WO2019141430A1 - Schlicker für keramisches faserverstärktes matrixmaterial - Google Patents

Schlicker für keramisches faserverstärktes matrixmaterial Download PDF

Info

Publication number
WO2019141430A1
WO2019141430A1 PCT/EP2018/083797 EP2018083797W WO2019141430A1 WO 2019141430 A1 WO2019141430 A1 WO 2019141430A1 EP 2018083797 W EP2018083797 W EP 2018083797W WO 2019141430 A1 WO2019141430 A1 WO 2019141430A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip
slurry
cmc
fiber
ceramic
Prior art date
Application number
PCT/EP2018/083797
Other languages
English (en)
French (fr)
Inventor
Gia Khanh Pham
Theresa SCHÜLEIN
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2019141430A1 publication Critical patent/WO2019141430A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Definitions

  • the invention relates to a ceramic fiber-reinforced matrix material, in particular one which shows a low toxicity with regard to the slip with the required processing properties.
  • Ceramic Fiber Reinforced Matrix Materials are the new generation of ceramic materials with improved ductility compared to conventional ceramics, which usually include reinforcing fibers, especially ceramic fibers, and a surrounding slurry with which they are sintered together and firmly bonded together Thus, CMC laminate layers are made, which are then used as stacks or windings for the production of CMC moldings.
  • Oxide-based ceramic matrix materials so-called “oxide CMCs”, show great potential as material for turbine components or components of an exhaust gas system, alone or in combination with superalloys, for example in stationary gas turbines as blades, blades and / or ring segments or at least parts used of it.
  • oxides CMCs comprise alumina and / or mullite fibers in the form of fibers, braided fibers, fiber fabrics and fiber composites and as rovings, continuous fibers and / or short cut fibers, the fibers comprising a slurry of high temperature ceramic material such as alpha alumina , ie alpha Al2O3, mullite, zirconia, in particular which are impregnated in the form of yttrium-stabilized zirconia "YSZ" and / or yttrium-aluminum garnet "YAG”.
  • high temperature ceramic material such as alpha alumina , ie alpha Al2O3, mullite, zirconia, in particular which are impregnated in the form of yttrium-stabilized zirconia "YSZ" and / or yttrium-aluminum garnet "YAG”.
  • Annealing on the one hand and the shrinkage of the slurry before and / or during sintering on the other hand are in opposite directions and still cause problems.
  • the slip which consists essentially only of minerals, in the form of example, ceramic powder or ceramic powder mixture and water, additives, in particular organic reagents, added, on the one hand to achieve better wetting or bonding of the fibers and vice versa, so that a certain stickiness of the prepreg laminate layers, which is important for a successful lamination, is retained.
  • Polyalcohols such as polyvinyl alcohol and / or glycerol shown advantageous. However, not all polyols may be arbitrarily added as organic reagents to the slurry prior to predrying the oxide CMC because some decompose during pre-drying up to 200 ° C or later during sintering, up to 1300 ° C, and thereby gases form, which may be toxic under certain circumstances.
  • the object and object of the present invention is therefore a slip for the impregnation of Verstärkungsfa fibers for oxide-based ceramic matrix composite materials "oxide CMCs", based on the total dry weight of the solid ingredients in the slurry, tend tend: between 45 and 80 wt % of a ceramic powder, What ser and 5 to 15 wt% of ethylene glycol.
  • Ethylene glycol when heated under oxygen deficiency, does not decompose, like the conventionally added glycerol, to the good, up to 267 g / l soluble and toxic, unsaturated aldehyde propenal in water.
  • Slip is a mineral-water mixture in which ceramic material in the form of powder of the same or different size, material and shape, with the addition of ethylene glycol, is mixed to form a pasty mixture. So that ceramic fibers can be impregnated therewith, additives are added to the slip. Second, increasing the bonding of the ceramic material to the fiber, and finally, for the production of CMC prepreg sheets, imparting a certain tackiness required for lamination to the slurry.
  • the viscosities of glycerol and ethylene glycol at room temperature in comparison are 1480 mPa * s for glycerol and 21 mPa * s for ethylene glycol.
  • At least one additional additive is added to the slip in addition to the ethylene glycol.
  • one or more glaze aids such as dispersing aids, defoamers, liquefiers
