled to the discharge tube 33 of the spray head extrusion assembly 3 by means of a threaded connection, which facilitates quick and easy replacement of the spray head needle 4.
  • the first temperature control unit 5 is housed in the first casing portion 11.
  • the first temperature control unit 5 includes a barrel heating block 51 and a first heating rod 52, a first temperature sensor 53, and a second temperature sensor 54 inserted into the barrel heating block 51.
  • the cartridge heat generating block 51 is processed by a metal material (for example, an aluminum alloy) having a good thermal conductivity, and the cartridge heat generating block 51 includes a first barrel heat generating block portion 511 and a second which are connected to each other and assembled together.
  • the barrel heat generating block portion 512 has a height higher than the height of the second barrel heat generating block portion 511, so that the barrel heat generating block 51 as a whole has a substantially L shape.
  • the barrel 2, the first heating rod 52 and the first temperature sensor 53 are inserted into the first barrel heat generating block portion 511, and the first heating rod 52 serves as a heat source for the entire first temperature control unit 5.
  • the feed tube 32 and the second temperature sensor 54 are inserted into the second barrel heat generating block portion 512, and a portion of the feed tube 32 extends into the first barrel heat generating block portion 511 to form the above-described bent shape to be mounted with the barrel 2. .
  • both the cartridge 2 and the feed tube 32 are partially housed within the first temperature control assembly 5 such that the first temperature control assembly 5 is capable of regulating the temperature of the cartridge 2 and the feed tube 32 (i.e., the barrel section).
  • the second temperature sensor 54 is disposed at a position farther than the first temperature sensor 53, that is, the distance between the second temperature sensor 54 and the cartridge 2 is greater than that of the first temperature sensor 53 and the cartridge 2
  • the distance therebetween is such that the first temperature sensor 53 is capable of measuring and collecting the temperature in the vicinity of the cartridge 2, and the second temperature sensor 54 is capable of measuring and collecting the temperature near the feed tube 32 that is slightly further from the cartridge 2.
  • the average value of the temperature values respectively measured by the first temperature sensor 53 and the second temperature sensor 54 is used as a basis for implementing closed-loop control of the first temperature control component 5.
  • the first barrel heat generating block portion 511 is formed with a barrel heat generating block observation window 51w for observing the liquid level of the printing material in the cartridge 2, the shape and size of the barrel heat generating block observation window 51w and the housing viewing window 11w.
  • the shape and size correspond basically.
  • the second temperature control assembly 6 includes a discharge tube heating block 61, a needle thermal block 62, a second heating rod 63, and a third temperature sensor 64.
  • the discharge tube heating block 61 and the needle thermal block 62 are each formed of a metal material having a good thermal conductivity (for example, an aluminum alloy).
  • the discharge tube heating block 61 is sleeved on the discharge tube 33, and the needle thermal block 62 is sleeved on the nozzle needle 4.
  • Both the second heating rod 63 and the third temperature sensor 64 are inserted into the discharge tube heating block 61.
  • the second heating rod 63 serves as a heat source for the second temperature control unit 6, and the second heating rod 63 directly heats the discharge tube heating block 61.
  • the needle thermal block 62 is detachably coupled to abut against the discharge tube heating block 61 from below, and the heat of the second heating rod 63 is transferred to the nozzle needle 4 via the discharge tube heating block 61 and the needle thermal block 62. .
  • both the nozzle needle 4 and the discharge tube 33 are partially housed within the second temperature control assembly 6, such that the second temperature control assembly 6 can regulate the temperature of the nozzle needle 4 and the discharge tube 33 (i.e., the needle segment).
  • the discharge tube heating block 61 and the needle thermal block 62 are secured together by a threaded connection.
  • the outer surface of the first temperature control assembly 5 and/or the outer surface of the second temperature control assembly 6 are preferably coated with a heat insulating material. In this way, heat exchange between the barrel section and the needle section and the outside can be avoided.
  • the heat insulating component 7 is disposed between the first temperature control component 5 and the second temperature control component 6 to prevent the first temperature control component 5 and the second temperature control component 6 from interfering with each other.
  • the heat insulating component 7 includes a first heat insulating gasket 71 between the first temperature control component 5 and the main body 31 of the head extrusion assembly 3, and a main body 31 and a second temperature control component located in the head extrusion assembly 3.
  • the first heat insulating gasket 71 and the second heat insulating gasket 72 are all made of bakelite.
  • the first heat insulating gasket 71 is sleeved on a portion of the feed pipe 32 of the nozzle extrusion assembly 3 near the main body 31.
  • the second heat insulating gasket 72 is sleeved on the discharge pipe 33 of the nozzle extrusion assembly 3.
  • the first insulating spacer 71 and the second insulating spacer 72 prevent the temperatures of the barrel section and the needle section from interfering with each other.
  • the needle thermal insulator 8 is sleeved on the nozzle needle 4.
  • heat exchange between the head needle 4 and the outside can be blocked by the needle insulating sleeve 8.
  • only the needle insulation sleeve 8 needs to be removed and the nozzle needle 4 is removed to realize the replacement of the nozzle needle 4.
  • the biomaterial or cell suspension used as the printing material is first loaded into the barrel 2 of constant temperature and pushed to the end of the nozzle needle 4, after which it is on the multi-axis motion platform.
  • the driving is carried out according to a predetermined trajectory and the printing material is stacked on a molding platform of a lower temperature.
  • the temperature of the printed material in the print head is generally maintained at about 37 ° C, and the temperature of the forming platform is close to 0 ° C.
  • the temperature change of 30 degrees will strongly stimulate the cell activity of the printed material and affect the molding effect of the printed material. .
  • the first temperature control unit 5 and the second temperature control unit 6 are respectively disposed in the cylinder section and the needle section, and respectively control the section from the cylinder 2 to the main body 31 of the nozzle extrusion unit 3 (
  • the temperature of the barrel 2 and the feed tube 32) and the section 31 of the head extrusion assembly 3 to the head section 4 (including the discharge tube 33 and the head 4) are included.
  • the temperature of the barrel section and the needle section can be separately controlled, so that the barrel section, the needle section and the low temperature platform form three gradient temperature changes in order to minimize the adverse effects caused by temperature abrupt changes.
  • the temperature of the two sections of the barrel section and the needle section can be independently set, and the heat insulation component 7 is disposed between the first temperature control component 5 and the second temperature control component 6, which ensures the barrel section and the needle section The temperature does not affect each other.
  • the two-zone independent temperature-controlled biological 3D printing head according to the present invention has the following beneficial effects:
  • the two-zone independent temperature-controlled biological 3D printing nozzle is provided with a first temperature control component 5 and a second temperature control component 6 respectively in the barrel section and the needle section, respectively controlling the barrel section and the needle section separately
  • the temperature so that the temperature values of the barrel section and the needle section can be independently controlled, the nozzle can realize the gradient temperature control, and the heat insulation component 7 is disposed between the first temperature control component 5 and the second temperature control component 6, This ensures that the temperature of the barrel section and the needle section do not affect each other; the temperature of the needle section can be adjusted to prevent the nozzle needle 4 from being clogged.
  • connection of the cartridge 2 and the feed tube 32 of the two-zone independently temperature-controlled bio 3D printing head according to the present invention and the connection of the nozzle needle 4 and the discharge tube 33 are preferably achieved by screwing, so that Quick replacement of the cartridge 2 and the nozzle needle 4; the two-zone independent temperature-controlled bio 3D printing head according to the present invention is provided with a printing material for viewing the printing material in the cartridge 2 in the main casing 1 and the cartridge heating block 51.
  • the observation windows 11w and 51w of the liquid level can conveniently observe the use of the printing material in the cartridge 2.
  • the two-zone independent temperature-controlled biological 3D printing head of the invention has an automatic cleaning function, and after the printing is finished, in order to prevent the printing material from accumulating the nozzle flow path, it is necessary to thoroughly clean the flow path.
  • the dismounting cylinder 2 and the nozzle needle 4 are independently cleaned, the cartridge 2 carrying the cleaning liquid is inserted and the cleaning liquid is pushed quickly through the nozzle flow path, and the screw inside the main body 3 is rotated in the reverse direction to ensure the screw cleaning is thorough.
  • the cleaning process of the entire nozzle can be completed by performing the above cleaning procedure.
