WO2019144499A1 - 太赫兹驱动装置 - Google Patents

太赫兹驱动装置 Download PDF

Info

Publication number
WO2019144499A1
WO2019144499A1 PCT/CN2018/081346 CN2018081346W WO2019144499A1 WO 2019144499 A1 WO2019144499 A1 WO 2019144499A1 CN 2018081346 W CN2018081346 W CN 2018081346W WO 2019144499 A1 WO2019144499 A1 WO 2019144499A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
terahertz
driving
circuit
Prior art date
Application number
PCT/CN2018/081346
Other languages
English (en)
French (fr)
Inventor
邓仕发
潘奕
丁庆
Original Assignee
雄安华讯方舟科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雄安华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 雄安华讯方舟科技有限公司
Publication of WO2019144499A1 publication Critical patent/WO2019144499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range

Definitions

  • the present invention relates to the field of electromagnetic wave technology, and in particular to a terahertz driving device.
  • Terahertz (THz) wave refers to an electromagnetic wave with a frequency between 0.1 and 10 THz. It has short wavelength, does not generate ionizing radiation, and contains rich spectral information. It can be widely used to identify substance types and components. It makes terahertz technology have great application prospects in fields such as medical, food, safety monitoring and military.
  • Conventional terahertz generating devices include terahertz photoconductive emitters that radiate terahertz waves by applying a bias voltage and under the action of a pump laser.
  • the signal-to-noise of the terahertz wave transmitted by the conventional terahertz generating device is relatively large, that is, the quality of the terahertz wave is not good, which may affect the application of the terahertz wave in the related field.
  • a terahertz drive for driving a terahertz transmitter to generate a terahertz signal.
  • the device includes:
  • a signal generating module for generating a sine wave signal
  • a signal conversion module configured to convert the sine wave signal into a control signal
  • a correction module configured to correct the control signal, so that the control signal meets a preset standard
  • a driving signal generating module receiving a control signal passing through the correction module, and generating a driving signal according to the control signal, the driving signal driving the terahertz transmitter to generate a terahertz signal.
  • the signal conversion module generates a control signal.
  • the driving signal generating module generates a driving signal according to the received control signal to drive the terahertz transmitter to generate a terahertz signal.
  • the terahertz drive is also equipped with a correction module.
  • the correction module corrects the control signal such that the control signal conforms to a preset standard. Therefore, the driving signal generated by the driving signal generating module according to the control signal conforming to the preset standard also conforms to a preset standard, so that the terahertz transmitter can be driven to generate a terahertz signal that meets the expected quality, that is, the terahertz generated by the terahertz transmitter.
  • the quality of the signal is good.
  • the signal conversion module includes a signal conversion unit and an inversion unit; the signal conversion unit is configured to convert the sine wave signal into a first signal and a second signal that are simultaneously output; The first signal and the second signal are equal in frequency, equal in amplitude, and equal in phase; the inverting unit is disposed on the circuit of the second signal transmitted to the driving signal generating module, and the inverting unit is used And outputting a third signal by inverting a phase of the second signal; combining the states of the first signal and the third signal to form a control signal, the driving signal generating module generating a square wave signal according to the control signal .
  • the correction module includes a first correction unit and a second correction unit, the first correction unit is coupled between an output of the first signal and a circuit ground, the first correction unit Used to adjust the first signal;
  • the second correcting unit is connected between the output end of the third signal and the circuit ground, the second correcting unit is configured to adjust the third signal; or the second correcting unit is connected to the first Between the output of the two signals and the circuit ground, the second correcting unit is configured to adjust the second signal; the first correcting unit and the second correcting unit cooperate to ensure the first signal and the The third signal amplitudes are equal and the phases are opposite; or the first correction unit and the second correction unit cooperate to ensure that the first signal and the second signal have the same amplitude and the same phase.
  • the first correction unit includes a first filter circuit and a first adjustment circuit, the first filter circuit is configured to filter an interference signal of the first signal to the circuit, the first An adjustment circuit is configured to adjust a phase of the first signal; the first filter circuit is connected between an output end of the first signal and a circuit ground; the first adjustment circuit is connected in parallel with the first filter circuit;
  • the second correction unit includes a second filter circuit for filtering an interference signal of the third signal or the second signal, and a second adjustment circuit for filtering the second adjustment circuit Adjusting a phase of the third signal or the second signal; the second filter circuit is connected between the output end of the third signal or the second signal and the circuit ground; the second adjustment circuit and the second The two filter circuits are connected in parallel.
  • the correction module further includes a third correction unit, the third correction unit being connected between the output end of the first signal and the output end of the third signal, the third a correction unit is configured to filter out mutual interference between the first signal and the third signal, or the third correction unit is configured to filter interference between the first signal and the third signal .
  • the driving signal generating module includes a control unit, a high level unit, and a low level unit; the high level unit has two working states of on and off, and the high level unit is turned on. Outputting a high voltage signal; the low level unit has two operating states of on and off, and the low level unit outputs a low voltage signal when turned on; the control unit controls the high level unit according to the control signal The low level cells are alternately turned on to output the square wave signal.
  • the terahertz driving device further includes a first protection unit, the first protection unit is connected between the output end of the driving signal generating module and the circuit ground, and the first protection unit is used by the first protection unit. And protecting the control unit, the high level unit, and the low level unit.
  • the terahertz driving device further includes a high voltage power supply, the high voltage power supply is connected to the high level power source, and the high voltage power supply is configured to control the high voltage signal by the high level unit Voltage amplitude.
  • the terahertz driving device further includes a second protection unit connected to the high voltage power supply to the circuit of the high level unit, and the second protection unit The second protection unit is further configured to control a voltage of the high voltage power input to the driving signal generating module within a preset range, in order to remove interference of a signal output by the high voltage power supply.
  • the terahertz driving device further includes a processor and a potentiometer, the potentiometer being connected between the processor and the signal generating module; the processor adjusting the potentiometer The value adjusts the frequency of the sine wave signal output by the signal generation module.
  • Figure 1 is a schematic view of a terahertz generating device of the present embodiment
  • FIG. 2 is a block diagram showing the structure of a terahertz driving device according to an embodiment
  • FIG. 3 is a block diagram showing the structure of a terahertz driving device according to another embodiment
  • FIG. 4 is a circuit diagram of a terahertz driving device of the embodiment shown in FIG.
  • FIG. 1 is a schematic view of a terahertz generating device of the present embodiment.
  • the terahertz generating device 100 includes a radio frequency interface 110 and a terahertz transmitter 130.
  • the radio frequency interface 110 is coupled to the terahertz transmitter 130.
  • the terahertz transmitter 130 receives the pump laser and then applies a drive signal to the electrodes of the terahertz emitter 130, the terahertz emitter 130 can radiate the terahertz signal outward.
  • the drive signal is transmitted to the terahertz transmitter 130 through the radio frequency interface 110.
