WO2019144638A1 - 植物种植装置以及植物种植方法 - Google Patents

植物种植装置以及植物种植方法 Download PDF

Info

Publication number
WO2019144638A1
WO2019144638A1 PCT/CN2018/107697 CN2018107697W WO2019144638A1 WO 2019144638 A1 WO2019144638 A1 WO 2019144638A1 CN 2018107697 W CN2018107697 W CN 2018107697W WO 2019144638 A1 WO2019144638 A1 WO 2019144638A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
plant growing
liquid
tank
carbon dioxide
Prior art date
Application number
PCT/CN2018/107697
Other languages
English (en)
French (fr)
Inventor
赵青杨
秦清
Original Assignee
京东方科技集团股份有限公司
京东方光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方光科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18863816.7A priority Critical patent/EP3747257A4/en
Priority to US16/340,919 priority patent/US11324172B2/en
Publication of WO2019144638A1 publication Critical patent/WO2019144638A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G2031/006Soilless cultivation, e.g. hydroponics with means for recycling the nutritive solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • Embodiments of the present disclosure relate to a plant growing device and a plant growing method.
  • Water, light, air, etc. are the most basic conditions required for plant growth. In general, plants can synthesize water and carbon dioxide in the presence of light to obtain nutrients, which is the basis of plant life activities, and this process is called photosynthesis. Therefore, when planting plants, it is necessary to provide plants with sufficient water, light, air and the like.
  • At least one embodiment of the present disclosure provides a plant planting apparatus comprising at least one plant growing tank, the at least one plant growing tank comprising a tank body and a tilting member, the inclined member being obliquely disposed at a bottom of the tank body, Constructed to support the plant and comprising at least one flow guiding element disposed on the inclined member; wherein the at least one flow guiding element is configured to direct the liquid of the cultivating plant from one end of the inclined member that is inclined relative to each other another side.
  • the plant growing tank includes a partition, the partition dividing the plant growing tank into a plant growing area and a liquid buffer; wherein the partition At least one first opening is provided, the first opening being configured to communicate the plant growing area with a liquid buffer; the tilting member is disposed in the plant growing area.
  • the plant growing tank further includes a inserting plate that cooperates with the at least one first opening, and the inserting plate is configured to adjust an opening of the first opening. size.
  • the shape of the inserting plate is the same as the shape of the first opening, and the size of the inserting plate is smaller than the size of the first opening, such that the A card insert can be inserted into the first opening.
  • the intersection line of the inclined piece and the horizontal plane is a first straight line
  • a straight line perpendicular to the first straight line on the plane of the inclined piece is a second straight line; wherein an angle between the extending direction of the at least one flow guiding element and the second straight line is 0-45°.
  • the at least one flow guiding element extends in a direction parallel to the second straight line.
  • the inclined member is a plate shape
  • the flow guiding member is a plurality of strip-shaped protrusions provided on the plate-shaped inclined member.
  • the plant growing tank further includes a plant fixing layer disposed above the flow guiding element, the plant fixing layer including a plurality of plant fixing hole.
  • the plant growing device provided by at least one embodiment of the present disclosure further includes a liquid supply tank, the liquid buffer further comprising at least one second opening formed at a bottom of the liquid buffer; wherein the liquid supply A tank is in communication with the liquid buffer through the at least one second opening.
  • the liquid supply tank includes a pipeline and a pump body; the plant cultivation zone includes a liquid supply port; wherein the liquid supply port is disposed at the a side of the plant growing area remote from the liquid buffer; the liquid supply tank is configured to transport liquid in the liquid supply tank to the liquid through the pipeline under the driving of the pump body Supply port.
  • the liquid liquid supply tank further includes a first temperature control device for adjusting a temperature of the liquid in the liquid liquid supply tank.
  • the plant growing device provided by at least one embodiment of the present disclosure further includes a lighting device disposed above the plant growing tank.
  • the plant planting apparatus provided by at least one embodiment of the present disclosure further includes a frame body; the frame body includes a plurality of plant planting layers, and the at least one plant growing tank is disposed in the plant planting layer.
  • the plant planting apparatus provided by at least one embodiment of the present disclosure further includes a carbon dioxide replenishing device, the carbon dioxide replenishing device comprising: a carbon dioxide detecting unit for detecting a concentration of carbon dioxide in the plant growing device; and a carbon dioxide supply unit for Carbon dioxide is released to the plant growing device.
  • a carbon dioxide replenishing device comprising: a carbon dioxide detecting unit for detecting a concentration of carbon dioxide in the plant growing device; and a carbon dioxide supply unit for Carbon dioxide is released to the plant growing device.
  • the carbon dioxide replenishing device is disposed in the plant growing layer.
  • At least one embodiment of the present disclosure provides a plant planting apparatus, further comprising a fan disposed on a side of the frame such that air flowing above the plant growing tank when the fan is turned on.
  • the plant growing device provided by at least one embodiment of the present disclosure further includes an electrical control box disposed in the plant growing layer.
  • At least one embodiment of the present disclosure provides a method for planting a plant using the above plant planting apparatus, comprising: planting a plant above a tilting member of a plant growing tank; applying a liquid above the tilting member to contact a root of the plant a liquid; the liquid flows from one end of the inclined member opposite to each other under the guidance of the at least one flow guiding member to the other end.
  • the plant growing device includes a liquid liquid supply tank, and the method further comprises: collecting a liquid flowing out of the plant growing tank by using a liquid liquid tank, and The collected liquid is delivered to the liquid above the tilting member.
  • the plant growing device includes a carbon dioxide replenishing device
  • the carbon dioxide replenishing device includes a carbon dioxide detecting unit and a carbon dioxide supply unit
  • the method further includes: adopting a carbon dioxide replenishing device
  • the carbon dioxide detecting unit detects the concentration of carbon dioxide in the plant growing device; when it is detected that the carbon dioxide concentration is less than a predetermined value, the carbon dioxide supply unit releases carbon dioxide to the plant growing device.
  • FIG. 1 is a schematic perspective view of a plant cultivation tank in a plant planting apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of a plant cultivation tank in a plant planting apparatus according to an embodiment of the present disclosure
  • FIG. 3 is another schematic cross-sectional view of a plant growing tank in a plant planting device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic view showing a direction in which a flow guiding element extends in a plant planting apparatus according to an embodiment of the present disclosure
  • FIG. 5 is another schematic diagram of a direction in which a flow guiding element extends in a plant planting apparatus according to an embodiment of the present disclosure
  • FIG. 6 is a schematic view showing a flow guiding element disposed on a tilting member in a plant planting apparatus according to an embodiment of the present disclosure
  • FIG. 7A is another schematic diagram of a flow guiding element disposed on a tilting member in a plant planting device according to an embodiment of the present disclosure
  • FIG. 7B is still another schematic diagram of a flow guiding element disposed on a tilting member in a plant planting apparatus according to an embodiment of the present disclosure
  • Figure 8 is a front elevational view showing a plant planting apparatus according to an embodiment of the present disclosure.
  • Figure 9 is a perspective view of a plant planting apparatus according to an embodiment of the present disclosure.
  • Figure 10 is a rear perspective view of a plant planting apparatus according to an embodiment of the present disclosure.
  • Figure 11 is a partially enlarged schematic view showing a plant planting apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a flow chart of a method for planting a plant according to an embodiment of the present disclosure.
  • the temperature of the nutrient solution applied in the ordinary plant planting equipment is difficult to control, and it is prone to unfavorable conditions such as excessive temperature of the nutrient solution, which seriously affects plant growth.
  • it is prone to poor convection on the surface of the plant, so that the carbon dioxide per unit area in the planting environment is consumed faster, thereby reducing the photosynthesis efficiency of the plants.
  • At least one embodiment of the present disclosure provides a plant planting apparatus comprising at least one plant growing tank, the plant growing tank comprising a tank body and an inclined piece, the inclined piece being disposed at a bottom of the tank body and configured to support the plant And comprising at least one flow guiding element disposed on the inclined member; the flow guiding element is configured to direct the liquid of the cultivating plant to flow from one end of the inclined member opposite to each other to the other end.
  • a method for planting a plant using the above plant planting device comprises: planting a plant above a tilting member of a plant growing tank; applying a liquid above the tilting member to contact the root of the plant with the liquid; The at least one flow guiding element is guided to flow from one end of the tilting member opposite to each other to the other end.
  • FIG. 1 is a schematic perspective view of a plant growing tank in a plant planting device provided by the present embodiment
  • FIG. 2 is a plant cultivation device in a plant planting device provided by the present embodiment. Schematic diagram of the groove.
  • the plant growing device includes at least one plant growing tank 101 including a tank body 101c and a tilting member 1011, and the inclined member 1011 is obliquely disposed at the bottom of the plant growing tank 101, such as a tank body.
  • the bottom of the 101c is configured as a support plant, and the tilting member 1011 includes at least one flow guiding element 1012 disposed on the inclined member 1011; the flow guiding member 1012 is disposed to guide the liquid of the cultivated plant from the opposite side of the inclined member 1011 toward each other another side.
  • the opposite ends of the inclined members 1011 which are inclined with respect to each other refer to both ends of the inclined members 1011 which are not on the same horizontal plane.
  • the opposite ends of the inclined members 1011 that are inclined relative to each other refer to a left end having a relatively high relative position and a right end having a relatively low relative position.
  • the flow directing element 1012 is configured to direct the liquid of the growing plant from the left end to the right end of the tilting member 1011.
  • the liquid is, for example, a nutrient solution.
  • the bottom of the plant growing tank (e.g., the bottom of the tank) is relative to the plant planted in the plant growing tank, and in use, the plant is planted above the bottom of the plant growing tank (e.g., at the bottom of the tank).
  • the inclined member 1011 included in the plant growing tank 101 is directly fixed on the side of the plant growing tank 101, for example, on the side wall of the tank body 101c, thereby
  • the plant growing tank 101 in the example reduces the setting of the bottom surface relative to the case of Figure 2, saving material.
  • the inclined member 1011 included in the plant growing tank 101 and the side surface of the plant growing tank 101 may be integrally formed.
  • the inclined members 1011 included in the plant growing tank 101 and the side surfaces of the plant growing tank 101, such as the side walls of the tank body 101c may be separately formed, and then the inclined members 1011 are disposed at a certain inclination according to requirements.
  • the inclined member 1011 can be slidably disposed on the side wall of the groove body 101c, so that the inclination of the inclined member 1011 can be adjusted.
  • the plant growing tank 101 may be formed of a material such as metal, wood, stone, plastic, etc., and the material of the plant growing tank 101 is not limited in this embodiment.
