WO2019142570A1 - Organic insulator, metal-clad laminate sheet, and wiring board - Google Patents

Organic insulator, metal-clad laminate sheet, and wiring board Download PDF

Info

Publication number
WO2019142570A1
WO2019142570A1 PCT/JP2018/046333 JP2018046333W WO2019142570A1 WO 2019142570 A1 WO2019142570 A1 WO 2019142570A1 JP 2018046333 W JP2018046333 W JP 2018046333W WO 2019142570 A1 WO2019142570 A1 WO 2019142570A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic insulator
metal
group
clad laminate
cyclic olefin
Prior art date
Application number
PCT/JP2018/046333
Other languages
French (fr)
Japanese (ja)
Inventor
梶田 智
長澤 忠
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019565772A priority Critical patent/JP7181231B2/en
Publication of WO2019142570A1 publication Critical patent/WO2019142570A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

This organic insulator 3 is formed of a resin material including, as a main component, a cyclic olefin copolymer. When the resin material is analyzed by time-of-flight secondary ion mass spectrometry, a peak of a hydrocarbon compound is detected in a region of 340-350 molecular weight. In this organic insulator 3, the hydrocarbon compound has at least one functional group selected from acryl group, methacryl group, vinyl group, amino group, and epoxy group. The resin material further comprises a peroxide having a benzene ring. The metal-clad laminate sheet is provided with the organic insulator 3 and a metal foil 5 laminated on at least one surface of the organic insulator 3. The wiring board 10 is provided with multiple insulating layers 11 and conductor layers 13 disposed between the insulating layers 11. The insulating layers 11 are formed of the organic insulator 3.