  • such a glaze aid according to egg ner advantageous embodiment of the invention in a Men ge of 0.1 to 3% by weight, preferably 0.5 to 2% by weight based on the total dry weight of the solid ingredients in the Schli cker added.
  • glaze auxiliaries is preferably carried out as neutral as possible to pH, ie with agents which have a pH of about 7. Auxiliary wise, by acid or base addition, the neutrality of the pH value is produced.
  • ethylene glycol allows according to the tests carried out in the invention, a higher powder content in aqueous slurry than in the prior art, for example, the DE 10 2017 202221.3, because ethylene glycol in contrast to the previously used glycerol and / or polyol and / or another polyol mixture having 3 to 30 OH groups is substantially less viscous.
  • the powder volume fraction can be increased by the addition of low-viscosity ethylene glycol to 45% by volume or more while maintaining the low viscosity.
  • the slip at least two powder fractions. These may vary with regard to the material, the grain size and / or the grain shape.
  • powder fractions comprising coarse grains and powder fractions comprising fine grains may be present.
  • a fine powder fraction having a mean grain diameter d50 of from 0.1 to 0.3 ym or less is present.
  • the low viscosity allows a good infiltration of the fibers, braided fibers and / or the fabric and / or fiber composites.
  • Another advantage of the combination of high powder volume fraction and low water content in the slurry is that, in preferred embodiments, hydrothermal conditioning prior to making the green body, as in the prior art, increases the amount of ceramic material around the fibers increase, is applied, eliminated.
  • a prepreg laminate sheet obtained by impregnating reinforcing fibers and / or fibers available from reinforcing fibers and / or fabrics and / or fibrous compounds with a slurry according to an advantageous embodiment of the invention with 45% by volume of ceramic powder is available. stored directly in airtight packaging and / or further processed in the lamination process.
  • Ethylene glycol has a boiling point of 197 ° C and decomposes at the temperature in glycol aldehyde, methane, carbon monoxide, hydrogen ...
  • the toxicity risk of the slip disclosed here is reduced over that with the addition of glycerol and / or polyols, because no highly toxic cerium settlement products, such as those of glycerol, are known.
  • the slurry contains, for example, based on the total weight of powder, for example.
  • the aluminum powder is mixed with deionized water, ethylene glycol and the glaze aid. After homogenization by mixing in a ball mill to obtain the slurry in the desired viscosity and high powder content.
  • the slip is then used to impregnate alumina and / or mullite fibers to make the prepreg. After impregnation, the prepregs are stored in airtight packaging.
  • Prepreg show a storage stability of 1 to 2 Mona th.
  • the prepreg laminate sheets are cut and laid together, stacked, and / or wound as needed and then dried in an autoclave at a temperature of 120 to 200 ° C.
  • the resulting CMC green body is sintered at 1200 ° C to 1300 ° C.
  • the CMC sintered body exhibits good mechanical and thermomechanical properties:
  • Thickness tolerance 0.39 +/- 0.11%
  • Fiber content 40 full.
  • Faseran part of more than 45 full, especially up to 47 full, preferably up to 50 vol% in the CMC molding with a tensile strength of then in the range between 170 to 180 MPa and higher.
  • the present invention provides for the first time a formulation for a slip for impregnating reinforcing fibers for oxide-based ceramic matrix composites-CMC molded articles, which combines a low water content in the low viscosity slurry with good adhesion to the fiber.
  • the formulation does not require glycerol, which has been found to develop toxic gas under the usual CMC molding conditions.

Abstract

Die Erfindung betrifft ein keramisches faserverstärktes Matrixmaterial, insbesondere eines, das hinsichtlich des Schlickers bei den geforderten Verarbeitungseigenschaften eine geringe Toxizität zeigt. Durch die vorliegende Erfindung wird erstmals eine Formulierung für eine Schlicker zur Imprägnierung von Verstärkungsfasern zur oxidbasierten Ceramic Matrix Composites- CMC-Formkörper-Herstellung angegeben, der einen geringen Wasseranteil im Schlicker mit niedriger Viskosität und guter Haftung an der Faser verbindet. Die Formulierung kommt ohne Glycerin aus, von dem festgestellt wurde, dass es unter den üblichen Herstellungsbedingungen für CMC-Formkörper giftige Gase entwickelt.