  • the intersection line of the inclined member and the horizontal plane is a first straight line (the horizontal plane refers to a plane formed by completely static water, and also refers to a plane parallel to the plane), and the plane of the inclined member is first and
  • the straight line perpendicular to the straight line is the second straight line; for example, the extending direction of the at least one flow guiding element and the second straight line are at an angle of 0-45.
  • FIG. 4 is a schematic view showing a direction in which a flow guiding element in a plant planting device extends above a tilting member according to an embodiment of the present invention.
  • the intersection line of the inclined member and the horizontal plane is the first straight line AB
  • the straight line perpendicular to the first straight line AB on the plane of the inclined member is the second straight line CD
  • the extending direction CE of the flow guiding element is The angle of the second straight line CD is 0-45°.
  • the extending direction of the flow guiding element can be adjusted according to actual conditions, so that the drainage direction and the drainage speed of the liquid guiding the plant to the plant can be adjusted.
  • the direction of drainage of the flow guiding element to the liquid is the same as the direction of extension of the flow guiding element.
  • the larger the angle ⁇ the slower the flow velocity of the flow guiding element to the liquid in which the plant is grown.
  • the extending direction CE of the flow guiding element 1012 and the angle ⁇ of the second straight line CD are 0°, that is, the extending direction CE of the flow guiding element 1012 is parallel to the second straight line CD.
  • the straight line where the intersection of the inclined member and the horizontal plane is the first straight line AB
  • the first straight line AB is also a straight line where the intersection of the inclined member 1012 and the partition 1013 (described later) is located, and the inclined member is located.
  • a straight line perpendicular to the first straight line AB on the plane is the second straight line CD, and the angle ⁇ between the extending direction CE of the flow guiding element 1012 and the second straight line CD is 0°, that is, the extending direction CE of the flow guiding element 1012 Parallel to the second straight line CD.
  • the flow guiding element directs the drainage of the liquid from which the plant is grown, thereby facilitating the flow of the liquid.
  • the inclination of the inclined member with respect to the horizontal plane is (1:20) - (1:8), for example, 1:10, 1:13, 1:15, 1:17, and the like.
  • the inclination refers to the degree of inclination of one plane relative to the other plane, and the size thereof is represented by an angle tangent between them.
  • the inclination of the tilting member with respect to the horizontal plane can be adjusted so that the flow velocity of the liquid above the tilting member can be adjusted by adjusting the inclination of the tilting member.
  • the flow guiding element in the plant growing tank can drain the liquid applied to the plant, so that the plant planted in the plant growing tank can fully absorb the liquid, and The flow of liquid will bring more oxygen, which can prevent the occurrence of insects in the plant cultivation tank.
  • the plant growing tank 101 may include a partition 1013 which divides the plant growing tank into a plant growing area 101a and a liquid buffer 101b.
  • the liquid buffer 101b is a horizontal groove-like structure with an opening upward.
  • the plant growing zone 101a and the liquid buffer zone 101b are separated by a partition 1013 having at least one first opening 1014 therebetween to allow the plant growing zone 101a to communicate with the liquid buffer zone 101b.
  • the tilting member 1011 is disposed in the plant growing area 101a.
  • the liquid can flow from the plant growing area 101a through the first opening 1014 into the liquid buffer zone 101b, so that no liquid is accumulated in the plant growing area 101a, which facilitates the flow and replacement of the liquid.
  • the liquid buffer 101b can also collect and store liquid.
  • the liquid buffer zone 101b can store the liquid flowing out of the plant growing area 101a, so that the plant growing tank does not overflow with liquid, ensuring safe application of the device and facilitating cleaning of the device.
  • the plant growing tank 101 may further include a inserting plate 1015 that cooperates with the first opening 1014, and the inserting plate 1015 is configured to adjust the opening size of the first opening 1014.
  • the shape of the insert 1015 is the same as the shape of the opening of the first opening 1014, and the size of the insert 1015 is slightly smaller than the size of the first opening 1014 such that the insert 1015 can be inserted into the first opening 1014.
  • the inserting plate 1015 can adjust the speed at which the liquid flows from the plant growing region 101a into the liquid buffer 101b by adjusting the opening size of the first opening 1014, thereby also adjusting the flow velocity of the liquid in the plant growing region 101a. For example, the larger the opening of the first opening 1014, the faster the flow rate of the liquid.
  • the first opening 1014 on the partition 1013 may open from the top end of the partition to the other end in contact with the inclined member 1011, for example, forming a strip-shaped opening, so that the liquid flowing on the inclined member 1011 is more easily discharged from the first opening 1041. It flows out without staying in the plant growing area 101a.
  • the insertion plate 1015 and the first opening 1014 are the same size and shape, for example, strip shape.
  • the strip-shaped inserting plate 1015 is slidably disposed in the first opening 1014 so that the opening size of the first opening 1014 can be adjusted by sliding the inserting plate 1015 up and down within the first opening 1014.
  • the inclined member 1011 is plate-shaped
  • the flow guiding member 1012 is a plurality of strip-shaped protrusions provided on the plate-like inclined member 1011.
  • a plurality of strip-like protrusions are continuously disposed or spaced apart along the extending direction thereof.
  • Fig. 6 shows a case where strip-like projections are continuously provided
  • Figs. 7A and 7B show a case where strip-like projections are spaced apart.
  • a plurality of strip-like projections are continuously disposed from the one end of the inclined members which are inclined to each other in the extending direction thereof to the other end, so that the liquid can flow along the path defined by the strip-like projections.
  • FIG. 6 shows a case where strip-like projections are continuously provided
  • Figs. 7A and 7B show a case where strip-like projections are spaced apart.
  • a plurality of strip-like projections are continuously disposed from the one end of the inclined members which are inclined to each other in the extending direction thereof to the other end, so that the liquid can flow along the path defined by the strip-like projections.
  • a plurality of strip-like protrusions are spaced apart from each other at one end to the other end of the tilting member in the extending direction thereof, and the spaced strip-shaped protrusions increase the flow path of the liquid, so that the liquid can follow a plurality of paths.
  • Flow increases the uniformity of liquid distribution.
  • the extending directions of the strip-shaped protrusions may be different, thereby increasing the diversity of the flow paths and making the liquid distribution more uniform.
  • the strip protrusion is corrugated.
  • the plant planting device may further include a liquid supply tank, the liquid buffer further comprising at least one second opening formed at the bottom of the liquid buffer, so that the liquid supply tank can pass through the second opening and the liquid buffer Connected.
  • a second opening 1016 is defined in the bottom of the liquid buffer 101b.
  • the liquid supply tank may be disposed directly below the second opening 1016, or the liquid supply tank may communicate with the second opening 1016 through a conduit, which is not limited in this embodiment.
  • the second opening at the bottom of the liquid buffer 101b may be, for example, a plurality of, for example, two, three, etc., and the plurality of second openings may accelerate the flow of liquid in the liquid buffer 101b to the liquid supply tank. This embodiment does not limit the number of second openings.
  • the second opening may further include a filter material, which can filter impurities in the liquid, so that the liquid flowing into the liquid supply tank is more pure, which is beneficial to the recycling of the liquid.
  • the filter material may be a filter of various materials, which is not limited in this embodiment.
  • the plant planting device may further include a frame body including a plurality of plant planting layers, and the plant growing tank is disposed in the plant planting layer.
  • the plant growing apparatus may include a frame body 10, and the frame body 10 may include at least one plant growing layer 11 in which the plant growing tank 101 is disposed.
  • the frame body 10 is made of various materials such as metal, wood, stone, plastic, and the like.
  • the frame body 10 may be integrally formed or formed by each component.
  • a plant growing tank is placed below each plant growing layer 11.
  • FIG. 8 shows a case where the frame body 10 includes four plant planting layers 11, and the plant planting layer 11 included in the frame body 10 may also be one, three, five, six, etc., depending on the actual situation. This embodiment does not limit this.
  • FIG. 9 shows a perspective view of a plant planting apparatus provided by the present embodiment.
  • the liquid supply tank may be disposed at the bottom of the plant planting device, such as the bottommost layer of the frame body 10, such as the position indicated by reference numeral 1019.
  • the plant cultivation tanks located in each plant planting layer may pass through a pipeline, respectively. It is in communication with the liquid supply tank so that the liquid supply tank can collect the liquid flowing out of the plurality of plant cultivation tanks.
  • the liquid liquid supply tank may be disposed outside the plant planting device, for example, beside the frame body 10 (not shown), and the position of the liquid liquid supply tank is not limited in this embodiment.
  • the liquid supply tank can include a line and a pump body.
  • the liquid supply tank is configured to convey the liquid in the liquid supply tank to the plant growing area through the pipeline under the driving of the pump body.
  • the plant cultivation area of the plant cultivation tank further includes a liquid supply port.
  • the liquid supply port is disposed on a side of the plant cultivation area away from the liquid buffer zone, so that the liquid in the liquid supply tank can be supplied through the liquid. The mouth is transported to the plant growing area to achieve the recycling of the liquid.
  • Fig. 10 shows a schematic rear view of a plant growing device provided by the present embodiment.
  • the line 1020 of the liquid supply tank is inserted into the liquid supply port behind the plant cultivation area.
  • the liquid supply port behind the plant growing area may be plural.
  • the plurality of liquid supply ports respectively correspond to the plurality of flow guiding areas defined by the flow guiding elements, so that the liquid can flow uniformly into the respective flow guiding elements. In the flow guiding area, the liquid obtained by the plants planted in the plant cultivation tank is more uniform.
  • FIG. 11 shows a partial enlarged view of a side of a conduit 1020 including a liquid supply tank and a portion of the frame 10.
  • the conduit 1020 of the liquid supply tank can extend from the rear of the plant growing area into the plant growing area.
  • the liquid supply tank may further include a first temperature control device for adjusting the temperature of the liquid in the liquid supply tank.
  • the first temperature control device may be a temperature control device of various types, such as a semiconductor temperature control device, which is not limited in this embodiment.
  • the first temperature control device 1030 may be disposed inside the liquid supply tank.
  • the first temperature control device can adjust the temperature of the liquid to a temperature range suitable for plant growth, for example, controlling the temperature of the liquid at 15-30 ° C, such as 20 ° C, 25 ° C, and the like. At this temperature, the liquid is more easily absorbed by the plant and is less susceptible to insects.
  • the first temperature control device can employ semiconductor temperature control, which is small in size and does not generate noise.
  • the plant growing tank further includes a plant fixing layer, and the plant fixing layer is disposed on the flow guiding member.
  • the plant anchor layer can include a plurality of plant fixation holes for securing the plant.
  • the plant fixing layer 1017 is disposed on the flow guiding member.
  • the plant fixing layer 1017 may be a foam layer, a sponge layer or the like, and the plant fixing hole 1018 is a passage opened in the foam layer or the sponge layer. hole.
