WO2019144448A1 - 传感器 - Google Patents
传感器 Download PDFInfo
- Publication number
- WO2019144448A1 WO2019144448A1 PCT/CN2018/076339 CN2018076339W WO2019144448A1 WO 2019144448 A1 WO2019144448 A1 WO 2019144448A1 CN 2018076339 W CN2018076339 W CN 2018076339W WO 2019144448 A1 WO2019144448 A1 WO 2019144448A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- rotating shaft
- coil
- pole magnet
- roller
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/10—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
Definitions
- the present application relates to the field of liquid crystal panel manufacturing, and in particular, to a sensor on a machine.
- a plurality of large-scale equipments are connected in series on the machine table, and the substrates in the process are slid by the rollers provided on the machine table, and flow in each device in a predetermined order to form a flow operation.
- the rotating shaft is disposed on the rotating shaft, and the plurality of rotating shafts are arranged side by side in the flow direction of the machine on the machine table, and the rotating shaft is perpendicular to a flow direction of the machine.
- the spindle and the roller are also provided for the substrate to slide in and out of the device.
- an inductor is required to position the substrate.
- the optical sensor determines whether there is a substrate by the intensity of the emitted light and the reflected light of the substrate.
- the water vapor may cause false alarms of such sensors, so most of such sensors Applied to the dry section of the machine.
- a rocker type sensor is used for the wet section of the machine: the rocker type sensor is in a vertical state when no substrate passes, and when the substrate is transferred to the position of the sensor, the rocker is pressed downward by the substrate, so that the sensor The corresponding substrate signal is obtained.
- the rocker sensor transmits information by means of mechanism rotation, and does not cause errors due to water vapor or the like.
- the rocker type sensor is limited by the working principle, and the mounting height on the machine table needs to be a certain distance higher than the roller to be pressed by the substrate. In the wet section of the machine, the rocker sensor is likely to cause the rotational friction to become large due to prolonged contact with the chemical solution in the process, and it cannot be pressed normally, resulting in fragmentation of the substrate.
- the purpose of the present application is to provide a sensor that is suitable for both the dry section and the time period of the machine, and has a simple structure and higher reliability.
- the sensor of the present application includes the following technical solutions:
- the sensor for sensing a position of a substrate on a liquid crystal panel processing machine, wherein a rotating shaft is fixed on the machine, and a roller sleeved on the rotating shaft, and a plurality of the rollers are along an axis of the rotating shaft Aligning and rotating, the sensor comprises a magnetic unit, a coil and a sensing circuit; the magnetic unit is fixed on at least one of the rollers; the coil is disposed in the rotating shaft, and the coil is along an axis of the rotating shaft Winding direction, the coil is an open loop circuit; the sensing circuit is electrically connected to the coil, and together with the coil constitutes a closed loop circuit, the closed loop circuit is used to generate the rotation of the roller through the coil Current to sense the position of the substrate.
- the coil comprises two poles extending from the rotating shaft
- the sensing circuit comprises two wires respectively connecting the two poles of the coil, and an indicator connecting the two wires.
- the induction circuit further has a current amplifier connected in series, and the current amplifier is used to amplify the current induced in the sensor.
- the sensing circuit is further connected with a signal processing unit, and the signal processing unit is configured to convert the current sensed by the sensor into an electrical signal.
- the magnetic unit comprises at least a pair of N-pole magnetic blocks and S-pole magnetic blocks, and at least a part of magnetic lines of force formed by the N-pole magnetic blocks and the S-pole magnetic blocks pass through the rotating shaft.
- the magnetic unit is sealed and disposed inside the roller.
- the rotating shaft is divided into a plurality of segments along the axial direction, and each of the rotating shafts includes at least one of the rollers, and at least one of the rollers on each of the rotating shafts is provided with the magnetic unit.
- the outer diameter of the roller containing the magnetic unit is not less than the outer diameter of the remaining rollers.
- the coils are in multiple groups, and the plurality of sets of the coils are all disposed inside the rotating shaft, and the plurality of sets of the coils are connected in series to form the open loop circuit.
- the plurality of rotating shafts are arranged side by side on the machine table, and the sensors are disposed on two adjacent rotating shafts.
- the sensor of the present application is configured by disposing the magnetic unit on the roller, the magnetic unit comprising a pair of N-pole magnetic blocks and S-pole magnetic blocks, the N-pole magnetic block and the S-pole magnetic block forming At least a portion of the magnetic lines of force pass through the rotating shaft; by providing the coil on the rotating shaft, the coil includes a coil wound along an axial direction of the rotating shaft; and the coil is connected through the sensing circuit to finally realize When the substrate passes, the substrate rubs against the rotation of the roller, the magnetic lines of force in the roller rotate relative to the coil, and the coil generates current induction when the magnetic field line is cut, and the current generated by the induction circuit Receiving and forming a signal, the operator can determine whether the substrate passes there according to the current signal of the sensing circuit, and finally realize positioning of the substrate on the machine.
- the sensor described in the present application has the advantages of simple structure, high reliability, and can be used in both the dry section and the wet section of the machine, thereby improving the yield of the liquid crystal panel.
- Figure 1 is a schematic view of the sensor of the present application
- FIG. 2 is a schematic illustration of the internal details of the sensor of the present application.
- FIG. 3 is a schematic diagram of another embodiment of a sensor of the present application.
- a plurality of rotating shafts 210 are arranged side by side along the flow path of the machine table 200 , and the rotating shaft 210 is rotated and provided with a roller 220 .
- the substrate 300 for fabricating the liquid crystal panel realizes sequential flow on the machine table 200 by sliding relative to the roller 220.