Description

Beschreibung
Schlicker für keramisches faserverstärktes Matrixmaterial
Die Erfindung betrifft ein keramisches faserverstärktes Mat rixmaterial, insbesondere eines, das hinsichtlich des Schli ckers bei den geforderten Verarbeitungseigenschaften eine ge ringe Toxizität zeigt.
Keramische faserverstärkte Matrixmaterialien „CMCs" sind die neue Generation keramischer Materialien mit gegenüber den herkömmlichen Keramiken verbesserter Duktilität. Diese Mate rialien umfassen regelmäßig Verstärkungsfasern, insbesondere keramische Fasern, und einen sie umgebenden Schlicker mit dem sie zusammen gesintert und damit fest verbunden werden. In der Regel werden so CMC-Laminatlagen gemacht, die dann als Stapel oder Wicklungen zur Herstellung von CMC-Formkörper eingesetzt werden.
Aus der EP3274560 ist beispielsweise ein derartiger Formkör per aus einem entsprechenden CMC-Laminat bekannt. Aus der DE 10 2017 202221.3 ist ein Schlicker bekannt, der Polyole um fasst, jedoch nicht unter 10 Gew% an Glycerin.
Oxidbasierte keramische Matrixmaterialien so genannte „oxide CMCs" zeigen großes Potential als Material für Turbinenkompo nenten oder Bauteilen eines Abgasstrangs, allein oder in Ver bindung mit Superlegierungen. So werden CMCs unter anderem auch in stationären Gasturbinen als Schaufeln, Blätter und/oder Ringsegmente oder zumindest Teilen davon eingesetzt.
In der Regel umfassen oxide CMCs Alumina- und/oder Mullit- Fasern in Form von Fasern, geflochtenen Fasern, Fasergeweben und Faserverbunden sowie als Rovings, Endlosfasern und/oder Kurzschnittfasern, wobei die Fasern mit einem Schlicker aus hochtemperaturfähigem keramischem Material wie beispielsweise alpha-Alumina, also alpha AI2O3, Mullit, Zirkonia, insbeson- dere in Form von Yttrium stabilisiertem Zirkonia „YSZ" und/oder Yttrium-Aluminium-Granat „YAG" imprägniert sind.
Die Benetzung der keramischen Fasern oder Fasergeflechte mit dem Schlicker zur Herstellung der CMC-Laminatlagen bedarf je doch immer noch der Optimierung, da die Viskosität des Schli ckers während der Verarbeitung, der Trocknung und/oder
Temperung einerseits und die Schrumpfung des Schlickers vor und/oder während der Sinterung andererseits gegenläufig sind und immer noch zu Problemen führen.
Grundsätzlich wird während der Verarbeitung der oxide CMCs zu Laminatlagen oder Prepreg-Laminatlagen deshalb dem Schlicker, der substantiell nur aus Mineralien, in Form von beispiels weise keramischem Pulver oder keramischem Pulvergemisch und Wasser besteht, noch Additive, insbesondere organische Rea genzien, zugesetzt, zum einen damit eine bessere Benetzung, respektive Anbindung der Fasern erreicht wird und zum ande ren, damit eine bestimmte Klebrigkeit der Prepreg- Laminatlagen, die für eine erfolgreiche Laminierung wichtig ist, erhalten bleibt.
Als organische Reagenzien haben sich dabei Polyole also
Polyalkohole wie beispielsweise Polyvinylalkohol und/oder Glycerin vorteilhaft gezeigt. Allerdings können nicht alle Polyole beliebig als organische Reagenzien dem Schlicker vor der Vortrocknung des oxide CMCs zugesetzt werden, weil manche sich während der Vortrocknung bei bis zu 200°C oder spätes tens während der Sinterung, bei bis zu 1300°C, zersetzen und dabei Gase bilden, die unter Umständen toxisch sein können.