  • the root of the plant can pass through the plant fixing hole 1018 to contact the liquid flowing over the inclined member, so that the root of the plant is in full contact with the liquid, which is favorable for the absorption of the liquid by the plant.
  • a shallow liquid flow layer is formed between the plant fixing layer and the inclined member having the flow guiding element, that is, at the plant root position, the shallow liquid flow layer ensures the liquid flow supply, and the liquid flow ensures the oxygen supply to the plant root.
  • liquid changes can be observed at the shallow flow layer to facilitate timely handling in the event of a malfunction.
  • the depth of the plant growing area may be 3-8 cm, such as 5 cm, 6 cm, etc.; for example, the height of the strip protrusions (eg, corrugated) may be set to be less than 2 cm, such as 1 Centimeter, 1.5 cm, etc., so that the root of the plant is kept at a certain distance from the inclined piece to facilitate the smooth flow of the liquid; for example, the height of the partition can be set to be 1-6 cm higher than the lowest height of the plant growing area, for example, 3 cm, 4 Cm or 5 cm, etc., which facilitates the storage of liquids and prevents them from overflowing.
  • the strip protrusions eg, corrugated
  • the plant growing device may further include a lighting device, which may be disposed above the plant growing tank.
  • the illumination device may be disposed above each of the plant planting layers 11 of the frame 10.
  • the illumination device may be an illumination device such as an LED lamp, a fluorescent lamp, or an incandescent lamp, which is not limited in this embodiment.
  • the plant planting device when the plant planting device includes a plurality of plant planting layers, due to the occlusion of the plant layer of the upper plant, the plant planting layer located below may have insufficient lighting, so that lighting may be set above the plant growing tank.
  • the illumination device may be an LED lamp, for example, the wavelength and intensity of light emitted by the LED lamp can be adjusted.
  • the wavelength range of the light emitted by the LED lamp can be adjusted to be substantially the same as sunlight; for example, the LED lamp can be adjusted to a 14-hour lighting mode and a 10-hour light-off mode, so that the illumination is similar to natural sunlight.
  • the growth of some plants requires blue light having a wavelength ranging from 380 to 510 nm and red light having a wavelength ranging from 610 to 780 nm, at which time the wavelength of light emitted by the LED lamp can be adjusted to the desired range.
  • the LED light is placed in an area where the illumination is insufficient in the planting layer, and the luminous intensity of the LED lamp is adjusted to a target value, so that the insufficiently illuminated area is supplementally illuminated to obtain sufficient illumination.
  • the plant growing device may further include a fan, which may be disposed, for example, on the side of the incubating tank such that air flowing above the plant growing tank when the fan is turned on.
  • a fan may be disposed at a side edge of the frame 10, such as the position indicated by reference numeral 1021 in FIG.
  • the fan may also be disposed on a side of the frame 10, such as indicated by reference numeral 1022.
  • the fan When the fan is turned on, the air above the plant cultivation tank can flow sufficiently, so that the plants planted in the plant cultivation tank can obtain sufficient carbon dioxide, so that the plants can better perform photosynthesis and obtain nutrients.
  • the fan may be disposed on the outside of the planting device through a bracket, as long as the air above the incubator can be flowed, which is not limited in this embodiment.
  • the plant growing device may further include a carbon dioxide replenishing device.
  • the carbon dioxide replenishing device includes a carbon dioxide detecting unit and a carbon dioxide supply unit.
  • the carbon dioxide detecting unit is a carbon dioxide detector that can detect the concentration of carbon dioxide in the plant growing device.
  • the carbon dioxide detector is an infrared carbon dioxide detector that includes an infrared light source and obtains a concentration of carbon dioxide by detecting the absorption intensity of carbon dioxide to the infrared light emitted from the infrared source.
  • the carbon dioxide supply unit is a carbon dioxide generator
  • the generator includes a substance capable of generating carbon dioxide by a chemical reaction, for example, including concentrated sulfuric acid and sodium hydrogencarbonate, so that carbon dioxide can be generated by reacting concentrated sulfuric acid with sodium hydrogencarbonate to grow plants.
  • the device releases carbon dioxide.
  • the carbon dioxide replenishing device 1031 may be disposed in a plant growing layer of the plant growing device so that the amount of carbon dioxide in the plant growing layer can be detected and adjusted.
  • a carbon dioxide replenishing device is provided in each planting layer of the plant growing device so that the amount of carbon dioxide in each planting layer can be detected and adjusted.
  • the carbon dioxide supply unit 1032B may The carbon dioxide is released so that the plants grown in the planting layer can obtain sufficient carbon dioxide.
  • the predetermined value may be set according to actual conditions, for example, different values may be set for different plants according to the growth requirements of different plants.
  • the plant planting device may further include an electrical control box, for example, the electrical control box is connected with a lighting device, a fan, a carbon dioxide supply device, etc., so that the lighting device, the fan, and the carbon dioxide supply can be controlled through the electric control box.
  • the operating state of the device and the like enables centralized control of each functional component.
  • the electrical control box can be disposed on the bottom layer of the frame 10, such as the location indicated by reference numeral 1019.
  • the electrical control box may be disposed outside the plant planting device or other convenient operation position, which is not limited in this embodiment.
  • At least one embodiment of the present disclosure provides a method of planting a plant using the plant planting apparatus described above. As shown in FIG. 12, the method may include step S101 and step S102.
  • Step S101 Planting the plant above the inclined piece of the plant cultivation tank.
  • Step S102 Applying liquid to the top of the tilting member causes the root of the plant to contact the liquid.
  • the applied liquid may flow from one end of the tilting member that is inclined relative to each other to the other end under the guidance of the at least one flow guiding element.
  • the plant growing tank further includes a plant fixing layer disposed above the flow guiding element, the plant fixing layer including a plurality of plant fixing holes.
  • the plant can be planted in a plant fixation hole such that the root of the plant can contact the liquid applied over the inclined member through the plant fixation hole.
  • the flow velocity of the liquid applied over the slanting member can be adjusted by the inclination of the slanting member with respect to the horizontal plane, the direction in which the flow guiding member extends above the slanting member, etc., and the details are not described herein.
  • the tilting member when the plant growing tank includes a plant growing area and a liquid buffer zone, the tilting member may be disposed in the plant growing area.
  • the plant growing area and the liquid buffer zone are separated by a partition, and the partition is provided with at least one first opening such that the plant growing area communicates with the liquid buffer zone, so that the liquid can flow from the plant growing area into the liquid buffer through the first opening, the liquid
  • the buffer can collect and store liquids.
  • the plant growing trough can also include a gusset that mates with the first opening, the gusset can adjust the size of the opening of the first opening.
  • the method for planting the plant provided by the embodiment may further include: adjusting the opening size of the first opening by using the inserting plate, thereby adjusting the speed of the liquid flowing into the liquid buffer from the plant growing area, thereby adjusting the liquid in the plant growing area. The speed of the flow. For example, the larger the opening of the first opening, the faster the flow rate of the liquid.
  • the method further comprises: collecting the liquid flowing out of the plant cultivation tank by using the liquid liquid supply tank, and conveying the collected liquid to the top of the inclined piece, so that The liquid can be recycled.
  • the liquid buffer includes at least one second opening that is formed in the bottom of the liquid buffer so that the liquid supply tank can communicate with the liquid buffer through the second opening.
  • the liquid supply tank can include a line and a pump body. The liquid supply tank transports the liquid in the liquid supply tank to the plant cultivation area through the pipeline under the driving of the pump body, thereby realizing the circulation of the liquid.
  • the liquid supply tank may further include a first temperature control device that can be used to adjust the temperature of the liquid in the liquid supply tank.
  • the method may further include: adjusting the temperature of the liquid to a temperature range suitable for plant growth using the first temperature control device, for example, controlling the temperature of the liquid at 15-30 ° C, for example, 20 ° C, 25 ° C, and the like. At this temperature, the liquid is more easily absorbed by the plant and is less susceptible to insects.
  • the method further comprises: turning on the fan to flow air above the plant cultivation tank, so that the plant planted in the plant cultivation tank can obtain sufficient carbon dioxide, thereby the plant Can be better for photosynthesis and get nutrients.
  • the method further comprises: detecting a carbon dioxide concentration in the plant planting device by using a carbon dioxide detecting unit of the carbon dioxide replenishing device; and detecting carbon dioxide concentration when the carbon dioxide concentration is less than a predetermined value; The supply unit releases carbon dioxide to the plant growing device to ensure that the plant has sufficient carbon dioxide.
  • the predetermined value may be set according to actual conditions, for example, different values may be set for different plants according to the growth requirements of different plants.
  • the carbon dioxide replenishing device can periodically detect the concentration of carbon dioxide in the planting device or detect the concentration of carbon dioxide in the planting device in real time, thereby ensuring that the plants planted in the planting device can obtain sufficient carbon dioxide.
  • the wavelength and intensity of the light emitted by the lighting device can be adjusted, for example.
  • the illumination device can be an LED lamp, for example, the wavelength and intensity of the light emitted by the LED lamp can be adjusted.
  • the wavelength range of the light emitted by the LED lamp can be adjusted to be substantially the same as sunlight; for example, the LED lamp can be adjusted to a 14-hour lighting mode and a 10-hour light-off mode, so that the illumination is similar to natural sunlight. Can promote plant growth better.
  • the growth of some plants requires blue light having a wavelength ranging from 380 to 510 nm and red light having a wavelength ranging from 610 to 780 nm, at which time the wavelength of light emitted by the LED lamp can be adjusted to the desired range.
  • the LED light can be placed in an area where the illumination is insufficient in the planting layer, and the luminous intensity of the LED lamp is adjusted to a target value, so that the insufficiently illuminated area is supplementally illuminated to obtain sufficient illumination.
  • the electrical control box is coupled to a lighting device, a fan, a carbon dioxide supply device, and the like.
  • the method may further include: controlling the working state of the lighting device, the fan, the carbon dioxide supply device, and the like through the electrical control box, thereby achieving centralized control of each functional component, and facilitating operation.
  • the plant planting apparatus may include a body including a plurality of planting layers.
  • the method may further include: setting a plant growing tank in each planting layer, for example, setting in each planting layer. A plurality of plant cultivation tanks are planted in the plant cultivation tank. This method saves the plant's footprint and allows more plants to be planted in the same space.
  • the root of the plant planted in the plant cultivation tank can fully contact the liquid applied over the inclined member, and the flow guiding member disposed above the inclined member can also be applied to the plant.
  • the liquid acts as a drainage, so that the plants planted in the plant cultivation tank can fully absorb the liquid, and the liquid flows to bring more oxygen, which can prevent the occurrence of insects in the plant cultivation tank.