  • the outer surface of the casing 1 is preferably coated with a heat insulating material, which prevents heat exchange between the nozzle and the external environment, and ensures constant temperature of each section of the nozzle.
  • the biological 3D printer includes a molding chamber 1a and a humidity control system, wherein the humidity control system includes a humidity sensor 1a1, a temperature sensor 1a2, a condensing dehumidifier 1a3, an adsorption dehumidifier 1a4, a humidifying module, and
  • the central controller 2a the central controller 2a is used to control the operation of other components.
  • the humidity sensor 1a1 and the temperature sensor 1a2 are both disposed inside the molding chamber 1a, and the humidity sensor 1a1 and the temperature sensor 1a2 are used to measure the humidity and temperature in the molding chamber 1a, respectively.
  • the condensing dehumidifier 1a3 and the adsorption type dehumidifier 1a4 are also disposed inside the molding chamber 1a. Based on the measured humidity and temperature of the molding chamber 1a, the condensing dehumidifier 1a3 and the adsorption dehumidifier 1a4 are operated independently or simultaneously. The method of dehumidifying the molding chamber 1a. When cooling is required in the molding chamber 1a of the 3D printer, the condensing dehumidifier 1a3 operates to dehumidify while assisting the molding chamber 1a to cool.
  • the adsorption dehumidifier 1a4 operates, so that the temperature in the molding chamber 1a of the 3D printer does not change, There is no additional burden on the temperature control system.
  • the humidifying module is disposed outside the molding chamber 1a, and based on the measured humidity of the molding chamber 1a, the humidifying module can operate to humidify the molding chamber 1a.
  • the humidification module includes an atomization tank 3a that communicates with the molding chamber 1a through the air flow path P1, an ultrasonic transducer 3a1 disposed in the atomization pool 3a, a first liquid level sensor 3a2 disposed in the atomization pool 3a, and a Fan F of air flow path P1.
  • the first liquid level sensor 3a2 is for detecting the distance between the liquid level in the atomization tank 3a and the ultrasonic transducer 3a1, and the fan F is disposed at a portion of the air flow path P1 close to the atomization pool 3a.
  • the ultrasonic transducer 3a1 excites the water in the atomization tank 3a to generate water mist, and the water mist enters the molding chamber 1a of the 3D printer along the air flow path P1 under the push of the fan F. Inside, the humidity in the molding chamber 1a of the 3D printer reaches the reference humidity value.
  • the invention utilizes the principle of ultrasonic atomization of the ultrasonic transducer 3a1 to replenish the environment in the molding chamber 1a of the 3D printer with water vapor to reach the reference humidity value, thereby avoiding the method of obtaining water vapor by heating to cause the molding of the 3D printer.
  • the problem of elevated temperature in chamber 1a is a.
  • the humidity control system according to the present invention is further provided with an ultraviolet sterilizer 5a in the air flow path P1.
  • the water mist excited by the ultrasonic transducer 3a1 is continuously carried from the atomization pool 3a to the molding chamber 1a of the 3D printer by the fan F.
  • the water generating the atomized water vapor is mixed with the artificially replenished water and the condensed water generated by the condensing dehumidification, the water quality cannot be ensured to be sterile in continuous use, and the carried water vapor enters the molding chamber 1a to cause printing. Material contamination. Therefore, the present invention avoids this problem by performing ultraviolet sterilization treatment with the ultraviolet sterilizer 5a before the atomized water vapor enters the molding chamber 1a.
  • the humidity control system further includes a liquid storage tank 4a for supplying water to the humidifying module and collecting condensed water generated by the condensing dehumidifier 1a3.
  • the atomization tank 3a is controllably connected to the liquid storage tank 4a through the first pipe P2, and the communication/closing of the first pipe P2 is controlled by the on-off valve 6a provided in the first pipe P2.
  • the central controller 2a controls the on-off valve 6a to be opened, and the liquid storage tank 4a replenishes the water in the atomizing tank 3a; when the atomizing tank 3a does not require replenishing water, the central control The device 2a controls the on-off valve 6a to be in a closed state.
  • the condensing dehumidifier 1a3 communicates with the liquid storage tank 4a through the second duct P3.
  • the condensed water generated during the operation of the condensing dehumidifier 1a3 enters the liquid storage tank 4a through the second pipe P3 and is collected and reused.
  • the condensing dehumidifier 1a3 is systematically associated with the liquid storage tank 4a, and the condensed water obtained by the condensing dehumidifier 1a3 is collected and returned to the liquid storage tank 4a, which is condensed when it is necessary to increase the humidity. It is again possible to utilize and form water vapor through the ultrasonic transducer 3a1, so that recycling the condensed water reduces the frequency of artificial water addition.
  • the humidity control system further includes a liquid replacement alarm 7a and a second liquid level sensor 4a1 disposed in the liquid storage tank 4a, and the second liquid level sensor 4a1 detects that the liquid level in the liquid storage tank 4a is lower than a predetermined value.
  • the central controller 2a controls the fluid replacement alarm 7a to perform an alarm, which can alert the operator to artificially add water.
  • the working method of the humidity control system includes the following steps:
  • the central controller 2a triggers the ultrasonic transducer 3a1, and the ultrasonic transducer 3a1 excites the water in the atomization pool 3a to generate a large amount of water mist, and the water mist is pumped into the air flow path P1 through the fan F and passed through the ultraviolet sterilizer. 5a is sterilized, and then the water mist flows into the molding chamber 1a to increase the humidity in the molding chamber 1a until the current humidity value is equal to the reference humidity value;
  • the central controller 2a controls the temperature sensor 1a2 to sense and collect the current temperature value in the molding chamber 1a, and compares the collected current temperature value with a preset reference temperature value, the current temperature value is greater than the reference temperature value and the reference temperature The value needs to be obtained by cooling and meets the water vapor condensation condition under the same conditions, then step S4 is performed, otherwise step S5 is performed;
  • the central controller 2a controls the condensing dehumidifier 1a3 to operate until the current humidity value in the molding chamber 1a is equal to the reference humidity value;
  • the central controller 2a controls the adsorption type dehumidifier 1a4 to operate until the current humidity value in the molding chamber 1a is equal to the reference humidity value.
  • step S2 the condition in which the ultrasonic transducer 3a1 operates needs to ensure that the liquid level in the atomizing pool 3a is kept at a certain distance from the ultrasonic transducer 3a1, so that when the ultrasonic transducer 3a1 is triggered by the central controller 2a,
  • the first liquid level sensor 3a2 detects the distance between the liquid level in the atomization tank 3a and the ultrasonic transducer 3a1, and when the distance is less than the predetermined distance, the ultrasonic transducer 3a1 starts to operate, otherwise the central controller 2a controls the on-off valve 6a is opened, and the water in the liquid storage tank 4a is continuously replenished into the atomization tank 3a until the distance between the liquid level in the atomization tank 3a and the ultrasonic transducer 3a1 is less than a predetermined distance, and the ultrasonic transducer 3a1 starts to work. .
  • step S4 the condensed water generated by the condensing dehumidifier 1a3 is drained to the liquid storage tank 4a through the second pipe P3, so that the condensed water is collected and reused.
  • the liquid level of the liquid storage tank 4a is detected in real time by the second liquid level sensor 4a1 of the humidity control system, and the liquid filling alarm 7a is triggered when the liquid level is less than a predetermined value.
  • the central controller 2a will trigger the operation of the ultrasonic transducer 3a1, and the ultrasonic transducer 3a1 excites the water in the atomization tank 3a to generate a large amount of water mist to increase the humidity in the molding chamber 1a, which is reflected on the liquid storage tank 4a.
  • the liquid level of the liquid storage tank 4a is continuously decreased.
  • the liquid level of the liquid storage tank 4a is detected in real time by the second liquid level sensor 4a1, and when the liquid level is less than a predetermined value, the center is The controller 2a triggers the fluid replacement alarm 7a to alert the operator to add water in time.
  • the water level in the atomization tank 3a is directly lowered.
  • the central controller 2a detects that the water level in the atomization tank 3a is lowered by the first liquid level sensor 3a2
  • the liquid storage tank 4a is controlled to replenish water to the mist.
  • the chemical pool 3a when the central controller 2a detects that the water level in the liquid storage tank 4a has decreased by the second liquid level sensor 4a1, the liquid filling alarm 7a is triggered to remind the operator to add water in time.