  • the driving signal may be a bias voltage signal. Therefore, the quality of the drive signal is the key to the quality of the terahertz signal.
  • the terahertz drive device 200 includes a signal generation module 230, a signal conversion module 240, a correction module 250, and a drive signal generation module 260.
  • the signal generation module 230 is configured to generate a sine wave signal.
  • the signal conversion module 240 is coupled to the signal generation module 230 for converting the sine wave signal into a control signal.
  • the correction module 250 is configured to directly or indirectly correct the control signal such that the control signal conforms to a preset standard.
  • the driving signal generating module 260 is connected to the correction module 250.
  • the driving signal generating module 260 receives the control signal passing through the correction module 250 and generates a driving signal according to the control signal, and the driving signal can be used to drive the terahertz transmitter to generate the terahertz signal.
  • the signal conversion module 240 can be used to generate a control signal.
  • the driving signal generating module 260 can generate a driving signal according to the received control signal to drive the terahertz transmitter to generate a terahertz signal.
  • the calibration module 250 is further disposed in the terahertz driving device 200, that is, the correction module 250 can be used to perform a correction operation on the control signal that does not meet the expectation, so that the corrected control signal conforms to the preset standard. In this way, it is possible to effectively avoid deviation of the control signal, thereby preventing the driving signal generation module 260 from generating a deviation driving signal according to the deviation control signal.
  • the driving signal generated by the driving signal generating module 260 according to the control signal conforming to the preset standard also conforms to the preset standard, thereby ensuring that the terahertz transmitter is driven to generate a terahertz signal conforming to the expected quality, thereby further improving the terahertz transmitter.
  • the quality of the terahertz signal is a condition in which the terahertz transmitter is driven to generate a terahertz signal conforming to the expected quality, thereby further improving the terahertz transmitter.
  • FIG. 3 is a block diagram showing the structure of a terahertz driving device of another embodiment
  • FIG. 4 is a circuit diagram of the terahertz driving device of the embodiment shown in FIG.
  • the terahertz driving device 300 includes a signal generating module 330, a signal converting module 340, a correcting module 350, and a driving signal generating module 360.
  • the signal generation module 330 can employ a TTL circuit chip to generate a sine wave signal having a certain frequency.
  • the terahertz driving device 300 may further include a processor 310 and a potentiometer 320 connected to each other; the potentiometer 320 may be a digital potentiometer, and the potentiometer 320 may also be connected to the processor 310 and generate a signal. Between the modules 330; the processor 310 can adjust the frequency of the sine wave signal output by the signal generating module 330 by adjusting the value of the potentiometer 320, thereby realizing the adjustment of the frequency of the control signal.
  • the frequency of the control signal output by the signal generating module 330 may be set between 2 KHz and 20 KHz, and the frequency of the control signal may be controlled between 9.13 KHz and 14.25 KHz in order to increase the signal to noise ratio of the control signal.
  • the signal conversion module 340 includes a signal conversion unit 341 and an inverting unit 342.
  • the signal conversion unit 341 is for converting the sine wave signal into the first signal 1 and the second signal 2 which are simultaneously output.
  • the first signal 1 and the second signal 2 have the same frequency, equal amplitude, and equal phase.
  • the signal conversion unit 341 can employ a multiplexer.
  • the multiplexer receives the sine wave signal and outputs two signals according to the sine wave signal, which are the first signal 1 and the second signal 2, respectively, and the waveforms of the first signal 1 and the second signal 2 are both sine waves.
  • the frequencies of the first signal 1 and the second signal 2 are equal to the frequency of the sine wave signal.
  • the amplitude and phase of the first signal 1 and the second signal 2 may be affected by the electronic device, resulting in the first signal 1 and the There is a difference in the amplitude of the two signals 2, and there is also a deviation in the phase.
  • the inverting unit 342 is disposed on the circuit of the second signal 2 transmitted to the driving signal generating module 360, and the inverting unit is configured to invert the phase of the second signal 2 to generate the third signal 2.
  • the waveform of the third signal 2 is also a sine wave. That is, the frequency of the third signal 2 is equal to the second signal 2, the amplitude of the third signal 2 is also equal to the second signal 2, and the phase of the third signal 2 is 180° out of phase with the second signal 2. Therefore, from the design point of view, the frequency of the third signal 2 is equal to the first signal 1. The amplitude of the third signal 2 is also equal to the first signal 1. The phase of the third signal 2 is 180° out of phase with the first signal 1.
  • the inverting unit 342 can be disposed on the circuit of the second signal 2 to the correction module 350, that is, the inverting unit 342 first converts the second signal 2 into the third signal 2, and the correction module 350 simultaneously corrects the first signal 1 And the third signal 2.
  • the correction module 350 receives the first signal 1 and the third signal 2.
  • the correction module 350 includes a first correction unit 351 and a second correction unit 352.
  • the first correcting unit 351 is connected between the output end of the first signal 1 and the circuit ground, and the first correcting unit 351 is used to adjust the first signal 1.
  • the first correction unit 351 includes a first filter circuit 351A and a first adjustment circuit 351B.
  • the first filter circuit 351A is configured to filter out the interference signal of the first signal 1 by the circuit.
  • the first adjustment circuit 351B is for adjusting the phase of the first signal 1.
  • the first filter circuit 351A is connected between the output terminal of the first signal 1 and the circuit ground.
  • the first adjustment circuit 351B is connected in parallel with the first filter circuit 351A.
  • the first correcting unit 351 eliminates the influence of the electronic device that the first signal 1 is subjected to during transmission by the first filter circuit 351A and the first adjusting circuit 351B, thereby avoiding distortion of the amplitude and phase of the first signal 1. That is, the first correcting unit 351 can eliminate the common mode interference received by the first signal 1, and the first correcting unit 351 can ensure that the amplitude and phase of the first signal 1 conform to the preset standard.
  • the first filter circuit 351A is composed of a capacitor and a resistor in series. The first filter circuit 351A can also eliminate the overshoot phenomenon of the first signal 1 to avoid damaging the circuit to protect the signal conversion module 340 and the drive signal generation module 360.
  • the first adjustment circuit 351B is composed of a capacitor. The values of the capacitors and resistors can be set according to requirements. For example, the value of the resistance of the first filter circuit 351A is 2K ⁇ . The value of the capacitance of the first adjustment circuit 351B is 33 pF.
  • the second correcting unit 352 is connected between the output of the third signal 2 and the circuit ground, and the second correcting unit 352 is used to adjust the third signal 2.
  • the second correcting unit 352 includes a second filtering circuit for filtering the interference signal of the third signal 2, and a second adjusting circuit 352B for adjusting the third signal.
  • the phase of the second filter circuit is connected between the output terminal of the third signal 2 and the circuit ground; the second adjustment circuit 352B is connected in parallel with the second filter circuit.
  • the second correcting unit 352 eliminates the influence of the electronic device received by the third signal 2 during the transmission by the second filter circuit and the second adjusting circuit 352B, thereby avoiding distortion of the amplitude and phase of the third signal 2.
  • the second correcting unit 352 can eliminate the common mode interference received by the third signal 2. Therefore, the second correcting unit 352 can ensure that the amplitude and phase of the third signal 2 conform to the preset standard.
  • the second filter circuit is composed of a resistor and a capacitor in series. The second filter circuit can also eliminate the overshoot phenomenon of the third signal 2 to avoid damaging the circuit to protect the signal conversion module 340 and the driving signal generating module 360.
