WO2019144449A1 - 触控驱动电路、触控组件、触控驱动方法及显示触控设备 - Google Patents

触控驱动电路、触控组件、触控驱动方法及显示触控设备 Download PDF

Info

Publication number
WO2019144449A1
WO2019144449A1 PCT/CN2018/076340 CN2018076340W WO2019144449A1 WO 2019144449 A1 WO2019144449 A1 WO 2019144449A1 CN 2018076340 W CN2018076340 W CN 2018076340W WO 2019144449 A1 WO2019144449 A1 WO 2019144449A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
touch
cathode
circuit
generating circuit
Prior art date
Application number
PCT/CN2018/076340
Other languages
English (en)
French (fr)
Inventor
林丹
刘敏伦
戴其兵
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/034,851 priority Critical patent/US20190227658A1/en
Publication of WO2019144449A1 publication Critical patent/WO2019144449A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present application relates to the field of touch technologies, and in particular, to a touch driving circuit, a touch component, a touch driving method, and a display touch device.
  • the AMOLED display technology is a display technology with a competitive advantage in the future, including an OLED display panel and a touch panel on the upper surface thereof.
  • the touch panel includes a plurality of touch electrodes.
  • the touch electrodes are directly formed on the package layer.
  • the touch integration is realized, but the touch electrode is closer to the cathode, so that the coupling capacitance between the touch electrode and the cathode is also larger, so that the amount of charge flowing from the touch electrode to the cathode is excessive, resulting in
  • the capacitance change of the touch electrode is too small, thereby affecting the touch performance.
  • the purpose of the present application is to provide a cooling system capable of sub-regional temperature regulation and improving the yield of the vapor deposited film layer.
  • the purpose of the application is to provide a touch driving circuit capable of reducing the amount of charge flowing from the touch electrode to the cathode.
  • the present application provides a touch driving circuit for driving an OLED touch panel
  • the touch driving circuit includes a touch chip and a regulating voltage generating circuit
  • the touch chip includes a first voltage generating circuit.
  • the first voltage generating circuit is configured to generate a first voltage signal
  • the first voltage signal is provided to a transmitting electrode of the OLED touch panel
  • the adjusting voltage generating circuit is configured to generate a regulating voltage
  • the adjusting The voltage polarity of the voltage is the same as the polarity of the cathode-loaded cathode voltage in the OLED touch panel, and the regulated voltage is supplied to the emitter electrode.
  • the regulated voltage is the same as the cathode loaded cathode voltage.
  • the touch chip includes an adding circuit, the cathode is electrically connected to the adding circuit, and the cathode voltage is used as the adjusting voltage.
  • the present disclosure provides a touch control device including a touch driving circuit and a touch display panel.
  • the touch driving circuit includes a touch chip and a regulated voltage generating circuit.
  • the touch display panel includes a cathode and a light emitting device.
  • An electrode and a receiving electrode, the touch chip includes a first voltage generating circuit, a first coupling capacitor is formed between the transmitting electrode and the receiving electrode, and a second coupling capacitor is formed between the emitter electrode and the cathode.
  • the first voltage generating circuit Forming a third coupling capacitor between the receiving electrode and the cathode, the first voltage generating circuit outputting a first voltage signal to the transmitting electrode, to the first coupling capacitor, the second coupling capacitor, and The third coupling capacitor is charged, the regulated voltage generating circuit is configured to generate a regulated voltage, the regulated voltage is supplied to the transmitting electrode, and the regulated voltage is the same as a polarity of the cathode-loaded cathode voltage.
  • the regulated voltage is the same as the cathode loaded cathode voltage.
  • the touch chip includes an adding circuit, the cathode is electrically connected to the adding circuit, and the cathode voltage is used as the adjusting voltage.
  • the present application provides a touch driving method, including the following steps:
  • the touch chip includes a first voltage generating circuit, the first voltage generating circuit generates a first voltage signal, and the first voltage signal is provided to the OLED touch panel Transmitting electrode
  • the regulated voltage generating circuit generates a regulated voltage having a polarity equal to a polarity of a cathode-loaded cathode voltage in the OLED touch panel, and the regulated voltage is supplied to the transmitting electrode.
  • the regulated voltage is set to be the same as the cathode loaded cathode voltage.
  • the touch chip includes an adding circuit electrically connecting the cathode to the adding circuit, and using the cathode voltage as the adjusting voltage.
  • the present application further provides a touch control device, including the touch drive circuit described in any one of the implementation manners of the first aspect.
  • the touch driving circuit provided by the present application provides a regulating voltage generating circuit and generates a regulating voltage.
  • the voltage polarity of the adjusting voltage is the same as the polarity of the cathode voltage, and the adjusting voltage is supplied to the transmitting electrode, so that the cathode voltage is equivalent. Most of the offset is made such that the amount of charge flowing from the emitter electrode and the receiver electrode to the cathode is reduced, thereby improving touch performance.
  • FIG. 1 is a schematic structural view of an OLED touch panel according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a relationship between a touch component and a touch chip in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a relationship between a touch component and a touch chip in another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a relationship between a touch component and a touch chip in another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a touch driving circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a voltage signal of an embodiment
  • FIG. 7 is a schematic diagram of a voltage signal after the voltage signal of FIG. 6 is loaded with an adjustment voltage.