  • the humidity control system of the biological 3D printer according to the present invention has the following beneficial effects:
  • the humidity control system is provided with a condensing type dehumidifier 1a3 and an adsorption type dehumidifier 1a4, and the two dehumidifiers can operate at the same time or independently.
  • the condensing dehumidifier 1a3 is operated to achieve dehumidification while assisting the molding chamber 1a to cool.
  • the dehumidification process is realized by the adsorption dehumidifier 1a4.
  • the dehumidification efficiency can be improved by using the two dehumidifiers 1a3, 1a4, and the adsorption dehumidifier 1a4 can avoid causing a temperature change of the molding chamber 1a.
  • the humidity control system of the biological 3D printer according to the present invention humidifies the inside of the molding chamber 1a of the biological 3D printer by exciting the water atomization in the atomization tank 3a by the ultrasonic transducer 3a1, and the fogging efficiency is higher than that of the conventional heating type.
  • the atomization is higher, and no heat source is introduced; the air flow path P1 through which the water mist flows is provided with an ultraviolet sterilizer 5a, and the water mist passes through the ultraviolet sterilizer 5a and enters the molding chamber 1a of the biological 3D printer to avoid the printing process. It causes pollution to biological materials.
  • the humidity control system of the biological 3D printer according to the present invention is provided with a first liquid level sensor 3a2 and a second liquid level sensor 4a1 in the atomization tank 3a and the liquid storage tank 4a, respectively, so that the inside of the atomization tank 3a can be monitored.
  • the liquid level and the water level in the liquid storage tank 4a are controlled, and the ultrasonic transducer 3a1 can be prevented from dry burning; and when the water level in the liquid storage tank 4a is too low, an alarm can be triggered to prompt the addition of supplementary water. .
  • the humidity control system of the biological 3D printer according to the present invention is in a closed loop state, and is less disturbed by the humidity of the external environment.
  • the present invention also provides a bio 3D printer comprising a two-section independently temperature controlled bio 3D printing head having the above structure, a molding chamber 1a and a humidity control system.
  • the molding chamber 1a is preferably a closed molding chamber 1a, and a bio 3D printing head is disposed in the molding chamber 1a for a printing operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明提供了一种两区段独立温控的生物3D打印喷头、生物3D打印机及其工作方法。该两区段独立温控的生物3D打印喷头通过第一温控组件控制料筒和喷头挤出组件的进料管(料筒段)的温度并且通过第二温控组件控制喷头针头和喷头挤出组件的出料管(针头段)的温度,因此实现了对生物3D打印喷头两区段分别独立的温度控制,对打印喷头实现梯度温度控制,克服了现有技术中由于温度突降对生物材料的不利影响并有效地防止喷头针头堵塞的问题。

Description

两区段独立温控的生物3D打印喷头、生物3D打印机及其工作方法 技术领域
本发明涉及3D打印设备技术领域,更具体地涉及两区段独立温控的生物3D打印喷头、生物3D打印机及其工作方法。
背景技术
生物3D打印是指利用具有良好生物相容性的生物材料并借助具有复杂成形运动的多维打印设备进行例如血管支架以及组织器官模型等的生物工程制造的技术。在生物3D打印过程中,生物材料直接与打印设备的打印喷头接触,通过打印喷头挤出或者喷射的方式聚集到打印设备的成型平台上从而获得需要的生物工程。在该过程中,除了满足基本的生物学要求外还需要对生物材料进行打印温度预处理,即为最终成型提供恰当的前置温度环境。
在现有技术中,对生物材料的温度的控制往往局限于对打印喷头所有区段进行统一的温度控制。但是生物材料从较高温度的打印喷头挤出到较低温度的成型平台会存在温度突降,温度突降会降低生物材料中的细胞的成活率。另外,现有技术的打印喷头的温度控制不能实现对喷头针头的末端的温度控制,由此喷头针头容易产生堵塞。
发明内容
基于上述现有技术中亟需解决的问题而做出了本发明。本发明的一个发明目的在于提供一种能够克服上述现有技术所述的至少一种缺陷的两区段独立温控的生物3D打印喷头。本发明的另一个发明目的在于提供一种生物3D打印机及其工作方法。
为了实现上述发明目的,本发明采用如下的技术方案。
本发明提供了一种两区段独立温控的生物3D打印喷头,所述生物3D打印喷头包括:料筒,所述料筒用于存储打印材料;喷头挤出组件,所述喷头挤出组件的进料管与所述料筒连通;喷头针头,所述喷头针头与所述喷头挤出组件的出料管连通;第一温控组件,所述料筒和所述进料管两者至少部分地收纳于所述第一温控组件内,使得所述第一温控组件能够调控所述料筒和所述进料管的温度;以及第二温控组件,所述喷头针头和所述出料管两者至少部分地收纳于所述第二温控组件内,使得所述第二温控组件能够调控所述喷头针头和所述出料管的温度。
优选地,所述生物3D打印喷头还包括隔热组件,所述隔热组件设置于所述第一温控组件和所述第二温控组件之间以防止所述第一温控组件和所述第二温控组件相互干扰。
