WO2019141169A1 - 多锚点协议数据单元会话的策略控制的方法和通信装置 - Google Patents

多锚点协议数据单元会话的策略控制的方法和通信装置 Download PDF

Info

Publication number
WO2019141169A1
WO2019141169A1 PCT/CN2019/071842 CN2019071842W WO2019141169A1 WO 2019141169 A1 WO2019141169 A1 WO 2019141169A1 CN 2019071842 W CN2019071842 W CN 2019071842W WO 2019141169 A1 WO2019141169 A1 WO 2019141169A1
Authority
WO
WIPO (PCT)
Prior art keywords
policy
information
psa
smf
pdu session
Prior art date
Application number
PCT/CN2019/071842
Other languages
English (en)
French (fr)
Inventor
丁辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019141169A1 publication Critical patent/WO2019141169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management

Definitions

  • the present application relates to the field of communications, and more particularly to a method and a communication device for policy control of a multi-anchor protocol data unit session.
  • a user equipment establishes a protocol data unit (PDU) session after accessing the network, and accesses an external data network through the PDU session.
  • PDU protocol data unit
  • IP internet protocol
  • SMF Session Management Function
  • UPF User Plane Function
  • IPv4 Internet Protocol Version 4
  • Ipv6 Internet Protocol Version 4
  • Prefix Internet Protocol Version 4
  • UPF1 and UPF2 are two PSAs in which one PDU session of the UE exists.
  • the UE After establishing a PDU session of multiple PSAs, for example, the UE performs service access through UPF1 or UPF2 and executes corresponding policies or rules.
  • the Policy Control Function (PCF) formulates a Policy and Charging Control (PCC) rule for the UE based on the information from the application layer, and sends the established PCC rule to the SMF.
  • PCC rules may vary.
  • the network policy deployed by the operator on the PCF may also require that the network policies when accessing the data network through different UPFs are different. Therefore, for different UPFs, the network policies formulated by the PCF (related to the PDU session) Strategy) may be different.
  • the SMF After the SMF receives the PCC rules and policies related to the PDU session from the PCF, the SMF needs to formulate relevant rules according to PCC rules and/or policies related to the PDU session. However, at present, the SMF cannot judge which UPF is required to execute these rules, and naturally it is impossible to know which UPF to send the rules to. The communication may be wrong, affecting the quality of the user's communication and experience.
  • the present application provides a method and a communication device for policy control of a multi-anchor protocol data unit session.
  • the SMF cannot determine which PSA the rule to be enforced is executed on. Avoid useless or incorrect rules on some PSAs. Improve the user's normal communication quality and user experience. Save communication resources.
  • the first aspect provides a method for policy control of a multi-anchor protocol data unit session, including: a session management function, an SMF network element, a policy control function, a first policy information and indication information sent by a PCF network element, where the indication information is used. And an anchor point PSA indicating a PDU session in which the policy corresponding to the first policy information is executed; optionally, the SMF network element determines second policy information according to the first policy information; the SMF network element sends the first to the PSA Two policy information, the second policy information is used to instruct the PSA to execute the policy.
  • the method for controlling the policy of the multi-anchor protocol data unit session provided by the first aspect in the case that the PDU session of the terminal device has multiple anchor points, when the SMF receives the first policy information, the SMF carries the indication to perform the first The indication information of the PSA of the policy (rule) corresponding to the policy information. In this way, the SMF can know which PSAs need to be executed according to the rules formulated according to the first policy information.
  • the SMF formulates the second policy information according to the first policy information.
  • the second policy information includes a policy (rule) corresponding to the first policy information.
  • the prepared second policy information is sent to the corresponding PSA. After receiving the second policy information, the PSA executes the policy (rule) corresponding to the second policy information.
  • the anchor point PSA of the PDU session of the policy corresponding to the first policy information indicated by the indication information is all PSAs or partial PSAs of the PDU session.
  • the SMF sends the formulated rule to the corresponding PSA for execution according to the indication information.
  • the SMF can send different PSA-related rules to different PSAs according to the actual accessed service or the PSA that is passed. The problem of communication errors caused by the use of useless or incorrect rules on some UPFs is avoided. Improve communication efficiency.
  • the indication information includes at least one of the following information: first address information of the terminal device, second address information after the first address information of the terminal device is converted by the network address, The identification information of the PSA, wherein the first address information of the terminal device is address information corresponding to the PSA allocated by the SMF network element to the terminal device.
  • the SMF can use the foregoing indication information to enable the SFM to accurately and quickly determine the PSA corresponding to the established rule. Improve SFM to determine the efficiency of PSA, save communication resources, and improve communication efficiency.
  • the identifier information of the PSA includes: at least one of a data network access identifier DNAI corresponding to the PSA and a network function identifier of the PSA.
  • a data network access identifier DNAI corresponding to the PSA and a network function identifier of the PSA.
  • using the DNAI of the PSA or the network function identifier to determine the PSA can enable the SFM to accurately and quickly determine the PSA for executing the policy rule, improve the efficiency of the SFM to determine the PSA, and easily implement and save communication resources.
  • the first policy information includes: a policy and a charging control PCC rule and/or a policy related to the PDU session.
  • the second policy information formulated by the SMF may be better targeted and guaranteed, and The PDU session made by the user is adapted.
  • the policy that is implemented when the UE accesses the service through different PSAs is correct, ensuring that the user can use the data to correctly use the data or the application. Improve communication accuracy and user experience.
  • the policy related to the PDU session includes at least one of the following: a charging policy, a default charging policy, an event triggering policy, a re-authorization time limiting policy, and an appearance Report area PRA identity and PRA element list policy, Internet Protocol IP indexing policy, authorized session aggregation maximum rate policy, authorized default quality of service parameter policy.
  • the SMF determines the second policy information based on the policies. The second policy information is sent to the corresponding PSA to ensure that the UE does not encounter an error when accessing the communication through the PSA. It ensures that the strategy implemented by the PSA is accurate, ensuring that the UE can communicate correctly through the PSA, improving communication efficiency and communication quality.
  • the method further includes: the SMF network element sending the second information to the PCF network element, where the second information includes the SMF is allocated by the terminal device in the PDU session Address information corresponding to the PSA and/or identification information of the PSA.
  • the SMF can determine different PCC rules and policies associated with the PDU session for different PSAs. This allows the PSA to correctly communicate with its own corresponding policies or rules to improve communication quality.
  • a method for policy control of a multi-anchor protocol data unit PDU session which includes: a policy control function PCF network element generates first policy information and indication information, where the indication information is used to indicate execution of the first policy The anchor point PSA of the PDU session of the policy corresponding to the information; the PCF network element sends the first policy information and the indication information to the session management function SMF network element.
  • the method for controlling the policy of the multi-anchor protocol data unit PDU session provided by the second aspect, in the case that the PDU session of the terminal device has multiple anchor points, when the PCF sends the first policy information to the SMF, the PCF indicates that the execution of the first The indication information of the PSA of the policy (rule) corresponding to the policy information.
  • the SMF can know which PSAs need to be executed according to the rules formulated according to the first policy information.
  • the anchor point PSA of the PDU session of the policy corresponding to the first policy information indicated by the indication information is all PSAs or partial PSAs of the PDU session.
  • the PCF carries the indication information, so that the SMF may send the formulated rule to the corresponding PSA for execution according to the indication information.
  • the SMF can send different PSA-related rules to different PSAs according to the actual accessed service or the PSA that is passed. The problem of communication errors caused by the use of useless or incorrect rules on some UPFs is avoided. Improve communication efficiency.
  • the indication information includes at least one of the following information: first address information of the terminal device, second address information after the first address information of the terminal device is converted by the network address, The identification information of the PSA, wherein the first address information of the terminal device is address information corresponding to the PSA allocated by the SMF network element to the terminal device.
  • the PSA corresponding to the established rule can be accurately and quickly determined by using the foregoing indication information. Improve the efficiency of determining PSA, save communication resources, and improve communication efficiency.
  • the first policy information includes: a policy and a charging control PCC rule and/or a policy related to the PDU session.
  • the policy may be better targeted and guaranteed, and the PDU session performed by the user is adapt.
  • the policy that is implemented when the UE accesses the service through different PSAs is correct, ensuring that the user can use the data to correctly use the data or the application. Improve communication accuracy and user experience.
  • the policy related to the PDU session includes at least one of the following: a charging policy, a default charging policy, an event trigger policy, a re-authorization time limiting policy, and an appearance Report area PRA identity and PRA element list policy, Internet Protocol IP indexing policy, authorized session aggregation maximum rate policy, authorized default quality of service parameter policy.
  • the second policy information determined according to these policies. Ensure that the UE does not encounter an error when accessing the communication through the PSA. It ensures that the strategy implemented by the PSA is accurate, ensuring that the UE can communicate correctly through the PSA, improving communication efficiency and communication quality.
  • the method further includes: the PCF network element receiving the second information sent by the SMF network element, where the second information includes the SMF allocated by the terminal device in the PDU session
  • the PCF network element generates the first policy information and the indication information
  • the PCF network element generates the first policy information and the indication according to the second information, and the identifier information corresponding to the PSA and the identifier information of the PSA. information.
  • the indication information is determined according to the SMF, the address information corresponding to the PSA allocated by the terminal device in the PDU session, and/or the identifier information of the PSA.
  • the PCF can determine different PCC rules and policies related to the PDU session for different PSAs. This allows the PSA to correctly communicate with its own corresponding policies or rules to improve communication quality.
  • the method further includes: the PCF network element receiving the third information sent by the application function AF network element, where the third information includes the PSA that the terminal device passes when accessing the service The information and the information of the service, wherein the PSA that the terminal device accesses the service is at least one of the PSAs allocated by the SMF for the PDU session, and the PCF network element generates the first policy information and the indication information, including: The PCF network element generates the first policy information and the indication information according to the third information.
  • the indication information is determined according to information of the PSA that the terminal device passes when accessing the service.
  • the AF may notify the PCF of the information of the PSA access service and the information of the PSA for different services accessed by the UE.
  • the PCF formulates PCC rules and related policies corresponding to the service.
  • the policies used by the UE to access different services are different and flexible, and the PSA through which the access service passes is the same as the PSA that performs the policy for the service.
  • Improve the efficiency and accuracy of UE access to different services Improve communication efficiency and user experience, and improve the efficiency of UE access to different services. Improve communication efficiency and user experience.
  • a communication device comprising a processor, a memory and a transceiver for supporting the communication device to perform a corresponding function of the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the first aspect and various implementation manners thereof A method of policy control for multi-anchor protocol data unit sessions.
  • a fourth aspect provides a communication device, including a processing module, a storage module, and a transceiver module, configured to support the communication device to perform the session management function network element in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the functions and functions can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a communication device comprising a processor, a memory and a transceiver for supporting the communication device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the second aspect and various implementations thereof A method of policy control for multi-anchor protocol data unit sessions.
  • the sixth aspect provides a communication device, including a processing module, a storage module, and a transceiver module, configured to support the communication device to perform the function of the policy control function network element in any of the foregoing second aspect or the second aspect of the second aspect.
  • the function may be implemented by hardware, or may be implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • an apparatus that can perform the method of policy control of a multi-anchor protocol data unit session as described in any one of the method claims above.
  • the apparatus provided in the embodiment of the present application solves the problem that the SMF cannot perform the PSA on which the established rule needs to be executed when the PDU session of the multiple PSA is solved. Avoid useless or incorrect rules on some PSAs. Improve the user's normal communication quality and user experience. Save communication resources.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the method of the above aspects.
  • a computer readable medium storing program code for causing a computer to perform the method of the above aspects when the computer program code is run on a computer.
  • a chip system comprising a processor for a communication device to implement the functions involved in the above aspects, for example, generating, receiving, transmitting, or processing data involved in the above method and / or information.
  • the chip system further includes a memory for holding program instructions and data necessary for the communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system architecture for a method of policy control for a Multi-Anchor Protocol Data Unit PDU session.
  • FIG. 2 is a schematic flow chart of adding a protocol data unit session anchor point by inserting a bifurcation point.
  • FIG. 3 is a schematic flow chart of adding a protocol data unit session anchor point by inserting an uplink classifier.
  • FIG. 4 is a schematic flowchart of a method for policy control of a multi-anchor protocol data unit session according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for policy control of a multi-anchor protocol data unit session according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for policy control of a multi-anchor protocol data unit session according to still another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for policy control of a multi-anchor protocol data unit session according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for policy control of a multi-anchor protocol data unit session according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for policy control of a multi-anchor protocol data unit session according to still another embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for policy control of a multi-anchor protocol data unit session according to still another embodiment of the present application.
  • Figure 11 is a schematic block diagram of a communication device of one embodiment of the present application.
  • Figure 12 is a schematic block diagram of a communication device of another embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication device of one embodiment of the present application.
  • Figure 14 is a schematic block diagram of a communication device of another embodiment of the present application.
  • the system architecture includes a terminal device, an access network device, a management device, a gateway device, and a data network (DN).
  • the terminal device in FIG. 1 can be used to connect to an access network device deployed by an operator through a wireless air interface, and then connect to a data network through a gateway device;
  • the access network device is mainly used to implement wireless physical layer functions, resource scheduling, and Functions such as radio resource management, radio access control, and mobility management;
  • management devices are mainly used for device registration, security authentication, mobility management, and location management of terminal devices.
  • Gateway devices are mainly used to establish channels with terminal devices.
  • the channel forwards data packets between the terminal device and the external data network;
  • the data network can correspond to a plurality of different service domains, such as an IP multimedia subsystem (IMS), an Internet Internet, and an internet protocol television (internet protocol).
  • IMS IP multimedia subsystem
  • Internet Internet
  • IPTV internet protocol television
  • terminal devices which may include network devices such as servers (including servers providing multicast services), routers, and gateways.
  • the group management protocol is required to join/exit the multicast IP address corresponding to the multicast service to start receiving/ending the multicast service, and the IP multicast group management protocol.
  • FIG. 1 is only an exemplary architecture diagram. In addition to the functional units shown in FIG. 1 , the network architecture may also include other functional units or functional network elements, which is not limited in this embodiment of the present application.
  • IGMP internet group management protocol
  • MLD multicast listener discovery protocol
  • the terminal device (which may also be referred to as a terminal device) may be a user equipment (UE), such as a mobile phone, a computer, or a cellular phone, a cordless phone, or a session.
  • UE user equipment
  • Session initiation protocol (SIP) telephone smart phone, wireless local loop (WLL) station, personal digital assistant (PDA), computer, laptop, handheld communication device, Handheld computing devices, satellite wireless devices, wireless modem cards, set top boxes (STBs), customer premise equipment (CPE), and/or other devices for communicating over wireless systems.
  • SIP Session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • STBs set top boxes
  • CPE customer premise equipment
  • the access network device may be an access network (AN)/radio access network (RAN) device, and a network composed of multiple 5G-AN/5G-RAN nodes, the 5G-AN/
  • the 5G-RAN node may be: an access point (AP), a next-generation base station (NR nodeB, gNB), a central unit (CU), and a distributed unit (DU) separated gNB.
  • AP access point
  • NR nodeB next-generation base station
  • CU central unit
  • DU distributed unit
  • the foregoing management device may include: access and mobility function (AMF), session management function (SMF), policy control function (PCF), and application function (AF). Wait.
  • AMF access and mobility function
  • SMF session management function
  • PCF policy control function
  • AF application function
  • the gateway device may include functional units such as a user plane fun (UPF), a branching point (BP), and an uplink classifier (UL CL).
  • the functional units may work independently or in combination. Achieve some control functions together, such as: AMF, SMF and PCF can be combined together as a management device for completing access control and mobility management functions such as access authentication, security encryption, location registration of the terminal device, and users. Session management functions such as the establishment, release, and modification of the transmission path, and analysis of some slice-related data (such as congestion) and terminal device-related data.
  • the UPF functions as a gateway device to complete routing and forwarding of user plane data. Functions, such as: responsible for data packet filtering, data transmission/retransmission, rate control, and generation of accounting information for the terminal device.
  • each functional unit can establish a connection through a next generation (NG) interface, for example, the terminal device passes the new radio (NR) interface and the RAN device.
  • NG next generation
  • the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short);
  • the AN/RAN device such as a next generation wireless access base station (NR NodeB) , gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short);
  • the AN/RAN device can establish a control plane signaling connection with the AMF through the NG interface 2 (N2 for short);
  • the UPF can pass the NG interface 4 (
  • the abbreviation N4) establishes a control plane signaling connection with the SMF;
  • the UPF can exchange user plane data with the data network through the NG interface 6 (N6 for short);
  • the AMF can establish a control plane signaling connection with the SMF through the NG
  • the terminal device may refer to the related description of the terminal device in FIG. 1 , and details are not described herein;
  • the access network device may be a base station (nodeB, NB) or an evolved base station (evolution node B). , eNB), TRP, TP, AP, or some other access unit;
  • the core network device may include: a mobility management entity (MME), a policy and charging rules function (PCRF) And other management devices, and gateway devices such as a serving gateway (SGW), a packet data network gateway (PGW), and a local gateway (LGW).
  • MME mobility management entity
  • PCRF policy and charging rules function
  • SGW serving gateway
  • PGW packet data network gateway
  • LGW local gateway
  • interface names between the network elements in the present application are only exemplary, and the interfaces between the network elements may also be other names.
  • the name of the interface is not limited in this application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the method for policy control of a multi-anchor protocol data unit PDU session can be applied to a management device and a gateway device.
  • the management device and the gateway device include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as a browser, an address book, word processing software, and instant messaging software.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • a multi-homing mode can be used to support a multi-PSA scenario (an IPv6 PDU session with multiple PSAs is called a Multi-Homing PDU session).
  • the UPF may be an implementation of the PSA, which will be described below using the UPF as an example of the PSA. It should be understood that other implementations of the PSA may also be used in the various methods provided herein.
  • the SMF may allocate multiple IPv6 prefixes (for example, 2) to the UE, and the UE then constructs an IPV6 address according to the IPV6 prefix.
  • the two IPV6 addresses IPV61 and IPV61 correspond to UPF1 and UPF2, respectively.
  • FIG. 2 is a schematic flow chart of adding a PSA by adding a BP (exemplary description by taking UPF as an example). Steps 201 through 209 are included.
  • the UE accesses the network to establish a PDU session, and the SMF selects UPF1 as an anchor point, and allocates IPv6 Prefix1 corresponding to UPF1 to the UE, and notifies the PCF of IPv6 Prefix1.
  • the PCF formulates default PCC rules and/or other policies related to the PDU session for the UE, and provides the default PCC rules and/or other policies related to the PDU session to the SMF.
  • the SMF develops a Packet Detection Rule (PDR), a Quality of Service Enforcement Rule (QER), and a Usage Report Rule (URR) according to the default PCC rules and/or other policies related to the PDU session.