Abstract

一种植物种植装置,包括至少一个植物培育槽(101),所述至少一个植物培育槽(101)包括槽体(101c)和倾斜件(1011),该倾斜件(1011)倾斜设置在所述槽体(101c)底部,构造为承托植物,且包括设置于倾斜件(1011)上的至少一个导流元件(1012);其中,所述至少一个导流元件(1012)设置为引导培育植物的液体从倾斜件(1011)的彼此相对倾斜的一端流向另一端。还包括一种利用所述植物种植装置进行植物种植的方法。该植物培育槽可以对施加给植物的液体起到引流作用。

Description

植物种植装置以及植物种植方法
本申请要求于2018年1月29日递交的中国专利申请第201810085779.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种植物种植装置以及植物种植方法。
背景技术
水、光照、空气等是植物生长所需的最基本的条件。通常来说,植物在有光的情况下能够将水和二氧化碳合成糖,从而获得养分,这是植物生命活动的基础,而这一过程称为光合作用。因此在种植植物时,需要给植物提供充足的水、光照、空气等条件。
发明内容
本公开至少一实施例提供一种植物种植装置,该植物种植装置包括至少一个植物培育槽,所述至少一个植物培育槽包括槽体和倾斜件,该倾斜件倾斜设置在所述槽体底部,构造为承托植物,且包括设置于所述倾斜件上的至少一个导流元件;其中,所述至少一个导流元件设置为引导培育植物的液体从所述倾斜件的彼此相对倾斜的一端流向另一端。
例如,本公开至少一实施例提供的植物种植装置中,所述植物培育槽包括隔板,所述隔板将所述植物培育槽分为植物培育区和液体缓冲区;其中,所述隔板上设有至少一个第一开口,所述第一开口构造为使所述植物培育区和液体缓冲区连通;所述倾斜件设置在所述植物培育区中。
例如,本公开至少一实施例提供的植物种植装置中,所述植物培育槽还包括与所述至少一个第一开口相配合的插板,所述插板构造为调节所述第一开口的开口大小。
例如,本公开至少一实施例提供的植物种植装置中,所述插板的形状与所述第一开口的形状相同,并且所述插板的尺寸小于所述第一开口的尺寸, 使得所述插板可插入所述第一开口内。
例如,本公开至少一实施例提供的植物种植装置中,所述倾斜件与水平面的交线为第一直线,所述倾斜件所在平面上的与所述第一直线相垂直的直线为第二直线;其中,所述至少一个导流元件的延伸方向与所述第二直线所呈的角度为0-45°。
例如,本公开至少一实施例提供的植物种植装置中,所述至少一个导流元件的延伸方向与所述第二直线平行。
例如,本公开至少一实施例提供的植物种植装置中,所述倾斜件为板状,所述导流元件为设置在所述板状倾斜件上的多个条状突起。
例如,本公开至少一实施例提供的植物种植装置中,所述植物培育槽还包括植物固定层,所述植物固定层设置在所述导流元件上方,所述植物固定层包括多个植物固定孔。
例如,本公开至少一实施例提供的植物种植装置,还包括液体供液箱,所述液体缓冲区还包括开设于所述液体缓冲区底部的至少一个第二开口;其中,所述液体供液箱通过所述至少一个第二开口与所述液体缓冲区连通。
例如,本公开至少一实施例提供的植物种植装置中,所述液体供液箱包括管路和泵体;所述植物培育区包括液体供液口;其中,所述液体供液口设置于所述植物培育区的远离所述液体缓冲区的一侧;所述液体供液箱构造为在所述泵体的驱动下将所述液体供液箱中液体通过所述管路输送到所述液体供液口。
例如,本公开至少一实施例提供的植物种植装置中,所述液体供液箱还包括第一温度控制装置,所述第一温度控制装置用于调节所述液体供液箱中液体的温度。
例如,本公开至少一实施例提供的植物种植装置,还包括照明装置,所述照明装置设置在所述植物培育槽上方。
例如,本公开至少一实施例提供的植物种植装置,还包括架体;所述架体包括多个植物种植层,所述至少一个植物培育槽设置在所述植物种植层中。
例如,本公开至少一实施例提供的植物种植装置,还包括二氧化碳补给装置,所述二氧化碳补给装置包括:二氧化碳检测单元,用于检测所述植物种植装置中的二氧化碳浓度;二氧化碳供应单元,用于向所述植物种植装置 释放二氧化碳。
例如,本公开至少一实施例提供的植物种植装置,所述二氧化碳补给装置设置在所述植物种植层中。
例如,本公开至少一实施例提供的植物种植装置,还包括风扇,所述风扇设置在所述架体的侧面使得所述风扇开启时所述植物培育槽上方的空气流动。
例如,本公开至少一实施例提供的植物种植装置,还包括电气控制箱,所述电气控制箱设置在所述植物种植层中。
本公开至少一实施例提供一种利用上述植物种植装置进行植物种植的方法,包括:种植植物于植物培育槽的倾斜件的上方;向所述倾斜件上方施加液体使得所述植物的根部接触所述液体;所述液体在所述至少一个导流元件的引导下从所述倾斜件的彼此相对倾斜的一端流向另一端。
例如,本公开至少一实施例提供的植物种植方法中,所述植物种植装置包括液体供液箱,所述方法还包括:采用液体供液箱收集从所述植物培育槽流出的液体,并将所收集的液体输送到所述倾斜件上方液体。
例如,本公开至少一实施例提供的植物种植方法中,所述植物种植装置包括二氧化碳补给装置,所述二氧化碳补给装置包括二氧化碳检测单元和二氧化碳供应单元;所述方法还包括:采用二氧化碳补给装置的二氧化碳检测单元检测所述植物种植装置中的二氧化碳浓度;当检测到所述二氧化碳浓度小于预定值时,二氧化碳供应单元向所述植物种植装置释放二氧化碳。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的植物种植装置中的植物培育槽的立体示意图;
图2为本公开一实施例提供的植物种植装置中的植物培育槽的截面示意图;
图3为本公开一实施例提供的植物种植装置中的植物培育槽的另一截面示意图;
图4为本公开一实施例提供的植物种植装置中的导流元件延伸方向的示意图;
图5为本公开一实施例提供的植物种植装置中的导流元件延伸方向的另一示意图;
图6为本公开一实施例提供的植物种植装置中倾斜件上设置导流元件的示意图;
图7A为本公开一实施例提供的植物种植装置中倾斜件上设置导流元件的另一示意图;
图7B为本公开一实施例提供的植物种植装置中倾斜件上设置导流元件的再一示意图;
图8为本公开一实施例提供的植物种植装置的正视示意图;
图9为本公开一实施例提供的植物种植装置的立体示意图;
图10为本公开一实施例提供的植物种植装置的后视示意图;
图11为本公开一实施例提供的植物种植装置的局部放大示意图;
图12为本公开一实施例提供的植物种植方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,通常大部分植物采用土壤培养,但是由于耕地面积越来越少,且污染越来越严重,蔬菜等植物的种植受到了限制。在室内采用植物种植设备种植植物时,会出现种植面积有限,同时又难以保证足够的光照等问题。此外,为了给植物提供更多的养料,通常会进行人工补充营养液,例如人工浇水等。此时,若提供的营养液在植物种植设备中流动不够充分,则会导致种植设备中氧气含量低,出现生虫等情况。面对上述问题,为了满足植物根部对氧气的需求,例如可以额外增加对营养液的供气设备,但此方法成本高,并且供气效果不易控制。另外,在普通植物种植设备中施加的营养液温度难以控制,容易出现营养液温度过高等不利情况,严重影响植物生长。另一方面,在室内进行植物种植时,还容易出现植物表面空气对流不畅等情况,使种植环境中单位面积的二氧化碳消耗较快,从而降低植物的光合作用效率。
本公开至少一实施例提供一种植物种植装置,该植物种植装置包括至少一个植物培育槽,该植物培育槽包括槽体和倾斜件,该倾斜件倾斜设置在槽体底部,构造为承托植物,且包括设置于倾斜件上的至少一个导流元件;该导流元件设置为引导培育植物的液体从倾斜件的彼此相对倾斜的一端流向另一端。
本公开至少一实施例提供的一种利用上述植物种植装置进行植物种植的方法,包括:种植植物于植物培育槽的倾斜件的上方;向倾斜件上方施加液体使得植物的根部接触液体;液体在至少一个导流元件的引导下从倾斜件的彼此相对倾斜的一端流向另一端。
下面通过几个具体的实施例对本公开的植物种植装置以及植物种植方法进行说明。
本公开至少一实施例提供一种植物种植装置,图1为本实施提供的一种植物种植装置中的植物培育槽的立体示意图,图2为本实施提供的一种植物种植装置中的植物培育槽的截面示意图。如图1和图2所示,该植物种植装置包括至少一个植物培育槽101,该植物培育槽101包括槽体101c和倾斜件1011,倾斜件1011倾斜设置在植物培育槽101底部,例如槽体101c底部,并构造为承托植物,倾斜件1011包括设置于倾斜件1011上的至少一个导流元件1012;导流元件1012设置为引导培育植物的液体从倾斜件1011的彼此相对倾斜的一端流向另一端。