Da die Bildung toxischer gasförmiger Nebenprodukte während eines Prozesses natürlich erhebliche Kosten zum Schutz der damit befassten Personen nach sich zieht, ist es wichtig, dass die in einem Schlicker zur Herstellung von CMC-Prepreg Lagen eingesetzten organischen Reagenzien derartige Nebenpro dukte eben nicht ergeben. Die bekanntesten organischen Reagenzien wie Polyvinylalkohol und/oder Glycerin ergeben jedoch im Schlicker unter den übli chen Trocknungs- und Sinterbedingungen, also ohne Sauerstoff zufuhr im Autoklaven, beispielsweise Propenal oder Acrylalde hyd oder Acrolein. Diese Stoffe sind nicht nur giftig und treten gasförmig aus, sie sind obendrein noch sehr gut in Wasser löslich und werden daher vollständig von der Umwelt und dem Menschen aufgenommen.
Deshalb ist es Aufgabe der vorliegenden Erfindung, einen Schlicker für oxide CMCs mit organischen Reagenzien zur Ver arbeitung anzugeben, dessen Weiterverarbeitung in Form von Trocknung und Sinterung nicht zur Bildung von toxischen unge sättigten Gasen führt.
Lösung der Aufgabe und Gegenstand der vorliegenden Erfindung ist daher ein Schlicker zur Imprägnierung von Verstärkungsfa sern für oxidisch basierte keramische Matrix Komposit- Materialien „oxide CMCs", bezogen auf das Gesamt- Trockengewicht der festen Bestandteile im Schlicker, enthal tend: zwischen 45 und 80 Gew% eines keramischen Pulvers, Was ser und 5 bis 15 Gew% an Ethylenglykol.
Allgemeine Erkenntnis der Erfindung ist es, dass die Zugabe von Ethylenglycol in den Schlicker anstelle von beispielweise Glycerin erstens dessen Pulverinhalt deutlich gesteigert wer den kann, weil Ethylenglycol wesentlich weniger viskos ist bei Raumtemperatur als Glycerin und zweitens, dass
Ethylenglykol beim Erhitzen unter Sauerstoffmangel sich nicht, wie das herkömmlich zugesetzte Glycerin, zu dem in Wasser gut - bis zu 267 g/1 - löslichen und giftigen ungesät tigten Aldehyd Propenal zersetzt.
Schlicker ist ein Mineral-Wasser-Gemisch, in dem keramisches Material in Form von Pulver gleicher oder verschiedener Grö ße, Material und Form, unter Zugabe von Ethylenglykol, zu ei nem breiigen Gemisch vermengt ist. Damit keramische Fasern damit imprägnierbar sind, werden dem Schlicker Additive zuge- setzt, die zum einen die Viskosität erhöhen, zum zweiten die Anbindung des keramischen Materials an die Faser verbessern und schließlich, für die Herstellung von CMC-Prepreg Lagen, eine bestimmte Klebrigkeit die zur Laminierung erforderlich ist, dem Schlicker verleihen.
Es hat sich überraschend gezeigt, dass Ethylenglykol im
Schlicker die Pulveranteile, die noch bei ausreichender Vis kosität erhalten sein können, erhöht und das Wasservolumen im Schlicker dadurch erniedrigt. Zudem hat sich entgegen beste hender Vermutungen, dass Ethylenglykol wegen seiner geringen Viskosität als Lösungsmittel im Schlicker ungeeignet sei, herausgestellt, dass Ethylenglykol sogar sehr gut zum Vermi schen mit keramischen Pulvern geeignet ist und eine gute Haf tung und Anbindung der keramischen Anteile im Schlicker an die Fasern/Faserzöpfe, Fasergewebe und/oder Faserverbunde be wirkt. Dies ist überraschend, weil normalerweise eine geringe Viskosität auch eine geringe Klebrigkeit vermuten ließe, Ethylenglykol aber zusammen mit keramischem Pulver einen ganz ausgezeichnet zur Imprägnierung geeigneten CMC-Schlicker ergibt .
Die Viskositäten von Glycerin und Ethylenglykol bei Raumtem peratur im Vergleich sind 1480 mPa*s für Glycerin und ande rerseits 21 mPa*s für Ethylenglykol.