  • PDR Packet Detection Rule
  • QER Quality of Service Enforcement Rule
  • URR Usage Report Rule
  • the default PCC rule is a PCC rule that is not related to a specific service information or type. It is a PCC rule that is determined by the PCF according to the user subscription and the operator policy. Other policies related to the PDU session include a usage monitoring policy (monitoring key, usage threshold), and Aggregated Maximum Bit Rate (Session-AMBR).
  • the SMF receives the trigger and needs to add a new PSA.
  • SMF uses the Multi-Homing method to add a new PSA.
  • the SMF performs BP and UPF2 selection, and decides to allocate the IPv6 Prefix2 corresponding to UPF2 to the UE.
  • the triggers received by the SMF may include requests from the application layer, mobility of the UE, or consideration of load sharing.
  • step 203 the SMF establishes downlink tunnel information to the BP for UPF2.
  • the SMF establishes an uplink tunnel to UPF1 and UPF2 for the BP, and a downlink tunnel to the RAN.
  • the SMF provides the uplink routing rules to the BP.
  • the BP obtains the uplink routing rule, the data packet matching the source address and the IPv6 Prefix1 in the uplink data packet sent by the user equipment may be sent to the UPF1, and the data packet matching the source address of the uplink data packet and the IPv6 Prefix2 may be sent.
  • UPF2 the data packet matching the source address of the uplink data packet and the IPv6 Prefix2
  • step 205 the SMF establishes a downlink tunnel to BP for UPF1.
  • step 206 the SMF establishes an uplink tunnel to the BP for the RAN.
  • the SMF notifies the UE of the newly assigned IPv6 Prefix 2, and notifies the UE to use the routing rule of IPv6 Prefix 2.
  • Routing rules usually include the IP address corresponding to the communication. That is, the IPv6 Prefix2 address corresponding to UPF2 is included.
  • step 208 the SMF reconfigures IPv6 Prefix1 to notify the UE to use the routing rules and validity periods of IPv6 Prefix1. Routing rules usually include the IP address corresponding to the communication.
  • the SMF performs an event report to the PCF.
  • the event report includes IP address change information, and the event report message carries a new IPv6 Prefix 2, and the message may also carry a data network access identifier 2 (DNAI2), and the newly added UPF2 Corresponding DNAI2.
  • DNAI2 data network access identifier 2
  • the SMF will only assign an IP address to the UE, corresponding to one of the UPFs (for example, corresponding to UPF1, that is, when establishing a PDU session, the SMF selects the PDU session for the PDU session.
  • UPF1 select an available IPv4 address or IPv6 address prefix from the address pool of the UPF1 to be allocated to the UE).
  • FIG. 3 is a schematic flowchart of adding a PSA in the manner of inserting a UL CL in the prior art (exemplary description using UPF as a PSA). Steps 301 to 306 are included.
  • the UE accesses the network to establish a PDU session, and the SMF selects UPF1 as an anchor point.
  • the SMF allocates IPv4 address1 corresponding to UPF1 to the UE, and notifies the PCF of IPv4 address1.
  • the SMF allocates IPv6 perfix1 corresponding to UPF1 to the UE, and notifies the PCF.
  • the PCF formulates default PCC rules and/or other policies related to the PDU session for the UE, and provides the default PCC rules and/or other policies related to the PDU session to the SMF.
  • the SMF formulates PDRs according to default PCC rules and/or other policies related to PDU sessions, and QER, FAR, URR, and/or BAR rules associated with PDRs, and provides these rules to UPF1 for execution.
  • the default PCC rule is not related to a specific application session.
  • the PCC rule that the PCF makes based on the user subscription and the operator policy may also be referred to as an application session-independent PCC rule.
  • Other policies related to PDU sessions include charging policies, default charging policies, event trigger policies, re-authorization time limiting policies, Presnece Reporting Area (PRA) identification and PRA element list policies, and Internet Protocol IP indexing policies.
  • the SMF receives the trigger and needs to add a new PSA.
  • SMF adds a PSA by inserting UL CL.
  • the SMF selects UL CL and UPF2.
  • the triggers received by the SMF may include requests from the application layer, mobility of the UE, or consideration of load sharing.
  • step 303 the SMF establishes downlink tunnel information to the UL CL for UPF2.
  • the SMF establishes an uplink tunnel to UPF1 and UPF2 for the UL CL, and a downlink tunnel to the RAN.
  • the SMF provides uplink routing rules to the UL CL.
  • the uplink data may be sent to the UPF1 or the UPF2 according to the IP address of the destination in the uplink data packet sent by the user equipment.
  • step 305 the SMF establishes a downlink tunnel to UL CL for UPF1.
  • step 306 the SMF establishes an uplink tunnel to the UL CL for the RAN.
  • the UE after establishing a PDU session of multiple PSAs, for example, the UE performs service access through UPF1 or UPF2.
  • the PCF rules the PCC for the UE and sends the established PCC rules to the SMF.
  • the PCC rules for different UPFs may be different.
  • the network policy deployed by the operator on the PCF may also require that the network policies when accessing the data network through different UPFs are different. Therefore, for different UPFs, the network policies formulated by the PCF (other related to the PDU session) Strategy may be different.
  • the SMF After the SMF receives the PCC rules from the PCF and other policies related to the PDU session, the SMF needs to formulate PDR, QER, URR, FAR, BAR, etc.
  • the SMF cannot judge which UPF is required to be executed on these UPFs, and naturally it is impossible to know which UPF to send the rules such as PDR, QER, URR, FAR, and BAR. Therefore, the SMF will issue a good rule to each UPF, causing unnecessary or incorrect rules to be installed on some UPFs, resulting in incorrect execution of the rules, seriously affecting the normal communication of users, causing waste of communication resources and poor user experience. .
  • the present application provides a method for policy control of a multi-anchor PDU session, which may enable the SMF to determine which PSA the rule needs to be established after establishing a PDU session for multiple PSAs or after establishing a PDU session for multiple PSAs. Execute and issue the corresponding rules to the corresponding PSA for execution. It solves the problem that the SMF cannot judge which UPF the rule to be executed needs to be executed. Therefore, the SMF does not issue a good rule to each UPF, and avoids the useless or incorrect rules on some UPFs. Improve the user's normal communication quality and user experience. Save communication resources.
  • FIG. 4 is a schematic flowchart of a method 400 for policy control of a multi-anchor PDU session according to an embodiment of the present application. It can be applied to the scenario shown in FIG. 1 and can be applied to other communication scenarios. The embodiment of the present application is not limited herein.
  • the method 400 includes:
  • the policy control function PCF network element generates first policy information and indication information, where the indication information is used to indicate an anchor point PSA of a PDU session in which the policy corresponding to the first policy information is executed.
  • the PCF network element sends the first policy information and the indication information to the session management function SMF network element.
  • the SMF network element receives the first policy information and the indication information.
  • the method 400 further includes: S430, the SMF network element determines the second policy information according to the first policy information.
  • the SMF network element sends the second policy information to the PSA according to the indication information, where the second policy information is used to instruct the PSA to execute the policy.
  • the PCF network element (also referred to as "PCF") may be referred to as an SMF network element (also referred to as "SMF network element (also referred to as "SMF network element "
  • SMF SMF network element
  • the SMF formulates the second policy information according to the first policy information.
  • the second policy information includes a policy (rule) corresponding to the first policy information.
  • the prepared second policy information is sent to the corresponding PSA.
  • the PSA After receiving the second policy information, the PSA executes the policy (rule) corresponding to the second policy information. Solved the problem that SMF can't judge which PSA needs to be executed on the proposed strategy (rules). Avoid useless or incorrect rules on some PSAs. Ensure that users can communicate correctly and correctly, improving the communication quality and user experience of users. Save communication resources.
  • the PCF generates first policy information and indication information of an anchor PSA for indicating a PDU session in which the policy corresponding to the first policy information is executed.
  • the PSA can be a UPF or other gateway device.
  • the PCF needs to formulate the first policy information related to the PSA for the user equipment.
  • the policies corresponding to different PSAs may be different. Therefore, the strategies developed by the SMF may also be different. That is, the policies (rules) performed by different PSAs are different. Therefore, the PCF sends indication information to the SMF for indicating the anchor PSA of the PDU session in which the policy corresponding to the policy information is executed, that is, which PSA is specified to be executed by the SMF according to the policy information.
  • the PCF sends the first policy information and the indication information to the SMF.
  • the SMF receives the first policy information and the indication information.
  • the first policy information and the indication information may be carried on the relevant air interface signaling sent by the PCF to the SMF.
  • the form of its signaling can be in any possible or common form. The embodiments of the present application are not limited herein.
  • the first policy information and the indication information may be sent to the SMF in one piece of information, or may be separately sent to the SMF in different signaling forms.
  • the first policy information may have been sent before, and now only the indication information needs to be sent, and the SMF is notified to perform the change of the PSA of the policy corresponding to the first policy information.
  • the PCF may have sent the indication information before, and only needs to send the first policy information to update the previous policy, etc., which is within the scope of the present application, and the embodiment of the present application is not limited herein.
  • the SMF determines, according to the first policy information, second policy information related to the PSA.
  • the second policy information includes a policy (rule) corresponding to the first policy information.
  • the policy corresponding to the first policy information is that the PDU session aggregation rate of the user equipment is 50 M/s
  • the SMF determines the second policy information according to the first policy information
  • the policy (rule) corresponding to the second policy information is also The maximum rate of PDU session aggregation of the user equipment is 50 M/sec.
  • the policies (rules) corresponding to the first policy information and the second policy information are the same, that is, the essence of the two is the same, except that the representation form or the carrier of the second policy information is different from the first policy information.
  • the PCF formulates default PCC rules for the UE and/or other policies related to the PDU session (equivalent to the first policy information), and the policy corresponding to the first policy information is the PDU of the user equipment.
  • the amount allowed for the session is 100M.
  • the default PCC rules and/or other policies related to the PDU session, along with information of the PSA of the policy corresponding to the first policy information, are provided to the SMF.
  • the SMF formulates a PDR according to a default PCC rule and/or other policies related to the PDU session, and rules such as QER, FAR, URR, and/or BAR associated with the PDR (equivalent to the second policy information), and provides these rules to the UPF1. carried out.
  • the corresponding policies of PDR, PDR, FAR, URR, etc. are also allowed to be used for the PDU session of the user equipment to be 100M. That is, the essence of the two is the same.
  • the policies corresponding to different PSAs may be different.
  • the SMF determines which PSA is executed according to the rule established according to the policy information according to the indication information of the anchor PSA indicating the PDU session in which the policy information is executed.
  • the first policy information and the second policy information may also be the same, and the SMF forwards the first policy information.
  • step S430 is an optional step, that is, the SMF may determine the second policy information according to the first policy information, and the SMF may further transmit information according to other information, for example, the application function AF, or According to the indication information, the second policy information may also be obtained by combining the information stored by itself. In addition to determining the second policy information based on the first policy information.
  • the SMF may obtain the second policy information in any other possible manner.
  • the second policy information may be the policy information that is already in existence before the SMF, and the embodiment of the present application is not limited herein.
  • the SMF network element sends the second policy information to the PSA that executes the policy corresponding to the first policy information according to the indication information, where the second policy information is used to instruct the PSA to execute the policy.
  • the PSA receives the second policy information, the policy (rule) corresponding to the second policy information may be executed.
  • the PCF carries the policy corresponding to the execution of the policy information when the policy information is sent to the SMF network element ( Rule) PSA indication information.
  • Rule SMF network element
  • the SMF can know which PSAs need to be executed according to the rules formulated according to the policy information. And send the prepared rules to the corresponding PSA.
  • the PSA After the PSA receives the policy, it executes the policy (rules). Solved the problem that SMF can't judge which PSA needs to be executed on the proposed strategy (rules). Avoid using some useless or incorrect rules on some UPFs. Ensure the correctness and reliability of user communication, and improve the communication quality and user experience of users. Save communication resources.
  • the anchor point PSA of the PDU session of the policy corresponding to the first policy information indicated by the indication information is all PSAs or partial PSAs in the PDU session.
  • the policy corresponding to the second policy information that is set by the SMF according to the first policy information may be applicable to all PSAs of the PDU session, and may also be applied to the PDU.
  • a part of the PSA in the session is illustrated by using FIG. 2 or FIG. 3 as an example.
  • the PDU session includes two UPFs, that is, the user equipment accesses the service between the server through the UPF1 and the UPF2.
  • the rule 1 can be instructed to execute on all PSAs by implicit or displayed indication.
  • the indication information may be an identifier of all PSAs, or the indication information does not indicate the identity of all UPFs, and directly indicates “ALL”. It is equivalent to the indication method displayed.
  • the SMF sends the established rule 1 to all UPFs for execution.
  • the display indication manner may also include other manners and the like. The embodiments of the present application are not limited herein.
  • the indication information may be an identifier of the UPF of the part.
  • the indication information may be an identifier of UPF1 or UPF2, and the like.
  • the SMF sends the formulated rule 1 to the UPF1 or performs the UPF execution according to the indication information.
  • the SMF can send different UPF-related rules to different UPFs according to the actual accessed service or the adopted UPF. The problem of communication errors caused by the use of useless or incorrect rules on some UPFs is avoided. Improve communication efficiency.
  • the PCF may not send the indication information to the SMF, that is, the PCF may not send the indication information to the SMF itself as an indication information.
  • This indication is equivalent to an implicit indication.
  • the indication information includes at least one of the following information: first address information of the terminal device, second address information of the first address information of the terminal device after the network address translation, and identifier of the PSA.
  • Information wherein the first address information of the terminal device is address information corresponding to the PSA allocated by the SMF network element to the terminal device.
  • the indication information may include identification information of the PSA, and the identification information of the PSA is used to uniquely identify the PSA.
  • the indication information may further include first address information of the terminal device (also referred to as "user equipment"), and the first address information of the user equipment is address information corresponding to the PSA allocated by the SMF to the user equipment.
  • the SMF selects the UPF1 as the anchor point, and the SMF allocates the IPv6 Prefix1 corresponding to the UPF1 to the UE, and then the UE constructs the IPV6 address according to the IPV6 prefix (IPv6 Prefix1) of the UPF1, and the IPv6 address or the IPv6 address prefix corresponding to the UPF1 is the UE.
  • IPv6 Prefix1 IPv6 Prefix1
  • the UE's PDU session includes multiple UPFs, and the SMF allocates an IPv6 prefix (ie, a Multi-homing scenario) corresponding to each UPF to the UE, the UE may construct a corresponding UPF. IPv6 address.
  • IPv6 prefix ie, a Multi-homing scenario
  • the SMF will only assign an IPv4 address or an IPv6 address prefix to the UE, which is the first address of the user equipment, corresponding to one of the UPFs. For example, it corresponds to UPF1. If the SMF newly inserts a UPF2 for the PDU session, but the source address of the data packet sent by the user equipment received by the UPF2 is the address corresponding to the UPF1, the data sent by the user equipment to the UPF2 (the source address is corresponding to the UPF1). The address) usually needs to go through a specific routing method (network address translation) to enter the data network (for example, in the form of NAT or tunnel).
  • a specific routing method network address translation
  • the second address information (for example, an address corresponding to UPF2) is an address after the network address is translated by the first address (for example, an address corresponding to UPF1).
  • the SMF may determine, according to the identifier information of the UPF, or the PSA corresponding to the first address information or the second address information, the PSA of the policy corresponding to the first policy information, and then send the formulated second policy information. Give the corresponding PSA.
  • the SMF can be made to accurately and quickly determine the PSA corresponding to the established rule. Improve SMF to determine the efficiency of PSA, save communication resources, and improve communication efficiency.
  • the indication information may further include other information related to the PSA, or other types of information.
  • the embodiments of the present application are not limited herein.
  • the identifier information of the PSA includes at least one of a data network access identifier DNAI corresponding to the PSA and a network function identifier of the PSA.
  • the identification information of the PSA may be a data network access identifier DNAI corresponding to the PSA, and the DNAI is used to uniquely identify the user plane access of the data network, and one DNAI may uniquely identify one PSA.
  • the identification information of the PSA may also be a network function identifier of the PSA.
  • the network function identifier is also used to uniquely identify the PSA.
  • the network function identifiers of the PSAs of each access data network are different.
  • the SMF may determine the PSA corresponding to the policy information according to the DNAI or the network function identifier corresponding to the PSA. Using the DNAI of the PSA or the network function identifier to determine the PSA can make the SMF accurately and quickly determine the PSA that executes the policy rules, improve the efficiency of the SMF to determine the PSA, and easily realize the communication resources.
  • the identifier information of the PSA may also be other identifier information related to the PSA, which is not limited herein.
  • the first policy information includes: a policy and a charging control PCC rule and/or a policy related to the PDU session.
  • the UE accesses the network to establish a PDU session, and the SMF selects the UPF as an anchor point, and the SMF notifies the PCF of the information related to the UPF.
  • the PCF formulates PCC rules related to UPF for the UE based on the information from the application layer, and sends the formulated PCC rules to the SMF.
  • the PCC rules corresponding to different UPFs may be different.
  • the policy that the operator configures on the PCF related to the PDU session may also require different access to the data network through different UPFs. Therefore, for different UPFs, the PCF has a policy related to the PDU session. May be different.
  • the PCF After the PCF learns that the SMF newly adds the UPF to the UE, or receives the QoS authorization request from the application function AF, the PCF formulates a PCC rule and/or a policy related to the PDU session, and/or the PCC rule and/or the PDU.
  • the session related policy along with instructions indicating the UPF, is sent to the SMF.
  • the SMF formulates related second policy information according to PCC rules and/or policies related to the PDU session, and sends the corresponding policy information to the corresponding UPF for execution.
  • the second policy information formulated by the SMF is better targeted and guaranteed, and is compatible with the PDU session performed by the user. Ensure that the policies executed by the UE when accessing services through different UPFs are correct, and ensure that users can use the policies to correctly use data or applications. Improve communication accuracy and user experience.
  • the PCC rule may be a default PCC rule, and the default PCC rule refers to a rule that is not related to the application session.
  • the PCF rule based on the user subscription and operator policy the default PCC rule may also be referred to as a PCC rule that is not related to the application session.
  • the default PCC rule can be applied to all services in a set of packages. When the user accesses the service in the package, the default PCC rule can be used regardless of the service.
  • PCC rules that are not related to the application session are usually not triggered by the QoS authorization request sent by the AF.
  • the PCC rule may also be a rule related to the specific service information or type accessed by the UE (ie, a rule related to the application session), and the PCF requests the service according to the quality of service (QOS) from the AF (that is, the service information accessed by the UE). , service filter information, information such as QOS, etc.), and formulate PCC rules related to the specific services accessed by the UE.
  • QOS quality of service
  • the first policy information may also include other policies or information related to the PDU session of the UE.
  • the embodiments of the present application are not limited herein.
  • the policy related to the PDU session includes at least one of the following: a charging policy, a default charging policy, an event triggering policy, a re-authorization time limiting policy, a PRA identity, and a PRA element list.
  • Policy Internet Protocol IP Indexing Policy, Authorized Session Aggregation Maximum Rate Policy, Authorized Default Quality of Service Parameter Policy.