  • the touch driving circuit provided by the present application can be applied to a display touch device, such as a smart phone, a tablet computer, a mobile assistant, a conference presentation device, and the like.
  • FIG. 1 is a schematic structural diagram of an OLED touch panel according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing a relationship between a touch component and a touch chip according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a touch driving circuit according to an embodiment of the present disclosure.
  • the OLED touch panel includes a cathode 100, an encapsulation layer 150, a touch electrode (a transmitting electrode 15 and a receiving electrode 25), and a polarizer.
  • the coupling capacitor Cx forms an electric field between the transmitting electrode 15 and the receiving electrode 25.
  • the electric field line is as shown by the arrow line in FIG. 1.
  • the touch principle is that when the human finger touches the surface of the cover 400, the human body is equivalent to a grounding point, and the transmitting electrode Part of the electric field line produced by 15 is grounded by the human finger and cannot reach the receiving electrode 25.
  • the signal processing module 13 of 10 calculates the position at which the receiving electrode 25 whose amount of generated electric charge is reduced can be obtained, thereby realizing a touch effect.
  • the transmitting electrode 15 and the receiving electrode 25 are close to the cathode 100, the distance is much smaller than the distance between the transmitting electrode 15 and the receiving electrode 25, and the transmitting electrode 15, the receiving electrode 25 and the cathode 100 are both Metal material, a second coupling capacitor Ca is formed between the emitter electrode 15 and the cathode 100, and a third coupling capacitor Cb is formed between the receiving electrode 25 and the cathode 100.
  • the capacitance formula C ⁇ S/4 ⁇ kd, where ⁇ is a constant , S is the facing area of the capacitor plate, d is the distance of the capacitor plate, k is the electrostatic force constant, and the facing area S between the transmitting electrode 15 and the receiving electrode 25 and the cathode 100 is generally larger than the transmitting electrode 15 and receiving
  • the facing area between the electrodes 25, the distance d between the transmitting electrode 15 and the receiving electrode 25 and the cathode 100 is much smaller than the distance between the transmitting electrode 15 and the receiving electrode 25, so that the second coupling capacitor Ca and the third coupling capacitor Cb will Far greater than the first coupling capacitor Cx, the cathode 100 itself has a cathode voltage due to the function of the display driving circuit, and the presence of the cathode voltage causes the potential difference between the second coupling capacitor Ca and the third coupling capacitor Cb to be compared.
  • a first embodiment of the present application provides a touch driving circuit for driving an OLED touch panel.
  • the touch driving circuit includes a touch chip 10 and a regulating voltage generating circuit 50 .
  • the touch chip 10 includes a first voltage generating circuit 11 for generating a first voltage signal, and the first voltage signal is supplied to the emitter electrode 15 of the OLED touch panel.
  • the adjustment voltage generating circuit 50 is configured to generate an adjustment voltage having a polarity opposite to a polarity of a cathode voltage loaded by the cathode 100 in the OLED touch panel, the adjustment voltage being supplied to the emission Electrode 15.
  • the voltage polarity of the adjusting voltage is the same as the polarity of the cathode voltage, and the adjusting voltage is supplied to the transmitting electrode, so that the cathode voltage is equivalent to being offset most, due to the second coupling
  • the capacitance of the capacitor Ca and the third coupling capacitor Cb is fixed.
  • the adjustment voltage generating circuit 11 may be in a separately provided form or may be generated from an existing OLED display driving circuit (not shown), and the present application specifically does not limit the specific internal structure of the adjusting voltage generating circuit 11.
  • the regulated voltage is the same as the magnitude of the cathode voltage loaded by the cathode 100.
  • the cathode voltage is completely canceled, and the potential difference between the emitter electrode 15 and the cathode 100 is zero, so that the amount of charge flowing from the emitter electrode 15 and the receiving electrode 25 to the cathode 100 is minimized, further improving the touch performance.
  • FIG. 6 is a schematic diagram of a voltage signal of an embodiment.
  • the cathode voltage loaded by the cathode 100 is a negative voltage generated by the OLED display driving circuit when the OLED is driven to emit light.
  • the regulated voltage V100 generated by the regulated voltage generating circuit 50 is also a negative voltage.
  • the cathode voltage of the cathode 100 is generally -1 V to -3 V
  • the first voltage generated by the first voltage generating circuit 11 may be a square wave voltage, so that
  • the touch drive is intermittent pulse drive, which is at a low level and is driven at a high level, which can optimize the resource allocation of the touch chip 10, save energy, and does not affect the touch effect.
  • the high level of the square wave voltage signal is VDD, and the low level is 0.
  • FIG. 7 is a schematic diagram of the voltage signal after the voltage signal of FIG. 6 is loaded with the adjustment voltage.
  • the low level of the touch electrode 15 is V100, and the high level is VDD-V100.
  • the cathode voltage of the cathode 100 is -2V
  • the high level VDD of the square wave voltage signal is 6V
  • the low level is 0V.
  • the adjustment voltage V100 is set to -1V
  • the low level of the square wave voltage signal received by the touch electrode 15 is -1V
  • the second The potential difference between the two ends of the coupling capacitor Ca is 1V
  • the potential difference is reduced.
  • the potential difference of the third coupling capacitor Cb can be referred to the principle of the potential difference of the second coupling capacitor Ca, and will not be described again.
  • the first voltage generating circuit 11 may be a circuit connected to an alternating current (for example, a commercial power), and the touch chip 10 further includes an amplifier (AMP) and an converter (Analog to Digital Converter, ADC).
  • AMP amplifier
  • ADC Analog to Digital Converter
