WO2019142937A1 - 中継器 - Google Patents
中継器 Download PDFInfo
- Publication number
- WO2019142937A1 WO2019142937A1 PCT/JP2019/001694 JP2019001694W WO2019142937A1 WO 2019142937 A1 WO2019142937 A1 WO 2019142937A1 JP 2019001694 W JP2019001694 W JP 2019001694W WO 2019142937 A1 WO2019142937 A1 WO 2019142937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor
- resonator
- unit
- antenna
- conductors
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/08—Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/0026—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/106—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using two or more intersecting plane surfaces, e.g. corner reflector antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/005—Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0442—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/325—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
- H01Q1/3291—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted in or on other locations inside the vehicle or vehicle body
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
Definitions
- the present disclosure relates to a repeater.
- the electromagnetic wave emitted from the antenna is reflected by the metal conductor.
- the electromagnetic wave reflected by the metal conductor has a phase shift of 180 °.
- the reflected electromagnetic wave is combined with the electromagnetic wave emitted from the antenna.
- the electromagnetic wave emitted from the antenna may have a reduced amplitude due to the combination with the phase-shifted electromagnetic wave. As a result, the amplitude of the electromagnetic wave emitted from the antenna decreases.
- the influence of the reflected wave is reduced by setting the distance between the antenna and the metal conductor to 1/4 of the wavelength ⁇ of the electromagnetic wave to be emitted.
- Murakami et al. "Low-attitude design and band characteristics of artificial magnetic conductors using dielectric substrates", Theory of Communication (B), Vol. J98-B No. 2, pp. 172-179
- Murakami et al. "Optimal Configuration of Reflector for AMC Reflector-equipped Dipole Antenna”, Theory of Communication (B), Vol. J98-B No. 11, pp. 1212-1220
- a relay includes a first surface antenna, a second surface antenna, and a transceiver, and each of the first surface antenna and the second surface antenna is a first antenna. And one or more third conductors located between the first conductor and the second conductor and extending in the first direction, and the first conductor and the first conductor.
- a fourth conductor is connected to the two conductors and extends in the first direction, and a feed line electromagnetically connected to any of the third conductors.
- the first conductor and the second conductor are capacitively connected via the third conductor.
- the feed line of the first surface side antenna is connected to the feed line of the second surface side antenna via the transceiver.
- a relay includes an antenna and a transceiver, wherein the antenna is between a first conductor and a second conductor facing each other in a first direction, and the first conductor and the second conductor. And any one of a plurality of third conductors extending in the first direction, a fourth conductor connected to the first conductor and the second conductor, and extending in the first direction, and the third conductor And an electromagnetically connected feed line.
- the first conductor and the second conductor are capacitively connected via the third conductor.
- the feed line of the antenna is connected to the feed line of the antenna of another repeater via the transceiver.
- FIG. 1 is a perspective view of an embodiment of a resonator.
- FIG. 2 is a plan view of the resonator shown in FIG. 1; It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is a conceptual diagram which shows the unit structure body of the resonator shown in FIG.
- FIG. 1 is a perspective view of an embodiment of a resonator.
- FIG. 7 is a plan view of the resonator shown in FIG. 6; It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. FIG.
- FIG. 1 is a perspective view of an embodiment of a resonator.
- FIG. 11 is a plan view of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG.
- FIG. 1 is a perspective view of an embodiment of a resonator.
- FIG. 15 is a plan view of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG.
- FIG. 2 is a plan view showing an embodiment of a resonator.
- FIG. 19 is a cross-sectional view of the resonator shown in FIG.
- FIG. 19 is a cross-sectional view of the resonator shown in FIG.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- It is the schematic which shows an example of a resonator.
- It is the schematic which shows an example of a resonator.
- It is the schematic which shows an example of a resonator.
- It is the schematic which shows an example of a resonator.
- It is the schematic which shows an example of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a reson
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a cross-sectional view of one embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 2 is a plan view of an embodiment of a resonator.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna.
- FIG. 1 is a block diagram illustrating an embodiment of a wireless communication module.
- FIG. 1 is a partial cross-sectional perspective view of an embodiment of a wireless communication module.
- FIG. 1 is a block diagram illustrating an embodiment of a wireless communication device.
- FIG. 1 is a plan view showing an embodiment of a wireless communication device.
- FIG. 1 is a cross-sectional view of an embodiment of a wireless communication device.
- FIG. 1 is a plan view showing an embodiment of a wireless communication device.
- FIG. 1 is a cross-sectional view of an embodiment of a wireless communication device.
- FIG. 1 is a cross-sectional view of an embodiment of a wireless communication device.
- FIG. 1 is a cross-sectional view of an embodiment of a wireless communication device.
- FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is a figure which shows the general
- FIG. 5 is a block diagram illustrating an embodiment of a repeater. It is a top view which shows one Embodiment of a repeater. It is a top view which shows one Embodiment of a repeater. It is a top view which shows one Embodiment of a repeater. It is a top view which shows one Embodiment of a repeater.
- FIG. 5 is a cross-sectional view of an embodiment of a repeater. FIG. 5 is a cross-sectional view of an embodiment of a repeater.
- FIG. 5 is a cross-sectional view of an embodiment of a repeater.
- FIG. 5 is a block diagram illustrating an embodiment of a repeater.
- FIG. 5 is a cross-sectional view of an embodiment of a repeater. It is the schematic which shows one application example of a repeater. It is the schematic which shows one application example of a repeater. It is the schematic which shows one application example of a repeater. It is the schematic which shows one application example of a repeater. It is the schematic which shows one application example of a repeater.
- the present disclosure relates to providing a repeater using a new resonant structure. According to the relay according to the present disclosure, the influence of the reflected wave by the metal conductor is small.
- the resonant structure may include a resonator.
- the resonant structure includes a resonator and other members, and can be realized in combination.
- the resonator 10 shown in FIGS. 1 to 62 includes a base 20, a pair of conductors 30, a third conductor 40, and a fourth conductor 50.
- the base 20 is in contact with the pair of conductors 30, the third conductor 40, and the fourth conductor 50.
- the pair of conductors 30, the third conductor 40, and the fourth conductor 50 function as a resonator.
- the resonator 10 can resonate at a plurality of resonant frequencies.
- the single resonant frequency first frequency f 1 is ⁇ 1 .
- the resonator 10 may have at least one of the at least one resonance frequencies as an operating frequency. Resonator 10 has a first frequency f 1 to the operating frequency.
- the substrate 20 can include any of a ceramic material and a resin material as a composition.
- the ceramic material includes an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a glass ceramic sintered body, a crystallized glass in which a crystal component is precipitated in a glass base material, and mica or titanic acid It contains a microcrystalline sintered body such as aluminum.
- the resin material includes those obtained by curing an uncured material such as an epoxy resin, a polyester resin, a polyimide resin, a polyamideimide resin, a polyetherimide resin, and a liquid crystal polymer.
- the counter conductor 30, the third conductor 40, and the fourth conductor 50 may contain any of metal materials, alloys of metal materials, hardened metal paste, and conductive polymers as a composition.
- the conductor pair 30, the third conductor 40 and the fourth conductor 50 may all be of the same material.
- the conductor pair 30, the third conductor 40 and the fourth conductor 50 may all be of different materials.
- the conductor pair 30, the third conductor 40, and the fourth conductor 50 may be made of the same material in any combination.
- Metal materials include copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, lead cadmium, selenium, manganese, tin, vanadium, lithium, cobalt, titanium and the like.
- the alloy comprises a plurality of metallic materials.
- a metal paste agent contains what knead
- the binder includes an epoxy resin, a polyester resin, a polyimide resin, a polyamideimide resin, and a polyetherimide resin.
- the conductive polymer includes polythiophene-based polymers, polyacetylene-based polymers, polyaniline-based polymers, polypyrrole-based polymers and the like.
- the resonator 10 has two paired conductors 30.
- Pair conductor 30 includes a plurality of conductors.
- the conductor pair 30 includes a first conductor 31 and a second conductor 32.
- the conductor 30 may include three or more conductors.
- Each conductor of the paired conductor 30 is separated from the other conductors in the first direction.
- one conductor can be paired with the other conductor.
- Each conductor of the paired conductor 30 can be seen as an electrical wall from a resonator located between the paired conductors.
- the first conductor 31 is spaced apart from the second conductor 32 in the first direction.
- the first conductor 31 and the second conductor 32 extend along a second plane intersecting the first direction.
- the first axis (first axis) is shown as the x direction.
- the third axis (third axis) is shown as the y direction.
- the second axis (second axis) is shown as the z direction.
- a first plane is shown as an xy plane.
- the second plane is shown as the yz plane.
- the third plane is shown as the zx plane. These planes are planes in coordinate space, and do not indicate a specific plate and a specific surface.
- an area (surface integral) in the xy plane may be referred to as a first area.
- the area in the yz plane may be referred to as a second area.
- an area in the zx plane may be referred to as a third area.
- the surface integral is counted in units such as square meters.
- the length in the x direction may simply be referred to as "length”.
- the length in the y direction may be simply referred to as "width”.
- the length in the z direction may simply be referred to as "height".
- the first conductor 31 and the second conductor 32 are located at both ends of the base 20 in the x direction. A part of the first conductor 31 and the second conductor 32 may face the outside of the base 20. The first conductor 31 and the second conductor 32 may be partially located inside the base 20, and the other may be located outside the base 20. The first conductor 31 and the second conductor 32 can be located in the base 20.
- the third conductor 40 functions as a resonator.
- the third conductor 40 may include at least one of line, patch, and slot resonators.
- the third conductor 40 is located on the base 20.
- the third conductor 40 is located at the end of the base 20 in the z direction.
- the third conductor 40 can be located in the base 20.
- the third conductor 40 may be partially located inside the base 20, and the other may be located outside the base 20. A part of the third conductor 40 may face the outside of the base 20.
- the third conductor 40 includes at least one conductor.
- the third conductor 40 can include a plurality of conductors. When the third conductor 40 includes a plurality of conductors, the third conductor 40 can be referred to as a third conductor group.
- the third conductor 40 includes at least one conductor layer.
- the third conductor 40 includes at least one conductor in one conductor layer.
- the third conductor 40 can include a plurality of conductor layers.
- the third conductor 40 can include three or more conductor layers.
- the third conductor 40 includes at least one conductor in each of the plurality of conductor layers.
- the third conductor 40 extends in the xy plane.
- the xy plane contains the x direction. Each conductor layer of the third conductor 40 extends along the xy plane.
- the third conductor 40 includes a first conductor layer 41 and a second conductor layer 42.
- the first conductor layer 41 extends along the xy plane.
- the first conductor layer 41 may be located on the base 20.
- the second conductor layer 42 extends along the xy plane.
- the second conductor layer 42 can be capacitively coupled to the first conductor layer 41.
- the second conductor layer 42 can be electrically connected to the first conductor layer 41.
- Two conductor layers capacitively coupled can be opposed in the y direction.
- Two conductor layers capacitively coupled can be opposed in the x direction.
- the two conductor layers capacitively coupled may face each other in the first plane.
- the two conductor layers facing each other in the first plane can be rephrased that there are two conductors in one conductor layer.
- the second conductor layer 42 may be at least partially overlapped with the first conductor layer 41 in the z direction.
- the second conductor layer 42 may be located in the base 20.
- the fourth conductor 50 is located apart from the third conductor 40.
- the fourth conductor 50 is electrically connected to the first conductor 31 and the second conductor 32 of the paired conductor 30.
- the fourth conductor 50 is electrically connected to the first conductor 31 and the second conductor 32.
- the fourth conductor 50 extends along the third conductor 40.
- the fourth conductor 50 extends along the first plane.
- the fourth conductor 50 extends from the first conductor 31 to the second conductor 32.
- the fourth conductor 50 is located on the base 20.
- the fourth conductor 50 may be located in the base 20.
- the fourth conductor 50 may be partially located inside the base 20, and the other may be located outside the base 20. A part of the fourth conductor 50 may face the outside of the base 20.
- the fourth conductor 50 can function as a ground conductor in the resonator 10.
- the fourth conductor 50 can be a potential reference of the resonator 10.
- the fourth conductor 50 can be connected to the ground of the device comprising the resonator 10.
- the resonator 10 may include the fourth conductor 50 and the reference potential layer 51.
- the reference potential layer 51 is located apart from the fourth conductor 50 in the z direction.
- the reference potential layer 51 is electrically isolated from the fourth conductor 50.
- the reference potential layer 51 can be a potential reference of the resonator 10.
- the reference potential layer 51 can be electrically connected to the ground of the device provided with the resonator 10.
- the fourth conductor 50 can be electrically separated from the ground of the device comprising the resonator 10.
- the reference potential layer 51 faces either the third conductor 40 or the fourth conductor 50 in the z direction.
- the reference potential layer 51 is opposed to the third conductor 40 via the fourth conductor 50.
- the fourth conductor 50 is located between the third conductor 40 and the reference potential layer 51.
- the distance between the reference potential layer 51 and the fourth conductor 50 is narrower than the distance between the third conductor 40 and the fourth conductor 50.
- the fourth conductor 50 may include one or more conductors.
- the fourth conductor 50 may include one or more conductors, and the third conductor 40 may be one conductor connected to the pair conductor 30.
- each of the third conductor 40 and the fourth conductor 50 may include at least one resonator.
- the fourth conductor 50 can include a plurality of conductor layers.
- the fourth conductor 50 can include the third conductor layer 52 and the fourth conductor layer 53.
- the third conductor layer 52 can be capacitively coupled to the fourth conductor layer 53.
- the third conductor layer 52 can be electrically connected to the first conductor layer 41.
- Two conductor layers capacitively coupled can be opposed in the y direction.
- Two conductor layers capacitively coupled can be opposed in the x direction.
- the two conductor layers capacitively coupled can be opposed in the xy plane.
- the distance between the two conductor layers opposed and capacitively coupled in the z direction is shorter than the distance between the conductor group and the reference potential layer 51.
- the distance between the first conductor layer 41 and the second conductor layer 42 is shorter than the distance between the third conductor 40 and the reference potential layer 51.
- the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor 50 and the reference potential layer 51.
- Each of the first conductor 31 and the second conductor 32 may include one or more conductors. Each of the first conductor 31 and the second conductor 32 may be one conductor. Each of the first conductor 31 and the second conductor 32 may include a plurality of conductors. Each of the first conductor 31 and the second conductor 32 may include at least one fifth conductor layer 301 and a plurality of fifth conductors 302. The conductor pair 30 includes at least one fifth conductor layer 301 and a plurality of fifth conductors 302.
- the fifth conductor layer 301 extends in the y direction.
- the fifth conductor layer 301 extends along the xy plane.
- the fifth conductor layer 301 is a layered conductor.
- the fifth conductor layer 301 may be located on the base 20.
- the fifth conductor layer 301 can be located in the base 20.
- the plurality of fifth conductor layers 301 are separated from one another in the z direction.
- the plurality of fifth conductor layers 301 are arranged in the z direction.
- the plurality of fifth conductor layers 301 partially overlap in the z direction.
- the fifth conductor layer 301 electrically connects the plurality of fifth conductors 302.
- the fifth conductor layer 301 serves as a connection conductor for connecting the plurality of fifth conductors 302.
- the fifth conductor layer 301 can be electrically connected to any conductor layer of the third conductor 40. In one embodiment, the fifth conductor layer 301 is electrically connected to the second conductor layer 42. The fifth conductor layer 301 can be integrated with the second conductor layer 42. In one embodiment, the fifth conductor layer 301 can be electrically connected to the fourth conductor 50. The fifth conductor layer 301 can be integrated with the fourth conductor 50.
- Each fifth conductor 302 extends in the z direction.
- the plurality of fifth conductors 302 are separated from one another in the y direction.
- the distance between the fifth conductors 302 is equal to or less than a half wavelength of ⁇ 1 .
- the distance between the fifth conductor 302 that is electrically connected is at lambda 1/2 or less, each of the first conductor 31 and second conductor 32, the electromagnetic wave of the resonance frequency band from between the fifth conductor 302 Leakage can be reduced.
- the pair conductor 30 can be seen as an electrical wall from the unit structure because the leakage of electromagnetic waves in the resonant frequency band is small. At least a portion of the plurality of fifth conductors 302 is electrically connected to the fourth conductor 50.
- a portion of the plurality of fifth conductors 302 can electrically connect the fourth conductor 50 and the fifth conductor layer 301. In one embodiment, the plurality of fifth conductors 302 can be electrically connected to the fourth conductor 50 via the fifth conductor layer 301. A portion of the plurality of fifth conductors 302 can electrically connect one fifth conductor layer 301 to the other fifth conductor layer 301.
- the fifth conductor 302 can employ a via conductor and a through hole conductor.
- the resonator 10 includes a third conductor 40 that functions as a resonator.
- the third conductor 40 may function as an artificial magnetic wall (AMC).
- the artificial magnetic wall can also be referred to as a reactive impedance surface (RIS).
- the resonator 10 includes a third conductor 40 functioning as a resonator between two pair conductors 30 opposed in the x direction.
- the two paired conductors 30 can be viewed as an electric conductor (Electric Conductor) extending from the third conductor 40 to the yz plane.
- the resonator 10 is electrically released at the end in the y direction.
- zx planes at both ends in the y direction have high impedance.
- the zx planes at both ends of the resonator 10 in the y direction can be seen as a magnetic conductor from the third conductor 40.
- the resonator 10 is surrounded by two electric walls and two high impedance surfaces (magnetic walls), so that the resonator of the third conductor 40 has an artificial magnetic wall character (Artificial Magnetic Conductor Character) in the z direction. Being surrounded by two electrical walls and two high impedance planes, the resonators of the third conductor 40 have artificial magnetic wall properties with a finite number.
- the phase difference between the incident wave and the reflected wave at the operating frequency is 0 degrees.
- the resonator 10 the phase difference between the reflected wave and the incident wave at the first frequency f 1 is 0 degrees.
- the phase difference between the incident wave and the reflected wave is ⁇ 90 degrees to +90 degrees in the operating frequency band.
- Operating frequency band and is a frequency band between the second frequency f 2 and the third frequency f 3.
- the second is the frequency f 2
- phase difference between the incident wave and the reflected wave is a frequency that is +90 degrees.
- the third frequency f 3 the phase difference between the incident wave and the reflected wave is a frequency that is -90 degrees.
- the width of the operating frequency band determined based on the second and third frequencies may be, for example, 100 MHz or more when the operating frequency is about 2.5 GHz.
- the width of the operating frequency band may be, for example, 5 MHz or more when the operating frequency is about 400 MHz.
- the operating frequency of the resonators 10 may be different from the resonant frequency of each resonator of the third conductor 40.
- the operating frequency of the resonator 10 may vary with the length, size, shape, material, etc. of the base 20, the pair of conductors 30, the third conductor 40, and the fourth conductor 50.
- the third conductor 40 may include at least one unit resonator 40X.
- the third conductor 40 can include one unit resonator 40X.
- the third conductor 40 can include a plurality of unit resonators 40X.
- the unit resonator 40X is positioned so as to overlap the fourth conductor 50 in the z direction.
- the unit resonator 40X faces the fourth conductor 50.
- Unit resonator 40X can function as a frequency selective surface (FSS).
- the plurality of unit resonators 40X are arranged along the xy plane.
- the plurality of unit resonators 40X can be regularly arranged in the xy plane.
- the unit resonators 40X may be arranged in a square grid, an oblique grid, a rectangular grid, and a hexagonal grid.
- the third conductor 40 can include a plurality of conductor layers aligned in the z direction. Each of the plurality of conductor layers of the third conductor 40 includes at least one unit resonator. For example, the third conductor 40 includes a first conductor layer 41 and a second conductor 32.
- the first conductor layer 41 includes at least one first unit resonator 41X.
- the first conductor layer 41 may include one first unit resonator 41X.
- the first conductor layer 41 can include a plurality of first partial resonators 41Y in which one first unit resonator 41X is divided into a plurality.
- the plurality of first partial resonators 41Y can be at least one first unit resonator 41X by the adjacent unit structures 10X.
- the plurality of first partial resonators 41 ⁇ / b> Y are located at the end of the first conductor layer 41.
- the first unit resonator 41X and the first partial resonator 41Y can be referred to as a third conductor.
- the second conductor layer 42 includes at least one second unit resonator 42X.
- the second conductor layer 42 can include one second unit resonator 42X.
- the second conductor layer 42 can include a plurality of second partial resonators 42Y in which one second unit resonator 42X is divided into a plurality.
- the plurality of second partial resonators 42Y can be at least one second unit resonator 42X by the adjacent unit structures 10X.
- the plurality of second partial resonators 42 Y are located at the end of the second conductor layer 42.
- the second unit resonators 42X and the second partial resonators 42Y can be called third conductors.
- At least a part of the second unit resonators 42X and the second partial resonators 42Y is located so as to overlap the first unit resonators 41X and the first partial resonators 41Y in the Z direction.
- the third conductor 40 at least a portion of the unit resonators and the partial resonators of each layer overlap in the Z direction, and form one unit resonator 40X.
- Unit resonator 40X includes at least one unit resonator in each layer.
- the first conductor layer 41 includes at least one first unit conductor 411.
- the first unit conductor 411 can function as a first unit resonator 41X or a first partial resonator 41Y.
- the first conductor layer 41 has a plurality of first unit conductors 411 arranged in n rows and m columns in the xy direction. n and m are one or more natural numbers independent of each other. In one example shown in FIGS. 1 to 9 and the like, the first conductor layer 41 has six first unit conductors 411 arranged in a grid of two rows and three columns.
- the first unit conductors 411 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
- the first unit conductor 411 corresponding to the first partial resonator 41 ⁇ / b> Y is located at the end of the first conductor layer 41 in the xy plane.
- the first conductor layer 41X When the first unit resonator 41X is a slot type resonator, at least one conductor layer of the first conductor layer 41 extends in the xy direction.
- the first conductor layer 41 has at least one first unit slot 412.
- the first unit slot 412 can function as the first unit resonator 41X or the first partial resonator 41Y.
- the first conductor layer 41 may include a plurality of first unit slots 412 arranged in n rows and m columns in the xy direction. n and m are one or more natural numbers independent of each other. In the example shown in FIGS. 6 to 9 etc., the first conductor layer 41 has six first unit slots 412 arranged in a grid of two rows and three columns.
- the first unit slots 412 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
- the first unit slot 412 corresponding to the first partial resonator 41 Y is located at the end of the first conductor layer 41 in the xy plane.
- the second conductor layer 42 includes at least one second unit conductor 421.
- the second conductor layer 42 may include a plurality of second unit conductors 421 aligned in the xy direction.
- the second unit conductors 421 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
- the second unit conductor 421 can function as a second unit resonator 42X or a second partial resonator 42Y.
- the second unit conductor 421 corresponding to the second partial resonator 42Y is located at the end of the second conductor layer 42 in the xy plane.
- the second unit conductor 421 at least partially overlaps with at least one of the first unit resonator 41X and the first partial resonator 41Y in the z direction.
- the second unit conductor 421 may overlap with the plurality of first unit resonators 41X.
- the second unit conductor 421 can overlap with the plurality of first partial resonators 41Y.
- the second unit conductor 421 can overlap with one first unit resonator 41X and four first partial resonators 41Y.
- the second unit conductor 421 may overlap with only one first unit resonator 41X.
- the center of gravity of the second unit conductor 421 may overlap with one first unit resonator 41X.
- the center of gravity of the second unit conductor 421 may be located between the plurality of first unit resonators 41X and the first partial resonator 41Y.
- the center of gravity of the second unit conductor 421 may be located between two first unit resonators 41X aligned in the x direction or the y direction.
- the second unit conductor 421 may overlap at least partially with the two first unit conductors 411.
- the second unit conductor 421 may overlap only one first unit conductor 411.
- the center of gravity of the second unit conductor 421 may be located between the two first unit conductors 411.
- the center of gravity of the second unit conductor 421 may overlap with one first unit conductor 411.
- the second unit conductor 421 may at least partially overlap the first unit slot 412.
- the second unit conductor 421 may overlap with only one first unit slot 412.
- the center of gravity of the second unit conductor 421 may be located between two first unit slots 412 aligned in the x or y direction.
- the center of gravity of the second unit conductor 421 may overlap one first unit slot 412.
- the second unit resonator 42X is a slot type resonator
- at least one conductor layer of the second conductor layer 42 extends along the xy plane.
- the second conductor layer 42 has at least one second unit slot 422.
- the second unit slot 422 can function as a second unit resonator 42X or a first partial resonator 41Y.
- the second conductor layer 42 may include a plurality of second unit slots 422 aligned in the xy plane.
- the second unit slots 422 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
- a second unit slot 422 corresponding to the second partial resonator 42Y is located at an end of the second conductor layer 42 in the xy plane.
- the second unit slot 422 at least partially overlaps with at least one of the first unit resonator 41X and the first partial resonator 41Y in the y direction.
- the second unit slot 422 may overlap the plurality of first unit resonators 41X.
- the second unit slot 422 may overlap with the plurality of first partial resonators 41Y.
- the second unit slot 422 may overlap with one first unit resonator 41X and four first partial resonators 41Y.
- the second unit slot 422 may overlap only one first unit resonator 41X.
- the center of gravity of the second unit slot 422 may overlap with one first unit resonator 41X.
- the center of gravity of the second unit slot 422 may be located between the plurality of first unit resonators 41X.
- the center of gravity of the second unit slot 422 may be located between the two first unit resonators 41X and the first partial resonator 41Y aligned in the x or y direction.
- the second unit slot 422 may at least partially overlap the two first unit conductors 411.
- the second unit slot 422 may overlap only one first unit conductor 411.
- the center of gravity of the second unit slot 422 may be located between the two first unit conductors 411.
- the center of gravity of the second unit slot 422 may overlap with one first unit conductor 411.
- the second unit slot 422 may at least partially overlap the first unit slot 412.
- the second unit slot 422 may overlap with only one first unit slot 412.
- the center of gravity of the second unit slot 422 may be located between two first unit slots 412 aligned in the x or y direction.
- the center of the second unit slot 422 may overlap with one first unit slot 412.
- the unit resonator 40X includes at least one first unit resonator 41X and at least one second unit resonator 42X.
- the unit resonator 40X may include one first unit resonator 41X.
- the unit resonator 40X may include a plurality of first unit resonators 41X.
- the unit resonator 40X can include one first partial resonator 41Y.
- the unit resonator 40X can include a plurality of first partial resonators 41Y.
- the unit resonator 40X may include a part of the first unit resonator 41X.
- the unit resonator 40X may include one or more partial first unit resonators 41X.
- the unit resonator 40X includes a plurality of partial resonators from one or more partial first unit resonators 41X and one or more first partial resonators 41Y.
- the plurality of partial resonators included in the unit resonator 40X are combined with the first unit resonator 41X corresponding to at least one.
- the unit resonator 40X may not include the first unit resonator 41X, but may include a plurality of first partial resonators 41Y.
- the unit resonator 40X can include, for example, four first partial resonators 41Y.
- the unit resonator 40X may include a plurality of partial first unit resonators 41X.
- the unit resonator 40X may include one or more partial first unit resonators 41X and one or more first partial resonators 41Y.
- the unit resonator 40X may include, for example, two partial first unit resonators 41X and two first partial resonators 41Y.
- the mirror images of the included first conductor layers 41 at both ends in the x direction may be substantially the same.
- the included first conductor layer 41 can be substantially symmetrical with respect to the center line extending in the z direction.
- the unit resonator 40X may include one second unit resonator 42X.