  • the policy associated with the PDU session is used to direct the PSA so that the PSA determines the correct session through the PSA based on the associated policy.
  • the policies related to the PDU session may include: a charging policy, a default charging policy, an event triggering policy, a re-authorization time limiting policy, a presence reporting area PRA identification and a PRA element list policy, an Internet Protocol IP indexing policy, an authorized session. One or more of an aggregate maximum rate policy, an authorized default quality of service parameter policy, and the like. Based on these policies, the SMF determines the second policy information.
  • the second policy information is sent to the corresponding PSA, and the policy corresponding to the second policy information is essentially the same as the foregoing policies, and the PSA can work correctly to ensure that the UE does not encounter errors when accessing the communication through the PSA. . It ensures that the strategy implemented by the PSA is accurate, ensuring that the UE can communicate correctly through the PSA, improving communication efficiency and communication quality.
  • policy related to the PDU session may also include other related policies, which are not limited herein.
  • the method 400 further includes:
  • the SMF network element sends second information to the PCF network element, where the second information includes the SMF is address information corresponding to the PSA allocated by the terminal device in the PDU session, and/or the identification information of the PSA.
  • the PCF network element generates first policy information and indication information, including:
  • the PCF network element generates the first policy information and the indication information according to the second information.
  • the SMF selects the PSA as the anchor point of the PDU session for the terminal device. After selecting the PSA, the SMF notifies the PCF of the information related to the PSA. That is, the second information is sent to the PCF to notify the information related to the PSA. It is used to request a policy related to the PSA from the PCF, so that the PDU session can be correctly performed by using the PSA, ensuring positive determination of the PDU session and avoiding communication errors.
  • the second information includes address information corresponding to the PSA allocated by the SMF for the user equipment and/or identification information of the PSA.
  • the address information corresponding to the UPF1 may be IPv6 prefix1 or IPv4 address1.
  • the identification information of the PSA may be the DNAI corresponding to the PSA, the network function identifier of the PSA, and the like.
  • the PCF may determine, according to the address information corresponding to the PSA and/or the identification information of the PSA, on which PSA the policy corresponding to the first policy information needs to be executed. That is, the PCF determines the indication information according to the address information corresponding to the PSA and/or the identification information of the PSA allocated to the PDU session by the SMF included in the second information.
  • the SMF includes the address information corresponding to the PSA allocated to the terminal device and/or the identification information of the PSA is the identification information or the address information corresponding to the UPF1.
  • the SMF may determine that the policy corresponding to the first policy information needs to be executed on the UPF1 according to the address information corresponding to the PSA and/or the identifier information of the PSA.
  • the PCF determines the first policy information and the indication information according to the second information sent by the SMF, that is, determines the PCC rule and the policy related to the PDU session and the indication information, and it should be understood that the PCF determines according to the second information.
  • the PCC rules can be the default PCC rules. Since the current UE has not accessed the service through the UPF1, the default PCC rule is first delivered to the SMF. When the UE accesses some basic services (for example, the services included in the package), the basic policy can be executed to ensure the correct and normal communication.
  • the information of the selected UPF1 is reported to the PCF by the SMF, and the PCF determines the PCC rule and the policy related to the PDU session according to the information of the UPF1.
  • the PCC rules determined by the PCF and the policies related to the PDU session can be adapted to the UPF1. That is, the second policy information that is formulated is finally sent to the UPF1 for execution.
  • the PCF can determine different PCC rules and policies related to the PDU session for different PSAs. This allows the PSA to correctly communicate with its own corresponding policies or rules to improve communication quality.
  • the second information may further include other information that is allocated by the SMF to the user equipment, and the identifier information of the PSA may also be other types of identification information of the PSA.
  • the embodiments of the present application are not limited herein.
  • the method 400 further includes:
  • the application function AF network element sends the third information to the PCF network element, where the third information includes the information of the PSA and the information of the service that the terminal device passes when accessing the service, where the terminal device passes the service PSA is at least one of the PSAs allocated by the SMF for the PDU session,
  • the PCF network element generates first policy information and indication information, including:
  • the PCF network element generates the first policy information and the indication information according to the third information.
  • the PDU session includes two PSAs, which are UPF1 and UPF2, respectively.
  • the SMF first sends the identifier information of the UPF1 and the UPF2 or the address information corresponding to the UPF1 and the UPF2 to the PCF.
  • the PCF formulates the relevant default PCC rules according to the identifier information of the UPF1 and the UPF2 or the address information corresponding to the UPF1 and the UPF2 (for example, the PCC rule 1) And PCC rules 2).
  • the PCF sends the default PCC rule 1 related to UPF1 to the SMF, and the default PCC rule 2 related to UPF2.
  • the default PCC rule is the PCC rule corresponding to the base application. It should be understood that the PCF may also issue UPF1 and UPF2 PDU-related policies to the SMF, and the PDU-related policies corresponding to different UPFs may also be different.
  • the SMF generates first policy information and indication information according to the information delivered by the PCF.
  • the UE accesses some basic services or applications through UPF1 using policies related to PCC Rule 1 and/or PDU sessions.
  • the AF of the special service application sends the third information to the PCF, and requests the QOS authorization to the PCF.
  • the third information includes information about the PSA that the user equipment passes through when accessing the service, and information about the service.
  • the PCF determines a PCC rule corresponding to the service according to the service information included in the third information.
  • the PCF determines the indication information according to the information of the PSA that the user equipment included in the third information passes when accessing the service.
  • PCC rule 11 which is a PCC rule related to a service accessed by the UE through UPF1, and therefore, the PCC rule 11 is not a default PCC rule.
  • the SFM formulates a policy for the special service and delivers the policy to the UPF1.
  • the UE accesses the service according to the policy for the special service through the UPF1.
  • the PCF formulates the PCC rules and related policies corresponding to the service for different services accessed by the UE.
  • the policies used by the UE to access different services are different and flexible, and the PSA through which the access service passes is the same as the PSA that performs the policy for the service.
  • Improve the efficiency and accuracy of UE access to different services Improve communication efficiency and user experience, and improve the efficiency of UE access to different services. Improve communication efficiency and user experience.
  • the SMF may send the second information to the PCF, where the PCF determines a default PCC rule corresponding to each PSA of the PDU session and a policy related to the PDU.
  • the PCF determines a default PCC rule corresponding to each PSA of the PDU session and a policy related to the PDU.
  • the PCF may send the third information to the PCF according to the AF, and formulate a PCC rule related to the service accessed by the one or more PSAs and a policy related to the PDU, and send the policy to the SMF.
  • the PCC rules and the policies related to the PDU correspond to the PSAs that access the service.
  • the embodiments of the present application are not limited herein.
  • the information about the PSA that the terminal device accesses when accessing the service includes: the identifier information of the PSA that the terminal device accesses when accessing the service, and the first of the terminal device corresponding to the PSA that the terminal device accesses when accessing the service.
  • the address information and at least one of the second address information of the first address information of the terminal device corresponding to the PSA corresponding to the PSA that the terminal device passes through the network address translation.
  • the third information includes information of the PSA and information of the service that the terminal device passes when accessing the service.
  • the information of the service may include information such as the type of the service, the service filter information, and the required QOS.
  • the embodiments of the present application are not limited herein.
  • the PSA information that the terminal device accesses when accessing the service may include: the identification information of the PSA that the terminal device accesses when accessing the service, and the first address information of the terminal device corresponding to the PSA that the terminal device accesses when accessing the service, At least one of the second address information of the terminal device corresponding to the PSA corresponding to the PSA that the terminal device accesses after the network address is converted by the network address
  • the identification information of the PSA may include: a data network access identifier DNAI corresponding to the PSA, a network function identifier of the PSA, or other identifier information related to the PSA.
  • a data network access identifier DNAI corresponding to the PSA a data network access identifier DNAI corresponding to the PSA
  • a network function identifier of the PSA or other identifier information related to the PSA.
  • the embodiments of the present application are not limited herein.
  • the first address information of the terminal device corresponding to the PSA that the terminal device accesses when accessing the service may be address information corresponding to the PSA allocated by the SMF network element to the terminal device, and when the terminal device accesses the service through the PSA, for example, SMF
  • the UPF1 is selected as the anchor point, and the UE is assigned the IPv6 Prefix1 corresponding to the UPF1.
  • the UE then constructs the IPV6 address according to the IPV6 prefix (IPv6 Prefix1) of the UPF1, and the IPv6 address or the IPv6 prefix corresponding to the UPF1 is the first address of the UE.
  • IPv6 Prefix1 IPv6 Prefix1
  • the SMF will only assign an IP address to the UE, corresponding to one UPF in the PDU session. For example, it corresponds to UPF1. If the SMF newly inserts a UPF2 for the PDU session, but the source address of the data packet sent by the UE received by the UPF2 is the address corresponding to the UPF1, the data sent by the UE to the UPF2 (the source address is the address corresponding to the UPF1) It is usually necessary to go through a specific routing method (network address translation) to enter the data network (for example, in the form of NAT or tunnel).
  • a specific routing method network address translation
  • the address corresponding to UPF1 needs to be converted into an address corresponding to UPF2.
  • the second address information of the UE (the address corresponding to the UPF2) is the address after the network address is translated by the first address (the address corresponding to the UPF1).
  • the information of the PSA that the terminal device passes when accessing the service may further include other information related to the PSA.
  • the embodiments of the present application are not limited herein.
  • the second policy information or the policy (rule) corresponding to the first policy information includes at least one of PDR, URR, FAR, QER, and BAR.
  • the rule that the SMF formulates according to the PCC rule delivered by the PCF and/or the policy related to the PDU session may include: at least one of PDR, URR, FAR, QER, BAR, etc., and deliver the rules to The corresponding UPF is executed, so that when the UE accesses the service through the UPF, these rules can be utilized to standardize or guide the behavior of the UE. It can improve the security and accuracy of user equipment access to services. Improve the efficiency and communication quality of user equipment when accessing services, and improve user experience.
  • the SMF may further include, according to the first policy information, a rule related to the UE accessing the service through the UPF.
  • a rule related to the UE accessing the service through the UPF may be included in the SMF.
  • the first, second, third, etc. are merely meant to indicate that the plurality of objects are different.
  • the second information and the third information are only for indicating different information. It should not have any effect on the information itself, and the first, second, third, etc. described above should not impose any limitation on the embodiments of the present application.
  • a method for policy control of a multi-anchor PDU session provided by an embodiment of the present application is described below in conjunction with a specific embodiment.
  • FIG. 7 is a schematic flowchart of a method 500 for policy control of a multi-anchor PDU session according to an embodiment of the present application.
  • the method 500 can be applied in the architecture shown in FIG. 1.
  • the process shown in FIG. 7 mainly describes that the UE establishes a PDU session, the SMF allocates an IPv6 Prefix to the UE, optimizes the network execution path, and establishes a multi-PSA PDU session process by using the Multi-homing mode, and after the PDU session is established, the PCF targets the new UPF2.
  • the PCC rule is sent, and the SMF sends the main flow to the UPF2 according to the indication information.
  • the method 500 includes:
  • the UE accesses the network to establish a PDU session, and the SMF selects UPF1 as an anchor point, allocates an IPv6 Prefix1 corresponding to the UPF1 to the UE, and notifies the PCF of the IPv6 Prefix1.
  • the PCF formulates default PCC rules and/or other policies related to the PDU session for the UE, and provides the default PCC rules and/or other policies related to the PDU session to the SMF.
  • the SMF formulates the PDR according to the default PCC rules and/or other policies related to the PDU session, and the QER, FAR, URR, BAR, and the like associated with the PDR, and provides these rules to the UPF1 for execution.
  • the SMF sends the DNAI1 corresponding to UPF1 to the PCF.
  • the UE accesses the application through the established PDU session, and triggers the application function AF to request QoS authorization from the PCF.
  • the AF sends a QoS request message to the PCF, and the QoS request message carries IPv6 address1 and related service information.
  • IPv6 address1 is the IP address constructed by the UE according to IPv6 Prefix1.
  • the service information includes the filter information of the service, the type of the service, and the QoS required by the service.
  • the PCF saves the request information sent by the AF, and returns the confirmation information to the AF.
  • PCF performs a policy decision according to the subscription data information of the UE, the information sent by the AF, and the network policy configured by the operator.
  • PCC Rule 1 is a PCC rule related to an application session.
  • the PCF sends the PCC rule 1 and/or the policy 1 (ie, the first policy information) related to the PDU session of the UE to the SMF. Since the PDU session has only one UPF at this time, the PCF may not send an UPF indicating the policy for executing the first policy information to the SMF.
  • the SMF saves the PCC rule 1 and/or the policy 1 related to the PDU session of the UE. And return a confirmation message to the PCF.
  • the SMF formulates PDR1 and associated QER1, FAR1, URR1, BAR1 and the like according to PCC rule 1 and/or policy 1 related to the PDU session of the UE.
  • the SMF provides the PDR1 and the associated QER1, FAR1, URR1, and BAR1 rules to the UPF1. Make UPF1 enforce the rules.
  • the AF requests path optimization from the PCF, and carries path optimization information, where the path optimization information carries information such as IPv6 Prefix1, a list of target UPF identifiers currently available to the UE, and a route document identifier.
  • the path optimization information carries information such as IPv6 Prefix1, a list of target UPF identifiers currently available to the UE, and a route document identifier.
  • the PCF saves the path optimization information and returns confirmation information to the AF.
  • the PCF formulates the PCC rule 2 according to the path optimization information, and the PCC rule 2 carries the traffic steering control information, and provides the PCC rule 2 to the SMF.
  • the traffic steering control information carries a list of target UPF identifiers and a traffic steering control identifier mapped according to the routing document identifier.
  • the SMF returns a confirmation message to the PCF.
  • S513 The SMF performs path optimization according to the PCC rule 2, and selects one UPF2 and BP according to the current location of the UE and the list of target UPFs. And decided to allocate the IPv6 Prefix2 corresponding to UPF2 to the UE.
  • the SMF establishes downlink tunnel information to the BP for the UPF2.
  • the SMF establishes an uplink tunnel to the UPF1 and the UPF2 for the BP, and a downlink tunnel to the RAN.
  • the SMF provides the uplink routing rules to the BP.
  • the data packet matching the source address and the IPv6 Prefix1 in the uplink data packet sent by the user equipment may be sent to the UPF1, and the data packet matching the source address of the uplink data packet and the IPv6 Prefix2 may be sent.
  • UPF2 User Planed Access 2
  • the SMF establishes a downlink tunnel to the BP for the UPF1.
  • the SMF establishes an uplink tunnel to the BP for the RAN.
  • the SMF notifies the UE of the newly allocated IPv6 Prefix2, and notifies the UE to use the routing rule of the IPv6 Prefix2.
  • Routing rules usually include the IP address corresponding to the communication. That is, the IPv6 Prefix2 address corresponding to UPF2 is included.
  • S519 The SMF reconfigures IPv6 Prefix1 to notify the UE to use the routing rule of IPv6 Prefix1. Routing rules usually include the IP address corresponding to the communication.
  • the SMF reports an event to the PCF.
  • the event report includes IP Address Change information, a new IPv6 Prefix 2, and may include information on changes in DNAI and DNAI2 corresponding to UPF2. If the SMF does not report the DNAI corresponding to UPF1 in S501, then in this step, the SMF may also report the DNAI1 corresponding to UPF1.
  • the PCF returns confirmation information to the SMF.
  • the PCF reports an event to the AF, and the event report includes an IP Address Change and carries an IPv6 Prefix 2.
  • the event report may also carry information such as DNAI Change, DNAI1 corresponding to UPF1, and DNAI2 corresponding to UPF2.
  • the AF returns a confirmation message to the PCF.
  • the PCF formulates a default rule installed in UPF2, that is, PCC Rule 3. And carry IPv6 Prefix2 or DNAI2 when providing PCC Rule 3 to SMF.
  • the corresponding policy for indicating PCC Rule 3 needs to be executed in UPF2 corresponding to IPv6 Prefix 2 or DNAI2.
  • the SMF returns a confirmation message to the PCF.
  • the SMF is in accordance with PCC Rule 3 and/or Policy 3 related to the PDU session of the UE. Develop PDR3 and related QER3, FAR3, URR3, BAR3 and other information. According to IPv6 Prefix 2 or DNAI2, the policy corresponding to PCC Rule 3 needs to be executed in UPF2. Therefore, PDR3 and associated QER3, FAR3, URR3, and BAR3 are provided to UPF2. If the PCF provides the IPv6 Prefix2 to the SMF, the SMF determines that the policy corresponding to the PCC Rule 3 needs to be executed in the UPF2 according to the mapping between the configured IPv6 prefix and the UPF and the IPv6 Prefix2. If the PCF provides DNAI2 to the SMF, the SMF determines that the policy corresponding to the PCC Rule 3 needs to be executed in the UPF2 according to the configured correspondence between the NDAI and the UPF and the DNAI2.
  • the application function AF performs redirection, so that the UE accesses the local application server through the UPF2. If the application layer message uses the HTTP protocol, the application server sends a redirect indication message to the UE, where the message carries a Uniform Resource Locator (URL) of the new application server. The UE uses the new URL to perform the domain name system (DNS) request operation, and the DNS will return the application server address accessed through the UPF2. The address of the application server matches the destination address in the routing rule of IPv6 Prefix2 that was previously sent to the UE. The UE interacts with the new application server through UPF2 using IPv6 Address2 constructed according to IPv6 Prefix2.
  • DNS domain name system
  • the AF requests a QoS authorization from the PCF, and A sends a QoS request message to the PCF.
  • the QoS request message carries Ipv6 address 2 and new service information, and the new service information includes new service filter information, service type, required QoS, and the like.
  • DNAI2 may also be carried in the request message.
  • the PCF returns a confirmation message to the AF.
  • PCC Rule 4 is a rule related to an application session.
  • the SMF returns a confirmation message to the PCF.
  • the SMF formulates PDR4 and associated QER4, FAR4, URR4, BAR4, etc. according to PCC Rule 4, and/or Policy 4 related to the PDU session of the UE.
  • PCC Rule 4 According to IPv6 Prefix 2 or DNAI2, the policy corresponding to PCC Rule 4 needs to be executed in UPF2. Therefore, PDR4 and associated QER4, FAR4, URR4, and BAR4 are provided to UPF2.
  • the SMF determines that the policy corresponding to the PCC Rule 4 needs to be executed in the UPF2 according to the mapping between the configured IPv6 prefix and the UPF and the IPv6 Prefix2.
  • the SMF determines that the policy corresponding to the PCC Rule 4 needs to be executed in the UPF2 according to the configured correspondence between the NDAI and the UPF and the DNAI2.
  • the SMF provides the PDR4 and the associated QER4, FAR4, URR4, and BAR4 to the UPF2 for execution.
  • the PCF provides indication information of the UPF 2 for executing the PCC rule corresponding policy when providing the PCC rule.
