WO2019142333A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2019142333A1
WO2019142333A1 PCT/JP2018/001655 JP2018001655W WO2019142333A1 WO 2019142333 A1 WO2019142333 A1 WO 2019142333A1 JP 2018001655 W JP2018001655 W JP 2018001655W WO 2019142333 A1 WO2019142333 A1 WO 2019142333A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
bottom region
integrated circuit
semiconductor integrated
circuit device
Prior art date
Application number
PCT/JP2018/001655
Other languages
English (en)
French (fr)
Inventor
淳司 岩堀
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to CN201880086042.8A priority Critical patent/CN111587484A/zh
Priority to JP2019565666A priority patent/JP7060814B2/ja
Priority to PCT/JP2018/001655 priority patent/WO2019142333A1/ja
Publication of WO2019142333A1 publication Critical patent/WO2019142333A1/ja
Priority to US16/931,693 priority patent/US11296230B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823871Complementary field-effect transistors, e.g. CMOS interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present disclosure relates to a semiconductor integrated circuit device including a vertical nanowire (VNW) and a field effect transistor (FET).
  • VNW vertical nanowire
  • FET field effect transistor
  • a standard cell method is known as a method of forming a semiconductor integrated circuit on a semiconductor substrate.
  • basic units for example, inverters, latches, flip flops, full adders, etc.
  • a specific logic function for example, inverters, latches, flip flops, full adders, etc.
  • a plurality of standard cells are arranged on a semiconductor substrate. It is a method of designing an LSI chip by connecting those standard cells by wiring.
  • the transistor which is a basic component of LSI, has achieved improvement in integration, reduction in operating voltage, and improvement in operating speed by reducing the gate length (scaling).
  • the off current due to excessive scaling and the significant increase in power consumption due to it have become problems.
  • a three-dimensional structure transistor in which the transistor structure is changed from the conventional flat type to a three-dimensional type is actively studied.
  • a vertical nanowire FET hereinafter, referred to as a VNW FET as appropriate
  • Patent Document 1 discloses a layout of a two-input NAND using a VNW FET.
  • Patent Document 2 discloses a layout of an inverter using a VNW FET.
  • the semiconductor integrated circuit device may include a standard cell called a tap cell for supplying a potential to a well or a substrate in which a transistor is formed.
  • a tap cell for supplying a potential to a well or a substrate in which a transistor is formed.
  • VNW FET VNW FET
  • the present disclosure aims to provide a tap cell layout structure in a semiconductor integrated circuit device provided with a VNW FET.
  • a semiconductor integrated circuit device provided with a VNW (Vertical Nanowire) FET comprises a first standard cell, the first standard cell extending in a first direction, and a first power supply.
  • the first power supply voltage is supplied from the first power supply wiring to the well or the substrate of the first conductivity type via the first bottom region of the first conductivity type.
  • the first standard cell functions as a tap cell.
  • a first power supply line for supplying a voltage, and a first bottom area of the first conductivity type which is formed on the well or the substrate of the first conductivity type and is separated from the first power supply line in plan view;
  • a first connection wiring extending in a second direction perpendicular to the first direction and connecting the first power supply wiring and the first bottom region.
  • the first standard cell in the first standard cell, the first power supply from the first power supply wiring to the well or the substrate of the first conductivity type via the first bottom region of the first conductivity type and the first connection wiring. A voltage is supplied.
  • the first standard cell functions as a tap cell.
  • a tap cell can be realized in a semiconductor integrated circuit device provided with a VNW FET.
  • a plan view showing an example of a layout structure of tap cells according to the first embodiment (A), (b) is the top view according to layer which shows the example of the layout structure of the tap cell which concerns on 1st Embodiment.
  • (A)-(c) is a sectional view showing the example of the layout structure of the tap cell concerning a 1st embodiment
  • a plan view showing an example of a layout structure of tap cells according to a second embodiment (A), (b) is the top view according to layer which shows the example of the layout structure of the tap cell which concerns on 2nd Embodiment.
  • FIG. 8 A plan view showing an example of a layout structure of tap cells according to a third embodiment
  • It is a schematic diagram which shows the basic structural example of vertical nanowire FET, (a) is sectional drawing, (b) is a top view (A), (b) is an example of basic structure of vertical nanowire FET, and a schematic plan view showing an example of structure using a local wiring
  • the semiconductor integrated circuit device comprises a plurality of standard cells, and at least a part of the plurality of standard cells comprises a so-called vertical nanowire FET (VNW FET).
  • the plurality of standard cells include tap cells.
  • FIG. 12 is a schematic view showing an example of the basic structure of the VNW FET, where (a) is a cross-sectional view and (b) is a plan view.
  • FIG. 12B illustration of metal wiring is omitted, and for easy understanding, components which can not be seen in an actual plan view are illustrated.
  • a P-type well 502 and an N-type well 503 are formed on a semiconductor substrate 501.
  • the semiconductor substrate 501 is a P-type substrate, the P-type well may not be formed.
  • a VNW FET 510 which is an N-type transistor is formed on the P-type well 502, and a VNW FET 520 which is a P-type transistor is formed on the N-type well 503.
  • Reference numeral 504 denotes an insulating film
  • reference numeral 505 denotes an interlayer insulating film.
  • the VNW FET 510 is arranged in the vertical direction (perpendicular to the substrate surface) between the bottom electrode 511 serving as the source / drain electrode, the top electrode 512 serving as the source / drain electrode, and the bottom electrode 511 and the top electrode 512. And the formed nanowire 513.
  • the bottom electrode 511 and the top electrode 512 are doped with N conductivity. At least a part of the nanowire 513 is a channel region.
  • a gate insulating film 515 is formed around the nanowire 513, and a gate electrode 514 is formed around it.
  • the bottom electrode 511 is connected to a bottom region 516 formed to extend along the upper surface of the semiconductor substrate 501.
  • Bottom region 516 is also doped with N conductivity type.
  • a silicide region 517 is formed on the surface of the bottom region 516.
  • sidewalls 518 are formed around the top electrode 512.
  • a silicide region 519 is formed on the top electrode 512. However, the sidewall 518 and the silicide region 519 may not be formed.
  • the VNW FET 520 includes a bottom electrode 521 serving as a source / drain electrode, a top electrode 522 serving as a source / drain electrode, and a nanowire 523 vertically formed between the bottom electrode 521 and the top electrode 522. Equipped with The bottom electrode 521 and the top electrode 522 are doped with P conductivity type. At least a portion of the nanowire 523 is a channel region. A gate insulating film 525 is formed around the nanowire 523 and a gate electrode 524 is formed around the same.
  • the bottom electrode 521 is connected to a bottom region 526 formed to extend along the upper surface of the semiconductor substrate 501.
  • Bottom region 526 is also doped with P conductivity.
  • a silicide region 527 is formed on the surface of the bottom region 526.
  • sidewalls 528 are formed around the top electrode 522.
  • a silicide region 529 is formed on the top electrode 522. However, the sidewall 528 and the silicide region 529 may not be formed.
  • the gate electrode region 514 of the VNW FET 510 and the gate electrode region 524 of the VNW FET 520 are connected by the gate wiring 531.
  • Bottom region 516, silicide region 519, gate interconnection 531, silicide region 529 and bottom region 526 are connected to interconnection 542 formed in metal interconnection layer M1 via contact 532 and contact 541, respectively.
  • a metal wiring layer can be stacked further on the metal wiring layer M1.
  • the semiconductor substrate 501 is made of, for example, bulk Si, germanium, a compound or an alloy thereof, or the like.
  • N-type dopants include As, P, Sb, N, C or combinations thereof.
  • P-type dopants include B, BF2, In, N, C or combinations thereof.
  • the planar shape of the VNW FETs 510 and 520 (the cross-sectional shape of the nanowires 513 and 523) may be, for example, a circle, a rectangle, an ellipse, or the like.
  • the material of the insulating film 504 is, for example, SiN, SiCN, or the like.
  • the material of the interlayer insulating film 505 is, for example, SiO, TEOS, PSG, BPSG, FSG, SiOC, SOG, Spin on Polymers, SiC, or a mixture thereof.
  • the material of the silicide regions 517 and 527 is, for example, NiSi, CoSi, TiSi, WSi or the like.
  • the material of the gate electrodes 514 and 524 and the gate wiring 531 is, for example, TiN, TaN, TiAl, Ti-containing Metal, Ta-containing Metal, Al-containing Metal, W-containing Metal, TiSi, NiSi, PtSi, polysilicon with silicide, combinations of these, etc
  • the material of the gate insulating films 515 and 525 is, for example, SiON, Si3N4, Ta2O5, Al2O3, Hf oxide, Ta oxide, Al oxide or the like.
  • the k value is preferably 7 or more.
  • the material of the silicide regions 519 and 529 provided on the top electrodes 512 and 522 may be NiSi, CoSi, MoSi, WSi, PtSi, TiSi, or a combination of these, or the like.
  • a metal such as W, Cu, Al, an alloy such as TiN, TaN, an impurity-implanted semiconductor, or the like, or a combination thereof may be used.
  • Examples of the material of the side walls 518 and 528 include SiN, SiON, SiC, SiCN, and SiOCN.
  • Examples of the material of the contact 532 include Ti, TiN, Ta, TaN and the like. In addition, there are Cu, Cu-arroy, W, Ag, Au, Ni, Al and the like. Alternatively, Co or Ru may be used.
  • FIG. 13 shows an example of the basic structure of the VNW FET, and shows an example of the structure using local wiring.
  • the local interconnection 534 is formed between the metal interconnection layer M1 and the top electrode 512 of the VNW FET 510 and the top electrode 522 of the VNW FET 520.
  • Bottom regions 516 and 526 and gate interconnection 531 are connected to interconnection 542 formed in metal interconnection layer M1 via contact 533, local interconnection 534 and contact 541, respectively.
  • the silicide regions 519 and 529 are connected to the wiring 542 formed in the metal wiring layer M1 through the local wiring 534 and the contact 541, respectively.
  • the local interconnection 535 is formed between the metal interconnection layer M1 and the bottom regions 516 and 526.