本实施例中,倾斜件1011的彼此相对倾斜的两端是指倾斜件1011的不 在同一水平面上的两端。例如,按照图2所示的方位,倾斜件1011的彼此相对倾斜的两端是指相对位置较高的左端和相对位置较低的右端。例如,在图2中,导流元件1012设置为引导培育植物的液体从倾斜件1011的左端流向右端。液体例如为营养液。
本实施例中,植物培育槽底部(例如槽体底部)是相对于种植在植物培育槽中的植物来说的,在使用时,植物种植在植物培育槽底部(例如槽体底部)的上方。
例如,在本实施例的另一示例中,如图3所示,植物培育槽101所包括的倾斜件1011直接固定在植物培育槽101的侧面上,例如槽体101c的侧壁上,从而本示例中的植物培育槽101相对于图2中的情况来说,减少了底面的设置,节约了材料。
例如,植物培育槽101所包括的倾斜件1011与植物培育槽101的侧面,例如槽体101c的侧壁可以一体形成。例如,在其他示例中,植物培育槽101所包括的倾斜件1011与植物培育槽101的侧面,例如槽体101c的侧壁可以分别形成,然后根据需求将倾斜件1011按照一定的斜度设置在槽体101c的侧壁上。例如,倾斜件1011可以滑动设置在槽体101c的侧壁上,从而使倾斜件1011的斜度可调节。
例如,植物培育槽101可以采用金属、木材、石材、塑料等材料形成,本实施例对植物培育槽101的材料不做限定。
例如,本实施例中,倾斜件与水平面的交线为第一直线(水平面指完全静止的水所形成的平面,亦指跟这个平面平行的面),倾斜件所在平面上的与第一直线相垂直的直线为第二直线;例如,至少一个导流元件的延伸方向与第二直线所呈的角度为0-45°。
例如,图4为本实施例提供的一种植物种植装置中的导流元件在倾斜件上方延伸方向的示意图。如图4所示,倾斜件与水平面的交线为第一直线AB,倾斜件所在平面上的与第一直线AB相垂直的直线为第二直线CD,导流元件的延伸方向CE与第二直线CD所呈的角度为0-45°。
本实施例中,导流元件的延伸方向可以根据实际情况进行调整,从而可以调节导流元件对培育植物的液体的引流方向与引流速度。例如,导流元件对液体的引流方向与导流元件的延伸方向相同。例如,θ角度越大,导流元件对培育植物的液体的引流速度越慢。
例如,在一个示例中,如图5所示,导流元件1012的延伸方向CE与第二直线CD所呈的角度θ为0°,即导流元件1012的延伸方向CE与第二直线CD平行。结合图2,倾斜件与水平面的交线所在的直线为第一直线AB,第一直线AB同时也是倾斜件1012与隔板1013(稍后介绍)的交线所在的直线,倾斜件所在平面上的与第一直线AB相垂直的直线为第二直线CD,导流元件1012的延伸方向CE与第二直线CD所呈的角度θ为0°,即导流元件1012的延伸方向CE与第二直线CD平行。该示例中,导流元件对培育植物的液体的引流速度较快,从而利于液体的流动。
例如,本实施例中,倾斜件相对于水平面的斜度为(1:20)-(1:8),例如1:10、1:13、1:15、1:17等。其中,斜度是指一平面相对另一平面的倾斜程度,其大小用他们之间的夹角正切来表示。例如,倾斜件相对于水平面的斜度可以进行调节,从而可以通过调节倾斜件的斜度调节液体在倾斜件上方的流动速度。
利用本实施例提供的植物种植装置进行植物种植时,植物培育槽中的导流元件可以对施加给植物的液体起到引流作用,从而使种植在植物培育槽中的植物可以充分吸收液体,并且液体流动的过程中会带来更多的氧气,可以防止植物培育槽中生虫现象的发生。
例如,本实施例中,如图1和图2所示,植物培育槽101可以包括隔板1013,隔板1013将植物培育槽分为植物培育区101a和液体缓冲区101b。例如,液体缓冲区101b为开口向上的水平槽状结构。例如,植物培育区101a和液体缓冲区101b通过隔板1013隔开,隔板1013上设有至少一个第一开口1014使得植物培育区101a和液体缓冲区101b连通。例如,倾斜件1011设置在植物培育区101a中。
本实施例中,液体可以通过第一开口1014从植物培育区101a流入液体缓冲区101b,从而植物培育区101a中不会堆积液体,有利于液体的流动与更换。另外,液体缓冲区101b还可以对液体进行收集与保存。例如,在水流较大的情况下,液体缓冲区101b可以储存植物培育区101a流出的液体,使植物培育槽不会出现液体溢出的情况,保证装置应用安全、且便于装置清洁。
例如,本实施例中,植物培育槽101还可以包括与第一开口1014相配合的插板1015,插板1015构造为可以调节第一开口1014的开口大小。例如, 插板1015的形状与第一开口1014的开口形状相同,并且插板1015的尺寸略小于第一开口1014的尺寸,使得插板1015可插入第一开口1014内。本实施例中,插板1015可以通过调节第一开口1014的开口大小调节液体从植物培育区101a流入液体缓冲区101b的速度,进而也会调节植物培育区101a中液体的流动速度。例如,第一开口1014的开口越大,液体的流动速度越快。
例如,隔板1013上的第一开口1014可以从隔板的顶端开设到与倾斜件1011接触的另一端,例如形成条状开口,从而在倾斜件1011上流动的液体更容易从第一开口1041流出,而不会滞留在植物培育区101a中。
例如,插板1015与第一开口1014的大小与形状相同,例如为条状。例如,条状的插板1015滑动设置在第一开口1014内,从而可以通过插板1015在第一开口1014内上下滑动来调节第一开口1014的开口大小。
例如,本实施例中,倾斜件1011为板状,导流元件1012为设置在板状倾斜件1011上的多个条状突起。
例如,本实施例中,多个条状突起沿其延伸方向连续设置或间隔设置。例如,图6示出了条状突起连续设置的情况,图7A和图7B示出了条状突起间隔设置的情况。如图6所示,多个条状突起沿其延伸方向从倾斜件的彼此相对倾斜的一端连续设置到另一端,从而液体可以沿条状突起限定的路径进行流动。如图7A所示,多个条状突起沿其延伸方向在倾斜件的彼此相对倾斜的一端到另一端间隔设置,间隔设置的条状突起增加了液体的流动路径,从而液体可以沿多个路径流动,增加了液体分布的均匀性。例如,如图7B所示,间隔设置的条状突起的延伸方向也可以不同,从而增加了流动路径的多样性,使液体分布更均匀。例如,该条状突起为瓦楞。
例如,本实施例中,植物种植装置还可以包括液体供液箱,液体缓冲区还包括开设于液体缓冲区底部的至少一个第二开口,从而液体供液箱可以通过第二开口与液体缓冲区连通。
例如,在一个示例中,如图1和图2所示,液体缓冲区101b底部开设有一个第二开口1016。例如,液体供液箱可以直接设置在第二开口1016的下方,或者液体供液箱通过一管路与第二开口1016连通,本实施例对此不做限定。在其他示例中,液体缓冲区101b底部的第二开口例如也可以多个,例如两个、三个等,多个第二开口可以加快液体缓冲区101b中液体流入到 液体供液箱的速度,本实施例对第二开口的数量不做限定。
例如,本实施例中,第二开口还可以包括过滤材料,该过滤材料可以对液体中的杂质进行过滤,从而使流入液体供液箱的液体更纯净,有利于液体的回收利用。例如,该过滤材料可以为各种材质的过滤网,本实施例对此不做限定。
例如,本实施例中,植物种植装置还可以包括架体,架体包括多个植物种植层,植物培育槽设置在植物种植层中。
例如,如图8所示,植物种植装置可以包括架体10,架体10可以包括至少一个植物种植层11,植物培育槽101设置在植物种植层11中。例如,架体10为金属、木材、石材、塑料等各种材质,例如,架体10可以一体形成或者通过各组成元件搭建而形成。例如,植物培育槽放置于每个植物种植层11的下方。例如,图8示出了架体10包括四个植物种植层11的情况,根据实际情况,架体10所包括的植物种植层11也可以为一个、三个、五个、六个等等,本实施例对此不做限定。
例如,图9示出了一种本实施例提供的植物种植装置的立体示意图。例如,液体供液箱可以设置于植物种植装置的底部,例如架体10的最底层,例如标号1019所指示的位置,此时,位于各植物种植层中的植物培育槽可以分别通过一管路与液体供液箱连通,从而该液体供液箱可以收集从多个植物培育槽流出的液体。例如,液体供液箱还可以设置于植物种植装置外部,例如架体10旁边(图中未示出),本实施例对液体供液箱的设置位置不做限定。
例如,液体供液箱可以包括管路和泵体。液体供液箱构造为在泵体的驱动下将液体供液箱中液体通过管路输送到植物培育区。