- the unit resonator 40X may include a plurality of second unit resonators 42X.
- Unit resonator 40X may include one second partial resonator 42Y.
- Unit resonator 40X can include a plurality of second partial resonators 42Y.
- the unit resonator 40X may include a part of the second unit resonator 42X.
- the unit resonator 40X may include one or more partial second unit resonators 42X.
- Unit resonator 40X includes a plurality of partial resonators from one or more partial second unit resonators 42X and one or more second partial resonators 42Y.
- the plurality of partial resonators included in the unit resonator 40X are combined with the second unit resonator 42X corresponding to at least one.
- the unit resonator 40X may not include the second unit resonator 42X but may include a plurality of second partial resonators 42Y.
- the unit resonator 40X can include, for example, four second partial resonators 42Y.
- the unit resonator 40X may include a plurality of partial second unit resonators 42X.
- Unit resonator 40X may include one or more partial second unit resonators 42X and one or more second partial resonators 42Y.
- the unit resonator 40X may include, for example, two partial second unit resonators 42X and two second partial resonators 42Y.
- the mirror images of the included second conductor layers 42 at each of both ends in the x direction can be substantially the same.
- the included second conductor layer 42 can be substantially symmetrical with respect to the center line extending in the y direction.
- the unit resonator 40X includes one first unit resonator 41X and a plurality of partial second unit resonators 42X.
- the unit resonator 40X includes one first unit resonator 41X and half of four second unit resonators 42X.
- the unit resonator 40X includes one first unit resonator 41X and two second unit resonators 42X.
- the configuration included in the unit resonator 40X is not limited to this example.
- the resonator 10 may include at least one unitary structure 10X.
- the resonator 10 can include a plurality of unit structures 10X.
- the plurality of unit structures 10X can be arranged in the xy plane.
- the plurality of unit structures 10X may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
- the unit structure 10X includes any of repeating units of square grid, oblique grid, rectangular grid, and hexagonal grid.
- the unit structure 10X can function as an artificial magnetic wall (AMC) by being infinitely arranged along the xy plane.
- AMC artificial magnetic wall
- the unit structure 10X can include at least a portion of the base 20, at least a portion of the third conductor 40, and at least a portion of the fourth conductor 50.
- the portions of the base 20, the third conductor 40, and the fourth conductor 50 included in the unit structure 10X overlap in the z direction.
- the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a fourth conductor 50 overlapping the unit resonator 40X in the z direction.
- the resonator 10 can include, for example, six unit structures 10X arranged in two rows and three columns.
- the resonator 10 can have at least one unit structure 10X between two pair conductors 30 opposed in the x direction.
- the two paired conductors 30 can be seen as an electric wall extending from the unit structure 10X to the yz plane.
- the end of the unit structure 10X in the y direction is released.
- zx planes at both ends in the y direction have high impedance.
- zx planes at both ends in the y direction can be seen as magnetic walls.
- the unit structure 10X may be line symmetrical with respect to the z direction when repeatedly arranged.
- the unit structure 10X has artificial magnetic wall characteristics in the z direction by being surrounded by two electric walls and two high impedance surfaces (magnetic walls). Being surrounded by two electric walls and two high impedance surfaces (magnetic walls), the unit structure 10X has artificial magnetic wall characteristics with a finite number.
- the operating frequency of the resonator 10 may be different from the operating frequency of the first unit resonator 41X.
- the operating frequency of the resonator 10 may be different from the operating frequency of the second unit resonator 42X.
- the operating frequency of the resonator 10 can be changed by the coupling of the first unit resonator 41X and the second unit resonator 42X constituting the unit resonator 40X.
- the third conductor 40 can include a first conductor layer 41 and a second conductor layer 42.
- the first conductor layer 41 includes at least one first unit conductor 411.
- the first unit conductor 411 includes a first connection conductor 413 and a first floating conductor 414.
- the first connection conductor 413 is connected to one of the pair of conductors 30.
- the first floating conductor 414 is not connected to the paired conductor 30.
- the second conductor layer 42 includes at least one second unit conductor 421.
- the second unit conductor 421 includes a second connection conductor 423 and a second floating conductor 424.
- the second connection conductor 423 is connected to one of the pair of conductors 30.
- the second floating conductor 424 is not connected to the paired conductor 30.
- the third conductor 40 may include a first unit conductor 411 and a second unit conductor 421.
- the first connection conductor 413 can be longer than the first floating conductor 414 in the x direction.
- the first connection conductor 413 can have a length along the x direction shorter than that of the first floating conductor 414.
- the first connection conductor 413 can have a half length along the x direction as compared to the first floating conductor 414.
- the second connection conductor 423 can be longer than the second floating conductor 424 in the x direction.
- the second connection conductor 423 can have a shorter length along the x direction than the second floating conductor 424.
- the second connection conductor 423 can have a half length along the x direction as compared to the second floating conductor 424.
- the third conductor 40 can include a current path 40I that becomes a current path between the first conductor 31 and the second conductor 32 when the resonator 10 resonates.
- the current path 40I can be connected to the first conductor 31 and the second conductor 32.
- the current path 40I has a capacitance between the first conductor 31 and the second conductor 32.
- the capacitance of the current path 40I is electrically connected in series between the first conductor 31 and the second conductor 32.
- the conductors are separated between the first conductor 31 and the second conductor 32.
- the current path 40I can include a conductor connected to the first conductor 31 and a conductor connected to the second conductor 32.
- the first unit conductor 411 and the second unit conductor 421 are partially opposed in the z direction.
- the first unit conductor 411 and the second unit conductor 421 are capacitively coupled.
- the first unit conductor 411 has a capacitive component at an end in the x direction.
- the first unit conductor 411 can have a capacitive component at an end in the y direction facing the second unit conductor 421 in the z direction.
- the first unit conductor 411 can have a capacitive component at an end in the x direction opposite to the second unit conductor 421 in the z direction and at an end in the y direction.
- the second unit conductor 421 has a capacitive component at an end in the x direction.
- the second unit conductor 421 can have a capacitance component at an end in the y direction facing the first unit conductor 411 in the z direction.
- the second unit conductor 421 can have a capacitance component at an end in the x direction opposite to the first unit conductor 411 in the z direction and at an end in the y direction.
- the resonator 10 can lower the resonance frequency by increasing the capacitive coupling in the current path 40I. When realizing a desired operating frequency, the resonator 10 can shorten the length along the x direction by increasing the capacitive coupling of the current path 40I.
- the first unit conductor 411 and the second unit conductor 421 are capacitively coupled to face each other in the stacking direction of the base 20.
- the third conductor 40 can adjust the capacitance between the first unit conductor 411 and the second unit conductor 421 by the facing area.
- the length along the y direction of the first unit conductor 411 is different from the length along the y direction of the second unit conductor 421.
- the length along the third direction is the first unit.
- current path 40I comprises a single conductor spatially separated from the first conductor 31 and the second conductor 32 and capacitively coupled to the first conductor 31 and the second conductor 32.
- the current path 40I includes the first conductor layer 41 and the second conductor layer 42.
- the current path 40I includes at least one first unit conductor 411 and at least one second unit conductor 421.
- the current path 40I includes any one of two first connection conductors 413, two second connection conductors 423, and one first connection conductor 413 and one second connection conductor 423.
- the first unit conductors 411 and the second unit conductors 421 can be alternately arranged along the first direction.
- the current path 40I includes the first connection conductor 413 and the second connection conductor 423.
- the current path 40I includes at least one first connection conductor 413 and at least one second connection conductor 423.
- the third conductor 40 has a capacitance between the first connection conductor 413 and the second connection conductor 423.
- the first connection conductor 413 may face the second connection conductor 423 and have a capacitance.
- the first connection conductor 413 can be capacitively connected to the second connection conductor 423 via another conductor.
- the current path 40I includes the first connection conductor 413 and the second floating conductor 424.
- the current path 40I includes two first connection conductors 413.
- the third conductor 40 has a capacitance between the two first connection conductors 413.
- the two first connection conductors 413 can be capacitively connected via the at least one second floating conductor 424.
- the two first connection conductors 413 can be capacitively connected via the at least one first floating conductor 414 and the plurality of second floating conductors 424.
- the current path 40I includes the first floating conductor 414 and the second connection conductor 423.
- the current path 40I includes two second connection conductors 423.
- the third conductor 40 has a capacitance between the two second connection conductors 423.
- the two second connection conductors 423 can be capacitively connected via the at least one first floating conductor 414.
- the two second connection conductors 423 can be capacitively connected via the plurality of first floating conductors 414 and the at least one second floating conductor 424.
- each of the first connection conductor 413 and the second connection conductor 423 may be one-quarter length of the wavelength ⁇ at the resonant frequency.
- Each of the first connection conductor 413 and the second connection conductor 423 can function as a resonator having a half length of the wavelength ⁇ .
- Each of the first connection conductor 413 and the second connection conductor 423 can oscillate in the odd mode and the even mode by capacitive coupling of the respective resonators.
- the resonator 10 can use the resonance frequency in the even mode after capacitive coupling as the operating frequency.
- the current path 40I can be connected to the first conductor 31 at a plurality of points.
- the current path 40I can be connected to the second conductor 32 at a plurality of points.
- the current path 40I can include a plurality of conductive paths that independently conduct from the first conductor 31 to the second conductor 32.
- the end of the second floating conductor 424 on the capacitively coupled side is the distance to the first connection conductor 413 compared to the distance to the pair conductor 30. Is short.
- the end of the first floating conductor 414 on the capacitively coupled side is the distance to the second connection conductor 423 compared to the distance to the pair conductor 30. Is short.
- the conductor layers of the third conductor 40 may have different lengths in the y direction.
- the conductor layer of the third conductor 40 capacitively couples with other conductor layers in the z direction.
- the change in capacitance is small even if the conductor layers are shifted in the y direction.
- the resonator 10 can widen the tolerance
- the third conductor 40 has a capacitance due to capacitive coupling between the conductor layers.
- a plurality of capacitive portions having the capacitance can be arranged in the y direction.
- a plurality of capacitance portions arranged in the y direction can be in an electromagnetically parallel relationship.
- Resonator 10 can mutually complement each capacity error by having a plurality of capacity parts arranged in parallel electrically.
- the current flowing in the pair conductor 30, the third conductor 40, and the fourth conductor 50 loops.
- an alternating current flows in the resonator 10.
- the current flowing through the third conductor 40 is referred to as a first current
- the current flowing through the fourth conductor 50 is referred to as a second current.
- the first current flows in a direction different from the second current in the x direction. For example, when the first current flows in the + x direction, the second current flows in the ⁇ x direction.
- the second current flows in the + x direction. That is, when the resonator 10 is in the resonant state, the loop current flows alternately in the + x direction and the ⁇ x direction.
- the resonator 10 emits an electromagnetic wave when the loop current that generates the magnetic field repeats inversion.
- the third conductor 40 includes a first conductor layer 41 and a second conductor layer 42.
- the first conductor layer 41 and the second conductor layer 42 are capacitively coupled, it appears that current is flowing in one direction in a global manner in a resonant state.
- the current through each conductor has a high density at the end in the y direction.
- the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 form a resonant circuit.
- the resonant frequency of the resonator 10 is the resonant frequency of the unit resonator.
- the resonance frequency of the resonator 10 is determined by the base 20, the pair conductor 30, the third conductor 40, and the like. It is changed by electromagnetic coupling with the fourth conductor 50 and the periphery of the resonator 10.
- the resonator 10 when the periodicity of the third conductor 40 is low, the resonator 10 becomes one unit resonator entirely or a part of one unit resonator.
- the resonant frequency of the resonator 10 is determined by the length in the z direction of the first conductor 31 and the second conductor 32, the length in the x direction of the third conductor 40 and the fourth conductor 50, the third conductor 40 and the fourth conductor It changes with the capacitance of 50.
- the resonator 10 having a large capacitance between the first unit conductor 411 and the second unit conductor 421 has a length in the z direction of the first conductor 31 and the second conductor 32, and the third conductor 40 and the fourth conductor 50. It is possible to reduce the resonant frequency while shortening the length in the x direction of.
- the first conductor layer 41 is an effective radiation surface of the electromagnetic wave in the z direction.
- the first area of the first conductor layer 41 is larger than the first area of the other conductor layers.
- the resonator 10 can increase the radiation of the electromagnetic wave by increasing the first area of the first conductor layer 41.
- resonator 10 may include one or more impedance elements 45.
- the impedance element 45 has an impedance value between the plurality of terminals.
- the impedance element 45 changes the resonant frequency of the resonator 10.
- the impedance element 45 may include a resistor, a capacitor, and an inductor.
- the impedance element 45 may include a variable element capable of changing the impedance value.
- the variable element can change the impedance value by the electrical signal.
- the variable element can change the impedance value according to the physical mechanism.
- the impedance element 45 can be connected to two unit conductors of the third conductor 40 aligned in the x direction.
- the impedance element 45 can be connected to the two first unit conductors 411 aligned in the x direction.
- the impedance element 45 can be connected to the first connection conductor 413 and the first floating conductor 414 aligned in the x direction.
- the impedance element 45 can be connected to the first conductor 31 and the first floating conductor 414.
- the impedance element 45 is connected to the unit conductor of the third conductor 40 at the central portion in the y direction.
- the impedance element 45 is connected to the central portion of the two first unit conductors 411 in the y direction.
- the impedance element 45 is electrically connected in series between two conductors aligned in the x direction in the xy plane.
- the impedance element 45 can be electrically connected in series between the two first unit conductors 411 aligned in the x direction.
- the impedance element 45 can be electrically connected in series between the first connection conductor 413 and the first floating conductor 414, which are aligned in the x direction.
- the impedance element 45 can be electrically connected in series between the first conductor 31 and the first floating conductor 414.
- the impedance element 45 can be electrically connected in parallel to the two first unit conductors 411 and the second unit conductors 421, which overlap in the z direction and have capacitance.
- the impedance element 45 can be electrically connected in parallel to the second connection conductor 423 and the first floating conductor 414 that overlap in the z direction and have capacitance.
- the resonator 10 can lower the resonance frequency by adding a capacitor as the impedance element 45.
- the resonator 10 can increase the resonance frequency by adding an inductor as the impedance element 45.
- Resonator 10 may include impedance elements 45 of different impedance values.
- the resonator 10 may include capacitors of different capacitances as the impedance element 45.
- the resonator 10 can include inductors of different inductances as the impedance element 45. In the resonator 10, the adjustment range of the resonance frequency is increased by adding the impedance elements 45 having different impedance values.
- Resonator 10 can simultaneously include a capacitor and an inductor as impedance element 45.
- the adjustment range of the resonance frequency is increased by simultaneously adding a capacitor and an inductor as the impedance element 45.
- the resonator 10 can be an entire unit resonator or a part of an entire unit resonator by including the impedance element 45.
- FIG. 1 to 5 are diagrams showing a resonator 10 which is an example of a plurality of embodiments.
- FIG. 1 is a schematic view of a resonator 10.
- FIG. 2 is a plan view of the xy plane from the z direction.
- FIG. 3A is a cross-sectional view taken along the line IIIa-IIIa shown in FIG.
- FIG. 3B is a cross-sectional view taken along the line IIIb-IIIb shown in FIG.
- FIG. 4 is a cross-sectional view taken along line IV-IV shown in FIG.
- FIG. 5 is a conceptual view showing a unit structure 10X which is an example of a plurality of embodiments.
- the first conductor layer 41 includes a patch resonator as the first unit resonator 41X.
- the second conductor layer 42 includes a patch type resonator as a second unit resonator 42X.
- the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
- the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
- FIGS. 6-9 are diagrams showing a resonator 10 that is an example of a plurality of embodiments.
- FIG. 6 is a schematic view of the resonator 10.
- FIG. 7 is a plan view of the xy plane from the z direction.
- FIG. 8A is a cross-sectional view taken along the line VIIIa-VIIIa shown in FIG.
- FIG. 8 (b) is a cross-sectional view taken along the line VIIIb-VIIIb shown in FIG.
- FIG. 9 is a cross-sectional view taken along the line IX-IX shown in FIG.
- the first conductor layer 41 includes a slot type resonator as the first unit resonator 41X.
- the second conductor layer 42 includes a slot type resonator as a second unit resonator 42X.
- the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
- the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
- FIG. 10 to 13 show a resonator 10 which is an example of a plurality of embodiments.
- FIG. 10 is a schematic view of the resonator 10.
- FIG. 11 is a plan view of the xy plane from the z direction.
- FIG. 12A is a cross-sectional view taken along the line XIIa-XIIa shown in FIG.
- FIG. 12B is a cross-sectional view taken along line XIIb-XIIb shown in FIG.
- FIG. 13 is a cross-sectional view taken along the line XIII-XIII shown in FIG.
- the first conductor layer 41 includes a patch resonator as the first unit resonator 41X.
- the second conductor layer 42 includes a slot type resonator as a second unit resonator 42X.
- the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
- the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
- FIGS. 14-17 illustrate a resonator 10 that is an example of a plurality of embodiments.
- FIG. 14 is a schematic view of the resonator 10.
- FIG. 15 is a plan view of the xy plane from the z direction.
- FIG. 16A is a cross-sectional view taken along line XVIa-XVIa shown in FIG.
- FIG. 16B is a cross-sectional view along the line XVIb-XVIb shown in FIG.
- FIG. 17 is a cross-sectional view along the line XVII-XVII shown in FIG.
- the first conductor layer 41 includes a slot type resonator as the first unit resonator 41X.
- the second conductor layer 42 includes a patch type resonator as a second unit resonator 42X.
- the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
- the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
- FIGS. 1 to 17 The resonator 10 shown in FIGS. 1 to 17 is an example.
- the configuration of the resonator 10 is not limited to the structures shown in FIGS.
- FIG. 18 is a diagram showing a resonator 10 including a pair conductor 30 of another configuration.
- FIG. 19A is a cross-sectional view taken along the line XIXa-XIXa shown in FIG.
- FIG. 19 (b) is a cross-sectional view along the line XIXb-XIXb shown in FIG.
- the base 20 shown in FIGS. 1 to 19 is an example.
- the configuration of the base 20 is not limited to the configuration shown in FIGS.
- the base 20 can include a cavity 20a inside, as shown in FIG. In the z direction, the cavity 20 a is located between the third conductor 40 and the fourth conductor 50.
- the dielectric constant of the cavity 20 a is lower than the dielectric constant of the substrate 20.
- the base 20 can shorten the electromagnetic distance between the third conductor 40 and the fourth conductor 50 by having the cavity 20 a.
- the substrate 20 can include a plurality of members as shown in FIG.
- the substrate 20 can include a first substrate 21, a second substrate 22, and a connector 23.
- the first base 21 and the second base 22 can be mechanically connected via the connector 23.
- the connection body 23 can include the sixth conductor 303 inside.
- the sixth conductor 303 is electrically connected to the fourth conductor 50 or the fifth conductor 302.
- the sixth conductor 303 is combined with the fourth conductor 50 and the fifth conductor 302 to form the first conductor 31 or the second conductor 32.
- the pair conductor 30 shown in FIGS. 1 to 21 is an example.
- the configuration of the paired conductor 30 is not limited to the configuration shown in FIGS.
- FIGS. 22-28 illustrate a resonator 10 including a pair of conductors 30 of another configuration.
- FIG. 22 is a cross-sectional view corresponding to FIG.
- the number of 5th conductor layers 301 can be changed suitably.
- the fifth conductor layer 301 may not be located on the base 20.
- the fifth conductor layer 301 may not be located in the base 20.
- FIG. 23 is a plan view corresponding to FIG. As shown in FIG. 23, the resonator 10 can separate the fifth conductor 302 from the boundary of the unit resonator 40X.
- FIG. 24 is a plan view corresponding to FIG. As shown in FIG. 24, the two paired conductors 30 can have a projection that protrudes to the side of the other paired conductor 30 to be paired.
- Such a resonator 10 can be formed, for example, by applying and curing a metal paste to a base 20 having a recess.
- FIG. 25 is a plan view corresponding to FIG.
- the substrate 20 can have a recess.
- the paired conductor 30 has a recess that is recessed inward from the outer surface in the x direction.
- the paired conductors 30 extend along the surface of the base 20.
- Such a resonator 10 can be formed, for example, by spraying a fine metal material on a base 20 having a recess.
- FIG. 26 is a plan view corresponding to FIG.
- the substrate 20 can have a recess.
- the paired conductor 30 has a recess that is recessed inward from the outer surface in the x direction.
- the paired conductors 30 extend along the recess of the base 20.
- Such a resonator 10 can be manufactured, for example, by dividing a mother substrate along an array of through-hole conductors. Such a pair of conductors 30 can be called an end face through hole or the like.
- FIG. 27 is a plan view corresponding to FIG.
- the base 20 can have a recess.
- the paired conductor 30 has a recess that is recessed inward from the outer surface in the x direction.
- Such a resonator 10 can be manufactured, for example, by dividing a mother substrate along an array of through-hole conductors. Such a pair of conductors 30 can be called an end face through hole or the like.
- FIG. 28 is a plan view corresponding to FIG. As shown in FIG. 28, the length in the x direction of the paired conductor 30 may be shorter than that of the base 20.
- the configuration of the conductor 30 is not limited to these.
- the two paired conductors 30 can have different configurations.
- one paired conductor 30 may include the fifth conductor layer 301 and the fifth conductor 302, and the other paired conductor 30 may be an end face through hole.
- the third conductor 40 shown in FIGS. 1 to 28 is an example.
- the configuration of the third conductor 40 is not limited to the configuration shown in FIGS.
- the unit resonator 40X, the first unit resonator 41X, and the second unit resonator 42X are not limited to the square.
- the unit resonator 40X, the first unit resonator 41X, and the second unit resonator 42X can be referred to as a unit resonator 40X or the like.
- the unit resonators 40X and so forth may be triangular as shown in FIG. 29 (a) and may be hexagonal as shown in FIG. 29 (b).
- Each side of the unit resonator 40X and the like can extend in a direction different from the x direction and the y direction, as shown in FIG.
- the second conductor layer 42 may be located on the base 20, and the first conductor layer 41 may be located in the base 20.
- the second conductor layer 42 may be located farther from the fourth conductor 50 than the first conductor layer 41.
- the third conductor 40 shown in FIGS. 1 to 30 is an example.
- the configuration of the third conductor 40 is not limited to the configuration shown in FIGS.
- the resonator including the third conductor 40 may be a line type resonator 401.
- FIG. 31A shows a meander line resonator 401.
- a spiral type resonator 401 is shown in FIG.
- the resonator included in the third conductor 40 may be a slot type resonator 402.
- the slotted resonator 402 may have one or more seventh conductors 403 in the opening.
- the seventh conductor 403 in the opening is electrically connected at one end to the conductor defining the opening.
- five seventh conductors 403 are located in the opening.
- the unit slot corresponds to a meander line by the seventh conductor 403.
- one seventh conductor 403 is located in the opening.
- the unit slot corresponds to a spiral by the seventh conductor 403.
- the configuration of the resonator 10 shown in FIGS. 1 to 31 is an example.
- the configuration of the resonator 10 is not limited to the configuration shown in FIGS.
- the pair conductor 30 of the resonator 10 may include three or more.
- one paired conductor 30 can be opposed to two paired conductors 30 in the x direction.
- the two paired conductors 30 differ in distance from the paired conductor 30.
- resonator 10 may include two pairs of paired conductors 30.
- the two pairs of paired conductors 30 may differ in the distance of each pair and the length of each pair.
- the resonator 10 may include five or more first conductors.
- the unit structure 10X of the resonator 10 can be aligned with other unit structures 10X in the y direction.
- the unit structure 10X of the resonator 10 can be aligned with the other unit structures 10X in the x direction without the pair conductor 30 interposed.
- 32 to 34 show examples of the resonator 10.
- FIGS. 1 to 34 The configuration of the resonator 10 shown in FIGS. 1 to 34 is an example. The configuration of the resonator 10 is not limited to the configuration shown in FIGS.
- FIG. 35 is a plan view of the xy plane from the z direction.
- FIG. 36A is a cross-sectional view along the line XXXVIa-XXXVIa shown in FIG. 36 (b) is a cross-sectional view taken along the line XXVIb-XXXVIb shown in FIG.
- the first conductor layer 41 includes half of the patch resonator as the first unit resonator 41X.
- the second conductor layer 42 includes half of the patch resonator as the second unit resonator 42X.
- Unit resonator 40X includes one first partial resonator 41Y and one second partial resonator 42Y.
- the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the Z direction, and a part of the fourth conductor 50.
- three unit resonators 40X are aligned in the x direction.
- the first unit conductor 411 and the second unit conductor 421 included in the three unit resonators 40X form one current path 40I.
- FIG. 37 shows another example of the resonator 10 shown in FIG.
- the resonator 10 shown in FIG. 37 is longer in the x direction as compared to the resonator 10 shown in FIG.
- the dimensions of the resonator 10 are not limited to the resonator 10 shown in FIG.
- the first connection conductor 413 has a length in the x direction different from that of the first floating conductor 414.
- the first connection conductor 413 has a length in the x direction shorter than that of the first floating conductor 414.
- FIG. 38 shows another example of the resonator 10 shown in FIG. In the resonator 10 shown in FIG. 38, the lengths of the third conductors 40 in the x direction are different.
- the first connection conductor 413 is longer in length in the x direction than the first floating conductor 414.
- FIG. 39 shows another example of the resonator 10.
- FIG. 39 shows another example of the resonator 10 shown in FIG.
- the resonator 10 capacitively couples the plurality of first unit conductors 411 and the second unit conductors 421 arranged in the x direction.
- two current paths 40I can be arranged in the y direction, in which no current flows from one to the other.
- FIG. 40 shows another example of the resonator 10.
- FIG. 40 shows another example of the resonator 10 shown in FIG.
- the resonator 10 may differ in the number of conductors connected to the first conductor 31 and the number of conductors connected to the second conductor 32.
- one first connection conductor 413 is capacitively coupled to two second floating conductors 424.
- the two second connection conductors 423 are capacitively coupled to one first floating conductor 414.
- the number of first unit conductors 411 may be different from the number of second unit conductors 421 capacitively coupled to the first unit conductor 411.
- FIG. 41 shows another example of the resonator 10 shown in FIG.
- the first unit conductor 411 has the number of second unit conductors 421 capacitively coupled at the first end in the x direction, and the number of second unit conductors 421 capacitively coupled at the second end in the x direction. The number can be different.
- one second floating conductor 424 has the two first connection conductors 413 capacitively coupled to the first end in the x direction, and three second floating conductors 424 at the second end. It is capacitively coupled.
- the conductors in the y-direction may differ in length in the y-direction.
- the three first floating conductors 414 aligned in the y direction have different lengths in the y direction.
- FIG. 42 shows another example of the resonator 10.
- FIG. 43 is a cross-sectional view along the line XLIII-XLIII shown in FIG.
- the first conductor layer 41 includes half of the patch resonator as the first unit resonator 41X.
- the second conductor layer 42 includes half of the patch resonator as the second unit resonator 42X.
- Unit resonator 40X includes one first partial resonator 41Y and one second partial resonator 42Y.
- the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50. In the resonator 10 shown in FIG. 42, one unit resonator 40X extends in the x direction.
- FIG. 44 shows another example of the resonator 10.
- FIG. 45 is a cross-sectional view along the line XLV-XLV shown in FIG.
- the third conductor 40 includes only the first connection conductor 413.
- the first connection conductor 413 faces the first conductor 31 in the xy plane.
- the first connection conductor 413 capacitively couples with the first conductor 31.
- FIG. 46 shows another example of the resonator 10.