  • the amount of change in the amount of charge received by the receiving electrode 25 is weak, and the amplifier is used to amplify the amount of change in the amount of received charge of the receiving electrode 25 so that the signal processing module 13 of the touch chip 10 can process it.
  • the converter is used to convert the signal output by the amplifier into a signal that the signal processing module 13 of the touch chip 10 can recognize.
  • FIG. 3 is a schematic diagram showing the relationship between the touch component and the touch chip in another embodiment of the present application, which is basically the same as the first embodiment, except that the The touch chip 10 includes an adding circuit 12, and the regulating voltage generated by the adjusting voltage generating circuit 50 is supplied to the adding circuit 12, and the adding circuit 12 loads the adjusting voltage to the first voltage generating circuit 11, so that The voltage signal generated by the first voltage generating circuit 11 is a superimposed signal of the first voltage signal and the adjusted voltage signal, and the superimposed signal is applied to the driving electrode 15, and the reducing of the transmitting electrode 15 and the receiving electrode 25 to the cathode can also be achieved.
  • the effect of the amount of 100 flowing charge improves the touch performance.
  • the function of the adding circuit 12 loads a voltage onto another voltage.
  • the adjusting voltage signal is superimposed on the first voltage signal of the touch chip 10.
  • the present application does not limit the specific structure of the adding circuit, as long as it can be realized. The above functions are all.
  • FIG. 4 is a schematic diagram showing the relationship between the touch component and the touch chip in another embodiment of the present application, which is basically the same as the first embodiment, except that the The touch chip 10 includes an adding circuit 12, and the cathode 100 is electrically connected to the adding circuit 12, and the cathode voltage is used as the adjusting voltage.
  • the cathode 100 is electrically connected to the adding circuit 12, the cathode voltage is used as the adjusting voltage, and the cathode voltage signal is superimposed with the first voltage signal, so that the potential difference between the touch electrode 15 and the cathode 100 becomes zero, further reducing the transmitting electrode 15 and The amount of charge that the receiving electrode 25 flows toward the cathode 100 further improves the touch performance.
  • the adding circuit 12 in the present embodiment functions to superimpose the adjusted voltage signal on the first voltage signal of the touch chip 10.
  • the charging process of the first touch capacitor Cx, the second coupling capacitor Ca, and the third coupling capacitor Cb is an integration process, and the first coupling capacitor Cx, The voltage across the second coupling capacitor Ca and the third coupling capacitor Cb changes with time until the charge is saturated.
  • V0 is the cathode voltage value on the capacitor
  • Vu is the capacitor full termination voltage value
  • Vt is the voltage value on the capacitor at any time t
  • the rated voltage of the touch chip 10 is E
  • the resistance of the circuit is R
  • the capacitance of the capacitor is C.
  • C is the total capacitance of the circuit.
  • Qx and Qb are similar to this.
  • the transmitting electrode 15 includes a first impedance Rtx
  • the receiving electrode 25 includes a second impedance Rrx.
  • the first coupling capacitor Cx, the second coupling capacitor Ca, and the The voltage of the third coupling capacitor Cb is lower than the high level of the first voltage signal (square wave signal) generated by the first voltage generating circuit 11.
  • the high level of the first voltage signal (square wave signal) generated by the first voltage generating circuit 11 is the rated voltage E, and the voltage of the capacitor due to the loss is smaller than the voltage output by the touch chip 10.
  • the present application further provides a touch component including a touch driving circuit and a touch display panel.
  • the touch driving circuit includes a touch chip 10 and a regulating voltage generating circuit 50.
  • the touch display panel includes a cathode 100, a transmitting electrode 15 and a receiving electrode 25, the touch chip 10 includes a first voltage generating circuit 11 , and a first coupling capacitor Cx is formed between the transmitting electrode 15 and the receiving electrode 25, A second coupling capacitor Ca is formed between the emitter electrode 15 and the cathode 100, a third coupling capacitor Cb is formed between the receiving electrode 25 and the cathode 100, and the first voltage generating circuit 11 outputs a first voltage.
  • the adjusting voltage generating circuit 50 for generating a regulating voltage, A regulated voltage is supplied to the emitter electrode 15, the adjustment voltage being the same as the polarity of the cathode voltage loaded by the cathode 100.
  • the regulated voltage is the same as the magnitude of the cathode voltage loaded by the cathode 100.
  • the touch chip 10 includes an adding circuit 12, and the cathode 100 is electrically connected to the adding circuit 12, and the cathode voltage is used as the adjusting voltage.
  • the present application further provides a touch driving method, including the following steps:
  • the touch chip 10 includes a first voltage generating circuit 11, the first voltage generating circuit 11 generates a first voltage signal, and supplies the first voltage signal to the The emitter electrode 15 of the OLED touch panel;
  • the adjustment voltage generating circuit 50 generates an adjustment voltage whose voltage polarity is the same as the polarity of the cathode voltage loaded by the cathode 100 in the OLED touch panel, and the adjustment voltage is supplied to the emission electrode 15.
  • the regulated voltage is set to be the same as the magnitude of the cathode voltage loaded by the cathode 100.
  • the touch chip 10 includes an adding circuit 12 that electrically connects the cathode 100 to the adding circuit 12 and uses the cathode voltage as the adjusting voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种触控驱动电路,一种触控组件、触控驱动方法及显示触控设备。上述触控驱动电路用于驱动OLED触控面板,所述触控驱动电路包括触控芯片(10)、调节电压产生电路(50),所述触控芯片(10)包括第一电压产生电路(11),所述第一电压产生电路(11)用于产生第一电压信号,所述第一电压信号被提供给所述OLED触控面板的发射电极(15),所述调节电压产生电路(50)用于产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极(100)加载的阴极电压的极性相同,所述调节电压被提供给所述发射电极(15)。通过上述触控驱动电路,使得发射电极(15)和接收电极(25)向阴极(100)流动的电荷量减少,从而改善了触控性能。