例如,植物培育槽的植物培育区后方还包括液体供液口,例如,液体供液口设置于植物培育区的远离液体缓冲区的一侧,从而液体供液箱中的液体可以通过液体供液口输送到植物培育区,实现了液体的循环使用。
例如,图10示出了一种本实施例提供的植物种植装置的后视示意图。如图10所示,液体供液箱的管路1020插入植物培育区后方的液体供液口中。例如,植物培育区后方的液体供液口可以为多个,例如,多个液体供液口分别对应于导流元件限定的多个导流区域,从而可以使液体均匀流入各个导流元件限定的导流区域中,使种植在植物培育槽中的植物获得的液体更加均 匀。
例如,在一个示例中,图11示出了包括液体供液箱的管路1020和部分架体10侧面的局部放大示意图。如图11所示,液体供液箱的管路1020可以从植物培育区后方伸入到植物培育区中。
例如,本实施例中,液体供液箱还可以包括第一温度控制装置,第一温度控制装置用于调节液体供液箱中液体的温度。
例如,第一温度控制装置可以为半导体温度控制装置等各种形式的温控设备,本实施例对此不做限定。例如,如图9所示,第一温度控制装置1030可以设置于液体供液箱内部。例如,第一温度控制装置可以将液体的温度调节至适宜植物生长的温度范围,例如将液体的温度控制在15-30℃,例如20℃、25℃等。在该温度下,液体更容易被植物吸收,也不易生虫。例如,第一温度控制装置可以采用半导体温度控制,该装置体积小,且不产生噪声。
例如,本实施例中,植物培育槽还包括植物固定层,植物固定层设置在导流元件上。例如,植物固定层可以包括多个植物固定孔,该植物固定孔用于固定植物。
例如,如图9所示,植物固定层1017设置在导流元件上,例如,植物固定层1017可以为泡沫层、海绵层等结构,植物固定孔1018为在泡沫层或海绵层中开设的通孔。例如,植物固定在植物固定孔1018中后,植物的根部可以穿过植物固定孔1018接触到流淌在倾斜件上方的液体,从而使植物的根部与液体充分接触,有利于植物对液体的吸收。例如,植物固定层与具有导流元件的倾斜件之间,也即在植物根部位置形成了浅液流层,该浅液流层可以确保液体流动供应,同时液体流动能保证植物根部的氧气供应;另外,在浅液流层处可以观测液体变化,从而利于在发生不良情况时及时处理。
在本实施例的一个示例中,例如植物培育区的深度可以为3-8厘米,例如5厘米、6厘米等;例如,条状突起(例如瓦楞)的高度可以设置为小于2厘米,例如1厘米、1.5厘米等,从而使植物根部与倾斜件保持一定距离以便于液体顺利流过;例如,隔板的高度可以设置为高出植物培育区最低处高度1-6厘米,例如3厘米、4厘米或5厘米等,从而有利于液体的储存,防止其溢出。
例如,本实施例中,植物种植装置还可以包括照明装置,该照明装置可以设置在植物培育槽上方。例如,照明装置可以设置在架体10的各植物种 植层11的上方。例如,该照明装置可以为LED灯、荧光灯或白炽灯等照明器件,本实施例对此不做限定。
本实施例中,当植物种植装置包括多层植物种植层时,由于上层植物种植层的遮挡等情况,位于下方的植物种植层可能出现光照不充足的问题,因此可以在植物培育槽上方设置照明装置,以对植物种植层中光照不充足的部分进行补充照明。
例如,本实施例中,该照明装置可以为LED灯,例如该LED灯发出的光的波长以及强度能够调节。例如,可以将LED灯所发出的光的波长范围调节至与阳光基本相同;例如,可以将LED灯调节为14小时亮灯、10小时灭灯的模式,从而使其光照与自然界日光照射相仿,可以更好地促进植物生长。例如,一些植物的生长更需要波长范围在380-510nm的蓝光以及波长范围在610-780nm的红光,此时可以调节LED灯所发出的光的波长至该所需范围。例如,将LED灯设置在植物种植层中光照不充足的区域,并将LED灯的发光强度调节为一个目标值,从而使该光照不充足的区域得到补充照明,从而获得充足的光照。
例如,本实施例中,植物种植装置还可以包括风扇,该风扇例如可以设置在培育槽的侧面使得风扇开启时植物培育槽上方的空气流动。例如,在一个示例中,如图9所示,风扇可以设置在架体10的侧面边缘,例如图9中标号1021所指示的位置。例如,如图11所示,风扇还可以设置在架体10的侧面上的例如标号1022所指示的位置。该风扇开启时,植物培育槽上方的空气可以充分流动,使得种植在植物培育槽中的植物能够获得足够的二氧化碳,从而植物可以更好的进行光合作用,获得养分。例如,风扇也可以通过一支架设置在植物种植装置的外部,只要能达到可以使培育槽上方的空气流动即可,本实施例对此不做限定。
例如,本实施例中,植物种植装置还可以包括二氧化碳补给装置。例如,二氧化碳补给装置包括二氧化碳检测单元和二氧化碳供应单元。例如,二氧化碳检测单元为二氧化碳检测仪,可以检测植物种植装置中的二氧化碳浓度。例如,该二氧化碳检测仪为红外线二氧化碳检测仪,该检测仪包括红外光源,并通过检测二氧化碳对红外光源发出的红外线的吸收强度来得出二氧化碳的浓度。例如,二氧化碳供应单元为二氧化碳发生器,该发生器内包括可通过化学反应生成二氧化碳的物质,例如包括浓硫酸与碳酸氢钠,因此可 以通过浓硫酸与碳酸氢钠反应生成二氧化碳,以向植物种植装置释放二氧化碳。
例如,如图8所示,二氧化碳补给装置1031可以设置在植物种植装置的植物种植层中,从而可以对植物种植层中的二氧化碳量进行检测与调节。例如,在一个示例中,植物种植装置的每个植物种植层中均设置二氧化碳补给装置,从而可以对每个植物种植层中的二氧化碳量进行检测与调节。例如,当二氧化碳检测单元1031A检测到某个植物种植层中的二氧化碳浓度小于一预定值时,即该植物种植层中的二氧化碳浓度可能不满足植物的需求时,二氧化碳供应单元1032B可以向植物种植装置中释放二氧化碳,从而使该植物种植层中种植的植物可以获得充足的二氧化碳。例如,该预定值可以根据实际情况而设定,例如可以根据不同植物的生长需求,对不同的植物设定不同的数值。
例如,本实施例中,植物种植装置还可以包括电气控制箱,例如,该电气控制箱与照明装置、风扇、二氧化碳供应装置等信号连接,从而可以通过电气控制箱控制照明装置、风扇、二氧化碳供应装置等的工作状态,实现对各功能部件的集中控制。例如,如图9所示,电气控制箱可以设置在架体10的底层,例如标号1019所指示的位置。例如,电气控制箱也可以设置于植物种植装置的外部或其他方便于操作的位置,本实施例对此不做限定。
本公开至少一实施例提供一种利用上述植物种植装置进行植物种植的方法,如图12所示,该方法可以包括步骤S101和步骤S102。
步骤S101:种植植物于植物培育槽的倾斜件的上方。
步骤S102:向倾斜件上方施加液体使得植物的根部接触液体。
例如,施加的液体可以在至少一个导流元件的引导下从倾斜件的彼此相对倾斜的一端流向另一端。
例如,植物培育槽还包括植物固定层,植物固定层设置在导流元件上方,植物固定层包括多个植物固定孔。例如,可以将植物种植在植物固定孔中,从而植物的根部可以穿过该植物固定孔接触到在倾斜件上方施加的液体。
例如,可以通过倾斜件相对于水平面的斜度、导流元件在倾斜件上方的延伸方向等调节在倾斜件上方施加的液体的流动速度,具体参见上述实施例,本实施例不再赘述。
例如,植物培育槽包括植物培育区和液体缓冲区时,倾斜件可以设置在 植物培育区中。植物培育区和液体缓冲区通过隔板隔开,隔板上设有至少一个第一开口使得植物培育区和液体缓冲区连通,从而液体可以通过第一开口从植物培育区流入液体缓冲区,液体缓冲区可以对液体进行收集与保存。
例如,植物培育槽还可以包括与第一开口相配合的插板,插板可以调节第一开口的开口大小。此时,本实施例提供的植物种植的方法还可以包括:使用插板调节第一开口的开口大小,从而调节液体从植物培育区流入液体缓冲区的速度,进而也会调节植物培育区中液体的流动速度。例如,第一开口的开口越大,液体的流动速度越快。
例如,本实施例中,在植物种植装置包括液体供液箱时,该方法还包括:采用液体供液箱收集从植物培育槽流出的液体,并将所收集的液体输送到倾斜件上方,使液体能够循环使用。
例如,液体缓冲区包括开设于液体缓冲区底部的至少一个第二开口,从而液体供液箱可以通过第二开口与液体缓冲区连通。例如,液体供液箱可以包括管路和泵体。液体供液箱在泵体的驱动下将液体供液箱中液体通过管路输送到植物培育区,从而实现液体的循环使用。
例如,液体供液箱还可以包括第一温度控制装置,第一温度控制装置可以用于调节液体供液箱中液体的温度。此时,该方法还可以包括:采用第一温度控制装置将液体的温度调节至适宜植物生长的温度范围,例如将液体的温度控制在15-30℃,例如20℃、25℃等。在该温度下,液体更容易被植物吸收,也不易生虫。
