WO2019144496A1 - 一种人体胃肠道模型可视化仿生消化系统 - Google Patents

一种人体胃肠道模型可视化仿生消化系统 Download PDF

Info

Publication number
WO2019144496A1
WO2019144496A1 PCT/CN2018/081004 CN2018081004W WO2019144496A1 WO 2019144496 A1 WO2019144496 A1 WO 2019144496A1 CN 2018081004 W CN2018081004 W CN 2018081004W WO 2019144496 A1 WO2019144496 A1 WO 2019144496A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
bionic
adapter
biomimetic
tube
Prior art date
Application number
PCT/CN2018/081004
Other languages
English (en)
French (fr)
Inventor
詹晓北
高敏杰
李志涛
张文龙
郑志永
彭星桥
蒋芸
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810069220.8A external-priority patent/CN108008088B/zh
Priority claimed from CN201810069219.5A external-priority patent/CN108318625B/zh
Priority claimed from CN201810068728.6A external-priority patent/CN108088966B/zh
Application filed by 江南大学 filed Critical 江南大学
Priority to US16/121,720 priority Critical patent/US20190228681A1/en
Publication of WO2019144496A1 publication Critical patent/WO2019144496A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the invention relates to a visual biomimetic digestion system for a human gastrointestinal tract model, belonging to the field of biomimetic digestive systems.
  • the prior art typically uses a triangular flask or beaker as a gastric simulated digestion device.
  • a triangular flask or beaker When performing a simulated digestion experiment, first load a certain amount of food into a triangle bottle or beaker, then add simulated gastric juice or intestinal juice to the flask, and then place the flask or beaker on a constant temperature water bath shaker for a period of time. The process is to simulate the digestion process of the human intestine. After the end of digestion, the digested and undigested substances are separated by centrifugation or filtration.
  • a triangular flask or a beaker is used as a simulated digestion device for the gastrointestinal tract, the digestion result of the digestion test is inaccurate due to the digestion reaction of the digestion product in the flask or the beaker.
  • CN104851346A discloses a modular animal digestive tract in vitro simulation system and a human intestinal simulating method thereof, comprising five parts: stomach, small intestine, ascending colon, transverse colon and descending colon, the core of each part is a reaction tank;
  • the liquid and enteric culture medium is a place for simulating food digestion and intestinal bacteria growth;
  • the water interlayer of each reaction tank is connected with the constant temperature water bath to achieve a constant temperature effect of 37 ° C; the peristalsis of each reaction tank is simulated by magnetic stirring.
  • CN102399692A discloses a fully automatic gut bacteria extra-model simulation model device, comprising a gas path system, a fermentation system and a control system; the fermentation system comprises a culture bottle with a stirring device and a bioreactor; the control system comprises Display, central processing unit, pH controller, temperature control system, peristaltic pump, etc.
  • the above two human and animal gastrointestinal analog digestion devices use agitation as a means of simulating gastrointestinal motility.
  • the drawback is that the movement of the food produced by the agitation in the gastrointestinal tract is quite different from the actual situation and cannot be well simulated.
  • a true gastrointestinal tract; one of the simulated digestion devices uses only one reactor to simulate the gastrointestinal tract.
  • the drawback is that the intermediates and products produced by the reaction accumulate in the reactor, inhibiting the digestive enzymes.
  • the invention aims at the limitation of the existing human gastrointestinal in vitro simulated digestion device, and provides a simple and effective human intestinal model visualization biomimetic digestive system with strong visibility, high degree of automation, modularization of the device, and simulation of gastrointestinal peristalsis. .
  • a first object of the present invention is to provide a human gastrointestinal tract model visualization biomimetic digestion system comprising a reaction system and a control system; the reaction system comprising a bionic stomach system, a bionic small intestine system, a bionic large intestine system, and a filtration system;
  • the control system includes a PLC controller, a peristaltic pump, and a circulating water tank; the boiler water system, the bionic small intestine system, and the inlet pipe of the bionic large intestine system are connected to the water outlet of the circulating water tank through a water pipe, the bionic stomach system
  • the outlet tube of the bionic small intestine system and the bionic large intestine system is connected to the water inlet of the circulating water tank through a water pipe, and a solenoid valve is arranged on the water pipe, and the PLC controller controls the electromagnetic valve on the water pipe.
  • the human intestinal model visualization biomimetic digestion system further comprises a sample delivery device comprising a first gas bottle and a plurality of sample vials, the plurality of vials being passed through the peristaltic pump and the bionic
  • the stomach system is connected, one opening of the first gas bottle is in communication with one of the plurality of sample vials, and the other opening is connected to the bionic stomach system via a solenoid valve.
  • the biomimetic stomach system is sequentially passed through a flange by a first adapter, a first cartridge reactor, a ball reactor, a first sampler, a second cartridge reactor, and a second adapter.
  • the sheets are joined, the sample is input from the first adapter, and the second adapter is connected to the bionic small intestine system by a peristaltic pump.
  • the bionic small intestine system is connected by a third adapter, a third tubular reactor, a second sampler, a fourth tubular reactor, and a fourth adapter through a flange piece;
  • the second sampling bottle is provided with a lower end opening and a syringe pump, and the third adapter is connected to the digestive liquid bottle through a peristaltic pump, and the digestive liquid bottle is in communication with the second gas bottle.
  • the bionic large intestine system is connected by a fifth adapter, a fifth tubular reactor, a third sampler, a sixth tubular reactor, and a sixth adapter through a flange piece;
  • the fifth adapter is connected to the lower end opening of the second sampling bottle by a peristaltic pump, and the third sampling bottle is provided with a lower end opening.
  • the human intestinal model visualization biomimetic digestion system further comprises a filtering device coupled to the fourth adapter of the bionic small intestine system.
  • the first sampling bottle of the bionic stomach system, the second sampling bottle of the bionic small intestine system, and the third sampling bottle of the bionic large intestine system are provided with two glass tubes, respectively Insert the pH electrode probe and microscope probe.
  • the PLC controller controls the start and stop of the peristaltic pump, the syringe pump, the solenoid valve, and the switch through the wires.
  • the first gas bottle and the second gas bottle are filled with a mixed gas of N 2 and CO 2 .
  • the third sampling vial is provided with an inoculation port for accessing intestinal microbes into the large intestine system.
  • a second object of the present invention is to provide a gastric body visualization biomimetic digestion reactor comprising a first adapter, a second adapter, a reactor, a latex bionic stomach, a first sampler and a constant temperature circulating water tank;
  • the first tubular reactor, the spherical reactor and the second tubular reactor are arranged, and the reactor is provided with an output tube and an input tube, and is connected to the constant temperature circulating water tank through a silicone tube, the first rotation a joint, the first barrel type reactor, the ball type reactor, the first sampler, the second barrel type reactor, and the second adapter are sequentially joined by a flange piece;
  • the latex bionic stomach comprises a latex bionic corpus, a latex bionic antrum and a latex bionic pylorus, respectively placed in the first barrel reactor, the ball reactor and the second barrel reactor.
  • the first adapter and the second adapter are hollow hemispheres, and a flange piece is disposed at an opening of the hollow hemisphere, and the arc of the first adapter is arranged There is an input pipe, and an arc top of the second adapter is provided with an output pipe.
  • the spherical reactor is a hollow sphere, and the hollow sphere is provided with two mutually perpendicular openings, and the two openings divide the large circle of the hollow sphere into a superior arc and a poor arc.
  • the input tube and the output tube of the spherical reaction bottle are on the superior arc; the two ends of the latex bionic sinus are connected with a length of the latex tube, and the ports of the two stages of the latex tube respectively protrude from the two openings of the hollow sphere Eversion, the outer end of the latex tube exposed on the outside of the flange is sleeved on the flange.
  • the first sampler is a hollow tube body, and each of the left and right end openings is provided with a flange piece, and the side body is provided with three glass tubes perpendicularly communicating with the hollow tube body;
  • the glass tube is vertical and the opening is upward, and the port is provided with an external thread;
  • the other glass tube is horizontally arranged, the port is provided with a grinding port, and the grinding port is filled with a rubber stopper.
  • the first adapter, the first cartridge reactor, the spherical reactor, the first sampler, the first cartridge reactor, and the second After the adapters are sequentially connected by the flange pieces, the two flange pieces that are joined are clamped by the clamp.
  • three silicone tubes that are in communication with the input tubes of the first barrel reactor, the ball reactor, and the second barrel reactor are combined into a total input silicone tube, and
  • the water outlet of the constant temperature circulating water tank is connected, and a valve is arranged on each of the three input silicone tubes, and a gear pump is arranged on the total input silicone tube.
  • the second cartridge reactor is placed horizontally.
  • the components of the gastric body visualization biomimetic digestion reactor are all glass.
  • a third object of the present invention is to provide a gut body visualization biomimetic digestion reactor comprising a third barrel type reactor, a fourth barrel type reactor, a second sampler, a constant temperature circulating water tank, and the third barrel type reaction
  • the fourth cylindrical reactor and the second sampler are sequentially butted through a flange piece; the output tubes of the third cylindrical reactor and the fourth tubular reactor are respectively connected with an output hose And merged into a total output hose connected to the water return port of the constant temperature circulating water tank, and the input tubes of the third barrel type reactor and the fourth barrel type reactor are respectively connected with an input inlet hose, and are combined
  • a total input hose is connected to the water outlet of the constant temperature circulating water tank, and each of the output hoses and each of the input hoses is provided with a valve, and the total output hose and the total input hose are provided with a gear pump.
  • the intestinal extracorporeal visualization biomimetic digestion reactor further includes a third adapter that interfaces with the third cartridge reactor, and a fourth adapter that interfaces with the fourth cartridge reactor. And a bionic intestinal tract placed in the third barrel type reactor and the fourth barrel type reactor, respectively.
  • the third adapter and the fourth adapter are hollow hemispheres, and a flange piece is disposed at an opening of the hollow hemisphere, and the arc of the third adapter is arranged There is an input pipe, and an arc top of the fourth adapter is provided with an output pipe.
  • the third tubular reactor and the fourth tubular reactor are both hollow tubular bodies, and each of the left and right end openings is provided with a flange piece; the two ends of the bionic intestinal tract are respectively The hollow tube body protrudes from the two openings and is everted, and the end of the latex tube exposed outside the flange piece is sleeved on the flange piece.
  • the second sampler is a hollow tube body, and a flange piece is disposed at each of the left and right end openings, and five glass tubes perpendicularly communicating with the hollow tube body are opened on the side surface thereof;
  • the openings of the two glass tubes are vertically upward, and the ports are provided with external threads;
  • the openings of the two glass tubes are vertically downward, the ports of one glass tube are provided with external threads, and the outer walls of the other glass tube are provided with inverted Silk;
  • one of the glass tubes is horizontally arranged, the port is provided with a grinding mouth, and the grinding mouth is plugged with a rubber stopper.
  • the third adapter, the third cartridge reactor, the second sampler, the fourth cartridge reactor, and the fourth adapter are sequentially passed through a flange piece After the connection, the two flange pieces that are joined are clamped by the clamp.
  • different size reaction bottles and latex bionic intestines are used to simulate the small and large intestine, respectively.
  • the third tubular reactor, the fourth tubular reactor, the third adapter, the fourth adapter, and the second sampler are all made of glass. .
  • a fourth object of the present invention is to provide an application of any of the human gastrointestinal tract models to visualize a biomimetic digestive system in the fields of food, medicine, and feed.
  • a fifth object of the present invention is to provide the use of any of the described gastric body visualization biomimetic digestion reactors in the fields of food, medicine, and feed.