  • Other policies for UPF2 that may be formulated by the PCF, such as charging policies, default charging policies, event trigger policies, re-authorization time limiting policies, presence reporting area PRA identification and PRA element list policies, Internet Protocol IP indexing policies, The Session-AMBR policy, the authorized default quality of service parameter policy, etc., can also be indicated by a similar scheme.
  • the PCF may issue different default PCC rules for different UPFs (eg, UPFs of different locations, etc.).
  • the PCF may issue the indication information that the policy corresponding to the PCC rule can be executed on any UPF when the default PCC rule is issued, and then the SMF will formulate the PDR and the association according to the PCC rule.
  • the rules of QER, URR, FAR, and BAR are provided to UPF and UPF2.
  • DNAI2 is the DNAI corresponding to BP.
  • the policies developed by the PCF that need to be executed on UPF2 will be executed on BP.
  • the method for controlling the policy of the multi-anchor PDU session provided by the present application, in the case that the PDU session has multiple anchor points, when the PCF sends the policy information to the SMF network element, the PCF carries a policy (rule) corresponding to the execution of the policy information. Instructions for the PSA. In this way, the SMF can know which PSAs need to be executed according to the rules formulated according to the policy information. And send the prepared rules to the corresponding PSA. After the PSA receives the policy, it executes the policy (rules). Solved the problem that SMF can't judge which PSA needs to be executed on the proposed strategy (rules). Avoid using some useless or incorrect rules on some UPFs. Improve user communication quality and user experience. Save communication resources.
  • FIG. 8 is a schematic flowchart of a method 600 for policy control of a multi-anchor PDU session according to another embodiment of the present application, which may be applied in the architecture shown in FIG. 1.
  • the process shown in FIG. 8 mainly includes that after the multi-homing multi-PSA PDU session is established, the UE initiates a new service through the UPF1, and the PCF carries the UPF1 indication information (IPv6 Prefix 1 or DNAI1) when the PCC rule is provided to the SMF, and the SMF According to the indication information, the rules formulated according to the PCC rules are provided to the main flow of the UPF1.
  • the UPF1 indication information IPv6 Prefix 1 or DNAI1
  • the method 600 includes:
  • the UE accesses the network to establish a PDU session, and the SMF selects UPF1 as an anchor point for the PDU session, and allocates IPv6 Prefix1 corresponding to UPF1 to the UE.
  • the SMF requests the policy from the PCF and provides information such as IPv6 Prefix1, DNAI1, and the like to the PCF.
  • the PCF formulates the default PCC rule 1 executed on UPF1 and other policies 1 related to the PDU session, and provides it to the SMF, which provides the above information to the UE, UPF1, RAN, etc., respectively.
  • the SMF formulates PDR1 according to the default PCC rule 1 and/or other policies 1 related to the PDU session, and rules such as QER1, FAR1, URR1, and BAR1 associated with the PDR1, and provides these rules to the UPF1 for execution.
  • the SMF decides to add a new PSA.
  • the SMF selects a new anchor point UPF2 for the PDU session and inserts the BP to establish a corresponding user plane tunnel.
  • the SMF allocates IPv6 Prefix2 corresponding to UPF2 to the UE.
  • the SMF requests a policy from the PCF to provide information such as IPv6 Prefix2 and DNAI2.
  • the PCF formulates the PCC Rule 2 executed by the UPF 2 and the other PDU session related policies 2, and provides them to the SMF, which provides the above information to the UE, the UPF 2, the RAN, and the like, respectively.
  • the SMF formulates PDR2 according to the default PCC rule 2 and/or other policies 2 related to the PDU session, and QER2, FAR2, URR2, BAR2 and the like associated with the PDR2, and provides these rules to the UPF2 for execution.
  • the UE interacts with the new service by using an IP address constructed by the IPv6 Prefix1.
  • the AF requests QoS authorization from the PCF.
  • the QoS request message carries the Ipv6 address 2 and the new service information, and the new service information includes the new service filter information, the service type, and the required QoS.
  • DNAI2 may also be carried in the QoS Authorization Request message.
  • the PCF returns confirmation information to the AF.
  • the PCF formulates a PCC rule according to the new service information.
  • the PCC rule is a rule related to an application session.
  • the PCF provides a PCC rule to the SMF and carries IPv6 Prefix 1 or DNAI1.
  • the corresponding policy for indicating PCC Rule 1 needs to be executed in UPF1 corresponding to IPv6 Prefix 1 or DNAI1.
  • the SMF returns a confirmation message to the PCF.
  • the SMF formulates a PDR and an associated QER, FAR, URR, BAR, and the like according to a PCC rule, and/or a policy related to a PDU session of the UE.
  • the IPv6 Prefix 1 or the DNAI1 the policy corresponding to the PCC rule needs to be executed in the UPF1. Therefore, the PDR and the associated QER, FAR, URR, and BAR rules are provided to the UPF1.
  • the PCF provides IPv6 Prefix1 to the SMF. Based on the mapping between the configured IPv6 prefix and the UPF and the IPv6 Prefix1, the SMF determines that the policy corresponding to the PCC rule needs to be executed in the UPF1.
  • the SMF determines that the policy corresponding to the PCC rule needs to be executed in the UPF1 according to the configured correspondence between the NDAI and the UPF and the DNAI1.
  • the SMF provides the PDR4 and associated QER, FAR, URR, BAR, etc. to the UPF1 for execution.
  • the SMF provides a rule such as PDR to the UPF1 according to the IPv6 Prefix1 or the DNAI1. After the UPF1 installs the PDR and other rules, it returns an acknowledgement message to the SFM.
  • a rule such as PDR to the UPF1 according to the IPv6 Prefix1 or the DNAI1.
  • the method for policy control of the multi-anchor PDU session provided by the present application is different for the service accessed by the UE, and the PCF formulates the PCC rule and related policy information corresponding to the service.
  • the PCF sends the policy information to the SMF network element, it carries the indication information of the PSA indicating the policy (rule) corresponding to the execution of the policy information.
  • the SMF can know which PSAs need to be executed according to the rules formulated according to the policy information.
  • the strategies used by the UE to access different services are different and flexible.
  • the PSA through which the service is accessed is the same as the PSA that enforces the policy for the service. Improve the efficiency and accuracy of UE access to different services. Improve communication efficiency and avoid the useless or incorrect rules on some PSAs. Improve the user's normal communication quality and user experience. Save communication resources.
  • FIG. 9 is a schematic flowchart of a method 700 for policy control of a multi-anchor PDU session according to another embodiment of the present application, which may be applied in the architecture shown in FIG. 1.
  • the flow of FIG. 9 mainly describes that after the UE establishes a PDU session, the network allocates an IPv4 address to the UE. The network performs the path optimization. After the UL CL is inserted, the PCF issues the PCC rule for the new UPF2 during the establishment of the multi-PSA PDU session. The SMF sends the main flow to the UPF2 according to the indication information.
  • the method 700 includes:
  • the UE accesses the network to establish a PDU session, and the SMF selects UPF1 as an anchor point, allocates an IPv4 address1 corresponding to the UPF1 to the UE, and notifies the PCF of the IPv4 address1.
  • the PCF formulates default PCC rules and/or other policies related to the PDU session for the UE, and provides the default PCC rules and/or other policies related to the PDU session to the SMF.
  • the SMF formulates PDRs according to default PCC rules and/or other policies related to PDU sessions, and QER, FAR, URR, and/or BAR rules associated with PDRs, and provides these rules to UPF1 for execution.
  • the SMF sends the DNAI1 corresponding to UPF1 to the PCF.
  • the UE accesses the application through the PDU session by using IPv4 address1.
  • the trigger application function AF requests QoS authorization from the PCF.
  • the AF sends a QoS request message to the PCF, and the QoS request message carries IPv4 address1 and related service information.
  • the service information includes the filter information of the service, the type of the service, and the QoS required by the service.
  • the PCF saves the request information sent by the AF, and returns the confirmation information to the AF.
  • the PCF performs a policy decision according to the subscription data information of the UE, the information sent by the AF, and the network policy configured by the operator.
  • the PCC Rule 1 and the policy associated with the UE's PDU session are determined.
  • PCC Rule 1 is a PCC rule related to an application session.
  • the PCF sends the PCC rule 1 and/or the policy 1 related to the PDU session of the UE to the SMF. Since the PDU session has only one UPF, the PCF may not send a policy indicating that the first policy information is corresponding to the SMF. UPF.
  • the SMF saves the PCC rule 1 and/or the policy 1 related to the PDU session of the UE. And return a confirmation message to the PCF.
  • the SMF formulates PDR1 and associated QER1, FAR1, URR1, BAR1, and the like according to PCC Rule 1 and/or Policy 1 related to the PDU session of the UE.
  • the SMF provides the PDR1 and the associated QER1, FAR1, URR1, and BAR1 rules to the UPF1. Make UPF1 enforce the rules.
  • the AF requests path optimization from the PCF, and carries path optimization information, where the path optimization information carries information such as IPv4 address1, a list of target UPF identifiers currently available to the UE, and a route document identifier.
  • the PCF saves the path optimization information and returns confirmation information to the AF.
  • the PCF formulates the PCC rule 2 according to the path optimization information, and the PCC rule 2 carries the traffic steering control information, and provides the PCC rule 2 to the SMF.
  • the traffic steering control information carries a list of target UPF identifiers and a traffic steering control identifier mapped according to the routing document identifier.
  • the SMF first returns a confirmation message to the PCF.
  • S713 The SMF performs path optimization according to the PCC rule 2, and selects one UPF2 and UL CL according to the current location of the UE and the list of target UPFs.
  • the SMF establishes downlink tunnel information to the UL CL for the UPF2.
  • the SMF establishes an uplink tunnel to the UPF1 and the UPF2 for the UL CL, and a downlink tunnel to the RAN.
  • the SMF provides uplink routing rules to the UL CL. After the UL CL obtains the uplink routing rule, the uplink data may be sent to the UPF1 or the UPF2 according to the IP address of the destination in the uplink data packet sent by the user equipment.
  • the SMF establishes a downlink tunnel to the UL CL for the UPF1.
  • the SMF establishes an uplink tunnel to the UL CL for the RAN.
  • the SMF reports the event to the PCF.
  • the event report includes IP address change notification information and DNAI2 corresponding to UPF2. If the SMF does not report the DNAI corresponding to UPF1 in S701, then in this step, the SMF also reports the DNAI1 corresponding to UPF1.
  • the PCF returns a confirmation message to the SMF.
  • the PCF reports an event to the AF, and the event reports information on the change of the DNAI and information such as the DNAI2 corresponding to the UPF2.
  • the AF returns a confirmation message to the PCF.
  • PCF formulates a default rule installed in UPF2, that is, PCC Rule 3.
  • DNAI2 is carried when PCC Rule 3 is provided to the SMF.
  • the corresponding policy for indicating PCC Rule 3 needs to be executed at UPF2.
  • the SMF returns a confirmation message to the PCF.
  • the SMF is in accordance with PCC Rule 3 and/or Policy 3 related to the PDU session of the UE. Develop PDR3 and related QER3, FAR3, URR3, BAR3 and other information.
  • the policy corresponding to the PCC rule 3 needs to be executed in the UPF2, so the PDR3 and the associated QER3, FAR3, URR3, and BAR3 are to be provided to the UPF2.
  • the SMF determines that the policy corresponding to the PCC rule 3 needs to be executed in the UPF2 according to the configured correspondence between the NDAI and the UPF and the DNAI2.
  • the application function AF performs redirection, so that the UE accesses the local application server through the UPF2. If the application layer message uses the HTTP protocol, the application server sends a redirect indication message to the UE, where the message carries a Uniform Resource Locator (URL) of the new application server. The UE uses the new URL to perform the domain name system (DNS) request operation, and the DNS will return the application server address accessed through the UPF2. The address of the application server matches the destination address of the uplink data in the routing rule of the UPF2 previously sent to the ULCL. The UE uses IPv4 address1 to interact with the new application server through UPF2.
  • DNS domain name system
  • S726 The UE interacts with the new application by using IPv4 address1, and the interaction message is sent to UPF2 via the UL CL. If the interactive message is translated into an IPv4 address 2 transmission application via NAT, and the application layer signaling carries IPv4 address 1, the AF provides new service information to the PCF, carrying IPv4 address 1, IPv4 address 2. DNAI2 may also be carried in the message. If the UPF2 sends the interactive message to the application AF in tunnel mode or other non-NAT mode, the AF provides the service information request QoS authorization to the PCF, and carries information such as IPv4 address1 and DNAI2.
  • the PCF returns confirmation information to the AF.
  • PCC Rule 4 is a rule related to the type of service.
  • the SMF returns a confirmation message to the PCF.
  • the SMF formulates PDR4 and associated QER4, FAR4, URR4, BAR4, etc. according to PCC Rule 4, and/or Policy 4 related to the PDU session of the UE.
  • PCC Rule 4 the policy corresponding to the PCC rule 4 needs to be executed in the UPF2. Therefore, the PDR4 and the associated QER4, FAR4, URR4, and BAR4 are provided to the UPF2.
  • the PCF provides IPv4 address 2 to the SMF. Based on the configured mapping between IPv4 address 2 and UPF and IPv4 address 2, the SMF determines that the policy corresponding to PCC Rule 4 needs to be executed in UPF2.
  • the SMF determines that the policy corresponding to the PCC Rule 4 needs to be executed in the UPF2 according to the configured correspondence between the NDAI and the UPF and the DNAI2.
  • the SMF provides the PDR4 and the associated QER4, FAR4, URR4, and BAR4 to the UPF2 for execution.
  • DNAI2 is the DNAI corresponding to UL CL.
  • the policies developed by the PCF that need to be performed on UPF2 will be performed on the UL CL.
  • the PCF provides indication information of the UPF 2 for performing the PCC rule corresponding policy when providing the PCC rule.
  • Other policies for UPF2 that may be formulated by the PCF, such as charging policies, default charging policies, event trigger policies, re-authorization time limiting policies, presence reporting area PRA identification and PRA element list policies, Internet Protocol IP indexing policies, Session-AMBR policy, authorized default quality of service parameter policy, etc., PCF can also be indicated by a similar scheme.
  • the multi-PSA PDU session is established using the UL CL method, the steps of which are similar to the steps in the method 700 described above.
  • the IPv4 address in the above embodiment may be replaced with an IPv6 address or an IPv6 address prefix.
  • the method for controlling the policy of the multi-anchor PDU session provided by the present application, in the case that the PDU session has multiple anchor points, when the PCF sends the policy information to the SMF network element, the PCF carries a policy (rule) corresponding to the execution of the policy information. Instructions for the PSA. In this way, the SMF can know which PSAs need to be executed according to the rules formulated according to the policy information. And send the prepared rules to the corresponding PSA. After the PSA receives the policy, it executes the policy (rules). Solved the problem that SMF can't judge which PSA needs to be executed on the proposed strategy (rules). Avoid using some useless or incorrect rules on some UPFs. Improve the user's normal communication quality and user experience. Save communication resources.
  • FIG. 10 is a schematic flowchart of a method 800 for policy control of a multi-anchor PDU session according to another embodiment of the present application, which may be applied in the architecture shown in FIG. 1.
  • the process shown in FIG. 10 mainly includes that after the multi-homing multi-PSA PDU session is established, the UE initiates a new service through the UPF2, and the PCF carries the indication information of the UPF2 when the PCC rule is provided to the SMF, and the SMF according to the indication information will be based on the PCC. Rules-making rules are provided to UPF2.
  • the method 800 includes:
  • the UE accesses the network to establish a PDU session, and the SMF selects UPF1 as an anchor point, allocates an IPv4 address1 corresponding to the UPF1 to the UE, and notifies the PCF of the IPv4 address1.
  • the PCF formulates default PCC rules and/or other policies related to the PDU session for the UE, and provides the default PCC rules and/or other policies related to the PDU session to the SMF.
  • the SMF provides the above information to the UE, UPF1, RAN, etc., respectively.
  • the SMF formulates PDRs according to default PCC rules and/or other policies related to PDU sessions, and QER, FAR, URR, and/or BAR rules associated with PDRs, and provides these rules to UPF1 for execution.
  • the SMF decides to add a new PSA.
  • the SMF selects a new anchor point UPF2 for the PDU session and inserts the UL CL to establish a corresponding user plane tunnel.
  • the SMF sends an indication of inserting the UL CL to the PCF and information such as the DNAI2 corresponding to the UPF2.
  • the PCF formulates the PCC Rule 2 performed in UPF2 and the Policy 2 related to other PDU sessions and provides it to the SMF.
  • the SMF formulates PDR2 according to the default PCC rule 2 and/or other policies 2 related to the PDU session, and QER2, FAR2, URR2, BAR2 and the like associated with the PDR2, and provides these rules to the UPF2 for execution. If the SMF does not send information such as an indication to insert a UL CL to the PCF, the SFM will provide policy information to the UPF 2 according to the local configuration.
  • the UE interacts with the new application by using IPv4 address1, and the interaction message is sent to UPF2 via the UL CL.
  • the interactive message is translated into an IPv4 address 2 transmission application via NAT, and the application layer signaling carries IPv4 address 1, the AF provides new service information request QoS authorization to the PCF.
  • the QoS request information carries IPv4 address 1 and IPv4 address 2.
  • DNAI2 may also be carried in the QoS request message. If the UPF2 sends the interactive message to the application AF in tunnel mode or other non-NAT mode, the AF provides the service information request QoS authorization to the PCF, and carries information such as IPv4 address1 and DNAI2.
  • the PCF returns confirmation information to the AF.
  • the PCF performs policy decision and formulates PCC rules. If the PCF has previously received an indication to insert a UL CL, the PCF may further determine whether the new service request was generated via a new anchor access.
  • the PCF provides a PCC rule to the SMF and carries IPv4 address2 or DNAI2.
  • the corresponding policy for indicating the PCC rule needs to be executed at UPF2 corresponding to IPv4 address2 or DNAI2.
  • the SMF returns a confirmation message to the PCF.
  • the SMF formulates PDR and associated QER, FAR, URR, and BAR rules according to PCC rules and/or policies related to the PDU session of the UE.
  • the SMF determines the PDR and the associated QER, FAR, and URR according to the correspondence between the IPv4 address2 (if provided by the PCF) and the configured address segment of the NAT and the UPF, or the SMF according to the correspondence between the DNAI2 and the configured DNAI and UPF. , BAR, etc. should be provided to UPF2.
  • the SMF provides rules to UPF2.
  • the multi-PSA PDU session is established using the UL CL method, the steps of which are similar to the steps in the method 800 described above.
  • the IPv4 address in the above embodiment may be replaced with an IPv6 address or an IPv6 address prefix.
  • the method for policy control of the multi-anchor PDU session provided by the present application is different for the service accessed by the UE, and the PCF formulates the PCC rule and related policy information corresponding to the service.
  • the PCF sends the policy information to the SMF network element, it carries the indication information of the PSA indicating the policy (rule) corresponding to the execution of the policy information.