Description

有機絶縁体、金属張積層板および配線基板Organic insulator, metal-clad laminate and wiring board
 本開示は、有機絶縁体、金属張積層板および配線基板に関する。 The present disclosure relates to an organic insulator, a metal-clad laminate and a wiring substrate.
 近年、LSIの高速化、高集積化、メモリーの大容量化が進展している。それに伴って各種電子部品の小型化、軽量化、薄型化などが急速に進んでいる。従来、このような電子部品の分野で使用される配線基板の有機絶縁体材料として、例えば、環状オレフィンコポリマーが知られている(例えば、特許文献1を参照)。このような有機絶縁体は、その表面に銅箔を接着した銅張基板、および高周波用の配線基板に使用されている。 In recent years, speeding up of LSI, high integration, and large capacity of memory have progressed. Along with this, the miniaturization, weight reduction and thickness reduction of various electronic components are rapidly advancing. Heretofore, as an organic insulator material of a wiring substrate used in the field of such electronic components, for example, cyclic olefin copolymers are known (see, for example, Patent Document 1). Such an organic insulator is used for a copper-clad substrate in which a copper foil is adhered to the surface and a wiring substrate for high frequency.
特開2010-100843号公報Unexamined-Japanese-Patent No. 2010-100843
 本開示の有機絶縁体は、環状オレフィンコポリマーを主成分とする樹脂材により構成され、該樹脂材の表面に対して、飛行時間型二次イオン質量分析を用いて分析を行ったときに、分子量が340以上350以下の領域に炭化水素化合物のピークが検出される。 The organic insulator of the present disclosure is made of a resin material containing a cyclic olefin copolymer as a main component, and the molecular weight of the surface of the resin material is analyzed using time-of-flight secondary ion mass spectrometry. The peak of the hydrocarbon compound is detected in the region of 340 or more and 350 or less.
 本開示の金属張積層板は、上記の有機絶縁体と、該有機絶縁体の少なくとも一方に積層された金属箔とを備えている。 The metal-clad laminate of the present disclosure includes the above-described organic insulator and a metal foil laminated on at least one of the organic insulator.
 本開示の配線基板は、複数の絶縁層と該絶縁層間に配置された導体層とを具備し、前記絶縁層が上記の有機絶縁体により構成されている。 The wiring substrate of the present disclosure includes a plurality of insulating layers and a conductor layer disposed between the insulating layers, and the insulating layer is made of the above-described organic insulator.
金属張積層板の一例を示す断面図である。It is a sectional view showing an example of a metal tension laminate sheet. 配線基板の一例を示す断面図である。It is a sectional view showing an example of a wiring board. 実施例の試料No。1についての飛行時間型二次イオン質量分析(TOF-SIMS)による分析結果である。Sample No. of Example. 1 shows the results of analysis by time-of-flight secondary ion mass spectrometry (TOF-SIMS) for No.1. 実施例の試料No.2についての飛行時間型二次イオン質量分析(TOF-SIMS)による分析結果である。Sample No. of the example. 2 shows the results of analysis by time of flight secondary ion mass spectrometry (TOF-SIMS) for No. 2.
 環状オレフィンコポリマーを主成分とする樹脂材は、通常、有機絶縁体の材料として使用される。このような有機絶縁体は配線基板に使用される。配線基板の中で、特に、高周波対応の配線基板は、高周波特性を向上させるために、有機絶縁体に使用される銅箔などの金属箔の表面粗さを小さくすることが要求される。しかし、金属箔の表面粗さを小さくすると、金属箔と有機絶縁体との接着強度が低下する。 Resin materials based on cyclic olefin copolymers are usually used as materials for organic insulators. Such organic insulators are used for wiring boards. Among wiring boards, in particular, wiring boards compatible with high frequencies are required to reduce the surface roughness of metal foils such as copper foils used for organic insulators in order to improve high frequency characteristics. However, when the surface roughness of the metal foil is reduced, the adhesion strength between the metal foil and the organic insulator is reduced.
 本開示の有機絶縁体は、環状オレフィンコポリマーを主成分とする樹脂材により構成される。樹脂材は環状オレフィンコポリマーを主成分とするものである。これにより高周波領域における比誘電率および誘電正接を低くすることができる。これは環状オレフィンコポリマーを構成する各原子が互いに拘束されたときに、原子同士の相対位置が変わりにくい安定した分子構造を有しているためである。 The organic insulator of the present disclosure is composed of a resin material containing a cyclic olefin copolymer as a main component. The resin material is mainly composed of a cyclic olefin copolymer. Thereby, the relative dielectric constant and the dielectric loss tangent in the high frequency region can be lowered. This is because when the atoms constituting the cyclic olefin copolymer are constrained to one another, they have a stable molecular structure in which the relative positions of the atoms do not easily change.
 また、この有機絶縁体は、これを構成する樹脂材に対して、飛行時間型二次イオン質量分析を用いて分析を行ったときに、分子量が340以上350以下の領域に炭化水素化合物のピークが検出されるものである。つまり、この有機絶縁体の表面には、上記分析によって検出される特定の分子量を示す炭化水素化合物が存在する。有機絶縁体の表面に特定の分子量を示す炭化水素化合物が存在すると、樹脂材の表面に設けられる銅箔などの金属箔との間の接着強度を高めることができる。ここで、炭化水素化合物とは、少なくとも2個以上の炭素原子(C)が結合し、これに複数個の水素原子(H)を含む化合物のことを言う。例えば、アルケン、アルカンおよびアルキンならびにこれらの構造変位体であるシクロ型を挙げることができる。 In addition, when this organic insulator is analyzed using time-of-flight secondary ion mass spectrometry with respect to the resin material constituting the same, the peak of the hydrocarbon compound is in the region of molecular weight 340 or more and 350 or less Is detected. That is, on the surface of this organic insulator, a hydrocarbon compound having a specific molecular weight detected by the above analysis is present. When a hydrocarbon compound having a specific molecular weight is present on the surface of the organic insulator, the adhesive strength between the surface and the metal foil such as copper foil provided on the surface of the resin material can be enhanced. Here, the hydrocarbon compound refers to a compound in which at least two or more carbon atoms (C) are bonded and in which a plurality of hydrogen atoms (H) are contained. For example, alkenes, alkanes and alkynes and cyclo-types which are structural variants of these can be mentioned.
 ここで、環状オレフィンコポリマーを主成分とするとは、有機絶縁体中に含まれる環状オレフィンコポリマーの割合が、無機フィラーを除いた場合において、60質量%以上であるものを言う。環状オレフィンコポリマーの分子量(重量平均分子量)は、通常の高分子化合物の重合体と同様の分子量(数万~数十万)である。 Here, having the cyclic olefin copolymer as the main component means that the ratio of the cyclic olefin copolymer contained in the organic insulator is 60% by mass or more when the inorganic filler is removed. The molecular weight (weight-average molecular weight) of the cyclic olefin copolymer is the same as the molecular weight (tens of thousands to hundreds of thousands) of polymers of ordinary polymer compounds.
 環状オレフィンとしては、例えば、ノルボルネン系モノマー、環状ジエン系モノマー、ビニル脂環式炭化水素系モノマーなどを挙げることができる。具体的には、環状オレフィンとしては、ノルボルネン、ビニルノルボルネン、フェニルノルボルネン、ジシクロペンタジエン、テトラシクロドデセン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘキサジエン、シクロオクタジエンなどを挙げることができる。これらの環状オレフィンは、単独で用いてもよく、2種以上を併用して用いてもよい。 Examples of cyclic olefins include norbornene monomers, cyclic diene monomers, and vinyl alicyclic hydrocarbon monomers. Specifically, examples of cyclic olefins include norbornene, vinyl norbornene, phenyl norbornene, dicyclopentadiene, tetracyclododecene, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cyclohexadiene, cyclooctadiene and the like. These cyclic olefins may be used alone or in combination of two or more.
 また、環状オレフィンコポリマーは、環状構造を有しているポリオレフィン系共重合体であっても良い。環状オレフィンコポリマーがポリオレフィン系共重合体である場合には、環状オレフィンとこの環状オレフィンと共重合可能な他のモノマーとの共重合体であるのが良い。 The cyclic olefin copolymer may also be a polyolefin copolymer having a cyclic structure. When the cyclic olefin copolymer is a polyolefin copolymer, it may be a copolymer of a cyclic olefin and another monomer copolymerizable with the cyclic olefin.
 環状オレフィンと共重合可能な他のモノマーとしては、例えば、鎖状オレフィン、アクリル酸メタクリル酸、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、不飽和ニトリル、脂肪族共役ジエンなどが挙げられる。具体的には、このようなモノマーとしては、エチレン、プロピレン、ブテン、アクリル酸、メタクリル酸、フマル酸、無水フマル酸、マレイン酸、無水マレイン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、スチレン、ビニルトルエン、アクリロニトリル、メタクリロニトリル、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエンなどが挙げられる。これらの他のモノマーは、単独で用いてもよく、2種以上が併用されていてもよい。 As another monomer which can be copolymerized with cyclic olefin, for example, chain olefin, acrylic acid methacrylic acid, acrylic acid ester, methacrylic acid ester, aromatic vinyl compound, unsaturated nitrile, aliphatic conjugated diene and the like can be mentioned. Specifically, as such monomers, ethylene, propylene, butene, acrylic acid, methacrylic acid, fumaric acid, fumaric anhydride, maleic acid, maleic anhydride, methyl acrylate, ethyl acrylate, acrylic acid n- Propyl, isopropyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, styrene, vinyl toluene, acrylonitrile, methacrylonitrile, 1,3-butadiene, 2-methyl-1,3-butadiene And 2,3-dimethyl-1,3-butadiene and the like. These other monomers may be used alone or in combination of two or more.