- FIG. 47 is a cross-sectional view along the line XLVII-XLVII shown in FIG.
- the third conductor 40 has a first conductor layer 41 and a second conductor layer 42.
- the first conductor layer 41 has one first floating conductor 414.
- the second conductor layer 42 has two second connection conductors 423.
- the first conductor layer 41 faces the pair of conductors 30 in the xy plane.
- the two second connection conductors 423 overlap the one first floating conductor 414 in the z direction.
- One first floating conductor 414 is capacitively coupled to the two second connection conductors 423.
- FIG. 48 shows another example of the resonator 10.
- FIG. 49 is a cross sectional view taken along the line XLIX-XLIX shown in FIG.
- the third conductor 40 includes only the first floating conductor 414.
- the first floating conductor 414 faces the pair of conductors 30 in the xy plane.
- the first connection conductor 413 capacitively couples with the paired conductor 30.
- FIG. 50 shows another example of the resonator 10.
- FIG. 51 is a cross-sectional view taken along line LI-LI shown in FIG.
- the resonator 10 shown in FIGS. 50 and 51 differs in the configuration of the resonator 10 and the fourth conductor 50 shown in FIGS.
- the resonator 10 shown in FIGS. 50 and 51 includes a fourth conductor 50 and a reference potential layer 51.
- the reference potential layer 51 is electrically connected to the ground of the device provided with the resonator 10.
- the reference potential layer 51 is opposed to the third conductor 40 via the fourth conductor 50.
- the fourth conductor 50 is located between the third conductor 40 and the reference potential layer 51.
- the distance between the reference potential layer 51 and the fourth conductor 50 is narrower than the distance between the third conductor 40 and the fourth conductor 50.
- FIG. 52 shows another example of the resonator 10.
- FIG. 53 is a cross-sectional view taken along line LIII-LIII shown in FIG.
- the resonator 10 includes a fourth conductor 50 and a reference potential layer 51.
- the reference potential layer 51 is electrically connected to the ground of the device provided with the resonator 10.
- the fourth conductor 50 comprises a resonator.
- the fourth conductor 50 includes a third conductor layer 52 and a fourth conductor layer 53.
- the third conductor layer 52 and the fourth conductor layer 53 capacitively couple.
- the third conductor layer 52 and the fourth conductor layer 53 face each other in the z direction.
- the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor layer 53 and the reference potential layer 51.
- the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor 50 and the reference potential layer 51.
- the third conductor 40 is one conductor layer
- FIG. 54 shows another example of the resonator 10 shown in FIG.
- the resonator 10 includes a third conductor 40, a fourth conductor 50, and a reference potential layer 51.
- the third conductor 40 includes a first conductor layer 41 and a second conductor layer 42.
- the first conductor layer 41 includes a first connection conductor 413.
- the second conductor layer 42 includes a second connection conductor 423.
- the first connection conductor 413 is capacitively coupled to the second connection conductor 423.
- the reference potential layer 51 is electrically connected to the ground of the device provided with the resonator 10.
- the fourth conductor 50 includes a third conductor layer 52 and a fourth conductor layer 53.
- the third conductor layer 52 and the fourth conductor layer 53 capacitively couple.
- the third conductor layer 52 and the fourth conductor layer 53 face each other in the z direction.
- the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor layer 53 and the reference potential layer 51.
- the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor 50 and the reference potential layer 51.
- FIG. 55 shows another example of the resonator 10.
- FIG. 56 (a) is a cross-sectional view along the line LVIa-LVIa shown in FIG.
- FIG. 56 (b) is a cross-sectional view taken along line LVIb-LVIb shown in FIG.
- the first conductor layer 41 has four first floating conductors 414.
- the first conductor layer 41 shown in FIG. 55 does not have the first connection conductor 413.
- the second conductor layer 42 has six second connection conductors 423 and three second floating conductors 424.
- Each of the two second connection conductors 423 is capacitively coupled to the two first floating conductors 414.
- One second floating conductor 424 is capacitively coupled to the four first floating conductors 414.
- the two second floating conductors 424 are capacitively coupled to the two first floating conductors 414.
- FIG. 57 shows another example of the resonator shown in FIG.
- the size of the second conductor layer 42 is different from that of the resonator 10 shown in FIG.
- the length of the second floating conductor 424 in the x direction is shorter than the length of the second connection conductor 423 in the x direction.
- FIG. 58 is a view showing another example of the resonator shown in FIG.
- the size of the second conductor layer 42 is different from that of the resonator 10 shown in FIG.
- each of the plurality of second unit conductors 421 has a different first area.
- each of the plurality of second unit conductors 421 has a different length in the x direction.
- each of the plurality of second unit conductors 421 has a different length in the y direction.
- FIG. 58 is a view showing another example of the resonator shown in FIG.
- the size of the second conductor layer 42 is different from that of the resonator 10 shown in FIG.
- each of the plurality of second unit conductors 421 has a different first area.
- each of the plurality of second unit conductors 421 has a different length in the x direction.
- each of the plurality of second unit conductors 421 has a different length in the y direction.
- the plurality of second unit conductors 421 have different first areas, lengths, and widths, but are not limited thereto.
- the plurality of second unit conductors 421 may differ in part of the first area, length, and width.
- the plurality of second unit conductors 421 may have part or all of the first area, length, and width match each other.
- the plurality of second unit conductors 421 may differ in part or all of the first area, length, and width.
- the plurality of second unit conductors 421 may have part or all of the first area, length, and width match each other. Some or all of the first area, length, and width of the plurality of second unit conductors 421 may match each other.
- the plurality of second connection conductors 423 aligned in the y direction have different first areas.
- the plurality of second connection conductors 423 aligned in the y direction have different lengths in the x direction.
- the plurality of second connection conductors 423 aligned in the y direction have different lengths in the y direction.
- the plurality of second connection conductors 423 have different first areas, lengths, and widths, but are not limited thereto.
- the plurality of second connection conductors 423 may have different first areas, lengths, and portions of widths.
- the plurality of second connection conductors 423 may have part or all of the first area, length, and width match each other.
- the plurality of second connection conductors 423 may differ in part or all of the first area, length, and width.
- the plurality of second connection conductors 423 may have part or all of the first area, length, and width match each other. Some or all of the first area, length, and width of the plurality of second connection conductors 423 may match each other.
- the plurality of second floating conductors 424 aligned in the y direction have different first areas.
- the plurality of second floating conductors 424 aligned in the y direction have different lengths in the x direction.
- the plurality of second floating conductors 424 aligned in the y direction have different lengths in the y direction.
- the plurality of second floating conductors 424 have different first areas, lengths, and widths, but are not limited thereto.
- the plurality of second floating conductors 424 may differ in part of the first area, length, and width.
- the plurality of second floating conductors 424 may have part or all of the first area, length, and width match each other.
- the plurality of second floating conductors 424 may differ in part or all of the first area, length, and width from one another.
- the plurality of second floating conductors 424 may have part or all of the first area, length, and width match each other. Some or all of the first area, length, and width of the plurality of second floating conductors 424 may coincide with each other.
- FIG. 59 is a diagram showing another example of the resonator 10 shown in FIG.
- the resonator 10 of FIG. 59 differs from the resonator 10 shown in FIG. 57 in the distance between the first unit conductors 411 in the y direction.
- the distance between the first unit conductors 411 in the y direction is smaller than the distance between the first unit conductors 411 in the x direction.
- a current flows in the x direction because the pair of conductors 30 can function as an electrical wall.
- the current flowing through the third conductor 40 in the y direction can be ignored.
- the spacing in the y direction of the first unit conductor 411 may be shorter than the spacing in the x direction of the first unit conductor 411. By shortening the interval in the y direction of the first unit conductor 411, the area of the first unit conductor 411 can be increased.
- FIG. 60 to 62 are views showing other examples of the resonator 10.
- FIG. These resonators 10 have an impedance element 45.
- the unit conductors to which the impedance element 45 is connected are not limited to the examples shown in FIGS.
- the impedance element 45 shown in FIGS. 60 to 62 can be partially omitted.
- the impedance element 45 can have capacitance characteristics.
- the impedance element 45 can have an inductance characteristic.
- the impedance element 45 can be a mechanical or electrical variable element.
- the impedance element 45 can connect two different conductors in one layer.
- the antenna has at least one of an electromagnetic wave emission function and an electromagnetic wave reception function.
- the antennas of the present disclosure include, but are not limited to, the first antenna 60 and the second antenna 70.
- the first antenna 60 includes a base 20, a pair of conductors 30, a third conductor 40, a fourth conductor 50, and a first feeder 61.
- the first antenna 60 has a third base 24 on the base 20.
- the third substrate 24 may have a composition different from that of the substrate 20.
- the third base 24 may be located on the third conductor 40.
- 63 to 76 are views showing a first antenna 60 which is an example of a plurality of embodiments.
- the first feeder line 61 feeds at least one of the resonators periodically arranged as an artificial magnetic wall.
- the first antenna 60 may have a plurality of first feed lines.
- the first feeder line 61 can be electromagnetically connected to any of the resonators periodically arranged as an artificial magnetic wall.
- the first feeder line 61 can be electromagnetically connected to any of a pair of conductors that can be viewed as an electric wall from a resonator periodically arranged as an artificial magnetic wall.
- the first feeder line 61 feeds power to at least one of the first conductor 31, the second conductor 32, and the third conductor 40.
- the first antenna 60 may have a plurality of first feeder lines.
- the first feeder line 61 can be electromagnetically connected to any of the first conductor 31, the second conductor 32, and the third conductor 40.
- the first feeder line 61 may be any one of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50. Can be connected electromagnetically.
- the first feeder line 61 is electrically connected to one of the fifth conductor layer 301 and the fifth conductor 302 in the pair of conductors 30. A portion of the first feeder line 61 may be integral with the fifth conductor layer 301.
- the first feeder line 61 may be electromagnetically connected to the third conductor 40.
- the first feeder line 61 is electromagnetically connected to one of the first unit resonators 41X.
- the first feeder line 61 is electromagnetically connected to one of the second unit resonators 42X.
- the first feeder line 61 is electromagnetically connected to the unit conductor of the third conductor 40 at a point different from the center in the x direction.
- the first feeder line 61 supplies power to at least one resonator included in the third conductor 40 in one embodiment.
- the first feeder line 61 supplies power from at least one resonator included in the third conductor 40 to the outside.
- At least a part of the first feeder line 61 may be located in the base 20.
- the first feeder line 61 can be exposed externally from any of the two zx planes, the two yz planes, and the two xy planes of the base 20.
- the first feeder line 61 can be in contact with the third conductor 40 from the forward direction and the reverse direction of the z direction.
- the fourth conductor 50 can be omitted around the first feeder line 61.
- the first feeder line 61 can be electromagnetically connected to the third conductor 40 through the opening of the fourth conductor 50.
- the first conductor layer 41 can be omitted around the first feeder line 61.
- the first feeder line 61 can be connected to the second conductor layer 42 through the opening of the first conductor layer 41.
- the first feeder line 61 can be in contact with the third conductor 40 along the xy plane.
- the conductor 30 may be omitted around the first feeder line 61.
- the first feeder line 61 can be connected to the third conductor 40 through the opening of the paired conductor 30.
- the first feeder line 61 is connected to the unit conductor of the third conductor 40 at a distance from the center of the unit conductor.
- FIG. 63 is a plan view of the xy plane of the first antenna 60 from the z direction.
- FIG. 64 is a cross-sectional view along the line LXIV-LXIV shown in FIG. 63.
- the first antenna 60 shown in FIGS. 63 and 64 has the third base 24 on the third conductor 40.
- the third base 24 has an opening on the first conductor layer 41.
- the first feeder line 61 is electrically connected to the first conductor layer 41 through the opening of the third base 24.
- FIG. 65 is a plan view of the xy plane of the first antenna 60 from the z direction.
- 66 is a cross-sectional view along the line LXVI-LXVI shown in FIG.
- the first feeder line 61 can be connected to the third conductor 40 in the xy plane.
- the first feeder line 61 can be connected to the first conductor layer 41 in the xy plane.
- the first feed line 61 may be connected to the second conductor layer 42 in the xy plane.
- FIG. 67 is a plan view of the xy plane of the first antenna 60 from the z direction.
- FIG. 68 is a cross-sectional view taken along line LXVIII-LXVIII shown in FIG.
- the first feeder line 61 is located in the base 20.
- the first feeder line 61 can be connected to the third conductor 40 from the opposite direction in the z direction.
- the fourth conductor 50 can have an opening.
- the fourth conductor 50 can have an opening at a position overlapping the third conductor 40 in the z direction.
- the first feeder line 61 can be exposed to the outside of the base 20 through the opening.
- FIG. 69 is a cross-sectional view of the first antenna 60 as viewed in the yz plane from the x direction.
- the conductor 30 may have an opening.
- the first feeder line 61 can be exposed to the outside of the base 20 through the opening.
- the electromagnetic wave emitted by the first antenna 60 has a polarization component in the x direction larger than that in the y direction on the first plane.
- the polarization component in the x direction has smaller attenuation than the horizontal polarization component.
- the first antenna 60 can maintain the radiation efficiency when the metal plate approaches from the outside.
- FIG. 70 shows another example of the first antenna 60.
- FIG. 71 is a cross-sectional view along the line LXXI-LXXI shown in FIG. 70.
- FIG. 72 shows another example of the first antenna 60.
- FIG. 73 is a cross-sectional view taken along line LXXIII-LXXIII shown in FIG.
- FIG. 74 shows another example of the first antenna 60.
- FIG. 75 (a) is a cross-sectional view along the line LXXVa-LXXVa shown in FIG.
- FIG. 75 (b) is a cross-sectional view along the line LXXVb-LXXVb shown in FIG.
- FIG. 76 shows another example of the first antenna 60.
- the first antenna 60 shown in FIG. 76 has an impedance element 45.
- the operating frequency of the first antenna 60 can be changed by the impedance element 45.
- the first antenna 60 includes a first feed conductor 415 connected to the first feed line 61 and a first unit conductor 411 not connected to the first feed line 61.
- the impedance matching changes when the impedance element 45 is connected to the first feed conductor 415 and the other conductor.
- the first antenna 60 can adjust the impedance matching by connecting the first feed conductor 415 to another conductor by means of the impedance element 45.
- the impedance element 45 can be inserted between the first feed conductor 415 and the other conductor in order to adjust the impedance matching.
- the impedance element 45 may be inserted between the two first unit conductors 411 not connected to the first feeder line 61 in order to adjust the operating frequency.
- the impedance element 45 can be inserted between the first unit conductor 411 not connected to the first feeder line 61 and any of the pair conductors 30 in order to adjust the operating frequency.
- the second antenna 70 includes a base 20, a pair of conductors 30, a third conductor 40, a fourth conductor 50, a second feed layer 71, and a second feed line 72.
- the third conductor 40 is located in the base 20.
- the second antenna 70 has a third base 24 on the base 20.
- the third substrate 24 may have a composition different from that of the substrate 20.
- the third base 24 may be located on the third conductor 40.
- the third base 24 may be located on the second feed layer 71.
- the second feed layer 71 is positioned above the third conductor 40 with a space.
- the base 20 or the third base 24 may be located between the second feed layer 71 and the third conductor 40.
- the second feed layer 71 includes line-type, patch-type, and slot-type resonators.
- the second feed layer 71 can be referred to as an antenna element.
- the second feed layer 71 may be electromagnetically coupled to the third conductor 40.
- the resonant frequency of the second feed layer 71 changes from a single resonant frequency due to the electromagnetic coupling with the third conductor 40.
- the second feed layer 71 receives the transmission of the power from the second feed line 72 and resonates with the third conductor 40.
- the second feed layer 71 receives the transmission of power from the second feed line 72 and resonates with the third conductor 40 and the third conductor.
- the second feed line 72 is electrically connected to the second feed layer 71. In one embodiment, the second feed line 72 transmits power to the second feed layer 71. In one embodiment, the second feed line 72 transmits the power from the second feed layer 71 to the outside.
- FIG. 77 is a plan view of the second antenna 70 in the xy plane from the z direction.
- 78 is a cross-sectional view taken along line LXXVIII-LXXVIII shown in FIG.
- the third conductor 40 is located in the base 20.
- the second feed layer 71 is located on the base 20.
- the second feed layer 71 is positioned so as to overlap the unit structure 10X in the z direction.
- the second feed line 72 is located on the base 20.
- the second feed line 72 is electromagnetically connected to the second feed layer 71 in the xy plane.
- the wireless communication module of the present disclosure includes a wireless communication module 80 as an example of the plurality of embodiments.
- FIG. 79 is a block diagram of the wireless communication module 80.
- FIG. 80 is a schematic block diagram of the wireless communication module 80.
- the wireless communication module 80 includes a first antenna 60, a circuit board 81, and an RF module 82.
- the wireless communication module 80 may include a second antenna 70 instead of the first antenna 60.
- the first antenna 60 is located on the circuit board 81.
- the first feeder line 61 of the first antenna 60 is electromagnetically connected to the RF module 82 via the circuit board 81.
- the fourth conductor 50 of the first antenna 60 is electromagnetically connected to the ground conductor 811 of the circuit board 81.
- the ground conductor 811 can extend in the xy plane.
- the ground conductor 811 has a larger area than the fourth conductor 50 in the xy plane.
- the ground conductor 811 is longer than the fourth conductor 50 in the y direction.
- the ground conductor 811 is longer than the fourth conductor 50 in the x direction.
- the first antenna 60 may be located on the end side of the center of the ground conductor 811 in the y direction.
- the center of the first antenna 60 may be different from the center of the ground conductor 811 in the xy plane.
- the center of the first antenna 60 may be different from the centers of the first conductor 31 and the second conductor 32.
- the point at which the first feed line 61 is connected to the third conductor 40 may differ from the center of the ground conductor 811 in the xy plane.
- the first antenna 60 In the first antenna 60, the first current and the second current loop through the pair of conductors 30. As the first antenna 60 is located on the end side in the y direction from the center of the ground conductor 811, the second current flowing through the ground conductor 811 becomes asymmetric. When the second current flowing through the ground conductor 811 becomes asymmetric, the antenna structure including the first antenna 60 and the ground conductor 811 has a large polarization component in the x direction of the radiation wave. By increasing the x-direction polarization component of the radiation wave, the radiation wave can improve the overall radiation efficiency.
- the RF module 82 may control the power supplied to the first antenna 60.
- the RF module 82 modulates the baseband signal and supplies it to the first antenna 60.
- the RF module 82 may modulate the electrical signal received by the first antenna 60 into a baseband signal.
- the first antenna 60 has a small change in resonant frequency due to the conductor on the circuit board 81 side.
- the wireless communication module 80 can reduce the influence from the external environment by having the first antenna 60.
- the first antenna 60 can be integrated with the circuit board 81.
- the fourth conductor 50 and the ground conductor 811 are integrated.
- the wireless communication device of the present disclosure includes a wireless communication device 90 as an example of the plurality of embodiments.
- FIG. 81 is a block diagram of the wireless communication device 90. As shown in FIG. FIG. 82 is a plan view of the wireless communication device 90. FIG. A part of the configuration of the wireless communication device 90 shown in FIG. 82 is omitted.
- FIG. 83 is a cross-sectional view of the wireless communication device 90. The wireless communication device 90 shown in FIG. 83 omits part of the configuration.
- the wireless communication device 90 includes a wireless communication module 80, a battery 91, a sensor 92, a memory 93, a controller 94, a first housing 95, and a second housing 96.
- the wireless communication module 80 of the wireless communication device 90 has the first antenna 60 but may have the second antenna 70.
- FIG. 84 is one of the other embodiments of the wireless communication device 90.
- the first antenna 60 of the wireless communication device 90 can have a reference potential layer 51.
- the battery 91 supplies power to the wireless communication module 80.
- Battery 91 may provide power to at least one of sensor 92, memory 93, and controller 94.
- Battery 91 may include at least one of a primary battery and a secondary battery.
- the negative electrode of the battery 91 is electrically connected to the ground terminal of the circuit board 81.
- the negative pole of the battery 91 is electrically connected to the fourth conductor 50 of the first antenna 60.
- the sensor 92 is, for example, a velocity sensor, a vibration sensor, an acceleration sensor, a gyro sensor, a rotation angle sensor, an angular velocity sensor, a geomagnetic sensor, a magnet sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, a light sensor, an illuminance sensor, a UV sensor, a gas sensor Gas concentration sensor, atmosphere sensor, level sensor, odor sensor, pressure sensor, air pressure sensor, contact sensor, wind sensor, infrared sensor, human sensor, displacement sensor, image sensor, weight sensor, smoke sensor, liquid leakage sensor, It may include a vital sensor, a battery residual amount sensor, an ultrasonic sensor, or a GPS (Global Positioning System) signal receiver.
- GPS Global Positioning System
- the memory 93 can include, for example, a semiconductor memory or the like.
- the memory 93 can function as a work memory of the controller 94.
- the memory 93 may be included in the controller 94.
- the memory 93 stores a program in which processing content for realizing each function of the wireless communication device 90 is described, information used for processing in the wireless communication device 90, and the like.
- the controller 94 may include, for example, a processor. Controller 94 may include one or more processors.
- the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
- a dedicated processor may include an application specific IC.
- the application specific IC is also referred to as an application specific integrated circuit (ASIC).
- the processor may include programmable logic devices. Programmable logic devices are also referred to as PLDs (Programmable Logic Devices).
- the PLD may include an FPGA (Field-Programmable Gate Array).
- the controller 94 may be either a system-on-a-chip (SoC) with which one or more processors cooperate, and a system in package (SiP).
- SoC system-on-a-chip
- SiP system in package
- the controller 94 may store, in the memory 93, various types of information, programs for operating each component of the wireless communication device 90, and the like.
- the controller 94 generates a transmission signal to be transmitted from the wireless communication device 90.
- the controller 94 may, for example, obtain measurement data from the sensor 92.
- the controller 94 may generate a transmission signal according to the measurement data.
- the controller 94 may transmit a baseband signal to the RF module 82 of the wireless communication module 80.
- the first housing 95 and the second housing 96 protect other devices of the wireless communication device 90.
- the first housing 95 may extend in the xy plane.
- the first housing 95 supports other devices.
- the first housing 95 may support the wireless communication module 80.
- the wireless communication module 80 is located on the top surface 95 A of the first housing 95.
- the first housing 95 can support the battery 91.
- the battery 91 is located on the top surface 95 A of the first housing 95.
- the wireless communication module 80 and the battery 91 are aligned along the x direction on the upper surface 95A of the first housing 95.
- the first conductor 31 is located between the battery 91 and the third conductor 40.
- the battery 91 is located on the other side of the pair of conductors 30 as viewed from the third conductor 40.
- the second housing 96 may cover other devices.
- the second housing 96 includes a lower surface 96 ⁇ / b> A located on the z direction side of the first antenna 60.
- the lower surface 96A extends along the xy plane.
- the lower surface 96A is not limited to being flat, and may include asperities.
- the second housing 96 can have an eighth conductor 961.
- the eighth conductor 961 is located at least one of the inside, the outside, and the inside of the second housing 96.
- the eighth conductor 961 is located on at least one of the top surface and the side surface of the second housing 96.
- the eighth conductor 961 faces the first antenna 60.
- the first portion 9611 of the eighth conductor 961 faces the first antenna 60 in the z direction.
- the eighth conductor 961 can include, in addition to the first portion 9611, at least one of a second portion facing the first antenna 60 in the x direction and a third portion facing the first antenna in the y direction. A part of the eighth conductor 961 faces the battery 91.
- the eighth conductor 961 may include a first extension 9612 extending outward from the first conductor 31 in the x direction.
- the eighth conductor 961 can include a second extension 9613 extending outward from the second conductor 32 in the x direction.
- the first extending portion 9612 can be electrically connected to the first portion 9611.
- the second extending portion 9613 can be electrically connected to the first portion 9611.
- the first extending portion 9612 of the eighth conductor 961 faces the battery 91 in the z direction.
- the eighth conductor 961 can be capacitively coupled to the battery 91.
- the eighth conductor 961 can have a capacitance with the battery 91.
- the eighth conductor 961 is separated from the third conductor 40 of the first antenna 60.
- the eighth conductor 961 is not electrically connected to each conductor of the first antenna 60.
- the eighth conductor 961 may be spaced apart from the first antenna 60.
- the eighth conductor 961 may be electromagnetically coupled to any conductor of the first antenna 60.
- the first portion 9611 of the eighth conductor 961 may be electromagnetically coupled to the first antenna 60.
- the first portion 9611 can overlap the third conductor 40 when viewed in plan from the z direction. When the first portion 9611 overlaps with the third conductor 40, propagation due to electromagnetic coupling can be large.
- the eighth conductor 961 may have an electromagnetic coupling with the third conductor 40 as mutual inductance.
- the eighth conductor 961 extends along the x direction.
- the eighth conductor 961 extends along the xy plane.
- the length of the eighth conductor 961 is longer than the length of the first antenna 60 along the x direction.
- the length of the eighth conductor 961 in the x direction is longer than the length of the first antenna 60 in the x direction.
- the length of the eighth conductor 961 may be longer than half of the operating wavelength ⁇ of the wireless communication device 90.
- the eighth conductor 961 can include a portion extending along the y direction.
- the eighth conductor 961 can bend in the xy plane.
- the eighth conductor 961 can include a portion extending along the z direction.
- the eighth conductor 961 can bend from the xy plane to the yz plane or the zx plane.
- the first antenna 60 and the eighth conductor 961 may be electromagnetically coupled to function as a third antenna 97.
- the operating frequency f c of the third antenna 97 may be different from the resonant frequency of the first antenna 60 alone.
- the operating frequency f c of the third antenna 97 may be closer to the resonant frequency of the first antenna 60 than the resonant frequency of the eighth conductor 961 alone.
- the operating frequency f c of the third antenna 97 may be within the resonant frequency band of the first antenna 60.
- the operating frequency f c of the third antenna 97 may be outside the resonant frequency band of the eighth conductor 961 alone.
- FIG. 85 shows another embodiment of the third antenna 97.
- the eighth conductor 961 may be configured integrally with the first antenna 60. In FIG. 85, a part of the configuration of the wireless communication device 90 is omitted. In the example of FIG. 85, the second housing 96 may not include the eighth conductor 961.
- the eighth conductor 961 is capacitively coupled to the third conductor 40.
- the eighth conductor 961 is electromagnetically coupled to the fourth conductor 50.
- the third antenna 97 improves the gain as compared to the first antenna 60 by including the first extending portion 9612 and the second extending portion 9613 of the eighth conductor in the air.
- Wireless communication device 90 may be located on various objects. Wireless communication device 90 may be located on electrical conductor 99.
- FIG. 86 is a plan view showing an embodiment of the wireless communication device 90.
- the conductor 99 is a conductor that transmits electricity.
- the material of the conductor 99 includes metals, highly doped semiconductors, conductive plastics, and liquids containing ions.
- Conductor 99 may include a nonconductive layer that does not conduct electricity on the surface.
- the part that transmits electricity and the nonconductive layer may contain a common element.
- the conductor 99 containing aluminum may include a nonconductive layer of aluminum oxide on the surface.
- the portion carrying electricity and the nonconductive layer may contain different elements.
- the shape of the conductor 99 is not limited to a flat plate, and may include a three-dimensional shape such as a box shape.
- the three-dimensional shape formed by the conductor 99 includes a rectangular parallelepiped and a cylinder.
- the three-dimensional shape may include a partially recessed shape, a partially penetrating shape, and a partially protruding shape.