- the sensor 100 described herein includes a magnetic unit 10, a coil 20, and a sensing circuit 30.
- the magnetic unit 10 is fixed to at least one of the rollers 220.
- the magnetic unit 10 includes a pair of N-pole magnet blocks 11 and S-pole magnet blocks 12.
- the N-pole magnet block 11 and the S-pole magnet block 12 are arranged on both sides of the center of rotation of the roller 220, and the N-pole magnet block 11 and the S-pole magnet block 12 are opposite each other. It is symmetrical at the center of rotation of the roller 220. Thereby, the N-pole magnet block 11 and the S-pole magnet block 12 form magnetic lines of force passing through the center of rotation of the roller 220. Since the roller 220 rotates about the rotating shaft 210, that is, the N-pole magnet block 11 and the S-pole magnet block 12 form magnetic lines of force passing through the rotating shaft 210.
- the coil 20 is disposed in the rotating shaft 210.
- the winding direction of the coil 20 is along the axial direction of the rotating shaft 210, and the axial direction herein refers to the extending direction of the axis.
- the position of the coil 20 in the rotating shaft 210 needs to correspond to the mounting position of the magnetic unit 10, that is, the coil 20 needs to be installed through the magnetic unit 10 in the rotating shaft 210.
- the coil 20 is an open loop circuit, and the two ends of the open loop circuit are connected through the sensing circuit 30 to form a closed loop. Alternatively, the coil 20 cooperates with the sensing circuit 30 to form a closed loop circuit.
- the sensing circuit 30 is for sensing current on the coil 20.
- the roller 220 is used to carry the substrate 300 and slide the substrate 300 along a flow path.
- the substrate 300 comes into contact with the roller 220, and the substrate 300 slides on the roller 220, and the roller 220 Rotating around the center of rotation due to friction.
- the center of rotation of the roller 220 is the axis of the rotating shaft 210.
- the roller 220 drives the magnetic unit 10 to rotate together.
- the magnetic unit 10 passes through the pair of the N-pole magnet block 11 and the S-pole magnet block 12 at the axial position of the rotating shaft 210.
- the magnetic line of the axis The rotation of the magnetic unit 10 also forms a cutting action of the magnetic induction line about the axis.
- the coil 20 is fixed to the inside of the rotating shaft 210, and the magnetic sensing line is cut due to the static sensing line with respect to the rotation, and the coil 20 generates a current due to a magnetic induction phenomenon. Since the coil 20 and the sensing circuit 30 are connected as a closed loop circuit, a current flows through the sensing circuit 30, whereby an operator can measure the current through an electric meter, an inductor, or the like, and the current can be monitored. signal. Because the roller 220 is in a stationary state with respect to the rotating shaft 210 when the substrate 300 is not passed, and only when the substrate 300 passes the position of the roller 220, sliding friction occurs with the roller 220.
- Rotation occurs, so that when no current flows through the sensing circuit 30, the operator can conclude that the substrate 300 is not in contact with and in contact with the position of the roller 220. On the contrary, when a current flows through the sensing circuit 30, it can be determined that the substrate 300 passes through the position of the roller 220, thereby positioning a specific position of the substrate 300 on the machine 200.
- the sensor 100 of the present application employs the principle of mechanical contact, which is not limited by the mechanical contact type of the sensor 100 compared to the disadvantage that the optical sensor cannot operate normally in the wet section of the machine 200.
- the use of the rotation of the roller 220 relative to the rotating shaft 210 avoids the disadvantage of damaging the substrate 300 when the current rocker sensor fails.
- the sensor 100 of the present application does not damage even after being damaged.
- the substrate 300 is directly damaged; on the other hand, the positioning accuracy of the rotating shaft 210 and the roller 220 can be used to avoid the disadvantage that the friction roller sensor is not high in precision. That is, the sensing accuracy of the sensor 100 of the present application does not depend on the sensor 100 itself.
- the relative rotational speed between the magnetic unit 10 and the coil 20, the angle of the cutting magnetic field line, etc., do not affect the sensor described in the present application. How much impact does 100 have.
- the factor that really affects the sensing accuracy of the sensor 100 described herein is the mounting accuracy of the roller 220 and the rotating shaft 210. Specifically, the positioning accuracy of the sensor 100 on the substrate 300 depends on the mounting accuracy of the rotating shaft 210 and the roller 220.
- the machine 200 of the sensor 100 By using the machine 200 of the sensor 100 as described herein, because the environment adaptability of the sensor 100 is high, the machine 200 can be provided with a unified sensor in both its dry and wet sections. The positioning of the substrate 300 is described. At the same time, the arrangement of the rotating shaft 210 and the roller 220 hidden in the machine 200 does not affect the normal operation of the machine 200, and the fragmentation of the substrate 300 due to self-damage is also avoided. Higher reliability and improved production yield of LCD panels.
- the N-pole magnetic block 11 and the S-pole magnetic block 12 are symmetrically distributed on both sides of the center of rotation of the roller 220.
- the N-pole magnet block 11 and the S-pole magnet block 12 may not be symmetrically disposed, or even need to be completely distributed on both sides of the center of rotation of the roller 220, and only at least a part of the magnetic lines of force are required to pass through.
- the rotating shaft 210 can cause the coil 20 to cut the magnetic lines of force when the roller 220 rotates, and can also achieve the effect that the technical solution described in the present application can achieve.
- the rotation of the coil 20 by the magnetic unit 10 may generate less current and is not easily captured by an operator.
- a larger induced current is generated under a predetermined rotating motion, and the following optimal settings can be performed.
- the magnetic unit 10 is disposed in multiple pairs, and the plurality of pairs of the N-pole magnetic block 11 and the S-pole magnetic block 12 are symmetrically distributed in the The roller 220 rotates on both sides of the center.