  • the second adjustment circuit 352B is composed of a capacitor. The values of the capacitors and resistors can be set according to requirements. The value of the resistance of the second filter circuit is equal to the value of the resistance of the first filter circuit 351A, and may be 2 K ⁇ .
  • the value of the capacitance of the second adjustment circuit 352B is equal to the value of the capacitance of the first adjustment circuit 351B, and may be 33 pF.
  • the value of the capacitance of the first filter circuit 351A is equal to the value of the capacitance of the second filter circuit. This may cause the first correction unit 351 to match the correction parameter of the first signal 1 and the correction parameter of the second correction unit 352 to the third signal 2 such that the amplitudes of the corrected first signal 1 and the third signal 2 are equal.
  • the phases are the same, that is, the first signal 1 and the third signal 2 are synchronized.
  • the correction module 350 further includes a third correction unit 353 connected between the output of the first signal 1 and the output of the third signal 2, and the third correction unit 353 is configured to filter out the first signal 1 and The mutual interference between the third signals 2, that is, the third correcting unit 353 is for canceling the differential mode interference between the first signal 1 and the third signal 2, thereby further making the amplitude and phase of the first signal 1 conform to the preset Standard, the amplitude and phase of the third signal 2 meet the preset criteria.
  • the third correcting unit 353 includes a capacitor, that is, a capacitor connection between the output of the first signal 1 and the output of the third signal 2.
  • the first correcting unit 351, the second correcting unit 352, and the third correcting unit 353 cooperate to ensure that the first signal 1 and the third signal 2 have equal amplitudes and opposite phases.
  • the third signal 2 is equal in amplitude to the first signal 1 after passing through the correction module 350.
  • the phase of the third signal 2 is 180° out of phase with the first signal 1 after passing through the correction module 350. That is, the third signal 2 and the first signal 1 after passing through the correction module 350 conform to a preset standard.
  • the combination of the third signal 2 and the state of the first signal 1 after passing through the correction module 350 constitutes a control signal.
  • the control signal has no deviation and is more accurate.
  • the inverting unit 342 can also be disposed on the circuit of the driving signal generating module 360 after the second signal 2 passes through the correcting module 350, that is, the correcting module 350 first corrects the first signal 1 and the second signal 2, The inverting unit 342 then converts the second signal 2 corrected by the correction module 350 into the third signal 2.
  • the second correction unit 352 is connected between the output of the second signal 2 and the circuit ground, and the second correction unit 352 is used to adjust the second signal 2.
  • the second filter circuit is for filtering the interference signal of the second signal 2, the second adjustment circuit 352B is for adjusting the phase of the second signal 2; the second filter circuit is connected to the output end of the second signal 2 and the circuit ground. between.
  • the third correcting unit 353 is configured to filter out mutual interference between the first signal 1 and the third signal 2.
  • the first correcting unit 351, the second correcting unit 352, and the third correcting unit 353 cooperate to ensure that the first signal 1 and the second signal 2 have the same amplitude and the same phase.
  • the drive signal generation module 360 generates a square wave signal based on the control signal.
  • the square wave signal acts as the driving voltage of the terahertz transmitter, that is, the bias voltage.
  • the frequency of the square wave signal is equal to the frequency of the first signal 1 or the second signal 2.
  • the drive signal generation module 360 includes a control unit 361, a high level unit 362, and a low level unit 363.
  • the high level unit 362 has two operating states of on and off. When the high level unit 362 is turned on, a high voltage signal is output, and when the high level unit 362 is turned off, no signal is output.
  • the high level cell 362 is a MOS transistor high side switch, which may be a high voltage N-channel MOSFET.
  • the low level unit 363 has two working states of on and off. When the low level unit 363 is turned on, the low voltage signal is output, and when the low level unit 363 is turned off, the electric signal is not output.
  • the low level unit 363 is a MOS transistor low side switch and may be a high voltage N-channel MOSFET. The above-mentioned N-channel MOS transistor must have a withstand voltage greater than 200V.
  • the control unit 361 controls the high level unit 362 and the low level unit 363 to be alternately turned on according to the control signal to output a square wave signal.
  • the control unit 361 is composed of a MOS tube drive circuit.
  • the control unit 361 receives the first signal 1 and the third signal 2 simultaneously.
  • An output of the control unit 361 is coupled to the input of the high level unit 362.
  • the other output of the control unit 361 is connected to the input of the low level unit 363.
  • the control driving signal generating module 360 can generate a corresponding signal.
  • the control unit 361 controls the high level unit 362 to be turned on according to the first control signal, the control low level unit 363 is turned off, and the control unit 361 controls the high level unit 362 to output a high level signal, that is, the driving signal generating module 360 outputs high power. Flat (Output is high).
  • the control driving signal generating module 360 can generate a corresponding signal.
  • control unit 361 controls the high level unit 362 to be turned off according to the second control signal, and controls the low level unit 363 to be turned on.
  • the low level unit 363 outputs a low level signal, that is, the driving signal generating module 360 outputs a low level. (Output is low).
  • the control signal can control the drive signal generation module 360 to generate a square wave signal (Output is a square wave signal).
  • the terahertz driving device 300 further includes a first protection unit 390 connected between the output end of the driving signal generating module 360 and the circuit ground, and the first shielding unit 3903 is used to protect the control unit 361 and the high level unit. 362 and low level unit 363.
  • the circuit of the first protection unit 390 is composed of a resistor and a capacitor in series.
  • the resistance of the resistor is 15K ⁇ .
  • the value of this capacitor is 0.22 ⁇ F.
  • the first guard unit 390 can function as an overshoot absorber to eliminate the overshoot and undershoot of the square wave signal to avoid damaging the circuit, thereby protecting the control unit 361, the high level unit 362, and the low level unit 363.
  • the terahertz drive unit 300 further includes a high voltage power supply 370 that is coupled to a high level power unit 370 for controlling the voltage amplitude of the high voltage signal through the high level unit 362.
  • the high voltage power supply 370 is used to convert low voltage power to high voltage direct current.
  • the high voltage power supply 370 converts 5V low voltage power (Input is low voltage power) into 120V high voltage DC power, and the high level signal output from the high level unit 362 has a voltage amplitude of 120V.
  • the terahertz drive unit 300 further includes a second guard unit 380 connected to the circuit of the high voltage power source 370 to the high level unit 362 for removing interference of the signal output by the high voltage power source 370.
  • the second guard unit 380 can take out the interference of the signal output by the high voltage power source 370 with reference to the circuit of the first guard unit 390.
  • the second protection unit 380 is further configured to control the voltage of the high voltage power input to the driving signal generation module 360 within a preset range.
  • the second protection unit 380 can control the voltage of the high voltage input to the high level unit 362 within a preset range by the limit voltage limiter 320, so that the amplitude of the square wave signal is within a preset range, thereby avoiding damage to the circuit. .
  • the terahertz driving device 300 further includes a display module.
  • the display module is connected to an output end of the second protection module and an output end of the driving signal generating module 360.
  • the display module is configured to display an electrical signal output by the second protection module, and the display module is further used for The square wave signal output by the drive signal generating module 360 is displayed to monitor the operating state of the terahertz driving device 300.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Transmitters (AREA)