Description

触控驱动电路、触控组件、触控驱动方法及显示触控设备
本申请要求于2018年1月23日提交中国专利局、申请号为201810064389.4、申请名称为“触控驱动电路、触控组件、触控驱动方法及显示触控设备”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请属于触控技术领域,尤其涉及一种触控驱动电路、触控组件、触控驱动方法及显示触控设备。
背景技术
AMOLED显示技术是未来极具竞争优势的显示技术,包括OLED显示面板和其上表面的触控面板,触控面板包括多个触控电极,为了AMOLED显示更加轻薄,触控电极直接做在封装层上方的阴极上,实现触控集成化,但触控电极离阴极更近,这样导致触控电极与阴极之间的耦合电容也更大,使得触控电极向阴极流动的电荷量过多,造成人手指触摸OLED显示面板时触控电极的电容改变量过小,进而影响触控性能。
发明内容
本申请的目的是提供一种冷却系统,能对温度进行分区域调控,可提高蒸镀膜层的良率。
本申请的目的是提供一种触控驱动电路,能减小触控电极向阴极流动的电荷量。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请提供了一种触控驱动电路,用于驱动OLED触控面板,所述触控驱动电路包括触控芯片、调节电压产生电路,所述触控芯片包括第一电压产生电路,所述第一电压产生电路用于产生第一电压信号,所述第一电压 信号被提供给所述OLED触控面板的发射电极,所述调节电压产生电路用于产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极加载的阴极电压的极性相同,所述调节电压被提供给所述发射电极。
在第一方面的第一种可能的实现方式中,所述调节电压与所述阴极加载的阴极电压的大小相同。
在第一方面的第二种可能的实现方式中,所述触控芯片包括加法电路,所述阴极与所述加法电路电连接,所述阴极电压作为所述调节电压。
第二方面,本申请提供一种触控组件,包括触控驱动电路及触控显示面板,所述触控驱动电路包括触控芯片及调节电压产生电路,所述触控显示面板包括阴极、发射电极和接收电极,所述触控芯片包括第一电压产生电路,所述发射电极与所述接收电极之间形成第一耦合电容,所述发射电极与所述阴极之间形成第二耦合电容,所述接收电极与所述阴极之间形成第三耦合电容,所述第一电压产生电路输出第一电压信号给所述发射电极,以对所述第一耦合电容、所述第二耦合电容和所述第三耦合电容充电,所述调节电压产生电路用于产生调节电压,所述调节电压被提供给所述发射电极,所述调节电压与所述阴极加载的阴极电压的极性相同。
在第二方面的第一种可能的实现方式中,所述调节电压与所述阴极加载的阴极电压的大小相同。
在第二方面的第二种可能的实现方式中,所述触控芯片包括加法电路,所述阴极与所述加法电路电连接,所述阴极电压作为所述调节电压。
第三方面,本申请提供一种触控驱动方法,包括如下步骤:
配置触控芯片和调节电压产生电路,所述触控芯片包括第一电压产生电路,所述第一电压产生电路产生第一电压信号,将所述第一电压信号提供给所述OLED触控面板的发射电极;
所述调节电压产生电路产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极加载的阴极电压的极性相同,将所述调节电压提供给所述发射电极。
在第三方面的第一种可能的实现方式中,设置所述调节电压与所述阴极加载的阴极电压的大小相同。
在第三方面的第二种可能的实现方式中,所述触控芯片包括加法电路,将所述阴极与所述加法电路电连接,将所述阴极电压作为所述调节电压。
第四方面,本申请还提供了一种显示触控设备,包括第一方面中的任一种实现方式中所述的触控驱动电路。
本申请的有益效果:
本申请提供的一种触控驱动电路,通过设置调节电压产生电路,并产生调节电压,调节电压的电压极性与阴极电压的极性相同,调节电压被提供给发射电极,使得阴极电压相当于被抵消了大部分,使得发射电极和接收电极向阴极流动的电荷量减少,从而改善了触控性能。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一种实施方式的OLED触控面板结构示意图;
图2是本申请一种实施方式的触控组件与触控芯片电连接的关系示意图;
图3是本申请另一种实施方式的触控组件与触控芯片电连接的关系示意图;
图4是本申请另一种实施方式的触控组件与触控芯片电连接的关系示意图;
图5是本申请一种实施方式的触控驱动电路的结构示意图;
图6是一种实施方式的电压信号示意图;
图7是图6的电压信号加载调节电压后的电压信号示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的触控驱动电路可以应用于显示触控设备,例如智能手机、平板电脑、移动助理、会议演示设备等。