  • a sixth object of the present invention is to provide an application of any of the intestinal in vitro visual biomimetic digestion reactors in the fields of food, medicine, and feed.
  • the reactor can be insulated by using a reactor lined with a bionic gastrointestinal tract. And the squeezing of the bionic gastrointestinal tract by the circulating water between the reactor and the bionic gastrointestinal tract can realize the reciprocating motion of the sample, thereby simulating the digestion of the food in the case of the peristalsis of the real stomach;
  • the present invention adopts a gastric system to simulate three parts of the human stomach: the stomach, the antrum and the pylorus, and can independently control the latex in the three reaction bottles to be squeezed or not squeezed, in such a manner Functionally, it has a high similarity to the real human stomach;
  • each part is relatively independent, and can react and analyze separately for a certain part of the system, and the operation form is more flexible.
  • the reactor can be conveniently increased or decreased as needed to make the structure and function of the digestive system very convenient;
  • PLC controls the addition of sample, digestive juice and buffer, and the creeping and emptying of various parts of the system makes the operation more convenient.
  • the invention provides a gastric body visualization biomimetic digestion reactor, which uses three reaction bottles to simulate three parts of the human stomach: the stomach body, the gastric antrum and the pylorus, and the pressure of the circulating water on the latex in the bottle. Extrusion, thereby mimicking the digestion of food in the case of real gastric peristalsis, has a higher similarity than existing gastrointestinal simulated digestion devices.
  • the gear pump is used to increase the circulating water pressure, and the pressure of the circulating water supply of the constant temperature circulating water tank is insufficient to cause the extrusion of the latex bionic stomach; the sampling bottle is provided with a screw that can be screwed; and the grinding port with a rubber stopper can be used. Syringe sampling. Real-time observation of the variation process of the sample in the model is realized, and process data is obtained. The collection of the process data provides reference for optimizing the operation parameters of the model; and each part is relatively independent and convenient for disassembly.
  • the invention provides an in vitro visual biomimetic digestion reactor.
  • the glass reactor can be realized by using a glass reactor with a nested latex bionic intestine.
  • the extrusion of the latex bionic intestine can be carried out by the pressure of the circulating water between the glass bottle and the latex bionic intestine, thereby realizing the reciprocating motion of the sample, thereby simulating the digestion of the food in the case of the peristaltic movement of the true intestine; using a gear pump Increasing the circulating water pressure, solving the problem that the pressure of the constant temperature circulating water supply is insufficient to cause extrusion of the latex bionic intestine;
  • the sampling bottle is provided with a screw cap that can be inserted into the pH electrode; and a grinding port with a rubber stopper is provided.
  • Figure 1 is a schematic view showing the structure of a human gastrointestinal tract model visualizing a biomimetic digestion system
  • FIG. 2 is a schematic structural view of a bionic stomach system
  • Figure 3 is a schematic view showing the structure of a bionic small intestine system
  • Figure 4 is a schematic view showing the structure of a bionic large intestine system
  • Figure 5 is a comparison diagram of the gastrointestinal model biomimetic digestion reactor of the present invention, the existing biomimetic reactor, and the results of intestinal digestion in mice;
  • FIG. 6 is a comparison diagram of a gastric body visualization biomimetic digestion reactor, an existing biomimetic reactor, and a mouse intragastric digestion result;
  • Figure 7 is a comparison of the intestinal visualization biomimetic digestion reactor, the existing biomimetic reactor, and the results of intragastric digestion in mice.
  • Reducing sugar is determined by the DNS method
  • the protein content was determined by micro-Kjeldahl method.
  • the human gastrointestinal tract model visualized biomimetic digestion system provided in this embodiment is shown in FIG. 1 and includes a reaction system, a control system and a delivery device, and the reaction system includes a bionic stomach system 1a, a bionic small intestine system 1b and a bionic large intestine system. 1c; the control system comprises a PLC controller 4, a peristaltic pump 14, a circulating water tank 3; the conveying device comprises a first gas bottle 25 and a plurality of sample bottles 26.
  • the present embodiment provides a bionic stomach system 1a.
  • the bionic stomach system 1a is composed of a first adapter 91, a first cartridge reactor 81, a ball reactor 71, a first sampler 61, and a
  • the two-cylinder reactor 82 and the second adapter 92 are sequentially connected by a flange piece, the first adapter 91 is connected to the input pipe 5a, and the plurality of sample bottles 26 are passed through the peristaltic pump 14 and the input pipe 5a.
  • one opening of the first gas bottle 25 communicates with one of the plurality of sample vials 26, and the other opening is connected to the input tube 5a via a solenoid valve 15.
  • the second adapter 92 is connected to the output tube 6a.
  • the biomimetic stomach system also includes a latex biomimetic stomach.
  • the latex bionic stomach comprises a latex bionic stomach 101, a latex bionic antrum 102 and a latex bionic pylorus 103.
  • the latex bionic stomach body 101 is placed in the first barrel type reactor 81, and both ends of the latex bionic stomach body 101 respectively protrude from the two openings of the first barrel type reactor 81.
  • the end of the latex tube exposed on the outside of the flange is placed over the flange.
  • the flange piece of the opening of the first adapter 91 is abutted with the flange piece open at the upper end of the first barrel type reactor 81, and then the two flange pieces are clamped by a clamp; the latex bionic antrum 102 is placed In the spherical reactor 71, the two ends of the latex bionic sinus 102 are connected to a length of the latex tube, and the ports of the two stages of the latex tube respectively protrude from the two openings of the spherical reactor 71.
  • the end of the latex tube exposed on the outside of the flange is sleeved on the flange, the flange of the upper end of the spherical reactor 71 and the flange of the lower end of the first tubular reactor 81 are opened.
  • the flange piece opened at the left end of the ball reactor 71 is butted against the flange piece at the right end of the first sampler 61, and then the two flanges are clamped by the clamp a sheet;
  • the latex bionic pylorus 103 is placed in the second tubular reactor 82, and both ends of the latex bionic pylorus 103 respectively protrude from the two openings of the second tubular reactor 82 and are everted
  • the outer end of the latex tube exposed on the outside of the flange is sleeved on the flange, and the second tubular reactor 82
  • the flange piece of the end is butted against the flange piece at the left end of the first sampler 61, and then the two flange pieces are clamped by a clamp;
  • the flanges of the open joint of the adapter 92 are
  • the first adapter 91 and the second adapter 92 are hollow hemispheres, and a flange piece is disposed at the opening of the hollow hemisphere, and the spherical reactor 71 is a hollow sphere, and the hollow The sphere is provided with two mutually perpendicular openings, and the two openings divide the large circle of the hollow sphere into a superior arc and a poor arc, and the input tube and the output tube of the spherical reaction bottle are on the superior arc.
  • the first sampler 61 is a hollow tube body, and a flange piece is arranged at each of the left and right end openings, and three glass tubes are vertically connected to the hollow tube body; wherein the two glass tubes are vertical and open Upward, the port has an external thread; the other glass tube is horizontally arranged, the port is provided with a grinding port, and a rubber stopper is inserted at the grinding port.
  • the present embodiment provides a bionic small intestine system 1b.
  • the bionic small intestine system 1b is composed of a third adapter 93, a third cartridge type reactor 83, a second sampler 62, and a fourth cartridge type reactor 84.
  • the fourth adapter 94 is sequentially connected by a flange piece; the second sampling bottle 62 is provided with a lower end opening and a syringe pump 22, and the third adapter 93 is connected to the digestive juice bottle 30 through the peristaltic pump 14.
  • the digestive juice bottle 30 is in communication with the second gas bottle 27.
  • the third adapter 93 and the fourth adapter 94 are both hollow hemispheres, and a flange piece is disposed at the opening of the hollow hemisphere, and the top of the third adapter 93 is provided with a sample input tube. 5b, the arc top of the fourth adapter 5 is provided with a sample output tube 12, the sample input tube 5b and the sample output tube 12 are respectively connected with the hose, and a valve is arranged on the hose for the outside of the intestinal tract Visualize the injection and flow of samples from the biomimetic digestion reactor.
  • the third barrel type reactor 83 and the fourth barrel type reactor 84 are both hollow tubes, and the bionic enteralis is placed in the third barrel type reactor 83 and the fourth barrel type reactor, respectively. In the 84, the two ends of the bionic intestinal tract protrude from the two openings of the hollow tubular body and are everted, and the end of the latex tube exposed outside the flange is sleeved on the flange piece.
  • the second sampler 62 is a hollow tube body, as shown in FIG.
  • the second sampler 62 is provided with a flange piece at each of the left and right end openings, and has five glass tubes perpendicularly communicating with the hollow tube body on the side thereof; wherein the openings of the two glass tubes are vertically upward, the port Externally threaded; the openings of the two glass tubes are vertically downwards, one of the glass tubes has external threads, the other glass tube has a reversed wall on the outer wall; and another glass tube is horizontally arranged, and the port is provided There is a grinding mouth, and the grinding plug has a rubber stopper.
  • the bionic large intestine system 1c is sequentially passed through the flange by the fifth adapter 95, the fifth tubular reactor 85, the third sampler 63, the sixth tubular reactor 86, and the sixth adapter 96.
  • the fifth adapter 95 is connected to the lower end opening of the second sampling bottle 62 via a peristaltic pump 14, and the third sampling bottle 63 is provided with a lower end opening.
  • the fifth adapter 95 and the sixth adapter 96 are both hollow hemispheres, and a flange piece is disposed at the opening of the hollow hemisphere, and the arc top of the fifth adapter 95 is provided with a sample input tube. 5c.
  • the fifth barrel type reactor 85 and the sixth barrel type reactor 86 are both hollow tubes, and the bionic enteralis is placed in the fifth barrel type reactor 85 and the sixth barrel type reactor, respectively. In the 86, the two ends of the bionic intestinal tract protrude from the two openings of the hollow tubular body and are everted, and the end of the latex tube exposed outside the flange is sleeved on the flange piece.
  • the third sampler 63 is a hollow tube body, as shown in FIG.
  • the third sampler 63 is provided with a flange piece at each of the left and right end openings, and five glass tubes perpendicularly communicating with the hollow tube body are opened on the side thereof; wherein the openings of the two glass tubes are vertically upward, the port Externally threaded; the openings of the two glass tubes are vertically downwards, one of the glass tubes has external threads, the other glass tube has a reversed wall on the outer wall; and another glass tube is horizontally arranged, and the port is provided There is a grinding mouth, and the grinding plug has a rubber stopper.
  • the third adapter 93 of the bionic small intestine system 1b is connected to the input tube 5b, and the lower end opening of the second sampler 62 is connected to the output tube 6b, and the fourth adapter 94 is connected with
  • the pipe 12 is connected;
  • the output pipe 6a is the same pipe as the input pipe 5b, and a peristaltic pump 14 is disposed in the middle of the pipe;
  • the filter system opening is connected to the pipe 12, and the filter system includes a fiber filter 21, a peristaltic pump 14, and a solenoid valve 15
  • the fifth adapter 95 of the large intestine system 1c is connected to the input tube 5c, the lower end opening of the third sampler 63 is connected to the output tube 6c;
  • the output tube 6b is the same tube as the input tube 5c, and a peristaltic pump 14 is disposed in the middle of the tube.
  • the output tube 6c is provided with a peristaltic pump 14 and the other end thereof is provided with a collection bottle 28; each reactor is provided with a circulating water inlet and a circulating water outlet, all of which are connected to the circulating water inlet and the circulating water outlet.
  • a solenoid valve 15 is provided, and all circulating water flows out from the circulating water outlet pipe 8, and one end of the circulating water outlet pipe 8 is connected to the water outlet of the circulating water tank 3; all the circulating water is returned to the circulating water return pipe 7, Circulating water return pipe 7 Circulation water tank connected to the back of the nozzle 3; 4 the controller controlling the PLC model visualization of all human intestinal peristaltic pump 14, the syringe pump 22, the solenoid valve 15 bionic digestive system.
  • the gas in the first gas bottle 25 and the second gas bottle 27 includes a mixed gas of N 2 and CO 2 .
  • the tubular reactor 86 is provided with a circulating water inlet 8 and a circulating water outlet 9, and a solenoid valve 14 is disposed on the circulating water inlet 8 and the hose connected to the circulating water outlet 9;