例如,本实施例中,在植物种植装置包括风扇时,该方法还包括:将风扇开启,使植物培育槽上方的空气流动,使得种植在植物培育槽中的植物能够获得足够的二氧化碳,从而植物可以更好的进行光合作用,获得养分。
例如,本实施例中,在植物种植装置包括二氧化碳补给装置时,该方法还包括:采用二氧化碳补给装置的二氧化碳检测单元检测植物种植装置中的二氧化碳浓度;当检测到二氧化碳浓度小于预定值时,二氧化碳供应单元向所述植物种植装置释放二氧化碳,从而保证植物可以获得充足的二氧化碳。
例如,该预定值可以根据实际情况而设定,例如可以根据不同植物的生长需求,对不同的植物设定不同的数值。
例如,二氧化碳补给装置可以定时检测植物种植装置中的二氧化碳浓度,或者实时检测植物种植装置中的二氧化碳浓度,从而保证种植在该植物 种植装置中的植物可以获得充足的二氧化碳。
例如,本实施例中,在植物种植装置包括照明装置时,该照明装置发出的光的波长以及强度例如能够调节。例如,该照明装置可以为LED灯,例如该LED灯发出的光的波长以及强度能够调节。例如,可以将LED灯所发出的光的波长范围调节至与阳光基本相同;例如,可以将LED灯调节为14小时亮灯、10小时灭灯的模式,从而使其光照与自然界日光照射相仿,可以更好地促进植物生长。例如,一些植物的生长更需要波长范围在380-510nm的蓝光以及波长范围在610-780nm的红光,此时可以调节LED灯所发出的光的波长至该所需范围。例如,可以将LED灯设置在植物种植层中光照不充足的区域,并将LED灯的发光强度调节为一个目标值,从而使该光照不充足的区域得到补充照明,从而获得充足的光照。
例如,在植物种植装置包括电气控制箱时,该电气控制箱与照明装置、风扇、二氧化碳供应装置等信号连接。此时,该方法还可以包括:通过电气控制箱控制照明装置、风扇、二氧化碳供应装置等的工作状态,从而实现对各功能部件的集中控制,方便于操作。
例如,植物种植装置可以包括一架体,架体包括多个植物种植层,此时,该方法还可以包括:在各植物种植层中均设置植物培育槽,例如在各植物种植层中均设置多个植物培育槽,并在植物培育槽中种植植物。该方法可以节省植物的占地面积,在相同空间内可以种植更多的植物。
利用本实施例提供的植物种植方法进行植物种植时,种植在植物培育槽中植物的根部可以充分接触在倾斜件上方施加的液体,设置在倾斜件上方的导流元件还可以对施加给植物的液体起到引流作用,从而使种植在植物培育槽中的植物可以充分吸收液体,并且液体流动的过程中会带来更多的氧气,可以防止植物培育槽中生虫现象的发生。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种植物种植装置,包括:
    至少一个植物培育槽,所述至少一个植物培育槽包括:
    槽体,
    倾斜件,倾斜设置在所述槽体底部,构造为承托植物,且包括设置于所述倾斜件上的至少一个导流元件;
    其中,所述至少一个导流元件设置为引导培育植物的液体从所述倾斜件的彼此相对倾斜的一端流向另一端。
  2. 根据权利要求1所述的植物种植装置,其中,所述植物培育槽包括隔板,所述隔板将所述植物培育槽分为植物培育区和液体缓冲区;
    其中,所述隔板上设有至少一个第一开口,所述第一开口构造为使所述植物培育区和液体缓冲区连通;所述倾斜件设置在所述植物培育区中。
  3. 根据权利要求2所述的植物种植装置,其中,所述植物培育槽还包括与所述至少一个第一开口相配合的插板,所述插板构造为调节所述第一开口的开口大小。
  4. 根据权利要求3所述的植物种植装置,其中,所述插板的形状与所述第一开口的形状相同,并且所述插板的尺寸小于所述第一开口的尺寸,使得所述插板可插入所述第一开口内。
  5. 根据权利要求1-4任一所述的植物种植装置,其中,
    所述倾斜件与水平面的交线所在的直线为第一直线,所述倾斜件所在平面上的与所述第一直线相垂直的直线为第二直线;
    其中,所述至少一个导流元件的延伸方向与所述第二直线所呈的角度为0-45°。
  6. 根据权利要求5所述的植物种植装置,其中,
    所述至少一个导流元件的延伸方向与所述第二直线平行。
  7. 根据权利要求1-6任一所述的植物种植装置,其中,所述倾斜件为板状,所述导流元件为设置在所述板状倾斜件上的多个条状突起。
  8. 根据权利要求1-7任一所述的植物种植装置,其中,所述植物培育槽还包括植物固定层,所述植物固定层设置在所述导流元件上方,所述植物固定层包括多个植物固定孔。
  9. 根据权利要求2或3所述的植物种植装置,还包括液体供液箱,所述液体缓冲区还包括开设于所述液体缓冲区底部的至少一个第二开口;
    其中,所述液体供液箱通过所述至少一个第二开口与所述液体缓冲区连通。
  10. 根据权利要求9所述的植物种植装置,其中,所述液体供液箱包括管路和泵体;所述植物培育区包括液体供液口;
    其中,所述液体供液口设置于所述植物培育区的远离所述液体缓冲区的一侧;
    所述液体供液箱构造为在所述泵体的驱动下将所述液体供液箱中液体通过所述管路输送到所述液体供液口。
  11. 根据权利要求9所述的植物种植装置,其中,所述液体供液箱还包括第一温度控制装置,所述第一温度控制装置用于调节所述液体供液箱中液体的温度。
  12. 根据权利要求1-11任一所述的植物种植装置,还包括照明装置,所述照明装置设置在所述植物培育槽上方。
  13. 根据权利要求1-12任一所述的植物种植装置,还包括架体;
    所述架体包括多个植物种植层,所述至少一个植物培育槽设置在所述植物种植层中。
  14. 根据权利要求13所述的植物种植装置,还包括二氧化碳补给装置,所述二氧化碳补给装置包括:
    二氧化碳检测单元,用于检测所述植物种植装置中的二氧化碳浓度;
    二氧化碳供应单元,用于向所述植物种植装置释放二氧化碳。
  15. 根据权利要求14所述的植物种植装置,其中,所述二氧化碳补给装置设置在所述植物种植层中。
  16. 根据权利要求13-15任一所述的植物种植装置,还包括风扇,所述风扇设置在所述架体的侧面使得所述风扇开启时所述植物培育槽上方的空气流动。
  17. 根据权利要求13-16任一所述的植物种植装置,还包括电气控制箱,所述电气控制箱设置在所述植物种植层中。
  18. 一种利用权利要求1所述的植物种植装置进行植物种植的方法,包括:
    种植植物于植物培育槽的倾斜件的上方;
    向所述倾斜件上方施加液体使得所述植物的根部接触所述液体;
    所述液体在所述至少一个导流元件的引导下从所述倾斜件的彼此相对倾斜的一端流向另一端。
  19. 根据权利要求18所述的植物种植方法,其中,所述植物种植装置包括液体供液箱,所述方法还包括:
    采用液体供液箱收集从所述植物培育槽流出的液体,并将所收集的液体输送到所述倾斜件上方。
  20. 根据权利要求18或19所述的植物种植方法,其中,所述植物种植装置包括二氧化碳补给装置,所述二氧化碳补给装置包括二氧化碳检测单元和二氧化碳供应单元;所述方法还包括:
    采用二氧化碳补给装置的二氧化碳检测单元检测所述植物种植装置中的二氧化碳浓度;当检测到所述二氧化碳浓度小于预定值时,二氧化碳供应单元向所述植物种植装置释放二氧化碳。
PCT/CN2018/107697 2018-01-29 2018-09-26 植物种植装置以及植物种植方法 WO2019144638A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18863816.7A EP3747257A4 (en) 2018-01-29 2018-09-26 PLANTING APPARATUS AND METHOD
US16/340,919 US11324172B2 (en) 2018-01-29 2018-09-26 Plant planting device and plant planting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810085779.XA CN110089408A (zh) 2018-01-29 2018-01-29 植物种植装置以及植物种植方法
CN201810085779.X 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019144638A1 true WO2019144638A1 (zh) 2019-08-01