  • the local wiring 535 corresponds to one in which the contact 533 and the local wiring 534 in FIG. 13A are integrated.
  • the silicide region 536 is used as an etching stopper in the process of forming the local interconnection 535.
  • VNW FET contributing to the logic function of the standard cell is referred to as an "active VNW FET", and the VNW FET not contributing to the logic function of the standard cell is referred to as a "dummy VNW FET".
  • the bottom electrode, the top electrode, and the gate electrode of the VNW FET will be referred to simply as the bottom, top, and gate, respectively.
  • VNW a unit configuration consisting of vertical nanowires, top, bottom and gate constitutes one VNW FET by one or more
  • a standard cell is simply referred to as a cell as appropriate.
  • VNW may not constitute a transistor due to the difference in the polarity of the bottom and the like.
  • a structure similar to the VNW FET but not including a transistor is referred to as “pseudo VNW FET” or “pseudo transistor”.
  • FIG. 1 is a plan view
  • FIGS. 2 (a) and 2 (b) are plan views according to layers
  • FIG. ) To (c) are cross sectional views.
  • FIG. 2 (a) shows the VNW and the layers below it
  • FIG. 2 (b) shows the layers above the VNW
  • 3 (a) is a cross-sectional view in the vertical direction in plan view of FIG. 1
  • FIG. 3 (b) to (c) is a cross-sectional view in the horizontal direction in plan view of FIG.
  • FIG. 3 (b) is a cross section of line Y1-Y1 '
  • FIG. 3 (c) is a cross section of line Y2-Y2'.
  • the horizontal direction of the drawing is the X direction (corresponding to the first direction), and the vertical direction of the drawing is the Y direction (corresponding to the second direction).
  • dotted lines running in the vertical and horizontal directions in the plan view of FIG. 1 and the like and dotted lines running in the vertical direction in the cross-sectional view of FIG. 3 and the like indicate grids used to arrange components during design.
  • the grids are arranged at equal intervals in the X direction and at equal intervals in the Y direction.
  • the grid intervals may be the same or different in the X direction and the Y direction.
  • the grid spacing may be different for each layer.
  • the grid of the VNW FET or pseudo VNW FET and the grid of the M1 wire may be arranged at different intervals.
  • the parts do not necessarily have to be arranged on the grid. However, from the viewpoint of suppressing manufacturing variations, it is preferable to place the components on the grid.
  • the device structure according to the present embodiment is premised on the structure of FIG. However, the structure shown in FIGS. 12 and 13 (b) or another device structure may be assumed. The same applies to the following embodiments. Further, in order to make the figure easy to understand, illustration is omitted for the STI, each insulating film, the silicide layer on the bottom, the silicide layer on the top, and the sidewall on the top. The same applies to the following figures.
  • power supply wirings VDD and VSS extending in the X direction are respectively provided at the upper and lower sides (both ends in the Y direction) of the cell.
  • VDD and VSS are used as codes that mean both the power supply wiring and the power supply voltage supplied by the power supply wiring.
  • the power supply wirings VDD and VSS are formed in the M1 wiring layer.
  • the power supply lines VDD and VSS can be shared by cells adjacent to the upper and lower sides. However, the power supply wiring may not be shared by cells adjacent to the upper and lower sides.
  • a P-type transistor region (Pch and illustration in the following plan views) and an N-type transistor region (Nch and illustration in the following plan views) are formed. ing.
  • the P-type transistor region is provided on the side of the power supply wiring VDD
  • the N-type transistor region is provided on the side of the power supply wiring VSS.
  • pseudo transistors pseudo VNW FETs are formed in the P-type transistor region and the N-type transistor region.
  • the P-type transistor region is on the N-well.
  • a bottom region 11 doped with N conductivity is formed on the top of the N well.
  • Bottom region 11 extends to a range overlapping with power supply wiring VDD in plan view.
  • the bottom region 11 is connected to the power supply wiring VDD through the local wiring and the via, and is supplied with the power supply voltage VDD. That is, the power supply voltage VDD is supplied to the N well via the bottom region 11.
  • the N-type transistor region is on the P substrate or P well. Then, a P-type doped bottom region 12 is formed on the P substrate or the P well. Bottom region 12 extends to a range overlapping with power supply wiring VSS in plan view. Bottom region 12 is connected to power supply wiring VSS via the local wiring and via, and is supplied with power supply voltage VSS. That is, the power supply voltage VSS is supplied to the P substrate or the P well via the bottom region 12.
  • the bottom region 11 and the bottom region 12 have the same position and size in the X direction.
  • the pseudo transistors P1, P2, P3 and P4 are arranged in the X direction in the P-type transistor region. Each of the pseudo transistors P1, P2, P3 and P4 has two VNWs arranged in the Y direction. In the N-type transistor region, pseudo transistors N1, N2, N3, and N4 are arranged in the X direction. Each of the pseudo transistors N1, N2, N3 and N4 has two VNWs arranged in the Y direction.
  • the bottoms of the pseudo transistors P1, P2, P3 and P4 are connected to the bottom region 11.
  • the gates are respectively connected to the gate interconnections 21, 22, 23, 24 extending in parallel in the Y direction, and the tops are local interconnections 31 extending in parallel in the Y direction. , 32, 33, 34, respectively.
  • the bottoms of the pseudo transistors N 1, N 2, N 3 and N 4 are connected to the bottom region 12.
  • the gates are respectively connected to the gate interconnections 25, 26, 27 and 28 extending in parallel in the Y direction, and the tops are local interconnections 35 extending in parallel in the Y direction. , 36, 37, 38, respectively.
  • the tops of the pseudo transistors P1, P2, P3 and P4 and the pseudo transistors N1, N2, N3 and N4 may be doped with the N conductivity type or may be doped with the P conductivity type. Further, the gate wirings 21, 22, 23, 24, 25, 26, 27, 28 and the local wirings 31, 32, 33, 34, 35, 36, 37, 38 are floating. That is, the gates and tops of the pseudo transistors P1, P2, P3, and P4 and the pseudo transistors N1, N2, N3, and N4 are floating.
  • the power supply voltage VDD is supplied from the power supply wiring VDD to the N well through the bottom region 11.
  • the power supply voltage VSS is supplied from the power supply wiring VSS to the P substrate or the P well via the bottom region 12. Therefore, the cell according to the present embodiment functions as a tap cell.
  • the pseudo transistors P1 to P4 and N1 to N4 are arranged, whereby the distribution of VNW becomes uniform in the semiconductor integrated circuit device, the manufacturing accuracy is improved, and the transistor characteristics are dispersed. Is suppressed. Furthermore, the predictability of transistor characteristics is improved for cells arranged on both sides of the tap cell.
  • all the gate wirings 21, 22, 23, 24, 25, 26, 27, 28 extend in the Y direction, and have the same wiring width. This facilitates manufacture and increases manufacturing accuracy.
  • Local interconnections 31, 32, 33, 34, 35, 36, 37, 38 all extend in the Y direction and have the same interconnection width. This facilitates manufacture and increases manufacturing accuracy.
  • the gates and the tops of the pseudo transistors P1, P2, P3, and P4 and the pseudo transistors N1, N2, N3, and N4 may not be at least partially floating.
  • the power supply voltage VDD may be applied to the gates and tops of the pseudo transistors P1, P2, P3, and P4.
  • the gates may be connected to each other in the pseudo transistors arranged in the Y direction.
  • the gate of the pseudo transistor P1 and the gate of the pseudo transistor N1 may be connected by a single gate wiring.
  • part or all of the VNW may be omitted.
  • the VNW closer to the center of the tap cell may be omitted. In this case, the influence on surrounding cells is small.
  • the gate wirings 21, 22, 23, 24, 25, 26, 27, 28 and part or all of the local wirings 31, 32, 33, 34, 35, 36, 37, 38 may be omitted.
  • bottom region 11 is integrally formed over the entire region of pseudo transistors P1 to P4, and bottom region 12 is integrally formed over the entire region of pseudo transistors N1 to N4.
  • the bottom regions 11 and 12 may be formed separately.
  • the bottom region 11 may be separated for each of the pseudo transistors P1 to P4 to form each as a long region in the Y direction.
  • the tap cell having a cell width (size in the X direction) of 4 grids in which four pseudo transistors are arranged in the X direction has been described as an example.
  • the cell width of the tap cell is not limited to this.
  • layout design a plurality of tap cells having different cell widths may be prepared. This improves the degree of freedom in layout design.
  • FIG. 4 is a plan view showing an example of the layout of a circuit block using tap cells according to the first embodiment.
  • a plurality of cell strings CR1, CR2, and CR3 in which a plurality of cells C are arranged in the X direction are arranged in the Y direction.
  • the TAPs 11 and 12 are tap cells and have the above-described layout structure.
  • Another cell C (three-input NAND cell ND3 in FIG. 4) has a layout structure including a VNW FET. Power supply lines VDD1 and VSS1 extending in the X direction are disposed on both sides of the cell column CR1 in the Y direction.
  • Power supply wires VSS2 and VDD2 extending in the X direction are disposed on both sides of the cell column CR2 in the Y direction.
  • Power supply wirings VDD3 and VSS3 extending in the X direction are disposed on both sides of the cell column CR3 in the Y direction.
  • the power supply wirings VSS1, VSS2 and VSS3 supply the power supply voltage VSS, and the power supply wirings VDD1, VDD2 and VDD3 supply the power supply voltage VDD.
  • the plurality of cell strings CR1, CR2 and CR3 are alternately flipped up and down. Therefore, cell columns CR1 and CR2 share the P substrate or P well, and cell columns CR2 and CR3 share the N well.
  • the tap cells are arranged at every other cell row.
  • the tap cell TAP11 is disposed in the cell column CR1
  • the tap cell TAP12 is disposed in the cell column CR3.
  • No tap cell is arranged in the cell column CR2.
  • an N-type VNW FET is formed in the P substrate or P well shared by cell columns CR1 and CR2, and power supply voltage VSS is supplied via P-type bottom region 12 in tap cell TAP11. Ru. Further, in each cell C, the P-type VNW FET is formed in the N well shared by the cell strings CR2 and CR3, and the power supply voltage VDD is supplied via the N-type bottom region 11 in the tap cell TAP12. .