  • the sample bottle 61, the second sample bottle 62 and the third sample bottle 63 are provided with a pH electrode probe 23 and a microscope probe 24, wherein the second sample bottle 62 is further provided with a lower end opening and a syringe pump.
  • the third sampling bottle 63 is further provided with an inoculating port 34 and a lower end opening.
  • the lower end opening of the second sampling bottle 62 is connected to the output tube 6b, and the lower end opening of the third sampling bottle 63 is connected to the output tube 6c.
  • the human gastrointestinal tract model of the present embodiment visualizes the biomimetic digestion system, and the simulation effect of the human gastrointestinal tract model visualizing the biomimetic digestion system is evaluated by the experiment of digesting the food sample in the reactor.
  • the solenoid valve 15 is opened, and the N 2 and CO 2 mixed gas is charged into the system to remove the residual gas in the system to create an oxygen-free environment; then, the solenoid valve 15 is closed, and the peristaltic pump is started. 14.
  • a certain amount of sample, gastric juice and HCl are added to the biomimetic gastric system 1a by the input tube 5a; in the gastric system, the sample is in the first cylindrical reactor 81, the spherical reactor 71, the After repeated extrusion between the second cylindrical reactors 82, the sample is ground and decomposed into small molecular substances; after a certain period of reaction, the sample is discharged through the output pipe 6a.
  • a sample discharged from the biomimetic gastric system 1a enters the bionic small intestine system 1b from an input tube 5b; a certain amount of Na 2 HCO 3 is added to the bionic small intestine system 1b, and a syringe pump 22 is activated to A certain amount of pancreatic juice and bile are added to the bionic small intestine system 1b, and the sample is repeatedly squeezed between the third cylindrical reactor 83 and the fourth cylindrical reactor 84, and the sample is further ground and decomposed; After the time, the sample enters the filtration system through the pipe 12, and after the sample is filtered by the filtration system, small molecules such as monosaccharides and amino acids are removed as filtrate, and the remaining macromolecular substance and a part of water are returned to the small intestine through the pipe 12. In the system, it is discharged through the output pipe 6b.
  • a sample discharged from the bionic small intestine system 1b is introduced into the bionic large intestine system 1c by an input tube 5c; and an intestine is introduced into the bionic large intestine system 1c by the inoculating port 34 of the third sampling bottle 63.
  • samples are taken from the sampling ports on the corresponding sampling bottles in the respective biomimetic systems, and the portions of the samples that are ground and digested are detected.
  • the traditional gastrointestinal mimic digestion reactor is a static digestion simulation that does not mimic the physical and physiological processes that occur in the gastrointestinal tract, such as changes in pH, the gastrointestinal wall. Peristalsis, emptying of the stomach in the stomach, etc.
  • the food and the simulated gastrointestinal fluid are mixed once in a simple manner using a constant temperature water bath shaker, a magnetic stirrer, and a moving mixer, and then placed in a 37 ° C water bath for 1-2 hours to simulate the gastrointestinal digestion of the food. process.
  • the invention is a dynamic digestion model closer to the real gastrointestinal tract, which can reproduce the fluid dynamics, peristaltic contraction and the like in the gastrointestinal tract, and comprehensively simulates the physical and physiological processes in the gastrointestinal tract.
  • the first step preparing a food suspension
  • Food powder formula corn flour 100g, concentrated whey protein powder 40g, edible salt 1g.
  • a certain amount of 0.1 mol/L hydrochloric acid and a certain amount of simulated gastric juice composed of pepsin, KCl, and NaCl are injected into the biomimetic gastric system 1a to simulate a gastric digestive environment in the bionic small intestine system 1b.
  • a certain amount of 0.1 mol/L NaHCO 3 and a certain amount of pancreatic juice and intestinal fluid were injected to simulate the digestive environment in the intestine.
  • the third step the working process
  • simulated gastric juice was injected to simulate the residual gastric juice in the fasted state.
  • food samples were added to the stomach model from the simulated esophagus in batch mode for an injection time of 5 min.
  • the input rate of the simulated gastric fluid is precisely controlled by a syringe pump.
  • the simulated gastric antrum and pylorus were closed to simulate the digestive process of the food without gastric emptying.
  • the pylorus and gastric antrum of the stomach model were compressed by water pressure, and the compression frequency was 3 times/min, and the compression range was 2.5 mm.
  • the gastric digests were introduced into the bionic small intestine system 1b by peristaltic means, and the food samples were added from the simulated esophagus to the bionic small intestine system 1b model in batch mode for 10 min.
  • the input rate of the simulated intestinal juice and pancreatic juice was precisely controlled by the syringe pump.
  • the intestinal tract was compressed by water pressure, and the peristaltic compression frequency was 10 times/min, and the compression range was 1 cm.
  • the biomimetic reactor of the present invention can more realistically simulate the process results of digestion of food in the stomach of living mice compared with the conventional biomimetic reactor, and exhibits the obvious advantages of the biomimetic reactor of the present invention.
  • the traditional gastric simulated digestion reactor is a static digestion simulation. It cannot simulate the physical and physiological processes of food in the body, such as changes in pH, peristalsis of the stomach wall, and platooning of the stomach in the stomach. Empty and so on.
  • the food and simulated gastric juice are mixed once by a constant temperature water bath shaker, magnetic stirrer and up and down moving mixer, and then placed in a 37 ° C water bath for 1-2 hours to simulate the gastric digestion process of the food.
  • the biomimetic gastric system 1a shown in Fig. 2 of the present invention is a dynamic digestion model closer to the real gastric tract, which can reproduce the fluid dynamics, peristaltic contraction and sputum emptying in the stomach, and comprehensively simulates Physical and physiological processes in the stomach.
  • the first step preparing a food suspension
  • Food powder formula corn flour 100g, concentrated whey protein powder 40g, edible salt 1g.
  • the food suspension is injected into the human gastric external biomimetic digestion reactor from the input tube 5a of the first adapter 91 at a certain flow rate, and then the biomimetic digestion reaction is visualized from the input tube 5a to the human stomach.
  • a certain amount of 0.1 mol/L hydrochloric acid and a certain amount of simulated gastric juice composed of pepsin, KCl, and NaCl were injected into the device.
  • the third step the working process
  • the latex bionic stomach body 101 is squeezed under circulating water pressure, and the sample inside is extruded into the latex bionic antrum 102 and the latex bionic
  • the pylorus 103 (4) opens the input tube 8 on the first barrel type reactor 81 and the input tube 8 on the spherical reactor 71, and closes the output tube 9 on the first barrel type reactor 81, and the spherical reactor 71.
  • the output pipe 9, the output pipe 9 on the second cylindrical reactor 82, and the input pipe 8 allow circulating water to continuously flow into the interlayer of the first cylindrical reactor 81 and the spherical reactor 71 at the circulating water pressure
  • the latex bionic corpus 101 and the latex bionic pylorus 103 are squeezed, and an internal sample thereof is extruded into the latex bionic pylorus 102 in the second cylindrical reactor 82.
  • steps (2) to (4) are repeated.
  • simulated gastric juice was injected to simulate the residual gastric juice in the fasted state.
  • food samples were added to the stomach model from the simulated esophagus in batch mode for an injection time of 5 min.
  • the input rate of the simulated gastric fluid is precisely controlled by a syringe pump.
  • the simulated gastric antrum and pylorus were closed to simulate the digestive process of the food without gastric emptying.
  • the biomimetic reactor of the present invention can more realistically simulate the process results of digesting food with the stomach of living mice compared with the conventional biomimetic reactor, and exhibits the obvious advantages of the biomimetic reactor of the present invention.
  • the traditional intestinal mimic digestion reactor is a static digestion simulation that does not mimic the physical and physiological processes that occur in the intestines, such as changes in pH and peristalsis of the intestinal wall.
  • the prior art generally uses a constant temperature water bath shaker, a magnetic stirrer and an up and down moving mixer to simply mix the food and the simulated intestinal juice in a single time, and then placed in a 37 ° C water bath for 1-2 hours to simulate the intestinal digestion of the food. process.
  • the bionic small intestine system 1b of the present invention is a dynamic digestion model closer to the real intestine, which can reproduce the fluid dynamics, peristaltic contraction and the like in the intestinal tract, and comprehensively simulates the physical and physiological processes in the intestinal tract.
  • the first step preparing a food suspension
  • Food powder formula corn flour 100g, concentrated whey protein powder 40g, edible salt 1g.
  • the food sample is injected into the intestinal extracorporeal visualization biomimetic digestion reactor from the input tube 5b of the third adapter 93 at a flow rate, and then the biomimetic bionic is visualized from the input tube 5b to the intestinal tract. Inject a certain amount of 0.1 mol/L NaHCO 3 and a certain amount of pancreatic juice and intestinal fluid into the digestion reactor.
  • the third step the working process
  • the interlayer in the third barrel type reactor 83 is compressed under the circulating water pressure, the bionic intestinal tract in the third barrel type reactor 83 is squeezed, and the contained sample is extruded into the fourth barrel type.
  • the biomimetic reactor of the present invention can more realistically simulate the process of digestion of food in the intestine of living mice compared with the conventional biomimetic reactor, and exhibits the distinct advantages of the biomimetic reactor of the present invention.
  • the gastric body visualized biomimetic digestion reactor was used for the control experiment, in which all the circulating water inlet tubes 8 were closed, so that the reaction bottles did not flow into the circulating water; before the food samples were added, 0.6 mL of simulated gastric juice was injected to simulate Residue of gastric juice in the fasted state.
  • food samples were added to the stomach model from the simulated esophagus in batch mode for an injection time of 5 min.
  • the input rate of the simulated gastric fluid is precisely controlled by a syringe pump.
  • the simulated gastric antrum and pylorus were closed to simulate the digestive process of the food without gastric emptying.
  • the pylorus and gastric antrum of the stomach model were compressed by water pressure, and the compression frequency was 3 times/min, and the compression range was 2.5 mm. After the food samples were separately digested for 60 min, all the digests in the stomach were taken out, and the reducing sugar and protein contents were measured.
  • the sample can only stay in the latex bionic stomach of a reaction bottle.
  • the sample and the digestive juice flow from the input tube 5a into the gastric body visualization biomimetic digestion reactor, and the sample and the digestive juice are almost completely deposited in the latex bionic antrum 102 of the spherical reaction bottle, and at this time, only the external peristaltic pump can be used.
  • the sample and digestate flow into the latex bionic pylorus 103 and flow out through the delivery tube 6a. In this form, the sample and the digestive juice are not sufficiently mixed, and the particles contained in the sample are not crushed and dissolved by the action of the pressure, and the simulated digestion effect is poor.
  • the sample and the digestive juice can be reciprocally flowed in the latex biomimetic organs of the three reaction bottles.
  • the sample and the digestive juice flow from the input tube 5a into the gastric body visualization biomimetic digestion reactor, and the sample and the digestive juice flow into the latex bionic antrum 102, at which time the spherical reactor 71 and the second cylindrical reactor 82 are opened.
  • the circulating water inlet pipe 8, the latex bionic antrum 102 and the latex bionic pylorus 103 are squeezed by the circulating water, and the sample and the digestive solution flow into the latex bionic corpus 101; the circulating water input on the first tubular reactor 81 is then opened.
  • the tube 8 closes the circulating water inlet pipe 8 on the second barrel type reactor 82, and the latex bionic stomach body 101 and the latex bionic antrum 102 are squeezed by circulating water, and the sample and the digestive juice flow into the latex bionic pylorus 103.
  • the reciprocating motion of the sample and the digestive juice between the three reaction flasks can be achieved to achieve the purpose of mixing the sample and the digestive juice, grinding and dissolving the particles in the sample.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种人体胃肠道模型可视化仿生消化系统,属于仿生消化系统领域。该系统包括反应系统和控制系统;所述反应系统包括仿生胃系统(1a)、仿生小肠系统(1b)、仿生大肠系统(1c)和过滤系统;所述控制系统包括PLC控制器(4)、蠕动泵(14)、循环水槽(3);所述仿生胃系统(1a)、所述仿生小肠系统(1b)和所述仿生大肠系统(1c)的进水管与所述循环水槽(3)的出水口相连,所述仿生胃系统(1a)、所述仿生小肠系统(1b)和所述仿生大肠系统(1c)的出水管通过水管与所述循环水槽(3)的进水口相连,在水管上均设有电磁阀(15),所述PLC控制器(4)控制水管上的电磁阀(15)。该仿生消化系统,可视性强,自动化程度高,装置模块化,模拟胃肠蠕动的方式简单而有效。