 さらには、環状オレフィンコポリマーは、分子内に架橋可能な官能基を有しているのが良い。架橋可能な官能基としては、ベンゼン環を有する過酸化物によって架橋反応が進行するものが良い。官能基としては、例えば、ビニル基、アリル基、アクリル基、メタクリル基などから選ばれる少なくとも1種が良い。この中で耐熱性が高く、後述する誘電正接を低くできるという点から官能基としてはビニル基が良い。このような環状オレフィンコポリマーとしては、例えば、三井化学(株)製のLCOC-4を挙げることができる。 Furthermore, the cyclic olefin copolymer may have a crosslinkable functional group in the molecule. As the crosslinkable functional group, it is preferable that a crosslinking reaction proceeds by a peroxide having a benzene ring. As the functional group, for example, at least one selected from a vinyl group, an allyl group, an acryl group, a methacryl group and the like is preferable. Among them, a vinyl group is preferable as the functional group in that the heat resistance is high and the dielectric loss tangent described later can be lowered. As such a cyclic olefin copolymer, for example, LCOC-4 manufactured by Mitsui Chemicals, Inc. can be mentioned.
 環状オレフィンコポリマーの場合、環状オレフィンコポリマーの架橋部位と、分子内にベンゼン環を有する過酸化物由来のラジカル種とは混和しやすく、優先的に反応しやすい。このような反応性の観点から、過酸化物として、分子内にベンゼン環を少なくとも2つ有する過酸化物を用いるのが良い。 In the case of the cyclic olefin copolymer, the crosslinking site of the cyclic olefin copolymer and the radical species derived from the peroxide having a benzene ring in the molecule are easily miscible and preferentially reactive. From the viewpoint of such reactivity, it is preferable to use a peroxide having at least two benzene rings in the molecule as the peroxide.
 分子内にベンゼン環を有する過酸化物としては、例えば、t-ブチルペルオキシベンゾエート、α,α’-ジ-(t-ブチルパーオキシ)ジイソプロピルベンゼン、t-ブチルクミルパーオキサイド、ジクミルパーオキシドなどを挙げることができる。これらの化合物は、例えば、上記した順に「パーキュアーVS」、「パーブチルP」、「パーブチルC」、「パークミルD」(いずれも日油(株)製)などとして市販されている。 As a peroxide having a benzene ring in the molecule, for example, t-butylperoxybenzoate, α, α'-di- (t-butylperoxy) diisopropylbenzene, t-butylcumyl peroxide, dicumyl peroxide and the like Can be mentioned. These compounds are commercially available, for example, as “Percure VS”, “Perbutyl P”, “Perbutyl C”, “Parkyl D” (all from NOF Corporation), and the like in the order described above.
 分子内にベンゼン環を有する過酸化物は、環状オレフィンコポリマーと過酸化物との合計量を100質量部としたときに、1~8質量部の割合で含まれているのが良い。分子内にベンゼン環を有する過酸化物がこのような割合で含まれることによって、環状オレフィンコポリマーの架橋反応が効率よく進行し、特に、誘電正接をより低下させることができる。 The peroxide having a benzene ring in the molecule may be contained in a proportion of 1 to 8 parts by mass, based on 100 parts by mass of the total of the cyclic olefin copolymer and the peroxide. By including a peroxide having a benzene ring in the molecule in such a proportion, the crosslinking reaction of the cyclic olefin copolymer can proceed efficiently, and in particular, the dielectric loss tangent can be further reduced.
 こうして得られる環状オレフィンコポリマーを主成分とする樹脂材は、通常、熱硬化性であるが、この場合、有機絶縁層中には、ベンゼン環を有する過酸化物の割合を減らして形成された熱可塑性の環状オレフィンコポリマーが含まれていても良い。有機絶縁層中に、熱可塑性の環状オレフィンコポリマーが含まれていると、有機絶縁体の高周波領域での比誘電率および誘電正接をより低くすることができる。 The resin material containing a cyclic olefin copolymer as a main component thus obtained is usually thermosetting, but in this case, the heat formed by reducing the proportion of peroxide having a benzene ring in the organic insulating layer Plastic cyclic olefin copolymers may be included. The inclusion of the thermoplastic cyclic olefin copolymer in the organic insulating layer can lower the dielectric constant and the dielectric loss tangent in the high frequency region of the organic insulator.
 熱硬化性の環状オレフィンコポリマーを主成分とする樹脂材は、動的粘弾性試験によって得られる損失正接および損失弾性率のピーク、ならびに貯蔵弾性率が急激に低下する温度(以下、貯蔵弾性率の変化点という場合がある。)が100℃以上150℃以下であるのが良い。これに熱可塑性の環状オレフィンコポリマーを含ませて複合化させた場合には、損失正接、貯蔵弾性率および損失弾性率のピークが100℃以上150℃以下の範囲に加えて、100℃よりも低い温度領域(50℃以上100℃以下)にも、これら損失正接、貯蔵弾性率および損失弾性率のピークが確認される。つまり、熱硬化性の環状オレフィンコポリマーと熱可塑性の環状オレフィンコポリマーとの複合材の場合には、損失正接、貯蔵弾性率および損失弾性率のピークが異なる温度領域にそれぞれ出現する。 Resin materials based on thermosetting cyclic olefin copolymers have peaks of loss tangent and loss elastic modulus obtained by dynamic viscoelasticity test, and temperature at which storage elastic modulus sharply decreases (hereinafter, storage elastic modulus It may be said that the change point is 100 ° C. or more and 150 ° C. or less. When a thermoplastic cyclic olefin copolymer is included therein to form a complex, the loss tangent, storage elastic modulus and loss elastic modulus peak is lower than 100 ° C. in addition to the range of 100 ° C. or more and 150 ° C. or less Peaks of these loss tangent, storage elastic modulus and loss elastic modulus are also confirmed in the temperature range (50 ° C. to 100 ° C.). That is, in the case of a composite of a thermosetting cyclic olefin copolymer and a thermoplastic cyclic olefin copolymer, loss tangent, storage elastic modulus and loss elastic modulus peaks appear respectively in different temperature regions.
 本開示の有機絶縁体は、上述したように、樹脂材に対して、飛行時間型二次イオン質量分析を用いて分析を行ったときに、分子量が340以上350以下の領域に炭化水素化合物のピークが検出されるものである。ここで、有機絶縁層の表面に対してTOF-SIMS分析を行ったときに炭化水素化合物が認められるというのは、例えば、TOF-SIMS分析を以下の条件で行ったときに、チャートに出現する炭化水素化合物のピークのカウント数が200以上であるものを言う。この場合、炭化水素化合物のピークのカウント数の最大値は3000以下を目安とすることができる。TOF-SIMS分析の条件としては、例えば、TRIFT III(ULVAC-PHI製)を使用したときの条件として、以下の条件を挙げることができる。その条件は、1次イオンが197Au1クラスターイオン、1次イオン電流量が900pA(アパーチャ:3)、測定領域が約100μm×100μm、測定時間が2minである。測定には帯電補正電子銃を使用する。 The organic insulator of the present disclosure, as described above, when a resin material is analyzed using time-of-flight secondary ion mass spectrometry, the hydrocarbon compound has a molecular weight of 340 or more and 350 or less. The peak is detected. Here, the fact that the hydrocarbon compound is recognized when TOF-SIMS analysis is performed on the surface of the organic insulating layer appears on the chart when, for example, TOF-SIMS analysis is performed under the following conditions: It refers to one in which the peak number of the hydrocarbon compound is 200 or more. In this case, the maximum value of the peak count number of the hydrocarbon compound can be 3000 or less as a standard. Examples of conditions for TOF-SIMS analysis include the following conditions when TRIFT III (manufactured by ULVAC-PHI) is used. The conditions are that the primary ion is 197 Au 1 cluster ion, the amount of primary ion current is 900 pA (aperture: 3), the measurement area is about 100 μm × 100 μm, and the measurement time is 2 min. A charge correction electron gun is used for measurement.
 この場合、炭化水素化合物は、アクリルシラン化合物(分子量(MW):234)、メタクリルシラン化合物(分子量(MW):248)、ビニルシラン化合物(分子量(MW):190)、アミノシラン化合物(分子量(MW):222)およびエポキシシラン化合物(分子量(MW):236)と言った低分子量のそれぞれのシラン系化合物に由来する官能基を含むものであるのが良い。ここで、低分子量というのは、上記したシラン化合物の分子量に相当するものが良い。具体的には180以上300以下が良い。 In this case, the hydrocarbon compound is an acrylic silane compound (molecular weight (MW): 234), a methacrylic silane compound (molecular weight (MW): 248), a vinylsilane compound (molecular weight (MW): 190), an aminosilane compound (molecular weight (MW) : 222) and an epoxysilane compound (molecular weight (MW): 236), preferably including functional groups derived from respective low molecular weight silane compounds. Here, the low molecular weight is preferably equivalent to the molecular weight of the above-mentioned silane compound. Specifically, 180 or more and 300 or less are good.
 また、炭化水素化合物に含まれる官能基としては、上記したそれぞれのシラン化合物に由来するアクリル基、メタクリル基、ビニル基、アミノ基およびエポキシ基が好適なものとなる。この中で、有機絶縁層と金属箔との間の接着強度をより高められるという点で、特に、アクリル基、メタクリル基およびビニル基のうちの少なくとも1種が良い。 Moreover, as a functional group contained in a hydrocarbon compound, the acryl group derived from each above-mentioned silane compound, methacryl group, a vinyl group, an amino group, and an epoxy group become a suitable thing. Among these, at least one of an acryl group, a methacryl group and a vinyl group is particularly preferable in that the adhesive strength between the organic insulating layer and the metal foil can be further enhanced.
 なお、上記した炭化水素化合物が樹脂材中に含まれていても、TOF-SIMS分析を行ったときに、TOF-SIMS分析のチャートに出現する炭化水素化合物のピークのカウント数が分析時のノイズレベル程度(200未満)である場合には、有機絶縁体と金属箔との間の接着強度は低いままである。 In addition, even if the above-mentioned hydrocarbon compound is contained in the resin material, when the TOF-SIMS analysis is performed, the peak number of the peak of the hydrocarbon compound appearing in the chart of the TOF-SIMS analysis is noise at the time of analysis If at the level (less than 200), the adhesion strength between the organic insulator and the metal foil remains low.