  • the SMF can know which PSAs need to be executed according to the rules formulated according to the policy information.
  • the strategies used by the UE to access different services are different, and the efficiency and accuracy of the UE when accessing different services are improved. Improve communication efficiency and avoid the useless or incorrect rules on some PSAs. Improve the user's normal communication quality and user experience. Save communication resources.
  • the method for controlling the policy of the multi-anchor PDU session in the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 10.
  • the communication device of the embodiment of the present application will be described in detail below with reference to FIG. 11 to FIG.
  • FIG. 11 is a schematic block diagram of a communication device of one embodiment of the present application.
  • the communication device may refer to the above-mentioned session management function network element, and the communication device 900 shown in FIG. 11 may be used to execute the steps corresponding to the session management function SFM performed in the methods 400 to 800 in FIGS. 4 to 10. .
  • the communication device embodiment and the method embodiment correspond to each other.
  • the communication device 900 includes a processor 910, a memory 920, and a transceiver 930.
  • the processor 910, the memory 920, and the transceiver 930 are connected by communication.
  • the memory 920 stores instructions
  • the processor 910 is configured to execute instructions stored in the memory 920
  • the transceiver 930 is configured to perform specific signal transceiving under the driving of the processor 910.
  • the transceiver 930 is configured to receive the first policy information and the indication information sent by the PCF network element of the policy control function, where the indication information is used to indicate an anchor point PSA of the PDU session of the policy corresponding to the first policy information.
  • the processor 910 is configured to determine, according to the first policy information, second policy information.
  • the transceiver 930 is further configured to send the second policy information to the PSA, where the second policy information is used to indicate that the PSA performs the policy.
  • the PCF may carry an indication indicating that the PSA corresponding to the policy (rule) corresponding to the first policy information is sent when the first policy information is sent to the communication device. information.
  • the communication device can know which PSAs need to be executed according to the rules formulated according to the first policy information.
  • the communication device formulates the second policy information based on the first policy information.
  • the second policy information includes a policy (rule) corresponding to the first policy information.
  • the prepared second policy information is sent to the corresponding PSA.
  • the PSA executes the policy (rule) corresponding to the second policy information.
  • the various components in communication device 900 communicate with one another via a communication connection, i.e., processor 910, memory 920, and transceiver 930, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 910, memory 920, and transceiver 930
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP, a digital signal processor (DSP), an application specific integrated circuit (application).
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • application application specific integrated circuit
  • ASIC Specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the anchor point PSA of the PDU session of the policy corresponding to the first policy information indicated by the indication information is all PSAs or partial PSAs of the PDU session.
  • the indication information includes at least one of the following information: first address information of the terminal device, second address information after the first address information of the terminal device is converted by the network address The identification information of the PSA, wherein the first address information of the terminal device is address information corresponding to the PSA allocated by the SMF network element to the terminal device.
  • the identifier information of the PSA includes at least one of a data network access identifier DNAI corresponding to the PSA and a network function identifier of the PSA.
  • the first policy information includes a policy and charging control PCC rule and/or a policy related to the PDU session.
  • the policy related to the PDU session includes at least one of the following policies: a charging policy, a default charging policy, an event trigger policy, a re-authorization time limiting policy, The report area PRA identifier and PRA element list policy, the Internet Protocol IP index policy, the authorized session aggregation maximum rate policy, and the authorized default quality of service parameter policy appear.
  • the transceiver 930 is further configured to: send, to the PCF network element, second information, where the second information includes the SMF is allocated by the terminal device in the PDU session. Address information corresponding to the PSA and/or identification information of the PSA.
  • the processor 910 may be implemented by a processing module
  • the memory 920 may be implemented by a storage module
  • the transceiver 930 may be implemented by a transceiver module.
  • the communication device 1000 may include a processing module 1010.
  • the communication device 900 shown in FIG. 11 or the communication device 1000 shown in FIG. 12 can implement the steps performed by the session management function SFM in the foregoing methods 4 to 10 in FIG. 4 to FIG. 10, and similar descriptions can refer to the foregoing corresponding methods. Description in . To avoid repetition, we will not repeat them here.
  • FIG. 13 shows a schematic block diagram of a communication device 1100 of one embodiment of the present application. It should be understood that the communication device embodiment and the method embodiment correspond to each other, and the communication device 1100 shown in FIG. 13 can be used to execute the steps corresponding to the execution of the policy control function PCF in the methods 400 to 800 in FIGS. 4 to 10. For a similar description, reference may be made to a method embodiment.
  • the communication device 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the processor 1110, the memory 1120, and the transceiver 1130 are connected by communication, and the memory 1120 stores instructions.
  • the processor 1110 is configured to execute instructions stored by the memory 1120, and the transceiver 1130 is configured to perform specific signal transceiving under the driving of the processor 1110.
  • the processor 1110 is configured to generate first policy information and the indication information, where the indication information is used to indicate an anchor point PSA of a PDU session in which the policy corresponding to the first policy information is executed.
  • the transceiver 1130 is configured to send the first policy information and the indication information to a session management function SMF network element.
  • the communication device when the communication device sends the policy information to the SMF network element, the communication device carries the indication information indicating the PSA corresponding to the policy (rule) corresponding to the policy information.
  • the SMF can know which PSAs need to be executed according to the rules formulated according to the policy information. And send the prepared rules to the corresponding PSA.
  • the PSA After the PSA receives the policy, it executes the policy (rules). Solved the problem that SMF can't judge which PSA needs to be executed on the proposed strategy (rules). Avoid using some useless or incorrect rules on some UPFs. Improve user communication quality and user experience. Save communication resources.
  • the various components in communication device 1100 communicate with one another via a communication connection, i.e., processor 1110, memory 1120, and transceiver 1230, communicating control and/or data signals through internal connection paths.
  • a communication connection i.e., processor 1110, memory 1120, and transceiver 1230, communicating control and/or data signals through internal connection paths.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the anchor point PSA of the PDU session of the policy corresponding to the first policy information indicated by the indication information is all PSAs or partial PSAs of the PDU session.
  • the indication information includes at least one of the following information: first address information of the terminal device, second address information after the first address information of the terminal device is converted by the network address The identification information of the PSA, wherein the first address information of the terminal device is address information corresponding to the PSA allocated by the SMF network element to the terminal device.
  • the identifier information of the PSA includes at least one of a data network access identifier DNAI corresponding to the PSA and a network function identifier of the PSA.
  • the first policy information includes: a policy and charging control PCC rule and/or a policy related to the PDU session.
  • the policy related to the PDU session includes at least one of the following policies: a charging policy, a default charging policy, an event trigger policy, a re-authorization time limiting policy, The report area PRA identifier and PRA element list policy, the Internet Protocol IP index policy, the authorized session aggregation maximum rate policy, and the authorized default quality of service parameter policy appear.
  • the transceiver 1130 is further configured to: receive third information sent by the application function AF network element, where the third information includes information about the PSA that the terminal device passes when accessing the service. And information of the service, wherein the PSA that the terminal device accesses when accessing the service is at least one of the PSAs allocated by the SMF for the PDU session.
  • the processor 1110 is specifically configured to: generate the first policy information and the indication information according to the third information.
  • the information about the PSA that the terminal device accesses when accessing the service includes: the identifier information of the PSA that the terminal device passes when accessing the service, and the time when the terminal device accesses the service. At least one of the first address information of the terminal device corresponding to the PSA and the second address information after the network address translation of the first address information of the terminal device corresponding to the PSA that the terminal device accesses when accessing the service.
  • the transceiver 1130 is further configured to: receive second information sent by the SMF network element, where the second information includes the SMF corresponding to the PSA allocated to the terminal device.