优选地,所述第一温控组件包括料筒发热块、第一加热棒和温度感测元件,所述第一加热棒和所述温度感测元件插入所述料筒发热块中,并且所述料筒和所述进料管插入所述料筒发热块中,使得通过所述第一加热棒能够调控所述料筒和所述进料管的温度并且所述温度感测元件能够测量所述料筒和所述进料管的温度。
更优选地,所述温度感测元件包括第一温度传感器和第二温度传感器,所述第二温度传感器与所述料筒之间的距离大于所述第一温度传感器与所述料筒之间的距离。
更优选地,所述料筒发热块包括彼此连通且组装在一起的第一料筒发热块部分和第二料筒发热块部分,所述第一料筒发热块部分的高度大于所述第二料筒发热块部分的高度,使得所述料筒发热块整体呈L型,所述料筒、所述第一加热棒和所述第一温度传感器插入所述第一料筒发热块部分,所述进料管和所述第二温度传感器插入所述第二料筒发热块部分并且所述进料管的一部分延伸到所述第一料筒发热块部分中以与所述料筒连通。
优选地,所述第二温控组件包括出料管发热块、针头导热块、第二加热棒和第三温度传感器,所述出料管发热块套设于所述出料管,所述针头导热块套设于所述喷头针头,所述第二加热棒和所述第三温度传感器均插入所述出料管发热块,所述针头导热块以与所述出料管发热块抵靠在一起的方式可拆卸地连接于所述出料管发热块。
更优选地,所述隔热组件包括位于所述第一温控组件和所述喷头挤出组件的主体之间的第一隔热垫片以及位于所述喷头挤出组件的主体和所述第二温控组件之间的第二隔热垫片。
优选地,所述生物3D打印喷头还包括套设于所述喷头针头的针头隔热套。
优选地,所述生物3D打印喷头还包括壳体,所述料筒的至少一部分和所述第一温控组件安装于所述壳体的内部,所述壳体和所述第一温控组件分别形成有用于观察所述料筒内的打印材料的液位的观察窗。
优选地,所述第一温控组件的外表面和/或所述第二温控组件的外表面包覆有隔热材料。
优选地,所述料筒与所述进料管以可拆卸的方式连接在一起,和/或所述喷头针头与所述出料管以可拆卸的方式连接在一起。
本发明还提供了一种生物3D打印机,所述生物3D打印机包括以上技术方案中任意一项技术方案所述的两区段独立温控的生物3D打印喷头。
优选地,所述生物3D打印机还包括成型室和湿度控制系统,所述湿度控制系统包括湿度感测器、温度感测器、冷凝式除湿器、吸附式除湿器、加湿模块以及中央控制器,所述生物3D打印喷头设置于所述成型室内以进行打印作业,所述湿度感测器、所述温度感测器、所述冷凝式除湿器以及所述吸附式除湿器均设置于所述成型室的内部,所述加湿模块设置于所述成型室的外部且与所述成型室连通,并且所述中央控制器与所述湿度感测器、所述温度感测器、所述冷凝式除湿器、所述吸附式除湿器和所述加湿模块均电连接以用于控制这些部件工作。
更优选地,所述加湿模块包括通过空气流道与所述成型室连通的雾化池、设置于所述雾化池内的超声换能器、设置于所述雾化池内的第一液位传感器以及设置于所述空气流道的风扇,所述第一液位传感器用于检测所述雾化池内的液面与所述超声换能器之间的距离。
更优选地,所述湿度控制系统还包括设置于所述空气流道内的灭菌器,用于对来自所述雾化池的水雾进行灭菌处理。
更优选地,所述湿度控制系统还包括用于向所述加湿模块供给水以及收集所述冷凝式除湿器产生的冷凝水的储液罐。
更优选地,所述雾化池通过第一管道与所述储液罐可控地连通,所述冷凝式除湿器通过第二管道与所述储液罐连通。
更优选地,所述湿度控制系统还包括设置于所述第一管道且与所述中央控制器电连接的通断阀,通过该通断阀控制所述第一管道的连通/关闭。
更优选地,所述湿度控制系统还包括补液报警器和设置于所述储液罐内的第二液位传感器,所述补液报警器和所述第二液位传感器均与所述中央控制器电连接,在所述第二液位传感器检测到所述储液罐中的液位低于预定值时所述补液报警器进行报警。
本发明还提供了一种以上技术方案中任意一项技术方案所述的生物3D打印机的工作方法,所述工作方法包括如下步骤:
S1.通过所述湿度控制系统的湿度感测器感测并采集所述成型室内的当前湿度值,将采集到的所述当前湿度值与预设的基准湿度值进行比较,当所述当前湿度值小于所述基准湿度值时执行步骤S2,当所述当前湿度值大于所述基准湿度值时执行步骤S3;
S2.所述湿度控制系统的超声换能器激发雾化池中的水以产生水雾,通过风扇将所述水雾抽送到空气流道中并经由灭菌器进行灭菌处理,然后所述水雾流动到所述成型室内以增加所述成型室内的湿度,直至所述当前湿度值等于所述基准湿度值;
S3.通过所述湿度控制系统的温度感测器感测并采集所述成型室内的当前温度值,将采集到的所述当前温度值与预设的基准温度值进行比较,当所述当前温度值大于所述基准温度值则执行步骤S4,否则执行步骤S5;
S4.所述湿度控制系统的冷凝式除湿器工作,直至所述成型室内的所述当前湿度值等于所述基准湿度值;以及
S5.所述湿度控制系统的吸附式除湿器工作,直至所述成型室内的所述当前湿度值等于所述基准湿度值。
优选地,在所述步骤S2中,当所述超声换能器被触发时,通过所述湿度控制系统的第一液位传感器检测所述雾化池内的液面与所述超声换能器之间的距离,当该距离小于预定距离时所述超声换能器开始工作,否则将储液罐中的水补充到所述雾化池内,直至所述雾化池内的液面与所述超声换能器之间的距离小于所述预定距离后所述超声换能器开始工作。
优选地,在所述步骤S4中,所述冷凝式除湿器所产生的冷凝水通过第二管道被引流至所述储液罐。
优选地,通过所述湿度控制系统的第二液位传感器实时检测所述储液罐的液位,当该液位小于预定值时触发补液报警器。
通过采用上述技术方案,本发明提供了一种两区段独立温控的生物3D打印喷头、生物3D打印机及其工作方法。该两区段独立温控的生物3D打印喷头通过第一温控组件控制料筒和喷头挤出组件的进料管(料筒段)的温度并且通过第二温控组件控制喷头针头和喷头挤出组件的出料管(针头段)的温度,因此实现了对生物3D打印喷头两区段分别独立的温度控制,对打印喷头实现梯度温度控制,克服了现有技术中由于温度突降对生物材料的不利影响并有效地防止喷头针头堵塞的问题。
附图说明
图1是根据本发明的一实施方式的两区段独立温控的生物3D打印喷头的立体结构示意图。
图2是图1中的生物3D打印喷头的分解结构示意图。
图3是图1中的生物3D打印喷头的另一分解结构示意图,其中相对于图2省略了该生物3D打印喷头的部分结构。
图4是根据本发明的生物3D打印喷头的湿度控制系统的结构框图。
附图标记说明
1壳体 11第一壳体部分 11w壳体观察窗 12第二壳体部分 2料筒 3喷头挤出组件 31主体 32进料管 33出料管 4喷头针头 5第一温控组件 51料筒发热块 51w料筒发热块观察窗 511第一料筒发热块部分 512第二料筒发热块部分 52第一加热棒 53第一温度传感器 54第二温度传感器 6第二温控组件 61出料管发热块 62针头导热块 63第二加热棒 64第三温度传感器 7隔热组件 71第一隔热垫片 72第二隔热垫片 8针头隔热套
1a成型室 1a1湿度传感器 1a2温度传感器 1a3冷凝式除湿器 1a4吸附式除湿器 2a中央控制器 3a雾化池 3a1超声换能器 3a2第一液位传感器 4a储液罐 4a1第二液位传感器 5a紫外灭菌器 6a通断阀 7a补液报警器 P1空气流道 P2第一管道 P3第二管道 F风扇
具体实施方式
以下将结合说明书附图详细说明本发明的具体实施方式。将首先结合附图说明根据本发明的一实施方式的两区段独立温控的生物3D打印喷头的结构。
(根据本发明的一实施方式的两区段独立温控的生物3D打印喷头的结构)
如图1至图3所示,根据本发明的一实施方式的两区段独立温控的生物3D打印喷头包括组装在一起的壳体1、料筒2、喷头挤出组件3、喷头针头4、第一温控组件5、第二温控组件6、隔热组件7以及针头隔热套8。
具体地,在本实施方式中,壳体1具有长方体形状并且壳体1的内部形成安装空间。优选地,除了料筒2的一部分、喷头挤出组件3的一部分及喷头针头4的一部分从该壳体1突出并且针头隔热套8设置在该壳体1的外部,其余组件均安装在上述安装空间内。
进一步地,壳体1包括以能够拆卸的方式扣合在一起的第一壳体部分11和第二壳体部分12,第一壳体部分11的容积大于第二壳体部分12的容积。
料筒2插入收纳于第一壳体部分11内的第一温控组件5且料筒2的一部分从壳体1突出。第一壳体部分11的侧壁形成有用于观察料筒2内的打印材料的液位的壳体观察窗11w,该壳体观察窗11w具有细长形状并且沿着料筒2的插入方向延伸足够的长度。
喷头挤出组件3被夹持在第一壳体部分11和第二壳体部分12之间且喷头挤出组件3的一部分从壳体1突出。安装于喷头挤出组件3的喷头针头4也从壳体1突出。
在本实施方式中,料筒2具有圆筒状的存储部用于存储打印材料,料筒2与喷头挤出 组件3的进料管32以可拆卸的方式连接在一起。这样,料筒2的底部与喷头挤出组件3的进料管32连通,使得来自料筒2的打印材料能够经由进料管32进入喷头挤出组件3的主体31。优选地,料筒2与喷头挤出组件3的进料管32通过螺纹连接的方式连接在一起,这样方便快速更换料筒2。