 本開示の有機絶縁体には、この有機絶縁体の効果を阻害しない範囲で、必要に応じて、難燃剤、応力緩和剤などの添加剤が含まれていても良い。 The organic insulator of the present disclosure may contain additives such as a flame retardant and a stress relaxation agent as needed, as long as the effect of the organic insulator is not impaired.
 難燃剤は特に限定されず、例えば、リン酸メラミン、ポリリン酸メラム、ポリリン酸メレム、ピロリン酸メラミン、ポリリン酸アンモニウム、赤燐、芳香族リン酸エステル、ホスホン酸エステル、ホスフィン酸エステル、ホスフィンオキサイド、ホスファゼン、メラミンシアノレート、エチレンビスペンタブロモベンゼン、エチレンビステトラブロモフタルイミドなどが挙げられる。これらの難燃剤は、単独で用いてもよく、2種以上を併用してもよい。誘電正接、耐燃性、耐熱性、密着性、耐湿性、耐薬品性、信頼性などの観点から、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラムまたはポリリン酸アンモニウムが良い。 The flame retardant is not particularly limited. For example, melamine phosphate, melam polyphosphate, melem polyphosphate, melamine pyrophosphate, ammonium polyphosphate, red phosphorus, aromatic phosphate ester, phosphonate ester, phosphinate ester, phosphine oxide, Phosphazene, melamine cyanate, ethylenebispentabromobenzene, ethylenebistetrabromophthalimide and the like can be mentioned. These flame retardants may be used alone or in combination of two or more. From the viewpoints of dielectric loss tangent, flame resistance, heat resistance, adhesion, moisture resistance, chemical resistance, reliability and the like, melamine pyrophosphate, melamine polyphosphate, melam polyphosphate or ammonium polyphosphate is preferable.
 難燃剤は、環状オレフィンコポリマーと過酸化物との合計量を100質量部としたときに、15~45質量部の割合で含まれているのが良い。難燃剤がこのような割合で含まれることによって誘電正接、密着性および耐湿性にほとんど影響を与えることなく、耐燃性をより向上させることができる。 The flame retardant is preferably contained in a proportion of 15 to 45 parts by mass, based on 100 parts by mass of the total of the cyclic olefin copolymer and the peroxide. By including the flame retardant in such a proportion, the flame resistance can be further improved with almost no influence on the dielectric loss tangent, the adhesion and the moisture resistance.
 応力緩和剤は特に限定されず、例えば、シリコーン樹脂粒子などが挙げられる。シリコーン樹脂粒子としては、例えば、シリコンゴムパウダーとして、KMP-597(信越化学工業(株)製)、X-52-875(信越化学工業(株)製)、シリコンレジンパウダーとして、KMP-590(信越化学工業(株)製)、X-52-1621(信越化学工業(株)製)などが挙げられる。これらの応力緩和剤は、単独で用いてもよく、2種以上を併用してもよい。 The stress relaxation agent is not particularly limited, and examples thereof include silicone resin particles. As silicone resin particles, for example, as silicone rubber powder, KMP-597 (Shin-Etsu Chemical Co., Ltd. product), X-52-875 (Shin-Etsu Chemical Co., Ltd. product), as silicone resin powder, Shin-Etsu Chemical Co., Ltd. product, X-52-1621 (Shin-Etsu Chemical Co., Ltd. product), etc. are mentioned. These stress relaxation agents may be used alone or in combination of two or more.
 応力緩和剤としては、10μm以下の平均粒径を有するものを用いてもよい。このような平均粒径を有する応力緩和剤を用いることによって、樹脂組成物が、例えば、金属張基板などに用いられる場合に、金属箔との密着性をより向上させることができる。応力緩和剤は、環状オレフィンコポリマーと過酸化物との合計量を100質量部としたときに、1~10質量部の割合で含まれているのが良い。応力緩和剤がこのような割合で含まれることによって、有機絶縁体1が、例えば、配線基板などに適用される場合に、配線層となる金属箔との密着性および耐吸湿性をより向上させることができる。また、スルーホールの接続信頼性も向上させることもできる。 As the stress relaxation agent, one having an average particle diameter of 10 μm or less may be used. By using a stress relaxation agent having such an average particle diameter, adhesion to a metal foil can be further improved when the resin composition is used, for example, for a metal-clad substrate or the like. The stress relaxation agent may be contained in a proportion of 1 to 10 parts by mass, based on 100 parts by mass of the total of the cyclic olefin copolymer and the peroxide. When the stress relaxation agent is contained in such a ratio, when the organic insulator 1 is applied to, for example, a wiring board or the like, adhesion to a metal foil to be a wiring layer and moisture absorption resistance are further improved. be able to. In addition, connection reliability of through holes can also be improved.
 さらに、有機絶縁体に含み得る、難燃剤、応力緩和剤以外の他の添加剤としては、例えば、酸化防止剤、熱安定化剤、光安定化剤、帯電防止剤、可塑剤、顔料、染料、着色剤などを挙げることができる。添加剤の具体的なものは、例えば、顔料としてR-42(堺化学(株)製)、熱安定化剤としてIRGANOX1010(BASF製)、および光安定化剤としてCHIMASSORB944(Ciba製)などを挙げることができる。 Furthermore, as additives other than flame retardants and stress relaxation agents that can be contained in organic insulators, for example, antioxidants, heat stabilizers, light stabilizers, antistatic agents, plasticizers, pigments, dyes And colorants. Specific examples of the additive include, for example, R-42 (manufactured by Sakai Chemical Co., Ltd.) as a pigment, IRGANOX 1010 (manufactured by BASF) as a heat stabilizer, and CHIMASSORB 944 (manufactured by Ciba) as a light stabilizer. be able to.
 有機絶縁体は、環状オレフィンコポリマーを主成分として含む樹脂組成物から汎用的な製造方法を用いることによって得ることができる。シート成形法としては、押出成形法、射出成型法およびドクターブレード法などを用いることができる。このようなシート成形法により樹脂組成物をシート状に成形する。この後、作製したシート状成形体の表面にシラン化合物を塗布する。その後、シート状成形体から不要な溶剤を揮発させた後、所定の条件にて加圧加熱を行う。シート状成形体に含まれる環状オレフィンコポリマーとシラン化合物とが反応する。有機絶縁体はこのような工程を経て得ることができる。 The organic insulator can be obtained by using a general manufacturing method from a resin composition containing a cyclic olefin copolymer as a main component. As the sheet molding method, an extrusion molding method, an injection molding method, a doctor blade method or the like can be used. The resin composition is formed into a sheet by such a sheet forming method. Thereafter, a silane compound is applied to the surface of the produced sheet-like compact. Then, after volatilizing an unnecessary solvent from a sheet-like molded object, pressure heating is performed on predetermined conditions. The cyclic olefin copolymer contained in the sheet-like molded product reacts with the silane compound. An organic insulator can be obtained through such a process.
 本開示の有機絶縁体は、誘電特性および接着強度を損なわない範囲で、樹脂材中に無機フィラーが含まれていても良い。樹脂組成物を調製する場合には、シート成形を可能にする範囲で無機フィラーを添加するのが良い。無機フィラーとしては、例えば、シリカ、タルク、マイカ、クレー、炭酸カルシウム、酸化チタン、チタン酸バリウム、カーボンブラック、ガラスビーズ、ガラス中空球などが挙げられる。例えばシリカとしては、粉砕シリカ、溶融シリカなどが挙げられ、単独または2種以上を混合して用いてもよい。この場合、無機フィラーは平均粒径が10nm~10μmであるものが良い。また、無機フィラーの含有量としては、環状オレフィンコポリマーを100質量部としたときに、5~40質量部の割合とするのが良い。 In the organic insulator of the present disclosure, an inorganic filler may be contained in the resin material as long as the dielectric properties and the adhesive strength are not impaired. When preparing a resin composition, it is good to add an inorganic filler in the range which enables sheet forming. Examples of the inorganic filler include silica, talc, mica, clay, calcium carbonate, titanium oxide, barium titanate, carbon black, glass beads, glass hollow spheres and the like. For example, as silica, crushed silica, fused silica, etc. may be mentioned, and one or more kinds may be mixed and used. In this case, the inorganic filler preferably has an average particle size of 10 nm to 10 μm. The content of the inorganic filler is preferably 5 to 40 parts by mass based on 100 parts by mass of the cyclic olefin copolymer.
 図1は、金属張積層板の一例を示す断面図である。金属張積層板1は、上記の有機絶縁体3と、該有機絶縁体3の少なくとも一方に積層された金属箔5とを備えている。金属張積層板1は、金属箔5側の有機絶縁体3の表面を、TOF-SIMS分析を行ったときに、チャートの中で分子量が340以上350以下の領域に炭化水素化合物のピークが見られる。金属張積層板1がこのような構成であると、有機絶縁体3と金属箔5との間の接着強度の高い金属張積層板を得ることができる。この場合、TOF-SIMS分析は、例えば、金属張積層板1の上面から金属箔5をエッチングして有機絶縁体3を露出させ、この有機絶縁体3の表面について分析を行う。 FIG. 1 is a cross-sectional view showing an example of a metal-clad laminate. The metal-clad laminate 1 includes the above-described organic insulator 3 and a metal foil 5 laminated on at least one of the organic insulator 3. In the metal-clad laminate 1, when TOF-SIMS analysis is performed on the surface of the organic insulator 3 on the metal foil 5 side, peaks of hydrocarbon compounds are observed in the region of molecular weights of 340 to 350 in the chart. Be When the metal-clad laminate 1 has such a configuration, a metal-clad laminate having high adhesion strength between the organic insulator 3 and the metal foil 5 can be obtained. In this case, in the TOF-SIMS analysis, for example, the metal foil 5 is etched from the upper surface of the metal-clad laminate 1 to expose the organic insulator 3 and the surface of the organic insulator 3 is analyzed.