请参阅图1、图2和图5,图1是本申请一种实施方式的OLED触控面板结构示意图,图2是本申请一种实施方式的触控组件与触控芯片电连接的关系示意图,图5是本申请一种实施方式的触控驱动电路的结构示意图,OLED触控面板包括依次层叠设置的阴极100、封装层150、触控电极(发射电极15和接收电极25)、偏光片200、OCA胶层300和盖板400,发射电极15和接收电极25呈网格状覆盖在阴极100上,形成触控结构,发射电极15接收到电压信号后与接收电极25之间形成第一耦合电容Cx,在发射电极15与接收电极25之间形成电场,电场线如图1中箭头线所示,触控原理是人手指触摸盖板400表面时,人体相当于一个接地点,发射电极15产出的部分电场线经过人手指接地而不能到达接收电极25,会产生接收电极25接收到的电荷量减小的现象,使得第一耦合电容Cx会产生变化,通过触控芯片10的信号处理模块13计算可以得到产生电荷量减小的接收电极25的位置,从而实现触控效果。
结合图2和图5,发射电极15和接收电极25与阴极100距离很近,其距离远小于发射电极15与接收电极25之间的距离,而发射电极15、接收电极25和阴极100均为金属材质,发射电极15与阴极100之间形成第二耦合电容Ca,接收电极25与阴极100之间形成第三耦合电容Cb,根据电容的决定式C=εS/4πkd,其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量,发射电极15和接收电极25与阴极100之间的正对面积S一般大于发射电极15与接收电极25之间的正对面积,发射电极15和接收电极25与阴极100之间距离d远小于发射电极15与接收电极25之间的距离,使得第二耦合电容Ca和第三耦合电容Cb会远远大于第一耦合电容Cx,阴极100本身由于显示驱动电路的作用,会存在一个阴极电压,阴极电压的存在使得第二耦合电容Ca和第三耦合电容Cb两侧的电势差相比于阴极100电压为零的情况下变得更大,会造成阴极100吸收的电场线更多,也就是说,发射电极15和接收电极25向阴极100流动的电荷量更多,极大的影响触控效果。
请继续参考图2,本申请的第一种实施方式提供的一种触控驱动电路,用 于驱动OLED触控面板,所述触控驱动电路包括触控芯片10、调节电压产生电路50,所述触控芯片10包括第一电压产生电路11,所述第一电压产生电路11用于产生第一电压信号,所述第一电压信号被提供给所述OLED触控面板的发射电极15,所述调节电压产生电路50用于产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极100加载的阴极电压的极性相同,所述调节电压被提供给所述发射电极15。
通过设置调节电压产生电路50,并产生调节电压,调节电压的电压极性与阴极电压的极性相同,调节电压被提供给发射电极,使得阴极电压相当于被抵消了大部分,由于第二耦合电容Ca和第三耦合电容Cb的电容量是固定的,当第一电压产生电路11对第二耦合电容Ca和第三耦合电容Cb充电时,第二耦合电容Ca和第三耦合电容Cb的电势差减小,使得发射电极15和接收电极25向阴极100流动的电荷量减少,从而改善了触控性能。
调节电压产生电路11可以为单独设置的形式,也可以从现有的OLED显示驱动电路(图中未示出)中产生,本申请具体不限制调节电压产生电路11的具体内部结构。
一种实施方式中,所述调节电压与所述阴极100加载的阴极电压的大小相同。使得阴极电压被完全抵消,发射电极15与阴极100之间的电势差为零,使得发射电极15和接收电极25向阴极100流动的电荷量最少,进一步改善了触控性能。
本实施方式中,请一并参考图6,图6是一种实施方式的电压信号示意图,阴极100加载的阴极电压为负电压,该负电压由OLED显示驱动电路在驱动OLED发光时产生,设置调节电压产生电路50产生的调节电压V100也为负电压,举例而言,阴极100的阴极电压一般为-1V~-3V,第一电压产生电路11产生的第一电压可以为方波电压,使得触控驱动为间歇式的脉冲驱动,在低电平时休息,在高电平时驱动,能优化触控芯片10的资源分配,节约能耗,不会影响触控效果。方波电压信号的高电平为VDD,低电平为0,将调节电压V100加载触控电极15后,请参考图7,图7是图6的电压信号加载调节电压后的电压信号示意图,触控电极15的低电平为V100,高电平为VDD-V100,举例而言,阴极100加载的阴极电压为-2V,方波电压信号的高电平VDD为 6V,低电平为0V,设置调节电压V100为-1V,则加载调节电压V100为-1V后,触控电极15接收到的方波电压信号的低电平为-1V,高电平为6V-1V=5V,第二耦合电容Ca两端的电势差为低电平为1V,高电平时的电势差为5V-(-1V)=6V,相比原高电平为6V的电压信号的电势差6V-(-2V)=8V,减小了电势差。第三耦合电容Cb的电势差可参考第二耦合电容Ca的电势差的原理即可,不再赘述。
请继续参考图5,第一电压产生电路11可以为接到交流电(例如市电)上的电路,触控芯片10还包括放大器(amplifier,AMP)和转换器(Analog to Digital Converter,ADC),一般而言,接收电极25的接收的电荷量的变化量很微弱,放大器用于将接收电极25的接收的电荷量的变化量放大以便于触控芯片10的信号处理模块13能够处理。转换器用于将放大器输出的信号转换为触控芯片10的信号处理模块13能够识别的信号。