  • the address information and/or the identification information of the PSA the processor 1110 is specifically configured to: generate the first policy information and the indication information according to the second information.
  • the processor 1110 may be implemented by a processing module
  • the memory 1120 may be implemented by a storage module
  • the transceiver 1130 may be implemented by a transceiver module.
  • the communication device 1200 may include a processing module 1210. The storage module 1220 and the transceiver module 1230.
  • the communication device 1100 shown in FIG. 13 or the communication device 1200 shown in FIG. 14 can implement the steps performed by the policy control function PCF in the foregoing methods 4 to 10 and the method 400 to the method 800.
  • PCF policy control function
  • the embodiment of the present application further provides a device, which can perform the method for policy control of a multi-anchor protocol data unit session described in any one of the foregoing method claims.
  • the apparatus provided in the embodiment of the present application solves the problem that the SMF cannot perform the PSA on which the established rule needs to be executed when the PDU session of the multiple PSA is solved. Avoid useless or incorrect rules on some PSAs. Improve the user's normal communication quality and user experience. Save communication resources.
  • the embodiment of the present application further provides a computer readable medium for storing computer program code, the computer program comprising a strategy for performing a multi-anchor protocol data unit PDU session of the method 400 to method 800 of the present application.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in this embodiment of the present application.
  • the present application also provides a computer program product, the computer program product comprising instructions, when the instructions are executed, such that the management device, the gateway device, and the access network device can execute a management device corresponding to the above method Operation of a gateway device, an access network device, or a terminal device.
  • the embodiment of the present application further provides a communication system, which includes the communication device provided by the foregoing embodiment of the present application, and the communication system can complete the strategy of any multi-anchor protocol data unit PDU session provided by the embodiment of the present application.
  • the method of control includes the communication device provided by the foregoing embodiment of the present application, and the communication system can complete the strategy of any multi-anchor protocol data unit PDU session provided by the embodiment of the present application. The method of control.
  • the embodiment of the present application further provides a system chip, which includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin or a circuit.
  • the processing unit can execute computer instructions to cause the chip in the communication device to perform the method of policy control of any of the multi-anchor protocol data unit PDU sessions provided by the embodiments of the present application.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the terminal, such as a ROM or other device that can store static information and instructions. Types of static storage devices, RAM, etc.
  • the processor mentioned in any of the above may be executed by a CPU, a microprocessor, an ASIC, or a program of one or more methods for controlling the policy control of the multi-anchor protocol data unit PDU session described above. integrated circuit.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种多锚点协议数据单元会话的策略控制的方法和通信装置,该方法包括:会话管理功能SMF网元接收策略控制功能PCF网元发送的第一策略信息和指示信息,该指示信息用于指示执行该第一策略信息对应的策略的PDU会话的锚点PSA;SMF网元向该PSA发送该第二策略信息,该第二策略信息用于指示该PSA执行策略。本申请提供的多锚点协议数据单元会话的策略控制的方法,解决了多PSA的PDU会话时,SMF无法判断制定的规则需要在哪个PSA执行的问题。避免了某些PSA上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。

Description

多锚点协议数据单元会话的策略控制的方法和通信装置
本申请要求于2018年1月16日提交中国国家知识产权局、申请号为201810041748.4、发明名称为“多锚点协议数据单元会话的策略控制的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更为具体的,涉及一种多锚点协议数据单元会话的策略控制的方法和通信装置。
背景技术
在第五代移动通信技术(5-Generation,5G)系统中,用户设备(user equipment,UE)接入网络后建立协议数据单元(Protocol Data Unit,PDU)会话,并通过PDU会话访问外部数据网络。对于互联网协议(internet protocol,IP)类型的PDU会话,会话管理功能(Session Management Function,SMF)为PDU会话选择一个用户面功能(User Plane Function,UPF)作为互联网协议锚点(IP Anchor),并为UE分配一个属于该UPF地址池的互联网协议第四版(Internet Protocol Version4,IPv4)地址(address)或互联网协议第六版(Internet Protocol Version4,Ipv6)前缀(Prefix)。为了能够就近访问数据网络,在UE移动的过程,IP Anchor需要进行重选。5G系统支持一个PDU会话存在多个协议数据单元会话锚点(PDU Session Anchor,PSA)的场景。例如,UPF1和UPF2是UE的一个PDU会话存在的两个PSA。
当建立多PSA的PDU会话后,例如,UE会通过UPF1或UPF2、并执行相应的策略或者规则进行业务访问。策略控制功能(Policy Control function,PCF)根据来自应用层的信息,为UE制定策略计费控制(Policy and Charging Control,PCC)规则,并将制定好的PCC规则发送给SMF,不同的UPF对应的PCC规则可能不同。此外,运营商配置在PCF上的网络策略,也可能会要求通过不同UPF接入数据网络时的网络策略是不相同的,因此,对于不同的UPF,PCF制定的网络策略(与PDU会话相关的策略)可能也不相同。当SMF从PCF接收到PCC规则和与PDU会话相关的策略后,SMF需要根据PCC规则和/或与PDU会话相关的策略制定相关的规则。但是目前SMF无法判断制定的这些规则需要在哪个UPF上执行,自然也无法知道将制定的规则发送给哪个UPF。造成通信可能出现错误,影响用户通信质量和体验。
发明内容
本申请提供一种多锚点协议数据单元会话的策略控制的方法和通信装置,解决了多PSA的PDU会话时,SMF无法判断制定的规则需要在哪个PSA上执行的问题。避免了某些PSA上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。
第一方面,提供了一种多锚点协议数据单元会话的策略控制的方法,包括:会话管理功能SMF网元接收策略控制功能PCF网元发送的第一策略信息和指示信息,该指示信息用于指示执行该第一策略信息对应的策略的PDU会话的锚点PSA;可选的,该SMF网元根据该第一策略信息,确定第二策略信息;该SMF网元向该PSA发送该第二策略信息,该第二策略信息用于指示该PSA执行该策略。
第一方面提供的多锚点协议数据单元会话的策略控制的方法,在终端设备的PDU会话存在多锚点的情况下,SMF接收PCF下发第一策略信息时,携带指示该执行该第一策略信息对应的策略(规则)的PSA的指示信息。这样SMF便可以知道根据该第一策略信息制定的规则需要在哪些PSA上执行。SMF根据该第一策略信息,制定第二策略信息。该第二策略信息包括与该第一策略信息对应的策略(规则)。并将制定好的第二策略信息发送给对应的PSA。PSA接收到第二策略信息,便执行第二策略信息对应的策略(规则)。解决了SMF无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些UPF上安装无用或者错误的规则。确保用户可以正常正确的进行通信,提高用户的通信质量和用户体验。节省通信资源。
在第一方面的一种可能的实现方式中,该指示信息所指示的执行该第一策略信息对应的策略的PDU会话的锚点PSA,为该PDU会话的所有PSA或者部分PSA。在该实现方式中,SMF便根据该指示信息,将制定的规则发给与之对应的PSA执行。这样,SMF可以根据实际访问的业务或者经过的PSA的不同,将不同的PSA对应的规则发送给不同的PSA。避免了某些UPF上安装无用或者错误的规则造成的通信错误的问题。提高通信效率。
在第一方面的一种可能的实现方式中,该指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、该PSA的标识信息,其中,该终端装置的第一地址信息为该SMF网元为该终端装置分配的与该PSA对应的地址信息。在该实现方式中,SMF利用上述的指示信息,可以使得SFM准确快速的确定制定的规则对应的PSA。提高SFM确定PSA的效率,节省通信资源,提高通信效率。
在第一方面的一种可能的实现方式中,该PSA的标识信息包括:该PSA对应的数据网络接入标识DNAI、该PSA的网络功能标识中的至少一个。在该实现方式中,使用PSA的DNAI或者网络功能标识来确定PSA,可以使得SFM准确快速的确定执行策略规则的PSA,提高SFM确定PSA的效率,容易实现,节省通信资源。
在第一方面的一种可能的实现方式中,该第一策略信息包括:策略和计费控制PCC规则和/或与该PDU会话相关的策略。在该实现方式中,第一策略信息包括策略和计费控制PCC规则和/或与该PDU会话相关的策略时,可以使得SMF制定的第二策略信息具有更好的针对性和保障性,与用户进行的PDU会话相适应。保证UE通过不同的PSA访问业务时执行的策略是正确的,确保用户使用该策略能正确的进行数据或者应用的使用。提高通信的准确性和用户体验。
在第一方面的一种可能的实现方式中,该与该PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。在该实现方式中,SMF根据这些策略,确定第二策略信息。并向对应的PSA下发第二策略信息,保证UE通过该PSA访问通信时不出现错误。确保了PSA执行的策略是准确的,确保UE通过该PSA可以正确的进行通信,提高通信效率和通信质量。
在第一方面的一种可能的实现方式中,该方法还包括:该SMF网元向该PCF网元发送第二信息,该第二信息包括该SMF为终端装置在该PDU会话中分配的与该PSA对应的地址信息和/或该PSA的标识信息。在该实现方式中,SMF针对不同的PSA,可以确定不同的PCC规则和与该PDU会话相关的策略。使得PSA可以正确的利用与自身对应的相关策略或者规 则进行通信,提高通信质量。
第二方面,提供了一种多锚点协议数据单元PDU会话的策略控制的方法,包括:策略控制功能PCF网元生成第一策略信息和指示信息,该指示信息用于指示执行该第一策略信息对应的策略的PDU会话的锚点PSA;该PCF网元向会话管理功能SMF网元发送该第一策略信息和该指示信息。
第二方面提供的多锚点协议数据单元PDU会话的策略控制的方法,在终端设备的PDU会话存在多锚点的情况下,PCF向SMF下发第一策略信息时,携带指示该执行该第一策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该第一策略信息制定的规则需要在哪些PSA上执行。解决了SMF无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些UPF上安装无用或者错误的规则。确保用户可以正常正确的进行通信,提高用户的通信质量和用户体验。节省通信资源。
在第二方面的一种可能的实现方式中,该指示信息所指示的执行该第一策略信息对应的策略的PDU会话的锚点PSA,为该PDU会话的所有PSA或者部分PSA。在该实现方式中,PCF携带该指示信息,可以使得SMF便根据该指示信息,将制定的规则发给与之对应的PSA执行。这样,SMF可以根据实际访问的业务或者经过的PSA的不同,将不同的PSA对应的规则发送给不同的PSA。避免了某些UPF上安装无用或者错误的规则造成的通信错误的问题。提高通信效率。
在第二方面的一种可能的实现方式中,该指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、该PSA的标识信息,其中,该终端装置的第一地址信息为该SMF网元为该终端装置分配的与该PSA对应的地址信息。在该实现方式中,利用上述的指示信息,可以准确快速的确定制定的规则对应的PSA。提高确定PSA的效率,节省通信资源,提高通信效率。
在第二方面的一种可能的实现方式中,该第一策略信息包括:策略和计费控制PCC规则和/或与该PDU会话相关的策略。在该实现方式中,第一策略信息包括策略和计费控制PCC规则和/或与该PDU会话相关的策略时,可以使得策略具有更好的针对性和保障性,与用户进行的PDU会话相适应。保证UE通过不同的PSA访问业务时执行的策略是正确的,确保用户使用该策略能正确的进行数据或者应用的使用。提高通信的准确性和用户体验。
在第二方面的一种可能的实现方式中,该与该PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。在该实现方式中,根据这些策略确定的第二策略信息。保证UE通过该PSA访问通信时不出现错误。确保了PSA执行的策略是准确的,确保UE通过该PSA可以正确的进行通信,提高通信效率和通信质量。
在第二方面的一种可能的实现方式中,该方法还包括:该PCF网元接收该SMF网元发送的第二信息,该第二信息包括该SMF为终端装置在该PDU会话中分配的与该PSA对应的地址信息和/或该PSA的标识信息,该PCF网元生成第一策略信息和指示信息,包括:该PCF网元根据该第二信息,生成该第一策略信息和该指示信息。其中,该指示信息是根据该SMF为终端装置在该PDU会话中分配的与该PSA对应的地址信息和/或该PSA的标识信息确定的。在该实现方式中,PCF针对不同的PSA,可以确定不同的PCC规则和与该PDU会话相关的策略。使得PSA可以正确的利用与自身对应的相关策略或者规则进行通信,提高通信质 量。
在第二方面的一种可能的实现方式中,该方法还包括:该PCF网元接收应用功能AF网元发送的第三信息,该第三信息包括该终端装置访问业务时所经过的PSA的信息和该业务的信息,其中,该终端装置访问业务时所经过的PSA为该SMF为该PDU会话分配的PSA中的至少一个,该PCF网元生成第一策略信息和指示信息,包括:该PCF网元根据该第三信息,生成该第一策略信息和该指示信息。其中,该指示信息是根据该终端装置访问业务时所经过的PSA的信息确定的。在该实现方式中,针对UE访问的业务不同,AF可以向PCF通知PSA访问业务的信息和PSA的信息。从而使得PCF制定与该业务相对应的PCC规则和相关的策略。使得UE访问不同的业务时所利用的策略是不同的,方式灵活,并且,访问业务经过的PSA和执行针对该业务的策略的PSA是相同的。提高UE访问不同业务时的效率和准确性。提高通信效率和用户体验,提高UE访问不同业务时的效率。提高通信效率和用户体验。
第三方面,提供了一种通信装置,包括处理器、存储器和收发器,用于支持该通信装置执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第一方面及其各种实现方式中的多锚点协议数据单元会话的策略控制的方法。
第四方面,提供了一种通信装置,包括处理模块、存储模块和收发模块,用于支持该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的会话管理功能网元的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第五方面,提供了一种通信装置,包括处理器、存储器和收发器,用于支持该通信装置执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第二方面及其各种实现方式中的多锚点协议数据单元会话的策略控制的方法。
第六方面,提供了一种通信装置,包括处理模块、存储模块和收发模块,用于支持通信装置执行上述第二方面或第二方面的任意可能的实现方式中的策略控制功能网元的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第七方面,提供了一种装置,该装置可以执行上述的任意一个方法权利要求中所述的多锚点协议数据单元会话的策略控制的方法。本申请实施例提供的装置,解决了多PSA的PDU会话时,SMF无法判断制定的规则需要在哪个PSA上执行的问题。避免了某些PSA上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十方面,提供了一种芯片系统,该芯片系统包括处理器,用于通信装置实现上述各方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是适用于多锚点协议数据单元PDU会话的策略控制的方法的通信系统架构的示意图。
图2是通过插入分叉点的方式新增一个协议数据单元会话锚点的示意性流程图。
图3是通过插入上行分类器的方式新增一个协议数据单元会话锚点的示意性流程图。
图4是本申请一个实施例的多锚点协议数据单元会话的策略控制的方法的示意性流程图。
图5是本申请另一个实施例的多锚点协议数据单元会话的策略控制的方法的示意性流程图。
图6是本申请又一个实施例的多锚点协议数据单元会话的策略控制的方法的示意性流程图。
图7是本申请一个实施例的多锚点协议数据单元会话的策略控制的方法的示意性流程图。
图8是本申请另一个实施例的多锚点协议数据单元会话的策略控制的方法的示意性流程图。
图9是本申请又一个实施例的多锚点协议数据单元会话的策略控制的方法的示意性流程图。
图10是本申请又一个实施例的多锚点协议数据单元会话的策略控制的方法的示意性流程图。
图11是本申请一个实施例的通信装置的示意性框图。
图12是本申请另一个实施例的通信装置的示意性框图。
图13是本申请一个实施例的通信装置的示意性框图。
图14是本申请另一个实施例的通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是根据本申请的一种多锚点协议数据单元会话的策略控制的方法的无线通信系统架构的示意性框图。如图1所示,该系统架构包括,终端设备,接入网设备,管理设备,网关设备以及数据网络(data network,DN)。其中,图1中的终端设备可以用于通过无线空口连接到运营商部署的接入网设备,继而通过网关设备连接到数据网络;接入网设备主要用于实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理等功能;管理设备主要用于终端设备的设备注册、安全认证、移动性管理和位置管理等,网关设备主要用于与终端设备间建立通道,在该通道上转发终端设备和外部数据网络之间的数据包;数据网络可对应于多种不同的业务域,例如IP多媒体子系统(IP multimedia subsystem,IMS)、互联网Internet、互联网协议电视(internet protocol television,IPTV)、其他运营商业务域等,主要用于为终端设备提供多种数据业务服务,其中可以包含例如服务器(包括提供组播业务的服务器)、路由器、网关等网络设备。对于希望接收IP组播业务数据包的终端,需要通过组管理协议请求加入/退出某组播业务对应的组播IP地址,以开始接收/结束所述组播业务,IP组播的组管理协议在IPv4中有网络组管理协议(internet group management protocol,IGMP)协议,对应在IPv6中有组播侦听者发现协议(multicast listener discovery protocol,MLD)协议。需要说明的是,图1仅为示例性架构图,除图1中所示功能单元之外,该网络架构还可以包括其他功能单元或功能网元,本申请实施例对此不进行限定。
当图1所示通信网络为5G网络时,上述终端设备(也可以称为终端装置)可以为用户设备(user equipment,UE),如:手机、电脑,还可以为蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、智能电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信 的其它设备。上述接入网设备可以为接入网(access network,AN)/无线接入网(radio access network,RAN)设备,由多个5G-AN/5G-RAN节点组成的网络,该5G-AN/5G-RAN节点可以为:接入节点(access point,AP)、下一代基站(NR nodeB,gNB)、中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离形态的gNB、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或某种其它接入节点。上述管理设备可以包括:接入和移动性管理功能(access&mobility function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)、应用功能(Application function,AF)等。网关设备可以包括用户面功能(user plane funtion,UPF)、分叉点(Branching Point,BP)、上行分类器(Uplink Classifier,UL CL)等功能单元,这些功能单元可以独立工作,也可以组合在一起实现某些控制功能,如:AMF、SMF和PCF可以组合在一起作为管理设备,用于完成终端设备的接入鉴权、安全加密、位置注册等接入控制和移动性管理功能,以及用户面传输路径的建立、释放和更改等会话管理功能,以及分析一些切片(slice)相关的数据(如拥塞)、终端设备相关的数据的功能,UPF作为网关设备主要完成用户面数据的路由转发等功能,如:负责对终端设备的数据报文过滤、数据传输/转发、速率控制、生成计费信息等。