- the plurality of pairs of the magnetic unit 10 can ensure that more magnetic lines of force perpendicular to the rotating shaft 210 are generated in the roller 220, so that the coil 20 can be cut more during the rotation of the roller 220.
- the lines of magnetic force generate a larger current to be sensed by the sensing circuit 30.
- the magnetic properties of two adjacent magnetic blocks are opposite to each other. That is, the magnetic poles of two adjacent magnetic blocks are different.
- the same rotational speed is generated to produce a more frequent pole shift, thereby increasing the current frequency to be sensed by the sensing circuit 30.
- the coils 20 are arranged in a plurality of groups, and the plurality of sets of the coils 20 are wound in the direction in which the axis of the rotating shaft 210 extends.
- a plurality of sets of the coils 20 are disposed inside the rotating shaft 210, and a plurality of sets of the coils 20 are connected in series as an open loop circuit.
- Such an arrangement increases the cutting area of the magnetic lines of force by increasing the number of windings of the coil 20 when the number of rotations of the roller 220 and the number of the magnetic units 10 are constant, and the sensor 100 can also be added.
- the magnitude of the current generated is sensed by the sensing circuit 30.
- a current amplifier is further provided on the sensing circuit 30 for a clearer signal obtained by the current. It can be understood that the current amplifier can amplify the current signal on the sensing circuit 30 to facilitate the operator to extract the signal more efficiently. It can be understood that a filter can also be disposed on the sensing circuit 30 for filtering the interference signal.
- the coil 20 includes two poles extending from the rotating shaft 210.
- the sensing circuit 30 includes two wires respectively connecting the two poles of the coil 20, and an indicator 31 for connecting the two wires.
- the indicator 31 can generate any form of electric, acoustic, optical, etc. reminder by the current signal sensed by the sensor 100 to inform the operator that the substrate 300 has reached the position of the sensor 100.
- the sensing circuit 30 is further connected with a signal processing unit for converting the current sensed by the sensor 100 into an electrical signal, when the control system of the machine 200 receives the After the electrical signal is described, the corresponding device function can be turned on or off according to the specific location of the substrate 300.
- the coil 20 is disposed inside the rotating shaft 210, so that the moisture influence of the wet section in the machine 200 can be insulated.
- the magnetic unit 10 is fixed on the roller 220. If the roller 220 does not protect the magnetic unit 10, the magnetic unit 10 will be exposed to the moisture environment for a long time. In particular, syrup or chemicals are employed on individual wet sections, and long term exposure of the magnetic unit 10 is not conducive to the reliability assurance of the sensor 100 of the present application. Although the magnetic unit 10 fails in the event of long-term exposure to the chemical, it does not directly cause damage to the substrate 300, but the sensor 100 will not function properly. To this end, in one embodiment, the magnetic unit 10 is sealed and disposed inside the roller 220, and the magnetic unit 10 is wrapped by the roller 220 so that the magnetic unit 10 does not directly contact moisture or the like. The magnetic unit 10 is protected.
- a plurality of the rollers 220 are provided on the same rotating shaft 210.
- a plurality of the rollers 220 are arranged side by side in the axial direction of the rotating shaft 210.
- the substrate 300 is partially warped or deformed by deformation due to high temperature, stress concentration, or the like in the process, a certain portion of the roller 220 that does not correspond to the substrate 300 during sliding may occur. The phenomenon of contact.
- the rotating shaft 210 has a problem such as poor straightness or bending deformation after long-term use, it is easy to cause the roller position to shift at a certain stage and the film 300 cannot be in contact with the substrate 300.
- Such a situation may cause the substrate 300 not to be in contact with the corresponding roller 220.
- the substrate 300 slides past the roller 220, there is no friction between the two, and the roller 220 does not occur with the rotating shaft 210. Turn. If this phenomenon occurs on the roller 220 on which the magnetic unit 10 is assembled, the sensor 100 may cause an inoperative condition to effectively reflect the positional state of the current substrate 300.
- the rotating shaft 210 is divided into three segments in the axial direction, and each of the rotating shafts 210 includes at least one of the rollers 220 including the magnetic unit 10. That is, each of the rotating shafts 210 includes at least one of the rollers 220, and the magnetic unit 10 is disposed in at least one of the rollers 220 on each of the rotating shafts 210.
- the panel 300 is slid to the rotating shaft 210
- at least three of the rollers 220 equipped with the magnetic unit 10 on the rotating shaft 210 are in contact with the substrate 300. Even if the substrate 300 or the rotating shaft 210 is locally deformed, the individual rollers 220 and the substrate 300 cannot contact and rotate, and the remaining rollers 220 are in contact with the substrate 300, so that Affecting the normal operation of the sensor 100.
- the rotating shaft 210 is divided into three segments to set at least three of the magnetic units 10 on the roller 220.
- the segment of the rotating shaft 210 may be For any number. It suffices that at least one of the rollers 220 can be correspondingly provided on each segment of the rotating shaft 210.
- the magnetic unit 10 can be disposed on each of the rollers 220 on the rotating shaft 210 to ensure normal sensing of the sensor 100.
- the arrangement of the magnetic unit 10 can be evenly distributed on the rotating shaft 210. That is, the roller 220 having the same pitch is selected on the rotating shaft 210, and the magnetic unit is disposed in the roller 220. The uniform arrangement avoids errors due to uneven distribution of the magnetic unit 10.
- the maximum length of the coil 20 inside the rotating shaft 210 along the axis of the rotating shaft 210 needs to exceed the position of the magnetic unit 10 farthest from the sensing circuit 30, so that each of the magnetic materials
- the lines of magnetic force generated by the unit 10 can be cut by the coil 20 and a current is generated for reception by the sensing circuit 30.