Nach einer vorteilhaften Ausführungsform der Erfindung wird dem Schlicker noch zumindest ein Additiv zusätzlich zu dem Ethylenglykol zugesetzt.
Beispielsweise wird deshalb ein oder mehr Glasurhilfsmittel, wie Dispergier-Hilfsmittel, Entschäumer, Verflüssiger
und/oder sonstige handelsübliche, rheologische Additive dem Schlicker zugesetzt.
Beispielsweise wird ein derartiges Glasurhilfsmittel nach ei ner vorteilhaften Ausführungsform der Erfindung in einer Men ge von 0,1 bis 3 Gew%, bevorzugt 0,5 bis 2 Gew%, bezogen auf das Gesamt-Trockengewicht der festen Bestandteile im Schli cker, zugesetzt.
Die Zugabe von Glasurhilfsmittel erfolgt bevorzugt möglichst pH-neutral, also mit Mitteln, die ungefähr pH 7 haben. Hilfs weise wird durch Säure oder Basen-Zugabe die Neutralität des pH Wertes hergestellt.
Die Zugabe von Ethylenglykol ermöglicht gemäß den im Rahmen der Erfindung durchgeführten Tests einen höheren Pulveranteil im wässrigen Schlicker als nach dem Stand der Technik, bei spielsweise der DE 10 2017 202221.3, weil Ethylenglykol im Gegensatz zu dem bisher gebräuchlichen Glycerin und/oder Polyol- und/oder einem anderen Polyolgemisch mit 3 bis 30 OH- Gruppen wesentlich weniger viskos ist.
Nach einer bevorzugten Ausführungsform der Erfindung kann der Pulvervolumenanteil durch die Zugabe von niedrigviskosem Ethylenglykol gesteigert werden auf 45 Volumenprozent oder mehr unter Beibehaltung der niedrigen Viskosität.
Nach einer vorteilhaften Ausführungsform der Erfindung um fasst der Schlicker zumindest zwei Pulverfraktionen. Diese können hinsichtlich des Materials, der Korngröße und/oder der Kornform variieren.
Insbesondere können Pulver aus Aluminiumoxid, alpha- Aluminiumoxid, Mullit, Zirkonia, Yttrium-stabilisiertes
Zirkonia und/oder Yttrium-Aluminium-Granat YAG sowie beliebi gen Mischungen aus den vorgenannten Verbindungen in dem kera mischen Pulver vorliegen.
Des Weiteren können Pulverfraktionen, die grobe Körnung um fassen und Pulverfraktionen, die feine Körnung umfassen, vor liegen . Beispielsweise kann eine grobe Pulverfraktion mit beispiels weise einem mittleren Korndurchmesser d50 im Bereich von 0,5 bis 2,0 ym oder größer vorliegen.
Nach einer Ausführungsform liegt eine feine Pulverfraktion mit einem mittleren Korndurchmesser d50 von 0,1 bis 0,3 ym oder geringer vor.
Beispielsweise liegen zwei Pulverfraktionen im Verhältnis von 50:50 bis 80:20 vor, wobei bei ungleichen Verhältnissen, ab weichend also von 50:50, schon rein gewichtsmäßig die gröbere Körnerfraktion überwiegt.
Die niedrige Viskosität ermöglicht dabei eine gute Infiltra tion der Fasern, geflochtenen Fasern und/oder der Gewebe und/oder Faserverbunde .
Ein weiterer Vorteil der Kombination aus hohem Pulvervolumen anteil und niedrigem Wasseranteil im Schlicker ist, dass nach bevorzugten Ausführungsformen eine hydrothermische Konditio nierung, vor der Herstellung des Grünkörpers, wie sie nach dem Stand der Technik, um den Anteil an keramischem Material um die Fasern herum zu erhöhen, angewendet wird, entfallen.
Insofern kann eine Prepreg-Laminatlage, die durch Imprägnie ren von Verstärkungsfasern und/oder aus Verstärkungsfasern erhältlichen Faserzöpfen und/oder Geweben und/oder Faserver bunden mit einem Schlicker nach einer vorteilhaften Ausfüh rungsform der Erfindung mit 45 Vol% an keramischem Pulver er hältlich ist, direkt in luftdichter Verpackung gelagert und/oder im Laminierverfahren weiterverarbeitet werden.