- the conductor 99 may be of a torus type.
- the conductor 99 includes an upper surface 99A on which the wireless communication device 90 can be mounted.
- the upper surface 99A can extend over the entire surface of the conductor 99.
- the top surface 99A may be part of the conductor 99.
- the top surface 99A may have a larger area than the wireless communication device 90.
- the wireless communication device 90 may be placed on the top surface 99A of the conductor 99.
- the upper surface 99A may have a smaller area than the wireless communication device 90.
- the wireless communication device 90 may be partially located on the top surface 99A of the conductor 99.
- Wireless communication device 90 may be placed on top surface 99A of electrical conductor 99 in various orientations.
- the orientation of the wireless communication device 90 may be arbitrary.
- the wireless communication device 90 may be appropriately fixed on the upper surface 99A of the conductor 99 by a fixing tool.
- Fasteners include those that secure with a surface, such as double-sided tape and adhesives.
- Fasteners include fasteners such as screws and nails.
- the upper surface 99A of the conductor 99 can include a portion extending along the j direction.
- the portion extending along the j direction has a longer length along the j direction than the length along the k direction.
- the j direction and the k direction are orthogonal to each other.
- the j direction is a direction in which the conductor 99 extends long.
- the k direction is a direction in which the length of the conductor 99 is shorter than the j direction.
- the wireless communication device 90 may be placed on the top surface 99A such that the x direction is along the j direction.
- the wireless communication device 90 may be placed on the upper surface 99A of the conductor 99 so as to align with the x direction in which the first conductor 31 and the second conductor 32 are aligned.
- the first antenna 60 When the wireless communication device 90 is located on the conductor 99, the first antenna 60 may be electromagnetically coupled to the conductor 99. In the fourth conductor 50 of the first antenna 60, a second current flows along the x direction. The conductor 99 electromagnetically coupled to the first antenna 60 induces a current by the second current. When the x direction of the first antenna 60 and the j direction of the electrical conductor 99 are aligned, the electrical current in the electrical conductor 99 increases along the j direction. When the x direction of the first antenna 60 and the j direction of the conductor 99 are aligned, the radiation by the induced current of the conductor 99 is increased. The angle in the x direction with respect to the j direction may be 45 degrees or less.
- the ground conductor 811 of the wireless communication device 90 is separated from the conductor 99.
- the ground conductor 811 is separated from the conductor 99.
- the wireless communication device 90 may be placed on the upper surface 99A such that the direction along the long side of the upper surface 99A is aligned with the x direction in which the first conductor 31 and the second conductor 32 are aligned.
- the upper surface 99A may include a rhombus and a circle in addition to the square surface.
- the conductor 99 may include a rhombus-shaped surface. This diamond shaped surface may be the top surface 99A on which the wireless communication device 90 is mounted.
- the wireless communication device 90 may be placed on the upper surface 99A such that the direction along the long diagonal of the upper surface 99A is aligned with the x direction in which the first conductor 31 and the second conductor 32 are aligned.
- the upper surface 99A is not limited to being flat.
- the upper surface 99A may include asperities.
- the upper surface 99A may include a curved surface.
- the curved surface includes a ruled surface.
- the curved surface includes a cylinder face.
- the conductor 99 extends in the xy plane.
- the conductor 99 can increase the length along the x direction as compared to the length along the y direction.
- the conductor 99 can have a length in the y direction shorter than half of the wavelength ⁇ c at the operating frequency f c of the third antenna 97.
- Wireless communication device 90 may be located on electrical conductor 99.
- the conductor 99 is located apart from the fourth conductor 50 in the z direction.
- the conductor 99 has a length along the x direction longer than that of the fourth conductor 50.
- the conductor 99 has a larger area in the xy plane than the fourth conductor 50.
- Conductor 99 is located away from ground conductor 811 in the z-direction.
- the conductor 99 has a length in the x direction longer than that of the ground conductor 811.
- the conductor 99 has a larger area in the xy plane than the ground conductor 811.
- the wireless communication device 90 can be placed on the conductor 99 in a direction in which the first conductor 31 and the second conductor 32 are aligned in the direction in which the conductor 99 extends long. In other words, the wireless communication device 90 can be placed on the conductor 99 in a direction in which the current of the first antenna 60 flows in the xy plane and the direction in which the conductor 99 extends long.
- the first antenna 60 has a small change in resonant frequency due to the conductor on the circuit board 81 side.
- the wireless communication device 90 can reduce the influence from the external environment.
- the ground conductor 811 capacitively couples with the conductor 99.
- the wireless communication device 90 improves the gain as compared to the first antenna 60 by including a portion of the conductor 99 which extends outward from the third antenna 97.
- the resonant circuit in the air may be different from the resonant circuit on the conductor 99.
- FIG. 87 is a schematic circuit of a resonant structure formed in the air.
- FIG. 88 is a schematic circuit of a resonant structure formed on the conductor 99.
- L3 is an inductance of the resonator 10
- L8 is an inductance of the eighth conductor 961
- L9 is an inductance of the conductor 99
- M is a mutual inductance of L3 and L8.
- C3 is the capacitance of the third conductor 40
- C4 is the capacitance of the fourth conductor 50
- C8 is the capacitance of the eighth conductor 961
- C8B is the capacitance of the eighth conductor 961 and the battery 91
- C9 is Conductor 99, ground conductor 811 and capacitance.
- R3 is a radiation resistance of the resonator 10
- R8 is a radiation resistance of the eighth conductor 961.
- the operating frequency of the resonator 10 is lower than the resonant frequency of the eighth conductor.
- the ground conductor 811 functions as a chassis ground in the air.
- the fourth conductor 50 capacitively couples with the conductor 99.
- the conductor 99 functions as a substantial chassis ground.
- wireless communication device 90 includes an eighth conductor 961.
- the eighth conductor 961 is electromagnetically coupled to the first antenna 60 and capacitively coupled to the fourth conductor 50.
- the wireless communication device 90 can increase the operating frequency when placed on the conductor 99 from the air by increasing the capacitance C8B due to capacitive coupling.
- the wireless communication device 90 can lower the operating frequency when placed on the conductor 99 from the air by increasing the mutual inductance M due to electromagnetic coupling.
- the wireless communication device 90 can adjust the change in the operating frequency when placed on the conductor 99 from the air by changing the balance between the capacitance C 8 B and the mutual inductance M.
- the wireless communication device 90 can reduce the change in operating frequency when placed on the conductor 99 from the air by changing the balance between the capacitance C8B and the mutual inductance M.
- the wireless communication device 90 has an eighth conductor 961 electromagnetically coupled to the third conductor 40 and capacitively coupled to the fourth conductor 50. By including the eighth conductor 961, the wireless communication device 90 can adjust the change in the operating frequency when placed on the conductor 99 from the air. By including the eighth conductor 961, the wireless communication device 90 can reduce the change in operating frequency when placed on the conductor 99 from the air.
- the ground conductor 811 functions as a chassis ground.
- the conductor 99 functions as a substantial chassis ground on the conductor 99.
- the resonant structure including the resonator 10 can oscillate even if the chassis ground changes. This corresponds to the fact that the resonator 10 including the reference potential layer 51 and the resonator 10 not including the reference potential layer 51 can oscillate.
- the disclosed repeater includes a repeater 190 as an example of the plurality of embodiments.
- FIG. 89 is a block diagram of repeater 190.
- the relay unit 190 may be used in plurality, not alone. A signal received by one of the plurality of repeaters 190 connected to one another is transmitted to the other repeaters 190 and transmitted by radio.
- the relay unit 190 includes a wireless communication module 80, a transceiver 83, a battery 91, a memory 93, a controller 94, a first housing 95, and a second housing 96.
- the wireless communication module 80 includes the first antenna 60, the circuit board 81, and the RF module 82 as described above.
- the wireless communication module 80 may include a second antenna 70 instead of the first antenna 60.
- the wireless communication module 80 transmits and receives wireless signals through the first antenna 60.
- the wireless signal is, for example, a signal detected by various types of sensors, and may be a signal wirelessly transmitted from the sensor.
- the transceiver 83 transmits and receives signals between the mutually connected antennas.
- the transceiver 83 of one repeater 190 transmits a signal received by the first antenna 60 of the wireless communication module 80 to the transceiver 83 of another repeater 190 in a wired manner.
- the other repeater 190 transmits the signal received by the transceiver 83 by the first antenna 60 of the wireless communication module 80.
- the transceivers 83 of the plurality of repeaters 190 are connected to each other by signal lines such as cables.
- the battery 91 supplies power to the repeater 190.
- the battery 91 may supply power to at least one of the wireless communication module 80, the transceiver 83, the memory 93, and the controller 94.
- Battery 91 may include at least one of a primary battery and a secondary battery as described above.
- the memory 93 can function as a work memory of the controller 94 as described above.
- the controller 94 may include one or more processors as described above. Further, as described above, the controller 94 may store various information, programs for operating each component of the wireless communication device 90, and the like in the memory 93.
- the first housing 95 and the second housing 96 protect devices included in the relay 190.
- the first housing 95 can extend in the xy plane as described above.
- the wireless communication module 80 and the battery 91 are aligned along the x direction on the upper surface 95A of the first housing 95.
- the second housing 96 includes the lower surface 96A located on the z direction side of the first antenna 60 as described above.
- the lower surface 96A extends along the xy plane.
- FIG. 90 and 91 are plan views of the repeater 190.
- FIG. The relay unit 190 shown in FIG. 90 and FIG. 91 omits part of the configuration.
- two repeaters 190 (first and second repeaters) are used in combination.
- FIG. 90 shows a first repeater.
- FIG. 91 shows a second repeater.
- the repeater 190 (first repeater) is installed on the first surface 99FR of the conductor 99 such as a metal wall. Further, in the example of FIG. 91, the repeater 190 (second repeater) is installed on the second surface 99BK of the conductor 99.
- the conductor 99 is, for example, a metal door.
- the first surface 99FR is, for example, the front surface of the conductor 99.
- the second surface 99BK is, for example, the back surface of the conductor 99 (that is, the surface facing the first surface 99FR). As shown in FIG.
- the transceiver 83 on the circuit board 81 and the first antenna 60 extending along the x direction and the battery 91 are covered by the first housing 95 and the second housing 96,
- the relay 190 is installed on the first surface 99FR of the conductor 99.
- the transceiver 83 on the circuit board 81 and the first antenna 60 extending along the x direction, and the battery 91 are covered by the first housing 95 and the second housing 96.
- the relay 190 is installed on the second surface 99 BK of the conductor 99.
- two types of repeaters 190 configured mirror-symmetrically at the overall center in the x-direction may be used.
- the relay 190 (second relay) installed on the second surface 99BK of the conductor 99 is, for example, a relay 190 (first relay) installed on the first surface 99FR. It may be mirror symmetric.
- FIG. 93 is a cross-sectional view of the relay unit 190 shown in FIG. 90 and FIG. 91 taken along the PP line.
- two relays 190 (a first relay and a second relay) are respectively provided on the first surface 99FR and the second surface 99BK that are the front and back of the conductor 99 in the z direction.
- the positions of the two repeaters 190 in the y direction are the same.
- the position of the two repeaters 190 in the y direction may be different.
- the repeater 190 disposed on the first surface 99FR may be described as a first repeater 190FR.
- the relay 190 disposed on the second surface 99BK may be described as a second relay 190BK.
- the first feeder line 61 of the first antenna 60 (first surface side antenna) included in the first repeater 190FR is connected to the transceiver 83 included in the first repeater 190FR.
- the first feeder line 61 of the first antenna 60 (second surface antenna) included in the second relay 190BK is connected to the transceiver 83 included in the second relay 190BK.
- the transceiver 83 included in the first repeater 190FR and the transceiver 83 included in the second repeater 190BK are connected by a signal line such as a cable passing through the inside of the conductor 99.
- the first feeder line 61 of the first surface side antenna is connected to the first feeder line 61 of the second surface side antenna via the transceiver 83.
- the first surface side antenna can receive the radio wave signal that has arrived from the side of the first surface 99FR of the conductor 99 and can pass it to the second surface side antenna via the signal line.
- the second surface antenna radiates the signal received from the first surface antenna. That is, by providing the first repeater 190FR and the second repeater 190BK connected by the signal line on both sides of the conductor 99 (for example, a metal wall), communication on both sides of the conductor 99 becomes possible.
- FIG. 94 shows a repeater 190 in another example of several embodiments.
- the second repeater 190BK may be mirror symmetric to the first repeater 190FR.
- the transceiver 83 of the first repeater 190FR and the transceiver 83 of the second repeater 190BK can align the positions in the x direction with the conductor 99 interposed therebetween. Therefore, it is possible to shorten the length of the signal line connecting the transceiver 83 provided in the first relay 190FR and the transceiver 83 provided in the second relay 190BK.
- the processing area for example, a hole
- installation of the first repeater 190FR and the second repeater 190BK is further facilitated.
- FIG. 95 shows a repeater 190 in another example of several embodiments.
- the first antenna 60 included in the relay unit 190 of FIG. 95 may have the reference potential layer 51.
- the reference potential layer 51 can be electrically connected to the ground conductor 811 instead of the fourth conductor 50.
- FIG. 96 is a block diagram of the repeater 190A.
- the relay 190A includes a wireless communication module 80-1 having a first surface side antenna, a wireless communication module 80-2 having a second surface side antenna, a transceiver 83, a battery 91, a memory 93, a controller 94, and a first case. 95 and a second housing 96.
- the controller 94 controls the wireless communication module 80-1, the wireless communication module 80-2, and the transceiver 83.
- the transceiver 83 transmits and receives signals between the first surface antenna and the second surface antenna.
- FIG. 97 is a cross-sectional view of repeater 190A provided in conductor 99.
- the relay 190A is partially provided on the first surface 99FR and the second surface 99BK that are the front and back of the conductor 99 in the z direction.
- a wireless communication module 80-2 having a second surface antenna is provided on the second surface 99BK.
- elements other than the wireless communication module 80-2 of the repeater 190A are provided on the first surface 99FR.
- the transceiver 83 provided on the first surface 99FR is connected to the circuit board 81 of the wireless communication module 80-2 by a signal line such as a cable. Further, the power to the wireless communication module 80-2 can be supplied by the transceiver 83 from the battery 91 on the first surface 99FR side via the power line.
- the relay 190A can reduce the number of parts in the entire system using the relay 190A by sharing elements other than the wireless communication module 80 included in the plurality of relays 190.
- the relay 190A can reduce power consumption by sharing components that generate standby current.
- the relay 190A can facilitate maintenance.
- the conductor 99 (for example, a metal wall) reflects the electromagnetic wave. Therefore, the electromagnetic wave does not propagate to the back side through the conductor 99.
- the signal received by one of the plurality of relays 190 connected to one another is transmitted to the other relay 190 and transmitted by radio.
- the relay 190 may be provided on both sides of the conductor 99 as follows, for example.
- FIG. 98 shows a metal shutter provided with a relay 190.
- the conductor 99 can be a shutter.
- the shutter may be, for example, a shutter or a fire shutter.
- the shutter is moved along the guide rail 603 by the user operating the manual closing device 605, wound around the winding shaft 601 and stored in the case 602. That is, the shutter is movable in two states, the storage state and the deployed state (in-use state).
- the shutter includes a plurality of slats 604 (strip-like metal plates) extending along the x-direction.
- the first surface antenna and the second surface antenna are attached to both sides of one slat 604.
- the first surface antenna is attached to the first surface of the first slat.
- the second surface antenna is attached to the second surface of the second slat different from the first slat.
- the plurality of slats 604 overlap and are stored in the case 602. Therefore, at least one of the first surface side antenna and the second surface side antenna is blocked by the other slat 604 in the storage state.
- the other slats 604 are slats except the slat to which the first side antenna is attached and the slat to which the second side antenna is attached.
- at least one of the first surface side antenna and the second surface side antenna is interrupted in communication.
- the relay 190 may have a function of turning off the power when a predetermined time (for example, one minute) elapses after at least one of the first surface side antenna and the second surface side antenna is interrupted for communication.
- a predetermined time for example, one minute
- the operation of the relay 190 is not necessary when the shutter is not in use.
- the ability to turn off the power may allow repeater 190 to avoid unnecessary power consumption.
- FIG. 99 shows another metal shutter provided with a relay 190.
- the shutter of FIG. 99 does not have the winding shaft 601.
- the shutter in FIG. 99 moves along the rail 606 according to the operation of the user.
- the first surface which has been in the positive z-axis direction during use, is in the positive y-axis direction in the stored state.
- the second surface which was in the negative z-axis direction during use, is in the negative y-axis direction in the storage state.
- the communication signal is blocked because there is a ceiling, for example, in the negative y-axis direction. That is, also in this case, at least one of the first surface side antenna and the second surface side antenna is interrupted in the storage state.
- the shutter in FIG. 99 can also be provided with a function to turn off the power.
- FIG. 100 shows a metal container provided with a relay 190.
- Conductor 99 may be a container.
- the relay 190 can convey the internal state to the outside by being provided on a metal wall such as the side of a container, for example.
- the relay unit 190 can externally transmit a detection signal or the like of a human sensor that detects an intruder or the like inside the container.
- the relay 190 may be provided in equipment larger than the container.
- the relay 190 may be provided in a mechanical equipment (a shield room as an example) having a metal wall.
- the relay 190 may be provided in equipment smaller than the container.
- the relay 190 may be provided on the body portion of a car. Also, for example, the relay 190 may be provided on a partition plate that separates the engine room of the automobile from the room. The detection data of various sensors indicating the condition of the engine room can be transmitted to the room well by the relay 190.
- the repeater 190 is less affected by the reflected wave by the metal conductor by the above configuration. Therefore, the relays 190 are provided on both sides of the conductor 99 to enable good communication across the conductor 99.
- the monopole antenna needs to have a length (height) according to the frequency of the communication signal. For example, in the case where a monopole antenna is set up on a shutter or the like, the monopole antenna can not be wound up, which may cause a problem that the shutter can not be stored.
- the relay 190 has a very low profile because the radiation conductor can be installed in parallel with the conductor 99. Therefore, when the relay 190 is provided on the conductor 99 such as a shutter, the storage of the conductor 99 is not hindered.
- the power consumption can be further reduced by replacing the two repeaters 190 installed on both sides of the conductor 99 with the above-described repeater 190A.
- the configuration according to the present disclosure is not limited to the embodiment described above, and many modifications and variations are possible.
- the functions and the like included in the respective constituent parts and the like can be rearranged so as not to be logically contradictory, and a plurality of constituent parts and the like can be combined or divided into one.
- the repeater 190 may be disposed on a dielectric instead of the conductor 99. That is, the first surface antenna may be disposed on the first surface of the dielectric, and the second surface antenna may be disposed on the second surface of the dielectric.
- Dielectrics such as dielectric loss resins, thick concrete walls, or thick glass plates do not reflect electromagnetic waves. However, electromagnetic waves are highly attenuated when passing through such dielectrics. Thus, such dielectrics can interfere with good communication.
- the relay 190 is provided on both sides of the dielectric according to the above configuration to enable good communication with the dielectric interposed.
- the signal line can connect the transceivers 83 along the surface of the conductor 99 without passing through the inside of the conductor 99.
- the relay unit 190 can be applied to the conductor 99 in which it is difficult to provide a hole for passing a signal line inside.
- the transceivers 83 can be connected by using electromagnetic coupling instead of using signal lines.
- the transceivers 83 can be electromagnetically coupled to each other through a slot or the like included in the conductor 99.
- two repeaters 190 connected by signal lines can be embedded in holes provided in the conductor 99 and used. That is, at least a part of the relay 190 can be provided inside the conductor 99. At this time, the repeater 190 can be installed at a lower height than the surface of the conductor 99.
- the descriptions of “first”, “second”, “third” and the like are an example of an identifier for distinguishing the configuration.
- the configurations distinguished in the description such as “first” and “second” in the present disclosure can exchange the numbers in the configurations.
- the first frequency may exchange the second frequency with the identifiers "first” and "second”.
- the exchange of identifiers takes place simultaneously.
- the configuration is also distinguished after the exchange of identifiers.
- Identifiers may be deleted.
- the configuration from which the identifier is deleted is distinguished by a code.
- the first conductor 31 may be the conductor 31. Based on only the descriptions of the "first” and "second” identifiers etc.