- the roller 220 disposed coaxially may also have a height difference, thereby affecting the contact of the roller 220 with the smaller diameter of the individual substrate 300 with the substrate 300.
- the outer diameter of the roller 220 containing the magnetic unit 10 is not less than the outer diameter of the remaining roller 220, that is, the diameter of the roller 220 containing the magnetic unit 10 may be greater than or equal to the diameter of the remaining rollers 220.
- the roller 220 including the magnetic unit 10 when the roller 220 including the magnetic unit 10 is disposed on the rotating shaft 210, the roller 220 can be slightly higher than or flattened, and when the substrate 300 is slid to the rotating shaft 210, The roller 220 provided with the magnetic unit 10 higher than or horizontal to the remaining rollers 220 can ensure contact with the substrate 300.
- the above embodiment is directed to the non-contact phenomenon of the roller 220 and the substrate 300 perpendicular to the flow direction of the substrate 300.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
一种传感器(100),用于在液晶面板制程机台(200)上感应基板(300)的位置,所述机台(200)上设有转轴(210)和滚轮(220),所述传感器(100)包括磁性单元(10)、线圈(20)和感应电路(30),所述磁性单元(10)固设于所述滚轮(220)上,所述线圈(20)设置于所述转轴(210)内,所述感应电路(30)连通所述线圈(20)。当所述基板(300)滑动至所述滚轮(220)位置时,所述滚轮(220)带动所述磁性单元(10)绕所述转轴(210)转动,所述线圈(20)因切割磁力线而产生电流,操作人员通过对所述感应电路(30)中电信号的监测可以定位所述基板(300)在所述机台(200)上的位置。该传感器(100)结构简单,可靠性高,在所述机台(200)的干段和湿段均可使用,可提高液晶面板制作的良品率。
Description
本申请涉及液晶面板制造领域,尤其涉及一种机台上的传感器。
在液晶面板的制程中,多台大型设备串联于机台上,处于制程中的基板通过机台上转动设置的滚轮滑动,按预定顺序在各个设备中流转,形成流水作业。所述滚轮转动设置于转轴上,多根所述转轴沿所述机台的流转方向并排设置于所述机台上,所述转轴垂直于所述机台的流转方向。在一些设备内部,也同样设置有所述转轴和所述滚轮,用于所述基板进出所述设备以及在所述设备中滑动。在所述基板的制程中,需要使用感应器来定位所述基板的位置。
目前,在感应所述基板位置主要有两种传感器:光学传感器以及机械摇杆式传感器。光学传感器是靠发出光以及基板反射光的强弱来判断是否有基板,但在设备有大量水汽的部位如清洗段、显影段,水汽会导致此类传感器出现误报,所以此类传感器大部分应用于所述机台的干段。对于所述机台的湿段则采用摇杆式传感器:在无基板通过时摇杆式传感器成竖直状态,当基板传送至该传感器所在位置时,摇杆被基板向下压迫,使得该传感器得到相应的基板信号。摇杆式传感器靠机构转动来传递信息,不会因为水汽等产生误差。但是,摇杆式传感器由于工作原理限定,在所述机台上的安装高度需要高出所述滚轮一定距离,才能被基板压下。在机台的湿段,摇杆式传感器因为长时间接触制程中的药液,容易导致转动摩擦力变大,不能正常被压下,从而导致基板的破片。
发明内容
本申请的目的在于提供一种同时适用于机台的干段和时段的传感器,结构简单,具备更高的可靠性。本申请传感器包括如下技术方案:
一种传感器,用于在液晶面板制程机台上感应基板的位置,所述机台上固设有转轴,以及套设于所述转轴上的滚轮,多个所述滚轮沿所述转轴的轴线方 向排列并转动,所述传感器包括磁性单元、线圈和感应电路;所述磁性单元固设于至少一个所述滚轮上;所述线圈设置于所述转轴内,所述线圈沿所述转轴的轴线方向缠绕,所述线圈为开环电路;所述感应电路电连接所述线圈,且与所述线圈共同构成闭环电路,所述闭环电路用于通过所述线圈在感应所述滚轮转动时产生的电流,以感测所述基板的位置。
其中,所述线圈包括伸出所述转轴的两极,所述感应电路包括分别连接所述线圈两极的两根导线,以及连通两根所述导线之间的指示器。
其中,所述感应电路上还串联有电流放大器,所述电流放大器用于放大所述传感器中感应到的电流。
其中,所述感应电路还连接有信号处理单元,所述信号处理单元用于将所述传感器感应到的电流转换为电信号。
其中,所述磁性单元至少包括一对N极磁块和S极磁块,所述N极磁块和所述S极磁块形成的磁力线至少一部分穿过所述转轴。
其中,所述磁性单元密封设置于所述滚轮内部。
其中,所述转轴沿轴线方向上分为多段,每一段所述转轴至少包括一个所述滚轮,每一段所述转轴上至少有一个所述滚轮中设有所述磁性单元。
其中,含有所述磁性单元的所述滚轮的外径不小于其余所述滚轮的外径。
其中,所述线圈为多组,多组所述线圈均设置于所述转轴内部,多组所述线圈串联形成所述开环电路。
其中,所述转轴为多个,多个所述转轴并排设置于所述机台上,相邻两个所述转轴上均设有所述传感器。