一种实施方式中,请参考图3,图3是本申请另一种实施方式的触控组件与触控芯片电连接的关系示意图,与第一种实施方式基本相同,不同的是,所述触控芯片10包括加法电路12,所述调节电压产生电路50产生的调节电压被提供给加法电路12,所述加法电路12将所述调节电压加载到所述第一电压产生电路11,使得所述第一电压产生电路11产生的电压信号为第一电压信号和调节电压信号的叠加信号,将所述叠加信号加载到驱动电极15上,也能达到减小发射电极15和接收电极25向阴极100流动的电荷量的作用,从而改善触控性能。
加法电路12的功能将一个电压加载到另一电压上,本实施方式中为将调节电压信号叠加到触控芯片10的第一电压信号上,本申请不限制加法电路的具体结构,只要能够实现上述功能即可。
一种实施方式中,请参考图4,图4是本申请另一种实施方式的触控组件与触控芯片电连接的关系示意图,与第一种实施方式基本相同,不同的是,所述触控芯片10包括加法电路12,所述阴极100与所述加法电路12电连接,所述阴极电压作为所述调节电压。将阴极100与加法电路12电连接,则阴极电压作为调节电压,阴极电压信号与第一电压信号叠加,使得触控电极15与阴极100之间的电势差变为零,进一步减小发射电极15和接收电极25向阴极 100流动的电荷量,进一步改善触控性能。
本实施方式中的加法电路12的作用为将调节电压信号叠加到触控芯片10的第一电压信号上。
一种实施方式中,本触控驱动电路对所述第一耦合电容Cx、所述第二耦合电容Ca和所述第三耦合电容Cb的充电过程为积分过程,所述第一耦合电容Cx、所述第二耦合电容Ca和所述第三耦合电容Cb两端的电压随时间变化,直至充电饱和。
具体的,设,V0为电容上的阴极电压值;Vu为电容充满终止电压值;Vt为任意时刻t,电容上的电压值;触控芯片10的额定电压为E,电路的电阻为R,电容的电容量为C。
则,Vt=V0+(Vu-V0)*[1-exp(-t/RC)]
当V0=0,充电极限Vu=E,
电荷量Q=E*C(1-e^(-t/RC))
应当理解,式中C是电路的总电容,对本实施方式来说,电路总电荷量Q=Qx+Qa+Qb,式中Qx是第一耦合电容Cx的电荷量,Qa是第二耦合电容Ca的电荷量,Qb是第三耦合电容Qb的电荷量,则Qa=E*Ca(1-e^(-t/RCx))。Qx与Qb与此式类似。
一种实施方式中,所述发射电极15包括第一阻抗Rtx,所述接收电极25包括第二阻抗Rrx,充电饱和时,所述第一耦合电容Cx、所述第二耦合电容Ca和所述第三耦合电容Cb的电压小于所述第一电压产生电路11产生的第一电压信号(方波信号)的高电平。
由于阻抗的存在会损耗一部分电压,一般当充电到t=3RC时,电容电压=0.95E认为饱和,即Q=0.95E*C。而第一电压产生电路11产生的第一电压信号(方波信号)的高电平即为额定电压E,由于损耗的存在电容的电压会小于触控芯片10输出的电压。
请参考图1至图7,本申请还提供了一种触控组件,包括触控驱动电路及触控显示面板,所述触控驱动电路包括触控芯片10及调节电压产生电路50,所述触控显示面板包括阴极100、发射电极15和接收电极25,所述触控芯片10包括第一电压产生电路11,所述发射电极15与所述接收电极25之间形成 第一耦合电容Cx,所述发射电极15与所述阴极100之间形成第二耦合电容Ca,所述接收电极25与所述阴极100之间形成第三耦合电容Cb,所述第一电压产生电路11输出第一电压信号给所述发射电极15,以对所述第一耦合电容Cx、所述第二耦合电容Ca和所述第三耦合电容Cb充电,所述调节电压产生电路50用于产生调节电压,所述调节电压被提供给所述发射电极15,所述调节电压与所述阴极100加载的阴极电压的极性相同。
一种实施方式中,所述调节电压与所述阴极100加载的阴极电压的大小相同。
一种实施方式中,所述触控芯片10包括加法电路12,所述阴极100与所述加法电路12电连接,所述阴极电压作为所述调节电压。
请参考图1至图7,本申请还提供了一种触控驱动方法,包括如下步骤:
配置触控芯片10和调节电压产生电路50,所述触控芯片10包括第一电压产生电路11,所述第一电压产生电路11产生第一电压信号,将所述第一电压信号提供给所述OLED触控面板的发射电极15;
所述调节电压产生电路50产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极100加载的阴极电压的极性相同,将所述调节电压提供给所述发射电极15。
一种实施方式中,设置所述调节电压与所述阴极100加载的阴极电压的大小相同。
一种实施方式中,所述触控芯片10包括加法电路12,将所述阴极100与所述加法电路12电连接,将所述阴极电压作为所述调节电压。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (12)