- the present disclosure includes a configuration in which the second conductor layer 42 has the second unit slot 422, but the first conductor layer 41 does not have the first unit slot.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguide Aerials (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
- Radio Relay Systems (AREA)
Abstract
中継器は、第1面側アンテナと、第2面側アンテナと、送受信機とを含み、第1面側アンテナおよび第2面側アンテナのそれぞれは、第1方向において対向する第1導体および第2導体と、第1導体および第2導体の間に位置し、第1方向に延びる1または複数の第3導体と、第1導体および第2導体に接続され、第1方向に延びる第4導体と、第3導体のいずれかに電磁気的に接続される給電線と、を備え、第1導体および第2導体は、第3導体を介して容量的に接続され、第1面側アンテナの給電線は、送受信機を介して、第2面側アンテナの給電線と接続される。
Description
本出願は、2018年1月22日に日本国において提出された特願2018-008395号の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
本開示は中継器に関する。
アンテナから放射された電磁波は、金属導体で反射される。金属導体で反射された電磁波は、180°の位相ずれが生じる。反射された電磁波は、アンテナから放射された電磁波と合成される。アンテナから放射された電磁波は、位相のずれのある電磁波との合成によって、振幅が小さくなる場合がある。結果、アンテナから放射される電磁波の振幅は、小さくなる。アンテナと金属導体との距離を、放射する電磁波の波長λの1/4とすることで、反射波による影響を低減している。
これに対して、人工的な磁気壁によって、反射波による影響を低減する技術が提案されている。この技術は例えば非特許文献1,2に記載されている。
村上他,"誘電体基板を用いた人工磁気導体の低姿勢設計と帯域特性" 信学論(B),Vol.J98-B No.2,pp.172-179
村上他,"AMC反射板付ダイポールアンテナのための反射板の最適構成" 信学論(B),Vol.J98-B No.11,pp.1212-1220
本開示における一実施形態の中継器は、第1面側アンテナと、第2面側アンテナと、送受信機とを含み、前記第1面側アンテナおよび前記第2面側アンテナのそれぞれは、第1方向において対向する第1導体および第2導体と、前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる1または複数の第3導体と、前記第1導体および前記第2導体に接続され、前記第1方向に延びる第4導体と、前記第3導体のいずれかに電磁気的に接続される給電線と、を備える。前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続される。前記第1面側アンテナの給電線は、前記送受信機を介して、前記第2面側アンテナの給電線と接続される。
本開示における一実施形態の中継器は、アンテナと、送受信機とを含み、前記アンテナは、第1方向において対向する第1導体および第2導体と、前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる1または複数の第3導体と、前記第1導体および前記第2導体に接続され、前記第1方向に延びる第4導体と、前記第3導体のいずれかに電磁気的に接続される給電線と、を備える。前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続される。前記アンテナの給電線は、前記送受信機を介して、他の中継器のアンテナの給電線と接続される。
本開示は、新たな共振構造を用いた中継器を提供することに関する。本開示に係る中継器によれば、金属導体による反射波の影響が少ない。
本開示の複数の実施形態を以下に説明する。共振構造は、共振器を含みうる。共振構造は、共振器と他の部材とを含み、複合的に実現されうる。図1から図62に示す共振器10は、基体20、対導体30、第3導体40、および第4導体50を含む。基体20は、対導体30、第3導体40、および第4導体50と接する。共振器10は、対導体30、第3導体40、および第4導体50が共振器として機能する。共振器10は、複数の共振周波数で共振しうる。共振器10の共振周波数のうち、1つの共振周波数を第1の周波数f1とする。第1の周波数f1の波長は、λ1である。共振器10は、少なくとも1つの共振周波数のうちの少なくとも1つを動作周波数としうる。共振器10は、第1の周波数f1を動作周波数としている。
基体20は、セラミック材料、および樹脂材料のいずれかを組成として含みうる。セラミック材料は、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミック焼結体、ガラス母材中に結晶成分を析出させた結晶化ガラス、および雲母もしくはチタン酸アルミニウム等の微結晶焼結体を含む。樹脂材料は、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、および液晶ポリマー等の未硬化物を硬化させたものを含む。
対導体30、第3導体40、および第4導体50は、金属材料、金属材料の合金、金属ペーストの硬化物、および導電性高分子のいずれかを組成として含みうる。対導体30、第3導体40、および第4導体50は、全てが同じ材料であってよい。対導体30、第3導体40、および第4導体50は、全てが異なる材料であってよい。対導体30、第3導体40、および第4導体50は、いずれかの組合せが同じ材料であってよい。金属材料は、銅、銀、パラジウム、金、白金、アルミニウム、クロム、ニッケル、カドミウム鉛、セレン、マンガン、錫、バナジウム、リチウム、コバルト、およびチタン等を含む。合金は、複数の金属材料を含む。金属ペースト剤は、金属材料の粉末を有機溶剤、およびバインダとともに混練したものを含む。バインダは、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂を含む。導電性ポリマーは、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリアニリン系ポリマー、ポリピロール系ポリマー等を含む。
共振器10は、2つの対導体30を有する。対導体30は、複数の導電体を含む。対導体30は、第1導体31および第2導体32を含む。対導体30は、3以上の導電体を含みうる。対導体30の各導体は、他の導体と第1方向において離れている。対導体30の各導体において、1つの導体は、他の導体と対となりうる。対導体30の各導体は、対となる導体の間にある共振器から電気壁として観えうる。第1導体31は、第2導体32と第1方向において離れて位置する。第1導体31,第2導体32は、第1方向と交わる第2平面に沿って広がっている。
本開示では、第1方向(first axis)をx方向として示す。本開示では、第3方向(third axis)をy方向として示す。本開示では、第2方向(second axis)をz方向として示す。本開示では、第1平面(first plane)を、xy面として示す。本開示では、第2平面(second plane)を、yz面として示す。本開示では、第3平面(third plane)を、zx面として示す。これら平面は、座標空間(coordinate space)における平面(plane)であって、特定の面(plate)および特定の面(surface)を示すものではない。本開示では、xy平面における面積(surface integral)を第1面積という場合がある。本開示では、yz平面における面積を第2面積という場合がある。本開示では、zx平面における面積を第3面積という場合がある。面積(surface integral)は、平方メートル(square meter)などの単位で数えられる。本開示では、x方向における長さを単に“長さ”という場合がある。本開示では、y方向における長さを単に“幅”という場合がある。本開示では、z方向における長さを単に“高さ”という場合がある。
一例において、第1導体31,第2導体32は、x方向において、基体20の両端部に位置する。第1導体31,第2導体32は、一部が基体20の外に面しうる。第1導体31,第2導体32は、基体20の内に一部が位置し、基体20の外に他の一部が位置しうる。第1導体31,第2導体32は、基体20の中に位置しうる。
第3導体40は、共振器として機能する。第3導体40は、ライン型、パッチ型、およびスロット型の共振器の少なくとも1つの型を含みうる。一例において、第3導体40は、基体20の上に位置する。一例において、第3導体40は、z方向において、基体20の端に位置する。一例において、第3導体40は、基体20の中に位置しうる。第3導体40は、基体20の内に一部が位置し、基体20の外に他の一部が位置しうる。第3導体40は、一部の面が基体20の外に面しうる。
第3導体40は、少なくとも1つの導電体を含む。第3導体40は、複数の導電体を含みうる。第3導体40が複数の導電体を含む場合、第3導体40は、第3導体群と呼びうる。第3導体40は、少なくとも1つの導体層を含む。第3導体40は、1つの導体層に少なくとも1つの導電体を含む。第3導体40は、複数の導体層を含みうる。例えば、第3導体40は、3層以上の導体層を含みうる。第3導体40は、複数の導体層の各々に、少なくとも1つの導電体を含む。第3導体40は、xy平面に広がる。xy平面はx方向を含む。第3導体40の各導体層は、xy平面に沿って広がる。
複数の実施形態の一例において、第3導体40は、第1導体層41および第2導体層42を含む。第1導体層41は、xy平面に沿って広がる。第1導体層41は、基体20の上に位置しうる。第2導体層42は、xy平面に沿って広がる。第2導体層42は、第1導体層41と容量的に結合しうる。第2導体層42は、第1導体層41と電気的に接続されうる。容量結合する2つの導体層は、y方向に対向しうる。容量結合する2つの導体層は、x方向に対向しうる。容量結合する2つの導体層は、第1平面内において対向しうる。第1平面において対向する2つの導体層は、1つの導体層に2つの導電体があると言い換えうる。第2導体層42は、少なくとも一部が第1導体層41とz方向に重なって位置しうる。第2導体層42は、基体20の中に位置しうる。
第4導体50は、第3導体40と離れて位置する。第4導体50は、対導体30の第1導体31,第2導体32に電気的に接続される。第4導体50は、第1導体31および第2導体32に電気的に接続される。第4導体50は、第3導体40に沿って広がる。第4導体50は、第1平面に沿って広がっている。第4導体50は、第1導体31から第2導体32に渡っている。第4導体50は、基体20の上に位置する。第4導体50は、基体20の中に位置しうる。第4導体50は、基体20の内に一部が位置し、基体20の外に他の一部が位置しうる。第4導体50は、一部の面が基体20の外に面しうる。
複数の実施形態の一例において、第4導体50は、共振器10におけるグラウンド導体として機能しうる。第4導体50は、共振器10の電位基準となりうる。第4導体50は、共振器10を備える機器のグラウンドに接続されうる。
複数の実施形態の一例において、共振器10は、第4導体50と、基準電位層51とを備えうる。基準電位層51は、z方向において、第4導体50と離れて位置する。基準電位層51は、第4導体50と電気的に絶縁される。基準電位層51は、共振器10の電位基準となりうる。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続されうる。第4導体50は、共振器10を備える機器のグラウンドと電気的に離れうる。基準電位層51は、第3導体40または第4導体50のいずれかとz方向において対向する。
複数の実施形態の一例において、基準電位層51は、第4導体50を介して第3導体40と対向する。第4導体50は、第3導体40と基準電位層51との間に位置する。基準電位層51と第4導体50との間隔は、第3導体40と第4導体50との間隔に比べて狭い。
基準電位層51を備える共振器10において、第4導体50は、1または複数の導電体を含みうる。基準電位層51を備える共振器10において、第4導体50は1または複数の導電体を含み、且つ第3導体40は対導体30に接続される1つの導電体としうる。基準電位層51を備える共振器10において、第3導体40および第4導体50のそれぞれは、少なくとも1つの共振器を備えうる。
基準電位層51を備える共振器10において、第4導体50は、複数の導体層を含みうる。例えば、第4導体50は、第3導体層52および第4導体層53を含みうる。第3導体層52は、第4導体層53と容量的に結合しうる。第3導体層52は、第1導体層41と電気的に接続されうる。容量結合する2つの導体層は、y方向に対向しうる。容量結合する2つの導体層は、x方向に対向しうる。容量結合する2つの導体層は、xy平面内において対向しうる。
z方向において対向して容量結合する2つの導体層の距離は、当該導体群と基準電位層51との距離に比べて短い。例えば、第1導体層41と第2導体層42との距離は、第3導体40と基準電位層51との距離に比べて短い。例えば、第3導体層52と第4導体層53との距離は、第4導体50と基準電位層51との距離に比べて短い。
第1導体31および第2導体32の各々は、1または複数の導電体を含みうる。第1導体31および第2導体32の各々は、1つの導電体としうる。第1導体31および第2導体32の各々は、複数の導電体を含みうる。第1導体31および第2導体32の各々は、少なくとも1つの第5導体層301と、複数の第5導体302とを含みうる。対導体30は、少なくとも1つの第5導体層301と、複数の第5導体302とを含む。
第5導体層301は、y方向に広がっている。第5導体層301は、xy平面に沿って広がる。第5導体層301は、層状の導電体である。第5導体層301は、基体20の上に位置しうる。第5導体層301は、基体20の中に位置しうる。複数の第5導体層301は、z方向において互いに離れている。複数の第5導体層301は、z方向に並んでいる。複数の第5導体層301は、z方向において一部が重なっている。第5導体層301は、複数の第5導体302を電気的に接続する。第5導体層301は、複数の第5導体302を接続する接続導体となる。第5導体層301は、第3導体40のいずれかの導体層と電気的に接続しうる。一実施形態において、第5導体層301は、第2導体層42と電気的に接続する。第5導体層301は、第2導体層42と一体化しうる。一実施形態において、第5導体層301は、第4導体50と電気的に接続しうる。第5導体層301は、第4導体50と一体化しうる。
各第5導体302は、z方向に広がっている。複数の第5導体302は、y方向において互いに離れている。第5導体302の間の距離は、λ1の1/2波長以下である。電気的に接続された第5導体302の間の距離がλ1/2以下であると、第1導体31および第2導体32の各々は、第5導体302の間から共振周波数帯の電磁波が漏れるのを低減できる。対導体30は、共振周波数帯の電磁波の漏れが小さいので、単位構造体から電気壁として見える。複数の第5導体302の少なくとも一部は、第4導体50に電気的に接続されている。一実施形態において、複数の第5導体302の一部は、第4導体50と第5導体層301とを電気的に接続しうる。一実施形態において、複数の第5導体302は、第5導体層301を介して第4導体50に電気的に接続しうる。複数の第5導体302の一部は、1つの第5導体層301と他の第5導体層301とを電気的に接続しうる。第5導体302は、ビア導体、およびスルーホール導体を採用しうる。
共振器10は、共振器として機能する第3導体40を含む。第3導体40は、人工磁気壁(AMC;Artificial Magnetic Conductor)として機能しうる。人工磁気壁は、反応性インピーダンス面(RIS;Reactive Impedance Surface)とも言いうる。
共振器10は、x方向において対向する2つの対導体30の間に、共振器として機能する第3導体40を含む。2つの対導体30は、第3導体40からyz平面に広がる電気壁(Electric Conductor)と観える。共振器10は、y方向の端が電気的に解放されている。共振器10は、y方向の両端のzx平面が高インピーダンスとなる。共振器10のy方向の両端のzx平面は、第3導体40から磁気壁(Magnetic Conductor)と観える。共振器10は、2つの電気壁および2つの高インピーダンス面(磁気壁)で囲まれることで、第3導体40の共振器がz方向に人工磁気壁特性(Artificial Magnetic Conductor Character)を有する。2つの電気壁および2つの高インピーダンス面で囲まれることで、第3導体40の共振器は、有限の数で人工磁気壁特性を有する。
「人工磁気壁特性」は、動作周波数における入射波と反射波との位相差が0度となる。共振器10では、第1の周波数f1における入射波と反射波との位相差が0度となる。「人工磁気壁特性」では、動作周波数帯において、入射波と反射波との位相差が-90度~+90度となる。動作周波数帯とは、第2の周波数f2および第3の周波数f3の間の周波数帯である。第2の周波数f2とは、入射波と反射波との間の位相差が+90度である周波数である。第3の周波数f3とは、入射波と反射波との間の位相差が-90度である周波数である。第2および第3の周波数に基づいて決定される動作周波数帯の幅は、例えば、動作周波数が約2.5GHzである場合に、100MHz以上であってよい。動作周波数帯の幅は、例えば、動作周波数が約400MHzである場合に、5MHz以上であってよい。
共振器10の動作周波数は、第3導体40の各々の共振器の共振周波数と異なりうる。共振器10の動作周波数は、基体20、対導体30、第3導体40、および第4導体50の長さ、大きさ、形状、材料などで変化しうる。
複数の実施形態の一例において、第3導体40は、少なくとも1つの単位共振器40Xを含みうる。第3導体40は、1つの単位共振器40Xを含みうる。第3導体40は、複数の単位共振器40Xを含みうる。単位共振器40Xは、第4導体50とz方向に重なって位置する。単位共振器40Xは、第4導体50と対向している。単位共振器40Xは、周波数選択表面(FSS;Frequency Selective Surface)として機能しうる。複数の単位共振器40Xは、xy平面に沿って並ぶ。複数の単位共振器40Xは、xy平面で規則的に並びうる。単位共振器40Xは、正方格子(square grid)、斜交格子(oblique grid)、長方格子(rectangular grid)、および六方格子(hexagonal grid)で並びうる。
第3導体40は、z方向に並ぶ、複数の導体層を含みうる。第3導体40の複数の導体層は、各々が少なくとも1つ分の単位共振器を含む。例えば、第3導体40は、第1導体層41および第2導体32を含む。
第1導体層41は、少なくとも1つ分の第1単位共振器41Xを含む。第1導体層41は、1つの第1単位共振器41Xを含みうる。第1導体層41は、1つの第1単位共振器41Xが複数に分かれた第1部分共振器41Yを複数含みうる。複数の第1部分共振器41Yは、隣接する単位構造体10Xによって、少なくとも1つ分の第1単位共振器41Xとなりうる。複数の第1部分共振器41Yは、第1導体層41の端部に位置する。第1単位共振器41Xおよび第1部分共振器41Yは、第3導体と呼びうる。
第2導体層42は、少なくとも1つ分の第2単位共振器42Xを含む。第2導体層42は、1つの第2単位共振器42Xを含みうる。第2導体層42は、1つの第2単位共振器42Xが複数に分かれた第2部分共振器42Yを複数含みうる。複数の第2部分共振器42Yは、隣接する単位構造体10Xによって、少なくとも1つ分の第2単位共振器42Xとなりうる。複数の第2部分共振器42Yは、第2導体層42の端部に位置する。第2単位共振器42Xおよび第2部分共振器42Yは、第3導体と呼びうる。
第2単位共振器42Xおよび第2部分共振器42Yの少なくとも一部は、第1単位共振器41Xおよび第1部分共振器41YとZ方向に重なって位置する。第3導体40は、各層の単位共振器および部分共振器の少なくとも一部がZ方向に重なって1つの単位共振器40Xとなっている。単位共振器40Xは、各層において、少なくとも1つ分の単位共振器を含む。
第1単位共振器41Xがライン型またはパッチ型の共振器を含む場合、第1導体層41は、少なくとも1つの第1単位導体411を有する。第1単位導体411は、第1単位共振器41Xまたは第1部分共振器41Yとして機能しうる。第1導体層41は、xy方向においてn行m列で並ぶ複数の第1単位導体411を有する。nおよびmは、互いに独立した1以上の自然数である。図1~9等に示す一例において、第1導体層41は、2行3列の格子状に並ぶ6つの第1単位導体411を有する。第1単位導体411は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第1部分共振器41Yに相当する第1単位導体411は、第1導体層41のxy平面における端部に位置する。
第1単位共振器41Xがスロット型の共振器である場合、第1導体層41は、少なくとも1つの導体層がxy方向に広がる。第1導体層41は、少なくとも1つの第1単位スロット412を有する。第1単位スロット412は、第1単位共振器41Xまたは第1部分共振器41Yとして機能しうる。第1導体層41は、xy方向においてn行m列で並ぶ複数の第1単位スロット412を含みうる。nおよびmは、互いに独立した1以上の自然数である。図6~9等に示す一例において、第1導体層41は、2行3列の格子状に並ぶ6つの第1単位スロット412を有する。第1単位スロット412は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第1部分共振器41Yに相当する第1単位スロット412は、第1導体層41のxy平面における端部に位置する。
第2単位共振器42Xがライン型またはパッチ型の共振器である場合、第2導体層42は、少なくとも1つの第2単位導体421を含む。第2導体層42は、xy方向において並ぶ複数の第2単位導体421を含みうる。第2単位導体421は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第2単位導体421は、第2単位共振器42Xまたは第2部分共振器42Yとして機能しうる。第2部分共振器42Yに相当する第2単位導体421は、第2導体層42のxy平面における端部に位置する。
第2単位導体421は、z方向において、少なくとも一部が第1単位共振器41Xおよび第1部分共振器41Yの少なくとも一方と重なっている。第2単位導体421は、複数の第1単位共振器41Xと重なりうる。第2単位導体421は、複数の第1部分共振器41Yと重なりうる。第2単位導体421は、1つの第1単位共振器41Xと、4つの第1部分共振器41Yとに重なりうる。第2単位導体421は、1つの第1単位共振器41Xのみと重なりうる。第2単位導体421の重心は、1つの第1単位共振器41Xと重なりうる。第2単位導体421の重心は、複数の第1単位共振器41Xおよび第1部分共振器41Yの間に位置しうる。第2単位導体421の重心は、x方向またはy方向に並ぶ2つの第1単位共振器41Xの間に位置しうる。
第2単位導体421は、少なくとも一部が2つの第1単位導体411と重なりうる。第2単位導体421は、1つの第1単位導体411のみと重なりうる。第2単位導体421の重心は、2つの第1単位導体411の間に位置しうる。第2単位導体421の重心は、1つの第1単位導体411と重なりうる。第2単位導体421は、少なくとも一部が第1単位スロット412と重なりうる。第2単位導体421は、1つの第1単位スロット412のみと重なりうる。第2単位導体421の重心は、x方向またはy方向に並ぶ2つの第1単位スロット412の間に位置しうる。第2単位導体421の重心は、1つの第1単位スロット412に重なりうる。
第2単位共振器42Xがスロット型の共振器である場合、第2導体層42は、少なくとも1つの導体層がxy平面に沿って広がる。第2導体層42は、少なくとも1つの第2単位スロット422を有する。第2単位スロット422は、第2単位共振器42Xまたは第1部分共振器41Yとして機能しうる。第2導体層42は、xy平面において並ぶ複数の第2単位スロット422を含みうる。第2単位スロット422は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第2部分共振器42Yに相当する第2単位スロット422は、第2導体層42のxy平面における端部に位置する。
第2単位スロット422は、y方向において、少なくとも一部が第1単位共振器41Xおよび第1部分共振器41Yの少なくとも一方と重なっている。第2単位スロット422は、複数の第1単位共振器41Xと重なりうる。第2単位スロット422は、複数の第1部分共振器41Yと重なりうる。第2単位スロット422は、1つの第1単位共振器41Xと、4つの第1部分共振器41Yとに重なりうる。第2単位スロット422は、1つの第1単位共振器41Xのみと重なりうる。第2単位スロット422の重心は、1つの第1単位共振器41Xと重なりうる。第2単位スロット422の重心は、複数の第1単位共振器41Xの間に位置しうる。第2単位スロット422の重心は、x方向またはy方向に並ぶ2つの第1単位共振器41Xおよび第1部分共振器41Yの間に位置しうる。
第2単位スロット422は、少なくとも一部が2つの第1単位導体411と重なりうる。第2単位スロット422は、1つの第1単位導体411のみと重なりうる。第2単位スロット422の重心は、2つの第1単位導体411の間に位置しうる。第2単位スロット422の重心は、1つの第1単位導体411と重なりうる。第2単位スロット422は、少なくとも一部が第1単位スロット412と重なりうる。第2単位スロット422は、1つの第1単位スロット412のみと重なりうる。第2単位スロット422の重心は、x方向またはy方向に並ぶ2つの第1単位スロット412の間に位置しうる。第2単位スロット422の中心は、1つの第1単位スロット412に重なりうる。
単位共振器40Xは、少なくとも1つ分の第1単位共振器41Xと、少なくとも1つ分の第2単位共振器42Xとを含む。単位共振器40Xは、1つの第1単位共振器41Xを含みうる。単位共振器40Xは、複数の第1単位共振器41Xを含みうる。単位共振器40Xは、1つの第1部分共振器41Yを含みうる。単位共振器40Xは、複数の第1部分共振器41Yを含みうる。単位共振器40Xは、第1単位共振器41Xのうちの一部を含みうる。単位共振器40Xは、部分的な第1単位共振器41Xを1または複数含みうる。単位共振器40Xは、1または複数の部分的な第1単位共振器41X、および1または複数の第1部分共振器41Yから複数の部分的な共振器を含む。単位共振器40Xが含む複数の部分的な共振器は、少なくとも1つ分に相当する第1単位共振器41Xに合わさる。単位共振器40Xは、第1単位共振器41Xを含まず、複数の第1部分共振器41Yを含みうる。単位共振器40Xは、例えば、4つの第1部分共振器41Yを含みうる。単位共振器40Xは、部分的な第1単位共振器41Xのみを複数含みうる。単位共振器40Xは、1または複数の部分的な第1単位共振器41X、および1または複数の第1部分共振器41Yを含みうる。単位共振器40Xは、例えば、2つの部分的な第1単位共振器41X、および2の第1部分共振器41Yを含みうる。単位共振器40Xは、x方向における両端のそれぞれにおける、含まれる第1導体層41の鏡像が略同一となりうる。単位共振器40Xは、z方向に伸びる中心線に対して、含まれる第1導体層41が略対象になりうる。
単位共振器40Xは、1つの第2単位共振器42Xを含みうる。単位共振器40Xは、複数の第2単位共振器42Xを含みうる。単位共振器40Xは、1つの第2部分共振器42Yを含みうる。単位共振器40Xは、複数の第2部分共振器42Yを含みうる。単位共振器40Xは、第2単位共振器42Xのうちの一部を含みうる。単位共振器40Xは、部分的な第2単位共振器42Xを1または複数含みうる。単位共振器40Xは、1または複数の部分的な第2単位共振器42X、および1または複数の第2部分共振器42Yから複数の部分的な共振器を含む。単位共振器40Xが含む複数の部分的な共振器は、少なくとも1つ分に相当する第2単位共振器42Xに合わさる。単位共振器40Xは、第2単位共振器42Xを含まず、複数の第2部分共振器42Yを含みうる。単位共振器40Xは、例えば、4つの第2部分共振器42Yを含みうる。単位共振器40Xは、部分的な第2単位共振器42Xのみを複数含みうる。単位共振器40Xは、1または複数の部分的な第2単位共振器42X、および1または複数の第2部分共振器42Yを含みうる。単位共振器40Xは、例えば、2つの部分的な第2単位共振器42X、および2の第2部分共振器42Yを含みうる。単位共振器40Xは、x方向における両端のそれぞれにおける、含まれる第2導体層42の鏡像が略同一となりうる。単位共振器40Xは、y方向に伸びる中心線に対して、含まれる第2導体層42が略対象になりうる。
複数の実施形態の一例において、単位共振器40Xは、1つの第1単位共振器41Xと、複数の部分的な第2単位共振器42Xとを含む。例えば、単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2単位共振器42Xの半分とを含む。当該単位共振器40Xは、1つ分の第1単位共振器41Xと、2つ分の第2単位共振器42Xとを含む。単位共振器40Xが含む構成は、この例に限られない。
共振器10は、少なくとも1つの単位構造体10Xを含みうる。共振器10は、複数の単位構造体10Xを含みうる。複数の単位構造体10Xは、xy平面に並びうる。複数の単位構造体10Xは、正方格子、斜交格子、長方格子、および六方格子で並びうる。単位構造体10Xは、正方格子(square grid)、斜交格子(oblique grid)、長方格子(rectangular grid)、および六方格子(hexagonal grid)のいずれかの繰り返し単位を含む。単位構造体10Xは、xy平面に沿って無限に並ぶことで、人工磁気壁(AMC)として機能しうる。
単位構造体10Xは、基体20の少なくとも一部と、第3導体40の少なくとも一部と、第4導体50の少なくとも一部とを含みうる。単位構造体10Xが含む基体20、第3導体40、第4導体50の部位は、z方向において重なる。単位構造体10Xは、単位共振器40Xと、当該単位共振器40Xとz方向に重なる基体20の一部と、当該単位共振器40Xとz方向に重なる第4導体50とを含む。共振器10は、例えば、2行3列で並ぶ6つの単位構造体10Xを含みうる。
共振器10は、x方向において対向する2つの対導体30の間に、少なくとも1つの単位構造体10Xを有しうる。2つの対導体30は、単位構造体10Xからyz平面に広がる電気壁と観える。単位構造体10Xは、y方向の端が解放されている。単位構造体10Xは、y方向の両端のzx平面が高インピーダンスとなる。単位構造体10Xは、y方向の両端のzx平面が磁気壁と観える。単位構造体10Xは、繰り返して並ぶ際に、z方向に対して線対称としうる。単位構造体10Xは、2つの電気壁および2つの高インピーダンス面(磁気壁)で囲まれることで、z方向に人工磁気壁特性を有する。2つの電気壁および2つの高インピーダンス面(磁気壁)で囲まれることで、単位構造体10Xは、有限の数で人工磁気壁特性を有する。
共振器10の動作周波数は、第1単位共振器41Xの動作周波数と異なりうる。共振器10の動作周波数は、第2単位共振器42Xの動作周波数と異なりうる。共振器10の動作周波数は、単位共振器40Xを構成する第1単位共振器41Xおよび第2単位共振器42Xの結合などによって変化しうる。
第3導体40は、第1導体層41と第2導体層42とを含みうる。第1導体層41は、少なくとも1つの第1単位導体411を含む。第1単位導体411は、第1接続導体413と、第1浮遊導体414とを含む。第1接続導体413は、対導体30のいずれかと接続している。第1浮遊導体414は、対導体30と接続していない。第2導体層42は、少なくとも1つの第2単位導体421を含む。第2単位導体421は、第2接続導体423と、第2浮遊導体424とを含む。第2接続導体423は、対導体30のいずれかと接続している。第2浮遊導体424は、対導体30と接続していない。第3導体40は、第1単位導体411および第2単位導体421を含みうる。
第1接続導体413は、第1浮遊導体414よりx方向に沿った長さを長くしうる。第1接続導体413は、第1浮遊導体414よりx方向に沿った長さを短くしうる。第1接続導体413は、第1浮遊導体414に比べてx方向に沿った長さを半分としうる。第2接続導体423は、第2浮遊導体424よりx方向に沿った長さを長くしうる。第2接続導体423は、第2浮遊導体424よりx方向に沿った長さを短くしうる。第2接続導体423は、第2浮遊導体424に比べてx方向に沿った長さを半分としうる。
第3導体40は、共振器10が共振する際に、第1導体31と第2導体32との間の電流路となる電流路40Iを含みうる。電流路40Iは、第1導体31と、第2導体32とに接続されうる。電流路40Iは、第1導体31と第2導体32との間に、静電容量を有する。電流路40Iの静電容量は、第1導体31と第2導体32との間に、電気的に直列に接続される。電流路40Iは、第1導体31と第2導体32との間で導電体が離隔している。電流路40Iは、第1導体31に接続される導電体と、第2導体32に接続される導電体とを含みうる。
複数の実施形態において、電流路40Iにおいて、第1単位導体411と第2単位導体421とは、z方向において一部が対向している。電流路40Iにおいて、第1単位導体411と第2単位導体421とは、容量結合している。第1単位導体411は、x方向における端部に容量成分を有する。第1単位導体411は、z方向において第2単位導体421と対向するy方向における端部において容量成分を有しうる。第1単位導体411は、z方向において第2単位導体421と対向するx方向における端部、且つy方向における端部において容量成分を有しうる。第2単位導体421は、x方向における端部に容量成分を有する。第2単位導体421は、z方向において第1単位導体411と対向するy方向における端部において容量成分を有しうる。第2単位導体421は、z方向において第1単位導体411と対向するx方向における端部、且つy方向における端部において容量成分を有しうる。
共振器10は、電流路40Iにおける容量結合を大きくすることで共振周波数を低くすることができる。所望の動作周波数を実現する際に、共振器10は、電流路40Iの静電容量結合を大きくすることで、x方向に沿った長さを短くすることができる。第3導体40は、第1単位導体411と第2単位導体421とが基体20の積層方向に対向して容量結合している。第3導体40は、第1単位導体411と第2単位導体421との間の静電容量を対向する面積によって調整できる。
複数の実施形態において、第1単位導体411のy方向に沿った長さは、第2単位導体421のy方向に沿った長さと異なる。共振器10は、第1単位導体411と第2単位導体421との相対的な位置が理想的な位置からxy平面に沿ってずれた場合に、第3方向に沿った長さが第1単位導体411と第2単位導体421とで異なることで、静電容量の大きさの変化を小さくすることができる。
複数の実施形態において、電流路40Iは、第1導体31および第2導体32と空間的に離れ、第1導体31および第2導体32と容量的に結合している、1つの導電体からなる。