 このような金属張積層板1は、例えば、上記した有機絶縁体3となる樹脂組成物を調製する工程、この樹脂組成物をシート状に成形して、半硬化の絶縁シート(有機絶縁体の前駆体)を形成する工程、この絶縁シートの表面にシラン化合物を塗布した後、金属箔5を被着させて、金属張積層前駆体を形成する工程、金属張積層前駆体を所定の条件(温度、圧力および雰囲気)にて加熱加圧を行う工程を経て得ることができる。この場合、金属箔5は有機絶縁体3の両面に貼り付けられる構成でも同様に作製することができる。なお、金属張積層板1を製造する場合には、金属箔5の有機絶縁体3との接着面側にシラン化合物を塗布するのが良い。この場合、金属箔5をシラン化合物の中に浸漬する方法を採用しても良い。この場合、加圧加熱により、シラン化合物が絶縁シートに含まれる環状オレフィンコポリマーと反応し、金属箔5と接着する。 Such a metal-clad laminate 1 is prepared, for example, by preparing a resin composition to be the above-described organic insulator 3, molding the resin composition into a sheet, and forming a semi-cured insulating sheet (organic insulator A step of forming a precursor), a step of forming a metal-clad laminate precursor by applying a silane compound to the surface of the insulating sheet, and depositing a metal foil 5 under a predetermined condition (a metal-clad laminate precursor) It can obtain through the process of heating and pressurizing at temperature, pressure and atmosphere. In this case, the metal foil 5 can be produced in the same manner even in a configuration in which the metal foil 5 is attached to both sides of the organic insulator 3. In addition, when manufacturing the metal-clad laminated board 1, it is good to apply | coat a silane compound on the adhesion surface side with the organic insulator 3 of the metal foil 5. FIG. In this case, a method of immersing the metal foil 5 in a silane compound may be employed. In this case, the silane compound reacts with the cyclic olefin copolymer contained in the insulating sheet by pressure heating and adheres to the metal foil 5.
 金属箔5としては特に限定されず、例えば、電解銅箔、圧延銅箔などの銅箔、アルミニウム箔、これらの金属箔5を重ね合わせた複合箔等を挙げることができる。また、金属箔5の厚みも特に限定されない。例えば5μm以上105μm以下であるのが良い。なお、金属箔5の表面粗さ(Sa)は、0.5μm以下、特には0.05μm以上0.3μm以下であるのが良い。 It does not specifically limit as metal foil 5, For example, Copper foils, such as an electrolytic copper foil and a rolled copper foil, aluminum foil, the composite foil etc. which laminated | stacked these metal foils 5 etc. can be mentioned. Also, the thickness of the metal foil 5 is not particularly limited. For example, it is good that they are 5 micrometers or more and 105 micrometers or less. The surface roughness (Sa) of the metal foil 5 is preferably 0.5 μm or less, and more preferably 0.05 μm or more and 0.3 μm or less.
 次に、本開示に係る配線基板10について、図2に基づいて説明する。本開示の配線基板10は、複数の絶縁層11(有機絶縁体3)と、その絶縁層11上に配置された金属箔5からなる導体層13とを具備する。この場合、絶縁層11が上記の有機絶縁体3により構成されている。なお、配線基板10は、絶縁層11および導体層13が交互に多層化された多層配線基板の他にキャビティ構造の配線基板10にも同様に適用することができる。 Next, the wiring board 10 according to the present disclosure will be described based on FIG. The wiring substrate 10 of the present disclosure includes a plurality of insulating layers 11 (organic insulators 3) and a conductor layer 13 made of a metal foil 5 disposed on the insulating layers 11. In this case, the insulating layer 11 is constituted by the organic insulator 3 described above. In addition to the multilayer wiring board in which the insulating layers 11 and the conductor layers 13 are alternately multi-layered, the wiring board 10 can be similarly applied to the wiring board 10 having a cavity structure.
 本開示の配線基板10によれば、絶縁層11として上記した有機絶縁体1を適用したものであることから、高周波領域において比誘電率および誘電正接が低い。また、この配線基板10は、絶縁層11と導体層13との間の接着強度が高い。この場合も、金属箔5の表面粗さ(Sa)は、0.5μm以下、特には0.05μm以上0.3μm以下であるのが良い。金属箔5の表面粗さ(Sa)が上記の範囲であると、絶縁層11である有機絶縁体3と導体層13である金属箔5との間の界面導電率を低くすることが可能になり、高周波用の配線基板10として有用なものになる。 According to the wiring substrate 10 of the present disclosure, since the above-described organic insulator 1 is applied as the insulating layer 11, the relative dielectric constant and the dielectric loss tangent are low in the high frequency region. Further, the wiring substrate 10 has high adhesion strength between the insulating layer 11 and the conductor layer 13. Also in this case, the surface roughness (Sa) of the metal foil 5 is preferably 0.5 μm or less, and more preferably 0.05 μm or more and 0.3 μm or less. When the surface roughness (Sa) of the metal foil 5 is in the above range, it is possible to lower the interface conductivity between the organic insulator 3 as the insulating layer 11 and the metal foil 5 as the conductor layer 13 It becomes useful as the wiring board 10 for high frequency.
 このような配線基板10は、例えば、上記した有機絶縁体3となる樹脂組成物を調製する工程、この樹脂組成物をシート状に成形して、半硬化のシート状成形体を形成する工程、このシート状成形体の表面に導体層となる金属箔5を被着させる工程、この金属箔5を所定のパターンにエッチングして導体層13とする工程、導体層13が形成されたシート状成形体を所定の条件(温度、圧力および雰囲気)にて加熱加圧を行う工程を経て得ることができる。なお、配線基板10の製造においては、必要に応じて、導体層13の表面にめっき処理等を行うのが良い。なお、この場合も、加圧加熱により、シラン化合物が絶縁シートに含まれる環状オレフィンコポリマーと反応し、金属箔5と接着する。配線基板10を製造する場合においても、絶縁層11と導体層13との間に炭化水素化合物を付与する方法としては、金属張積層板1の場合と同じような方法を採用するのが良い。 Such a wiring board 10 is prepared, for example, in the step of preparing a resin composition to be the above-described organic insulator 3, the step of forming the resin composition into a sheet, and forming a semi-cured sheet-like compact; A step of adhering a metal foil 5 to be a conductor layer on the surface of the sheet-like formed body, a step of etching the metal foil 5 into a predetermined pattern to form a conductor layer 13, a sheet-like formation on which a conductor layer 13 is formed It can be obtained through the process of heating and pressurizing the body under predetermined conditions (temperature, pressure and atmosphere). In the manufacture of the wiring substrate 10, it is preferable to perform plating treatment or the like on the surface of the conductor layer 13 as necessary. Also in this case, the silane compound reacts with the cyclic olefin copolymer contained in the insulating sheet by pressure heating and adheres to the metal foil 5. Even in the case of manufacturing the wiring substrate 10, as a method of applying the hydrocarbon compound between the insulating layer 11 and the conductor layer 13, it is preferable to adopt the same method as the metal-clad laminate 1.
 以下、実施例を挙げて上記実施形態を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the above embodiments will be specifically described by way of examples, but the present invention is not limited to these examples.
 実施例で使用した成分は、下記のとおりである。
(環状オレフィンコポリマー)
 熱硬化性COC(LCOC-4):架橋可能な官能基を有する環状オレフィンコポリマー(三井化学(株)製)
(ベンゼン環を有する過酸化物)
 パークミルD:ジクミルパーオキシド(日油(株)製、ベンゼン環有り)
(その他の添加剤)
 その他の添加剤として、平均粒径が1μmシリカ粒子および難燃剤(臭素系)を加えた。
The components used in the examples are as follows.
(Cyclic olefin copolymer)
Thermosetting COC (LCOC-4): Cyclic olefin copolymer having a crosslinkable functional group (manufactured by Mitsui Chemicals, Inc.)
(Peroxide with benzene ring)
Park Mill D: Dicumyl Peroxide (manufactured by NOF Corporation, with benzene ring)
(Other additives)
As other additives, silica particles having an average particle diameter of 1 μm and a flame retardant (brominated) were added.
 難燃剤としては「SAYTEX8010(アルベマール社製)」を用いた。 As a flame retardant, "SAYTEX 8010 (manufactured by Albemarle)" was used.
 次に、これらの素原料を以下の組成になるように配合し、室温(25℃)にて撹拌して樹脂組成物を得た。 Next, these raw materials were blended so as to have the following composition, and stirred at room temperature (25 ° C.) to obtain a resin composition.
 下記、樹脂組成物の主成分となる組成は、環状オレフィンコポリマーである熱硬化性COCを94質量%、過酸化物であるパーブチルDを6質量%とした。難燃剤(SAYTEX8010)は、環状オレフィンコポリマーとパーブチルDとの合計量100質量部に対して30質量部とした。シリカ粒子は、環状オレフィンコポリマーとパーブチルDとの合計量100質量部に対して20質量部とした。 The following composition of the resin composition was 94% by mass of thermosetting COC which is a cyclic olefin copolymer, and 6% by mass of perbutyl D which is a peroxide. The flame retardant (SAYTEX 8010) was 30 parts by mass with respect to 100 parts by mass of the total amount of the cyclic olefin copolymer and the perbutyl D. The amount of the silica particles was 20 parts by mass with respect to 100 parts by mass of the total amount of the cyclic olefin copolymer and the perbutyl D.
 次に、得られた樹脂組成物をキシレンに溶解させて樹脂ワニスを得た。樹脂組成物とキシレンとの質量比は40:60とした。次に、得られた樹脂ワニスを、バーコーターを用いてシート状に成形し、150℃にて4分間乾燥させて15μmの厚みを有するシート状成形体を得た。 Next, the obtained resin composition was dissolved in xylene to obtain a resin varnish. The mass ratio of the resin composition to xylene was 40:60. Next, the obtained resin varnish was formed into a sheet using a bar coater, and dried at 150 ° C. for 4 minutes to obtain a sheet-like formed product having a thickness of 15 μm.