在本实施方式中,喷头挤出组件3包括主体31和设置于主体31的底部的进料管32和出料管33。
更具体地,主体31的内部设置有能够旋转的螺杆以通过螺杆的旋转将经由进料管32来自料筒2的打印材料从出料管33挤出。进一步地,进料管32设置于主体31的底部的侧壁并且朝向料筒2延伸。为了方便料筒2安装于进料管32,该进料管32如图2和图3所示具有弯折结构。出料管33设置于主体31的底部的底壁并且朝向喷头针头4延伸。
在本实施方式中,喷头针头4采用导热系数较大的金属材质制成。喷头针头4与喷头挤出组件3的出料管33以可拆卸的方式连接在一起,使得喷头针头4与喷头挤出组件3的出料管33连通。通过主体31内的螺杆的旋转将打印材料挤到喷头针头4再从喷头针头4喷出。优选地,喷头针头4与喷头挤出组件3的出料管33通过螺纹连接的方式连接在一起,这样方便快速更换喷头针头4。
在本实施方式中,如上所述,第一温控组件5收纳于第一壳体部分11。第一温控组件5包括料筒发热块51以及插入料筒发热块51中的第一加热棒52、第一温度传感器53和第二温度传感器54。
具体地,料筒发热块51采用导热系数良好的金属材质(例如铝合金)加工而成,并且该料筒发热块51包括彼此连通且组装在一起的第一料筒发热块部分511和第二料筒发热块部分512,第一料筒发热块部分511的高度大于第二料筒发热块512的高度,使得料筒发热块51整体具有大致L型。
料筒2、第一加热棒52和第一温度传感器53插入第一料筒发热块部分511,第一加热棒52作为整个第一温控组件5的热源。进料管32和第二温度传感器54插入第二料筒发热块部分512,进料管32的一部分延伸进入第一料筒发热块部分511中形成上述弯折形状以与料筒2安装在一起。这样,料筒2和进料管32两者部分地收纳于第一温控组件5内,使得第一温控组件5能够调控料筒2和进料管32(即料筒段)的温度。相对于料筒2,第二温度传感器54设置在比第一温度传感器53远的位置,也就是说第二温度传感器54与料筒2之间的距离大于第一温度传感器53与料筒2之间的距离,这样第一温度传感器53能够测量并采集料筒2附近的温度,第二温度传感器54能够测量和采集离料筒2稍远的进料管32附近的温 度。优选地,采用第一温度传感器53和第二温度传感器54分别测量的温度值的平均值作为对第一温控组件5实现闭环控制的基础。
另外,第一料筒发热块部分511形成有用于观察料筒2内打印材料的液位的料筒发热块观察窗51w,该料筒发热块观察窗51w的形状和尺寸与壳体观察窗11w的形状和尺寸基本对应。
在本实施方式中,第二温控组件6包括出料管发热块61、针头导热块62、第二加热棒63和第三温度传感器64。
具体地,出料管发热块61和针头导热块62均采用导热系数良好的金属材质(例如铝合金)加工而成。出料管发热块61套设于出料管33,针头导热块62套设于喷头针头4。第二加热棒63和第三温度传感器64均插入出料管发热块61。第二加热棒63作为第二温控组件6的热源,第二加热棒63将直接对出料管发热块61进行加热。针头导热块62以从下方与出料管发热块61抵靠在一起的方式可拆卸地连接,第二加热棒63的热量将经由出料管发热块61和针头导热块62传递到喷头针头4。这样,喷头针头4和出料管33两者部分地收纳于第二温控组件6内,使得第二温控组件6能够调控喷头针头4和出料管33(即针头段)的温度。优选地,出料管发热块61和针头导热块62通过螺纹连接固定在一起。
另外,需要说明的是,第一温控组件5的外表面和/或第二温控组件6的外表面优选地包覆有隔热材料。这样,可以避免料筒段和针头段与外部进行热交换。
在本实施方式中,隔热组件7设置于第一温控组件5和第二温控组件6之间以防止第一温控组件5和第二温控组件6相互干扰。
具体地,隔热组件7包括位于第一温控组件5和喷头挤出组件3的主体31之间的第一隔热垫片71以及位于喷头挤出组件3的主体31和第二温控组件6之间的第二隔热垫片72。第一隔热垫片71和第二隔热垫片72均采用电木加工而成。该第一隔热垫片71套设于喷头挤出组件3的进料管32的靠近主体31的部分。该第二隔热垫片72套设于喷头挤出组件3的出料管33。这样,第一隔热垫片71和第二隔热垫片72阻止了料筒段和针头段的温度互相干扰。
在本实施方式中,针头隔热套8套设于喷头针头4。这样,通过该针头隔热套8能够隔绝喷头针头4与外部的热交换。另外,当需要更换不同口径的喷头针头4或者需要清理喷头针头4时只需要将针头隔热套8取下并将喷头针头4卸下即可实现喷头针头4的更换。
在生物3D打印机进行打印的过程中,用作打印材料的生物材料或细胞悬液首先被装载到恒定温度的料筒2中并被推挤到喷头针头4的末端,之后在多轴运动平台的带动下按 照预定轨迹运动并将打印材料堆叠到较低温度的成型平台上。在该过程中打印喷头中打印材料的温度一般维持在37℃左右,而成型平台的温度则会接近0℃,30余度的温度突变会强烈刺激打印材料的细胞活性并影响打印材料的成型效果。在本发明中,在料筒段和针头段分别设置了第一温控组件5和第二温控组件6,分别单独控制由料筒2至喷头挤出组件3的主体31的这一段区域(包括料筒2和进料管32)以及喷头挤出组件3的主体31至喷头针头4这一段区域(包括出料管33和喷头针头4)的温度。这样就可以分别控制料筒段和针头段的温度,使得料筒段、针头段以及低温平台形成三个梯度温度变化,以便最大化降低温度突变带来的不利影响。料筒段和针头段这两段区域的温度可独立设定,并且第一温控组件5和第二温控组件6之间设置了隔热组件7,这就保证了料筒段及针头段的温度互不产生影响。
通过采用上述技术方案,根据本发明的两区段独立温控的生物3D打印喷头具有如下的有益效果:
i.根据本发明的两区段独立温控的生物3D打印喷头在料筒段和针头段分别设置了第一温控组件5和第二温控组件6,分别单独控制料筒段以及针头段的温度,这样就可以分别独立控制料筒段和针头段的温度值,喷头可实现梯度温度控制,并且在第一温控组件5和第二温控组件6之间设置了隔热组件7,这就保证了料筒段及针头段的温度互不产生影响;针头段的温度可调控还能够避免喷头针头4堵塞。
ii.根据本发明的两区段独立温控的生物3D打印喷头的料筒2和进料管32的连接以及喷头针头4与出料管33的连接都优选通过螺纹连接实现,这样就可以实现料筒2和喷头针头4的快速更换;根据本发明的两区段独立温控的生物3D打印喷头在主壳体1及料筒发热块51设置了用于观察料筒2内的打印材料的液位的观察窗11w、51w,可方便观察料筒2中打印材料的使用情况。
iii.根据本发明的两区段独立温控的生物3D打印喷头的喷头流道具备自动清洗功能,在打印结束后,为了防止打印材料积堵喷头流道,需要对流道进行彻底清洗,清洗时拆卸料筒2和喷头针头4独立清洗,插入载有清洗液的料筒2并推挤清洗液迅速通过喷头流道,同时保证主体3的内部的螺杆反向旋转以确保螺杆清洗彻底,通过反复执行上述清洗程序即可以完成整个喷头的清洗工作。另外,壳体1的外表面优选包覆隔热材料,阻绝了喷头与外界环境的热交换,保证了喷头各区段的温度恒定。
以上说明了根据本发明的一实施方式的两区段独立温控的生物3D打印喷头的结构,以下将结合说明书附图说明根据本发明的生物3D打印机的湿度控制系统的结构及其工作 方法。
(根据本发明的生物3D打印机的湿度控制系统的结构及其工作方法)
如图4所示,根据本发明的生物3D打印机包括成型室1a和湿度控制系统,其中湿度控制系统包括湿度传感器1a1、温度传感器1a2、冷凝式除湿器1a3、吸附式除湿器1a4、加湿模块以及中央控制器2a,中央控制器2a用于控制其它组件的工作。
具体地,一方面,湿度传感器1a1和温度传感器1a2均设置于成型室1a的内部,湿度传感器1a1和温度传感器1a2分别用于测量成型室1a内的湿度和温度。
冷凝式除湿器1a3和吸附式除湿器1a4也设置于成型室1a的内部,基于所测量的成型室1a的湿度和温度,冷凝式除湿器1a3和吸附式除湿器1a4以采用独立工作或同时工作的方式对成型室1a进行除湿。当3D打印机的成型室1a内需要制冷时,冷凝式除湿器1a3工作,除湿的同时又可以协助成型室1a制冷。当3D打印机的成型室1a不需要制冷或者3D打印机的成型室1a的温度不满足发生冷凝现象时,吸附式除湿器1a4工作,这样就不会引起3D打印机的成型室1a内温度的变化,也就不会额外增加温控系统的负担。
另一方面,加湿模块设置于成型室1a的外部,基于所测量的成型室1a的湿度,加湿模块能够工作以对成型室1a进行加湿。
加湿模块包括通过空气流道P1与成型室1a连通的雾化池3a、设置于雾化池3a内的超声换能器3a1、设置于雾化池3a内的第一液位传感器3a2以及设置于空气流道P1的风扇F。第一液位传感器3a2用于检测雾化池3a内的液面与超声换能器3a1之间的距离,风扇F设置于空气流道P1的靠近雾化池3a的部分。