在图1的所示的5G网络中,各功能单元之间可以通过下一代网络(next generation,NG)接口建立连接实现通信,如:终端设备通过新无线(new radio,NR)接口与RAN设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;AN/RAN设备例如下一代无线接入基站(NR NodeB,gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;AN/RAN设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。需要说明的是,图1所示的部分仅为示例性架构图,除图1所示的部分中所示功能单元之外,该网络架构还可以包括其他功能单元或功能网元,本申请实施例对此不进行限定。
当图1所示通信网络为4G网络时,终端设备可参照图1中终端设备的相关描述,在此不再赘述;接入网设备可以为基站(nodeB,NB)、演进型基站(evolution nodeB,eNB)、TRP、TP、AP或某种其它接入单元;核心网设备可以包括:移动管理网元(mobility management entity,MME)、策略与计费规则功能(policy and charging rules function,PCRF)等管理设备,以及服务网关(serving gateway,SGW)、分组数据网络网关(packet data network gateway,PGW)、本地网关(local gateway,LGW)等网关设备。
应理解,本申请中的网元之间的接口名称仅是示例性的,网元之间的接口还可以是其他名称,本申请对接口的名称不予限。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、 全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请提供的多锚点协议数据单元PDU会话的策略控制的方法,可以应用于管理设备、网关设备。所述管理设备、网关设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。所述硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。所述操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。所述应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
下面对现有技术中一个PDU会话增加PSA的过程进行简单描述。
对于IPv6类型的PDU会话,可以采用多归属(Multi-Homing)的方式支持多PSA场景(具有多个PSA的IPv6 PDU会话称为Multi-Homing的PDU会话,)。UPF可以是PSA的一种实现方式,下文将用UPF作为PSA的例子来进行说明,应理解,PSA的其他实现方式也可以用于本申请提供的各种方法中。对于一个Multi-Homing PDU会话,SMF可以为UE分配多个IPv6 prefix(例如2个),UE然后根据IPV6前缀构造IPV6地址,两个IPV6地址IPV61和IPV61分别对应UPF1和UPF2。如图1所示,BP作为分叉点,将N3接口接收的数据根据数据包的源地址(IPV61和IPV61),将数据包发送给UPF1或UPF2(UPF1和UPF2为PDU会话的锚点)。将来自UPF1和UPF2的数据汇聚后通过N3接口发送给AN。图2是通过插入BP的方式新增一个PSA(以UPF为PSA为例来进行示例性说明)的示意性流程图。包括步骤201至步骤209。
如图2所示,在步骤201中,UE接入网络建立PDU会话,SMF选择UPF1作为锚点,并为UE分配对应于UPF1的IPv6 Prefix1,并将IPv6 Prefix1通知PCF。PCF为UE制定默认PCC规则和/或其他与PDU会话相关的策略,并将该默认PCC规则和/或其他与PDU会话相关的策略提供给SMF。SMF根据默认PCC规则和/或其他与PDU会话相关的策略制定包检测规则(Packet Detection Rule,PDR)、服务质量执行规则(Quality of Service Enforcement Rule,QER)、用量报告规则(Usage Report Rule,URR)、转发执行规则(Forwarding Action Rule,FAR)、缓存执行规则(Buffer Action Rule,BAR)等用于在UPF上执行的规则。等规则,并将这这些规则提供给UPF1执行。其中,默认PCC规则是指和具体业务信息或者类型无关的规则,是PCF根据用户签约、运营商策略制定的PCC规则,也可以称为业务信息无关的PCC规则。其他与PDU会话相关的策略包括用量监控策略(监控键,用量阈值),会话聚合最大比特速率(Aggregated Maximum Bit Rate,Session-AMBR)等。
在步骤202中,SMF接收到触发,需要新增一个PSA。SMF采用Multi-Homing方式新 增一个PSA。SMF进行BP、UPF2的选择,并决定给UE分配UPF2对应的IPv6 Prefix2。SMF接收到的触发可能包括来自应用层的请求、UE的移动性或是负荷分担的考虑等。
在步骤203中,SMF为UPF2建立到BP的下行隧道信息。
在步骤204中,SMF为BP建立分别到UPF1和UPF2的上行隧道,以及到RAN的下行隧道。SMF向BP提供上行的路由规则。在BP获取该上行的路由规则后,便可以将用户设备发送的上行数据包中的源地址与IPv6 Prefix1匹配的数据包发送给UPF1,将上行数据包的源地址与IPv6 Prefix2匹配的数据包发送给UPF2。
在步骤205中,SMF为UPF1建立到BP的下行隧道。
在步骤206中,SMF为RAN建立到BP的上行隧道。
在步骤207中,SMF通知UE新分配的IPv6 Prefix2,同时通知UE使用IPv6 Prefix2的路由规则。路由规则通常包括通信对应的IP地址。即包括UPF2对应的IPv6 Prefix2地址。
在步骤208中,SMF重新配置IPv6 Prefix1,通知UE使用IPv6 Prefix1的路由规则和有效期等。路由规则通常包括通信对应的IP地址。
在步骤209中,SMF向PCF进行事件报告。事件报告中包括IP地址变换(IP Address Change)信息,事件报告消息中携带新增的IPv6 Prefix 2,消息中还可能携带数据网络接入标识2(data network access identifier2,DNAI2),新增的UPF2对应的DNAI2。
对于IPv4类型、以太类型的PDU会话,可以采用插入UL CL的方式支持多PSA场景。对于IPv6类型的PDU会话,也可以采用UL CL的方式支持多PSA场景。对于这种非Multi-Homing的多PSA PDU会话,一个PDU会话,SMF只会为UE分配一个IP地址,对应其中的一个UPF(例如,对应UPF1,即建立PDU会话时,SMF为该PDU会话选择UPF1,并且从该UPF1的地址池中选择一个可用的IPv4地址或IPv6地址前缀分配给UE)。后续如果SMF为PDU会话插入一个ULCL,并且新增一个UPF(例如为UPF2)作为PSA,那么UL CL根据安装的分流过滤器将来自N3接口的数据发送给UPF1或UPF2。但是由于ULCL接收到的用户设备发送的数据包的源地址是UPF1的地址,所以,UL CL发送给UPF2的数据(源地址是UPF1的地址)通常需要经过特定的路由方式才能进入数据网络(例如,经过网络地址转换(Network Address Translation,NAT)或隧道的形式)。图3为现有技术中以插入UL CL的方式新增一个PSA(以UPF为PSA为例来进行示例性说明)的示意性流程图。包括步骤301至步骤306。
在步骤301中,UE接入网络建立PDU会话,SMF选择UPF1作为锚点,对于IPv4类型PDU会话,SMF为UE分配对应于UPF1的IPv4 address1,并将IPv4 address1通知PCF。对于IPv6类型PDU会话,SMF为UE分配UPF1对应的IPv6 perfix1,并通知PCF。PCF为UE制定默认PCC规则和/或其他与PDU会话相关的策略,并将该默认PCC规则和/或其他与PDU会话相关的策略提供给SMF。SMF根据默认PCC规则和/或其他与PDU会话相关的策略制定PDR,以及与PDR关联的QER、FAR、URR和/或BAR等规则,并将这些规则提供给UPF1执行。其中,默认PCC规则是指跟具体应用会话无关的,PCF根据用户签约、运营商策略制定的PCC规则,也可以称为应用会话无关的PCC规则。其他与PDU会话相关的策略包括计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域(Presnece Reporting Area,PRA)标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略等。
在步骤302中,SMF接收到触发,需要新增一个PSA。SMF采用插入UL CL方式新增 一个PSA。SMF进行UL CL、UPF2的选择。SMF接收到的触发可能包括来自应用层的请求、UE的移动性或是负荷分担的考虑等。
在步骤303中,SMF为UPF2建立到UL CL的下行隧道信息。
在步骤304中,SMF为UL CL建立分别到UPF1和UPF2的上行隧道,以及到RAN的下行隧道。SMF向UL CL提供上行的路由规则。在UL CL获取该上行的路由规则后,便可以根据用户设备发送的上行数据包中的目的地的IP地址将上行数据发送给UPF1或UPF2。
在步骤305中,SMF为UPF1建立到UL CL的下行隧道。
在步骤306中,SMF为RAN建立到UL CL的上行隧道。
如上所述,当建立多PSA的PDU会话后,例如,UE会通过UPF1或UPF2进行业务访问。PCF为UE制定PCC规则,并将制定好的PCC规则发送给SMF,不同的UPF对应的PCC规则可能不同。此外,运营商配置在PCF上的网络策略,也可能会要求通过不同UPF接入数据网络时的网络策略是不相同的,因此,对于不同的UPF,PCF制定的网络策略(其他与PDU会话相关的策略)可能也不相同。当SMF从PCF接收到PCC规则和其他与PDU会话相关的策略后,SMF需要根据PCC规则和/或其他与PDU会话相关的策略制定PDR、QER、URR、FAR、BAR等用于在UPF上执行的规则。但是目前SMF无法判断制定的这些规则需要在哪个UPF上执行,自然也无法知道将制定的PDR,QER,URR,FAR、BAR等规则发送给哪个UPF。因此,SMF会向每个UPF都下发制定好的规则,导致某些UPF上安装无用或者错误的规则,导致规则执行错误,严重影响用户的正常通信,造成通信资源的浪费,用户体验较差。
基于上述问题,本申请提供了一种多锚点PDU会话的策略控制的方法,可以使得在建立多PSA的PDU会话时或建立多PSA的PDU会话后,SMF可以确定制定的规则需要在哪个PSA上执行,并将相应的规则下发给对应的PSA去执行。解决了SMF无法判断制定的规则需要在哪个UPF上执行的问题。从而SMF不会向每个UPF都下发制定好的规则,避免了某些UPF上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。
下面结合图4详细说明本申请提供的多锚点PDU会话的策略控制的方法,图4是本申请一个实施例的多锚点PDU会话的策略控制的方法400的示意性流程图,该方法400可以应用在图1所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
如图4所示,该方法400包括:
S410,策略控制功能PCF网元生成第一策略信息和指示信息,该指示信息用于指示执行该第一策略信息对应的策略的PDU会话的锚点PSA。
S420,该PCF网元向会话管理功能SMF网元发送该第一策略信息和指示信息。相应的,SMF网元接收该第一策略信息和指示信息。
可选的,该方法400还包括:S430,该SMF网元根据该第一策略信息,确定第二策略信息。
S440,该SMF网元根据该指示信息,向该PSA发送该第二策略信息,该第二策略信息用于指示该PSA执行该策略。
本申请实施例提供的多锚点PDU会话的策略控制的方法,在PDU会话存在多锚点的情况下,PCF网元(也可以称为“PCF”)向SMF网元(也可以称为“SMF”)下发第一策略信息时,携带指示该执行该第一策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该第一策略信息制定的规则需要在哪些PSA上执行。SMF根据该第一策略信 息,制定第二策略信息。该第二策略信息包括与该第一策略信息对应的策略(规则)。并将制定好的第二策略信息发送给对应的PSA。PSA接收到第二策略信息,便执行第二策略信息对应的策略(规则)。解决了SMF无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些PSA上安装无用或者错误的规则。确保用户可以正常正确的进行通信,提高用户的通信质量和用户体验。节省通信资源。
具体而言,在S410中,PCF会生成第一策略信息和用于指示执行该第一策略信息对应的策略的PDU会话的锚点PSA的指示信息。该PSA可以是UPF或者其他网关设备。对于一个用户设备而言,当用户在建立PDU会话的时候。由于需要通过选择的PAS作为锚点建立PDU会话访问服务器上的应用。因此,PCF需要为该用户设备制定与该PSA相关的第一策略信息。当用户设备建立多PSA的PDU会话时,不同的PSA对应的策略可能不同。因此,SMF制定的策略也可能不相同。即不同的PSA执行的策略(规则)是不同的。因此,PCF向SMF发送用于指示执行该策略信息对应的策略的PDU会话的锚点PSA的指示信息,即指示SMF根据该策略信息制定的规则哪个PSA上执行。
在S420中,该PCF向SMF发送该第一策略信息和指示信息。相应的,SMF接收该第一策略信息和指示信息。应理解,该第一策略信息和指示信息可以承载在PCF向SMF发送的相关空口信令上。其信令的形式可以是任何可能或者常用的形式。本申请实施例在此不作限制。
应理解,在本申请的实施例中,第一策略信息和指示信息可以在一条信息中发送给SMF,也可以分开以不同的信令形式发送给SMF。而且,第一策略信息可能之前已经发送,现在只需要发送指示信息,通知SMF执行第一策略信息对应的策略的PSA发生改变。或者,PCF之前可能已经发送了指示信息,现在只需要发送第一策略信息来更新之前的策略等,都在本申请的范围内,本申请实施例在此不作限制。
可选的,在S430中,SMF根据该第一策略信息,确定与PSA相关的第二策略信息。该第二策略信息包括与该第一策略信息对应的策略(规则)。例如,第一策略信息对应的策略为用户设备的PDU会话聚合最大速率为50M/秒,SMF根据该第一策略信息,确定第二策略信息,该第二策略信息对应的策略(规则)也为用户设备的PDU会话聚合最大速率为50M/秒。应理解,第一策略信息和第二策略信息对应的策略(规则)是相同的,即两者的本质是相同的,只不过第二策略信息的表现形式或者载体与第一策略信息不同。再例如,结合图2或者图3的例子,PCF为UE制定默认PCC规则和/或其他与PDU会话相关的策略(相当于第一策略信息),第一策略信息对应的策略为用户设备的PDU会话允许使用的用量为100M。并将该默认PCC规则和/或其他与PDU会话相关的策略、连同执行第一策略信息对应的策略的PSA的信息提供给SMF。SMF根据默认PCC规则和/或其他与PDU会话相关的策略制定PDR,以及与PDR关联的QER、FAR、URR和/或BAR等规则(相当于第二策略信息),并将这些规则提供给UPF1执行。PDR,PDR、FAR、URR等对应的策略也为用户设备的PDU会话允许使用的用量为100M。即两者的本质是相同的。当用户设备建立多PSA的PDU会话时,不同的PSA对应的策略可能不同。因此,SMF根据指示执行该策略信息对应的策略的PDU会话的锚点PSA的指示信息,确定根据该策略信息制定的规则哪个PSA上执行。可选的,第一策略信息与第二策略信息也可相同,SMF对第一策略信息进行转发。
应理解,在方法400中,步骤S430为可选的步骤,即SMF除了根据第一策略信息,确定第二策略信息之外,SMF还可以根据其他信息,例如,应用功能AF发送的信息,或者根 据该指示信息,或者还可以结合自身存储的信息,得到第二策略信息。除了根据第一策略信息,确定第二策略信息之外。SMF可以可以通过任何可能的其他方式得到第二策略信息,例如,该第二策略信息可能是SMF之前已经有的策略信息等,本申请实施例在此不作限制。
在S440中,该SMF网元根据该指示信息,向执行第一策略信息对应的策略的PSA发送该第二策略信息,该第二策略信息用于指示该PSA执行该策略。在该PSA接收到该第二策略信息后,便可以执行该第二策略信息对应的策略(规则)。
本申请实施例提供的多锚点PDU会话的策略控制的方法,在PDU会话存在多锚点的情况下,PCF向SMF网元下发策略信息时,携带指示该执行该策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该策略信息制定的规则需要在哪些PSA上执行。并将制定好的规则发送给对应的PSA。PSA接收到策略后,便执行该策略(规则)。解决了SMF无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些UPF上安装无用或者错误的规则。确保用户通信的正确性和可靠性,提高用户的通信质量和用户体验。节省通信资源。
可选的,作为一个实施例,该指示信息所指示的执行该第一策略信息对应的策略的PDU会话的锚点PSA,为在该PDU会话的所有PSA或者部分PSA。
具体而言,由于对于用户设备建立多PSA的PDU会话的情况而言,SMF根据第一策略信息制定的第二策略信息对应的策略可以适用于该PDU会话的所有PSA,也可适用于该PDU会话中的部分PSA,以图2或者图3为例进行说明。该PDU会话中包括两个UPF,即用户设备通过UPF1和UPF2与服务器之间进行业务访问。
假设SMF根据第一策略信息制定第二策略信息(对应规则1)在该PDU会话的所有UPF执行,那么,可以通过隐式或者显示的指示方式指示该规则1在所有的PSA上执行。例如,该指示信息可以是所有的PSA的标识,或者指示信息不用指示所有的UPF的标识,直接指示“ALL”。相当于显示的指示方式。SMF便根据该指示信息,将制定的规则1发给所有的UPF执行。应理解,该显示指示方式还可以包括其他方式等。本申请实施例在此不作限制。假设指示信息指示该第一策略信息对应的策略(规则1)在该PDU会话的部分UPF执行,那么,该指示信息可以是该部分的UPF的标识。例如,该指示信息可以是UPF1或者UPF2的标识等。则SMF便根据该指示信息,将制定的规则1发给UPF1或者执行UPF执行。这样,SMF可以根据实际访问的业务或者经过的UPF的不同,将不同的UPF对应的规则发送给不同的UPF。避免了某些UPF上安装无用或者错误的规则造成的通信错误的问题。提高通信效率。
应理解,当该第一策略信息对应的策略在该PDU会话的所有PSA执行时,PCF可以不向SMF发送指示信息,即PCF可以不向SMF发送指示信息本身可以看成一种指示信息。这种指示方式相当于隐式的指示方式。用于指示第一策略信息对应的策略在该PDU会话的所有PSA执行。本申请实施例在此不作限制。
可选的,作为一个实施例,该指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、该PSA的标识信息,其中,该终端装置的第一地址信息为该SMF网元为该终端装置分配的与该PSA对应的地址信息。
具体而言,该指示信息可以包括PSA的标识信息,PSA的标识信息用于唯一标识该PSA。该指示信息还可以包括终端装置(也可以称为“用户设备”)的第一地址信息,用户设备的第 一地址信息为该SMF为该用户设备分配的与该PSA对应的地址信息。例如,SMF选择UPF1作为锚点,SMF为UE分配对应于UPF1的IPv6 Prefix1,然后UE根据UPF1的IPV6前缀(IPv6 Prefix1)构造IPV6地址,该UPF1对应的IPv6地址或IPv6地址前缀即为该UE的第一地址。对于Multi-homing的多PSA的PDU会话,若UE的PDU会话包括多个UPF,并且SMF为UE分配了每个UPF对应的IPv6前缀(即Multi-homing场景),UE可以构造与每个UPF对应的IPv6地址。
对于非Multi-homing的多PSA的PDU会话,一个PDU会话,SMF只会为UE分配一个IPv4地址或IPv6地址前缀,即为用户设备的第一地址,对应其中的一个UPF。例如,对应UPF1。后续如果SMF为PDU会话新插入一个UPF2,但是由于UPF2接收到的用户设备发送的数据包的源地址是与UPF1对应的地址,所以,用户设备发送给UPF2的数据(源地址是与UPF1对应的地址)通常需要经过特定的路由方式(网络地址转换)才能进入数据网络(例如,经过NAT或隧道的形式)。即需要将与UPF1对应的地址转换为与UPF2对应的地址。该第二地址信息(例如,与UPF2对应的地址)即为第一地址(例如,与UPF1对应的地址)经过网络地址转换后的地址。
SMF可以根据该UPF的标识信息,或者根据与第一地址信息或者或第二地址信息对应的PSA的信息,确定执行第一策略信息对应的策略的PSA,然后将制定好的第二策略信息发送给对应的PSA。利用上述的指示信息,可以使得SMF准确快速的确定制定的规则对应的PSA。提高SMF确定PSA的效率,节省通信资源,提高通信效率。
应理解,在本申请实施例中,该指示信息还可以包括其他与PSA相关的信息,或者其他类型的信息。本申请实施例在此不作限制。
可选的,作为一个实施例,该PSA的标识信息包括:该PSA对应的数据网络接入标识DNAI、该PSA的网络功能标识中的至少一个。
具体而言,PSA的标识信息可以是PSA对应的数据网络接入标识DNAI,DNAI用来唯一标识数据网络的用户面接入,一个DNAI可以唯一确定一个PSA。PSA的标识信息还可以是PSA的网络功能标识。网络功能标识也是用来唯一标识PSA。每个接入数据网络的PSA的网络功能标识都不相同。SMF可以根据该PSA对应的DNAI或者网络功能标识,确定与该策略信息对应的PSA。使用PSA的DNAI或者网络功能标识来确定PSA,可以使得SMF准确快速的确定执行策略规则的PSA,提高SMF确定PSA的效率,容易实现,节省通信资源。
应理解,在本申请实施例中,该PSA的标识信息还可以是其他与PSA相关的标识信息,本申请实施例在此不作限制。
可选的,作为一个实施例,该第一策略信息包括:策略和计费控制PCC规则和/或与该PDU会话相关的策略。
具体而言,UE接入网络建立PDU会话,SMF选择UPF作为锚点,SMF会将与UPF相关的信息通知给PCF。PCF根据来自应用层的信息,为UE制定与UPF相关的PCC规则,并将制定好的PCC规则发送给SMF。不同的UPF对应的PCC规则可能不同。此外,运营商配置在PCF上的与该PDU会话相关的策略,也可能会要求通过不同UPF接入数据网络时是不相同的,因此,对于不同的UPF,PCF制定的与PDU会话相关的策略可能也不相同。PCF获知SMF为UE新增加了UPF后,或者接收到来自应用功能AF的QoS授权请求后,PCF会制定PCC规则和/或与该PDU会话相关的策略,并将PCC规则和/或与该PDU会话相关的策略、连同指示UPF的指示信息发送给SMF。SMF根据PCC规则和/或与该PDU会话相关 的策略制定相关的第二策略信息,并发送给对应的UPF去执行。使得SMF制定的第二策略信息具有更好的针对性和保障性,与用户进行的PDU会话相适应。保证UE通过不同的UPF访问业务时执行的策略是正确的,确保用户使用该策略能正确的进行数据或者应用的使用。提高通信的准确性和用户体验。
应理解,该PCC规则可以是默认PCC规则,默认PCC规则是指与应用会话无关的规则。PCF根据用户签约、运营商策略制定的PCC规则,默认PCC规则也可以称为与应用会话无关的PCC规则。例如,默认PCC规则可以适用于一套套餐内的所有业务,当用户访问该套餐内的业务时,无论是什么业务,都可以使用该默认PCC规则。与应用会话无关的PCC规则通常不是由于AF发送的QoS授权请求触发制定的。
该PCC规则还可以是与UE访问的具体业务信息或者类型有关的规则(即应用会话相关的规则),PCF根据来自AF的服务质量(Quality of Service,QOS)授权请求(即UE访问的业务信息、业务过滤器信息、需要QOS等信息),制定与UE访问的具体业务有关的PCC规则。
应理解,该第一策略信息还可以包括其他与UE的PDU会话相关的策略或者信息。本申请实施例在此不作限制。
可选的,作为一个实施例,与该PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。
具体而言,UE通过建立PDU会话后,会通过PSA访问业务或者获取数据。因此,与该PDU会话相关的策略是用来指导PSA,使得PSA根据相关的策略确定通过该PSA进行正确的会话。与该PDU会话相关的策略可以包括:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略等中的一个或者多个。SMF根据这些策略,确定第二策略信息。并向对应的PSA下发第二策略信息,第二策略信息对应的策略在本质上与上述的这些策略是相同的,都是为PSA可以正确工作,保证UE通过该PSA访问通信时不出现错误。确保了PSA执行的策略是准确的,确保UE通过该PSA可以正确的进行通信,提高通信效率和通信质量。
应理解,与该PDU会话相关的策略还可以包括其他相关的策略,本申请实施例在此不作限制。