  • the arrangement of the VNWs in the block layout becomes regular by arranging the VNWs in the tap cells TAP11 and TAP12. Thereby, the manufacturing variation is suppressed and the yield is improved. Further, the characteristics of VNW FETs arranged in another cell C, in particular, VNW FETs arranged above and below and to the left and right of the tap cell, can be predicted.
  • power supply wirings between adjacent cell columns in the upper and lower direction are not shared. This is because the conductivity type polarity of the bottom region disposed below the power supply wiring is different between the tap cell and the other cells.
  • power supply wirings between adjacent cell rows may be shared between vertically adjacent cell rows. In this case, in the lower part of the power supply wiring, the portion where the bottom regions overlap between the tap cell and the other cells may be the conductivity type of the bottom regions of the other cells. Thereby, the block area can be made smaller.
  • Second Embodiment 5 to 7 show examples of the layout structure of the tap cell according to the second embodiment, and FIG. 5 is a plan view, and FIGS. 6 (a) and 6 (b) are plan views according to layers.
  • FIGS. 6 (a) and 6 (b) are plan views according to layers.
  • FIGS. 6 (a) and 6 (b) are plan views according to layers.
  • FIGS. 6 (a) and 6 (b) are plan views according to layers.
  • FIGS. 6 (a) and 6 (b) shows the layers above the VNW.
  • 7 (a) to 7 (b) are cross-sectional views in the vertical direction in plan view of FIG. 5
  • FIG. 7C is a cross section of line Y1-Y1 ′
  • FIG. 7D is a cross section of line Y2-Y2
  • the distance between the P-type bottom region and the N-type bottom region is narrow, which may make pattern formation difficult.
  • the space between the N-type bottom region 11 of the tap cell TAP12 and the P-type bottom region 16 of the cell C at the upper side of the drawing is very narrow.
  • the space between the N-type bottom region 11 of the tap cell TAP12 and the P-type bottom region 17 of the cell C on the right side of the drawing is very narrow. In the tap cell according to the present embodiment, such a problem can be solved.
  • the P-type transistor region is on the N-well.
  • a bottom region 111 doped with N conductivity is formed on the top of the N well.
  • Bottom region 111 is separated from power supply wiring VDD in plan view.
  • the bottom region 111 is connected to the power supply wiring VDD by local wirings 131 and 132 as an example of connection wirings extending in parallel in the Y direction, and is supplied with the power supply voltage VDD. That is, the power supply voltage VDD is supplied to the N well via the bottom region 111.
  • the N-type transistor region is on the P substrate or P well.
  • a P-type doped bottom region 112 is formed on the P substrate or the P well.
  • Bottom region 112 is separated from power supply wiring VSS in plan view.
  • the bottom region 112 is connected to the power supply wiring VSS through local wirings 133 and 134 as an example of connection wirings extending in parallel in the Y direction, and is supplied with the power supply voltage VSS. That is, the power supply voltage VSS is supplied to the P substrate or the P well via the bottom region 112.
  • the transistors P1 and P2 are disposed on both sides of the bottom region 111 in the X direction.
  • the transistors P1 and P2 each have two VNWs aligned in the Y direction.
  • the transistors N1 and N2 are disposed on both sides of the bottom region 112 in the X direction.
  • the transistors N1 and N2 each have two VNWs aligned in the Y direction.
  • the bottoms of the transistors P1 and P2 are connected to the bottom regions 113 and 114 of P conductivity type, the gates are connected to the gate interconnections 121 and 124 extending in the Y direction, and the top is in the Y direction It is connected to the extended local wires 135 and 136, respectively.
  • the bottoms of the transistors N1 and N2 are respectively connected to the bottom regions 115 and 116 of N conductivity type, the gates are respectively connected to the gate interconnections 125 and 128 extending in the Y direction, and the top is in the Y direction It is connected to the extended local wires 137 and 138, respectively.
  • the tops of the transistors P1 and P2 are doped with P conductivity, and the tops of the transistors N1 and N2 are doped with N conductivity.
  • the transistors P1, P2, N1 and N2 are dummy VNW FETs.
  • gate wirings 122 and 123 extending in the Y direction are respectively formed between the bottom region 111 and the transistor P1 and between the bottom region 111 and the transistor P2.
  • gate wirings 126 and 127 extending in the Y direction are formed between the bottom region 112 and the transistor N1, and between the bottom region 112 and the transistor N2, respectively.
  • the bottom regions 113, 114, 115, 116, the gate wires 121, 124, 125, 128, and the local wires 135, 136, 137, 138 are floating. That is, the bottom, gate and top of transistors P1 and P2 and transistors N1 and N2 are floating.
  • the gate wirings 122, 123, 126, and 127 are also floating.
  • the power supply voltage VDD is supplied from the power supply wiring VDD to the N well via the local wirings 131 and 132 and the bottom region 111.
  • the power supply voltage VSS is supplied from the power supply wiring VSS to the P substrate or the P well via the local wirings 133 and 134 and the bottom region 112. Therefore, the cell according to the present embodiment functions as a tap cell.
  • the bottom region 111 is separated from the power supply wiring VDD in plan view, and the bottom region 112 is separated from the power supply wiring VSS. Therefore, when other cells are arranged adjacent to the upper and lower sides (both sides in the Y direction) of the tap cell, the P-type bottom region can be arranged below the power supply wiring VDD, and the N-type bottom region below the power supply wiring VSS. Can be placed. Therefore, in the tap cell according to the present embodiment, since the power supply wirings VDD and VSS can be shared with other vertically adjacent cells, the area of the circuit block can be further reduced.
  • the N-type bottom region 111 is maintained at a sufficient distance in the X direction with respect to the P-type bottom regions 113 and 114 to which the bottoms of the transistors P1 and P2 are connected. A sufficient distance in the Y direction is maintained with respect to the P-type bottom region of the cell disposed below the power supply wiring VDD.
  • P-type bottom region 112 is maintained at a sufficient distance in the X direction with respect to N-type bottom regions 115 and 116 to which the bottoms of transistors N1 and N2 are connected. A sufficient distance is maintained in the Y direction with respect to the N-type bottom region of the cell of FIG. Therefore, pattern formation becomes easy.
  • the transistors P1, P2, N1, and N2 are disposed.
  • the distribution of VNW in the semiconductor integrated circuit device becomes uniform, the manufacturing accuracy is improved, and the variation in transistor characteristics is suppressed.
  • the predictability of transistor characteristics is improved for cells arranged adjacent to both sides of the tap cell.
  • the gate interconnections 121, 122, 123, 124, 125, 126, 127, 128 all extend in the Y direction, and have the same interconnection width. This facilitates manufacture and increases manufacturing accuracy.
  • the local wires 131, 132, 133, 134, 135, 136, 137, 138 all extend in the Y direction and have the same wire width. This facilitates manufacture and increases manufacturing accuracy.
  • the power supply voltage VDD may be applied to the bottom, gate and top of the transistors P1 and P2.
  • gates of transistors aligned in the Y direction may be connected.
  • the gate of the transistor P1 and the gate of the transistor N1 may be connected by a single gate wiring.
  • the tops of the transistors arranged in the Y direction may be connected to each other.
  • the top of the transistor P1 and the top of the transistor N1 may be connected by a single local wiring.
  • gate wirings arranged in the Y direction may be connected to each other in a portion where the VNW is not formed.
  • the gate wirings 122 and 126 may be connected to form a single gate wiring extending in the Y direction.
  • part or all of the VNW may be omitted.
  • FIG. 8 is a plan view showing an example of the layout of a circuit block using tap cells according to the second embodiment.
  • a plurality of cell strings CR1, CR2, and CR3 in which a plurality of cells C are arranged in the X direction are arranged in the Y direction.
  • TAP 21 and TAP 22 are tap cells and have the above-described layout structure.
  • Another cell C (two-input NAND cell ND2 in FIG. 8) has a layout structure including a VNW FET.
  • Power supply wires VDD1, VSS1, VDD2, and VSS2 extending in the X direction are disposed on both sides of the plurality of cell strings CR1, CR2, and CR3 in the Y direction.
  • the power supply wires VSS1 and VSS2 supply a power supply voltage VSS
  • the power supply wires VDD1 and VDD2 supply a power supply voltage VDD.
  • a plurality of cell strings CR1, CR2 and CR3 are alternately flipped up and down, and adjacent cell strings share a power supply wiring therebetween.
  • the cell strings CR1 and CR2 share the power supply wiring VSS1
  • the cell strings CR2 and CR3 share the power supply wiring VDD2.
  • cell columns CR1 and CR2 share a P substrate or a P well
  • cell columns CR2 and CR3 share an N well.
  • the tap cells are arranged at every other cell row.
  • the tap cell TAP21 is disposed in the cell column CR1
  • the tap cell TAP22 is disposed in the cell column CR3. No tap cell is arranged in the cell column CR2.
  • an N-type VNW FET is formed in the P substrate or P well shared by cell columns CR1 and CR2, and power supply voltage VSS is supplied via P-type bottom region 112 in tap cell TAP21. Ru. Further, in each cell C, the P-type VNW FET is formed in the N well shared by the cell strings CR2 and CR3, and the power supply voltage VDD is supplied through the N-type bottom region 111 in the tap cell TAP22. .
  • power supply lines can be shared by vertically adjacent cell rows, so the area of the circuit block can be further reduced. Further, since VNWs are disposed in the vicinity of both ends in the X direction in tap cells TAP21 and TAP22, it is possible to predict the characteristics of VNW FETs disposed in other cells C, particularly VNW FETs of cells disposed on the left and right of the tap cells. Become.
  • the bottom regions of the tap cells are sufficiently spaced from the bottom regions of different conductivity types in the X and Y directions.
  • the distance from the P-type bottom region is indicated by an arrow. Therefore, pattern formation becomes easy.
  • FIG. 9 is an enlarged view of the lower part of FIG.