Abstract

一种太赫兹驱动装置(200),用于驱动太赫兹发射器产生太赫兹信号。装置包括:信号发生模块(230),用于产生正弦波信号;信号转换模块(240),用于将正弦波信号转换为控制信号;校正模块(250),用于校正控制信号;驱动信号生成模块(260),接收通过校正模块(250)的控制信号,并依据控制信号生成驱动信号,驱动信号驱动太赫兹发射器产生太赫兹信号。太赫兹驱动装置(200)还设置了校正模块(250)。校正模块(250)校正控制信号,使得控制信号符合预设标准。因此,驱动信号生成模块(260)依据符合预设标准的控制信号生成的驱动信号也符合预设标准,从而可以驱动太赫兹发射器产生符合预期质量的太赫兹信号,即使得太赫兹发射器产生的太赫兹信号的质量较好。

Description

太赫兹驱动装置 技术领域
本发明涉及电磁波技术领域,特别涉及一种太赫兹驱动装置。
背景技术
太赫兹(THz)波是指频率在0.1~10THz之间的电磁波,具有波长短、不会产生电离辐射、包含丰富的光谱信息等特点,故可被广泛地用以鉴别物质类别和成分,进而使得太赫兹技术在诸如医疗、食品、安全监测、军事等领域具有很大的应用前景。
传统的太赫兹发生装置包括太赫兹光电导型发射器,通过施加偏置电压并在泵浦激光的作用下可向外辐射太赫兹波。但是传统的太赫兹发生装置所发射的太赫兹波的信噪比较大,即太赫兹波的质量不好,会影响太赫兹波在相关领域的应用。
发明内容
基于此,有必要针对传统的太赫兹发生装置所反射的太赫兹波的质量较差的问题,提供一种太赫兹驱动装置。
一种太赫兹驱动装置,用于驱动太赫兹发射器产生太赫兹信号。所述装置包括:
信号发生模块,用于产生正弦波信号;
信号转换模块,用于将所述正弦波信号转换为控制信号;
校正模块,用于校正所述控制信号,以使所述控制信号符合预设标准;
驱动信号生成模块,接收通过所述校正模块的控制信号,并依据所述控制信号生成驱动信号,所述驱动信号驱动所述太赫兹发射器产生太赫兹信号。
上述太赫兹驱动装置,信号转换模块生成控制信号。驱动信号生成模块根据接收到的控制信号生成驱动信号,以驱动太赫兹发射器产生太赫兹信号。太 赫兹驱动装置还设置了校正模块。校正模块校正控制信号,使得控制信号符合预设标准。因此,驱动信号生成模块依据符合预设标准的控制信号生成的驱动信号也符合预设标准,从而可以驱动太赫兹发射器产生符合预期质量的太赫兹信号,即使得太赫兹发射器产生的太赫兹信号的质量较好。
在其中一个实施例中,所述信号转换模块包括信号转换单元和反相单元;所述信号转换单元用于将所述正弦波信号转换为同时输出的第一信号和第二信号;其中,所述第一信号和所述第二信号频率相等、幅值相等、相位相等;所述反相单元设置于所述第二信号传输至所述驱动信号生成模块的电路上,所述反相单元用于使所述第二信号的相位反向,输出第三信号;所述第一信号和所述第三信号的状态组合构成控制信号,所述驱动信号生成模块根据所述控制信号生成方波信号。
在其中一个实施例中,所述校正模块包括第一校正单元和第二校正单元,所述第一校正单元连接于所述第一信号的输出端和电路地之间,所述第一校正单元用于调整所述第一信号;
所述第二校正单元连接于所述第三信号的输出端和电路地之间,所述第二校正单元用于调整所述第三信号;或者,所述第二校正单元连接于所述第二信号的输出端和电路地之间,所述第二校正单元用于调整所述第二信号;所述第一校正单元和所述第二校正单元配合以确保所述第一信号和所述第三信号幅值相等、相位相反;或者所述第一校正单元和所述第二校正单元配合以确保所述第一信号和所述第二信号幅值相等、相位相同。
在其中一个实施例中,所述第一校正单元包括第一滤波电路和第一调整电路,所述第一滤波电路用于滤除电路地对所述第一信号的干扰信号,所述第一调整电路用于调整所述第一信号的相位;所述第一滤波电路连接于所述第一信号的输出端和电路地之间;所述第一调整电路与所述第一滤波电路并联;所述第二校正单元包括第二滤波电路和第二调整电路,所述第二滤波电路用于滤除电路地对所述第三信号或第二信号的干扰信号,所述第二调整电路用于调整所述第三信号或第二信号的相位;所述第二滤波电路连接于所述第三信号或第二信号的输出端和电路地之间;所述第二调整电路与所述第二滤波电路并联。
在其中一个实施例中,所述校正模块还包括第三校正单元,所述第三校正单元连接于所述第一信号的输出端和所述第三信号的输出端之间,所述第三校正单元用于滤除所述第一信号和所述第三信号之间的相互干扰,或者所述第三校正单元用于滤除所述第一信号和所述第三信号之间的相互干扰。
在其中一个实施例中,所述驱动信号生成模块包括控制单元、高电平单元和低电平单元;所述高电平单元具有开启和关闭两种工作状态,所述高电平单元开启时输出高电压信号;所述低电平单元具有开启和关闭两种工作状态,所述低电平单元开启时输出低电压信号;所述控制单元根据所述控制信号控制所述高电平单元和所述低电平单元交替开启,以输出所述方波信号。
在其中一个实施例中,所述太赫兹驱动装置还包括第一防护单元,所述第一防护单元连接于所述驱动信号生成模块的输出端与电路地之间,所述第一防护单元用于保护所述控制单元、所述高电平单元和所述低电平单元。
在其中一个实施例中,所述太赫兹驱动装置还包括高压电源,所述高压电源与所述高电平单元连接,所述高压电源用于通过所述高电平单元控制所述高电压信号的电压幅值。
在其中一个实施例中,所述太赫兹驱动装置还包括第二防护单元,所述第二防护单元连接于所述高压电源至所述高电平单元的电路上,所述第二防护单元用于去除所述高压电源输出的信号的干扰,所述第二防护单元还用于将输入所述驱动信号生成模块的高压电的电压控制在预设范围内。
在其中一个实施例中,所述太赫兹驱动装置还包括处理器和电位器,所述电位器连接于所述处理器与所述信号发生模块之间;所述处理器通过调节所述电位器的值调节所述信号发生模块输出的正弦波信号的频率。