Description

一种人体胃肠道模型可视化仿生消化系统 技术领域
本发明涉及一种人体胃肠道模型可视化仿生消化系统,属于仿生消化系统领域。
背景技术
人类消化道体外模拟装置的不断推广,为食品科学,人类营养学的研究提供了巨大的方便,逐渐被学术界接受。在现代食品加工的研究过程中,客观精确地评定食物在人体内的消化过程对于确定食物组分的作用至关重要。人类消化道体外模拟装置的运用在评定食物在人体内的消化过程中会起到关键作用。新型人消化道体外模拟装置的研发,为研究人肠道微生物提供了极大方便。通过模拟不同样品在体外模型中的消化过程以及对肠道微生物的影响,会为新型功能性食品的研发提供大量有价值的数据,这是小鼠实验或人类志愿者实验所不能比拟的。
现有技术通常使用三角瓶或烧杯作为胃模拟消化装置。进行模拟消化实验时,先将一定量的食物装入三角瓶或烧杯中,然后向三角瓶中加入模拟胃液或肠液,然后,将三角瓶或烧杯放置在恒温水浴摇床上振动消化一段时间,此过程即为模拟人肠道的消化过程,带消化结束后,再离心或过滤分离出已消化与未消化物质。采用三角瓶或烧杯作为胃肠道模拟消化装置时,由于三角瓶或烧杯中的消化产物对消化反应有抑制作用,导致这类消化实验的测定结果不准确。
与以一个三角瓶或烧杯为人肠道模拟消化装置相比,1993年,比利时的Molly等人开发出一个多腔室的动态消化道模拟装置。在研制初期,该模型只包括5个由计算机控制的反应器串联组成,分别模拟人的十二指肠/空肠、回肠、盲肠/升结肠、横结肠和降结肠。随后,2001年De Boever等人在十二指肠/空肠反应器之前增加了一个模拟胃的反应器,使之成为了一个完整的体外消化道模型。
CN104851346A公开了一种模块化动物消化道体外模拟系统及其人类肠道模拟方法,包括胃、小肠、升结肠、横结肠和降结肠五个部分,每个部分的核心为反应罐;反应罐存储消化液及肠菌培养基,是模拟食物消化、肠菌生长的场所;每个反应罐的水夹层均与恒温水浴相通实现37℃恒温效果;每个反应罐的蠕动由磁力搅拌模拟。CN102399692A公开了一种全自动肠道菌群体外模拟模型装置,包括气路系统、发酵系统、控制系统;所述发酵系统包括带有搅拌装置的培养基瓶和生物反应器;所述控制系统包括显示屏、中央处理器、pH控制仪、温度控制系统、蠕动泵等。
以上两种人类和动物胃肠道模拟消化装置,采用搅拌作为模拟胃肠道蠕动的方式,其缺 陷在于,搅拌产生的食物在胃肠道内的运动与真实情况相差较大,不能很好地模拟真实胃肠道;其中一种模拟消化装置只用一个反应器来模拟胃肠道,其缺陷在于,反应产生的中间物和产物积累在反应器内,对消化酶产生抑制。
发明内容
本发明针对现有人胃肠道体外模拟消化装置的局限性,提供一种可视性强,自动化程度高,装置模块化,模拟胃肠蠕动的方式简单而有效的人体肠道模型可视化仿生消化系统。
本发明的第一个目的是提供一种人体胃肠道模型可视化仿生消化系统,包括反应系统和控制系统;所述反应系统包括仿生胃系统、仿生小肠系统、仿生大肠系统和过滤系统;所述控制系统包括PLC控制器、蠕动泵、循环水槽;所述仿生胃系统、所述仿生小肠系统和所述仿生大肠系统的进水管通过水管与所述循环水槽的出水口相连,所述仿生胃系统、所述仿生小肠系统和所述仿生大肠系统的出水管通过水管与所述循环水槽的进水口相连,在水管上均设有电磁阀,所述PLC控制器控制水管上的电磁阀。
在一种实施方式中,人体肠道模型可视化仿生消化系统还包括样品输送装置,所述样品输送装置包括第一气体瓶和多个样品瓶,所述多个样品瓶通过蠕动泵与所述仿生胃系统相连,所述第一气体瓶的一个开口与多个样品瓶其中一个相通,另一个开口通过电磁阀与所述仿生胃系统相连。
在一种实施方式中,所述仿生胃系统由第一转接头、第一筒型反应器、球型反应器、第一取样器、第二筒型反应器、第二转接头依次通过法兰片连接而成,样品从所述第一转接头输入,从所述第二转接头输出,所述第二转接头通过蠕动泵与所述仿生小肠系统相连。
在一种实施方式中,所述仿生小肠系统由第三转接头、第三筒型反应器、第二取样器、第四筒型反应器、第四转接头依次通过法兰片连接而成;所述第二取样瓶上设有的下端开口和注射泵,所述第三转接头通过蠕动泵与消化液瓶相连,所述消化液瓶与第二气体瓶相通。
在一种实施方式中,所述仿生大肠系统由第五转接头、第五筒型反应器、第三取样器、第六筒型反应器、第六转接头依次通过法兰片连接而成;所述第五转接头通过一个蠕动泵与第二取样瓶的下端开口相连,所述第三取样瓶上设有下端开口。
在一种实施方式中,所述人体肠道模型可视化仿生消化系统还包括过滤装置,与所述仿生小肠系统的第四转接头相连。
在一种实施方式中,所述仿生胃系统的第一取样瓶、所述仿生小肠系统的第二取样瓶和所述仿生大肠系统的第三取样瓶上均设有用两个玻璃管,分别用于插入pH电极探头和显微镜探头。
在一种实施方式中,所述PLC控制器通过导线控制蠕动泵、注射泵、电磁阀的启停和开 关。
在一种实施方式中,第一气体瓶和第二气体瓶中装有N 2和CO 2的混合气体。
在一种实施方式中,所述第三取样瓶上设有一接种口,用于向所述大肠系统内接入肠道微生物。
本发明的第二个目的是提供一种胃体可视化仿生消化反应器,包括第一转接头、第二转接头、反应器、乳胶仿生胃、第一取样器和恒温循环水槽;所述反应器包括第一筒型反应器、球型反应器和第二筒型反应器,并反应器上均开有输出管和输入管,通过硅胶管与所述恒温循环水槽相接,所述第一转接头、所述第一筒型反应器、所述球型反应器、所述第一取样器、所述第二筒型反应器和所述第二转接头通过法兰片依次相接;所述乳胶仿生胃包括乳胶仿生胃体、乳胶仿生胃窦和乳胶仿生幽门,分别放置在所述第一筒型反应器、所述球型反应器和所述第二筒型反应器内。
在一种实施方式中,所述第一转接头和所述第二转接头均为中空半球体,在中空半球体的开口处均设有法兰片,所述第一转接头的弧顶设有输入管,所述第二转接头的弧顶设有输出管。
在一种实施方式中,所述球型反应器为一中空球体,所述中空球体上设有两个相互垂直的开口,两开口将所述中空球体的大圆分成一优弧和一劣弧,球型反应瓶的输入管和输出管在优弧上;所述乳胶仿生胃窦两端各与一段乳胶管相通,两段乳胶管的端口分别从所述中空球体的两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上。
在一种实施方式中,所述第一取样器为一中空管体,其左右端开口处各设有一法兰片,侧身开有三个与中空管体垂直相通的玻璃管;其中两个玻璃管竖直且开口朝上,其端口设有外螺纹;另一个玻璃管水平设置,其端口设有磨口,磨口处塞有橡胶塞。
在一种实施方式中,所述第一转接头、所述第一筒型反应器、所述球型反应器、所述第一取样器、所述第一筒型反应器和所述第二转接头通过法兰片依次相接后,通过夹具夹紧相接的两个法兰片。
在一种实施方式中,与所述第一筒型反应器、所述球型反应器和所述第二筒型反应器的输入管连通的三根硅胶管汇合成一根总输入硅胶管,与所述恒温循环水槽的出水口连通,三根输入硅胶管上各设有一阀门,所述总输入硅胶管上设有齿轮泵。
在一种实施方式中,并且所述第一筒型反应器竖直放置,所述第二筒型反应器水平放置。
在一种实施方式中,所述胃体可视化仿生消化反应器的各部件的材质均为玻璃。
本发明的第三个目的是提供一种肠道体可视化仿生消化反应器包括第三筒型反应器、第四筒型反应器、第二取样器、恒温循环水槽,所述第三筒型反应器、所述第四筒型反应器和 所述第二取样器依次通过法兰片对接;所述第三筒型反应器和所述第四筒型反应器的输出管分别连接有支输出胶管,并汇合成一股总输出胶管与所述恒温循环水槽的回水口连接,所述第三筒型反应器和所述第四筒型反应器的输入管分别连接有支输入胶管,并汇合成一股总输入胶管与所述恒温循环水槽的出水口连接,每个支输出胶管和每个支输入胶管上设有阀门,所述总输出胶管和所述总输入胶管上设有齿轮泵。
在一种实施方式中,所述肠道体外可视化仿生消化反应器还包括与所述第三筒型反应器对接的第三转接头、与所述第四筒型反应器对接的第四转接头和分别放置在所述第三筒型反应器和所述第四筒型反应器中的仿生肠道。
在一种实施方式中,所述第三转接头和所述第四转接头均为中空半球体,在中空半球体的开口处均设有法兰片,所述第三转接头的弧顶设有输入管,所述第四转接头的弧顶设有输出管。
在一种实施方式中,所述第三筒型反应器和所述第四筒型反应器均为中空管体,左右端开口处各设有一法兰片;仿生肠道的两端分别从该中空管体两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上。
在一种实施方式中,所述第二取样器为一中空管体,左右端开口处各设有一法兰片,其侧面开有五个与所述中空管体垂直相通的玻璃管;其中两个玻璃管的开口竖直朝上,端口设有外螺纹;其中两个玻璃管的开口竖直朝下,一个玻璃管的端口设有外螺纹,另一个玻璃管的端口外壁设有倒丝;其中一个玻璃管水平设置,端口设有磨口,磨口塞有橡胶塞。
在一种实施方式中,所述第三转接头、所述第三筒型反应器、所述第二取样器、所述第四筒型反应器和所述第四转接头通过法兰片依次相接后,通过夹具夹紧相接的两个法兰片。
在一种实施方式中,采用不同尺寸的反应瓶和乳胶仿生肠道,分别模拟小肠和大肠。
在一种实施方式中,所述第三筒型反应器、所述第四筒型反应器、所述第三转接头、所述第四转接头和所述第二取样器的材质均为玻璃。
本发明的第四个目的是提供任一所述人体胃肠道模型可视化仿生消化系统在食品、医药、饲料领域的应用。
本发明的第五个目的是提供任一所述胃体可视化仿生消化反应器在食品、医药、饲料领域的应用。
本发明的第六个目的是提供任一所述肠道体外可视化仿生消化反应器在食品、医药、饲料领域的应用。
本发明的有益效果:
本发明一种人体肠道模型可视化仿生消化系统的优势在于:
1、与现有的胃肠道模拟消化装置相比,采用内衬仿生胃肠道的反应器,可以实现对样品的保温。且可以通过反应器与仿生胃肠道之间夹套的循环水对仿生胃肠道的挤压,实现样品的往复运动,从而模拟在真实胃的蠕动的情况下食物的消化;
2、本发明采用方式胃系统模拟人胃的三个部分:胃体、胃窦和幽门,可以独立控制三个反应瓶内乳胶仿生胃受挤压或不受挤压,此种方式在结构与功能方面,与真实人胃具有较高的相似性;
3、用纤维滤膜过滤反应液,模拟小肠的吸收,使小分子营养物质不进入大肠系统,为在所述大肠系统中培养肠道微生物提供更真实的肠道环境;
4、模块化,各部分相对独立,可以针对系统中某一部分单独进行反应和分析,操作形式更加灵活。可根据需要方便地增加或减少反应器,使消化系统的结构和功能变得十分方便;
5、全部实现自动化,根据预先设定好的程序,PLC控制样品、消化液和缓冲液的加入,系统各部分的蠕动和排空,使操作更便捷。
6、本发明提供的一种胃体可视化仿生消化反应器,采用三个反应瓶分别模拟人胃的三个部分:胃体、胃窦和幽门,通过循环水的压力对瓶内乳胶仿生胃的挤压,从而模拟在真实胃的蠕动的情况下食物的消化,与现有的胃肠道模拟消化装置相比,具有更高的相似性。采用齿轮泵提高循环水压力,解决恒温循环水槽循环供水的压力不足以对乳胶仿生胃产生挤压的问题;取样瓶设有可拧盖的螺口;设有带橡胶塞的磨口,可以用注射器取样。实现对样品在模型内变化过程的实时观测,得到过程数据,所述过程数据的收集为优化模型的操作参数提供参考;并且各部分相对独立,方便拆卸。