  • the P-type formation portion is a range in which a P-type bottom region is patterned
  • the N-type formation portion is a range in which an N-type bottom region is patterned.
  • the N-type formation portion for forming the N-type bottom region 111 in the tap cell TAP22 is located like an enclave in the wide P-type formation portion.
  • the P-type formation portion for forming the P-type bottom region 112 in the tap cell TAP22 is positioned like an enclave in the wide N-type formation portion.
  • FIG. 10 is a plan view showing an example of a layout structure of tap cells according to the third embodiment.
  • the layout structure of FIG. 10 in the layout structure of FIG. 5, the position of the bottom area 112 with respect to the bottom area 111 is shifted by 4 grids in the X direction.
  • the P-type transistor region is on the N-well.
  • a bottom region 211 doped with N conductivity type is formed on the N well.
  • Bottom region 211 is separated from power supply wiring VDD in plan view.
  • the bottom region 211 is connected to the power supply wiring VDD by local wirings 231 and 232 as an example of connection wirings extending in parallel in the Y direction, and is supplied with the power supply voltage VDD. That is, the power supply voltage VDD is supplied to the N well via the bottom region 211.
  • the N-type transistor region is on the P substrate or P well. Then, a P-type doped bottom region 212 is formed on the P substrate or the P well. Bottom region 212 is separated from power supply wiring VSS in plan view.
  • the bottom region 212 is connected to the power supply wiring VSS by local wirings 233 and 234 as an example of connection wirings extending in parallel in the Y direction, and is supplied with the power supply voltage VSS. That is, the power supply voltage VSS is supplied to the P substrate or the P well through the bottom region 212.
  • the bottom area 211 and the bottom area 212 are arranged by being shifted by four grids in the X direction, and are arranged at positions where there is no overlap in the X direction.
  • the transistors P1 and P2 are disposed on both sides of the bottom region 211 in the X direction. Also, transistors P3, P4, P5, and P6 are disposed on the right side of the drawing of the transistor P2.
  • the transistors P1 to P6 each have two VNWs aligned in the Y direction.
  • the transistors N1 and N2 are disposed on both sides of the bottom region 212 in the X direction. Further, transistors N3, N4, N5 and N6 are disposed on the left side of the drawing of the transistor N1.
  • the transistors N1 to N6 each have two VNWs aligned in the Y direction.
  • the N-type formation portion for forming the N-type bottom region 211 is connected to the N-type formation portion in the N-type transistor region. Further, a P-type formation portion for forming the P-type bottom region 212 is connected to the P-type formation portion in the P-type transistor region. Therefore, there is no small P-type formation located like an enclave in a wide N-type formation, and a small N-type formation located as an enclave in a wide P-type formation. do not do. And a narrow portion is not generated in the P-type formation portion and the N-type formation portion. Therefore, pattern formation becomes easy.
  • the positions of the bottom area 211 and the bottom area 212 are shifted by four grids in the X direction.
  • the shift length is not limited to this, and the position of the bottom region may be shifted so as not to form narrow portions in the P-type formation portion and the N-type formation portion.
  • FIG. 11 is a plan view showing an example of a layout structure of tap cells according to a modification of the present embodiment.
  • the layout structure of FIG. 11 has a configuration in which the positions of the bottom region 211 and the bottom region 212 are shifted by two grids in the X direction.
  • the bottom region 211 and the bottom region 212 are arranged at positions where there is no overlap in the X direction.
  • the cell width (size in the X direction) of the tap cell is smaller than in the layout structure of FIG.
  • the planar shape of the VNW is circular, but the planar shape of the VNW is not limited to circular. For example, it may be rectangular, oval or the like.
  • the planar shape of the VNW is elongated in one direction like an oval, it is preferable that the extending direction is the same. Moreover, it is preferable that the position of the end is in alignment.
  • VNWs having different planar shapes may be mixed.
  • the VNW FET and the pseudo VNW FET are configured by two VNWs, but the number of VNWs forming the VNW FET and the pseudo VNW FET is not limited to this.
  • a tap cell can be realized in a semiconductor integrated circuit device including a VNW FET, which is useful, for example, for improving the performance of a semiconductor chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

VNW(Vertical Nanowire:縦型ナノワイヤ) FETを備えた半導体集積回路装置は、タップセルを備える。タップセルは、第1方向に延びる電源配線(VDD)と、第1導電型のウェルまたは基板の上部に形成された、第1導電型のボトム領域(11)とを備える。ボトム領域(11)は、平面視で電源配線(VDD)と重なりを有しており、かつ、電源配線(VDD)と接続されている。

Description

半導体集積回路装置
 本開示は、縦型ナノワイヤ(VNW:Vertical Nanowire)FET(Field Effect Transistor)を備えた半導体集積回路装置に関する。
 半導体基板上に半導体集積回路を形成する方法として、スタンダードセル方式が知られている。スタンダードセル方式とは、特定の論理機能を有する基本的単位(例えば、インバータ,ラッチ,フリップフロップ,全加算器など)をスタンダードセルとして予め用意しておき、半導体基板上に複数のスタンダードセルを配置して、それらのスタンダードセルを配線で接続することによって、LSIチップを設計する方式のことである。
 また、LSIの基本構成要素であるトランジスタは、ゲート長の縮小(スケーリング)により、集積度の向上、動作電圧の低減、および動作速度の向上を実現してきた。しかし近年、過度なスケーリングによるオフ電流と、それによる消費電力の著しい増大が問題となっている。この問題を解決するため、トランジスタ構造を従来の平面型から立体型に変更した立体構造トランジスタが盛んに研究されている。その1つとして、縦型ナノワイヤFET(以下、適宜、VNW FETという)が注目されている。
 特許文献1では、VNW FETを用いた2入力NANDのレイアウトが開示されている。特許文献2では、VNW FETを用いたインバータのレイアウトが開示されている。