附图说明
图1为本实施例的太赫兹发生装置的示意图;
图2为一实施例的太赫兹驱动装置的结构框图;
图3为另一实施例的太赫兹驱动装置的结构框图;
图4为图3所示的实施例的太赫兹驱动装置的电路示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
图1为本实施例的太赫兹发生装置的示意图。如图1所示,太赫兹发生装置100包括射频接口110和太赫兹发射器130。射频接口110与太赫兹发射器130连接。在太赫兹发射器130接收到泵浦激光时,再在太赫兹发射器130的电极上加驱动信号,那么太赫兹发射器130即可向外辐射太赫兹信号。驱动信号则通过射频接口110传输给太赫兹发射器130。本实施例中,驱动信号可以是偏置电压信号。因此,驱动信号的质量是太赫兹信号质量的关键。
图2为一实施例的太赫兹驱动装置的结构框图。一种太赫兹驱动装置200,用于驱动太赫兹发射器产生太赫兹信号。太赫兹驱动装置200包括信号发生模块230、信号转换模块240、校正模块250和驱动信号生成模块260。
信号发生模块230用于产生正弦波信号。信号转换模块240与信号发生模块230连接,信号转换模块240用于将正弦波信号转换为控制信号。校正模块250用于直接或间接校正控制信号,以使控制信号符合预设标准。驱动信号生成模块260与校正模块250连接,驱动信号生成模块260接收通过校正模块250的控制信号,并依据控制信号生成驱动信号,驱动信号可用于驱动太赫兹发射器产生太赫兹信号。
上述的太赫兹驱动装置200中,信号转换模块240可用于生成控制信号。驱动信号生成模块260可根据所接收到的控制信号生成驱动信号,以驱动太赫兹发射器产生太赫兹信号。同时,太赫兹驱动装置200中还设置了校正模块250,即利用该校正模块250可对不符合预期的控制信号进行校正操作,以使得校正后的控制信号符合预设标准。这样,就可以有效地避免控制信号出现偏差,从而避免驱动信号生成模块260依据偏差的控制信号生成偏差的驱动信号。因此,驱动信号生成模块260依据符合预设标准的控制信号生成的驱动信号也符合预设标准,从而可以确保驱动太赫兹发射器产生符合预期质量的太赫兹信号,进一步提升太赫兹发射器所产生的太赫兹信号的质量。
图3为另一实施例的太赫兹驱动装置的结构框图,图4为图3所示的实施例的太赫兹驱动装置的电路示意图。如图3和图4所示,太赫兹驱动装置300包括信号发生模块330、信号转换模块340、校正模块350和驱动信号生成模块360。信号发生模块330可采用TTL电路芯片,以产生具有一定频率的正弦波信号。
本实施例中,太赫兹驱动装置300还可包括相互连接的处理器310和电位器320;该电位器320可为数字电位器,且上述的电位器320还可连接于处理器310与信号发生模块330之间;处理器310可通过调节电位器320的值调节信号发生模块330所输出的正弦波信号的频率,由此便可实现对控制信号的频率的调节。例如,可以将信号发生模块330所输出的控制信号的频率设置在2KHz~20KHz之间,而为了提升该控制信号的信噪比,可将控制信号的频率控制在9.13KHz~14.25KHz之间。
信号转换模块340包括信号转换单元341和反相单元342。信号转换单元341用于将正弦波信号转换为同时输出的第一信号1和第二信号2。第一信号1和第二信号2频率相等、幅值相等、相位相等。信号转换单元341可以采用多路选择器。多路选择器接收正弦波信号,并根据正弦波信号输出两路信号,分别为第一信号1和第二信号2,第一信号1和第二信号2的波形均为正弦波。第一信号1和第二信号2的频率与正弦波信号的频率相等。在实际的电路中,第一信号1和第二信号2在传输的过程中,第一信号1和第二信号2的幅值和相位可能会受到电子器件的影响,导致第一信号1和第二信号2的幅值存在差异,相位也存在偏差。
反相单元342设置于第二信号2传输至驱动信号生成模块360的电路上,反向单元用于使第二信号2的相位反相,生成第三信号2。第三信号2的波形也为正弦波。即第三信号2的频率与第二信号2相等,第三信号2的幅值也与第二信号2相等,第三信号2的相位与第二信号2相差180°。因此,从设计理论上来讲,第三信号2的频率与第一信号1相等。第三信号2的幅值也与第一信号1相等。第三信号2的相位与第一信号1相差180°。具体地,反相单元342可以设置在第二信号2至校正模块350的电路上,即反相单元342先将第二信 号2转变为第三信号2,校正模块350再同时校正第一信号1和第三信号2。
校正模块350接收第一信号1和第三信号2。校正模块350包括第一校正单元351和第二校正单元352。
第一校正单元351连接于第一信号1的输出端和电路地之间,第一校正单元351用于调整第一信号1。具体地,第一校正单元351包括第一滤波电路351A和第一调整电路351B。第一滤波电路351A用于滤除电路地对第一信号1的干扰信号。第一调整电路351B用于调整第一信号1的相位。第一滤波电路351A连接于第一信号1的输出端和电路地之间。第一调整电路351B与第一滤波电路351A并联。第一校正单元351通过第一滤波电路351A和第一调整电路351B消除第一信号1在传输的过程中受到的电子器件的影响,从而避免第一信号1的幅值和相位的畸变。即第一校正单元351可以消除第一信号1受到的共模干扰,第一校正单元351可以确保第一信号1的幅值和相位符合预设标准。进一步地,第一滤波电路351A由电容和电阻串联构成。第一滤波电路351A还可以消除第一信号1的过冲现象,避免损坏电路,以保护信号转换模块340及驱动信号生成模块360。第一调整电路351B由电容构成。各电容和电阻的值可以依据需求设置。比如,第一滤波电路351A的电阻的值为2KΩ。第一调整电路351B的电容的值为33pF。