当3D打印机的成型室1a内需要增加湿度时,超声换能器3a1激发雾化池3a中的水产生水雾,水雾在风扇F的推动下沿空气流道P1进入3D打印机的成型室1a内,使得3D打印机的成型室1a内的湿度达到基准湿度值。本发明利用超声换能器3a1超声雾化的原理对3D打印机的成型室1a内的环境补充水蒸气以达到基准湿度值,这就避免了采用制热获得水蒸气的方式会导致3D打印机的成型室1a内的温度升高的问题。
另外,根据本发明的湿度控制系统在空气流道P1内还设置有紫外灭菌器5a。在本发明中,在利用超声换能器3a1进行湿度补充时,超声换能器3a1激发的水雾通过风扇F从雾化池3a被源源不断的带入到3D打印机的成型室1a中。但是由于产生雾化水蒸气的水混合了人工补充的水以及冷凝式除湿产生的冷凝水,在不断使用中无法保证其水质是无菌的,带菌的水蒸气进入到成型室1a中会造成打印材料的污染。因此,本发明在雾化水蒸气进入到成型室1a之前采用紫外灭菌器5a进行了紫外灭菌处理来避免这一问题。
进一步地,湿度控制系统还包括用于向加湿模块供给水以及收集冷凝式除湿器1a3产生的冷凝水的储液罐4a。
雾化池3a通过第一管道P2与储液罐4a可控地连通,通过设置于第一管道P2的通断阀6a控制第一管道P2的连通/关闭。这样,雾化池3a中需要补充水时,中央控制器2a就控制通断阀6a打开,储液罐4a向雾化池3a中补充水;雾化池3a中不需要补充水时,中央控制器2a就控制通断阀6a处于关闭状态。
冷凝式除湿器1a3通过第二管道P3与储液罐4a连通。冷凝式除湿器1a3工作时产生的冷凝水通过第二管道P3进入到储液罐4a中被收集起来再利用。这样,就把冷凝式除湿器1a3与储液罐4a进行了系统关联,利用冷凝式除湿器1a3获得的冷凝水被收集并被回流至储液罐4a,当需要增加湿度时,这部分冷凝水又可以再次被利用并通过超声换能器3a1形成水蒸气,如此循环往复利用冷凝水减少了人工加水的频率。
更进一步地,湿度控制系统还包括补液报警器7a和设置于储液罐4a内的第二液位传感器4a1,在第二液位传感器4a1检测到储液罐4a中的液位低于预定值时中央控制器2a控制补液报警器7a进行报警,这样能够提醒操作人员进行人工加水。
以上说明了根据本发明的生物3D打印机的湿度控制系统的结构,以下将说明该湿度控制系统的工作方法。
具体地,在湿度控制系统通电的状态下,该湿度控制系统的工作方法包括如下步骤:
S1.中央控制器2a控制湿度传感器1a1感测并采集成型室1a内的当前湿度值,将采集到的当前湿度值与预设的基准湿度值进行比较,当前湿度值小于基准湿度值时执行步骤S2,当前湿度值大于基准湿度值时执行步骤S3;
S2.中央控制器2a触发超声换能器3a1,超声换能器3a1激发雾化池3a中的水产生大量水雾,通过风扇F将水雾抽送到空气流道P1中并经由紫外灭菌器5a进行灭菌处理,然后水雾流动到成型室1a内以增加成型室1a内的湿度,直至当前湿度值等于基准湿度值;
S3.中央控制器2a控制温度传感器1a2感测并采集成型室1a内的当前温度值,将采集到的当前温度值与预设的基准温度值进行比较,当前温度值大于基准温度值且基准温度值需要通过制冷获得并且在相同条件下满足水蒸气冷凝条件则执行步骤S4,否则执行步骤S5;
S4.中央控制器2a控制冷凝式除湿器1a3进行工作,直至成型室1a内的当前湿度值等于基准湿度值;以及
S5.中央控制器2a控制吸附式除湿器1a4进行工作,直至成型室1a内的当前湿度值等 于基准湿度值。
在步骤S2中,超声换能器3a1工作的条件需要保证雾化池3a内的液面与超声换能器3a1保持一定的距离,因此当超声换能器3a1被中央控制器2a触发时,通过第一液位传感器3a2检测雾化池3a内的液面与超声换能器3a1之间的距离,当该距离小于预定距离时超声换能器3a1开始工作,否则中央控制器2a控制通断阀6a打开,将储液罐4a中的水不断补充到雾化池3a内,直至雾化池3a内的液面与超声换能器3a1之间的距离小于预定距离后超声换能器3a1开始工作。
在步骤S4中,冷凝式除湿器1a3所产生的冷凝水通过第二管道P3被引流至储液罐4a,以使得冷凝水被收集并进行再次利用。
本发明中,通过湿度控制系统的第二液位传感器4a1实时检测所述储液罐4a的液位,当该液位小于预定值时触发补液报警器7a。
当吸附式除湿器1a4长时间运行时,无冷凝水回流,成型室1a内的水蒸气总含量不断下降,并且储液罐4a内的液位不断下降(成型室1a内的水蒸气总含量不断下降,中央控制器2a将会触发超声换能器3a1工作,超声换能器3a1激发雾化池3a中的水产生大量水雾以增加成型室1a内的湿度,反映在储液罐4a上就是储液罐4a的液位不断下降),为了避免系统中的水蒸气的总含量过低,通过第二液位传感器4a1实时检测储液罐4a的液位,当该液位小于预定值时中央控制器2a触发补液报警器7a,提醒操作人员及时加水。
当加湿模块工作时会直接导致雾化池3a中的水位下降,当中央控制器2a通过第一液位传感器3a2检测到雾化池3a中的水位下降时,控制储液罐4a补充水到雾化池3a中;当中央控制器2a通过第二液位传感器4a1检测到储液罐4a中的水位下降时,触发补液报警器7a,提醒操作人员及时加水。
通过采用上述技术方案,根据本发明的生物3D打印机的湿度控制系统具有如下有益效果:
i.根据本发明的湿度控制系统中设置了冷凝式除湿器1a3和吸附式除湿器1a4,两个除湿器既可以同时工作又可以各自独立工作。当生物3D打印机的成型室1a内需要制冷时,使冷凝式除湿器1a3工作,以实现除湿的同时又可以协助成型室1a制冷。当生物3D打印机的成型室1a不需要制冷或者生物3D打印机的成型室1a内的温度不满足冷凝现象发生时,除湿过程通过吸附式除湿器1a4实现。采用两种除湿器1a3、1a4可以提高除湿效率,同时吸附式除湿器1a4可以避免引起成型室1a的温度变化。
ii.根据本发明的生物3D打印机的湿度控制系统采用超声换能器3a1激发雾化池3a中 的水雾化的方式对生物3D打印机的成型室1a内进行加湿,起雾效率较传统加热式雾化更高,并且不引入热源;水雾流经的空气流道P1设置有紫外灭菌器5a,水雾经过紫外灭菌器5a后进入生物3D打印机的成型室1a内可以避免在打印过程中对生物材料造成污染。
iii.根据本发明的生物3D打印机的湿度控制系统在雾化池3a和储液罐4a内分别设置了第一液位传感器3a2和第二液位传感器4a1,从而能够监控雾化池3a内的液位和储液罐4a内的水位。这样,能够实现雾化池3a的液面与超声换能器3a1的距离可控,防止超声换能器3a1干烧;并且在储液罐4a中水位过低时可以触发报警,提示添加补充水。
iv.根据本发明的生物3D打印机的湿度控制系统处于封闭循环状态,受外界环境湿度的干扰小。
以上说明了根据本发明的一实施方式的两区段独立温控的生物3D打印喷头的结构以及根据本发明的生物3D打印机的湿度控制系统的结构及其工作方法,以下将说明根据本发明的生物3D打印机。
(根据本发明的生物3D打印机)
本发明还提供了一种生物3D打印机,该生物3D打印机包括具有以上结构的两区段独立温控的生物3D打印喷头、成型室1a和湿度控制系统。该成型室1a优选为封闭的成型室1a,并且生物3D打印喷头设置于成型室1a内进行打印作业。

Claims (23)

  1. 一种两区段独立温控的生物3D打印喷头,所述生物3D打印喷头包括:
    料筒(2),所述料筒(2)用于存储打印材料;
    喷头挤出组件(3),所述喷头挤出组件(3)的进料管(32)与所述料筒(2)连通;
    喷头针头(4),所述喷头针头(4)与所述喷头挤出组件(3)的出料管(33)连通;
    第一温控组件(5),所述料筒(2)和所述进料管(32)两者至少部分地收纳于所述第一温控组件(5)内,使得所述第一温控组件(5)能够调控所述料筒(2)和所述进料管(32)的温度;以及
    第二温控组件(6),所述喷头针头(4)和所述出料管(33)两者至少部分地收纳于所述第二温控组件(6)内,使得所述第二温控组件(6)能够调控所述喷头针头(4)和所述出料管(33)的温度。
  2. 根据权利要求1所述的两区段独立温控的生物3D打印喷头,其特征在于,所述生物3D打印喷头还包括隔热组件(7),所述隔热组件(7)设置于所述第一温控组件(5)和所述第二温控组件(6)之间以防止所述第一温控组件(5)和所述第二温控组件(6)相互干扰。
  3. 根据权利要求1或2所述的两区段独立温控的生物3D打印喷头,其特征在于,所述第一温控组件(5)包括料筒发热块(51)、第一加热棒(52)和温度感测元件(53、54),所述第一加热棒(52)和所述温度感测元件(53、54)插入所述料筒发热块(51)中,并且
    所述料筒(2)和所述进料管(32)插入所述料筒发热块(51)中,使得通过所述第一加热棒(52)能够调控所述料筒(2)和所述进料管(32)的温度并且所述温度感测元件(53、54)能够测量所述料筒(2)和所述进料管(32)的温度。