 次に、作製したシート状成形体を小片に切断して8枚重ね合わせて積層して半硬化の絶縁シート(有機絶縁体の前駆体)を作製し、この絶縁シートの両面に、表面粗さ(Sa:平均値)が0.2μm(表面粗さの最大値(Sz)は1.7μm)で、厚み18μmの銅箔を積層して、金属張積層前駆体を作製した。このとき、銅箔の表面に表1に示したシラン化合物を塗布した。なお、銅箔の表面にシラン化合物を塗布しない試料(試料No.1)も作製し、同様の評価を行った。銅箔の表面にシラン化合物を塗布しない試料(試料No.1)の場合、シラン化合物をシリカ粒子の表面処理剤として用いた。 Next, the prepared sheet-like compact is cut into small pieces, eight sheets are stacked and stacked to form a semi-cured insulating sheet (precursor of organic insulator), and surface roughness is applied to both sides of this insulating sheet. A metal-clad laminate precursor was produced by laminating a copper foil having a thickness of 18 μm (Sa: average value) at 0.2 μm (the maximum value (Sz) of surface roughness is 1.7 μm). At this time, the silane compound shown in Table 1 was applied to the surface of the copper foil. In addition, the sample (sample No. 1) which does not apply | coat a silane compound on the surface of copper foil was also produced, and the same evaluation was performed. In the case of the sample (sample No. 1) which does not apply | coat a silane compound on the surface of copper foil, the silane compound was used as a surface treatment agent of a silica particle.
 この後、金属張積層前駆体を4MPaの加圧下にて200℃で120分間加熱し、0.8mmの厚みを有する金属(銅)張積層板を得た。 Thereafter, the metal-clad laminate precursor was heated at 200 ° C. for 120 minutes under a pressure of 4 MPa to obtain a metal (copper) -clad laminate having a thickness of 0.8 mm.
 次に、得られた金属(銅)張積層板の銅箔を剥離して、室温(25℃)において、30GHzにおける比誘電率および誘電正接を平衡形円板共振器法にて測定した。比誘電率は2.7、誘電正接は0.002であった。 Next, the copper foil of the obtained metal (copper) -clad laminate was peeled off, and the relative dielectric constant and dielectric loss tangent at 30 GHz were measured by a balanced disk resonator method at room temperature (25 ° C.). The relative dielectric constant was 2.7, and the dielectric loss tangent was 0.002.
 また、金属(銅)張積層板の界面導電率を以下の方法を用いて測定した。まず、作製した金属(銅)張積層板を50mm×50mmの面積となるように加工した。次に、この加工した金属(銅)張積層板の両面の銅箔のうちの一方をエッチングし、有機絶縁体を露出させて、片面に銅箔を有する金属(銅)張積層板の試料を作製した。銅箔のエッチングにはペルオキソニ硫酸塩(マイクロクリーン:MacDermid製)を用いた。片面に銅箔を有する金属(銅)張積層板を各試料について2枚用意した。 Moreover, the interface conductivity of the metal (copper) -clad laminate was measured using the following method. First, the produced metal (copper) -clad laminate was processed to have an area of 50 mm × 50 mm. Next, one of the copper foils on both sides of this processed metal (copper) -clad laminate is etched to expose the organic insulator, and a sample of the metal (copper) -clad laminate having copper foil on one side is etched. Made. A peroxydisulfate (microclean: manufactured by MacDermid) was used for etching the copper foil. Two metal (copper) -clad laminates having a copper foil on one side were prepared for each sample.
 次に、用意した2枚の金属(銅)張積層板を銅箔側が外側になるように誘電体円柱(サファイア)の両面に配置した。この場合、誘電体円柱は、測定試料である金属(銅)張積層板の直径よりも小さいものである。測定に際しては、入出力導線として用いる2つの同軸ケーブルを誘電体円柱の外側であり、2枚の金属(銅)張積層板に挟まれる位置に設置した。この後、ネットワークアナライザを用いて、周波数30GHzの条件で比導電率(界面導電率)を測定した。作製した試料の銅箔の界面導電率は、絶縁層と銅箔の間にシラン化合物を塗布したか否かにかかわらず、いずれの試料も2×107Ω-1・m-1であった。なお、界面導電率の評価については、銅箔の表面粗さ(Sa)が0.34μmのものを用いて試料を各試料について作製したところ、同じ条件で測定した界面導電率はいずれも0.2×107Ω-1・m-1であった。 Next, two prepared metal (copper) -clad laminates were placed on both sides of a dielectric cylinder (sapphire) so that the copper foil side was on the outside. In this case, the dielectric cylinder is smaller than the diameter of the metal (copper) -clad laminate as a measurement sample. At the time of measurement, two coaxial cables used as input and output conductors were placed outside the dielectric cylinder and at a position where they were sandwiched between two metal (copper) -clad laminates. Thereafter, using a network analyzer, the specific conductivity (interface conductivity) was measured at a frequency of 30 GHz. The interfacial conductivity of the copper foil of the prepared sample was 2 × 10 7 Ω -1 · m -1 for all samples regardless of whether the silane compound was applied between the insulating layer and the copper foil . In addition, about evaluation of interface conductivity, when the surface roughness (Sa) of copper foil manufactured the sample about each sample using the thing of 0.34 micrometers, as for the interface conductivity measured on the same conditions, all were 0. It was 2 × 10 7 Ω −1 · m −1 .
 また、得られた金属(銅)張積層板から銅箔を剥がした有機絶縁体から縦70mm×横8mmのサイズに加工した有機絶縁体を作製し、動的粘弾性測定(DMA)を行って、損失正接、貯蔵弾性率および損失弾性率の挙動を評価した。損失正接および損失弾性率のピーク、ならびに貯蔵弾性率の変化点はいずれも100℃以上150℃以下であった。 In addition, an organic insulator processed into a size of 70 mm long × 8 mm wide is produced from the organic insulator obtained by peeling the copper foil from the obtained metal (copper) -clad laminate, and dynamic viscoelasticity measurement (DMA) is performed. The behavior of loss tangent, storage modulus and loss modulus was evaluated. The loss tangent and the peak of the loss modulus, and the change point of the storage modulus were both 100 ° C. or more and 150 ° C. or less.
 また、得られた金属(銅)張積層板の銅箔を、有機絶縁体に対して垂直に引っ張り、銅箔を引き剥がすときのピール強度をオートグラフにて測定し、結果を表1に示した。 In addition, the copper foil of the obtained metal (copper) -clad laminate was pulled perpendicularly to the organic insulator, and the peel strength when peeling off the copper foil was measured by an autograph, and the results are shown in Table 1. The
 また、銅箔をペルオキソニ硫酸塩(マイクロクリーン:MacDermid製)でエッチングし、露出した有機絶縁体の銅箔側の表面に対してTOF-SIMS分析を行った。分析装置として、TRIFT III(ULVAC-PHI製)を使用し、条件として、1次イオンを197Au1クラスターイオン、1次イオン電流量を900pA(アパーチャ:3)、測定領域を約100μm×100μm、測定時間2minとし、測定には帯電補正電子銃を使用した。図3に、実施例の試料No.1についてのTOF-SIMS分析の結果を示した。図4に、実施例の試料No.2についてのTOF-SIMS分析の結果を示した。 In addition, the copper foil was etched with peroxydisulfate (Microclean: manufactured by MacDermid), and TOF-SIMS analysis was performed on the surface of the exposed organic insulator on the copper foil side. As an analyzer, TRIFT III (manufactured by ULVAC-PHI) is used. As conditions, primary ion is 197 Au 1 cluster ion, primary ion current amount is 900 pA (aperture: 3), measurement area is about 100 μm × 100 μm, measurement The time was 2 min, and a charge correction electron gun was used for measurement. The sample No. of Example is shown in FIG. The results of TOF-SIMS analysis for 1 are shown. The sample No. of Example is shown in FIG. The results of TOF-SIMS analysis for 2 are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製した試料のうち、銅箔の表面にシラン化合物を塗布した試料(試料No.2~6)については、TOF-SIMSのチャートにおいて、分子量が340~350の領域に炭化水素化合物に由来するピークが見られた。340~350の領域におけるピークのカウント数はいずれの試料も600~2200であった。銅箔の表面にシラン化合物を塗布しなかった試料(試料No.1)については、ノイズレベル(150以下)の出力が見られただけであった。 Among the prepared samples, for the samples (samples No. 2 to 6) in which the silane compound was applied to the surface of the copper foil, in the chart of TOF-SIMS, the peak derived from hydrocarbon compound in the region of molecular weight 340 to 350 It was observed. The peak counts in the 340-350 region were 600-2200 for all samples. For the sample (sample No. 1) in which the silane compound was not applied to the surface of the copper foil, only the output of the noise level (150 or less) was observed.
 各試料の接着強度は、表1の結果から明らかなように、銅箔の表面にシラン化合物を塗布せず、表面に炭化水素化合物が存在しない試料(試料No.1)の接着強度は0.25kN/mであったが、絶縁層と銅箔の間にシラン化合物を塗布して作製した試料(試料No.2~6)は、0.46kN/m以上であった。これらの試料の中でシラン化合物としてアクリルシラン、メタクリルシランおよびビニルシランを用いた試料(試料No.2~4)は、接着強度が0.77kN/m以上であった。 The adhesive strength of each sample is, as apparent from the results in Table 1, the surface of the copper foil is not coated with a silane compound and the adhesive strength of a sample (sample No. 1) in which a hydrocarbon compound is not present on the surface is 0. Although it was 25 kN / m, samples (sample Nos. 2 to 6) produced by applying a silane compound between the insulating layer and the copper foil were 0.46 kN / m or more. Among these samples, samples using acrylic silane, methacrylic silane and vinylsilane as the silane compound (samples Nos. 2 to 4) had an adhesive strength of 0.77 kN / m or more.
1・・・金属張積層板
3・・・有機絶縁体
5・・・金属箔
10・・配線基板
11・・絶縁層
13・・導体層
1 · · · metal-clad laminate 3 · · · organic insulator 5 · · · metal foil 10 · · wiring board 11 · · insulating layer 13 · · conductor layer