7、本发明提供的一种肠道体外可视化仿生消化反应器,与现有的肠道模拟消化装置相比,采用内套设乳胶仿生肠道的玻璃反应器,可以实现对样品的保温。且可以通过玻璃瓶与乳胶仿生肠道之间的循环水的压力对乳胶仿生肠道的挤压,实现样品的往复运动,从而模拟在真实肠道的蠕动的情况下食物的消化;采用齿轮泵提高循环水压力,解决恒温循环水槽供水的压力不足以对乳胶仿生肠道产生挤压的问题;取样瓶设有可拧盖的螺口,可以插入pH电极;设有带橡胶塞的磨口,可以用注射器取样。实现对样品在模型内变化过程的实时观测,得到过程数据,所述过程数据的收集为优化模型的操作参数提供参考;各部分相对独立,方便拆卸。
附图说明
图1为人体胃肠道模型可视化仿生消化系统的结构示意图;
图2为仿生胃系统的结构示意图;
图3为仿生小肠系统的结构示意图;
图4为仿生大肠系统的结构示意图;
图5为本发明的胃肠道模型仿生消化反应器、现有的仿生反应器和小鼠肠道内消化结果对比图;
图6为胃体可视化仿生消化反应器、现有的仿生反应器和小鼠胃内消化结果对比图;
图7为肠体可视化仿生消化反应器、现有的仿生反应器和小鼠胃内消化结果对比图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种人体肠道模型可视化仿生消化系统作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
还原糖是采用DNS法测定;
淀粉参考GB/T5009.9-2008《食品中淀粉的测定》的第二法酸水解法;
蛋白质含量采用微量凯氏定氮法进行测定。
实施例1:
本实施例提供的一种人体胃肠道模型可视化仿生消化系统如图1所示,包括反应系统、控制系统和输送装置,所述反应系统包括仿生胃系统1a,仿生小肠系统1b和仿生大肠系统1c;所述控制系统包括PLC控制器4、蠕动泵14,循环水槽3;所述输送装置包括第一气体瓶25和多个样品瓶26。
实施例2:
本实施例提供的是仿生胃系统1a如图2所示,所述仿生胃系统1a由第一转接头91、第一筒型反应器81、球型反应器71、第一取样器61、第二筒型反应器82、第二转接头92依次通过法兰片连接而成,所述第一转接头91接输入管5a,所述多个样品瓶26通过蠕动泵14与所述输入管5a相连,所述第一气体瓶25的一个开口与多个样品瓶26其中一个相通,另一个开口通过电磁阀15与所述输入管5a相连。所述第二转接头92接输出管6a。所述仿生胃系统还包含乳胶仿生胃。
所述乳胶仿生胃包括乳胶仿生胃体101、乳胶仿生胃窦102和乳胶仿生幽门103。所述乳胶仿生胃体101放置在所述第一筒型反应器81内,所述乳胶仿生胃体101的两端分别从所述第一筒型反应器81的两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上。所述第一转接头91开口的法兰片与所述第一筒型反应器81上端开口的法兰片对接,然后用夹具夹紧所述两法兰片;所述乳胶仿生胃窦102放置在所述球型反应器71内,所述乳胶仿生胃窦102两端各与一段乳胶管相通,两段乳胶管的端口分别从所述球型反应器71的两个 开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上,所述球型反应器71上端开口的法兰片与所述第一筒型反应器81下端开口的法兰片对接,然后用夹具夹紧所述两法兰片;所述球型反应器71左端开口的法兰片与所述第一取样器61右端的法兰片对接,然后用夹具夹紧两法兰片;所述乳胶仿生幽门103放置在所述第二筒型反应器82内,所述乳胶仿生幽门103的两端分别从所述第二筒型反应器82两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上,所述第二筒型反应器82右端的法兰片与所述第一取样器61左端的法兰片对接,然后用夹具夹紧所述两法兰片;所述第二筒型反应器82左端的法兰片与所述第二转接头92开口的法兰片对接,然后用夹具夹紧所述两法兰片。
所述第一转接头91和所述第二转接头92均为中空半球体,在中空半球体的开口处均设有法兰片,所述球型反应器71为一中空球体,所述中空球体上设有两个相互垂直的开口,两开口将所述中空球体的大圆分成一优弧和一劣弧,球型反应瓶的输入管和输出管在优弧上。所述第一取样器61为一中空管体,其左右端开口处各设有一法兰片,侧身开有三个与中空管体垂直相通的玻璃管;其中两个玻璃管竖直且开口朝上,其端口设有外螺纹;另一个玻璃管水平设置,其端口设有磨口,磨口处塞有橡胶塞。
实施例3:
本实施例提供的是仿生小肠系统1b如图3所示,所述仿生小肠系统1b由第三转接头93、第三筒型反应器83、第二取样器62、第四筒型反应器84、第四转接头94依次通过法兰片连接而成;所述第二取样瓶62上设有下端开口和注射泵22,所述第三转接头93通过蠕动泵14与消化液瓶30相连,所述消化液瓶30与第二气体瓶27相通。
所述第三转接头93和所述第四转接头94均为中空半球体,在中空半球体的开口处均设有法兰片,所述第三转接头93的弧顶设有样品输入管5b,所述第四转接头5的弧顶设有样品输出管12,所述样品输入管5b和所述样品输出管12分别与胶管连通,在胶管上设有阀门,用于向肠道体外可视化仿生消化反应器中注入和流出样品。所述第三筒型反应器83和所述第四筒型反应器84均为中空管体,仿生肠道分别放置在所述第三筒型反应器83和所述第四筒型反应器84内,所述仿生肠道的两端分别从该中空管体两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上。
具体的,所述第二取样器62为一中空管体,如图3所示。所述第二取样器62左右端开口处各设有一法兰片,其侧面开有五个与所述中空管体垂直相通的玻璃管;其中两个玻璃管的开口竖直朝上,端口设有外螺纹;两个玻璃管的开口竖直朝下,其中一个玻璃管的端口设有外螺纹,另一个玻璃管的端口外壁设有倒丝;另外还有一个玻璃管水平设置,端口设有磨口,磨口塞有橡胶塞。
实施例4:
如图4所示,所述仿生大肠系统1c由第五转接头95、第五筒型反应器85、第三取样器63、第六筒型反应器86、第六转接头96依次通过法兰片连接而成;所述第五转接头95通过一个蠕动泵14与第二取样瓶62的下端开口相连,所述第三取样瓶63上设有下端开口。
所述第五转接头95和所述第六转接头96均为中空半球体,在中空半球体的开口处均设有法兰片,所述第五转接头95的弧顶设有样品输入管5c。所述第五筒型反应器85和所述第六筒型反应器86均为中空管体,仿生肠道分别放置在所述第五筒型反应器85和所述第六筒型反应器86内,所述仿生肠道的两端分别从该中空管体两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上。
具体的,所述第三取样器63为一中空管体,如图4所示。所述第三取样器63左右端开口处各设有一法兰片,其侧面开有五个与所述中空管体垂直相通的玻璃管;其中两个玻璃管的开口竖直朝上,端口设有外螺纹;两个玻璃管的开口竖直朝下,其中一个玻璃管的端口设有外螺纹,另一个玻璃管的端口外壁设有倒丝;另外还有一个玻璃管水平设置,端口设有磨口,磨口塞有橡胶塞。
实施例5:
综合参阅图1~图4,所述仿生小肠系统1b的第三转接头93与输入管5b连接,所述第二取样器62的下端开口与输出管6b连接,所述第四转接头94与管道12连接;输出管6a与输入管5b为同一管道,所述管道中间设有一蠕动泵14;过滤系统开口与管道12连接,所述过滤系统包括纤维滤膜21、蠕动泵14、电磁阀15;大肠系统1c的第五转接头95与输入管5c连接,第三取样器63的下端开口与输出管6c连接;输出管6b与输入管5c为同一管道,所述管道中间设有一蠕动泵14;输出管6c上设有一蠕动泵14,其另一端设有收集瓶28;每个反应器都设有循环水入口和循环水出口,所有与循环水入口和循环水出口连接的软管上均设有电磁阀15,所有的循环水均由循环水出水管8流出,所述循环水出水管8一端与循环水槽3的出水口连接;所有的循环水均回流到循环水回水管7,所述循环水回水管7一端与循环水槽3的回水口连接;所述PLC控制器4控制所述人体肠道模型可视化仿生消化系统中所有的蠕动泵14、注射泵22、电磁阀15。
具体的,所述第一气体瓶25和所述第二气体瓶27中的气体包括N 2和CO 2混合气体。所述第一筒型反应器81、球型反应器71、第二筒型反应器82、第三筒型反应器83、第四筒型反应器84、第五筒型反应器85、第六筒型反应器86上均设有循环水入口8和循环水出口9,与所述循环水入口8和与所述循环水出口9连接的软管上均设有电磁阀14;所述第一取样瓶61、所述第二取样瓶62和所述第三取样瓶63上设有pH电极探头23和显微镜探头24,其中, 所述第二取样瓶62上还设有下端开口和注射泵,所述第三取样瓶63上还设有接种口34和下端开口。所述第二取样瓶62的下端开口与输出管6b连接,所述第三取样瓶63的下端开口与输出管6c相连。
实施例6:
人体胃肠道消化模型可视化仿生消化系统的模拟实验
本实施例的一种人体胃肠道模型可视化仿生消化系统,通过在反应器消化食物样品的实验,评估人体胃肠道模型可视化仿生消化系统的模拟效果。
参照图2,反应开始前,打开电磁阀15,向系统内充入N 2和CO 2混合气体,使排走系统内残留的气体,创造无氧环境;然后,关闭电磁阀15,启动蠕动泵14,由输入管5a向所述仿生胃系统1a内加入一定量样品、胃液和HCl;在胃系统中,样品在所述第一筒型反应器81、所述球型反应器71、所述第二筒型反应器82之间经过反复挤压,样品被磨碎和被分解成小分子物质;反应一段时间后,样品经输出管6a排出。
参照图3,从所述仿生胃系统1a排出的样品由输入管5b进入所述仿生小肠系统1b;向所述仿生小肠系统1b内加入一定量Na 2HCO 3,启动注射泵22,向所述仿生小肠系统1b内加入一定量胰液和胆汁,样品在所述第三筒型反应器83和所述第四筒型反应器84之间经过反复挤压,样品被进一步磨碎和分解;反应一段时间后,样品经管道12进入过滤系统,样品经过滤系统过滤后,其中的单糖、氨基酸等小分子物质作为滤出液被除去,剩下的大分子物质和一部分水经过管道12回流到小肠系统中,再经输出管6b排出。
参照图4,从所述仿生小肠系统1b排出的样品由输入管5c进入所述仿生大肠系统1c;由所述第三取样瓶63的接种口34向所述仿生大肠系统1c内接入肠道微生物;在所述仿生大肠系统1c中,样品和肠道微生物在所述第五筒型反应器85和所述第六筒型反应器86之间经过反复挤压,样品被分解和被微生物发酵;反应一段时间后,样品经输出管6c排出到收集瓶中28。
样品在所述仿生胃系统1a、所述仿生小肠系统1b、所述仿生大肠系统1c反应过程中,从各自仿生系统中相应取样瓶上的取样口取样,检测样品被磨碎和消化的部分占总体的百分比;由pH电极得到各测量点的pH值;由显微镜得到各测量点样品的变化和肠道微生物的生长状况。