本申请所述传感器,通过在所述滚轮上设置所述磁性单元,所述磁性单元包括成对的N极磁块和S极磁块,所述N极磁块和所述S极磁块形成的磁力线至少一部分穿过所述转轴;通过在所述转轴上设置所述线圈,所述线圈包括沿所述转轴的轴线方向缠绕的线圈;再通过所述感应电路连通所述线圈,最终实现所述滚轮在所述基板经过时,所述基板摩擦所述滚轮转动,所述滚轮内的磁力线相对于所述线圈转动,所述线圈在切割磁力线时产生电流感应,所述感应电路将产生的电流接收并形成信号,操作者可以根据监测所述感应电路的电 流信号来判断该处是否有所述基板经过,最终实现在所述机台上对所述基板的定位。本申请所述传感器具备结构简单,可靠性高,在所述机台的干段和湿段均可使用等优点,可提高液晶面板制作的良品率。
图1是本申请传感器的示意图;
图2是本申请传感器内部细节的示意图;
图3是本申请传感器另一实施例的示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参阅图1,在液晶面板制程机台200上,沿所述机台200的流转路径并排固定着多个转轴210,所述转轴210上转动设置有滚轮220。用于制作液晶面板的基板300通过相对于所述滚轮220的滑动,而实现在所述机台200上的依次流转。本申请所述传感器100包括磁性单元10、线圈20和感应电路30。所述磁性单元10固设于至少一个所述滚轮220上。所述磁性单元10包括成对的N极磁块11和S极磁块12。在本实施例中,所述N极磁块11和所述S极磁块12分列所述滚轮220转动中心的两侧,且所述N极磁块11和所述S极磁块12相对于所述滚轮220的转动中心对称。由此,所述N极磁块11和所述S极磁块12形成了穿过所述滚轮220的转动中心的磁力线。由于所述滚轮220绕所述转轴210转动,也即所述N极磁块11和所述S极磁块12形成了穿过所述转轴210的磁力线。所述线圈20设置于所述转轴210内。所述线圈20的缠绕方向沿所述转轴210的轴线方向,此处的轴线方向是指轴线的延伸方向。为了达到切割磁力线的目的,所述线圈20在所述转轴210中的位置需要对应所述磁性单元10的安装位置,也即所述线圈20在所述转轴210中需要贯 穿安装所述磁性单元10的所述滚轮220在所述转轴210的轴线上的投影线段。所述线圈20为开环电路,通过所述感应电路30的连接所述开环电路的两端,以形成闭环。另一种描述方式为,所述线圈20与所述感应电路30配合以形成闭环电路。所述感应电路30用于感应所述线圈20上的电流。
所述滚轮220用于承载所述基板300并使得所述基板300沿流转路径滑动。当所述基板300滑动至装有所述磁性单元10的所述滚轮220处时,所述基板300与所述滚轮220发生接触,所述基板300在所述滚轮220上滑动,所述滚轮220因为摩擦力而绕转动中心转动。所述滚轮220的转动中心即为所述转轴210的轴线。所述滚轮220带动所述磁性单元10一同转动,此时所述磁性单元10因为成对的所述N极磁块11和所述S极磁块12,在所述转轴210的轴线位置存在通过所述轴线的磁感线。而所述磁性单元10的转动也形成了所述磁感线绕所述轴线的切割动作。所述线圈20固定于所述转轴210的内部,因相对于转动的所述磁感线静止,使得所述磁感线被切割,所述线圈20上因为磁感现象而产生电流。由于所述线圈20与所述感应电路30连接为闭环电路,因而所述感应电路30上也有电流经过,由此操作人员通过电表、感应器等对所述感应电路30进行测量,可以监测到电流信号。因为所述滚轮220在所述基板300未经过时,相对于所述转轴210处于静止状态,而只有在所述基板300经过所述滚轮220的位置,与所述滚轮220发生滑动摩擦时才会发生转动,因此所述感应电路30上没有电流流过时,操作人员可以断定在该滚轮220的位置并没有所述基板300经过并与之发生接触。反之,当所述感应电路30上有电流经过时,可以判断所述滚轮220的位置上有所述基板300经过,由此来定位所述基板300在所述机台200上的具体位置。
本申请所述传感器100采用了机械接触式原理,相较于光学传感器不能在所述机台200的湿段内正常工作的缺点,机械接触式的所述传感器100则没有这方面的限制。而利用所述滚轮220相对于所述转轴210转动的特点,一方面避免了现行的摇杆式传感器出现故障时损坏所述基板300的缺点,本申请所述传感器100即使损坏后,也不会对所述基板300造成直接的损坏;另一方面利用所述转轴210和所述滚轮220的定位精度,可以巧妙的避免摩擦式滚轮传感器的精度不高的缺点。即本申请所述传感器100的传感精度并不取决于所述传 感器100本身,所述磁性单元10与所述线圈20之间的相对旋转速度、切割磁力线角度等都不会对本申请所述传感器100产生多大的影响。真正对本申请所述传感器100的感应精度造成影响的因素是所述滚轮220以及所述转轴210的安装精度。具体的,所述传感器100对所述基板300的定位精度,取决于所述转轴210和所述滚轮220的安装精度。
运用本中请所述传感器100的所述机台200,因为所述传感器100的环境适应能力较高,使得所述机台200在其干段和湿段均可设置原理统一的传感器来实现所述基板300的定位。同时隐藏在所述机台200的所述转轴210和所述滚轮220内的设置不影响所述机台200的正常工作,也避免了因为自身损坏而造成的所述基板300的破片现象,具备更高的可靠性,提高液晶面板的生产良品率。
可以理解的,在本实施例中,所述N极磁块11和所述S极磁块12对称分布于所述滚轮220转动中心的两侧。在另外一些实施例中,所述N极磁块11和S极磁块12也可以不用对称设置,甚至不需要完全分布于所述滚轮220转动中心的两侧,只需要至少一部分磁力线穿过所述转轴210,在所述滚轮220转动时能够使得所述线圈20切割刀所述磁力线,同样可以达到本申请所描述的技术方案能够达到的效果。
在上述实施例中,所述磁性单元10对所述线圈20的转动,所产生的电流可能较小,不容易被操作人员捕捉。为了提高所述传感器100的工作效率,在既定的转动动作下产生更大的感应电流,还可以进行以下的优化设置。
一种实施例,见图2,在所述滚轮220的内部,所述磁性单元10设置为多对,多对所述N极磁块11和所述S极磁块12均对称分布于所述滚轮220转动中心的两侧。多对所述磁性单元10的设置可以保证所述滚轮220内产生更多垂直于所述转轴210的磁力线排布,从而在所述滚轮220的转动过程中所述线圈20可以切割到更多的所述磁力线,产生更大的电流以被所述感应电路30所感应。