第二校正单元352连接于第三信号2的输出端和电路地之间,第二校正单元352用于调整第三信号2。具体地,第二校正单元352包括第二滤波电路和第二调整电路352B,第二滤波电路用于滤除电路地对第三信号2的干扰信号,第二调整电路352B用于调整第三信号2的相位;第二滤波电路连接于第三信号2的输出端和电路地之间;第二调整电路352B与第二滤波电路并联。第二校正单元352通过第二滤波电路和第二调整电路352B消除第三信号2在传输的过程中受到的电子器件的影响,从而避免第三信号2的幅值和相位的畸变。即第二校正单元352可以消除第三信号2受到的共模干扰。因此,第二校正单元352可以确保第三信号2的幅值和相位符合预设标准。进一步地,第二滤波电路由电阻和电容串联构成。第二滤波电路还可以消除第三信号2的过冲现象,避免损坏电路,以保护信号转换模块340及驱动信号生成模块360。第二调整电路352B 由电容构成。各电容和电阻的值可以依据需求设置。第二滤波电路的电阻的值与第一滤波电路351A的电阻的值相等,可以为2KΩ。第二调整电路352B的电容的值与第一调整电路351B的电容的值相等,可以为33pF。第一滤波电路351A的电容的值和第二滤波电路的电容的值相等。这样可以使得第一校正单元351对第一信号1的校正参数和第二校正单元352对第三信号2的校正参数一致,从而使得校正后的第一信号1和第三信号2的幅值相等,相位相同,即使得第一信号1和第三信号2同步。
校正模块350还包括第三校正单元353,第三校正单元353连接于第一信号1的输出端和第三信号2的输出端之间,第三校正单元353用于滤除第一信号1和第三信号2之间的相互干扰,即第三校正单元353用于消除第一信号1和第三信号2之间的差模干扰,从而进一步使得第一信号1的幅值及相位符合预设标准,第三信号2的幅值及相位符合预设标准。进一步地,第三校正单元353包括电容,即电容连接与第一信号1的输出端和第三信号2的输出端之间。由上可知,第一校正单元351、第二校正单元352及第三校正单元353配合以确保第一信号1和第三信号2幅值相等、相位相反。
第三信号2与经过校正模块350后的第一信号1的幅值相等。第三信号2的相位与经过校正模块350后的第一信号1相差180°。即第三信号2和经过校正模块350后的第一信号1符合预设标准。第三信号2和经过校正模块350后的第一信号1的状态组合构成控制信号。控制信号没有出现偏差,比较准确。
在一实施例中,反相单元342也可以设置在第二信号2经过校正模块350后传输至驱动信号生成模块360的电路上,即校正模块350先校正第一信号1和第二信号2,反相单元342再将校正模块350校正过的第二信号2转换为第三信号2。第二校正单元352连接于第二信号2的输出端和电路地之间,第二校正单元352用于调整第二信号2。第二滤波电路用于滤除电路地对第二信号2的干扰信号,第二调整电路352B用于调整第二信号2的相位;第二滤波电路连接于第二信号2的输出端和电路地之间。第三校正单元353用于滤除第一信号1和第三信号2之间的相互干扰。第一校正单元351、第二校正单元352及第三校正单元353配合以确保第一信号1和第二信号2幅值相等、相位相同。
驱动信号生成模块360根据控制信号生成方波信号。方波信号作为太赫兹发射器的驱动电压,即偏置电压。方波信号的频率与第一信号1或第二信号2的频率相等。驱动信号生成模块360包括控制单元361、高电平单元362和低电平单元363。高电平单元362具有开启和关闭两种工作状态。高电平单元362开启时输出高电压信号,高电平单元362关闭时不输出信号。具体地,高电平单元362是MOS管高边开关,可以是高压N沟道MOSFET管。低电平单元363具有开启和关闭两种工作状态。低电平单元363开启时输出低电压信号,低电平单元363关闭时不输出电信号。具体地,低电平单元363是MOS管低边开关,可以是高压N沟道MOSFET管。上述N沟道MOS管的耐压值需大于200V。控制单元361根据控制信号控制高电平单元362和低电平单元363交替开启,以输出方波信号。控制单元361由MOS管驱动电路组成。控制单元361接收同时接收第一信号1和第三信号2。控制单元361的一个输出端连接高电平单元362的输入端。控制单元361的另一个输出端连接低电平单元363的输入端。
当第一信号1为高电平,第三信号2为低电平时对应第一控制信号,可控制驱动信号生成模块360生成相应的信号。例如,控制单元361根据第一控制信号控制高电平单元362开启,控制低电平单元363关闭,控制单元361控制高电平单元362输出高电平信号,即驱动信号生成模块360输出高电平(Output为高电平)。当第一信号1为低电平,第三信号2应该为高电平时对应为第二控制信号,可控制驱动信号生成模块360生成相应的信号。例如,控制单元361根据第二控制信号控制高电平单元362关闭,控制低电平单元363开启,这时,低电平单元363输出低电平信号,即驱动信号生成模块360输出低电平(Output为低电平)。这样,控制信号便可控制驱动信号生成模块360生成方波信号(Output为方波信号)。
太赫兹驱动装置300还包括第一防护单元390,第一防护单元390连接于驱动信号生成模块360的输出端与电路地之间,第一防护单元3903用于保护控制单元361、高电平单元362和低电平单元363。具体地,第一防护单元390的电路由电阻和电容串联组成。例如,该电阻的阻值为15KΩ。该电容的值0.22μF。第一防护单元390可以作为一个过冲吸收器,以消除方波信号的上冲和下冲,, 避免损坏电路,从而保护控制单元361、高电平单元362和低电平单元363。
太赫兹驱动装置300还包括高压电源370,高压电源370与高电平单元362连接,高压电源370用于通过高电平单元362控制高电压信号的电压幅值。高压电源370用于将低压电转换为高压直流电。例如,高压电源370将5V的低压电(Input为低压电)转换为120V的高压直流电,那么高电平单元362输出的高电平信号的电压幅值为120V。