Claims (6)

  1.  環状オレフィンコポリマーを主成分とする樹脂材により構成され、該樹脂材に対して、飛行時間型二次イオン質量分析を用いて分析を行ったときに、分子量が340以上350以下の領域に炭化水素化合物のピークが検出される、有機絶縁体。 It is composed of a resin material containing a cyclic olefin copolymer as a main component, and when the resin material is analyzed using time-of-flight secondary ion mass spectrometry, hydrocarbons in the region of molecular weight 340 or more and 350 or less Organic insulators where compound peaks are detected.
  2.  前記炭化水素化合物が、アクリル基、メタクリル基、ビニル基、アミノ基およびエポキシ基のうちの少なくとも1種の官能基を有する、請求項1に記載の有機絶縁体。 The organic insulator according to claim 1, wherein the hydrocarbon compound has at least one functional group of an acryl group, a methacryl group, a vinyl group, an amino group and an epoxy group.
  3.  前記樹脂材がさらにベンゼン環を有する過酸化物を含む、請求項1または2に記載の有機絶縁体。 The organic insulator according to claim 1, wherein the resin material further contains a peroxide having a benzene ring.
  4.  請求項1~3のいずれかに記載の有機絶縁体と、該有機絶縁体の少なくとも一方に積層された金属箔とを備えている、金属張積層板。 A metal-clad laminate comprising the organic insulator according to any one of claims 1 to 3 and a metal foil laminated on at least one of the organic insulators.
  5.  前記金属箔の前記有機絶縁体側の表面粗さが0.05μm以上3μm以下である、請求項4に記載の金属張積層板。 The metal-clad laminate according to claim 4, wherein the surface roughness of the metal foil on the organic insulator side is 0.05 μm or more and 3 μm or less.
  6.  複数の絶縁層と該絶縁層間に配置された導体層とを具備し、前記絶縁層が請求項1~3のいずれかに記載の有機絶縁体により構成されている、配線基板。 A wiring board comprising a plurality of insulating layers and a conductor layer disposed between the insulating layers, wherein the insulating layer is made of the organic insulator according to any one of claims 1 to 3.
PCT/JP2018/046333 2018-01-17 2018-12-17 Organic insulator, metal-clad laminate sheet, and wiring board WO2019142570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019565772A JP7181231B2 (en) 2018-01-17 2018-12-17 Organic insulators, metal-clad laminates and wiring boards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018005726 2018-01-17
JP2018-005726 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019142570A1 true WO2019142570A1 (en) 2019-07-25