进一步的,在沿所述滚轮220的圆周方向上,相邻两个磁块的磁性互为异性。即相邻两个磁块的磁极不相同。在所述滚轮220受所述基板300的摩擦而产生转动的情况下,相同的转速得以的产生更频繁的磁极变换,从而提高电流 频率以被所述感应电路30所感应。
还有一些实施例,将所述线圈20设置为多组,多组所述线圈20均沿所述转轴210的轴线延伸方向缠绕。多组所述线圈20均设置于所述转轴210的内部,且多组所述线圈20串联为开环电路。这样的设置在所述滚轮220的转速、所述磁性单元10的数量一定的情况下,通过增加所述线圈20的缠绕数量,来增加对所述磁力线的切割面积,同样可以增加所述传感器100所产生的电流大小,以被所述感应电路30所感应。
一种实施例中,所述感应电路30上为了更清晰的获得电流经过的信号,还设有电流放大器。可以理解的,所述电流放大器可以将所述感应电路30上的电流信号进行放大,以便于操作人员更有效的对信号进行提取。可以理解的,所述感应电路30上还可以设置滤波器,用于过滤干扰信号。
从图1可知,所述线圈20包括伸出所述转轴210的两极,所述感应电路30包括分别连接所述线圈20两极的两根导线,以及连通两根所述导线的指示器31。所述指示器31可以通过所述感应器100所感应到的电流信号而产生电、声、光等任意形式的提醒,以告知操作人员所述基板300已到达所述感应器100的位置。一些实施例中,所述感应电路30还连接有信号处理单元,所述信号处理单元用于将所述传感器100感应到的电流转换为电信号,当所述机台200的控制系统接收到所述电信号后,可以根据所述基板300的具体位置而开启或关闭相应的设备功能。
所述线圈20设置于所述转轴210内部,因而可以隔绝所述机台200中湿段的水气影响。但所述磁性单元10在所述滚轮220上固定,如果所述滚轮220不对所述磁性单元10做一定的保护,则所述磁性单元10将长期暴露于水气环境中。特别是个别湿段上采用了药水或化学制剂,所述磁性单元10的长期暴露并不利于本申请传感器100的可靠性保证。虽然所述磁性单元10在长期暴露于化学制剂的环境下万一失效,并不会直接造成所述基板300的损坏,但是所述传感器100将无法正常工作。为此,一种实施例,所述磁性单元10被密封设置于所述滚轮220的内部,用所述滚轮220来包裹所述磁性单元10,以使得所述磁性单元10不直接接触水气等,得以对所述磁性单元10加以保护。
由于所述基板300的宽度较大,在同一所述转轴210上,设有多个所述滚 轮220。多个所述滚轮220沿所述转轴210的轴线方向并排设置。当所述基板300在制程中因为高温、应力集中等原因产生部分翘曲,或扭转变形的情况下,可能会发生某一段所述基板300在滑动的过程中不会与其对应的所述滚轮220接触的现象。另一方面,所述转轴210如果因为直线度不佳,或长期使用后的弯曲变形等问题,也容易在某一段处出现滚轮位置发生偏移,无法与所述基板300接触的现象。这样的情况都会造成所述基板300无法与其对应的所述滚轮220接触,在所述基板300滑动经过所述滚轮220时二者之间无摩擦,所述滚轮220不会与所述转轴210发生转动。如果此现象发生在装配所述磁性单元10的所述滚轮220上,则所述传感器100会因此造成不工作的情况,无法有效反应当前所述基板300的位置状态。
为此,一种实施例见图3,将所述转轴210沿轴线方向上分为三段,每一段所述转轴210中至少包括一个包含所述磁性单元10的所述滚轮220。即每一段所述转轴210上至少包括一个所述滚轮220,每一段所述转轴210上至少有一个所述滚轮220中设有所述磁性单元10。这样在所述面板300滑动至所述转轴210处时,所述转轴210上至少有三个装配有所述磁性单元10的所述滚轮220与所述基板300发生接触。即使所述基板300或所述转轴210出现局部变形的现象,个别所述滚轮220与所述基板300不能接触并转动,也还有其余所述滚轮220与所述基板300发生接触,从而不会影响所述传感器100的正常工作。
可以理解的,图3实施例中将所述转轴210分为三段来设置至少三个所述磁性单元10于所述滚轮220上,在其余一些实施例汇总,所述转轴210的分段可以为任意数量。只要保证所述转轴210的每一个分段上都能对应设有至少一个所述滚轮220即可。极端情况下,所述转轴210上的每一个所述滚轮220都可以设置所述磁性单元10,从而保证所述传感器100的正常感应。
可以理解的,在所述转轴210被划分的多段中,所述磁性单元10的设置可以均布于所述转轴210上。即在所述转轴210上选择间距相同的所述滚轮220,在所述滚轮220中设置所述磁性单元。均布的设置可以避免因为所述磁性单元10的分布不均而产生的误差。
可以理解的,所述转轴210内部的所述线圈20沿所述转轴210的轴线的 最大长度,需要超过距离所述感应电路30最远的所述磁性单元10的位置,使得每一个所述磁性单元10产生的磁力线都能被所述线圈20所切割,并产生电流一共所述感应电路30接收。
另一种实施例,因为多个所述滚轮220的制造公差影响,同轴设置的所述滚轮220也可能存在高度差,进而影响个别直径较小的所述滚轮220与所述基板300的接触。含有所述磁性单元10的所述滚轮220的外径不小于其余所述滚轮220的外径,即含有所述磁性单元10的所述滚轮220的直径可以大于等于其余所述滚轮220的直径,从而保证含有所述磁性单元10的所述滚轮220在设置于所述转轴210上时,能够略高于或持平其余所述滚轮220,在所述基板300滑动至所述转轴210处时,略高于或持平于其余所述滚轮220的设有所述磁性单元10的所述滚轮220,可以保证与所述基板300的接触。
上述的实施例针对的是垂直于所述基板300的流转方向上,所述滚轮220与所述基板300的无接触现象。而在沿所述基板300的流转方向上,并排设置的多个所述转轴210之间也可能存在高度差的问题。若设置有所述传感器100的所述转轴210低于其前后相邻的多个所述转轴210时,则无论所述转轴210上设置多少个所述传感器100,都不会得到相应的所述基板300的位置信号。为此,对于并排设置于所述机台200上的所述转轴210,可以在相邻两个所述转轴210上均设置所述传感器100,以避免上述现象的发生,可以提高所述传感器100的可靠性。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。
Claims (16)