複数の実施形態において、電流路40Iは、第1導体層41と、第2導体層42とを含む。当該電流路40Iは、少なくとも1つの第1単位導体411と、少なくとも1つの第2単位導体421とを含む。当該電流路40Iは、2つの第1接続導体413、2つの第2接続導体423、ならびに1つの第1接続導体413および1つの第2接続導体423のいずれかを含む。当該電流路40Iは、第1単位導体411と、第2単位導体421とが第1方向に沿って交互に並びうる。
複数の実施形態において、電流路40Iは、第1接続導体413と、第2接続導体423とを含む。当該電流路40Iは、少なくとも1つの第1接続導体413と、少なくとも1つの第2接続導体423とを含む。当該電流路40Iにおいて、第3導体40は、第1接続導体413と第2接続導体423との間に静電容量を有する。実施形態の一例において、第1接続導体413は、第2接続導体423と対向し、静電容量を有しうる。実施形態の一例において、第1接続導体413は、第2接続導体423と他の導電体を介して容量的に接続されうる。
複数の実施形態において、電流路40Iは、第1接続導体413と、第2浮遊導体424とを含む。当該電流路40Iは、2つの第1接続導体413を含む。当該電流路40Iにおいて、第3導体40は、2つの第1接続導体413の間に静電容量を有する。実施形態の一例において、2つの第1接続導体413は、少なくとも1つの第2浮遊導体424を介して容量的に接続されうる。実施形態の一例において、2つの第1接続導体413は、少なくとも1つの第1浮遊導体414と、複数の第2浮遊導体424とを介して容量的に接続されうる。
複数の実施形態において、電流路40Iは、第1浮遊導体414と、第2接続導体423とを含む。当該電流路40Iは、2つの第2接続導体423を含む。当該電流路40Iにおいて、第3導体40は、2つの第2接続導体423の間に静電容量を有する。実施形態の一例において、2つの第2接続導体423は、少なくとも1つの第1浮遊導体414を介して容量的に接続されうる。実施形態の一例において、2つの第2接続導体423は、複数の第1浮遊導体414と、少なくとも1つの第2浮遊導体424と、を介して容量的に接続されうる。
複数の実施形態において、第1接続導体413および第2接続導体423の各々は、共振周波数における波長λの4分の1の長さとしうる。第1接続導体413および第2接続導体423の各々は、それぞれが波長λの2分の1の長さの共振器として機能しうる。第1接続導体413および第2接続導体423の各々は、それぞれの共振器が容量結合することで奇モードと偶モードとで発振しうる。共振器10は、容量結合後の偶モードにおける共振周波数を動作周波数としうる。
電流路40Iは、第1導体31に複数箇所で接続されうる。電流路40Iは、第2導体32に複数箇所で接続されうる。電流路40Iは、第1導体31から第2導体32までを独立して電導する複数の電導路を含みうる。
第1接続導体413と容量結合する第2浮遊導体424において、当該容量結合している側の第2浮遊導体424の端は、対導体30との距離に比べて第1接続導体413との距離が短い。第2接続導体423と容量結合する第1浮遊導体414において、当該容量結合している側の第1浮遊導体414の端は、対導体30との距離に比べて第2接続導体423との距離が短い。
複数の実施形態の共振器10において、第3導体40の導体層は、y方向における長さが各々で異なりうる。第3導体40の導体層は、z方向において他の導体層と容量的に結合する。共振器10は、導体層のy方向における長さが異なると、導体層がy方向にずれても静電容量の変化が小さくなる。共振器10は、導体層のy方向における長さが異なることで、導体層のy方向に対するズレの許容範囲を広げることができる。
複数の実施形態の共振器10において、第3導体40は、導体層間の容量的な結合による静電容量を有する。当該静電容量を有する容量部位は、y方向に複数並びうる。y方向に複数並ぶ容量部位は、電磁気的に並列の関係となりうる。共振器10は、電気的に並列に並ぶ複数の容量部位を有することで、個々の容量誤差を相互に補完することができる。
共振器10が共振状態にあるとき、対導体30、第3導体40、第4導体50に流れる電流は、ループする。共振器10が共振状態にあるとき、共振器10には、交流電流が流れている。共振器10において、第3導体40を流れる電流を第1電流とし、第4導体50を流れる電流を第2電流とする。共振器10が共振状態にあるとき、第1電流は、x方向において第2電流と異なる方向に流れる。例えば、第1電流が+x方向に流れるとき、第2電流は-x方向に流れる。また、例えば、第1電流が-x方向に流れるとき、第2電流は+x方向に流れる。つまり、共振器10が共振状態にあるとき、ループ電流は、+x方向および-x方向に交互に流れる。共振器10は、磁界を作るループ電流が反転を繰り返すことで、電磁波を放射する。
複数の実施形態において、第3導体40は、第1導体層41と、第2導体層42とを含む。第3導体40は、第1導体層41と第2導体層42とが容量的に結合しているため、共振状態で大域的に電流が1つの方向に流れているようにみえる。複数の実施形態において、各導体を流れる電流は、y方向の端部において密度が大きい。
共振器10は、対導体30を介して第1電流および第2電流がループする。共振器10は、第1導体31、第2導体32、第3導体40、および第4導体50が共振回路となる。共振器10の共振周波数は、単位共振器の共振周波数となる。共振器10が1つの単位共振器を含む場合、または、共振器10が単位共振器の一部を含む場合、共振器10の共振周波数は、基体20、対導体30、第3導体40、および第4導体50、並びに共振器10の周囲との電磁的な結合によって変わる。例えば、共振器10は、第3導体40の周期性が乏しい場合、全体が1つの単位共振器、または全体が1つの単位共振器の一部となる。例えば、共振器10の共振周波数は、第1導体31および第2導体32のz方向の長さ、第3導体40および第4導体50のx方向の長さ、第3導体40および第4導体50の静電容量によって変わる。例えば、第1単位導体411と第2単位導体421の間の容量が大きい共振器10は、第1導体31および第2導体32のz方向の長さ、ならびに第3導体40および第4導体50のx方向の長さを短くしつつ、共振周波数の低周波数化が可能となる。
複数の実施形態において、共振器10は、z方向において第1導体層41が電磁波の実効的な放射面となる。複数の実施形態において、共振器10は、第1導体層41の第1面積が他の導体層の第1面積より大きい。当該共振器10は、第1導体層41の第1面積を大きくすることで、電磁波の放射を大きくすることができる。
複数の実施形態において、共振器10は、1または複数のインピーダンス素子45を含みうる。インピーダンス素子45は、複数の端子間にインピーダンス値を有する。インピーダンス素子45は、共振器10の共振周波数を変化させる。インピーダンス素子45は、抵抗器(Register)、キャパシタ(Capacitor)、およびインダクタ(Inductor)を含みうる。インピーダンス素子45は、インピーダンス値を変更可能な可変素子を含みうる。可変素子は、電気信号によってインピーダンス値を変更しうる。可変素子は、物理機構によってインピーダンス値を変更しうる。
インピーダンス素子45は、x方向において並ぶ、第3導体40の2つの単位導体に接続されうる。インピーダンス素子45は、x方向において並ぶ、2つの第1単位導体411に接続されうる。インピーダンス素子45は、x方向において並ぶ、第1接続導体413と第1浮遊導体414とに接続されうる。インピーダンス素子45は、第1導体31と、第1浮遊導体414とに接続されうる。インピーダンス素子45は、y方向における中央部において、第3導体40の単位導体に接続される。インピーダンス素子45は、2つの第1単位導体411のy方向における中央部に接続される。
インピーダンス素子45は、xy平面内でx方向に並ぶ2つの導電体の間に、電気的に直列に接続される。インピーダンス素子45は、x方向において並ぶ、2つの第1単位導体411の間に電気的に直列に接続されうる。インピーダンス素子45は、x方向において並ぶ、第1接続導体413と第1浮遊導体414との間に電気的に直列に接続されうる。インピーダンス素子45は、第1導体31と、第1浮遊導体414との間に電気的に直列に接続されうる。
インピーダンス素子45は、z方向に重なって静電容量を持つ、2つの第1単位導体411および第2単位導体421に対して、電気的に並列に接続されうる。インピーダンス素子45は、z方向に重なって静電容量を持つ、第2接続導体423および第1浮遊導体414に対して、電気的に並列に接続されうる。
共振器10は、インピーダンス素子45としてキャパシタを追加することで、共振周波数を低くできる。共振器10は、インピーダンス素子45としてインダクタを追加することで共振周波数を高くできる。共振器10は、異なるインピーダンス値のインピーダンス素子45を含みうる。共振器10は、インピーダンス素子45として異なる電気容量のキャパシタを含みうる。共振器10は、インピーダンス素子45として異なるインダクタンスのインダクタを含みうる。共振器10は、異なるインピーダンス値のインピーダンス素子45を追加することで、共振周波数の調整範囲が大きくなる。共振器10は、インピーダンス素子45としてキャパシタおよびインダクタを同時に含みうる。共振器10は、インピーダンス素子45としてキャパシタおよびインダクタを同時に追加することで、共振周波数の調整範囲が大きくなる。共振器10は、インピーダンス素子45を備えることによって、全体が1つの単位共振器、または全体が1つの単位共振器の一部となりうる。
図1~5は、複数の実施形態の一例である共振器10を示す図である。図1は、共振器10の概略図である。図2は、z方向からxy平面を平面視した図である。図3(a)は、図2に示したIIIa-IIIa線に沿った断面図である。図3(b)は、図2に示したIIIb-IIIb線に沿った断面図である。図4は、図3に示したIV-IV線に沿った断面図である。図5は、複数の実施形態の一例である単位構造体10Xを示す概念図である。
図1~5に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
図6~9は、複数の実施形態の一例である共振器10を示す図である。図6は、共振器10の概略図である。図7は、z方向からxy平面を平面視した図である。図8(a)は、図7に示したVIIIa-VIIIa線に沿った断面図である。図8(b)は、図7に示したVIIIb-VIIIb線に沿った断面図である。図9は、図8に示したIX-IX線に沿った断面図である。
図6~9に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてスロット型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてスロット型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
図10~13は、複数の実施形態の一例である共振器10を示す図である。図10は、共振器10の概略図である。図11は、z方向からxy平面を平面視した図である。図12(a)は、図11に示したXIIa-XIIa線に沿った断面図である。図12(b)は、図11に示したXIIb-XIIb線に沿った断面図である。図13は、図12に示したXIII-XIII線に沿った断面図である。
図10~13に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてスロット型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
図14~17は、複数の実施形態の一例である共振器10を示す図である。図14は、共振器10の概略図である。図15は、z方向からxy平面を平面視した図である。図16(a)は、図15に示したXVIa-XVIa線に沿った断面図である。図16(b)は、図15に示したXVIb-XVIb線に沿った断面図である。図17は、図16に示したXVII-XVII線に沿った断面図である。
図14~17に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてスロット型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
図1~17に示した共振器10は一例である。共振器10の構成は、図1~17に示した構造に限定されない。図18は、他の構成の対導体30を含む共振器10を示す図である。図19(a)は、図18に示したXIXa-XIXa線に沿った断面図である。図19(b)は、図18に示したXIXb-XIXb線に沿った断面図である。
図1~19に示した基体20は一例である。基体20の構成は、図1~19に示した構成に限定されない。基体20は、図20に示したように、内部に空洞20aを含みうる。z方向において、空洞20aは、第3導体40と第4導体50との間に位置する。空洞20aの誘電率は、基体20の誘電率に比べて低い。基体20は、空洞20aを有することで、第3導体40と第4導体50との電磁気的な距離を短くできる。
基体20は、図21に示したように、複数の部材を含みうる。基体20は、第1基体21、第2基体22、および接続体23を含みうる。第1基体21および第2基体22は、接続体23を介して機械的に接続されうる。接続体23は、内部に第6導体303を含みうる。第6導体303は、第4導体50または第5導体302と電気的に接続される。第6導体303は、第4導体50および第5導体302と合わせて第1導体31または第2導体32となる。
図1~21に示した対導体30は一例である。対導体30の構成は、図1~21に示した構成に限定されない。図22~28は、他の構成の対導体30を含む共振器10を示す図である。図22は、図19(a)に相当する断面図である。図22(a)に示すように、第5導体層301の数は、適宜変更しうる。図22(b)に示すように、第5導体層301は、基体20の上に位置しなくてよい。図22(c)に示すように、第5導体層301は、基体20の中に位置しなくてよい。
図23は、図18に相当する平面図である。図23に示すように、共振器10は、第5導体302を単位共振器40Xの境界から離しうる。図24は、図18に相当する平面図である。図24に示すように、2つの対導体30は、対となる他の対導体30側に出る凸部を有しうる。このような共振器10は、例えば、凹部を有する基体20に金属ペーストを塗布して硬化することで形成しうる。
図25は、図18に相当する平面図である。図25に示すように、基体20は、凹部を有しうる。図25に示すように、対導体30は、x方向における外面から内側に窪む凹部を有している。図25に示すように、対導体30は、基体20の表面に沿って広がっている。このような共振器10は、例えば、凹部を有する基体20に微細な金属材料を吹き付けることで形成しうる。
図26は、図18に相当する平面図である。図26に示すように、基体20は、凹部を有しうる。図25に示すように、対導体30は、x方向における外面から内側に窪む凹部を有している。図26に示すように、対導体30は、基体20の凹部に沿って広がっている。このような共振器10は、例えば、スルーホール導体の並びに沿ってマザー基板を分割することで製造しうる。かかる対導体30は、端面スルーホールなどと称しうる。
図27は、図18に相当する平面図である。図27に示すように、基体20は、凹部を有しうる。図27に示すように、対導体30は、x方向における外面から内側に窪む凹部を有している。このような共振器10は、例えば、スルーホール導体の並びに沿ってマザー基板を分割することで製造しうる。かかる対導体30は、端面スルーホールなどと称しうる。
図28は、図18に相当する平面図である。図28に示すように、対導体30は、x方向における長さが、基体20に比べて短くてよい。対導体30の構成はこれらに限られない。2つの対導体30は、互いに異なる構成と成りうる。例えば、一方の対導体30は、第5導体層301および第5導体302を含み、他方の対導体30は、端面スルーホールであってよい。
図1~28に示した第3導体40は一例である。第3導体40の構成は、図1~28に示した構成に限定されない。単位共振器40X、第1単位共振器41X、および第2単位共振器42Xは、方形に限られない。単位共振器40X、第1単位共振器41X、および第2単位共振器42Xは、単位共振器40X等と称しうる。例えば、単位共振器40X等は、図29(a)に示すように、三角形であってよく、図29(b)に示すように六角形であってよい。単位共振器40X等の各辺は、図30に示すように、x方向およびy方向と異なる方向に伸びうる。第3導体40は、第2導体層42が基体20の上に位置し、第1導体層41が基体20の中に位置しうる。第3導体40は、第2導体層42が第1導体層41より第4導体50から遠くに位置しうる。
図1~30に示した第3導体40は一例である。第3導体40の構成は、図1~30に示した構成に限定されない。第3導体40を含む共振器は、ライン型の共振器401であってよい。図31(a)に示したのは、ミアンダライン型の共振器401である。図31(b)に示したのは、スパイラル型の共振器401である。第3導体40の含む共振器は、スロット型の共振器402であってよい。スロット型の共振器402は、1つまたは複数の第7導体403を開口内に有しうる。開口内の第7導体403は、一端が解放され、他端が開口を規定する導体に電気的に接続される。図31(c)に示した単位スロットは、5つの第7導体403が開口内に位置する。単位スロットは、第7導体403によってミアンダラインに相当する形となる。図31(d)に示した単位スロットは、1つの第7導体403が開口内に位置する。単位スロットは、第7導体403によってスパイラルに相当する形となる。
図1~31に示した共振器10の構成は一例である。共振器10の構成は、図1~31に示した構成に限定されない。例えば、共振器10の対導体30は、3以上含みうる。例えば、1つの対導体30は、2つの対導体30とx方向において対向しうる。当該2つの対導体30は、当該対導体30との距離が異なる。例えば、共振器10は、二対の対導体30を含みうる。二対の対導体30は、各対の距離、および各対の長さが異なりうる。共振器10は、5以上の第1導体を含みうる。共振器10の単位構造体10Xは、y方向において、他の単位構造体10Xと並びうる。共振器10の単位構造体10Xは、x方向において、対導体30を介さずに他の単位構造体10Xと並びうる。図32~34は、共振器10の例を示す図である。図32~34に示す共振器10では、単位構造体10Xの単位共振器40Xを正方形で示すが、これに限られない。
図1~34に示した共振器10の構成は一例である。共振器10の構成は、図1~34に示した構成に限定されない。図35は、z方向からxy平面を平面視した図である。図36(a)は、図35に示したXXXVIa-XXXVIa線に沿った断面図である。図36(b)は、図35に示したXXXVIb-XXXVIb線に沿った断面図である。
図35,36に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器の半分を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器の半分を含む。単位共振器40Xは、1つの第1部分共振器41Yと、1つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40XとZ方向に重なる基体20の一部および第4導体50の一部とを含む。図35に示した共振器10は、3つの単位共振器40Xがx方向に並んでいる。3つの単位共振器40Xに含まれる第1単位導体411および第2単位導体421は、1つの電流路40Iとなっている。
図37は、図35に示した共振器10の他の例を示す。図37に示した共振器10は、図35に示した共振器10と比較してx方向に長い。共振器10の寸法は、図37に示した共振器10に限定されず、適宜変更しうる。図37の共振器10において、第1接続導体413は、x方向の長さが第1浮遊導体414と異なる。図37の共振器10において、第1接続導体413は、x方向の長さが第1浮遊導体414より短い。図38は、図35に示した共振器10の他の例を示す。図38に示した共振器10は、第3導体40のx方向の長さが異なる。図38の共振器10において、第1接続導体413は、x方向の長さが第1浮遊導体414より長い。
図39は、共振器10の他の例を示す。図39は、図37に示した共振器10の他の例を示す。複数の実施形態において、共振器10は、x方向に並ぶ複数の第1単位導体411および第2単位導体421が容量的に結合する。共振器10は、一方から他方に電流が流れない、2つの電流路40Iがy方向に並びうる。
図40は、共振器10の他の例を示す。図40は、図39に示した共振器10の他の例を示す。複数の実施形態において、共振器10は、第1導体31に接続される導電体の数と、第2導体32に接続される導電体の数とが異なりうる。図40の共振器10において、1つの第1接続導体413は、2つの第2浮遊導体424と容量的に結合している。図40の共振器10において、2つの第2接続導体423は、1つの第1浮遊導体414と容量的に結合している。複数の実施形態において、第1単位導体411の数は、当該第1単位導体411に容量結合する第2単位導体421の数と異なりうる。
図41は、図39に示した共振器10の他の例を示す。複数の実施形態において、第1単位導体411は、x方向における第1端部において容量結合する第2単位導体421の数と、x方向における第2端部において容量結合する第2単位導体421の数が異なりうる。図41の共振器10において、1つの第2浮遊導体424は、x方向における第1端部に2つの第1接続導体413が容量結合し、第2端部に3つの第2浮遊導体424が容量結合している。複数の実施形態において、y方向に並ぶ複数の導電体は、y方向における長さが異なりうる。図41の共振器10において、y方向に並ぶ3つの第1浮遊導体414は、y方向における長さが異なる。
図42は、共振器10の他の例を示す。図43は、図42に示したXLIII-XLIII線に沿った断面図である。図42,43に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器の半分を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器の半分を含む。単位共振器40Xは、1つの第1部分共振器41Yと、1つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。図42に示した共振器10は、1つの単位共振器40Xがx方向に延びている。
図44は、共振器10の他の例を示す。図45は、図44に示したXLV-XLV線に沿った断面図である。図44,45に示した共振器10において、第3導体40は、第1接続導体413のみを含む。第1接続導体413は、xy平面において第1導体31と対向する。第1接続導体413は、第1導体31と容量的に結合する。
図46は、共振器10の他の例を示す。図47は、図46に示したXLVII-XLVII線に沿った断面図である。図46,47に示した共振器10において、第3導体40は、第1導体層41および第2導体層42を有する。第1導体層41は、1つの第1浮遊導体414を有する。第2導体層42は、2つの第2接続導体423を有する。当該第1導体層41は、xy平面において対導体30と対向する。2つの第2接続導体423は、1つの第1浮遊導体414とz方向に重なっている。1つの第1浮遊導体414は、2つの第2接続導体423と容量的に結合している。
図48は、共振器10の他の例を示す。図49は、図48に示したXLIX-XLIX線に沿った断面図である。図48,49に示した共振器10において、第3導体40は、第1浮遊導体414のみを含む。第1浮遊導体414は、xy平面において対導体30と対向する。第1接続導体413は、対導体30と容量的に結合する。
図50は、共振器10の他の例を示す。図51は、図50に示したLI-LI線に沿った断面図である。図50,51に示した共振器10は、図42,43に示した共振器10と第4導体50の構成が異なる。図50,51に示した共振器10は、第4導体50と、基準電位層51とを備える。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続される。基準電位層51は、第4導体50を介して第3導体40と対向している。第4導体50は、第3導体40と基準電位層51との間に位置する。基準電位層51と第4導体50との間隔は、第3導体40と第4導体50との間隔に比べて狭い。
図52は、共振器10の他の例を示す。図53は、図52に示したLIII-LIII線に沿った断面図である。共振器10は、第4導体50と、基準電位層51とを備える。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続される。第4導体50は、共振器を備える。第4導体50は、第3導体層52および第4導体層53を含む。第3導体層52および第4導体層53は、容量結合する。第3導体層52および第4導体層53は、z方向に対向する。第3導体層52および第4導体層53の距離は、第4導体層53と基準電位層51との距離に比べて短い。第3導体層52および第4導体層53の距離は、第4導体50と基準電位層51との距離に比べて短い。第3導体40は、1つの導体層となっている。
図54は、図53に示した共振器10の他の例を示す。共振器10は、第3導体40と、第4導体50と、基準電位層51とを備える。第3導体40は、第1導体層41および第2導体層42を含む。第1導体層41は、第1接続導体413を含む。第2導体層42は、第2接続導体423を含む。第1接続導体413は、第2接続導体423と容量的に結合される。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続される。第4導体50は、第3導体層52および第4導体層53を含む。第3導体層52および第4導体層53は、容量結合する。第3導体層52および第4導体層53は、z方向に対向する。第3導体層52および第4導体層53の距離は、第4導体層53と基準電位層51との距離に比べて短い。第3導体層52および第4導体層53の距離は、第4導体50と基準電位層51との距離に比べて短い。
図55は、共振器10の他の例を示す。図56(a)は、図55に示したLVIa-LVIa線に沿った断面図である。図56(b)は、図55に示したLVIb-LVIb線に沿った断面図である。図55に示した共振器10において、第1導体層41は、4つの第1浮遊導体414を有する。図55に示した第1導体層41は、第1接続導体413を有していない。図55に示した共振器10において、第2導体層42は、6つの第2接続導体423と、3つの第2浮遊導体424とを有する。2つの第2接続導体423の各々は、2つの第1浮遊導体414と容量的に結合している。1つの第2浮遊導体424は、4つの第1浮遊導体414と容量的に結合している。2つの第2浮遊導体424は、2つの第1浮遊導体414と容量的に結合している。
図57は、図55に示した共振器の他の例を示す図である。図57の共振器10は、第2導体層42の大きさが図55に示した共振器10と異なる。図57に示した共振器10は、第2浮遊導体424のx方向に沿った長さが第2接続導体423のx方向に沿った長さより短い。
図58は、図55に示した共振器の他の例を示す図である。図58の共振器10は、第2導体層42の大きさが図55に示した共振器10と異なる。図58に示した共振器10において、複数の第2単位導体421の各々は、第1面積が異なる。図58に示した共振器10において、複数の第2単位導体421の各々は、x方向における長さが異なる。図58に示した共振器10において、複数の第2単位導体421の各々は、y方向における長さが異なる。図58において、複数の第2単位導体421は、第1面積、長さ、および幅が互いに異なるがこれに限られない。図58において、複数の第2単位導体421は、第1面積、長さ、および幅の一部が互いに異なりうる。複数の第2単位導体421は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2単位導体421は、第1面積、長さ、および幅の一部または全てが互いに異なりうる。複数の第2単位導体421は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2単位導体421の一部は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。
図58に示した共振器10において、y方向に並ぶ複数の第2接続導体423は、第1面積が互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2接続導体423は、x方向における長さが互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2接続導体423は、y方向における長さが互いに異なる。図58において、複数の第2接続導体423は、第1面積、長さ、および幅が互いに異なるがこれに限られない。図58において、複数の第2接続導体423は、第1面積、長さ、および幅の一部が互いに異なりうる。複数の第2接続導体423は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2接続導体423は、第1面積、長さ、および幅の一部または全てが互いに異なりうる。複数の第2接続導体423は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2接続導体423の一部は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。
図58に示した共振器10において、y方向に並ぶ複数の第2浮遊導体424は、第1面積が互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2浮遊導体424は、x方向における長さが互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2浮遊導体424は、y方向における長さが互いに異なる。図58において、複数の第2浮遊導体424は、第1面積、長さ、および幅が互いに異なるがこれに限られない。図58において、複数の第2浮遊導体424は、第1面積、長さ、および幅の一部が互いに異なりうる。複数の第2浮遊導体424は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2浮遊導体424は、第1面積、長さ、および幅の一部または全てが互いに異なりうる。複数の第2浮遊導体424は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2浮遊導体424の一部は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。
図59は、図57に示した共振器10の他の例を示す図である。図59の共振器10は、y方向における第1単位導体411の間隔が図57に示した共振器10と異なる。図59の共振器10は、x方向における第1単位導体411の間隔に比べて、y方向における第1単位導体411の間隔が小さい。共振器10は、対導体30が電気壁として機能しうるため、電流がx方向に流れる。当該共振器10において、第3導体40をy方向に流れる電流は、無視しうる。第1単位導体411のy方向の間隔は、第1単位導体411のx方向における間隔に比べて短くしうる。第1単位導体411のy方向の間隔を短くすることで、第1単位導体411の面積を大きくしうる。
図60~62は、共振器10の他の例を示す図である。これらの共振器10は、インピーダンス素子45を有する。インピーダンス素子45が接続する単位導体は、図60~62に示した例に限られない。図60~62に示したインピーダンス素子45は、一部を省略しうる。インピーダンス素子45は、キャパシタンス特性を取りうる。インピーダンス素子45は、インダクタンス特性を取りうる。インピーダンス素子45は、機械的または電気的な可変素子でありうる。インピーダンス素子45は、1つの層にある異なる2つの導体を接続しうる。
アンテナは、電磁波の放射する機能、および電磁波を受信する機能の少なくとも一方を有する。本開示のアンテナは、第1アンテナ60および第2アンテナ70を含むが、これらに限られない。
第1アンテナ60は、基体20、対導体30、第3導体40、第4導体50、第1給電線61を備える。一例において、第1アンテナ60は、基体20の上に第3基体24を有する。第3基体24は、基体20と異なる組成としうる。第3基体24は、第3導体40の上に位置しうる。図63~76は、複数の実施形態の一例である第1アンテナ60を示す図である。
第1給電線61は、人工磁気壁として周期的に並ぶ共振器の少なくとも1つに給電する。複数の共振器に給電する場合、第1アンテナ60は、複数の第1給電線を有しうる。第1給電線61は、人工磁気壁として周期的に並ぶ共振器のいずれかに電磁気的に接続されうる。第1給電線61は、人工磁気壁として周期的に並ぶ共振器から電気壁として観える一対の導体のいずれかに電磁気的に接続されうる。
第1給電線61は、第1導体31、第2導体32、および第3導体40の少なくとも1つに給電する。第1導体31、第2導体32、および第3導体40の複数の部分に給電する場合、第1アンテナ60は、複数の第1給電線を有しうる。第1給電線61は、第1導体31、第2導体32、および第3導体40のいずれかに電磁気的に接続されうる。第1アンテナ60が第4導体50の他に基準電位層51を備える場合、第1給電線61は、第1導体31、第2導体32、第3導体40、および第4導体50のいずれかに電磁気的に接続されうる。第1給電線61は、対導体30のうち、第5導体層301および第5導体302のいずれかに電気的に接続される。第1給電線61の一部は、第5導体層301と一体としうる。
第1給電線61は、第3導体40に電磁気的に接続されうる。例えば、第1給電線61は、第1単位共振器41Xの1つに電磁気的に接続される。例えば、第1給電線61は、第2単位共振器42Xの1つに電磁気的に接続される。第1給電線61は、第3導体40の単位導体に対して、x方向における中央と異なる点で電磁気的に接続される。第1給電線61は、一実施形態において、第3導体40に含まれる少なくとも1つの共振器に電力を供給する。第1給電線61は、一実施形態において、第3導体40に含まれる少なくとも1つの共振器からの電力を外部に給電する。第1給電線61は、少なくとも一部が基体20の中に位置しうる。第1給電線61は、基体20の2つのzx面、2つのyz面、および2つのxy面のいずれかから外部に臨みうる。
第1給電線61は、z方向の順方向および逆方向から第3導体40に対して接しうる。第4導体50は、第1給電線61の周囲で省略しうる。第1給電線61は、第4導体50の開口を通じて、第3導体40に電磁気的に接続しうる。第1導体層41は、第1給電線61の周囲で省略しうる。第1給電線61は、第1導体層41の開口を通じて、第2導体層42に接続しうる。第1給電線61は、xy平面に沿って第3導体40に対して接しうる。対導体30は、第1給電線61の周囲で省略しうる。第1給電線61は、対導体30の開口を通じて、第3導体40に接続しうる。第1給電線61は、第3導体40の単位導体に対して、当該単位導体の中心部から離れて接続される。
図63は、第1アンテナ60をz方向からxy平面を平面視した図である。図64は、図63に示したLXIV-LXIV線に沿った断面図である。図63,64に示した第1アンテナ60は、第3導体40の上に第3基体24を有する。第3基体24は、第1導体層41の上に開口を有する。第1給電線61は、第3基体24の開口を介して第1導体層41に電気的に接続される。