实施例7:
人体胃肠道的消化是一个复杂的过程,传统的胃肠道模拟消化反应器是静态消化模拟,它不能模拟食物在胃肠道内发生的物理和生理过程,比如pH的变化、胃肠壁的蠕动、胃内食糜的排空等。一般采用恒温水浴摇床、磁力搅拌器和上下移动混合器等仪器简单的将食物 和模拟胃肠液进行一次性混合后,置于37℃水浴中搅拌1-2h来模拟食物的胃肠道消化过程。
本发明是更接近真实胃肠道的动态消化模型,可对胃肠道内的流体动力学、蠕动收缩等进行很好的重现,全面地模拟了胃肠道内的物理作用和生理学过程。
第一步:制备食物悬浊液
称取适量的食物粉末,用0.2%(w/v)的瓜尔胶溶液稀释成悬浊液。
食物粉末配方:玉米粉100g,浓缩乳清蛋白粉40g,食用盐1g。
第二步:加样品
参见图1-4,向所述仿生胃系统1a内注入一定量0.1mol/L的盐酸和一定量的由胃蛋白酶、KCl、NaCl组成的模拟胃液来模拟胃内消化环境,在仿生小肠系统1b内注入一定量的0.1mol/L的NaHCO 3和一定量的胰液和肠液来模拟肠道内的消化环境。
第三步:工作过程
加入食物样品之前,注入0.6mL模拟胃液以模拟禁食状态下胃液的残留。为了更加真实的模拟摄入玉米粉的过程和口腔消化过程,采取分批方式将食物样品从模拟食管加入到胃模型内,进样时间持续为5min。进样期间,通过注射泵精确控制模拟胃液的输入速率。进样结束后,封闭模拟胃窦和幽门,以模拟食物在无胃排空时的消化过程。同时通过水压对胃模型的幽门和胃窦进行压缩,压缩频率为3次/分钟,压缩幅度为2.5mm。待食物样品分别消化1h后,将胃内消化物通过蠕动方式进入仿生小肠系统1b,并采取分批方式将食物样品从模拟食管加入到仿生小肠系统1b模型内,进样时间持续为10min。进样期间,通过注射泵精确控制模拟肠液和胰液的输入速率,进样结束后,通过水压对肠道进行蠕动压缩,蠕动压缩频率为10次/分钟,压缩幅度为1cm。待食物样品分别消化3h后,将肠道内消化物全部取出,测其淀粉水解率和蛋白质含量。本发明的肠道可视化仿生消化反应器、现有的仿生反应器和小鼠肠道内消化结果对比如图5所示。
由图5可见,采本发明的仿生反应器与传统仿生反应器相比,能够更加逼真地模拟与活体小鼠胃内消化食物的过程结果,体现出了本发明仿生反应器的明显优势。
实施例8:
人体胃的消化是一个复杂的过程,传统的胃模拟消化反应器是静态消化模拟,它不能模拟食物在体内发生的物理和生理过程,比如pH的变化、胃壁的蠕动、胃内食糜的排空等。一般采用恒温水浴摇床、磁力搅拌器和上下移动混合器等仪器简单的将食物和模拟胃液进行一次性混合后,置于37℃水浴中搅拌1-2h来模拟食物的胃消化过程。
本发明图2所示的仿生胃系统1a是更接近真实胃道的动态消化模型,可对胃内的流体动力学、蠕动收缩及食糜排空等进行很好的重现,全面地模拟了胃道内的物理作用和生理学过 程。
第一步:制备食物悬浊液
称取适量的食物粉末,用0.2%(w/v)的瓜尔胶溶液稀释成悬浊液。
食物粉末配方:玉米粉100g,浓缩乳清蛋白粉40g,食用盐1g。
第二步:加样品
参见图2,食物悬浊液从所述第一转接头91的输入管5a以一定流速注入所述人胃体外可视化仿生消化反应器,然后从输入管5a向所述人胃体外可视化仿生消化反应器内注入一定量的0.1mol/L的盐酸和一定量的由胃蛋白酶、KCl、NaCl组成的模拟胃液。
第三步:工作过程
(1)关闭与输入管5a和输出管6a,打开所述第一筒型反应器81上的输出管9和输入管8、所述球型反应器71上的输出管9和输入管8,所述第二筒型反应器82上的输出管9和输入管8,打开与恒温循环水槽出水口连接的总输入硅胶管上的齿轮泵,使反应瓶与乳胶仿生胃之间的夹层充满循环水;(2)关闭与第一筒型反应器81上的输出管9和输入管8、球型反应器71上的输出管9和第二筒型反应器82上的输出管9,使循环水持续流入所述球型反应器71和所述第二筒型反应器82的夹层,在循环水压力下,所述乳胶仿生胃窦102和所述乳胶仿生幽门103受到挤压,内部的样品被挤入所述乳胶仿生胃体101里;(3)打开第一筒型反应器81上的输入管8,关闭与第一筒型反应器81上的输出管9、第二筒型反应器82上的输出管9、球形反应器上的输入管8、第二筒型反应器82上的输入管8和输出管9,使循环水持续流入所述第二筒型反应器82的夹层,在循环水压力下,所述乳胶仿生胃体101受到挤压,其内部的样品被挤入所述乳胶仿生胃窦102和所述乳胶仿生幽门103;(4)打开第一筒型反应器81上的输入管8和球形反应器71上的输入管8,关闭第一筒型反应器81上的输出管9、球形反应器71上的输出管9、第二筒型反应器82上的输出管9和输入管8,使循环水持续流入所述第一筒型反应器81和所述球型反应器71的夹层,在循环水压力下,所述乳胶仿生胃体101和所述乳胶仿生幽门103受到挤压,其内部的样品被挤入所述第二筒型反应器82内的乳胶仿生幽门102里。重复操作所述步骤(2)~(4)。
加入食物样品之前,注入0.6mL模拟胃液以模拟禁食状态下胃液的残留。为了更加真实的模拟摄入玉米粉的过程和口腔消化过程,采取分批方式将食物样品从模拟食管加入到胃模型内,进样时间持续为5min。进样期间,通过注射泵精确控制模拟胃液的输入速率。进样结束后,封闭模拟胃窦和幽门,以模拟食物在无胃排空时的消化过程。同时通过水压对胃模型的幽门和胃窦进行压缩,压缩频率为3次/分钟,压缩幅度为2.5mm。待食物样品分别消化60min后,将胃内消化物全部取出,测其还原糖和蛋白质含量。本发明的胃体可视化仿生消 化反应器、现有的仿生反应器和小鼠胃内消化结果对比如图6所示。
由图6可见,采本发明的仿生反应器与传统仿生反应器相比,能够更加逼真地模拟与活体小鼠胃内消化食物的过程结果,体现出了本发明仿生反应器的明显优势。
实施例9:
人体肠道的消化是一个复杂的过程,传统的肠道模拟消化反应器是静态消化模拟,它不能模拟食物在肠道内发生的物理和生理过程,比如pH的变化、肠壁的蠕动等。现有技术一般采用恒温水浴摇床、磁力搅拌器和上下移动混合器等仪器简单的将食物和模拟肠液进行一次性混合后,置于37℃水浴中搅拌1-2h来模拟食物的肠道消化过程。
本发明仿生小肠系统1b是更接近真实肠道的动态消化模型,可对肠道内的流体动力学、蠕动收缩等进行很好的重现,全面地模拟了肠道内的物理作用和生理学过程。
第一步:制备食物悬浊液
称取适量的食物粉末,用0.2%(w/v)的瓜尔胶溶液稀释成悬浊液。
食物粉末配方:玉米粉100g,浓缩乳清蛋白粉40g,食用盐1g。
第二步:加样品
参见图3,所述食物样品从所述第三转接头93的输入管5b以一定流速注入所述肠道体外可视化仿生消化反应器,然后从所述输入管5b向所述肠道体外可视化仿生消化反应器内注入一定量的0.1mol/L的NaHCO 3和一定量的胰液和肠液
第三步:工作过程
(1)关闭与输入管5b和输出管12,打开与第三筒型反应器83和第四筒型反应器84上输出管9,输入管8连接的胶管上的阀门,打开与恒温循环水槽出水口连接的总输入胶管上的齿轮泵,使两个反应瓶与仿生肠道之间的夹层充满循环水;(2)打开与第三筒型反应器83上的输入管8连接的胶管上的阀门,关闭与第三筒型反应器83和第四筒型反应器84上的输出管9,第四筒型反应器84上的输入管8连接的胶管上的阀门,使循环水持续流入所述第三筒型反应器83内的夹层,在循环水压力下,所述第三筒型反应器83内的仿生肠道受到挤压,内含的样品被挤入所述第四筒型反应器84内的仿生肠道里;(3)打开与第四筒型反应器84输入管8连接的胶管上的阀门,关闭与第三筒型反应器83上的输入管8、输出管9,第4筒型反应器84上的输出管9连接的胶管上的阀门,使循环水持续流入所述第四筒型反应器84的夹层,在循环水压力下,所述第四筒型反应器84内的仿生肠道受到挤压,内含的样品被挤入所述第三筒型反应器83内的仿生肠道;重复操作所述步骤(2)和(3)。
加入食物样品之前,注入0.6mL模拟肠液和胰液以模拟肠道内的消化环境。为了更加真实的模拟摄入玉米粉的过程,采取分批方式将食物样品从模拟食管加入到胃肠道模型内,进 样时间持续为10min。进样期间,通过注射泵精确控制模拟肠液和胰液的输入速率,进样结束后,通过水压对肠道进行蠕动压缩,蠕动压缩频率为10次/分钟,压缩幅度为1cm。待食物样品分别消化3h后,将肠道内消化物全部取出,测其还原糖和蛋白质含量。本发明的肠道可视化仿生消化反应器、现有的仿生反应器和小鼠肠道内消化结果对比如图7所示。
由图7可见,本发明的仿生反应器与传统仿生反应器相比,能够更加逼真地模拟与活体小鼠肠道内消化食物的过程结果,体现出了本发明仿生反应器的明显优势。
对照例1:
设计了一组对照实验,来探究循环水通入与否对所述胃体可视化仿生消化反应器模拟消化效果的影响。
参照图2,利用所述胃体可视化仿生消化反应器进行对照实验,对照为所有循环水输入管8均关闭,使各反应瓶不流入循环水;加入食物样品之前,注入0.6mL模拟胃液以模拟禁食状态下胃液的残留。为了更加真实的模拟摄入玉米粉的过程和口腔消化过程,采取分批方式将食物样品从模拟食管加入到胃模型内,进样时间持续为5min。进样期间,通过注射泵精确控制模拟胃液的输入速率。进样结束后,封闭模拟胃窦和幽门,以模拟食物在无胃排空时的消化过程。同时通过水压对胃模型的幽门和胃窦进行压缩,压缩频率为3次/分钟,压缩幅度为2.5mm。待食物样品分别消化60min后,将胃内消化物全部取出,测其还原糖和蛋白质含量。
当玻璃反应瓶不流入循环水时,样品仅能停留在一个反应瓶的乳胶仿生胃中。例如样品和消化液从输入管5a流入所述胃体可视化仿生消化反应器,则样品和消化液几乎全部沉积在球形反应瓶的乳胶仿生胃窦102内,此时只能依靠外部的蠕动泵使样品和消化液流到所述乳胶仿生幽门103中,再经输出管6a流出。以这种形式,样品和消化液不能充分混合,样品中含有的颗粒物不会受到压力的作用而磨碎和溶解,模拟消化效果差。
当反应瓶流入循环水时,样品和消化液可以在三个反应瓶的乳胶仿生器官中实现往复流动。例如样品和消化液从输入管5a流入所述胃体可视化仿生消化反应器,则样品和消化液流入到乳胶仿生胃窦102内,此时打开球形反应器71和第二筒型反应器82的循环水输入管8,则乳胶仿生胃窦102和乳胶仿生幽门103受到循环水挤压,样品和消化液流入到乳胶仿生胃体101内;再打开第一筒型反应器81上的循环水输入管8,关闭第二筒型反应器82上的循环水输入管8,则乳胶仿生胃体101和乳胶仿生胃窦102收到循环水挤压,样品和消化液流入到乳胶仿生幽门103内。重复此类操作,就可以实现样品和消化液在三个反应瓶之间的往复运动,达到混合样品和消化液、磨碎和溶解样品中颗粒物的目的。
经对照实验发现,当所述胃体可视化仿生消化反应器不通入循环水时,流经反应器的样 品不能充分混合,样品中的颗粒物不溶解;当所述胃体可视化仿生消化反应器通入循环水并执行实施例一第三步操作时,流经反应器的同一批次样品得到充分混合,样品中颗粒物溶解,样品呈均一的状态。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (29)