  4. 根据权利要求3所述的两区段独立温控的生物3D打印喷头,其特征在于,所述温度感测元件(53、54)包括第一温度传感器(53)和第二温度传感器(54),
    所述第二温度传感器(54)与所述料筒(2)之间的距离大于所述第一温度传感器(53)与所述料筒(2)之间的距离。
  5. 根据权利要求4所述的两区段独立温控的生物3D打印喷头,其特征在于,所述料筒发热块(51)包括彼此连通且组装在一起的第一料筒发热块部分(511)和第二料筒发热块部分(512),所述第一料筒发热块部分(511)的高度大于所述第二料筒发热块部分(512)的高度,使得所述料筒发热块(51)整体呈L型,
    所述料筒(2)、所述第一加热棒(52)和所述第一温度传感器(53)插入所述第一 料筒发热块部分(511),所述进料管(32)和所述第二温度传感器(54)插入所述第二料筒发热块部分(512)并且所述进料管(32)的一部分延伸到所述第一料筒发热块部分(511)中以与所述料筒(2)连通。
  6. 根据权利要求1至5中任一项所述的两区段独立温控的生物3D打印喷头,其特征在于,所述第二温控组件(6)包括出料管发热块(61)、针头导热块(62)、第二加热棒(63)和第三温度传感器(64),
    所述出料管发热块(61)套设于所述出料管(33),所述针头导热块(62)套设于所述喷头针头(4),所述第二加热棒(63)和所述第三温度传感器(64)均插入所述出料管发热块(61),所述针头导热块(62)以与所述出料管发热块(61)抵靠在一起的方式可拆卸地连接于所述出料管发热块(61)。
  7. 根据权利要求2至6中任一项所述的两区段独立温控的生物3D打印喷头,其特征在于,所述隔热组件(7)包括位于所述第一温控组件(5)和所述喷头挤出组件(3)的主体(31)之间的第一隔热垫片(71)以及位于所述喷头挤出组件(3)的主体(31)和所述第二温控组件(6)之间的第二隔热垫片(72)。
  8. 根据权利要求1至7中任一项所述的两区段独立温控的生物3D打印喷头,其特征在于,所述生物3D打印喷头还包括套设于所述喷头针头(4)的针头隔热套(8)。
  9. 根据权利要求1至8中任一项所述的两区段独立温控的生物3D打印喷头,其特征在于,所述生物3D打印喷头还包括壳体(1),所述料筒(2)的至少一部分和所述第一温控组件(5)安装于所述壳体(1)的内部,所述壳体(1)和所述第一温控组件(5)分别形成有用于观察所述料筒(2)内的打印材料的液位的观察窗(11w、51w)。
  10. 根据权利要求1至9中任一项所述的两区段独立温控的生物3D打印喷头,其特征在于,所述第一温控组件(5)的外表面和/或所述第二温控组件(6)的外表面包覆有隔热材料。
  11. 根据权利要求1至10中任一项所述的两区段独立温控的生物3D打印喷头,其特征在于,所述料筒(2)与所述进料管(32)以可拆卸的方式连接在一起,和/或所述喷头针头(4)与所述出料管(33)以可拆卸的方式连接在一起。
  12. 一种生物3D打印机,所述生物3D打印机包括权利要求1至11中任一项所述的两区段独立温控的生物3D打印喷头。
  13. 根据权利要求12所述的生物3D打印机,其特征在于,所述生物3D打印机还包括成型室(1a)和湿度控制系统,所述湿度控制系统包括湿度感测器(1a1)、温度感测器 (1a2)、冷凝式除湿器(1a3)、吸附式除湿器(1a4)、加湿模块以及中央控制器(2a),
    所述生物3D打印喷头设置于所述成型室(1a)内以进行打印作业,所述湿度感测器(1a1)、所述温度感测器(1a2)、所述冷凝式除湿器(1a3)以及所述吸附式除湿器(1a4)均设置于所述成型室(1a)的内部,所述加湿模块设置于所述成型室(1a)的外部且与所述成型室(1a)连通,并且
    所述中央控制器(2a)与所述湿度感测器(1a1)、所述温度感测器(1a2)、所述冷凝式除湿器(1a3)、所述吸附式除湿器(1a4)和所述加湿模块均电连接以用于控制这些部件工作。
  14. 根据权利要求13所述的生物3D打印机,其特征在于,所述加湿模块包括通过空气流道(P1)与所述成型室(1a)连通的雾化池(3a)、设置于所述雾化池(3a)内的超声换能器(3a1)、设置于所述雾化池(3a)内的第一液位传感器(3a2)以及设置于所述空气流道(P1)的风扇(F),所述第一液位传感器(3a2)用于检测所述雾化池(3a)内的液面与所述超声换能器(3a1)之间的距离。
  15. 根据权利要求14所述的生物3D打印机,其特征在于,所述湿度控制系统还包括设置于所述空气流道(P1)内的灭菌器(5a),用于对来自所述雾化池(3a)的水雾进行灭菌处理。
  16. 根据权利要求13至15中任一项所述的生物3D打印机,其特征在于,所述湿度控制系统还包括用于向所述加湿模块供给水以及收集所述冷凝式除湿器(1a3)产生的冷凝水的储液罐(4a)。
  17. 根据权利要求16所述的生物3D打印机,其特征在于,所述雾化池(3a)通过第一管道(P2)与所述储液罐(4a)可控地连通,所述冷凝式除湿器(1a3)通过第二管道(P3)与所述储液罐(4a)连通。
  18. 根据权利要求17所述的生物3D打印机,其特征在于,所述湿度控制系统还包括设置于所述第一管道(P2)且与所述中央控制器(2a)电连接的通断阀(6a),通过该通断阀(6a)控制所述第一管道(P2)的连通/关闭。
  19. 根据权利要求14至18中任一项所述的生物3D打印机,其特征在于,所述湿度控制系统还包括补液报警器(7a)和设置于所述储液罐(4a)内的第二液位传感器(4a1),所述补液报警器(7a)和所述第二液位传感器(4a1)均与所述中央控制器(2a)电连接,在所述第二液位传感器(4a1)检测到所述储液罐(4a)中的液位低于预定值时所述补液报警器(7a)进行报警。
  20. 一种根据权利要求13至19中任一项所述的生物3D打印机的工作方法,所述工作方法包括如下步骤:
    S1.通过所述湿度控制系统的湿度感测器(1a1)感测并采集所述成型室(1a)内的当前湿度值,将采集到的所述当前湿度值与预设的基准湿度值进行比较,当所述当前湿度值小于所述基准湿度值时执行步骤S2,当所述当前湿度值大于所述基准湿度值时执行步骤S3;
    S2.所述湿度控制系统的超声换能器(3a1)激发雾化池(3a)中的水以产生水雾,通过风扇(F)将所述水雾抽送到空气流道(P1)中并经由灭菌器(5a)进行灭菌处理,然后所述水雾流动到所述成型室(1a)内以增加所述成型室(1a)内的湿度,直至所述当前湿度值等于所述基准湿度值;
    S3.通过所述湿度控制系统的温度感测器(1a2)感测并采集所述成型室(1a)内的当前温度值,将采集到的所述当前温度值与预设的基准温度值进行比较,当所述当前温度值大于所述基准温度值则执行步骤S4,否则执行步骤S5;
    S4.所述湿度控制系统的冷凝式除湿器(1a3)工作,直至所述成型室(1a)内的所述当前湿度值等于所述基准湿度值;以及
    S5.所述湿度控制系统的吸附式除湿器(1a4)工作,直至所述成型室(1a)内的所述当前湿度值等于所述基准湿度值。
  21. 根据权利要求20所述的工作方法,其特征在于,在所述步骤S2中,当所述超声换能器(3a1)被触发时,通过所述湿度控制系统的第一液位传感器(3a2)检测所述雾化池(3a)内的液面与所述超声换能器(3a1)之间的距离,
    当该距离小于预定距离时所述超声换能器(3a1)开始工作,否则将储液罐(4a)中的水补充到所述雾化池(3a)内,直至所述雾化池(3a)内的液面与所述超声换能器(3a1)之间的距离小于所述预定距离后所述超声换能器(3a1)开始工作。
  22. 根据权利要求20或21所述的工作方法,其特征在于,在所述步骤S4中,所述冷凝式除湿器(1a3)所产生的冷凝水通过第二管道(P3)被引流至所述储液罐(4a)。
  23. 根据权利要求20至22中任一项所述的工作方法,其特征在于,通过所述湿度控制系统的第二液位传感器(4a1)实时检测所述储液罐(4a)的液位,当该液位小于预定值时触发补液报警器(7a)。
PCT/CN2019/072933 2018-01-25 2019-01-24 两区段独立温控的生物3d打印喷头、生物3d打印机及其工作方法 WO2019144897A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810073276.0A CN108032517B (zh) 2018-01-25 2018-01-25 一种两区段独立温控生物3d打印喷头
CN201810073276.0 2018-01-25
CN201810073278.XA CN108105945A (zh) 2018-01-25 2018-01-25 一种生物3d打印机封闭环境的湿度控制系统及其工作方法