- 一种传感器,用于在液晶面板制程机台上感应基板的位置,所述机台上固设有转轴,以及套设于所述转轴上的滚轮,多个所述滚轮沿所述转轴的轴线方向排列并转动,其中,所述传感器包括磁性单元、线圈和感应电路;所述磁性单元固设于至少一个所述滚轮上;所述线圈设置于所述转轴内,所述线圈沿所述转轴的轴线方向缠绕,所述线圈为开环电路;所述感应电路电连接所述线圈,且与所述线圈共同构成闭环电路,所述闭环电路用于通过所述线圈在感应所述滚轮转动时产生的电流,以感测所述基板的位置。
- 如权利要求1所述传感器,其中,所述线圈包括伸出所述转轴的两极,所述感应电路包括分别连接所述线圈两极的两根导线,以及连通在两根所述导线之间的指示器。
- 如权利要求2所述传感器,其中,所述感应电路上还串联有电流放大器,所述电流放大器用于放大所述传感器中感应到的电流。
- 如权利要求3所述传感器,其中,所述感应电路还连接有信号处理单元,所述信号处理单元用于将所述传感器感应到的电流转换为电信号。
- 如权利要求1所述传感器,其中,所述磁性单元至少包括一对N极磁块和S极磁块,所述N极磁块和所述S极磁块形成的磁力线至少一部分穿过所述转轴。
- 如权利要求5所述传感器,其中,所述磁性单元密封设置于所述滚轮内部。
- 如权利要求2所述传感器,其中,所述磁性单元至少包括一对N极磁块和S极磁块,所述N极磁块和所述S极磁块形成的磁力线至少一部分穿过所述转轴。
- 如权利要求7所述传感器,其中,所述磁性单元密封设置于所述滚轮内部。
- 如权利要求3所述传感器,其中,所述磁性单元至少包括一对N极磁块和S极磁块,所述N极磁块和所述S极磁块形成的磁力线至少一部分穿过所述转轴。
- 如权利要求9所述传感器,其中,所述磁性单元密封设置于所述滚轮内部。
- 如权利要求4所述传感器,其中,所述磁性单元至少包括一对N极磁块和S极磁块,所述N极磁块和所述S极磁块形成的磁力线至少一部分穿过所述转轴。
- 如权利要求11所述传感器,其中,所述磁性单元密封设置于所述滚轮内部。
- 如权利要求1所述传感器,其中,所述转轴沿轴线方向上分为多段,每一段所述转轴至少包括一个所述滚轮,每一段所述转轴上至少有一个所述滚轮中设有所述磁性单元。
- 如权利要求1所述传感器,其中,含有所述磁性单元的所述滚轮的外径不小于其余所述滚轮的外径。
- 如权利要求1所述传感器,其中,所述线圈为多组,多组所述线圈均设置于所述转轴内部,多组所述线圈串联形成所述开环电路。
- 如权利要求1所述传感器,其中,所述转轴为多个,多个所述转轴并排设置于所述机台上,相邻两个所述转轴上均设有所述传感器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/129,361 US20190226876A1 (en) | 2018-01-23 | 2018-09-12 | Sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810065007.XA CN108415082B (zh) | 2018-01-23 | 2018-01-23 | 传感器 |
CN201810065007.X | 2018-01-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/129,361 Continuation US20190226876A1 (en) | 2018-01-23 | 2018-09-12 | Sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019144448A1 true WO2019144448A1 (zh) | 2019-08-01 |
Family
ID=63126259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/076339 WO2019144448A1 (zh) | 2018-01-23 | 2018-02-11 | 传感器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108415082B (zh) |
WO (1) | WO2019144448A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108415082B (zh) * | 2018-01-23 | 2020-05-05 | 武汉华星光电半导体显示技术有限公司 | 传感器 |
US11002874B2 (en) * | 2018-12-21 | 2021-05-11 | Witricity Corporation | Foreign object detection circuit using mutual impedance sensing |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001091664A (ja) * | 1999-09-27 | 2001-04-06 | Yakult Honsha Co Ltd | 搬送コンベアにおける金属検知センサ |
CN1370988A (zh) * | 2001-02-16 | 2002-09-25 | 钟纺株式会社 | 导电性异物的检查装置及检查方法 |
CN102253505A (zh) * | 2010-05-20 | 2011-11-23 | 北京京东方光电科技有限公司 | 基板位置检测方法及装置 |
CN203204171U (zh) * | 2013-03-08 | 2013-09-18 | 欧姆龙株式会社 | 检测传感器 |
CN104828518A (zh) * | 2015-02-26 | 2015-08-12 | 友达光电股份有限公司 | 基板输送装置 |
CN105005082A (zh) * | 2014-04-24 | 2015-10-28 | 松下电器产业株式会社 | 异物检测装置、无线送电装置以及无线电力传输系统 |
CN108415082A (zh) * | 2018-01-23 | 2018-08-17 | 武汉华星光电半导体显示技术有限公司 | 传感器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60108760A (ja) * | 1983-11-17 | 1985-06-14 | Toshiba Corp | 回転方向検出装置 |
EP1447579B1 (en) * | 2001-11-22 | 2012-03-28 | Nsk Ltd. | Sensor-equipped rolling bearing, and rotation state detecting device |