米国特許出願公開第2016/0063163号明細書 米国特許出願公開第2016/0012169号明細書
 半導体集積回路装置は、トランジスタが構成されるウェルまたは基板に電位を供給するための、タップセルと呼ばれるスタンダードセルを備える場合がある。しかしながら、VNW FETを備えた半導体集積回路装置におけるタップセルについて、開示された先行技術文献はない。
 本開示は、VNW FETを備えた半導体集積回路装置における、タップセルのレイアウト構造を提供することを目的とする。
 本開示の第1態様では、VNW(Vertical Nanowire:縦型ナノワイヤ) FETを備えた半導体集積回路装置は、第1スタンダードセルを備え、前記第1スタンダードセルは、第1方向に延び、第1電源電圧を供給する第1電源配線と、第1導電型のウェルまたは基板の上部に形成された、前記第1導電型の第1ボトム領域とを備え、前記第1ボトム領域は、平面視で前記第1電源配線と重なりを有しており、かつ、前記第1電源配線と接続されている。
 この態様によると、第1スタンダードセルにおいて、第1電源配線から、第1導電型のウェルまたは基板に、第1導電型の第1ボトム領域を介して、第1電源電圧が供給される。したがって、第1スタンダードセルは、タップセルとして機能する。
 本開示の第2態様では、VNW(Vertical Nanowire:縦型ナノワイヤ) FETを備えた半導体集積回路装置は、第1スタンダードセルを備え、前記第1スタンダードセルは、第1方向に延び、第1電源電圧を供給する第1電源配線と、第1導電型のウェルまたは基板の上部に形成されており、平面視で前記第1電源配線から離間した、前記第1導電型の第1ボトム領域と、前記第1方向と垂直をなす第2方向に延びており、前記第1電源配線と前記第1ボトム領域とを接続する第1接続配線とを備える。
 この態様によると、第1スタンダードセルにおいて、第1電源配線から、第1導電型のウェルまたは基板に、第1導電型の第1ボトム領域、および、第1接続配線を介して、第1電源電圧が供給される。したがって、第1スタンダードセルは、タップセルとして機能する。
 本開示によると、VNW FETを備えた半導体集積回路装置において、タップセルを実現することができる。
第1実施形態に係るタップセルのレイアウト構造の例を示す平面図 (a),(b)は第1実施形態に係るタップセルのレイアウト構造の例を示す層別の平面図 (a)~(c)は第1実施形態に係るタップセルのレイアウト構造の例を示す断面図 第1実施形態に係るタップセルを用いた回路ブロックのレイアウトの一例を示す平面図 第2実施形態に係るタップセルのレイアウト構造の例を示す平面図 (a),(b)は第2実施形態に係るタップセルのレイアウト構造の例を示す層別の平面図 (a)~(d)は第2実施形態に係るタップセルのレイアウト構造の例を示す断面図 第2実施形態に係るタップセルを用いた回路ブロックのレイアウトの一例を示す平面図 図8の一部拡大図 第3実施形態に係るタップセルのレイアウト構造の例を示す平面図 第3実施形態の変形例に係るタップセルのレイアウト構造の例を示す平面図 縦型ナノワイヤFETの基本構造例を示す模式図であり、(a)は断面図、(b)は平面図 (a),(b)は縦型ナノワイヤFETの基本構造例であって、ローカル配線を用いた構造例を示す模式平面図
 以下、実施の形態について、図面を参照して説明する。以下の実施の形態では、半導体集積回路装置は複数のスタンダードセルを備えており、この複数のスタンダードセルのうち少なくとも一部は、いわゆる縦型ナノワイヤFET(VNW FET)を備えるものとする。そして、複数のスタンダードセルは、タップセルを含むものとする。
 図12はVNW FETの基本構造例を示す模式図であり、(a)は断面図、(b)は平面図である。なお、図12(b)では、メタル配線の図示を省いており、また、理解のしやすさのために、実際の平面視では見えない構成要素を図示している。
 図12に示すように、半導体基板501上に、P型ウェル502とN型ウェル503が形成されている。ただし、半導体基板501がP型基板であるとき、P型ウェルを形成しなくてもよい。P型ウェル502上に、N型トランジスタであるVNW FET510が形成されており、N型ウェル503上に、P型トランジスタであるVNW FET520が形成されている。504は絶縁膜、505は層間絶縁膜である。
 VNW FET510は、ソース/ドレイン電極となるボトム電極511と、ソース/ドレイン電極となるトップ電極512と、ボトム電極511とトップ電極512との間に、縦方向(基板面に対して垂直方向)に形成されたナノワイヤ513とを備える。ボトム電極511およびトップ電極512は、N導電型にドーピングされている。ナノワイヤ513の少なくとも一部がチャネル領域となる。ナノワイヤ513の周囲にはゲート絶縁膜515が形成されており、さらにその周囲にゲート電極514が形成されている。
 ボトム電極511は、半導体基板501の上面に沿って広がるように形成されたボトム領域516と接続されている。ボトム領域516も、N導電型にドーピングされている。ボトム領域516の表面にはシリサイド領域517が形成されている。また、トップ電極512の周囲に、サイドウォール518が形成されている。トップ電極512の上に、シリサイド領域519が形成されている。ただし、サイドウォール518およびシリサイド領域519は形成しなくてもよい。
 同様に、VNW FET520は、ソース/ドレイン電極となるボトム電極521と、ソース/ドレイン電極となるトップ電極522と、ボトム電極521とトップ電極522との間に、縦方向に形成されたナノワイヤ523とを備える。ボトム電極521およびトップ電極522は、P導電型にドーピングされている。ナノワイヤ523の少なくとも一部がチャネル領域となる。ナノワイヤ523の周囲にはゲート絶縁膜525が形成されており、さらにその周囲にゲート電極524が形成されている。
 ボトム電極521は、半導体基板501の上面に沿って広がるように形成されたボトム領域526と接続されている。ボトム領域526も、P導電型にドーピングされている。ボトム領域526の表面にはシリサイド領域527が形成されている。また、トップ電極522の周囲に、サイドウォール528が形成されている。トップ電極522の上に、シリサイド領域529が形成されている。ただし、サイドウォール528およびシリサイド領域529は形成しなくてもよい。
 図12の構造では、VNW FET510のゲート電極領域514とVNW FET520のゲート電極領域524とが、ゲート配線531によって接続されている。また、ボトム領域516、シリサイド領域519、ゲート配線531、シリサイド領域529およびボトム領域526は、それぞれ、コンタクト532およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。なお、メタル配線層M1のさらに上層に、メタル配線層を積層することができる。
 半導体基板501は、例えば、バルクSi、ゲルマニウム、その化合物や合金等によって構成されている。N型ドーパントの例としては、As、P、Sb、N、Cまたはこれらの組み合わせ等がある。P型ドーパントの例としては、B、BF2、In、N、Cまたはこれらの組み合わせ等がある。また、VNW FET510,520の平面形状(ナノワイヤ513,523の横断面形状)は、例えば、円形、矩形、楕円形等であってもよい。
 絶縁膜504の材質は、例えば、SiN、SiCN等である。層間絶縁膜505の材料は、例えば、SiO、TEOS、PSG、BPSG、FSG、SiOC、SOG、Spin on Polymers、SiC、または、これらの混合物等がある。シリサイド領域517,527の材質は、例えば、NiSi、CoSi、TiSi、WSi等である。
 ゲート電極514,524、および、ゲート配線531の材料は、例えば、TiN、TaN、TiAl、Ti-containing Metal、Ta-containing Metal、Al-containing Metal、W-containing Metal、TiSi、NiSi、PtSi、polysilicon with silicide、これらの組み合わせ等がある。ゲート絶縁膜515,525の材料は、例えば、SiON、Si3N4、Ta2O5、Al2O3、Hf oxide、Ta oxide、Al oxide等がある。また、k値は7以上であることが好ましい。
 トップ電極512,522上に設けるシリサイド領域519,529の材料としては、NiSi、CoSi、MoSi、WSi、PtSi、TiSiまたはこれらの組み合わせ等がある。また、他の構成として、W、Cu、Al等のメタルや、TiN、TaN等の合金等、不純物注入された半導体等、またはこれらの組み合わせとしてもよい。サイドウォール518,528の材料としては、例えば、SiN、SiON、SiC、SiCN、SiOCN等がある。
 コンタクト532の材料としては、例えば、Ti、TiN、Ta、TaN等がある。また、Cu、Cu-arroy、W、Ag、Au、Ni、Al等がある。あるいは、Co、Ruでもよい。
 図13はVNW FETの基本構造例であって、ローカル配線を用いた構造例を示す。図13(a)では、メタル配線層M1と、VNW FET510のトップ電極512およびVNW FET520のトップ電極522との間に、ローカル配線534が形成されている。ボトム領域516,526およびゲート配線531は、それぞれ、コンタクト533、ローカル配線534およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。また、シリサイド領域519,529は、それぞれ、ローカル配線534およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。
 図13(b)では、メタル配線層M1とボトム領域516,526との間に、ローカル配線535が形成されている。言い換えると、ローカル配線535は、図13(a)におけるコンタクト533およびローカル配線534が一体となったものに相当する。シリサイド領域536は、ローカル配線535を形成する工程において、エッチングストッパとして用いられる。
 本明細書では、スタンダードセルの論理機能に寄与するVNW FETのことを「アクティブVNW FET」といい、スタンダードセルの論理機能に寄与しないVNW FETのことを「ダミーVNW FET」という。また、以下の説明では、VNW FETのボトム電極、トップ電極、ゲート電極のことを、適宜、単にボトム、トップ、ゲートという。また、縦型ナノワイヤ、トップ、ボトムおよびゲートからなる単位構成が、1個または複数個によって、1個のVNW FETを構成する場合、この単位構成のことを単に「VNW」といい、VNW FETと区別するものとする。また、スタンダードセルのことを、適宜、単にセルという。
 また、本開示に係るタップセルのように、VNWが、ボトムの極性の違い等からトランジスタを構成しない場合もある。本明細書では、VNW FETと同様の構造であるが、トランジスタを構成しない構造のことを、「擬似VNW FET」または「擬似トランジスタ」という。
 また、本明細書において、「同一配線幅」等のように、幅等が同じであることを意味する表現は、製造上のばらつき範囲を含んでいるものとする。
 (第1実施形態)
 図1~図3は第1実施形態に係るタップセルのレイアウト構造の例を示す図であり、図1は平面図、図2(a),(b)は層別の平面図、図3(a)~(c)は断面図である。具体的には、図2(a)はVNWおよびその下の層を示し、図2(b)はVNWよりも上の層を示す。図3(a)は図1の平面視縦方向の断面図、図3(b)~(c)は図1の平面視横方向の断面図であり、図3(a)は線X1-X1’の断面、図3(b)は線Y1-Y1’の断面、図3(c)は線Y2-Y2’の断面である。
 なお、以下の説明では、図1等の平面図において、図面横方向をX方向(第1方向に相当)、図面縦方向をY方向(第2方向に相当)としている。また、図1等の平面図において縦横に走る点線、および、図3等の断面図において縦に走る点線は、設計時に部品配置を行うために用いるグリッドを示す。グリッドは、X方向において等間隔に配置されており、またY方向において等間隔に配置されている。なお、グリッド間隔は、X方向とY方向とにおいて同じであってもよいし異なっていてもよい。また、グリッド間隔は、層ごとに異なっていてもかまわない。例えば、VNW FETまたは擬似VNW FETのグリッドとM1配線のグリッドとが、異なる間隔で配置されていてもよい。さらに、各部品は必ずしもグリッド上に配置される必要はない。ただし、製造ばらつきを抑制する観点から、部品はグリッド上に配置される方が好ましい。
 また、本実施形態に係るデバイス構造は、図13(a)の構造を前提としている。ただし、図12や図13(b)の構造や、他のデバイス構造を前提とした構造にもなり得る。以降の実施形態についても同様である。また、図を分かりやすくするために、STI、各絶縁膜、ボトム上のシリサイド層、トップ上のシリサイド層、および、トップのサイドウォールについては、図示を省略している。以降の図についても同様である。