  1. 一种人体胃肠道模型可视化仿生消化系统,其特征在于,包括反应系统和控制系统;所述反应系统包括仿生胃系统、仿生小肠系统、仿生大肠系统和过滤系统;所述控制系统包括PLC控制器、蠕动泵、循环水槽;所述仿生胃系统、所述仿生小肠系统和所述仿生大肠系统的进水管通过水管与所述循环水槽的出水口相连,所述仿生胃系统、所述仿生小肠系统和所述仿生大肠系统的出水管通过水管与所述循环水槽的进水口相连,在水管上均设有电磁阀,所述PLC控制器控制水管上的电磁阀。
  2. 根据权利要求1所述的人体胃肠道模型可视化仿生消化系统,其特征在于,人体肠道模型可视化仿生消化系统还包括样品输送装置,所述样品输送装置包括第一气体瓶和多个样品瓶,所述多个样品瓶通过蠕动泵与所述仿生胃系统相连,所述第一气体瓶的一个开口与多个样品瓶其中一个相通,另一个开口通过电磁阀与所述仿生胃系统相连。
  3. 根据权利要求1所述的人体胃肠道模型可视化仿生消化系统,其特征在于,所述仿生胃系统由第一转接头、第一筒型反应器、球型反应器、第一取样器、第二筒型反应器、第二转接头依次通过法兰片连接而成,样品从所述第一转接头输入,从所述第二转接头输出,所述第二转接头通过蠕动泵与所述仿生小肠系统相连。
  4. 根据权利要求1所述的人体胃肠道模型可视化仿生消化系统,其特征在于,所述仿生小肠系统由第三转接头、第三筒型反应器、第二取样器、第四筒型反应器、第四转接头依次通过法兰片连接而成;所述第二取样器上设有的下端开口和注射泵,所述第三转接头通过蠕动泵与消化液瓶相连,所述消化液瓶与第二气体瓶相通。
  5. 根据权利要求1所述的人体胃肠道模型可视化仿生消化系统,其特征在于,所述仿生大肠系统由第五转接头、第五筒型反应器、第三取样器、第六筒型反应器、第六转接头依次通过法兰片连接而成;所述第五转接头通过一个蠕动泵与第二取样器的下端开口相连,所述第三取样瓶上设有下端开口。
  6. 根据权利要求1所述的人体胃肠道模型可视化仿生消化系统,其特征在于,所述人体肠道模型可视化仿生消化系统还包括过滤装置,与所述仿生小肠系统的第四转接头相连。
  7. 根据权利要求1所述的人体胃肠道模型可视化仿生消化系统,其特征在于,所述仿生胃系统的第一取样器、所述仿生小肠系统的第二取样器和所述仿生大肠系统的第三取样器上均设有用两个玻璃管,分别用于插入pH电极探头和显微镜探头。
  8. 根据权利要求1或6所述的人体胃肠道模型可视化仿生消化系统,其特征在于,所述PLC控制器通过导线控制蠕动泵、注射泵、电磁阀的启停和开关。
  9. 根据权利要求2或4所述的人体胃肠道模型可视化仿生消化系统,其特征在于,第一气体瓶和第二气体瓶中装有N 2和CO 2的混合气体。
  10. 根据权利要求7所述的人体胃肠道模型可视化仿生消化系统,其特征在于,所述第三取样器上设有一接种口,用于向所述大肠系统内接入肠道微生物。
  11. 权利要求1~10任一所述人体胃肠道模型可视化仿生消化系统在食品、医药、饲料领域的应用。
  12. 一种胃体可视化仿生消化反应器,其特征在于,包括第一转接头、第二转接头、反应器、乳胶仿生胃、第一取样器和恒温循环水槽;所述反应器包括第一筒型反应器、球型反应器和第二筒型反应器,并反应器上均开有输出管和输入管,通过硅胶管与所述恒温循环水槽相接,所述第一转接头、所述第一筒型反应器、所述球型反应器、所述第一取样器、所述第二筒型反应器和所述第二转接头通过法兰片依次相接;所述乳胶仿生胃包括乳胶仿生胃体、乳胶仿生胃窦和乳胶仿生幽门,分别放置在所述第一筒型反应器、所述球型反应器和所述第二筒型反应器内。
  13. 根据权利要求12所述的胃体可视化仿生消化反应器,其特征在于,所述第一转接头和所述第二转接头均为中空半球体,在中空半球体的开口处均设有法兰片,所述第一转接头的弧顶设有输入管,所述第二转接头的弧顶设有输出管。
  14. 根据权利要求12所述的胃体可视化仿生消化反应器,其特征在于,所述球型反应器为一中空球体,所述中空球体上设有两个相互垂直的开口,两开口将所述中空球体的大圆分成一优弧和一劣弧,球型反应瓶的输入管和输出管在优弧上;所述乳胶仿生胃窦两端各与一段乳胶管相通,两段乳胶管的端口分别从所述中空球体的两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上。
  15. 根据权利要求12所述的胃体可视化仿生消化反应器,其特征在于,所述第一取样器为一中空管体,其左右端开口处各设有一法兰片,侧身开有三个与中空管体垂直相通的玻璃管;其中两个玻璃管竖直且开口朝上,其端口设有外螺纹;另一个玻璃管水平设置,其端口设有磨口,磨口处塞有橡胶塞。
  16. 根据权利要求12所述的胃体可视化仿生消化反应器,其特征在于,所述第一转接头、所述第一筒型反应器、所述球型反应器、所述第一取样器、所述第一筒型反应器和所述第二转接头通过法兰片依次相接后,通过夹具夹紧相接的两个法兰片。
  17. 根据权利要求12所述的胃体可视化仿生消化反应器,其特征在于,与所述第一筒型反应器、所述球型反应器和所述第二筒型反应器的输入管连通的三根硅胶管汇合成一根总输入硅胶管,与所述恒温循环水槽的出水口连通,三根输入硅胶管上各设有一阀门,所述总输入硅胶管上设有齿轮泵。
  18. 根据权利要求12所述的胃体可视化仿生消化反应器,其特征在于,并且所述第一筒 型反应器竖直放置,所述第二筒型反应器水平放置。
  19. 根据权利要求12~18任一所述的胃体可视化仿生消化反应器,其特征在于,所述胃体可视化仿生消化反应器的各部件的材质均为玻璃。
  20. 权利要求12~19任一所述胃体可视化仿生消化反应器在食品、医药、饲料领域的应用。
  21. 一种肠道体外可视化仿生消化反应器,其特征在于,包括第三筒型反应器、第四筒型反应器、第二取样器、恒温循环水槽,所述第三筒型反应器、所述第四筒型反应器和所述第二取样器依次通过法兰片对接;所述第三筒型反应器和所述第四筒型反应器的输出管分别连接有支输出胶管,并汇合成一股总输出胶管与所述恒温循环水槽的回水口连接,所述第三筒型反应器和所述第四筒型反应器的输入管分别连接有支输入胶管,并汇合成一股总输入胶管与所述恒温循环水槽的出水口连接,每个支输出胶管和每个支输入胶管上设有阀门,所述总输出胶管和所述总输入胶管上设有齿轮泵。
  22. 根据权利要求21所述的肠道体外可视化仿生消化反应器,其特征在于,所述肠道体外可视化仿生消化反应器还包括与所述第三筒型反应器对接的第三转接头、与所述第四筒型反应器对接的第四转接头和分别放置在所述第三筒型反应器和所述第四筒型反应器中的仿生肠道。
  23. 根据权利要求22所述的肠道体外可视化仿生消化反应器,其特征在于,所述第三转接头和所述第四转接头均为中空半球体,在中空半球体的开口处均设有法兰片,所述第三转接头的弧顶设有输入管,所述第四转接头的弧顶设有输出管。
  24. 根据权利要求22所述的肠道体外可视化仿生消化反应器,其特征在于,所述第三筒型反应器和所述第四筒型反应器均为中空管体,左右端开口处各设有一法兰片;仿生肠道的两端分别从该中空管体两个开口处伸出而外翻,外翻露于法兰片外侧的乳胶管端部套在法兰片上。
  25. 根据权利要求21所述的肠道体外可视化仿生消化反应器,其特征在于,所述第二取样器为一中空管体,左右端开口处各设有一法兰片,其侧面开有五个与所述中空管体垂直相通的玻璃管;其中两个玻璃管的开口竖直朝上,端口设有外螺纹;其中两个玻璃管的开口竖直朝下,一个玻璃管的端口设有外螺纹,另一个玻璃管的端口外壁设有倒丝;其中一个玻璃管水平设置,端口设有磨口,磨口塞有橡胶塞。
  26. 根据权利要求22所述的肠道体外可视化仿生消化反应器,其特征在于,所述第三转接头、所述第三筒型反应器、所述第二取样器、所述第四筒型反应器和所述第四转接头通过法兰片依次相接后,通过夹具夹紧相接的两个法兰片。
  27. 根据权利要求21所述的肠道体外可视化仿生消化反应器,其特征在于,采用不同尺寸的反应瓶和乳胶仿生肠道,分别模拟小肠和大肠。
  28. 根据权利要求21~27任一所述的肠道体外可视化仿生消化反应器,其特征在于,所述第三筒型反应器、所述第四筒型反应器、所述第三转接头、所述第四转接头和所述第二取样器的材质均为玻璃。
  29. 权利要求21~28任一所述肠道体外可视化仿生消化反应器在食品、医药、饲料领域的应用。
PCT/CN2018/081004 2018-01-24 2018-03-29 一种人体胃肠道模型可视化仿生消化系统 WO2019144496A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/121,720 US20190228681A1 (en) 2018-01-24 2018-09-05 Visual Bionic Digestive System for Human Gastrointestinal Tract Model