CN101788568B (zh) * | 2010-01-18 | 2013-04-03 | 友达光电(苏州)有限公司 | 单向转动检测装置及方法 |
CN103675337B (zh) * | 2012-09-19 | 2016-02-03 | 财团法人车辆研究测试中心 | 非接触式转向感测方法与装置 |
CN103149412B (zh) * | 2013-02-05 | 2015-02-04 | 王鹏 | 可在线安装的电流传感器及其制作方法 |
CN203512907U (zh) * | 2013-09-29 | 2014-04-02 | 天津万事达印铁包装容器有限公司 | 一种磁悬浮同步收料机 |
US9829501B2 (en) * | 2014-04-25 | 2017-11-28 | Texas Instruments Incorporated | Rotational sensing based on inductive sensing |
CN104315245B (zh) * | 2014-11-03 | 2017-02-22 | 上海源致机器人有限公司 | 位置检测装置 |
CN105083300B (zh) * | 2015-08-07 | 2018-04-10 | 湖南广思科技有限公司 | 测速装置及其安装方法 |
-
2018
- 2018-01-23 CN CN201810065007.XA patent/CN108415082B/zh active Active
- 2018-02-11 WO PCT/CN2018/076339 patent/WO2019144448A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001091664A (ja) * | 1999-09-27 | 2001-04-06 | Yakult Honsha Co Ltd | 搬送コンベアにおける金属検知センサ |
CN1370988A (zh) * | 2001-02-16 | 2002-09-25 | 钟纺株式会社 | 导电性异物的检查装置及检查方法 |
CN102253505A (zh) * | 2010-05-20 | 2011-11-23 | 北京京东方光电科技有限公司 | 基板位置检测方法及装置 |
CN203204171U (zh) * | 2013-03-08 | 2013-09-18 | 欧姆龙株式会社 | 检测传感器 |
CN105005082A (zh) * | 2014-04-24 | 2015-10-28 | 松下电器产业株式会社 | 异物检测装置、无线送电装置以及无线电力传输系统 |
CN104828518A (zh) * | 2015-02-26 | 2015-08-12 | 友达光电股份有限公司 | 基板输送装置 |
CN108415082A (zh) * | 2018-01-23 | 2018-08-17 | 武汉华星光电半导体显示技术有限公司 | 传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN108415082B (zh) | 2020-05-05 |
CN108415082A (zh) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4333979B2 (ja) | リニアモータを内蔵したアライメントステージ装置 | |
WO2019144448A1 (zh) | 传感器 | |
US7791334B2 (en) | Rotary encoder and method for operation of a rotary encoder | |
CA2728263C (en) | Inspection vehicle for inspecting an air gap between the rotor and the stator of a generator | |
US20180306606A1 (en) | Laser ranging device and automatic cleaning device | |
CN203519331U (zh) | 链轴断裂监控装置及包括它的凸轮控制器 | |
WO2019241977A1 (zh) | 一种转动部件温度监测系统 | |
KR101300249B1 (ko) | 광학식 지폐 계수 장치 | |
JP2010151773A (ja) | 回転機器状態監視用複合センサ | |
JP5796558B2 (ja) | 紡機の糸検出装置 | |
US20190226876A1 (en) | Sensor | |
KR20100040127A (ko) | 발전기 회전자 턴단락 점검장치 | |
JP6219692B2 (ja) | ウェーハのidマーク読取装置 | |
JP2013035074A (ja) | 切削装置 | |
CN210854056U (zh) | 转轴定位检测机构 | |
CN104020315A (zh) | 一种转速传感器信号检验装置 | |
CN104441286A (zh) | 一种用于多线切割机的全自动主辊布线装置 | |
CN113707446A (zh) | 线材传送用检测装置 | |
CN101950463A (zh) | 换位导线在线位移报警装置 | |
CN202267458U (zh) | 实时测量清洗纸用量装置 | |
JP2018012150A (ja) | スピンドルユニット及び加工装置 | |
JP2013128377A (ja) | モータ | |
JPH01319154A (ja) | カセツトテープ装置におけるテープ送りのフオトエレクトリツク監視装置 | |
JP2003139790A (ja) | 光式流向センサ | |
JP5467033B2 (ja) | パルスリーダおよびこれを用いたガスメータ用無線機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18902502 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18902502 Country of ref document: EP Kind code of ref document: A1 |