図65は、第1アンテナ60をz方向からxy平面を平面視した図である。図66は、図65に示したLXVI-LXVI線に沿った断面図である。図65,66に示した第1アンテナ60において、第1給電線61の一部は、基体20の上に位置する。第1給電線61は、xy平面内にて第3導体40と接続しうる。第1給電線61は、xy平面内にて第1導体層41と接続しうる。一実施形態において、第1給電線61は、第2導体層42とxy平面に接続しうる。
図67は、第1アンテナ60をz方向からxy平面を平面視した図である。図68は、図67に示したLXVIII-LXVIII線に沿った断面図である。図67,68に示した第1アンテナ60において、第1給電線61は、基体20の中に位置する。第1給電線61は、z方向における逆方向から第3導体40に接続しうる。第4導体50は、開口を有しうる。第4導体50は、第3導体40とz方向において重なる位置に開口を有しうる。第1給電線61は、開口を介して基体20の外部に臨みうる。
図69は、第1アンテナ60をx方向からyz面を見た断面図である。対導体30は、開口を有しうる。第1給電線61は、開口を介して基体20の外部に臨みうる。
第1アンテナ60が放射する電磁波は、第1平面において、y方向の偏波成分よりx方向の偏波成分が大きい。x方向の偏波成分は、z方向から金属板が第4導体50に近づいた際に、水平偏波成分より減衰が小さい。第1アンテナ60は、外部から金属板が近づいた際の放射効率を維持しうる。
図70は、第1アンテナ60の他の例を示す。図71は、図70に示したLXXI-LXXI線に沿った断面図である。図72は、第1アンテナ60の他の例を示す。図73は、図72に示したLXXIII-LXXIII線に沿った断面図である。図74は、第1アンテナ60の他の例を示す。図75(a)は、図74に示したLXXVa-LXXVa線に沿った断面図である。図75(b)は、図74に示したLXXVb-LXXVb線に沿った断面図である。図76は、第1アンテナ60の他の例を示す。図76に示した第1アンテナ60は、インピーダンス素子45を有している。
第1アンテナ60は、インピーダンス素子45によって、動作周波数を変更することができる。第1アンテナ60は、第1給電線61に接続される第1給電導体415と、第1給電線61に接続されない第1単位導体411とを含む。インピーダンス整合は、第1給電導体415と他の導電体とにインピーダンス素子45が接続されると変化する。第1アンテナ60は、インピーダンス素子45によって第1給電導体415と他の導電体とを接続することで、インピーダンスの整合を調整できる。第1アンテナ60において、インピーダンス素子45は、インピーダンス整合を調整するために、第1給電導体415と他の導電体との間に挿入されうる。第1アンテナ60において、インピーダンス素子45は、動作周波数を調整するために、第1給電線61に接続されない2つの第1単位導体411の間に挿入されうる。第1アンテナ60において、インピーダンス素子45は、動作周波数を調整するために、第1給電線61に接続されない第1単位導体411と、対導体30の何れかとの間に挿入されうる。
第2アンテナ70は、基体20、対導体30、第3導体40、第4導体50、第2給電層71、および第2給電線72を備える。一例において、第3導体40は、基体20の中に位置する。一例において、第2アンテナ70は、基体20の上に第3基体24を有する。第3基体24は、基体20と異なる組成としうる。第3基体24は、第3導体40の上に位置しうる。第3基体24は、第2給電層71の上に位置しうる。
第2給電層71は、第3導体40の上方に間を空けて位置する。第2給電層71と第3導体40との間に、基体20、または第3基体24が位置しうる。第2給電層71は、ライン型、パッチ型、およびスロット型の共振器を含む。第2給電層71は、アンテナ素子と言いうる。一例において、第2給電層71は、第3導体40と電磁気的に結合しうる。第2給電層71の共振周波数は、第3導体40との電磁気的な結合によって、単独の共振周波数から変化する。一例において、第2給電層71は、第2給電線72からの電力の伝送を受けて、第3導体40と共に共振する。一例において、第2給電層71は、第2給電線72からの電力の伝送を受けて、第3導体40および第3導体と共に共振する。
第2給電線72は、第2給電層71に電気的に接続される。一実施形態において、第2給電線72は、第2給電層71に電力を伝送する。一実施形態において、第2給電線72は、第2給電層71からの電力を外部に伝送する。
図77は、第2アンテナ70をz方向からxy平面を平面視した図である。図78は、図77に示したLXXVIII-LXXVIII線に沿った断面図である。図77,78に示した第2アンテナ70において、第3導体40は、基体20の中に位置する。第2給電層71は、基体20の上に位置する。第2給電層71は、単位構造体10Xとz方向に重なって位置する。第2給電線72は、基体20の上に位置する。第2給電線72は、xy平面において第2給電層71に電磁気的に接続される。
本開示の無線通信モジュールは、複数の実施形態の一例として無線通信モジュール80を含む。図79は、無線通信モジュール80のブロック構造図である。図80は、無線通信モジュール80の概略構成図である。無線通信モジュール80は、第1アンテナ60、回路基板81、RFモジュール82を備える。無線通信モジュール80は、第1アンテナ60に代えて第2アンテナ70を備えうる。
第1アンテナ60は、回路基板81の上に位置する。第1アンテナ60の第1給電線61は、回路基板81を介してRFモジュール82に電磁気的に接続される。第1アンテナ60の第4導体50は、回路基板81のグラウンド導体811に電磁気的に接続される。
グラウンド導体811は、xy平面に広がりうる。グラウンド導体811は、xy平面において第4導体50より面積が広い。グラウンド導体811は、y方向において第4導体50より長い。グラウンド導体811は、x方向において第4導体50より長い。第1アンテナ60は、y方向において、グラウンド導体811の中心よりも端側に位置しうる。第1アンテナ60の中心は、xy平面においてグラウンド導体811の中心と異なりうる。第1アンテナ60の中心は、第1導体31および第2導体32の中心と異なりうる。第1給電線61が第3導体40に接続される点は、xy平面におけるグラウンド導体811の中心と異なりうる。
第1アンテナ60は、対導体30を介して第1電流および第2電流がループする。第1アンテナ60は、グラウンド導体811の中心よりy方向における端側に位置することで、グラウンド導体811を流れる第2電流が非対象になる。グラウンド導体811を流れる第2電流が非対象になると、第1アンテナ60およびグラウンド導体811を含むアンテナ構造体は、放射波のx方向の偏波成分が大きくなる。放射波のx方向の偏波成分が大きくすることで、放射波は、総合放射効率が向上しうる。
RFモジュール82は、第1アンテナ60に供給する電力を制御しうる。RFモジュール82は、ベースバンド信号を変調し、第1アンテナ60に供給する。RFモジュール82は、第1アンテナ60で受信された電気信号をベースバンド信号に変調しうる。
第1アンテナ60は、回路基板81側の導体によって共振周波数の変化が小さい。無線通信モジュール80は、第1アンテナ60を有することで、外部環境から受ける影響を低減しうる。
第1アンテナ60は、回路基板81と一体構成としうる。第1アンテナ60と回路基板81とが一体構成の場合、第4導体50とグラウンド導体811とが一体構成となる。
本開示の無線通信機器は、複数の実施形態の一例として無線通信機器90を含む。図81は、無線通信機器90のブロック構造図である。図82は、無線通信機器90の平面視図である。図82に示した無線通信機器90は、構成の一部を省略している。図83は、無線通信機器90の断面図である。図83に示した無線通信機器90は、構成の一部を省略している。無線通信機器90は、無線通信モジュール80、電池91、センサ92、メモリ93、コントローラ94、第1筐体95、および第2筐体96を備える。無線通信機器90の無線通信モジュール80は、第1アンテナ60を有しているが、第2アンテナ70を有しうる。図84は、無線通信機器90の他の実施形態の1つである。無線通信機器90の有する第1アンテナ60は、基準電位層51を有しうる。
電池91は、無線通信モジュール80に電力を供給する。電池91は、センサ92、メモリ93、およびコントローラ94の少なくとも1つに電力を供給しうる。電池91は、1次電池および二次電池の少なくとも一方を含みうる。電池91のマイナス極は、回路基板81のグラウンド端子に電気的に接続される。電池91のマイナス極は、第1アンテナ60の第4導体50に電気的に接続される。
センサ92は、例えば、速度センサ、振動センサ、加速度センサ、ジャイロセンサ、回転角センサ、角速度センサ、地磁気センサ、マグネットセンサ、温度センサ、湿度センサ、気圧センサ、光センサ、照度センサ、UVセンサ、ガスセンサ、ガス濃度センサ、雰囲気センサ、レベルセンサ、匂いセンサ、圧力センサ、空気圧センサ、接点センサ、風力センサ、赤外線センサ、人感センサ、変位量センサ、画像センサ、重量センサ、煙センサ、漏液センサ、バイタルセンサ、バッテリ残量センサ、超音波センサまたはGPS(Global Positioning System)信号の受信装置等を含んでよい。
メモリ93は、例えば半導体メモリ等を含みうる。メモリ93は、コントローラ94のワークメモリとして機能しうる。メモリ93は、コントローラ94に含まれうる。メモリ93は、無線通信機器90の各機能を実現する処理内容を記述したプログラム、および無線通信機器90における処理に用いられる情報等を記憶する。
コントローラ94は、例えばプロセッサを含みうる。コントローラ94は、1以上のプロセッサを含んでよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。特定用途向けICは、ASIC(Application Specific Integrated Circuit)ともいう。プロセッサは、プログラマブルロジックデバイスを含んでよい。プログラマブルロジックデバイスは、PLD(Programmable Logic Device)ともいう。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。コントローラ94は、1つまたは複数のプロセッサが協働するSoC(System-on-a-Chip)、およびSiP(System In a Package)のいずれかであってよい。コントローラ94は、メモリ93に、各種情報、または無線通信機器90の各構成部を動作させるためのプログラム等を格納してよい。
コントローラ94は、無線通信機器90から送信する送信信号を生成する。コントローラ94は、例えば、センサ92から測定データを取得してよい。コントローラ94は、測定データに応じた送信信号を生成してよい。コントローラ94は、無線通信モジュール80のRFモジュール82にベースバンド信号を送信しうる。
第1筐体95および第2筐体96は、無線通信機器90の他のデバイスを保護する。第1筐体95は、xy平面に広がりうる。第1筐体95は、他のデバイスを支える。第1筐体95は、無線通信モジュール80を支持しうる。無線通信モジュール80は、第1筐体95の上面95Aの上に位置する。第1筐体95は、電池91を支持しうる。電池91は、第1筐体95の上面95Aの上に位置する。複数の実施形態の一例において、第1筐体95の上面95Aの上には、無線通信モジュール80と、電池91とがx方向に沿って並んでいる。電池91は、第3導体40との間に第1導体31が位置する。電池91は、第3導体40から観て対導体30の向こう側に位置する。
第2筐体96は、他のデバイスを覆いうる。第2筐体96は、第1アンテナ60のz方向側に位置する下面96Aを含む。下面96Aは、xy平面に沿って広がる。下面96Aは、平坦に限られず、凹凸を含みうる。第2筐体96は、第8導体961を有しうる。第8導体961は、第2筐体96の内部、外側および内側の少なくとも一方に位置する。第8導体961は、第2筐体96の上面および側面の少なくとも一方に位置する。
第8導体961は、第1アンテナ60と対向する。第8導体961の第1部位9611は、z方向において、第1アンテナ60と対向する。第8導体961は、第1部位9611の他に、x方向において第1アンテナ60と対向する第2部位、およびy方向において第1アンテナと対向する第3部位の少なくとも一方を含みうる。第8導体961は、一部が電池91と対向している。
第8導体961は、x方向において第1導体31より外側に延びる第1延部9612を含みうる。第8導体961は、x方向において第2導体32より外側に延びる第2延部9613を含みうる。第1延部9612は、第1部位9611と電気的に接続しうる。第2延部9613は、第1部位9611と電気的に接続しうる。第8導体961の第1延部9612は、z方向において、電池91と対向している。第8導体961は、電池91と容量的に結合しうる。第8導体961は、電池91との間がキャパシタンスとなりうる。
第8導体961は、第1アンテナ60の第3導体40と離隔する。第8導体961は、第1アンテナ60の各導体と電気的に接続されていない。第8導体961は、第1アンテナ60と離隔しうる。第8導体961は、第1アンテナ60のいずれかの導体と電磁気的に結合しうる。第8導体961の第1部位9611は、第1アンテナ60と電磁気的に結合しうる。第1部位9611は、z方向から平面視したときに、第3導体40と重なりうる。第1部位9611は、第3導体40と重なることで、電磁気的な結合による伝播が大きくなりうる。第8導体961は、第3導体40との電磁気的な結合が相互インダクタンスとなりうる。
第8導体961は、x方向に沿って広がっている。第8導体961は、xy平面に沿って広がっている。第8導体961の長さは、第1アンテナ60のx方向に沿った長さより長い。第8導体961のx方向に沿った長さは、第1アンテナ60のx方向に沿った長さより長い。第8導体961の長さは、無線通信機器90の動作波長λの1/2より長くしうる。第8導体961は、y方向に沿って延びる部位を含みうる。第8導体961は、xy平面内で曲がりうる。第8導体961は、z方向に沿って延びる部位を含みうる。第8導体961は、xy平面からyz平面またはzx平面に曲がりうる。
第8導体961を備える無線通信機器90は、第1アンテナ60および第8導体961が電磁的に結合して第3アンテナ97として機能しうる。第3アンテナ97の動作周波数fcは、第1アンテナ60単独の共振周波数と異なってよい。第3アンテナ97の動作周波数fcは、第8導体961単独の共振周波数より第1アンテナ60の共振周波数に近くてよい。第3アンテナ97の動作周波数fcは、第1アンテナ60の共振周波数帯内にありうる。第3アンテナ97の動作周波数fcは、第8導体961単独の共振周波数帯外にありうる。図85は、第3アンテナ97の他の実施形態である。第8導体961は、第1アンテナ60と一体的に構成されうる。図85は、無線通信機器90の一部の構成を省略している。図85の例において、第2筐体96は第8導体961を備えなくてよい。
無線通信機器90において、第8導体961は、第3導体40に対して容量的に結合する。第8導体961は、第4導体50に対して電磁気的に結合する。第3アンテナ97は、空中において、第8導体の第1延部9612および第2延部9613を含むことにより、第1アンテナ60に比べて利得が向上する。
無線通信機器90は、種々の物体の上に位置しうる。無線通信機器90は、電導体99の上に位置しうる。図86は、無線通信機器90の一実施形態を示す平面視図である。電導体99は、電気を伝える導体である。電導体99の材料は、金属、ハイドープの半導体、電導プラスチック、イオンを含む液体を含み。電導体99は、表面上に電気を伝えない不導体層を含みうる。電気を伝える部位と不導体層とは、共通の元素を含みうる。例えば、アルミニウムを含む電導体99は、表面にアルミ酸化物の不導体層を含みうる。電気を伝える部位と不導体層とは、異なる元素を含みうる。
電導体99の形状は、平板に限られず、箱形などの立体形状を含みうる。電導体99がなす立体形状は、直方体、円柱を含む。当該立体形状は、一部が窪んだ形状、一部が貫通した形状、一部が突出した形状を含みうる。例えば、電導体99は、円環(トーラス)型としうる。
電導体99は、無線通信機器90を載せうる上面99Aを含む。上面99Aは、電導体99の全面に亘って広がりうる。上面99Aは、電導体99の一部としうる。上面99Aは、無線通信機器90より面積を広くしうる。無線通信機器90は、電導体99の上面99A上に置かれうる。上面99Aは、無線通信機器90より面積を狭くしうる。無線通信機器90は、電導体99の上面99A上に一部が置かれうる。無線通信機器90は、電導体99の上面99A上に種々の向きで置かれうる。無線通信機器90の向きは、任意としうる。無線通信機器90は、電導体99の上面99A上に固定具によって適宜固定されうる。固定具は、両面テープおよび接着剤などのように面で固定するものを含む。固定具は、ネジおよび釘などのように点で固定するものを含む。
電導体99の上面99Aは、j方向に沿って延びる部位を含みうる。j方向に沿って延びる部位は、k方向に沿った長さに比べてj方向に沿った長さが長い。j方向とk方向とは、直交している。j方向は、電導体99が長く伸びる方向である。k方向は、電導体99がj方向に比べて長さが短い方向である。無線通信機器90は、x方向がj方向に沿うように、上面99A上に置かれうる。第1導体31および第2導体32が並ぶx方向と揃うように、無線通信機器90は、電導体99の上面99A上に置かれうる。無線通信機器90が電導体99の上に位置するときに、第1アンテナ60は、電導体99と電磁気的に結合しうる。第1アンテナ60の第4導体50は、x方向に沿って第2電流が流れる。第1アンテナ60と電磁気的に結合する電導体99は、第2電流によって電流が誘導される。第1アンテナ60のx方向と電導体99のj方向とが揃うと、電導体99は、j方向に沿って電流が流れる電流が大きくなる。第1アンテナ60のx方向と電導体99のj方向とが揃うと、電導体99は、誘導電流による放射が大きくなる。j方向に対するx方向の角度は、45度以下としうる。
無線通信機器90のグラウンド導体811は、電導体99と離れている。グラウンド導体811は、電導体99と離れている。無線通信機器90は、上面99Aの長辺に沿った方向が、第1導体31および第2導体32が並ぶx方向と揃うように、上面99A上に置かれうる。上面99Aは、方形状の面の他に、菱形、円形を含みうる。電導体99は、菱形状の面を含みうる。この菱形状の面は、無線通信機器90を載せる上面99Aとしうる。無線通信機器90は、上面99Aの長対角線に沿った方向が、第1導体31および第2導体32が並ぶx方向と揃うように、上面99A上に置かれうる。上面99Aは、平坦に限られない。上面99Aは、凹凸を含みうる。上面99Aは、曲面を含みうる。曲面は、線織面(ruled surface)を含む。曲面は、柱面を含む。
電導体99は、xy平面に広がる。電導体99は、y方向に沿った長さに比べてx方向に沿った長さを長くしうる。電導体99は、y方向に沿った長さを第3アンテナ97の動作周波数fcにおける波長λcの2分の1より短くしうる。無線通信機器90は、電導体99の上に位置しうる。電導体99は、z方向において第4導体50と離れて位置する。電導体99は、x方向に沿った長さが第4導体50に比べて長い。電導体99は、xy平面における面積が第4導体50より広い。電導体99は、z方向においてグラウンド導体811と離れて位置する。電導体99は、x方向に沿った長さがグラウンド導体811に比べて長い。電導体99は、xy平面における面積がグラウンド導体811より広い。
無線通信機器90は、電導体99が長く延びる方向に、第1導体31および第2導体32が並ぶxが揃う向きで、電導体99の上に置かれうる。言い換えると、無線通信機器90は、xy平面において第1アンテナ60の電流が流れる方向と、電導体99が長く延びる方向とが揃う向きで、電導体99の上に置かれうる。
第1アンテナ60は、回路基板81側の導体によって共振周波数の変化が小さい。無線通信機器90は、第1アンテナ60を有することで、外部環境から受ける影響を低減しうる。
無線通信機器90において、グラウンド導体811は、電導体99と容量的に結合する。無線通信機器90は、電導体99のうち第3アンテナ97より外に拡がる部位を含むことにより、第1アンテナ60に比べて利得が向上する。
無線通信機器90は、空中での共振回路と、電導体99上での共振回路とが異なりうる。図87は、空中でなす共振構造の概略回路である。図88は、電導体99上でなす共振構造の概略回路である。L3は共振器10のインダクタンスであり、L8は第8導体961のインダクタンスであり、L9は電導体99のインダクタンスであり、MはL3とL8の相互インダクタンスである。C3は第3導体40のキャパシタンスであり、C4は第4導体50のキャパシタンスであり、C8は第8導体961のキャパシタンスであり、C8Bは第8導体961と電池91とのキャパシタンスであり、C9は電導体99とグラウンド導体811とキャパシタンスである。R3は共振器10の放射抵抗であり、R8は、第8導体961の放射抵抗である。共振器10の動作周波数は、第8導体の共振周波数より低い。無線通信機器90は、空中において、グラウンド導体811がシャーシグラウンドとして機能する。無線通信機器90は、第4導体50が電導体99と容量的に結合する。電導体99上において無線通信機器90は、電導体99が実質的なシャーシグラウンドとして機能する。
複数の実施形態において、無線通信機器90は、第8導体961を有する。この第8導体961は、第1アンテナ60と電磁気的に結合し、かつ第4導体50と容量的に結合している。無線通信機器90は、容量的な結合によるキャパシタンスC8Bを大きくすることで、空中から電導体99上へ置かれたときに動作周波数を高くすることができる。無線通信機器90は、電磁気的な結合による相互インダクタンスMを大きくすることで、空中から電導体99上へ置かれたときに動作周波数を低くすることができる。無線通信機器90は、キャパシタンスC8Bと相互インダクタンスMのバランスを変えることで、空中から電導体99上へ置かれたときの動作周波数の変化を調整できる。無線通信機器90は、キャパシタンスC8Bと相互インダクタンスMのバランスを変えることで、空中から電導体99上へ置かれたときの動作周波数の変化を小さくできる。
無線通信機器90は、第3導体40と電磁気的に結合し、第4導体50と容量的に結合する第8導体961を有する。かかる第8導体961を有することで、無線通信機器90は、空中から電導体99上へ置かれたときの動作周波数の変化を調整できる。かかる第8導体961を有することで、無線通信機器90は、空中から電導体99上へ置かれたときの動作周波数の変化を小さくできる。
第8導体961を含まない無線通信機器90も同様に、空中においては、グラウンド導体811がシャーシグラウンドとして機能する。第8導体961を含まない無線通信機器90も同様に、電導体99上においては、電導体99が実質的なシャーシグラウンドとして機能する。共振器10を含む共振構造は、シャーシグランドが変わっても発振可能である。基準電位層51を備える共振器10および基準電位層51を備えない共振器10が発振可能であることと対応する。
<<中継器>>
本開示の中継器(リピータ)は、複数の実施形態の一例として中継器190を含む。図89は、中継器190のブロック構造図である。中継器190は、単体ではなく、複数で使用されうる。相互に接続された複数の中継器190の一つが受信した信号は、他の中継器190に伝送されて無線送信される。中継器190は、無線通信モジュール80、送受信機83、電池91、メモリ93、コントローラ94、第1筐体95、および第2筐体96を備える。
本開示の中継器(リピータ)は、複数の実施形態の一例として中継器190を含む。図89は、中継器190のブロック構造図である。中継器190は、単体ではなく、複数で使用されうる。相互に接続された複数の中継器190の一つが受信した信号は、他の中継器190に伝送されて無線送信される。中継器190は、無線通信モジュール80、送受信機83、電池91、メモリ93、コントローラ94、第1筐体95、および第2筐体96を備える。
無線通信モジュール80は、上記のように第1アンテナ60、回路基板81およびRFモジュール82を備える。無線通信モジュール80は、第1アンテナ60に代えて第2アンテナ70を備えうる。無線通信モジュール80は、第1アンテナ60によって無線信号を送受信する。無線信号は、例えば各種のセンサが検出した信号であって、センサから無線で送信された信号でありうる。
送受信機83は、相互に接続されたアンテナの間で信号を送受信する。例えば、1つの中継器190が備える送受信機83は、無線通信モジュール80の第1アンテナ60によって受信した信号を他の中継器190の送受信機83に有線で伝送する。そして、他の中継器190は、送受信機83で受けとった信号を無線通信モジュール80の第1アンテナ60によって送信する。複数の中継器190の送受信機83は互いにケーブル等の信号線で接続される。
電池91は、中継器190に電力を供給する。電池91は、無線通信モジュール80、送受信機83、メモリ93およびコントローラ94の少なくとも1つに電力を供給しうる。電池91は、上記のように一次電池および二次電池の少なくとも一方を含みうる。
メモリ93は、上記のようにコントローラ94のワークメモリとして機能しうる。
コントローラ94は、上記のように1以上のプロセッサを含んでよい。また、コントローラ94は、上記のようにメモリ93に、各種情報、または無線通信機器90の各構成部を動作させるためのプログラム等を格納してよい。
第1筐体95および第2筐体96は、中継器190が備えるデバイスを保護する。第1筐体95は、上記のようにxy平面に広がりうる。複数の実施形態の一例において、第1筐体95の上面95Aの上には、無線通信モジュール80と、電池91とがx方向に沿って並んでいる。第2筐体96は、上記のように第1アンテナ60のz方向側に位置する下面96Aを含む。下面96Aは、xy平面に沿って広がる。
図90および図91は、中継器190の平面視図である。図90および図91に示した中継器190は、構成の一部を省略している。複数の実施形態の一例において、2つの中継器190(第1中継器および第2中継器)が組み合わされて使用される。図90は第1中継器を示す。また、図91は第2中継器を示す。
図90の例では、中継器190(第1中継器)は金属壁等の電導体99の第1面99FRに設置される。また、図91の例では、中継器190(第2中継器)は電導体99の第2面99BKに設置される。電導体99は例えば金属製の扉である。第1面99FRは例えば電導体99の表の面である。また、第2面99BKは例えば電導体99の裏の面(すなわち、第1面99FRと表裏をなす面)である。図90に示すように、回路基板81上の送受信機83およびx方向に沿って延びる第1アンテナ60と、電池91とが、第1筐体95および第2筐体96に覆われるように、中継器190は電導体99の第1面99FRに設置される。また、図91に示すように、回路基板81上の送受信機83およびx方向に沿って延びる第1アンテナ60と、電池91とが、第1筐体95および第2筐体96に覆われるように、中継器190は電導体99の第2面99BKに設置される。
複数の実施形態の他の一例において、x方向で全体の中心にて鏡対称に構成される2種類の中継器190が使用されうる。例えば、電導体99の第2面99BKに設置される中継器190(第2中継器)は、図92に示すように、第1面99FRに設置される中継器190(第1中継器)と鏡対称でありうる。
図93は、図90および図91に示した中継器190のP-P線に沿った断面図である。複数の実施形態の一例において、2つの中継器190(第1中継器および第2中継器)は電導体99のz方向の表裏である第1面99FRと第2面99BKとにそれぞれ設けられている。複数の実施形態の一例において、2つの中継器190のy方向の位置は同じである。複数の実施形態の他の例において、2つの中継器190のy方向の位置は異なりうる。以下において、2つの中継器190を区別する場合に、第1面99FRに配置された中継器190は、第1中継器190FRと記載されることがある。また、第2面99BKに配置された中継器190は、第2中継器190BKと記載されることがある。
複数の実施形態の一例において、第1中継器190FRが備える第1アンテナ60(第1面側アンテナ)の第1給電線61は、第1中継器190FRが備える送受信機83に接続される。また、第2中継器190BKが備える第1アンテナ60(第2面側アンテナ)の第1給電線61は、第2中継器190BKが備える送受信機83に接続される。図93に示すように、第1中継器190FRが備える送受信機83と第2中継器190BKが備える送受信機83とは、電導体99の内部を通るケーブル等の信号線で接続される。つまり、第1面側アンテナの第1給電線61は、送受信機83を介して、第2面側アンテナの第1給電線61と接続される。このような構成により、第1面側アンテナは、電導体99の第1面99FRの側から到来した電波信号を受信し、信号線を介して第2面側アンテナに渡すことができる。そして、第2面側アンテナは、第1面側アンテナから受け取った信号を放射する。つまり、信号線で接続された第1中継器190FRと第2中継器190BKとを電導体99(例えば金属壁)の両面に設けることによって、電導体99の両側での通信が可能になる。
図94は、複数の実施形態の他の一例における中継器190を示す。図94に示すように、第2中継器190BKは、第1中継器190FRと鏡対称でありうる。第1中継器190FRが備える送受信機83と第2中継器190BKが備える送受信機83とは、電導体99を挟んでx方向の位置を揃えることができる。そのため、第1中継器190FRが備える送受信機83と第2中継器190BKが備える送受信機83とを接続する信号線の長さを短くすることができる。また、信号線を通すために電導体99に対して行う加工領域(例えば穴)を小さくできるため、第1中継器190FRと第2中継器190BKとの設置が一層容易になる。
図95は、複数の実施形態の他の一例における中継器190を示す。図95の中継器190に含まれる第1アンテナ60は基準電位層51を有しうる。基準電位層51は、第4導体50に代えてグラウンド導体811に電気的に接続されうる。
また、複数の実施形態の他の一例として、複数の中継器190が備える無線通信モジュール80以外の要素を共有して、1つの中継器190Aとすることができる。図96は、中継器190Aのブロック構造図である。中継器190Aは、第1面側アンテナを備える無線通信モジュール80-1、第2面側アンテナを備える無線通信モジュール80-2、送受信機83、電池91、メモリ93、コントローラ94、第1筐体95、および第2筐体96を備える。コントローラ94は、無線通信モジュール80-1、無線通信モジュール80-2および送受信機83を制御する。送受信機83は、第1面側アンテナと第2面側アンテナとの間で信号の送受信を行う。
図97は、電導体99に設けられた中継器190Aの断面図である。複数の実施形態の一例において、中継器190Aは、電導体99のz方向の表裏である第1面99FRと第2面99BKとにそれぞれ一部が設けられている。中継器190Aのうち第2面側アンテナを備える無線通信モジュール80-2が、第2面99BKに設けられている。また、中継器190Aの無線通信モジュール80-2以外の要素は、第1面99FRに設けられている。例えば、第1面99FRに設けられた送受信機83は、ケーブル等の信号線で無線通信モジュール80-2の回路基板81に接続される。また、無線通信モジュール80-2への電力は、送受信機83によって第1面99FR側の電池91から電力線を介して供給されうる。
中継器190Aは、複数の中継器190が備える無線通信モジュール80以外の要素を共有することによって、中継器190Aを用いるシステム全体での部品数を削減させうる。例えば、中継器190Aは、待機電流が生じる部品を共有することで、消費電力を減少させうる。例えば、中継器190Aは、電池91を共有することで、メンテナンスが容易となりうる。
<<中継器の適用例>>
電導体99(例えば金属壁)は電磁波を反射する。そのため、電磁波は電導体99を通って裏側に伝播しない。上記のように、相互に接続された複数の中継器190の一つが受信した信号は、他の中継器190に伝送されて無線送信される。中継器190の少なくとも一つを第1面99FRに設けて、他の中継器190の少なくとも一つを第2面99BKに設けることによって、電導体99の両側での通信が可能になる。中継器190は、例えば以下のような電導体99の両面に設けられうる。
電導体99(例えば金属壁)は電磁波を反射する。そのため、電磁波は電導体99を通って裏側に伝播しない。上記のように、相互に接続された複数の中継器190の一つが受信した信号は、他の中継器190に伝送されて無線送信される。中継器190の少なくとも一つを第1面99FRに設けて、他の中継器190の少なくとも一つを第2面99BKに設けることによって、電導体99の両側での通信が可能になる。中継器190は、例えば以下のような電導体99の両面に設けられうる。
図98は、中継器190が設けられた金属製のシャッターを示す。電導体99はシャッターでありうる。シャッターは例えば雨戸または防火シャッターでありうる。シャッターは、ユーザが手動閉鎖装置605を操作することによって、ガイドレール603に沿って移動し、巻き取りシャフト601に巻かれてケース602内に格納される。つまり、シャッターは、格納状態と、展開状態(使用中の状態)との2つの状態に可動可能である。シャッターはx方向に沿って延びる複数のスラット604(細長い帯状の金属板)を含む。複数の実施形態の一例において、第1面側アンテナおよび第2面側アンテナは、1つのスラット604の両面に取り付けられる。複数の実施形態の他の一例において、第1面側アンテナは、第1スラットの第1面に取り付けられる。また、第2面側アンテナは、第1スラットと異なる第2スラットの第2面に取り付けられる。また、格納状態において複数のスラット604は重なってケース602内に格納される。そのため、第1面側アンテナおよび第2面側アンテナの少なくとも一方は、格納状態において他のスラット604によって遮断される。ここで、他のスラット604は、第1面側アンテナが取り付けられたスラットおよび第2面側アンテナが取り付けられたスラットを除くスラットである。格納状態においては、第1面側アンテナおよび第2面側アンテナの少なくとも一方が通信を遮断される。中継器190は、第1面側アンテナおよび第2面側アンテナの少なくとも一方が通信を遮断されて所定時間(例えば1分等)が経過すると、電源がオフになる機能を備えうる。シャッターが使用されていない場合に中継器190の動作は不要である。電源がオフになる機能によって、中継器190は不要な電力消費を回避しうる。
図99は、中継器190が設けられた別の金属製のシャッターを示す。図99のシャッターは巻き取りシャフト601を有しない。図99のシャッターは、ユーザの操作に従って、レール606に沿って移動する。図99のシャッターでは、使用時にz軸正方向を向いていた第1面が、格納状態においてy軸正方向を向く。また、図99のシャッターでは、使用時にz軸負方向を向いていた第2面が、格納状態においてy軸負方向を向く。図99の例において、y軸負方向は例えば天井等があるために通信信号が遮られる。つまり、この場合においても、格納状態では第1面側アンテナおよび第2面側アンテナの少なくとも一方が通信を遮断される。また、図99のシャッターも電源がオフになる機能を備えうる。