Hinzu kommt, dass auch bei der Vortrocknung und/oder der Sin terung ein reduzierter Wassergehalt im Schlicker wie er mit einem Anteil an Ethylenglykol wegen dessen niedriger Viskosi tät möglich ist, vorteilhaft. Dies insbesondere deswegen, weil Ethylenglykol im Schlicker weitaus schneller und voll ständiger aus dem Schlicker zu entfernen ist als Wasser. So wird die Zeit der Vortrocknung des fertigen Laminats, also die Temperung bei 200 °C bis zum Erhalt des Grünkörpers durch Ersatz des Wassers durch Ethylenglykol deutlich reduziert, was wiederum Kosten einspart.
Ethylenglykol hat einen Siedepunkt von 197°C und zersetzt sich bei der Temperatur in Glykolaldehyd, Methan, Kohlenmono xid, Wasserstoff...Das Toxizitätsrisiko des hier offenbarten Schlickers ist gegenüber dem unter Zusatz von Glycerin und/oder Polyolen reduziert, weil keine stark toxischen Zer setzungsprodukte, wie die von Glycerin, bekannt sind.
Im Folgenden wird noch eine beispielhafte Formulierung, die eine Ausführungsform der Erfindung wiedergibt, angegeben.
Der Schlicker enthält beispielsweise - jeweils basierend auf dem Gesamtgewicht an Pulver -,
- 48 bis 77 Gew% an grobem und feinem Aluminiumoxid-
Pulver,
12 Gew% an Ethylenglykol,
0,5 bis 2 Gew% an Glasurhilfsmittel, insbesondere
Dolapix CE 64,
Wasser zur Aufschlämmung.
Zur Herstellung des Schlickers wird das Aluminiumpulver mit deionisiertem Wasser, Ethylenglykol und dem Glasurhilfsmittel gemischt. Nach Homogenisierung durch Mischen in einer Kugel mühle erhält man den Schlicker in der gewünschten Viskosität und mit hohem Pulveranteil.
Der Schlicker wird dann zur Imprägnierung von Alumina- und/oder Mullit-Fasern zur Herstellung des Prepregs einge setzt. Nach erfolgter Imprägnierung werden die Prepregs in luftdichter Verpackung gelagert. Der Schlicker und das
Prepreg zeigen dabei eine Lagerstabilität von 1 bis 2 Mona ten . Zur Herstellung der CMC-Formkörper werden die Prepreg- Laminatlagen geschnitten und zusammen- oder aneinandergelegt, gestapelt, und/oder gewickelt, je nach Bedarf und dann in ei nem Autoklaven bei einer Temperatur von 120 bis 200°C ge trocknet .
Nach der Vortrocknung im Autoklaven wird der erhaltene CMC- Grünkörper bei 1200°C bis 1300°C gesintert.
Der gesinterte CMC-Formkörper zeigt gute mechanische und thermomechanische Eigenschaften:
Reißfestigkeit ( 0 / 90 ) : 143 +/- 11.2 MPa
Steifigkeit, E-Modul (0/90): 75.3 +/- 2.6 GPa
Stärkentoleranz: 0.39 +/- 0.11 %
Scherfestigkeit bei kurzer Wellenlänge oder
„short beam shear strength (0/90)": 12.1 +/- 1.2 MPa
Faseranteil: 40 voll.
Weitere Beispiele lieferten dann auch einen erhöhten Faseran teil von mehr als 45 Voll, insbesondere von bis zu 47 Voll, bevorzugt von bis zu 50 Vol% im CMC-Formkörper mit einer Reißfestigkeit von dann im Bereich zwischen 170 bis 180 MPa und höher.
Durch die vorliegende Erfindung wird erstmals eine Formulie rung für eine Schlicker zur Imprägnierung von Verstärkungsfa sern zur oxidbasierten Ceramic Matrix Composites- CMC- Formkörper-Herstellung angegeben, der einen geringen Wasser anteil im Schlicker mit niedriger Viskosität und guter Haf tung an der Faser verbindet. Die Formulierung kommt ohne Gly cerin aus, von dem festgestellt wurde, dass es unter den üb lichen Herstellungsbedingungen für CMC-Formkörper giftige Ga se entwickelt.