 図1~図3に示すように、セルの上下(Y方向における両端)において、X方向に延びる電源配線VDD,VSSがそれぞれ設けられている。なお、VDD,VSSは、電源配線と、電源配線が供給する電源電圧との両方を意味する符号として用いる。電源配線VDD,VSSはM1配線層に形成されている。電源配線VDD,VSSは、その上下に隣接するセル同士で共有することができる。ただし、電源配線を、その上下に隣接するセルによって共有しないレイアウトにしてもかまわない。
 電源配線VDDと電源配線VSSとの間に、P型トランジスタ領域(Pchと図示、以降の平面図でも同様)と、N型トランジスタ領域(Nchと図示、以降の平面図でも同様)とが形成されている。P型トランジスタ領域は電源配線VDDの側に設けられており、N型トランジスタ領域は電源配線VSSの側に設けられている。ただし、本開示に係るタップセルでは、P型トランジスタ領域およびN型トランジスタ領域には、擬似トランジスタ(擬似VNW FET)が形成されている。
 P型トランジスタ領域は、Nウェル上にある。そしてNウェルの上部に、N導電型にドーピングされたボトム領域11が形成されている。ボトム領域11は、平面視で電源配線VDDと重なる範囲まで広がっている。ボトム領域11は、ローカル配線およびビアを介して電源配線VDDと接続されており、電源電圧VDDが供給される。すなわち、ボトム領域11を介して、Nウェルに電源電圧VDDが供給される。
 N型トランジスタ領域は、P基板またはPウェル上にある。そしてP基板またはPウェルの上部に、P導電型にドーピングされたボトム領域12が形成されている。ボトム領域12は、平面視で電源配線VSSと重なる範囲まで広がっている。ボトム領域12は、ローカル配線およびビアを介して電源配線VSSと接続されており、電源電圧VSSが供給される。すなわち、ボトム領域12を介して、P基板またはPウェルに電源電圧VSSが供給される。なお、ここでは、ボトム領域11とボトム領域12とは、X方向における位置とサイズが同一である。
 P型トランジスタ領域には、擬似トランジスタP1,P2,P3,P4が、X方向に並べて配置されている。擬似トランジスタP1,P2,P3,P4はそれぞれ、Y方向に並ぶ2個のVNWを有している。また、N型トランジスタ領域には、擬似トランジスタN1,N2,N3,N4が、X方向に並べて配置されている。擬似トランジスタN1,N2,N3,N4はそれぞれ、Y方向に並ぶ2個のVNWを有している。
 擬似トランジスタP1,P2,P3,P4は、ボトムがボトム領域11に接続されている。また、擬似トランジスタP1,P2,P3,P4は、ゲートが、Y方向に並列に延びるゲート配線21,22,23,24にそれぞれ接続されており、トップが、Y方向に並列に延びるローカル配線31,32,33,34にそれぞれ接続されている。
 擬似トランジスタN1,N2,N3,N4は、ボトムがボトム領域12に接続されている。また、擬似トランジスタN1,N2,N3,N4は、ゲートが、Y方向に並列に延びるゲート配線25,26,27,28にそれぞれ接続されており、トップが、Y方向に並列に延びるローカル配線35,36,37,38にそれぞれ接続されている。
 擬似トランジスタP1,P2,P3,P4および擬似トランジスタN1,N2,N3,N4のトップは、N導電型がドーピングされていてもいいし、P導電型がドーピングされていてもいい。また、ゲート配線21,22,23,24,25,26,27,28、および、ローカル配線31,32,33,34,35,36,37,38はフローティングである。すなわち、擬似トランジスタP1,P2,P3,P4および擬似トランジスタN1,N2,N3,N4のゲートとトップはフローティングである。
 以上のようなレイアウト構造によって、次のような作用効果が得られる。
 P型トランジスタ領域において、電源配線VDDから、ボトム領域11を介して、Nウェルに電源電圧VDDが供給される。また、N型トランジスタ領域において、電源配線VSSから、ボトム領域12を介して、P基板またはPウェルに電源電圧VSSが供給される。したがって、本実施形態に係るセルは、タップセルとして機能する。
 また、本実施形態に係るタップセルでは、擬似トランジスタP1~P4,N1~N4が配置されており、これによって、半導体集積回路装置においてVNWの分布が均一となり、製造精度が上がるとともに、トランジスタ特性のばらつきが抑制される。さらには、タップセルの両側に配置されたセルについて、トランジスタ特性の予測可能性が向上する。
 また、ゲート配線21,22,23,24,25,26,27,28は、全てY方向に延びており、かつ、同一配線幅である。これにより、製造が容易になり、製造精度が上がる。ローカル配線31,32,33,34,35,36,37,38は、全てY方向に延びており、かつ、同一配線幅である。これにより、製造が容易になり、製造精度が上がる。
 なお、擬似トランジスタP1,P2,P3,P4および擬似トランジスタN1,N2,N3,N4のゲートとトップは、少なくとも一部は、フローティングでなくてもよい。例えば、擬似トランジスタP1,P2,P3,P4のゲートとトップに、電源電圧VDDを与えてもよい。
 また、Y方向に並ぶ擬似トランジスタについて、ゲート同士を接続してもよい。例えば、擬似トランジスタP1のゲートと、擬似トランジスタN1のゲートを、単一のゲート配線で接続してもよい。
 また、VNWの一部または全部を省いてもかまわない。例えば、擬似トランジスタP2,P3、N2,N3について、2個のVNWのうちタップセル中央に近い方のVNWを省いてもよい。この場合、周囲のセルに対する影響は少ない。ゲート配線21,22,23,24,25,26,27,28、および、ローカル配線31,32,33,34,35,36,37,38の一部または全部を省いてもかまわない。
 また、上述のレイアウト構造では、ボトム領域11は擬似トランジスタP1~P4の領域全体にわたって一体に形成されており、ボトム領域12は擬似トランジスタN1~N4の領域全体にわたって一体に形成されていた。これに代えて、ボトム領域11,12は、分離して形成してもかまわない。例えば、ボトム領域11を、擬似トランジスタP1~P4毎に分離して、それぞれをY方向に長い領域として形成してもよい。
 また、上述のレイアウト構造の例では、X方向に4個の擬似トランジスタを並べた、セル幅(X方向のサイズ)が4グリッドのタップセルを例にとって説明した。ただし、タップセルのセル幅はこれに限られるものではない。また、レイアウト設計において、セル幅が異なる複数のタップセルを用意してもよい。これにより、レイアウト設計の自由度が向上する。
 <ブロックレイアウト例>
 図4は第1実施形態に係るタップセルを用いた回路ブロックのレイアウトの一例を示す平面図である。図4に示す回路ブロックでは、複数のセルCがX方向に並ぶ複数のセル列CR1,CR2,CR3が、Y方向に並べて配置されている。複数のセルCの中で、TAP11,TAP12はタップセルであり、上述のレイアウト構造を有する。他のセルC(図4では、3入力NANDセルND3としている)は、VNW FETを含むレイアウト構造を有している。セル列CR1のY方向における両側に、X方向に延びる電源配線VDD1,VSS1が配置されている。セル列CR2のY方向における両側に、X方向に延びる電源配線VSS2,VDD2が配置されている。セル列CR3のY方向における両側に、X方向に延びる電源配線VDD3,VSS3が配置されている。電源配線VSS1,VSS2,VSS3は電源電圧VSSを供給し、電源配線VDD1,VDD2,VDD3は電源電圧VDDを供給する。
 図4に示す回路ブロックでは、複数のセル列CR1,CR2,CR3は交互に上下フリップされている。このため、セル列CR1,CR2はP基板またはPウェルを共有しており、セル列CR2,CR3はNウェルを共有している。そして、タップセルはセル列の1列おきに配置されている。図4では、セル列CR1にタップセルTAP11が配置されており、セル列CR3にタップセルTAP12が配置されている。セル列CR2にはタップセルは配置されていない。
 セル列CR1,CR2が共有するP基板またはPウェルは、各セルCにおいて、N型VNW FETが形成されており、また、タップセルTAP11におけるP型のボトム領域12を介して電源電圧VSSが供給される。また、セル列CR2,CR3が共有するNウェルは、各セルCにおいて、P型VNW FETが形成されており、また、タップセルTAP12におけるN型のボトム領域11を介して電源電圧VDDが供給される。
 図4から分かるように、タップセルTAP11,TAP12にVNWが配置されることによって、ブロックレイアウトにおいてVNWの配置が規則的になる。これにより、製造ばらつきが抑制され、歩留まりが向上する。また、他のセルCに配置されたVNW FET、特に、タップセルの上下や左右に配置されたVNW FETについて、その特性が予測可能となる。
 なお、図4のブロックレイアウトでは、上下に隣接するセル列について、その間の電源配線を共有しないものとしている。これは、電源配線の下方に配置されるボトム領域の導電型極性が、タップセルと他のセルとで異なるためである。これに対して、上下に隣接するセル列について、その間の電源配線を共有するようにしてもよい。この場合には、電源配線の下方において、タップセルと他のセルとでボトム領域が重なる部分は、他のセルのボトム領域の導電型極性にすればよい。これにより、ブロック面積をより小さくすることができる。
 (第2実施形態)
 図5~図7は第2実施形態に係るタップセルのレイアウト構造の例を示す図であり、図5は平面図、図6(a),(b)は層別の平面図、図7(a)~(d)は断面図である。具体的には、図6(a)はVNWおよびその下の層を示し、図6(b)はVNWよりも上の層を示す。図7(a)~(b)は図5の平面視縦方向の断面図、図7(c)~(d)は図5の平面視横方向の断面図であり、図7(a)は線X1-X1’の断面、図7(b)は線X2-X2’の断面、図7(c)は線Y1-Y1’の断面、図7(d)は線Y2-Y2’の断面である。
 第1実施形態で示した図4のブロックレイアウトでは、P型ボトム領域とN型ボトム領域との間の間隔が狭い部分があり、パタン形成が困難になる場合がある。例えば、図4における部分A1では、タップセルTAP12のN型ボトム領域11と、その図面上側にあるセルCのP型ボトム領域16との間が非常に狭い。また、部分B1では、タップセルTAP12のN型ボトム領域11と、その図面右側にあるセルCのP型ボトム領域17との間が非常に狭い。本実施形態に係るタップセルでは、このような問題を解決することができる。
 図5~図7に示すように、P型トランジスタ領域は、Nウェル上にある。そしてNウェルの上部に、N導電型にドーピングされたボトム領域111が形成されている。ボトム領域111は、平面視で電源配線VDDから離間している。そしてボトム領域111は、Y方向に並列に延びる接続配線の一例としてのローカル配線131,132によって電源配線VDDと接続されており、電源電圧VDDが供給される。すなわち、ボトム領域111を介して、Nウェルに電源電圧VDDが供給される。
 N型トランジスタ領域は、P基板またはPウェル上にある。そしてP基板またはPウェルの上部に、P導電型にドーピングされたボトム領域112が形成されている。ボトム領域112は、平面視で電源配線VSSから離間している。そしてボトム領域112は、Y方向に並列に延びる接続配線の一例としてのローカル配線133,134によって電源配線VSSと接続されており、電源電圧VSSが供給される。すなわち、ボトム領域112を介して、P基板またはPウェルに電源電圧VSSが供給される。
 P型トランジスタ領域には、トランジスタP1,P2が、ボトム領域111のX方向における両側に配置されている。トランジスタP1,P2はそれぞれ、Y方向に並ぶ2個のVNWを有している。また、N型トランジスタ領域には、トランジスタN1,N2が、ボトム領域112のX方向における両側に配置されている。トランジスタN1,N2はそれぞれ、Y方向に並ぶ2個のVNWを有している。
 トランジスタP1,P2は、ボトムが、P導電型のボトム領域113,114にそれぞれ接続されており、ゲートが、Y方向に延びるゲート配線121,124にそれぞれ接続されており、トップが、Y方向に延びるローカル配線135,136にそれぞれ接続されている。トランジスタN1,N2は、ボトムが、N導電型のボトム領域115,116にそれぞれ接続されており、ゲートが、Y方向に延びるゲート配線125,128にそれぞれ接続されており、トップが、Y方向に延びるローカル配線137,138にそれぞれ接続されている。トランジスタP1,P2のトップはP導電型がドーピングされており、トランジスタN1,N2のトップは、N導電型がドーピングされている。トランジスタP1,P2,N1,N2はダミーVNW FETである。
 また、ボトム領域111とトランジスタP1との間、および、ボトム領域111とトランジスタP2との間に、Y方向に延びるゲート配線122,123が、それぞれ形成されている。また、ボトム領域112とトランジスタN1との間、および、ボトム領域112とトランジスタN2との間に、Y方向に延びるゲート配線126,127が、それぞれ形成されている。