太赫兹驱动装置300还包括第二防护单元380,第二防护单元380连接于高压电源370至高电平单元362的电路上,第二防护单元380用于去除高压电源370输出的信号的干扰。第二防护单元380可以参考第一防护单元390的电路取出高压电源370输出的信号的干扰。第二防护单元380还用于将输入驱动信号生成模块360的高压电的电压控制在预设范围内。第二防护单元380可以通过限压电位器320将输入高电平单元362的高压电的电压控制在预设范围内,以使得方波信号的幅值在预设范围内,避免损坏电路。
太赫兹驱动装置300还包括显示模块,显示模块与第二防护模块的输出端及驱动信号生成模块360的输出端连接,显示模块用于显示第二防护模块输出的电信号,显示模块还用于显示驱动信号生成模块360输出的方波信号,以便监控太赫兹驱动装置300的工作状态。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种太赫兹驱动装置,其特征在于,用于驱动太赫兹发射器产生太赫兹信号;所述装置包括:
    信号发生模块,用于产生正弦波信号;
    信号转换模块,用于将所述正弦波信号转换为控制信号;
    校正模块,用于校正所述控制信号;
    驱动信号生成模块,接收通过所述校正模块的控制信号,并依据所述控制信号生成驱动信号,所述驱动信号驱动所述太赫兹发射器产生太赫兹信号。
  2. 根据权利要求1所述的装置,其特征在于,所述信号转换模块包括信号转换单元和反相单元;所述信号转换单元用于将所述正弦波信号转换为同时输出的第一信号和第二信号;其中,所述第一信号和所述第二信号频率相等、幅值相等、相位相等;
    所述反相单元设置于所述第二信号传输至所述驱动信号生成模块的电路上,所述反相单元用于使所述第二信号的相位反向,输出第三信号;
    所述第一信号和所述第三信号的状态组合构成控制信号,所述驱动信号生成模块根据所述控制信号生成方波信号。
  3. 根据权利要求2所述的装置,其特征在于,所述校正模块包括第一校正单元和第二校正单元,所述第一校正单元连接于所述第一信号的输出端和电路地之间,所述第一校正单元用于调整所述第一信号;
    所述第二校正单元连接于所述第三信号的输出端和电路地之间,所述第二校正单元用于调整所述第三信号;或者,所述第二校正单元连接于所述第二信号的输出端和电路地之间,所述第二校正单元用于调整所述第二信号;
    所述第一校正单元和所述第二校正单元配合以确保所述第一信号和所述第三信号幅值相等、相位相反;或者所述第一校正单元和所述第二校正单元配合以确保所述第一信号和所述第二信号幅值相等、相位相同。
  4. 根据权利要求3所述的装置,其特征在于,所述第一校正单元包括第一滤波电路和第一调整电路,所述第一滤波电路用于滤除电路地对所述第一信号的干扰信号,所述第一调整电路用于调整所述第一信号的相位;所述第一滤波 电路连接于所述第一信号的输出端和电路地之间;所述第一调整电路与所述第一滤波电路并联;
    所述第二校正单元包括第二滤波电路和第二调整电路,所述第二滤波电路用于滤除电路地对所述第三信号或第二信号的干扰信号,所述第二调整电路用于调整所述第三信号或第二信号的相位;所述第二滤波电路连接于所述第三信号或第二信号的输出端和电路地之间;所述第二调整电路与所述第二滤波电路并联。
  5. 根据权利要求3所述的装置,其特征在于,所述校正模块还包括第三校正单元,所述第三校正单元连接于所述第一信号的输出端和所述第三信号的输出端之间,所述第三校正单元用于滤除所述第一信号和所述第三信号之间的相互干扰,或者所述第三校正单元用于滤除所述第一信号和所述第三信号之间的相互干扰。
  6. 根据权利要求2所述的装置,其特征在于,所述驱动信号生成模块包括控制单元、高电平单元和低电平单元;所述高电平单元具有开启和关闭两种工作状态,所述高电平单元开启时输出高电压信号;所述低电平单元具有开启和关闭两种工作状态,所述低电平单元开启时输出低电压信号;所述控制单元根据所述控制信号控制所述高电平单元和所述低电平单元交替开启,以输出所述方波信号。
  7. 根据权利要求6所述的装置,其特征在于,还包括第一防护单元,所述第一防护单元连接于所述驱动信号生成模块的输出端与电路地之间,所述第一防护单元用于保护所述控制单元、所述高电平单元和所述低电平单元。
  8. 根据权利要求6所述的装置,其特征在于,还包括高压电源,所述高压电源与所述高电平单元连接,所述高压电源用于通过所述高电平单元控制所述高电压信号的电压幅值。
  9. 根据权利要求8所述的装置,其特征在于,还包括第二防护单元,所述第二防护单元连接于所述高压电源至所述高电平单元的电路上,所述第二防护单元用于去除所述高压电源输出的信号的干扰,所述第二防护单元还用于将输入所述驱动信号生成模块的高压电的电压控制在预设范围内。
  10. 根据权利要求1所述的装置,其特征在于,还包括处理器和电位器,所述电位器连接于所述处理器与所述信号发生模块之间;所述处理器通过调节所述电位器的值调节所述信号发生模块输出的正弦波信号的频率。
PCT/CN2018/081346 2018-01-29 2018-03-30 太赫兹驱动装置 WO2019144499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810083385.0A CN108390238B (zh) 2018-01-29 2018-01-29 太赫兹驱动装置
CN201810083385.0 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019144499A1 true WO2019144499A1 (zh) 2019-08-01