Claims

Patentansprüche
1. Schlicker zur Imprägnierung von Verstärkungsfasern für oxidisch basierte keramische Matrix Komposit-Materialien „oxide CMCs", bezogen auf das Gesamt-Trockengewicht der fes ten Bestandteile im Schlicker, enthaltend: zwischen 45 und 80 Gew% eines keramischen Pulvers, Wasser und 5 bis 15 Gew% an Ethylenglykol .
2. Schlicker nach Anspruch 1, bei dem das keramische Pulver ausgewählt ist aus der Gruppe der folgenden Mineralpulvern: Aluminiumoxid, alpha-Aluminiumoxid, Mullit, Zirkonia, Yttri- um-stabilisiertes Zirkonia und/oder Yttrium-Aluminium-Granat YAG sowie beliebigen Mischungen aus den vorgenannten Verbin dungen .
3. Schlicker nach einem der vorstehenden Ansprüche 1 oder 2, der keramisches Pulver verschiedener Korngrößen umfasst.
4. Schlicker nach einem der vorstehenden Ansprüche, der zu mindest zwei Pulverfraktionen, eine grobe und eine demgegen über feinere, umfasst.
5. Schlicker nach einem der vorstehenden Ansprüche, grobe und feine keramische Pulverkörner im Verhältnis 50:50 bis 80:20 umfassend .
6. Schlicker nach einem der vorstehenden Ansprüche, zumindest ein weiteres Additiv umfassend.
7. Schlicker nach Anspruch 6, als weiteres Additiv ein Gla surhilfsmittel umfassend.
8. Schlicker nach einem der vorstehenden Ansprüche, ein Gla surhilfsmittel in einer Menge von 0,1 bis 3 Gew% umfassend.
9. Schlicker nach einem der vorstehenden Ansprüche, ein Gla surhilfsmittel mit einem ungefähr neutralem pH Wert umfas send .
10. CMC-Formkörper, erhältlich durch Sinterung von CMC-
Prepreg Lagen, die ihrerseits durch Imprägnierung von Ver stärkungsfasern in Form von Fasern, Faserzöpfen, Fasergeweben und/oder Faserverbunden mit einem Faseranteil von mehr als 40 Vol%, mit einem Schlicker gemäß einem der Ansprüche 1 bis 9 erhältlich sind.
11. CMC-Formkörper nach Anspruch 10, mit einem Faseranteil von mehr als 45 Vol%.
12. CMC-Formkörper nach Anspruch 11, mit einem Faseranteil von bis zu 50 Vol%.
PCT/EP2018/083797 2018-01-19 2018-12-06 Schlicker für keramisches faserverstärktes matrixmaterial WO2019141430A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018200853.1 2018-01-19
DE102018200853.1A DE102018200853A1 (de) 2018-01-19 2018-01-19 Schlicker für keramisches faserverstärktes Matrixmaterial

Publications (1)

Publication Number Publication Date
WO2019141430A1 true WO2019141430A1 (de) 2019-07-25

Family

ID=64949220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/083797 WO2019141430A1 (de) 2018-01-19 2018-12-06 Schlicker für keramisches faserverstärktes matrixmaterial

Country Status (2)

Country Link
DE (1) DE102018200853A1 (de)
WO (1) WO2019141430A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197465A1 (en) * 2001-04-24 2002-12-26 Butner Steven Carl Damage tolerant CMC using sol-gel martix slurry
EP2380862A1 (de) * 2010-04-21 2011-10-26 Rolls-Royce plc Verfahren zur Herstellung eines keramischen Matrixverbundstoffartikels
US8562901B1 (en) * 2008-08-25 2013-10-22 The United States Of America As Represented By The Secretary Of The Air Force Method of making crack-free ceramic matrix composites
EP3274560A1 (de) 2015-03-27 2018-01-31 Siemens Aktiengesellschaft Hybriden keramischen matrix-verbundwerkstoff verbundbauteile für gasturbinen
DE102017202221A1 (de) 2017-02-13 2018-08-16 Siemens Aktiengesellschaft Schlicker, Prepreg, sowie daraus aufgebautes Laminat daraus hergestellter Grünkörper und CMC-Turbinenkomponente