 ボトム領域113,114,115,116、ゲート配線121,124,125,128、および、ローカル配線135,136,137,138はフローティングである。すなわち、トランジスタP1,P2およびトランジスタN1,N2のボトム、ゲートおよびトップはフローティングである。また、ゲート配線122,123,126,127もフローティングである。
 以上のようなレイアウト構造によって、次のような作用効果が得られる。
 P型トランジスタ領域において、電源配線VDDから、ローカル配線131,132およびボトム領域111を介して、Nウェルに電源電圧VDDが供給される。また、N型トランジスタ領域において、電源配線VSSから、ローカル配線133,134およびボトム領域112を介して、P基板またはPウェルに電源電圧VSSが供給される。したがって、本実施形態に係るセルは、タップセルとして機能する。
 また、ボトム領域111は平面視で電源配線VDDと離間しており、ボトム領域112は電源配線VSSと離間している。このため、タップセルの上下(Y方向における両側)に他のセルを隣接配置した場合において、電源配線VDDの下方にP型ボトム領域を配置することができ、電源配線VSSの下方にN型ボトム領域を配置することができる。したがって、本実施形態に係るタップセルでは、上下に隣接した他のセルとの間で電源配線VDD,VSSを共有することができるので、回路ブロックの面積をより小さくすることができる。
 また、N型ボトム領域111は、トランジスタP1,P2のボトムが接続されたP型ボトム領域113,114に対して、X方向において十分な間隔が保たれており、かつ、隣接配置される他のセルの、電源配線VDDの下方に配置されるP型ボトム領域に対して、Y方向において十分な間隔が保たれる。同様に、P型ボトム領域112は、トランジスタN1,N2のボトムが接続されたN型ボトム領域115,116に対して、X方向において十分な間隔が保たれており、かつ、隣接配置される他のセルの、電源配線VSSの下方に配置されるN型ボトム領域に対して、Y方向において十分な間隔が保たれる。したがって、パタン形成が容易になる。
 また、本実施形態に係るタップセルは、トランジスタP1,P2,N1,N2が配置されている。これにより、半導体集積回路装置においてVNWの分布が均一となり、製造精度が上がるとともに、トランジスタ特性のばらつきが抑制される。さらには、タップセルの両側に隣接配置されるセルについて、トランジスタ特性の予測可能性が向上する。
 ゲート配線121,122,123,124,125,126,127,128は、全てY方向に延びており、かつ、同一配線幅である。これにより、製造が容易になり、製造精度が上がる。ローカル配線131,132,133,134,135,136,137,138は、全てY方向に延びており、かつ、同一配線幅である。これにより、製造が容易になり、製造精度が上がる。
 なお、トランジスタP1,P2およびトランジスタN1,N2のボトム、ゲートおよびトップは、少なくとも一部は、フローティングでなくてもよい。例えば、トランジスタP1,P2のボトム、ゲートおよびトップに、電源電圧VDDを与えてもよい。
 また、Y方向に並ぶトランジスタについて、ゲート同士を接続してもよい。例えば、トランジスタP1のゲートと、トランジスタN1のゲートを、単一のゲート配線で接続してもよい。また、Y方向に並ぶトランジスタについて、トップ同士を接続してもよい。例えば、トランジスタP1のトップと、トランジスタN1のトップを、単一のローカル配線で接続してもよい。また、VNWが形成されていない箇所の、Y方向に並ぶゲート配線同士を接続してもよい。例えば、ゲート配線122,126を接続して、Y方向に延びる単一のゲート配線としてもよい。
 また、トランジスタP1,P2,N1,N2について、VNWの一部または全部を省いてもかまわない。
 <ブロックレイアウト例>
 図8は第2実施形態に係るタップセルを用いた回路ブロックのレイアウトの一例を示す平面図である。図8に示す回路ブロックでは、複数のセルCがX方向に並ぶ複数のセル列CR1,CR2,CR3が、Y方向に並べて配置されている。複数のセルCの中で、TAP21,TAP22はタップセルであり、上述のレイアウト構造を有している。他のセルC(図8では、2入力NANDセルND2としている)は、VNW FETを含むレイアウト構造を有している。複数のセル列CR1,CR2,CR3のY方向における両側に、X方向に延びる電源配線VDD1,VSS1,VDD2,VSS2が配置されている。電源配線VSS1,VSS2は電源電圧VSSを供給し、電源配線VDD1,VDD2は電源電圧VDDを供給する。
 図8に示す回路ブロックでは、複数のセル列CR1,CR2,CR3は交互に上下フリップされており、隣り合うセル列はその間にある電源配線を共有している。例えば、セル列CR1,CR2は電源配線VSS1を共有し、セル列CR2,CR3は電源配線VDD2を共有する。また、セル列CR1,CR2はP基板またはPウェルを共有しており、セル列CR2,CR3はNウェルを共有している。そして、タップセルはセル列の1列おきに配置されている。図8では、セル列CR1にタップセルTAP21が配置されており、セル列CR3にタップセルTAP22が配置されている。セル列CR2にはタップセルは配置されていない。
 セル列CR1,CR2が共有するP基板またはPウェルは、各セルCにおいて、N型VNW FETが形成されており、また、タップセルTAP21におけるP型のボトム領域112を介して電源電圧VSSが供給される。また、セル列CR2,CR3が共有するNウェルは、各セルCにおいて、P型VNW FETが形成されており、また、タップセルTAP22におけるN型のボトム領域111を介して電源電圧VDDが供給される。
 図8から分かるように、本実施形態によると、上下に隣接するセル列で電源配線を共有することができるので、回路ブロックの面積がより小さくなる。また、タップセルTAP21,TAP22においてX方向における両端近傍にVNWが配置されるので、他のセルCに配置されたVNW FET、特に、タップセルの左右に配置されたセルのVNW FETの特性が予測可能となる。
 また、タップセルのボトム領域は、X方向およびY方向において、異なる導電型のボトム領域に対して十分な間隔が保たれている。例えば図8では、タップセルTAP22におけるN型のボトム領域111について、P型のボトム領域との間隔を矢印で示している。したがって、パタン形成が容易になる。
 (第3実施形態)
 図9は図8の下部を拡大した図である。図9において、P型形成部は、P型ボトム領域をパタン形成する範囲であり、N型形成部は、N型ボトム領域をパタン形成する範囲である。図9から分かるように、タップセルTAP22におけるN型ボトム領域111を形成するためのN型形成部は、広いP型形成部の中に、飛び地のように位置している。また、タップセルTAP22におけるP型ボトム領域112を形成するためのP型形成部は、広いN型形成部の中に、飛び地のように位置している。このような配置では、P型形成部およびN型形成部に狭小部が生じ(図9に矢印で示した部分)、パタン形成が困難になる。また、N型ボトム領域111を形成するためのN型形成部、および、P型ボトム領域112を形成するためのP型形成部自体も小さいので、この点においてもパタン形成が困難になる。本実施形態では、このような課題を解決し、パタン形成が容易になるタップセルのレイアウト構造を提供する。
 図10は第3実施形態に係るタップセルのレイアウト構造の例を示す平面図である。図10のレイアウト構造は、図5のレイアウト構造について、ボトム領域111に対するボトム領域112の位置を、X方向において4グリッド分ずらした構成になっている。
 図10に示すように、P型トランジスタ領域は、Nウェル上にある。そしてNウェルの上部に、N導電型にドーピングされたボトム領域211が形成されている。ボトム領域211は、平面視で電源配線VDDから離間している。そしてボトム領域211は、Y方向に並列に延びる接続配線の一例としてのローカル配線231,232によって電源配線VDDと接続されており、電源電圧VDDが供給される。すなわち、ボトム領域211を介して、Nウェルに電源電圧VDDが供給される。
 N型トランジスタ領域は、P基板またはPウェル上にある。そしてP基板またはPウェルの上部に、P導電型にドーピングされたボトム領域212が形成されている。ボトム領域212は、平面視で電源配線VSSから離間している。そしてボトム領域212は、Y方向に並列に延びる接続配線の一例としてのローカル配線233,234によって電源配線VSSと接続されており、電源電圧VSSが供給される。すなわち、ボトム領域212を介して、P基板またはPウェルに電源電圧VSSが供給される。
 そして、ボトム領域211とボトム領域212とは、X方向において4グリッド分ずらして配置されており、X方向において重なりを有しない位置に配置されている。
 P型トランジスタ領域には、トランジスタP1,P2が、ボトム領域211のX方向における両側に配置されている。また、トランジスタP2の図面右側に、トランジスタP3,P4,P5,P6が配置されている。トランジスタP1~P6はそれぞれ、Y方向に並ぶ2個のVNWを有している。また、N型トランジスタ領域には、トランジスタN1,N2が、ボトム領域212のX方向における両側に配置されている。また、トランジスタN1の図面左側に、トランジスタN3,N4,N5,N6が配置されている。トランジスタN1~N6はそれぞれ、Y方向に並ぶ2個のVNWを有している。
 図10のレイアウト構造によると、N型ボトム領域211を形成するためのN型形成部が、N型トランジスタ領域におけるN型形成部と連結している。また、P型ボトム領域212を形成するためのP型形成部が、P型トランジスタ領域におけるP型形成部と連結している。このため、広いN型形成部の中に飛び地のように位置する小さなP型形成部は存在せず、また、広いP型形成部の中に飛び地のように位置する小さなN型形成部は存在しない。そして、P型形成部およびN型形成部に狭小部が生じていない。したがって、パタン形成が容易になる。
 なお、図10のレイアウト構造では、ボトム領域211とボトム領域212の位置を、X方向において4グリッド分ずらしている。ただし、ずらす長さはこれに限られるものではなく、P型形成部およびN型形成部に狭小部が生じないように、ボトム領域の位置をずらせばよい。
 図11は本実施形態の変形例に係るタップセルのレイアウト構造の例を示す平面図である。図11のレイアウト構造は、ボトム領域211とボトム領域212の位置を、X方向において2グリッド分ずらした構成になっている。ボトム領域211とボトム領域212とは、X方向において重なりを有しない位置に配置されている。図11のレイアウト構造でも、N型形成部の中に飛び地のように位置する小さなP型形成部は存在せず、また、P型形成部の中に飛び地のように位置する小さなN型形成部は存在しない。そして、P型形成部およびN型形成部に狭小部が生じていない。したがって、パタン形成が容易になる。加えて、図10のレイアウト構造よりも、タップセルのセル幅(X方向のサイズ)が小さくなる。
 (他の実施形態)
 (その1)
 上述したレイアウト構造の例では、VNWの平面形状は円形であるものとしたが、VNWの平面形状は円形に限られるものではない。例えば、矩形、長円形などであってもかまわない。なお、VNWの平面形状を長円形のように一方向に長く延びる形状である場合には、延びる方向は同一であるのが好ましい。また、端の位置はそろっていることが好ましい。
 また、タップセルにおいて、全てのVNWを同一形状にする必要はなく、異なる平面形状を有するVNWが混在していてもかまわない。
 (その2)
 上述したレイアウト構造の例では、VNW FETおよび擬似VNW FETについては、2個のVNWによって構成するものとしたが、VNW FETおよび擬似VNW FETを構成するVNWの個数はこれに限られるものではない。
 本開示では、VNW FETを備えた半導体集積回路装置において、タップセルを実現できるので、例えば半導体チップの性能向上に有用である。
11 ボトム領域
12 ボトム領域
111 ボトム領域
112 ボトム領域
131,132 ローカル配線(接続配線)
133,134 ローカル配線(接続配線)
211 ボトム領域
212 ボトム領域
231,232 ローカル配線(接続配線)
233,234 ローカル配線(接続配線)
P1~P4 トランジスタ、擬似トランジスタ
N1~N4 トランジスタ、擬似トランジスタ
VDD 電源配線、電源電圧
VSS 電源配線、電源電圧

Claims (10)

  1.  VNW(Vertical Nanowire:縦型ナノワイヤ) FETを備えた半導体集積回路装置であって、
     第1スタンダードセルを備え、
     前記第1スタンダードセルは、
     第1方向に延び、第1電源電圧を供給する第1電源配線と、
     第1導電型のウェルまたは基板の上部に形成された、前記第1導電型の第1ボトム領域とを備え、
     前記第1ボトム領域は、平面視で前記第1電源配線と重なりを有しており、かつ、前記第1電源配線と接続されている
    ことを特徴とする半導体集積回路装置。