Family

ID=63074228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081346 WO2019144499A1 (zh) 2018-01-29 2018-03-30 太赫兹驱动装置

Country Status (2)

Country Link
CN (1) CN108390238B (zh)
WO (1) WO2019144499A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035614A1 (zh) * 2019-08-29 2021-03-04 深圳市大疆创新科技有限公司 驱动电路、驱动电路板与驱动器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794953A (zh) * 2010-02-01 2010-08-04 湖南大学 基于光学四波混频效应的太赫兹波产生装置及方法
CN102394848A (zh) * 2011-02-25 2012-03-28 中国科学院上海微系统与信息技术研究所 一种产生音频调制THz波的方法和装置
US20120201260A1 (en) * 2011-02-08 2012-08-09 Maxim Integrated Products, Inc. Symmetrical, Direct Coupled Laser Drivers
CN204481321U (zh) * 2015-04-20 2015-07-15 四川大学 基于光声效应稳定光泵气体THz激光器输出的稳频装置
CN107453189A (zh) * 2017-09-25 2017-12-08 中国工程物理研究院激光聚变研究中心 一种太赫兹激光器系统
CN206772220U (zh) * 2017-04-27 2017-12-19 深圳市恒科通多维视觉有限公司 激光功率控制系统及激光轮廓测量装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394689B (zh) * 2011-02-25 2014-11-26 中国科学院上海微系统与信息技术研究所 一种基于太赫兹波的音频无线通信链路实现方法及系统
GB201604402D0 (en) * 2016-03-15 2016-04-27 Purelifi Ltd Driver apparatus
CN105891900A (zh) * 2016-06-03 2016-08-24 中国工程物理研究院电子工程研究所 一种主动式太赫兹二维高速扫描成像安检系统
CN105895491B (zh) * 2016-06-12 2017-09-22 清华大学深圳研究生院 一种质谱仪用射频电源及质谱仪
CN107123585B (zh) * 2017-05-08 2018-11-30 清华大学深圳研究生院 一种直驱射频电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794953A (zh) * 2010-02-01 2010-08-04 湖南大学 基于光学四波混频效应的太赫兹波产生装置及方法
US20120201260A1 (en) * 2011-02-08 2012-08-09 Maxim Integrated Products, Inc. Symmetrical, Direct Coupled Laser Drivers
CN102394848A (zh) * 2011-02-25 2012-03-28 中国科学院上海微系统与信息技术研究所 一种产生音频调制THz波的方法和装置
CN204481321U (zh) * 2015-04-20 2015-07-15 四川大学 基于光声效应稳定光泵气体THz激光器输出的稳频装置
CN206772220U (zh) * 2017-04-27 2017-12-19 深圳市恒科通多维视觉有限公司 激光功率控制系统及激光轮廓测量装置
CN107453189A (zh) * 2017-09-25 2017-12-08 中国工程物理研究院激光聚变研究中心 一种太赫兹激光器系统

Also Published As

Publication number Publication date
CN108390238A (zh) 2018-08-10
CN108390238B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
US10972061B2 (en) Class-D amplifier with multiple independent output stages
US7615983B2 (en) High frequency power device for protecting an amplifying element therein
US7620377B2 (en) Bandwidth enhancement for envelope elimination and restoration transmission systems
US10630273B2 (en) Clock circuit having a pulse width adjustment module
US10063205B2 (en) Semiconductor device
WO2019144499A1 (zh) 太赫兹驱动装置
CN112807072B (zh) 射频产生电路、装置和方法
US10014827B2 (en) Power-adjustable radio frequency output circuit
CN111200236A (zh) 一种高频窄脉冲半导体激光器驱动电路
CN105118468A (zh) 一种用于消除液晶残像的信号产生电路
TWI514782B (zh) 接收器
JP5237702B2 (ja) 超音波診断装置
CN214805313U (zh) 射频产生电路、装置和射频主机
US7477025B2 (en) Power control circuit for adjusting light
US20170149428A1 (en) Circuit arrangement for controlling power transistors of a power converter
TWI712258B (zh) 微型壓電泵模組
CN110867719B (zh) 控制调q电路、电路板、调q系统及消减寄生振荡的方法
CN109412012B (zh) 激光源产生电路及均衡方法
JP5913019B2 (ja) 超音波診断装置
CN116366059B (zh) 一种射频功率合成电路及方法
CN110968012A (zh) 一种电子信号补偿装置
JPH08162291A (ja) プラズマ装置
US11549973B1 (en) System for measuring voltage using pulse width modulator or voltage controlled oscillator
US9847756B1 (en) Wireless communication device and wireless communication method
CN211123822U (zh) 太赫兹时域光谱仪电压控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902364

Country of ref document: EP

Kind code of ref document: A1