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197465A1 (en) * 2001-04-24 2002-12-26 Butner Steven Carl Damage tolerant CMC using sol-gel martix slurry
US8562901B1 (en) * 2008-08-25 2013-10-22 The United States Of America As Represented By The Secretary Of The Air Force Method of making crack-free ceramic matrix composites
EP2380862A1 (de) * 2010-04-21 2011-10-26 Rolls-Royce plc Verfahren zur Herstellung eines keramischen Matrixverbundstoffartikels
EP3274560A1 (de) 2015-03-27 2018-01-31 Siemens Aktiengesellschaft Hybriden keramischen matrix-verbundwerkstoff verbundbauteile für gasturbinen
DE102017202221A1 (de) 2017-02-13 2018-08-16 Siemens Aktiengesellschaft Schlicker, Prepreg, sowie daraus aufgebautes Laminat daraus hergestellter Grünkörper und CMC-Turbinenkomponente

Also Published As

Publication number Publication date
DE102018200853A1 (de) 2019-07-25

Similar Documents

Publication Publication Date Title
EP1470912B1 (de) Mehrschichtiges keramisches Verbundmaterial mit thermischer Schutzwirkung
EP1400499B1 (de) Faserverstärkte Verbundkeramik und Verfahren zu deren Herstellung
EP1734024B1 (de) Oxidkeramischer Faser-Verbundwerkstoff und ein Verfahren zur Herstellung desselben
DE60130688T2 (de) Verfahren zur herstellung von mit sic-fasern verstärktem sic-verbundwerkstoff mit hilfe einer heisspresse
DE2627856A1 (de) Gesinterter siliziumkarbid-koerper und verfahren zu dessen herstellung
DE19623425B4 (de) Verfahren zur Herstellung reaktionsgebundener Mullit-haltiger Keramikformkörper und deren Verwendung
EP2144856A1 (de) Sinterformkörper
EP2059213A2 (de) Verfahren zur herstellung von farbigen keramischen sinterkörpern, insbesondere für zahnmedizinische anwendungen
DE4012229A1 (de) Faserverstaerktes keramisches grundmaterial-verbundstoff-bauteil und verfahren zu seiner herstellung
EP3071522B1 (de) Keramikwerkstoff
WO2018145900A1 (de) Schlicker, prepreg, sowie daraus aufgebautes laminat daraus hergestellter grünkörper und cmc-turbinenkomponente
WO2019141430A1 (de) Schlicker für keramisches faserverstärktes matrixmaterial
EP3169640B1 (de) Herstellen eines schlickers und bauteil aus dem schlicker
EP3640022A1 (de) Verfahren zur herstellung von prepregs für die herstellung faserverstärkter keramikbauteile
EP0064606B1 (de) Verfahren zur Herstellung eines homogenen Siliciumcarbid-Formkörpers
DE102008062155B4 (de) Verfahren zur Herstellung eines verfestigten, einsatzbereiten keramischen Sinterkörpers, Sinterkörper und Verwendung einer keramischen Masse
DE102015016129A1 (de) Verfahren zur Herstellung eines keramischen Kompositwerkstoffes, keramischer Kompositwerkstoff und aus diesem bestehender keramischer Sinterkörper
EP3192628B1 (de) Herstellung von dickwandigen bauteilen mittels spritzgiessen
DE102012020829B4 (de) Verfahren zur Herstellung von Verbundbauteilen
DE19928918B4 (de) Keramischer Schlicker und Verfahren zur Herstellung keramischer Grünkörper mit dem Schlicker
WO2017148658A1 (de) Bindersystem zur herstellung eines schlickers und mit dem schlicker hergestelltes bauteil
DE102008027323B4 (de) Verfahren zur Herstellung von keramischen Komponenten
DE69814995T2 (de) Faserarmierter keramischer Grünkörper
WO2019042764A1 (de) Verbundwerkstoff und verfahren zu seiner herstellung
EP3166903B1 (de) Herstellen eines schlickers und bauteil aus dem schlicker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18829748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18829748

Country of ref document: EP

Kind code of ref document: A1