図100は、中継器190が設けられた金属製のコンテナを示す。電導体99はコンテナでありうる。中継器190は例えばコンテナの側面等の金属壁に設けられることによって、内部の状態を外部に伝えることが可能である。例えば、中継器190は、コンテナの内部への侵入者等を検出する人感センサの検出信号等を外部に送信可能である。中継器190を設けることによって、密閉空間の内部の状態を外部から監視することが可能になる。また、中継器190は、コンテナよりも大型の設備に設けられうる。例えば、中継器190は金属壁を有する機械設備(一例としてシールドルーム)に設けられうる。また、中継器190は、コンテナよりも小型の設備に設けられうる。例えば、中継器190は自動車のボディ部分に設けられうる。また、例えば、中継器190は自動車のエンジンルームと室内とを隔てる仕切り板に設けられうる。中継器190によって、エンジンルームの状態を示す各種センサの検出データが良好に室内に送信されうる。
以上のように、中継器190は上記の構成によって、金属導体による反射波の影響が少ない。そのため、中継器190は、電導体99の両面に設けられて、電導体99を挟んでの良好な通信を可能にする。ここで、従来のモノポールアンテナを電導体99に垂直に立てることによって、電導体99を挟んで通信を行うことは可能である。しかし、モノポールアンテナは、通信信号の周波数に応じた長さ(高さ)を有する必要がある。例えばシャッター等にモノポールアンテナを立てた場合に、モノポールアンテナを巻き取ることができず、シャッターを格納できない問題が生じ得る。一方、中継器190は、放射導体を電導体99と平行に設置することができるため非常に低背である。そのため、中継器190は、シャッター等の電導体99に設けられた場合に、電導体99の格納を阻害することがない。ここで、電導体99の両面に設置される2つの中継器190は、上記の中継器190Aで置き換えることによって更に消費電力を減少させうる。
本開示に係る構成は、以上説明してきた実施形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。
例えば、中継器190は、電導体99に代えて誘電体に配置されうる。つまり、第1面側アンテナが誘電体の第1面に配置され、第2面側アンテナが誘電体の第2面に配置されてよい。誘電体損失の大きい樹脂、厚いコンクリート壁、または厚いガラス板等の誘電体は、電磁波を反射しない。しかし、電磁波は、このような誘電体を通過すると大きく減衰する。したがって、このような誘電体は良好な通信の妨げになりうる。中継器190は上記の構成によって、誘電体の両面に設けられて、誘電体を挟んでの良好な通信を可能にする。
また、例えば信号線は電導体99の内部を通らずに、電導体99の表面に沿って送受信機83同士を繋ぎうる。例えば内部に信号線を通すための穴を設けることが困難な電導体99に対しても、中継器190を適用することが可能である。
また、信号線を用いる代わりに、電磁結合を用いることにより送受信機83同士を繋ぎうる。例えば、電導体99が有するスロット等を介して、送受信機83同士は、電磁結合しうる。
また、例えば信号線によって接続された2つの中継器190は、電導体99に設けられた穴に埋め込んで使用されうる。つまり、中継器190の少なくとも一部が電導体99の内部に設けられうる。このとき、電導体99の表面に対して、中継器190を更に低背に設置することができる。
本開示に係る構成を説明する図は、模式的なものである。図面上の寸法比率等は、現実のものと必ずしも一致しない。
本開示において「第1」、「第2」、「第3」等の記載は、当該構成を区別するための識別子の一例である。本開示における「第1」および「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1の周波数は、第2の周波数と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。例えば、第1導体31は、導体31としうる。本開示における「第1」および「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠、および大きい番号の識別子が存在することの根拠に利用してはならない。本開示には、第2導体層42が第2単位スロット422を有するが、第1導体層41が第1単位スロットを有さない構成が含まれる。
10 共振器(Resonator)
10X 単位構造体(Unit structure)
20 基体(Base)
20a 空洞(Cavity)
21 第1基体(First Base)
22 第2基体(Second Base)
23 接続体(Connector)
24 第3基体(Third Base)
30 対導体(Pair conductors)
301 第5導体層(Fifth conductive layer)
302 第5導体(Fifth conductor)
303 第6導体(Sixth conductor)
31 第1導体(First conductor)
32 第2導体(Second conductor)
40 第3導体群(Third conductor group)
401 第1共振器(First resonator)
402 スロット(Slot)
403 第7導体(Seventh conductor)
40X 単位共振器(Unit resonator)
40I 電流路(Current path)
41 第1導体層(First conductive layer)
411 第1単位導体(First unit conductor)
412 第1単位スロット(First unit slot)
413 第1接続導体(First connecting conductor)
414 第1浮遊導体(First floating conductor)
415 第1給電導体(First feeding conductor)
41X 第1単位共振器(First unit resonator)
41Y 第1部分共振器(First divisional resonator)
42 第2導体層(Second conductive layer)
421 第2単位導体(Second unit conductor)
422 第2単位スロット(Second unit slot)
423 第1接続導体(Second connecting conductor)
424 第1浮遊導体(Second floating conductor)
42X 第2単位共振器(Second unit resonator)
42Y 第2部分共振器(Second divisional resonator)
45 インピーダンス素子(Impedance element)
50 第4導体(Fourth conductor)
51 基準電位層(Reference potential layer)
52 第3導体層(Third conductive layer)
53 第4導体層(Fourth conductive layer)
60 第1アンテナ(First antenna)
61 第1給電線(First feeding line)
70 第2アンテナ(Second antenna)
71 第2給電層(Second feeding layer)
72 第2給電線(Second feeding line)
80 無線通信モジュール(Wireless communication module)
81 回路基板(Circuit board)
811 グラウンド導体(Ground conductor)
82 RFモジュール(RF module)
83 送受信機(Transceiver)
90 無線通信機器(Wireless communication device)
91 電池(Battery)
92 センサ(Sensor)
93 メモリ(Memory)
94 コントローラ(Controller)
95 第1筐体(First case)
95A 上面(Upper surface)
96 第2筐体(Second case)
96A 下面(Under surface)
961 第8導体(Eighth conductor)
9612 第1部位(First body)
9613 第1延部(First extra-body)
9614 第2延部(Second extra-body)
97 第3アンテナ(Third antenna)
99 電導体(Electrical conductive body)
99A 上面(Upper surface)
190 中継器(Repeater)
190A 中継器(Repeater)
fc 第3アンテナの動作周波数(Operating frequency of the third antenna)
λc 第3アンテナの動作波長(Operating wavelength of the third antenna)
10X 単位構造体(Unit structure)
20 基体(Base)
20a 空洞(Cavity)
21 第1基体(First Base)
22 第2基体(Second Base)
23 接続体(Connector)
24 第3基体(Third Base)
30 対導体(Pair conductors)
301 第5導体層(Fifth conductive layer)
302 第5導体(Fifth conductor)
303 第6導体(Sixth conductor)
31 第1導体(First conductor)
32 第2導体(Second conductor)
40 第3導体群(Third conductor group)
401 第1共振器(First resonator)
402 スロット(Slot)
403 第7導体(Seventh conductor)
40X 単位共振器(Unit resonator)
40I 電流路(Current path)
41 第1導体層(First conductive layer)
411 第1単位導体(First unit conductor)
412 第1単位スロット(First unit slot)
413 第1接続導体(First connecting conductor)
414 第1浮遊導体(First floating conductor)
415 第1給電導体(First feeding conductor)
41X 第1単位共振器(First unit resonator)
41Y 第1部分共振器(First divisional resonator)
42 第2導体層(Second conductive layer)
421 第2単位導体(Second unit conductor)
422 第2単位スロット(Second unit slot)
423 第1接続導体(Second connecting conductor)
424 第1浮遊導体(Second floating conductor)
42X 第2単位共振器(Second unit resonator)
42Y 第2部分共振器(Second divisional resonator)
45 インピーダンス素子(Impedance element)
50 第4導体(Fourth conductor)
51 基準電位層(Reference potential layer)
52 第3導体層(Third conductive layer)
53 第4導体層(Fourth conductive layer)
60 第1アンテナ(First antenna)
61 第1給電線(First feeding line)
70 第2アンテナ(Second antenna)
71 第2給電層(Second feeding layer)
72 第2給電線(Second feeding line)
80 無線通信モジュール(Wireless communication module)
81 回路基板(Circuit board)
811 グラウンド導体(Ground conductor)
82 RFモジュール(RF module)
83 送受信機(Transceiver)
90 無線通信機器(Wireless communication device)
91 電池(Battery)
92 センサ(Sensor)
93 メモリ(Memory)
94 コントローラ(Controller)
95 第1筐体(First case)
95A 上面(Upper surface)
96 第2筐体(Second case)
96A 下面(Under surface)
961 第8導体(Eighth conductor)
9612 第1部位(First body)
9613 第1延部(First extra-body)
9614 第2延部(Second extra-body)
97 第3アンテナ(Third antenna)
99 電導体(Electrical conductive body)
99A 上面(Upper surface)
190 中継器(Repeater)
190A 中継器(Repeater)
fc 第3アンテナの動作周波数(Operating frequency of the third antenna)
λc 第3アンテナの動作波長(Operating wavelength of the third antenna)
Claims (8)
- 第1面側アンテナと、第2面側アンテナと、送受信機とを含み、
前記第1面側アンテナおよび前記第2面側アンテナのそれぞれは、
第1方向において対向する第1導体および第2導体と、
前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる1または複数の第3導体と、
前記第1導体および前記第2導体に接続され、前記第1方向に延びる第4導体と、
前記第3導体のいずれかに電磁気的に接続される給電線と、を備え、
前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続され、
前記第1面側アンテナの給電線は、前記送受信機を介して、前記第2面側アンテナの給電線と接続される、中継器。 - 前記第1面側アンテナは、電導体の第1面に配置され、
前記第2面側アンテナは、前記電導体の第2面に配置される、請求項1に記載の中継器。 - 前記電導体は、格納状態と、展開状態との2つの状態に可動可能であり、
前記第1面側アンテナおよび前記第2面側アンテナの少なくとも一方は、前記格納状態において遮断される、請求項2に記載の中継器。 - 前記第1面側アンテナおよび前記第2面側アンテナの少なくとも一方は、前記格納状態において他の電導体によって遮断される、請求項3に記載の中継器。
- 前記電導体は、第1方向に沿って延びる複数のスラットを含み、
前記第1面側アンテナおよび前記第2面側アンテナは、1つのスラットの両面に取り付けられる、請求項2から4のいずれか一項に記載の中継器。 - 前記電導体は、第1方向に沿って延びる複数のスラットを含み、
前記第1面側アンテナは、第1スラットの前記第1面に取り付けられ、
前記第2面側アンテナは、前記第1スラットと異なる第2スラットの前記第2面に取り付けられる、請求項2から4のいずれか一項に記載の中継器。 - 前記第1面側アンテナは、誘電体の第1面に配置され、
前記第2面側アンテナは、前記誘電体の第2面に配置される、請求項1に記載の中継器。 - アンテナと、送受信機とを含み、
前記アンテナは、
第1方向において対向する第1導体および第2導体と、
前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる1または複数の第3導体と、
前記第1導体および前記第2導体に接続され、前記第1方向に延びる第4導体と、
前記第3導体のいずれかに電磁気的に接続される給電線と、を備え、
前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続され、
前記アンテナの給電線は、前記送受信機を介して、他の中継器のアンテナの給電線と接続される、中継器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/963,820 US11342658B2 (en) | 2018-01-22 | 2019-01-21 | Repeater |
JP2019566542A JP7027457B2 (ja) | 2018-01-22 | 2019-01-21 | 中継器 |
CN201980009382.5A CN111630721B (zh) | 2018-01-22 | 2019-01-21 | 中继器 |
EP19741732.2A EP3745536B1 (en) | 2018-01-22 | 2019-01-21 | Relay device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018008395 | 2018-01-22 | ||
JP2018-008395 | 2018-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019142937A1 true WO2019142937A1 (ja) | 2019-07-25 |
Family
ID=67302308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001694 WO2019142937A1 (ja) | 2018-01-22 | 2019-01-21 | 中継器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11342658B2 (ja) |
EP (1) | EP3745536B1 (ja) |
JP (1) | JP7027457B2 (ja) |
CN (1) | CN111630721B (ja) |
WO (1) | WO2019142937A1 (ja) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2067842A (en) * | 1980-01-16 | 1981-07-30 | Secr Defence | Microstrip Antenna |
JPH08125433A (ja) * | 1994-10-24 | 1996-05-17 | Matsushita Electric Works Ltd | 建物内無線通信用中継器 |
JPH11241539A (ja) * | 1998-02-25 | 1999-09-07 | Alpha Corp | キーレスエントリーシステム |
JP2001349141A (ja) * | 2000-06-07 | 2001-12-21 | Bunka Shutter Co Ltd | 開閉装置の通信システム及び伝送装置 |
JP2002171211A (ja) * | 2000-11-30 | 2002-06-14 | Yozan Inc | 建物、ドア、ドアノブ、手すりおよび伝送方法 |
EP1245779A1 (fr) * | 2001-03-30 | 2002-10-02 | Bubendorff Volet Roulant Société Anonyme | Volet roulant dont le tablier intégre un dispositif de détection, notamment d'obstacle et/ou d'effraction |
JP2002305456A (ja) * | 2001-04-06 | 2002-10-18 | Bunka Shutter Co Ltd | 開閉装置関連送信機、開閉装置関連受信機及び開閉装置関連無線通信システム |
US20070262868A1 (en) * | 2006-05-12 | 2007-11-15 | Westrick Michael D | Rf passive repeater for a metal container |
US20090140946A1 (en) * | 2007-10-31 | 2009-06-04 | Ziolkowski Richard W | Efficient metamaterial-inspired electrically-small antenna |
EP2067922A1 (fr) * | 2007-12-07 | 2009-06-10 | Delta Dore | Système de rideau roulant |
US7606530B1 (en) * | 2006-03-11 | 2009-10-20 | Rockwell Collins, Inc. | RFID system for allowing access to remotely positioned RFID tags |
JP2011163112A (ja) * | 2010-02-04 | 2011-08-25 | Somfy Sas | ホームオートメーション装置のためのモーションセンサ |
JP2014523163A (ja) * | 2011-06-23 | 2014-09-08 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 電気的に小型の垂直スプリットリング共振器アンテナ |
JP2015143428A (ja) * | 2014-01-31 | 2015-08-06 | 三和シヤッター工業株式会社 | シャッター障害物検知システム |
JP2017525049A (ja) * | 2014-07-31 | 2017-08-31 | アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 設備の監視対象物の在庫を検出するためのシステム |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4535640B2 (ja) * | 2001-05-30 | 2010-09-01 | 京セラ株式会社 | 開口面アンテナおよび開口面アンテナ付き基板 |
US6456243B1 (en) | 2001-06-26 | 2002-09-24 | Ethertronics, Inc. | Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna |
US6943730B2 (en) | 2002-04-25 | 2005-09-13 | Ethertronics Inc. | Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna |
US7388757B2 (en) * | 2005-11-28 | 2008-06-17 | Emerson Network Power - Embedded Computing, Inc. | Monolithic backplane having a first and second portion |
JP2008125433A (ja) * | 2006-11-21 | 2008-06-05 | Yamaho Kogyo Kk | 薬液混合撒布装置 |
CA2670535C (en) | 2006-12-11 | 2013-06-18 | Qualcomm Incorporated | Multiple-antenna device having an isolation element |
KR101202339B1 (ko) | 2009-04-29 | 2012-11-16 | 한국전자통신연구원 | 메타물질 상판덮개를 이용한 이득향상과 빔 성형이 동시에 가능한 안테나 |
JP5355493B2 (ja) * | 2010-05-14 | 2013-11-27 | カヤバ工業株式会社 | ハイブリッド建設機械 |
JP5557652B2 (ja) * | 2010-08-19 | 2014-07-23 | 京セラ株式会社 | アンテナ構造体およびアレイアンテナ |
JP6142413B2 (ja) | 2013-06-28 | 2017-06-07 | 株式会社エクォス・リサーチ | アンテナコイルユニット |
CN103730736B (zh) * | 2014-01-07 | 2017-02-08 | 东南大学 | 一种圆极化的高增益低剖面谐振天线 |
US20150244079A1 (en) * | 2014-02-24 | 2015-08-27 | Hrl Laboratories, Llc. | Cavity-backed artificial magnetic conductor |
DE102014204495B4 (de) * | 2014-03-12 | 2016-02-25 | Schaeffler Technologies AG & Co. KG | Passiver Repeater zur Weiterleitung von Funksignalen, Funksystem, Fahrzeug und Lager mit einem passiven Repeater und Verwendung eines passiven Repeaters |
DE112017000573B4 (de) * | 2016-01-29 | 2024-01-18 | Nidec Corporation | Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung |
KR101766216B1 (ko) * | 2016-02-05 | 2017-08-09 | 한국과학기술원 | 인공 자기 도체를 이용한 배열 안테나 |
DE102017102284A1 (de) * | 2016-02-08 | 2017-08-10 | Nidec Elesys Corporation | Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung |
CN107134644A (zh) * | 2017-05-04 | 2017-09-05 | 南京理工大学 | 双层微带脊型间隙波导馈电的高增益me极子天线 |
-
2019
- 2019-01-21 CN CN201980009382.5A patent/CN111630721B/zh active Active
- 2019-01-21 EP EP19741732.2A patent/EP3745536B1/en active Active
- 2019-01-21 JP JP2019566542A patent/JP7027457B2/ja active Active
- 2019-01-21 WO PCT/JP2019/001694 patent/WO2019142937A1/ja unknown
- 2019-01-21 US US16/963,820 patent/US11342658B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2067842A (en) * | 1980-01-16 | 1981-07-30 | Secr Defence | Microstrip Antenna |
JPH08125433A (ja) * | 1994-10-24 | 1996-05-17 | Matsushita Electric Works Ltd | 建物内無線通信用中継器 |
JPH11241539A (ja) * | 1998-02-25 | 1999-09-07 | Alpha Corp | キーレスエントリーシステム |
JP2001349141A (ja) * | 2000-06-07 | 2001-12-21 | Bunka Shutter Co Ltd | 開閉装置の通信システム及び伝送装置 |
JP2002171211A (ja) * | 2000-11-30 | 2002-06-14 | Yozan Inc | 建物、ドア、ドアノブ、手すりおよび伝送方法 |
EP1245779A1 (fr) * | 2001-03-30 | 2002-10-02 | Bubendorff Volet Roulant Société Anonyme | Volet roulant dont le tablier intégre un dispositif de détection, notamment d'obstacle et/ou d'effraction |
JP2002305456A (ja) * | 2001-04-06 | 2002-10-18 | Bunka Shutter Co Ltd | 開閉装置関連送信機、開閉装置関連受信機及び開閉装置関連無線通信システム |
US7606530B1 (en) * | 2006-03-11 | 2009-10-20 | Rockwell Collins, Inc. | RFID system for allowing access to remotely positioned RFID tags |
US20070262868A1 (en) * | 2006-05-12 | 2007-11-15 | Westrick Michael D | Rf passive repeater for a metal container |
US20090140946A1 (en) * | 2007-10-31 | 2009-06-04 | Ziolkowski Richard W | Efficient metamaterial-inspired electrically-small antenna |
EP2067922A1 (fr) * | 2007-12-07 | 2009-06-10 | Delta Dore | Système de rideau roulant |
JP2011163112A (ja) * | 2010-02-04 | 2011-08-25 | Somfy Sas | ホームオートメーション装置のためのモーションセンサ |
JP2014523163A (ja) * | 2011-06-23 | 2014-09-08 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 電気的に小型の垂直スプリットリング共振器アンテナ |
JP2015143428A (ja) * | 2014-01-31 | 2015-08-06 | 三和シヤッター工業株式会社 | シャッター障害物検知システム |
JP2017525049A (ja) * | 2014-07-31 | 2017-08-31 | アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 設備の監視対象物の在庫を検出するためのシステム |
Non-Patent Citations (3)
Title |
---|
MURAKAMI ET AL.: "Low-Profile Design and Bandwidth Characteristics of Artificial Magnetic Conductor with Dielectric Substrate", IEICE TRANS. B, vol. J98-B, no. 2, pages 172 - 179 |
MURAKAMI ET AL.: "Optimum Configuration of Reflector for Dipole Antenna with AMC Reflector", IEICE TRANS. B, vol. J98-B, no. 11, pages 1212 - 1220 |
See also references of EP3745536A4 |
Also Published As
Publication number | Publication date |
---|---|
US11342658B2 (en) | 2022-05-24 |
EP3745536A4 (en) | 2021-10-13 |
CN111630721A (zh) | 2020-09-04 |
US20210057810A1 (en) | 2021-02-25 |
CN111630721B (zh) | 2022-08-30 |
EP3745536A1 (en) | 2020-12-02 |
JPWO2019142937A1 (ja) | 2021-01-07 |
JP7027457B2 (ja) | 2022-03-01 |
EP3745536B1 (en) | 2023-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10910728B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
JP7122378B2 (ja) | アンテナ素子、アレイアンテナ、通信ユニット、移動体、および基地局 | |
US11611155B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
US11831082B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
JP7328070B2 (ja) | アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器 | |
WO2020090838A1 (ja) | アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器 | |
US11509068B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
US11876297B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
WO2021172238A1 (ja) | アンテナ | |
US11509063B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
US11909131B2 (en) | Structure, antenna, communication module, and wireless communication device | |
US11527820B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
US11637383B2 (en) | Structure, antenna, wireless communication module, and wireless communication device | |
WO2019142937A1 (ja) | 中継器 | |
JP7312800B2 (ja) | 共振構造体、およびアンテナ | |
JP6928118B2 (ja) | 無線通信機器および通信システム | |
WO2020090837A1 (ja) | アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器 | |
US20210274268A1 (en) | Wireless communication bolt, wireless communication nut, wireless communication washer, wireless communication rivet, wireless communication fastener, and structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19741732 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019566542 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019741732 Country of ref document: EP Effective date: 20200824 |