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810069220.8A CN108008088B (zh) 2018-01-24 2018-01-24 一种肠道体外可视化仿生反应器
CN201810069219.5 2018-01-24
CN201810068728.6 2018-01-24
CN201810069220.8 2018-01-24
CN201810069219.5A CN108318625B (zh) 2018-01-24 2018-01-24 一种人体肠道模型可视化仿生消化系统
CN201810068728.6A CN108088966B (zh) 2018-01-24 2018-01-24 一种胃体可视化仿生消化反应器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/121,720 Continuation US20190228681A1 (en) 2018-01-24 2018-09-05 Visual Bionic Digestive System for Human Gastrointestinal Tract Model

Publications (1)

Publication Number Publication Date
WO2019144496A1 true WO2019144496A1 (zh) 2019-08-01

Family

ID=67395167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081004 WO2019144496A1 (zh) 2018-01-24 2018-03-29 一种人体胃肠道模型可视化仿生消化系统

Country Status (1)

Country Link
WO (1) WO2019144496A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256667A1 (en) * 2009-04-03 2010-10-07 Reshape Medical, Inc. Intragastric space fillers and methods of manufacturing including in vitro testing
CN103675205A (zh) * 2013-11-26 2014-03-26 南昌大学 一种模拟胃部消化的装置及使用方法
CN103740589A (zh) * 2014-01-09 2014-04-23 江南大学 人体胃肠道仿生系统及基于该系统的模拟实验方法
CN105702146A (zh) * 2015-12-31 2016-06-22 南通东概念新材料有限公司 仿生动态鼠胃-十二指肠消化系统模拟装置和模拟实验方法
CN105842407A (zh) * 2016-06-16 2016-08-10 湖南中本智能科技发展有限公司 一种立式动物胃肠道仿生消化器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256667A1 (en) * 2009-04-03 2010-10-07 Reshape Medical, Inc. Intragastric space fillers and methods of manufacturing including in vitro testing
CN103675205A (zh) * 2013-11-26 2014-03-26 南昌大学 一种模拟胃部消化的装置及使用方法
CN103740589A (zh) * 2014-01-09 2014-04-23 江南大学 人体胃肠道仿生系统及基于该系统的模拟实验方法
CN105702146A (zh) * 2015-12-31 2016-06-22 南通东概念新材料有限公司 仿生动态鼠胃-十二指肠消化系统模拟装置和模拟实验方法
CN105842407A (zh) * 2016-06-16 2016-08-10 湖南中本智能科技发展有限公司 一种立式动物胃肠道仿生消化器

Similar Documents

Publication Publication Date Title
US20190228681A1 (en) Visual Bionic Digestive System for Human Gastrointestinal Tract Model
CN108318625B (zh) 一种人体肠道模型可视化仿生消化系统
CN101482460B (zh) 单胃动物仿生消化系统及基于该系统模拟单胃动物消化的方法
CN108088966B (zh) 一种胃体可视化仿生消化反应器
CN103740589B (zh) 人体胃肠道仿生系统及基于该系统的模拟实验方法
CN105702146B (zh) 仿生动态鼠胃-十二指肠消化系统模拟装置和模拟实验方法
US5525305A (en) In vitro model of an in vivo digestive tract
CN201344926Y (zh) 单胃动物仿生消化系统
CN110231437A (zh) 一种实验型自动模拟胃肠连续消化的装置及使用方法
CN101896954B (zh) 单胃哺乳动物或人类的胃的模拟装置
CN108008088B (zh) 一种肠道体外可视化仿生反应器
CN104851346B (zh) 模块化动物消化道体外模拟系统及其人类肠道模拟方法
CN206828536U (zh) 一种大肠菌群检测装置
CN207717742U (zh) 一种食物过敏原的模拟消化装置
CN104034912B (zh) 一种全自动单胃动物仿生消化仪
CN209625582U (zh) 一种半透膜法人体消化道模拟器
CN110734843B (zh) 一种模拟结肠环境的发酵系统以及发酵方法
WO2019144496A1 (zh) 一种人体胃肠道模型可视化仿生消化系统
CN107287120A (zh) 一种细胞制备给料系统
CN207503515U (zh) 一种人体胃肠道体外模拟消化器
CN209894792U (zh) 一种实验型自动模拟胃肠连续消化的装置
CN111676127A (zh) 一种模拟结肠环境的小型发酵系统及其发酵方法
CN205786550U (zh) 一种全自动单胃动物仿生消化系统
CN209894783U (zh) 一种胃肠动态模拟装置
CN107831124A (zh) 一种饲料中有效磷含量的仿生消化测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902596

Country of ref document: EP

Kind code of ref document: A1