  2.  請求項1記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     ボトムが前記第1ボトム領域と接続された、少なくとも1つの第1擬似VNW FETを備える
    ことを特徴とする半導体集積回路装置。
  3.  請求項1記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第1方向に延び、第2電源電圧を供給する第2電源配線と、
     第2導電型のウェルまたは基板の上部に形成された、前記第2導電型の第2ボトム領域とを備え、
     前記第2ボトム領域は、平面視で前記第2電源配線と重なりを有しており、かつ、前記第2電源配線と接続されている
    ことを特徴とする半導体集積回路装置。
  4.  請求項3記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     ボトムが前記第2ボトム領域と接続された、少なくとも1つの第2擬似VNW FETを備える
    ことを特徴とする半導体集積回路装置。
  5.  請求項3記載の半導体集積回路装置において、
     前記第1ボトム領域と前記第2ボトム領域とは、前記第1方向における位置とサイズが同一である
    ことを特徴とする半導体集積回路装置。
  6.  VNW(Vertical Nanowire:縦型ナノワイヤ) FETを備えた半導体集積回路装置であって、
     第1スタンダードセルを備え、
     前記第1スタンダードセルは、
     第1方向に延び、第1電源電圧を供給する第1電源配線と、
     第1導電型のウェルまたは基板の上部に形成されており、平面視で前記第1電源配線から離間した、前記第1導電型の第1ボトム領域と、
     前記第1方向と垂直をなす第2方向に延びており、前記第1電源配線と前記第1ボトム領域とを接続する第1接続配線とを備える
    ことを特徴とする半導体集積回路装置。
  7.  請求項6記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第1ボトム領域の前記第1方向における両側にそれぞれ配置された、第1VNW FETを備える
    ことを特徴とする半導体集積回路装置。
  8.  請求項6記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第1方向に延び、第2電源電圧を供給する第2電源配線と、
     第2導電型のウェルまたは基板の上部に形成された、前記第2導電型の第2ボトム領域と、
     前記第2方向に延びており、前記第2電源配線と前記第2ボトム領域とを接続する第2接続配線とを備える
    ことを特徴とする半導体集積回路装置。
  9.  請求項8記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第2ボトム領域の前記第1方向における両側にそれぞれ配置された、第2VNW FETを備える
    ことを特徴とする半導体集積回路装置。
  10.  請求項8記載の半導体集積回路装置において、
     前記第1ボトム領域と前記第2ボトム領域とは、前記第1方向において重なりを有しない位置に配置されている
    ことを特徴とする半導体集積回路装置。
PCT/JP2018/001655 2018-01-19 2018-01-19 半導体集積回路装置 WO2019142333A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880086042.8A CN111587484A (zh) 2018-01-19 2018-01-19 半导体集成电路装置
JP2019565666A JP7060814B2 (ja) 2018-01-19 2018-01-19 半導体集積回路装置
PCT/JP2018/001655 WO2019142333A1 (ja) 2018-01-19 2018-01-19 半導体集積回路装置
US16/931,693 US11296230B2 (en) 2018-01-19 2020-07-17 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001655 WO2019142333A1 (ja) 2018-01-19 2018-01-19 半導体集積回路装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/931,693 Continuation US11296230B2 (en) 2018-01-19 2020-07-17 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO2019142333A1 true WO2019142333A1 (ja) 2019-07-25

Family

ID=67301623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001655 WO2019142333A1 (ja) 2018-01-19 2018-01-19 半導体集積回路装置

Country Status (4)

Country Link
US (1) US11296230B2 (ja)
JP (1) JP7060814B2 (ja)
CN (1) CN111587484A (ja)
WO (1) WO2019142333A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945576A1 (en) * 2020-07-28 2022-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit device with well tap cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019225314A1 (ja) * 2018-05-22 2021-06-10 株式会社ソシオネクスト 半導体集積回路装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340461A (ja) * 2004-05-26 2005-12-08 Sharp Corp 半導体集積回路装置
WO2011077664A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 半導体装置
JP2011134838A (ja) * 2009-12-24 2011-07-07 Renesas Electronics Corp 半導体装置
WO2015029280A1 (ja) * 2013-08-28 2015-03-05 パナソニック株式会社 半導体集積回路装置
US20160063163A1 (en) * 2014-08-26 2016-03-03 Synopsys, Inc. Arrays with compact series connection for vertical nanowires realizations
US20170213814A1 (en) * 2016-01-22 2017-07-27 Arm Limited Implant Structure for Area Reduction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171977A (ja) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd 半導体集積回路のレイアウト構造
KR102474252B1 (ko) * 2014-06-12 2022-12-05 피디에프 솔루션즈, 인코포레이티드 충진재 셀들, 탭 셀들, 디캡 셀들, 스크라이브 라인들, 및/또는 더미 충진, 그리고 이들을 포함하는 제품 ic 칩들의 용도와는 달리 사용되는 부위들에의 ic 테스트 구조들 및/또는 전자 비임 타깃 패드들의 편의적 배치
US9690892B2 (en) 2014-07-14 2017-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Masks based on gate pad layout patterns of standard cell having different gate pad pitches
WO2019138546A1 (ja) * 2018-01-12 2019-07-18 株式会社ソシオネクスト 半導体集積回路装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340461A (ja) * 2004-05-26 2005-12-08 Sharp Corp 半導体集積回路装置
JP2011134838A (ja) * 2009-12-24 2011-07-07 Renesas Electronics Corp 半導体装置
WO2011077664A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 半導体装置
WO2015029280A1 (ja) * 2013-08-28 2015-03-05 パナソニック株式会社 半導体集積回路装置
US20160063163A1 (en) * 2014-08-26 2016-03-03 Synopsys, Inc. Arrays with compact series connection for vertical nanowires realizations
US20170213814A1 (en) * 2016-01-22 2017-07-27 Arm Limited Implant Structure for Area Reduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945576A1 (en) * 2020-07-28 2022-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit device with well tap cells

Also Published As

Publication number Publication date
CN111587484A (zh) 2020-08-25
JPWO2019142333A1 (ja) 2021-01-07
JP7060814B2 (ja) 2022-04-27
US11296230B2 (en) 2022-04-05
US20200350439A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US11398466B2 (en) Semiconductor integrated circuit device
US11257826B2 (en) Semiconductor integrated circuit device
US11152346B2 (en) Semiconductor integrated circuit device including capacitive element using vertical nanowire field effect transistors
US11309248B2 (en) Semiconductor integrated circuit device
US20210320065A1 (en) Semiconductor integrated circuit device
US11569218B2 (en) Semiconductor integrated circuit device
US20220329235A1 (en) Semiconductor integrated circuit device
US20230094036A1 (en) Semiconductor devices having improved electrical interconnect structures
US11296230B2 (en) Semiconductor integrated circuit device
US11450674B2 (en) Semiconductor integrated circuit device
US11916057B2 (en) Semiconductor integrated circuit device
US11295987B2 (en) Output circuit
US11062765B2 (en) Semiconductor integrated circuit device
JP7174263B2 (ja) 半導体集積回路装置
JP2009158728A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901087

Country of ref document: EP

Kind code of ref document: A1