Family

ID=67302128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046333 WO2019142570A1 (en) 2018-01-17 2018-12-17 Organic insulator, metal-clad laminate sheet, and wiring board

Country Status (2)

Country Link
JP (1) JP7181231B2 (en)
WO (1) WO2019142570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016527A1 (en) * 2016-07-22 2019-06-13 京セラ株式会社 Organic insulator, metal-clad laminate and wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067601A1 (en) * 2003-01-31 2004-08-12 Zeon Corporation Polymerizable composition, thermoplastic resin composition, crosslinked resin, and crosslinked resin composite materials
JP2006286352A (en) * 2005-03-31 2006-10-19 Sumitomo Bakelite Co Ltd Resin composition, layered product, wiring board and its manufacturing method
JP2007103683A (en) * 2005-10-05 2007-04-19 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and manufacturing method therefor
WO2008123253A1 (en) * 2007-03-26 2008-10-16 Zeon Corporation Method for manufacturing composite body
JP2012214602A (en) * 2011-03-31 2012-11-08 Nippon Zeon Co Ltd Method of producing metal-clad laminate
JP2015143303A (en) * 2014-01-31 2015-08-06 日本ゼオン株式会社 Curable resin composition, film, laminate film, prepreg, laminate, cured product, and composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067601A1 (en) * 2003-01-31 2004-08-12 Zeon Corporation Polymerizable composition, thermoplastic resin composition, crosslinked resin, and crosslinked resin composite materials
JP2006286352A (en) * 2005-03-31 2006-10-19 Sumitomo Bakelite Co Ltd Resin composition, layered product, wiring board and its manufacturing method
JP2007103683A (en) * 2005-10-05 2007-04-19 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and manufacturing method therefor
WO2008123253A1 (en) * 2007-03-26 2008-10-16 Zeon Corporation Method for manufacturing composite body
JP2012214602A (en) * 2011-03-31 2012-11-08 Nippon Zeon Co Ltd Method of producing metal-clad laminate
JP2015143303A (en) * 2014-01-31 2015-08-06 日本ゼオン株式会社 Curable resin composition, film, laminate film, prepreg, laminate, cured product, and composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016527A1 (en) * 2016-07-22 2019-06-13 京セラ株式会社 Organic insulator, metal-clad laminate and wiring board

Also Published As

Publication number Publication date
JP7181231B2 (en) 2022-11-30
JPWO2019142570A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
TWI780176B (en) Copper clad laminate and print circuit board comprising the same
CN109476902B (en) Organic insulator, metal-clad laminate, and wiring substrate
US10660213B2 (en) Adhesive-attached copper foil, copper-clad laminate, and wiring substrate
JP6335384B2 (en) Resin composition, prepreg, metal-clad laminate and wiring board
JP5093059B2 (en) Resin composition, prepreg, laminate and printed circuit board
US11457530B2 (en) Prepreg and laminate for circuit board
TWI617619B (en) Resin composition, prepreg, metal-clad laminate, and wiring board
WO2019004223A1 (en) Organic insulator, metal-clad laminate and wiring board
JP2018039950A (en) Resin composition, prepreg, metal-clad laminate, and wiring board
WO2019142570A1 (en) Organic insulator, metal-clad laminate sheet, and wiring board
WO2020004229A1 (en) Laminated uncured sheet
WO2020004225A1 (en) Organic substrate, metal-clad laminate and wiring board
KR20220117913A (en) Resin composition, prepreg, metal-clad laminate and wiring board
WO2024009831A1 (en) Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board
CN113056799B (en) Organic insulator, metal-clad laminate, and wiring board
TWI670172B (en) Multilayer board for circuit board, metal base circuit board and power module
WO2021215382A1 (en) Organic resin film
JP2019061877A (en) Organic insulator, metal-clad laminate and wiring board
KR20240036478A (en) Curable resin composition for bonding film, bonding film, and printed-wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901184

Country of ref document: EP

Kind code of ref document: A1