Family

ID=67394858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107697 WO2019144638A1 (zh) 2018-01-29 2018-09-26 植物种植装置以及植物种植方法

Country Status (4)

Country Link
US (1) US11324172B2 (zh)
EP (1) EP3747257A4 (zh)
CN (1) CN110089408A (zh)
WO (1) WO2019144638A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431129A (zh) * 2021-11-29 2022-05-06 福建省中科生物股份有限公司 一种垂流式栽培板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3151492A1 (en) * 2019-08-26 2021-03-04 Agriforce Growing Systems Ltd. Automated growing systems
EP3987920A4 (en) * 2019-09-27 2022-08-17 Jun, Hyochan HYDROPONIC GROW BLOCK

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203327646U (zh) * 2013-01-11 2013-12-11 菁馔生技股份有限公司 室内植物培养结构
US20140069009A1 (en) * 2012-09-11 2014-03-13 Ming-Tsun LIN Hydroponic circulation liquid supply device
CN203538035U (zh) * 2013-09-23 2014-04-16 东莞市凯鑫农业科技有限公司 组合式水耕盘
CN203985386U (zh) * 2014-06-25 2014-12-10 青岛海尔股份有限公司 溶液承载盒及具有该溶液承载盒的种植箱
CN206005424U (zh) * 2016-08-23 2017-03-15 台达电子工业股份有限公司 栽培容器
CN206136850U (zh) * 2016-07-28 2017-05-03 华星环球(深圳)农业有限公司 供液盘
CN107173210A (zh) * 2017-07-07 2017-09-19 天顺农业技术(深圳)有限责任公司 一种种植作物的栽培器及其栽培方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE551664A (zh) * 1956-10-09 1956-10-31
US2849835A (en) * 1956-12-07 1958-09-02 Colorado Serum Company Method for soilless cultivation using gibberellic acid
US3992809A (en) * 1975-05-12 1976-11-23 Chew Clarence E Hydroponic unit
US4185414A (en) * 1977-11-07 1980-01-29 General Electric Company Feed regulator for nutrient film agriculture system
CH688569A5 (de) * 1994-02-15 1997-11-28 Eneco Holding Ag Einrichtung zu hors-sol Produktion von Viehfutter und Keimen fuer die menschliche Ernaehrung
CN2307445Y (zh) * 1997-06-27 1999-02-17 沅升实业股份有限公司 芽菜蔬果盒
US7278237B2 (en) 2002-09-20 2007-10-09 Taiyo Kogyo Co., Ltd. Transplant production system
KR100772473B1 (ko) * 2005-03-18 2007-11-02 다이요 고교 가부시키가이샤 육묘 장치
US20100269409A1 (en) * 2008-06-16 2010-10-28 Paul Johnson Tray for hydroponics growing of plants and hydroponics tank having the tray
BR112012012582B1 (pt) * 2009-12-21 2018-10-30 Fraunhofer Usa Inc "recipiente e sistema de cultivo hidropônico para plantas"
US8222025B2 (en) * 2010-03-23 2012-07-17 Lan Wong Multistory bioreaction system for enhancing photosynthesis
GB2489710B (en) * 2011-04-05 2016-02-24 Hydrogarden Wholesale Supplies Ltd Nutrient film technique system
US20140090295A1 (en) 2012-10-02 2014-04-03 Famgro Farms Cultivation pod
JP6123495B2 (ja) 2013-05-31 2017-05-10 三菱樹脂アグリドリーム株式会社 多段棚式植物育成装置及び植物育成システム
US20150173304A1 (en) * 2013-12-24 2015-06-25 Colle W. Davis Modular Aquaponics System
CN103960114A (zh) 2014-04-30 2014-08-06 深圳慧盈生态科技有限公司 智能植物培育装置
US20160212954A1 (en) * 2015-01-26 2016-07-28 Onofrio Argento Indoor Hydroponics Systems
CN106508649B (zh) * 2015-09-11 2019-10-18 爱勒康农业科技有限公司 植物无土栽培系统
CN105638429A (zh) 2016-03-10 2016-06-08 浙江大学 用于人工光植物工厂的可移动式立体多层气雾栽培系统
CN206101197U (zh) * 2016-08-31 2017-04-19 刘春桥 一种立式植物栽培架及含其的植物栽培系统
CN106718801A (zh) * 2016-12-03 2017-05-31 防城港市港口区光坡镇沙田墩家庭农场 一种用于草莓的柱状立体栽培装置
CN106774556A (zh) * 2016-12-28 2017-05-31 上海科世达-华阳汽车电器有限公司 一种智能植物养护系统
CN106718346A (zh) * 2017-01-10 2017-05-31 新疆宏研智慧农业科技有限公司 一种温室大棚二氧化碳气施方法及装置
US10842095B2 (en) * 2017-07-18 2020-11-24 Kalera, Inc. Hydroponics apparatus, system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140069009A1 (en) * 2012-09-11 2014-03-13 Ming-Tsun LIN Hydroponic circulation liquid supply device
CN203327646U (zh) * 2013-01-11 2013-12-11 菁馔生技股份有限公司 室内植物培养结构
CN203538035U (zh) * 2013-09-23 2014-04-16 东莞市凯鑫农业科技有限公司 组合式水耕盘
CN203985386U (zh) * 2014-06-25 2014-12-10 青岛海尔股份有限公司 溶液承载盒及具有该溶液承载盒的种植箱
CN206136850U (zh) * 2016-07-28 2017-05-03 华星环球(深圳)农业有限公司 供液盘
CN206005424U (zh) * 2016-08-23 2017-03-15 台达电子工业股份有限公司 栽培容器
CN107173210A (zh) * 2017-07-07 2017-09-19 天顺农业技术(深圳)有限责任公司 一种种植作物的栽培器及其栽培方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431129A (zh) * 2021-11-29 2022-05-06 福建省中科生物股份有限公司 一种垂流式栽培板
CN114431129B (zh) * 2021-11-29 2022-12-23 福建省中科生物股份有限公司 一种垂流式栽培板

Also Published As

Publication number Publication date
EP3747257A1 (en) 2020-12-09
EP3747257A4 (en) 2021-11-10
US20210352862A1 (en) 2021-11-18
CN110089408A (zh) 2019-08-06
US11324172B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
CN104206213B (zh) 多层隔板式植物培育装置以及植物培育系统
WO2019144638A1 (zh) 植物种植装置以及植物种植方法
JP4314316B1 (ja) 家庭用の植物栽培装置
CN109561665B (zh) 水培培育系统
US8151517B2 (en) Plant growth system
TW201543997A (zh) 植物栽培方法及設施
US20140000163A1 (en) Water culture hydroponics system
AU2016323373B2 (en) Culture device and culture method
WO2017208906A1 (ja) なす科の苗栽培装置及び栽培方法
KR101934482B1 (ko) 기화열 냉각 방식을 가진 식물 재배기 냉각 시스템
JP2011055738A (ja) 植物栽培用ラック
CN110381729A (zh) 苗栽培装置以及苗栽培方法
JP2014082996A (ja) 桶状部材および植物栽培装置
JP2023531405A (ja) 直接空気回収技術を用いた藻類の培養のためのシステムおよび方法
JP2000106757A (ja) 植物栽培装置
WO2021024583A1 (ja) 植物栽培装置
CN116347976A (zh) 植物栽培装置以及方法
CA3153098A1 (en) Technologies for aeroponics
JPH03133324A (ja) 植物栽培装置
CN207340729U (zh) 一种户外形植物工厂
JPH03191725A (ja) 可搬式人工光型植物栽培装置
WO2023172120A1 (es) Sistema hidropónico vertical con control ambiental para la producción hortícola
JPH0630655A (ja) 植物栽培装置
PT108117B (pt) Unidade de plantação para indução e gestão extemporâneas dos tempos de ciclos biológicos de plantas em cultura, em ambiente controlado

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018863816

Country of ref document: EP

Effective date: 20190404

NENP Non-entry into the national phase

Ref country code: DE