  1. 一种触控驱动电路,用于驱动OLED触控面板,其中,所述触控驱动电路包括触控芯片、调节电压产生电路,所述触控芯片包括第一电压产生电路,所述第一电压产生电路用于产生第一电压信号,所述第一电压信号被提供给所述OLED触控面板的发射电极,所述调节电压产生电路用于产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极加载的阴极电压的极性相同,所述调节电压被提供给所述发射电极。
  2. 如权利要求1所述的触控驱动电路,其中,所述调节电压与所述阴极加载的阴极电压的大小相同。
  3. 如权利要求1所述的触控驱动电路,其中,所述触控芯片包括加法电路,所述阴极与所述加法电路电连接,所述阴极电压作为所述调节电压。
  4. 一种触控组件,其中,包括触控驱动电路及触控显示面板,所述触控驱动电路包括触控芯片及调节电压产生电路,所述触控显示面板包括阴极、发射电极和接收电极,所述触控芯片包括第一电压产生电路,所述发射电极与所述接收电极之间形成第一耦合电容,所述发射电极与所述阴极之间形成第二耦合电容,所述接收电极与所述阴极之间形成第三耦合电容,所述第一电压产生电路输出第一电压信号给所述发射电极,以对所述第一耦合电容、所述第二耦合电容和所述第三耦合电容充电,所述调节电压产生电路用于产生调节电压,所述调节电压被提供给所述发射电极,所述调节电压与所述阴极加载的阴极电压的极性相同。
  5. 如权利要求4所述的触控组件,其中,所述调节电压与所述阴极加载的阴极电压的大小相同。
  6. 如权利要求4所述的触控组件,其中,所述触控芯片包括加法电路,所述阴极与所述加法电路电连接,所述阴极电压作为所述调节电压。
  7. 一种触控驱动方法,其中,包括如下步骤:
    配置触控芯片和调节电压产生电路,所述触控芯片包括第一电压产生电路,所述第一电压产生电路产生第一电压信号,将所述第一电压信号提供给所述OLED触控面板的发射电极;
    所述调节电压产生电路产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极加载的阴极电压的极性相同,将所述调节电压提供给所述发射电极。
  8. 如权利要求7所述的触控驱动方法,其中,设置所述调节电压与所述阴极加载的阴极电压的大小相同。
  9. 如权利要求7所述的触控驱动方法,其中,所述触控芯片包括加法电路,将所述阴极与所述加法电路电连接,将所述阴极电压作为所述调节电压。
  10. 一种显示触控设备,其中,包括触控驱动电路,所述触控驱动电路包括触控芯片、调节电压产生电路,所述触控芯片包括第一电压产生电路,所述第一电压产生电路用于产生第一电压信号,所述第一电压信号被提供给所述OLED触控面板的发射电极,所述调节电压产生电路用于产生调节电压,所述调节电压的电压极性与所述OLED触控面板中的阴极加载的阴极电压的极性相同,所述调节电压被提供给所述发射电极。
  11. 如权利要求10所述的显示触控设备,其中,所述调节电压与所述阴极加载的阴极电压的大小相同。
  12. 如权利要求10所述的显示触控设备,其中,所述触控芯片包括加法电路,所述阴极与所述加法电路电连接,所述阴极电压作为所述调节电压。
PCT/CN2018/076340 2018-01-23 2018-02-11 触控驱动电路、触控组件、触控驱动方法及显示触控设备 WO2019144449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/034,851 US20190227658A1 (en) 2018-01-23 2018-07-13 Touch driving circuit, touch component, and display touch device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810064389.4 2018-01-23
CN201810064389.4A CN108089766B (zh) 2018-01-23 2018-01-23 触控驱动电路、触控组件、触控驱动方法及显示触控设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/034,851 Continuation US20190227658A1 (en) 2018-01-23 2018-07-13 Touch driving circuit, touch component, and display touch device