CN201810073278.X 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019144897A1 true WO2019144897A1 (zh) 2019-08-01

Family

ID=67395204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072933 WO2019144897A1 (zh) 2018-01-25 2019-01-24 两区段独立温控的生物3d打印喷头、生物3d打印机及其工作方法

Country Status (1)

Country Link
WO (1) WO2019144897A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454481A (zh) * 2020-10-22 2022-05-10 精工爱普生株式会社 三维造型装置以及注射成型装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193969A1 (en) * 2005-02-25 2006-08-31 Speedline Technologies, Inc. Method and apparatus for streaming a viscous material on a substrate
CN104180483A (zh) * 2013-05-21 2014-12-03 深圳市福田区青少年科技教育协会 一种除湿加湿一体机
JP2016037015A (ja) * 2014-08-11 2016-03-22 東洋機械金属株式会社 射出成形機
CN105643930A (zh) * 2015-07-30 2016-06-08 河南仕必得电子科技有限公司 一种3d打印机伸缩式喷头
CN206119034U (zh) * 2016-08-08 2017-04-26 南京增材制造研究院发展有限公司 一种带温控功能的可分离式巧克力3d打印机的供料装置
CN206446123U (zh) * 2017-03-14 2017-08-29 东莞市君跃展示设计有限公司 3d打印喷头调温装置
CN108032517A (zh) * 2018-01-25 2018-05-15 广州迈普再生医学科技有限公司 一种两区段独立温控生物3d打印喷头
CN108105945A (zh) * 2018-01-25 2018-06-01 广州迈普再生医学科技有限公司 一种生物3d打印机封闭环境的湿度控制系统及其工作方法
CN208084985U (zh) * 2018-01-25 2018-11-13 广州迈普再生医学科技股份有限公司 一种两区段独立温控生物3d打印喷头
CN208090895U (zh) * 2018-01-25 2018-11-13 广州迈普再生医学科技股份有限公司 一种生物3d打印机封闭环境的湿度控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193969A1 (en) * 2005-02-25 2006-08-31 Speedline Technologies, Inc. Method and apparatus for streaming a viscous material on a substrate
CN104180483A (zh) * 2013-05-21 2014-12-03 深圳市福田区青少年科技教育协会 一种除湿加湿一体机
JP2016037015A (ja) * 2014-08-11 2016-03-22 東洋機械金属株式会社 射出成形機
CN105643930A (zh) * 2015-07-30 2016-06-08 河南仕必得电子科技有限公司 一种3d打印机伸缩式喷头
CN206119034U (zh) * 2016-08-08 2017-04-26 南京增材制造研究院发展有限公司 一种带温控功能的可分离式巧克力3d打印机的供料装置
CN206446123U (zh) * 2017-03-14 2017-08-29 东莞市君跃展示设计有限公司 3d打印喷头调温装置
CN108032517A (zh) * 2018-01-25 2018-05-15 广州迈普再生医学科技有限公司 一种两区段独立温控生物3d打印喷头
CN108105945A (zh) * 2018-01-25 2018-06-01 广州迈普再生医学科技有限公司 一种生物3d打印机封闭环境的湿度控制系统及其工作方法
CN208084985U (zh) * 2018-01-25 2018-11-13 广州迈普再生医学科技股份有限公司 一种两区段独立温控生物3d打印喷头
CN208090895U (zh) * 2018-01-25 2018-11-13 广州迈普再生医学科技股份有限公司 一种生物3d打印机封闭环境的湿度控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454481A (zh) * 2020-10-22 2022-05-10 精工爱普生株式会社 三维造型装置以及注射成型装置
CN114454481B (zh) * 2020-10-22 2023-11-28 精工爱普生株式会社 三维造型装置以及注射成型装置

Similar Documents

Publication Publication Date Title
DE102005063661B3 (de) Modulare Vorrichtung zur Befeuchtung von Atemgas
JP7026628B2 (ja) 傾斜センサーを備えた電気的に作動するエアロゾル発生システム
JP6297332B2 (ja) 患者に供給されるガスを加湿する加湿器システム
US9816715B2 (en) Humidifier and air-conditioning apparatus with humidifier
US7975687B2 (en) Device and method for tempering and humidifying gas, especially respiratory air
US20120219456A1 (en) Integrated Automatic Humidity Control And Decontamination System For Incubators And Other Laboratory Equipment
KR20190032504A (ko) 향미 흡인기
US5249740A (en) Method for regulating the conditioning of a gas and gas conditioning device
US20200199518A1 (en) Incubator
KR20100101080A (ko) 호흡기 가습 시스템
DE202009019113U1 (de) Beatmungskreislauf mit Aerosoleinführgerät
WO2019144897A1 (zh) 两区段独立温控的生物3d打印喷头、生物3d打印机及其工作方法
JP2007051863A (ja) 所定の相対湿度を有する湿潤空気流を発生させる方法および装置
JP2017503144A (ja) 一定の体積の液体を通して空気流を生成するための装置
JP2016130681A (ja) 噴霧腐食試験機および複合サイクル試験機
US10877009B2 (en) Particle measuring system
CN108032517B (zh) 一种两区段独立温控生物3d打印喷头
US20230132065A1 (en) Incubator
KR102002318B1 (ko) 전기적 개질화 장치를 포함하는 공기청정기
DE4122389A1 (de) Luftbefeuchtungsgeraet
US20180306681A1 (en) Air particle measurement apparatus and clean environment equipment
JP5847043B2 (ja) 加湿機構
CN111907934A (zh) 养护储藏装置及其加湿机构和加湿方法
JPH07209174A (ja) 耐候試験機の湿度調節装置
JP2008018356A (ja) 液体噴霧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744064

Country of ref document: EP

Kind code of ref document: A1