Publications (1)

Publication Number Publication Date
WO2019144449A1 true WO2019144449A1 (zh) 2019-08-01

Family

ID=62182600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076340 WO2019144449A1 (zh) 2018-01-23 2018-02-11 触控驱动电路、触控组件、触控驱动方法及显示触控设备

Country Status (2)

Country Link
CN (1) CN108089766B (zh)
WO (1) WO2019144449A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111998A1 (ko) * 2012-01-27 2013-08-01 크루셜텍 주식회사 기생정전용량을 저감시키는 터치 검출 장치 및 그 방법
CN103425368A (zh) * 2012-05-21 2013-12-04 群创光电股份有限公司 触控系统及减少累积电荷的方法
CN104156106A (zh) * 2014-07-25 2014-11-19 京东方科技集团股份有限公司 触控装置及其驱动方法
CN106784375A (zh) * 2016-12-27 2017-05-31 武汉华星光电技术有限公司 Oled显示单元及其制作方法
CN107025008A (zh) * 2016-01-29 2017-08-08 乐金显示有限公司 驱动电路、触摸显示装置以及驱动触摸显示装置的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920309A (en) * 1996-01-04 1999-07-06 Logitech, Inc. Touch sensing method and apparatus
US6842327B1 (en) * 2003-08-05 2005-01-11 Impinj, Inc. High-voltage CMOS-compatible capacitors
JP4945345B2 (ja) * 2007-07-03 2012-06-06 株式会社 日立ディスプレイズ タッチパネル付き表示装置
TW201414349A (zh) * 2012-09-17 2014-04-01 Luxul Technology Inc 使用分數分壓器以調節電壓的線性led驅動電路
CN103389771B (zh) * 2013-07-26 2016-08-10 上海华虹宏力半导体制造有限公司 低功耗电压调节电路
CN106154666A (zh) * 2016-08-23 2016-11-23 京东方科技集团股份有限公司 一种阵列基板、其驱动方法、液晶显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111998A1 (ko) * 2012-01-27 2013-08-01 크루셜텍 주식회사 기생정전용량을 저감시키는 터치 검출 장치 및 그 방법
CN103425368A (zh) * 2012-05-21 2013-12-04 群创光电股份有限公司 触控系统及减少累积电荷的方法
CN104156106A (zh) * 2014-07-25 2014-11-19 京东方科技集团股份有限公司 触控装置及其驱动方法
CN107025008A (zh) * 2016-01-29 2017-08-08 乐金显示有限公司 驱动电路、触摸显示装置以及驱动触摸显示装置的方法
CN106784375A (zh) * 2016-12-27 2017-05-31 武汉华星光电技术有限公司 Oled显示单元及其制作方法

Also Published As

Publication number Publication date
CN108089766B (zh) 2020-03-27
CN108089766A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
US10551946B2 (en) Position pointer
US11157712B2 (en) Fingerprint recognition driving circuit, fingerprint recognition module, touch screen, display device and fingerprint recognition driving method
US9519363B2 (en) Stylus and stylus circuitry for capacitive touch screens
WO2018201460A1 (zh) 电容触控装置、电容屏及电容屏的触控方法
JPH051484B2 (zh)
US20190227658A1 (en) Touch driving circuit, touch component, and display touch device
US20210165524A1 (en) Ultrasonic Induction Circuit, Driving Method Thereof, Display Device and Storage Medium
WO2019144449A1 (zh) 触控驱动电路、触控组件、触控驱动方法及显示触控设备
WO2021254503A1 (zh) 信号检测电路、信号检测方法、指纹识别装置及显示设备
WO2018072456A1 (zh) 用于控制显示面板的el驱动电压的装置及方法
CN109598258B (zh) 超声波检测电路和图像传感器像素电路以及信号检测方法
TWI702521B (zh) 位置指示器
CN109617544A (zh) 一种新型上电时序控制设备、系统及方法
US20180028149A1 (en) Flexible surface sensing apparatus for soft and flexible surface
US20240069182A1 (en) Ultrasonic signal detection circuit, ultrasonic signal detection method and ultrasonic detection apparatus
US11776296B2 (en) Ultrasonic fingerprint recognition circuit, method for driving same, and display device
US5500541A (en) Semiconductor device having voltage sensing element
CN108780371B (zh) 触控系统及其电源供应电路
US7965287B2 (en) Power supply switching circuit capable of voltage regulation and flat panel display using same
WO2021166464A1 (ja) タッチセンサ装置及びタッチセンサ装置を備えた電子機器
JPS59182576A (ja) 電界効果トランジスタのゲ−トバイアス電圧発生装置
US10825389B2 (en) Pixel control circuit and control method, pixel unit, display substrate and device
CN214256112U (zh) 整流装置及电源
US20240045548A1 (en) Touch sensing device and touch sensing method
TW202320468A (zh) 具有整合電容位準轉換器電路之單片高側氮化鎵器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902503

Country of ref document: EP

Kind code of ref document: A1