可选的,作为一个实施例,如图5所示,该方法400还包括:
S409,该SMF网元向该PCF网元发送第二信息,该第二信息包括该SMF为终端装置在该PDU会话中分配的与该PSA对应的地址信息和/或该PSA的标识信息。
在S410中,PCF网元生成第一策略信息和指示信息,包括:
该PCF网元根据该第二信息,生成该第一策略信息和指示信息。
具体而言,在S409中,UE接入网络建立PDU会话后,SMF会为终端装置选择PSA作为该PDU会话的锚点,在选择好PSA后,SMF会将与PSA相关的信息通知给PCF。即向PCF发送第二信息通知与该PSA相关的信息。用于向PCF请求与该PSA相关的策略,以便于后续可以利用该PSA正确进行PDU会话,保证PDU会话的正确定,避免通信错误。该第二信息包括该SMF为用户设备分配的与该PSA对应的地址信息和/或该PSA的标识信息。例如,假设SMF为用户设备分配PSA为UPF1,与该UPF1对应的地址信息可以是IPv6 prefix1, 或者是IPv4 address1。该PSA的标识信息可以是该PSA对应的DNAI、该PSA的网络功能标识等。PCF根据PSA对应的地址信息和/或该PSA的标识信息,可以确定第一策略信息对应的策略需要在哪个PSA上执行。即PCF根据第二信息包括的SMF为PDU会话分配的与该PSA对应的地址信息和/或该PSA的标识信息,确定指示信息。例如,第二信息包括的该SMF为终端装置分配的与该PSA对应的地址信息和/或该PSA的标识信息为与UPF1对应的标识信息或者地址信息。则SMF根据该PSA对应的地址信息和/或该PSA的标识信息,可以确定第一策略信息对应的策略需要在UPF1上执行。
在S410中,PCF根据SMF发送的第二信息,确定第一策略信息和指示信息,即确定该PCC规则和与该PDU会话相关的策略以及指示信息,应理解,PCF根据该第二信息,确定的PCC规则可以是默认PCC规则。由于当前UE还没有通过UPF1访问业务,所以先向SMF下发默认PCC规则。在UE访问一些基础业务(例如,套餐内包括的业务)时便可以执行基础策略,确保通信的正确和正常的进行。通过SMF向该PCF上报选择的UPF1的信息,PCF根据UPF1的信息,确定PCC规则和与该PDU会话相关的策略。可以使得PCF确定的PCC规则和该PDU会话相关的策略与UPF1相适应。即最终将制定的第二策略信息发送给UPF1去执行。PCF针对不同的PSA,可以确定不同的PCC规则和与该PDU会话相关的策略。使得PSA可以正确的利用与自身对应的相关策略或者规则进行通信,提高通信质量。
应理解,在本申请实施例中,该第二信息还可以包括SMF为用户设备分配的与该PSA对应的其他信息,该PSA的标识信息还可以是PSA其他类型的标识信息等。本申请实施例在此不作限制。
可选的,作为一个实施例,如图6所示,该方法400还包括:
S408,该应用功能AF网元向该PCF网元发送第三信息,该第三信息包括终端装置访问业务时所经过的PSA的信息和该业务的信息,其中,该终端装置访问业务时所经过的PSA为该SMF为该PDU会话分配的PSA中的至少一个,
在S410中,该PCF网元生成第一策略信息和指示信息,包括:
该PCF网元根据该第三信息,生成该第一策略信息和指示信息。
具体而言,在建立PDU会话的过程中,PCF向SMF下发了与PSA相关的默认PCC规则后,例如,该PDU会话包括两个PSA,分别为UPF1和UPF2。SMF先将UPF1和UPF2的标识信息或者UPF1和UPF2对应的地址信息发送给PCF,PCF根据UPF1和UPF2的标识信息或者UPF1和UPF2对应的地址信息,制定相关的默认PCC规则(例如,PCC规则1和PCC规则2)。PCF向SMF下发了与UPF1相关的默认PCC规则1,与UPF2相关的默认PCC规则2。默认PCC规则是与基础应用对应的PCC规则。应理解,PCF还可以向SMF下发UPF1和UPF2与PDU相关的策略,不同的UPF对应的与PDU相关的策略也可能是不同的。SMF根据PCF下发的信息,生成第一策略信息和指示信息。UE通过UPF1,利用与PCC规则1和/或PDU会话相关的策略访问一些基础业务或者应用。
在S408中,例如,当UE通过UPF1访问一些特殊业务应用,该特殊业务应用的AF会向PCF发送第三信息,向PCF请求QOS授权。该第三信息包括用户设备访问业务时所经过的PSA的信息和该业务的信息。在S410中,PCF根据第三信息包括的业务信息,确定与业务对应的PCC规则。同时,PCF根据第三信息包括的用户设备访问业务时所经过的PSA的信息,确定该指示信息。例如为PCC规则11,由该PCC规则11是与UE通过UPF1访问的业务相关的PCC规则,因此,该PCC规则11不是默认PCC规则。SFM根据该PCC规则11 和/或与该PDU会话相关的策略,制定针对于该特殊业务的策略并下发给UPF1。UE通过UPF1,根据针对于该特殊业务的策略,去访问该业务,这样,针对UE访问的业务不同,PCF制定与该业务相对应的PCC规则和相关的策略。使得UE访问不同的业务时所利用的策略是不同的,方式灵活,并且,访问业务经过的PSA和执行针对该业务的策略的PSA是相同的。提高UE访问不同业务时的效率和准确性。提高通信效率和用户体验,提高UE访问不同业务时的效率。提高通信效率和用户体验。
可选的,在AF向PCF发送第三信息前,SMF可以向PCF发送第二信息,用于PCF确定PDU会话的每个PSA对应的默认PCC规则和与PDU相关的策略。本申请实施例在此不作限制。
可选的,PCF可以只根据AF向PCF发送第三信息,制定与某一个或者多个PSA访问的业务相关的PCC规则和与PDU相关的策略,并发送给SMF。PCC规则和与PDU相关的策略与访问该业务的PSA对应。本申请实施例在此不作限制。
可选的,该终端装置访问业务时所经过的PSA的信息包括:该终端装置访问业务时所经过的PSA的标识信息、该终端装置访问业务时所经过的PSA对应的该终端装置的第一地址信息、该终端装置访问业务时所经过的PSA对应的该终端装置的第一地址信息经过网络地址转换后的第二地址信息中的至少一个。
具体而言,第三信息包括终端装置访问业务时所经过的PSA的信息和该业务的信息。该业务的信息可以包括业务的类型、业务过滤器信息、需要的QOS等信息。本申请实施例在此不作限制。
终端装置访问业务时所经过的PSA的信息可以包括:该终端装置访问业务时所经过的PSA的标识信息、该终端装置访问业务时所经过的PSA对应的该终端装置的第一地址信息、该终端装置访问业务时所经过的PSA对应的该终端装置的第一地址信息经过网络地址转换后的第二地址信息中的至少一个
PSA的标识信息可以包括:该PSA对应的数据网络接入标识DNAI、该PSA的网络功能标识,或者还可以是其他与PSA相关的标识信息。本申请实施例在此不作限制。
该终端装置访问业务时所经过的PSA对应的该终端装置的第一地址信息可以是SMF网元为该终端装置分配的与PSA对应的地址信息,终端装置通过该PSA访问业务时,例如,SMF选择UPF1作为锚点,为UE分配对应于UPF1的IPv6 Prefix1,UE然后根据UPF1的IPV6前缀(IPv6 Prefix1)构造IPV6地址,该UPF1对应的IPv6地址或IPv6前缀即为该UE的第一地址。UE通过UPF1访问业务时,UE的地址为UPF1的对应的IP地址。
对于非Multi-homing类型的多PSA的PDU会话,一个PDU会话,SMF只会为UE分配一个IP地址,对应PDU会话中的一个UPF。例如,对应UPF1。后续如果SMF为PDU会话新插入一个UPF2,但是由于UPF2接收到的UE发送的数据包的源地址是与UPF1对应的地址,所以,UE发送给UPF2的数据(源地址是与UPF1对应的地址)通常需要经过特定的路由方式(网络地址转换)才能进入数据网络(例如,经过NAT或隧道的形式)。即需要将与UPF1对应的地址转换为与UPF2对应的地址。当UE通过UPF2访问业务时,UE的第二地址信息(与UPF2对应的地址)即为第一地址(UPF1对应的地址)经过网络地址转换后的地址。
应理解,在本申请实施例中,终端装置访问业务时所经过的PSA的信息还可以包括其他与PSA相关的信息。本申请实施例在此不作限制。
还应理解,第二策略信息或者第一策略信息对应的策略(规则)包括:PDR、URR、FAR、QER、BAR中的至少一个。
具体而言,该SMF根据PCF下发的PCC规则和/或与PDU会话相关的策略制定的规则可以包括:PDR、URR、FAR、QER、BAR等中的至少一个,并将这些规则下发给对应的UPF去执行,这样,在UE通过UPF访问业务时,便可利用这些规则去规范或者指导UE的行为。可以提高用户设备访问业务时的安全性和准确性。提高用户设备访问业务时的效率和通信质量,提高用户体验,
应理解,SMF根据该第一策略信息,制定与该第一策略信息对应的规则还可以包括其他与UE通过UPF访问业务相关的规则。本申请实施例在此不作限制。
还应理解,在本申请的各个实施例中,第一、第二、第三等只是为了表示多个对象是不同的。例如第二信息和第三信息只是为了表示出不同的信息。而不应该对信息的本身产生任何影响,上述的第一、第二、第三等不应该对本申请的实施例造成任何限制。
下面将结合具体的实施例来说明本申请实施例提供的多锚点PDU会话的策略控制的方法。
图7是本申请一个实施例的多锚点PDU会话的策略控制的方法500的示意性流程图,该方法500可以应用在图1所示的架构中。图7所示的流程主要描述了UE建立PDU会话,SMF为UE分配IPv6 Prefix,网络执行路径优化,采用Multi-homing方式建立多PSA PDU会话过程,以及PDU会话建立后,PCF针对新的UPF2下发PCC规则,SMF根据指示信息发送给UPF2的主要流程。
如图7所示,该方法500包括:
S501,UE接入网络建立PDU会话,SMF选择UPF1作为锚点,并为UE分配对应于UPF1的IPv6 Prefix1,并将IPv6 Prefix1通知PCF。PCF为UE制定默认PCC规则和/或其他与PDU会话相关的策略,并将该默认PCC规则和/或其他与PDU会话相关的策略提供给SMF。SMF根据默认PCC规则和/或其他与PDU会话相关的策略制定PDR,以及PDR关联的QER、FAR、URR、BAR等规则,并将这这些规则提供给UPF1执行。可选地,SMF会将UPF1对应的DNAI1发送给PCF。
S502,UE通过建立的PDU会话访问应用,触发应用功能AF向PCF请求QoS授权。AF向PCF发送QoS请求消息,QoS请求消息中携带IPv6 address1和相关的业务信息。IPv6 address1为UE根据IPv6 Prefix1构造的IP地址。业务信息包括业务的过滤器信息、业务类型、业务需要的QoS等。
S503,PCF保存AF发送过来的请求信息,并向AF返回确认信息。
S504,PCF根据UE的签约数据信息,AF发送的信息以及运营商配置的网络策略等信息执行策略决策。确定PCC规则1和与UE的PDU会话相关的策略1。PCC规则1为与应用会话相关的PCC规则。
S505,PCF向SMF发送PCC规则1和/或与UE的PDU会话相关的策略1(即第一策略信息)。由于此时PDU会话只有一个UPF,因此,PCF可以不向SMF发送指示用于执行第一策略信息对应的策略的UPF。
S506,SMF保存PCC规则1和/或与UE的PDU会话相关的策略1。并向PCF返回确认信息。
S507,SMF根据PCC规则1和/或与UE的PDU会话相关的策略1,制定PDR1以及关 联的QER1、FAR1、URR1、BAR1等规则。
S508,SMF向UPF1提供PDR1以及关联的QER1、FAR1、URR1、BAR1等规则。使得UPF1执行规则。
S509,AF向PCF请求路径优化,携带路径优化信息,路径优化信息携带IPv6 Prefix1、UE当前可用的目标UPF标识的列表、路由文档标识等信息。
S510,PCF保存该路径优化信息,向AF返回确认信息。
S511,PCF根据路径优化信息等制定PCC规则2,PCC规则2中携带流量导向控制信息,并将PCC规则2提供给SMF。流量导向控制信息中携带了目标UPF标识的列表以及根据路由文档标识映射的流量导向控制标识。
S512,SMF向PCF返回确认信息。
S513,SMF根据PCC规则2进行路径优化,根据UE的当前位置以及目标UPF的列表,选择一个UPF2以及BP。并决定给UE分配UPF2对应的IPv6 Prefix2。
S514,SMF为UPF2建立到BP的下行隧道信息。
S515,SMF为BP建立分别到UPF1和UPF2的上行隧道,以及到RAN的下行隧道。SMF向BP提供上行的路由规则。在BP获取该上行的路由规则后,便可以将用户设备发送的上行数据包中的源地址与IPv6 Prefix1匹配的数据包发送给UPF1,将上行数据包的源地址与IPv6 Prefix2匹配的数据包发送给UPF2。
S516,SMF为UPF1建立到BP的下行隧道。
S517,SMF为RAN建立到BP的上行隧道。
S518,SMF通知UE新分配的IPv6 Prefix2,同时通知UE使用IPv6 Prefix2的路由规则。路由规则通常包括通信对应的IP地址。即包括UPF2对应的IPv6 Prefix2地址。
S519,SMF重新配置IPv6 Prefix1,通知UE使用IPv6 Prefix1的路由规则。路由规则通常包括通信对应的IP地址。
S520,SMF向PCF进行事件报告。事件报告中包括IP地址变化(IP Address Change)信息、新增的IPv6 Prefix 2,报告中还可能包括DNAI变化的信息、以及UPF2对应的DNAI2。若在S501中SMF没有上报UPF1对应的DNAI,那么在本步骤中SMF还可以上报UPF1对应的DNAI1。
S521,PCF向SMF返回确认信息。
S522,PCF向AF进行事件报告,事件报告包括IP Address Change,并携带IPv6 Prefix 2。事件报告中还可能携带DNAI Change,UPF1对应的DNAI1和UPF2对应的DNAI2等信息。
S523,AF向PCF返回确认消息。
S524,PCF制定安装在UPF2的默认规则,即PCC规则3。并在向SMF提供PCC规则3时携带IPv6 Prefix2或者DNAI2。用于指示PCC规则3的对应的策略需要在IPv6 Prefix 2或者DNAI2对应的UPF2执行。
S525,SMF向PCF返回确认信息。
S526,SMF根据PCC规则3和/或与UE的PDU会话相关的策略3。制定PDR3以及关联的QER3、FAR3、URR3、BAR3等信息。并根据IPv6 Prefix 2或DNAI2确定PCC规则3对应的策略需要在UPF2执行,因此,将PDR3以及关联的QER3、FAR3、URR3、BAR3等规则提供给UPF2。若PCF向SMF提供IPv6 Prefix2,SMF根据配置的IPv6 prefix与UPF的 对应关系以及IPv6 Prefix2,确定PCC规则3对应的策略需要在UPF2执行。若PCF向SMF提供DNAI2,SMF根据配置的NDAI和UPF的对应关系以及DNAI2,确定PCC规则3对应的策略需要在UPF2执行。
S527,应用功能AF执行重定向,使得UE通过UPF2访问本地的应用服务器。若应用层消息采用HTTP协议,那么应用服务器向UE发送重定向指示消息,消息中携带一个新的应用服务器的统一资源定位符(Uniform Resource Locator,URL)。UE采用新的URL进行域名系统(Domain Name System,DNS)请求操作,DNS将返回通过UPF2本地接入的应用服务器地址。该应用服务器的地址与之前下发给UE的IPv6 Prefix2的路由规则中的目的地址匹配。UE采用根据IPv6 Prefix2构造的IPv6 Address2通过UPF2与新的应用服务器进行交互。
S528,AF向PCF请求QoS授权,A向PCF发送QoS请求消息。QoS请求消息携带Ipv6 address 2和新的业务信息,新的业务信息中包括新的业务过滤器信息、业务类型、需要的QoS等。请求消息中还可能携带DNAI2。
S529,PCF向AF返回确认信息。
S530,PCF根据新的业务信息,制定PCC规则4。并在向SMF提供PCC规则4时携带IPv6 Prefix 2或DNAI2。用于指示PCC规则4的对应的策略需要在IPv6 Prefix 2或者DNAI2对应的UPF2执行。PCC规则4是与应用会话相关的规则。
S531,SMF向PCF返回确认信息。
S532,SMF根据PCC规则4,和/或与UE的PDU会话相关的策略4,制定PDR4以及关联的QER4、FAR4、URR4、BAR4等。并根据IPv6 Prefix 2或DNAI2确定PCC规则4对应的策略需要在UPF2执行,因此,将PDR4以及关联的QER4、FAR4、URR4、BAR4等规则提供给UPF2。若PCF向SMF提供IPv6 Prefix2,SMF根据配置的IPv6 prefix与UPF的对应关系以及IPv6 Prefix2,确定PCC规则4对应的策略需要在UPF2执行。若PCF向SMF提供DNAI2,SMF根据配置的NDAI和UPF的对应关系以及DNAI2,确定PCC规则4对应的策略需要在UPF2执行。SMF将制定的PDR4以及关联的QER4、FAR4、URR4、BAR4等提供给UPF2去执行。
应理解,在本申请的实施例中,PCF在提供PCC规则时提供用于执行PCC规则对应策略的UPF2的指示信息。对于PCF可能制定的针对UPF2的其他策略,例如,计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、Session-AMBR策略、授权的默认服务质量参数策略等,PCF也可以通过类似方案进行指示。
还应理解,在本申请的实施例中,PCF可以为不同的UPF(例如、不同位置的UPF等)下发不同的默认PCC规则。在PDU会话建立过程中或建立后时,PCF在下发默认PCC规则时,可以下发该PCC规则对应的策略可以在任意UPF上执行的指示信息,那么SMF将根据该PCC规则制定的PDR以及关联的QER、URR、FAR、BAR等规则提供给UPF和UPF2。
还应理解,在本申请的实施例中,如果UPF2和BP是合一的,那么SMF只需选择BP即可。DNAI2就是BP对应的DNAI。PCF制定的需要在UPF2上执行的策略将在BP上执行。
本申请提供的多锚点PDU会话的策略控制的方法,在PDU会话存在多锚点的情况下,PCF向SMF网元下发策略信息时,携带指示该执行该策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该策略信息制定的规则需要在哪些PSA上执行。并 将制定好的规则发送给对应的PSA。PSA接收到策略后,便执行该策略(规则)。解决了SMF无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些UPF上安装无用或者错误的规则。提高用户的通信质量和用户体验。节省通信资源。
图8是本申请另一个实施例的多锚点PDU会话的策略控制的方法600的示意性流程图,该方法600可以应用在图1所示的架构中。图8所示的流程主要包括在建立了Multi-Homing的多PSA PDU会话后,UE通过UPF1发起新的业务,PCF向SMF提供PCC规则时携带UPF1的指示信息(IPv6 Prefix 1或DNAI1),SMF根据该指示信息将根据PCC规则制定的规则提供给UPF1的主要流程。
如图8所示,该方法600包括:
S601,UE接入网络建立PDU会话,SMF为PDU会话选择UPF1作为锚点,并为UE分配UPF1对应的IPv6 Prefix1。SMF向PCF请求策略,并向PCF提供IPv6 Prefix1、DNAI1,等信息。PCF制定在UPF1上执行的默认PCC规则1和其他与PDU会话相关的策略1,并提供给SMF,SMF分别向UE、UPF1,RAN等提供上述信息。SMF根据默认PCC规则1和/或其他与PDU会话相关的策略1,制定PDR1,以及PDR1关联的QER1、FAR1、URR1、BAR1等规则,并将这这些规则提供给UPF1执行。SMF决定新增一个PSA,SMF为PDU会话选择一个新的锚点UPF2,并插入BP,建立相应的用户面隧道。SMF为UE分配UPF2对应的IPv6 Prefix2。SMF向PCF请求策略,提供IPv6 Prefix2、DNAI2等信息。PCF制定在UPF2执行的PCC规则2和其他PDU会话相关的策略2,并提供给SMF,SMF分别向UE、UPF2,RAN等提供上述信息。SMF根据默认PCC规则2和/或其他与PDU会话相关的策略2制定PDR2,以及PDR2关联的QER2、FAR2、URR2、BAR2等规则,并将这这些规则提供给UPF2执行。
S602,UE用IPv6 Prefix1构造的IP地址与新的业务进行交互。AF向PCF请求QoS授权。QoS请求消息中携带Ipv6 address 2和新的业务信息,新的业务信息中包括新的业务过滤器信息、业务类型、需要的QoS等。QoS授权请求消息中还可能携带DNAI2。
S603,PCF向AF返回确认信息。
S604,PCF根据新的业务信息,制定PCC规则。该PCC规则是与应用会话相关的规则。
S605,PCF向SMF提供PCC规则,并携带IPv6 Prefix 1或DNAI1。用于指示PCC规则1的对应的策略需要在IPv6 Prefix 1或者DNAI1对应的UPF1执行。
S606,SMF向PCF返回确认信息。
S607,SMF根据PCC规则,和/或与UE的PDU会话相关的策略,制定PDR以及关联的QER、FAR、URR、BAR等规则。并根据IPv6 Prefix 1或DNAI1确定PCC规则对应的策略需要在UPF1执行,因此,将PDR以及关联的QER、FAR、URR、BAR等规则提供给UPF1。若PCF向SMF提供IPv6 Prefix1。SMF根据配置的IPv6 prefix与UPF的对应关系以及IPv6 Prefix1,确定PCC规则对应的策略需要在UPF1执行。若PCF向SMF提供DNAI1,SMF根据配置的NDAI和UPF的对应关系以及DNAI1,确定PCC规则对应的策略需要在UPF1执行。SMF将制定的PDR4以及关联的QER、FAR、URR、BAR等提供给UPF1去执行。
S608,SMF根据IPv6 Prefix1或DNAI1将PDR等规则提供给UPF1。UPF1安装PDR等规则后向SFM返回确认消息。
应理解,在本申请的实施例中,若UE采用IPv6 Prefix2构造的IPv6 Address2访问新的应 用,与新的业务进行交互。则上述各步骤中携带的参数为IPv6 prefix2或DNAI2。其他的步骤类似。
本申请提供的多锚点PDU会话的策略控制的方法,针对UE访问的业务不同,PCF制定与该业务相对应的PCC规则和相关的策略信息。PCF向SMF网元下发策略信息时,携带指示该执行该策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该策略信息制定的规则需要在哪些PSA上执行。并将制定好的规则发送给对应的PSA。使得UE访问不同的业务时所利用的策略是不同的,方式灵活。并且,访问业务经过的PSA和执行针对该业务的策略的PSA是相同的。提高UE访问不同业务时的效率和准确性。提高通信效率,避免了某些PSA上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。
图9是本申请另一个实施例的多锚点PDU会话的策略控制的方法700的示意性流程图,该方法700可以应用在图1所示的架构中。图9的流程主要描述了UE建立PDU会话后,网络为UE分配IPv4地址。网络执行路径优化,插入UL CL后,建立多PSA PDU会话过程中,PCF针对新的UPF2下发PCC规则。SMF根据指示信息发送给UPF2的主要流程。
如图9所示,该方法700包括:
S701,UE接入网络建立PDU会话,SMF选择UPF1作为锚点并为UE分配对应于UPF1的IPv4 address1,并将IPv4 address1通知PCF。PCF为UE制定默认PCC规则和/或其他与PDU会话相关的策略,并将该默认PCC规则和/或其他与PDU会话相关的策略提供给SMF。SMF根据默认PCC规则和/或其他与PDU会话相关的策略制定PDR,以及与PDR关联的QER、FAR、URR和/或BAR等规则,并将这些规则提供给UPF1执行。可选地,SMF会将UPF1对应的DNAI1发送给PCF。
S702,UE采用IPv4 address1通过PDU会话访问应用。触发应用功能AF向PCF请求QoS授权。AF向PCF发送QoS请求消息,QoS请求消息中携带IPv4 address1和相关的业务信息。业务信息包括业务的过滤器信息、业务类型、业务需要的QoS等。
S703,PCF保存AF发送过来的请求信息,并向AF返回确认信息。
S704,PCF根据UE的签约数据信息,AF发送的信息以及运营商配置的网络策略等信息执行策略决策。确定PCC规则1和与UE的PDU会话相关的策略。PCC规则1为与应用会话相关的PCC规则。
S705,PCF向SMF发送PCC规则1和/或与UE的PDU会话相关的策略1,由于此时PDU会话只有一个UPF,因此,PCF可以不向SMF发送指示用于执行第一策略信息对应的策略的UPF。
S706,SMF保存PCC规则1和/或与UE的PDU会话相关的策略1。并向PCF返回确认信息。
S707,SMF根据PCC规则1和/或与UE的PDU会话相关的策略1,制定PDR1以及关联的QER1、FAR1、URR1、BAR1等规则。
S708,SMF向UPF1提供PDR1以及关联的QER1、FAR1、URR1、BAR1等规则。使得UPF1执行规则。
S709,AF向PCF请求路径优化,携带路径优化信息,路径优化信息携带IPv4 address1、UE当前可用的目标UPF标识的列表、路由文档标识等信息。
S710,PCF保存该路径优化信息,向AF返回确认信息。
S711,PCF根据路径优化信息等制定PCC规则2,PCC规则2中携带流量导向控制信息,并将PCC规则2提供给SMF。流量导向控制信息中携带了目标UPF标识的列表以及根据路由文档标识映射的流量导向控制标识。
S712,SMF先PCF返回确认信息。
S713,SMF根据PCC规则2进行路径优化,根据UE的当前位置以及目标UPF的列表,选择一个UPF2以及UL CL。
S714,SMF为UPF2建立到UL CL的下行隧道信息。
S715,SMF为UL CL建立分别到UPF1和UPF2的上行隧道,以及到RAN的下行隧道。SMF向UL CL提供上行的路由规则。在UL CL获取该上行的路由规则后,便可以根据用户设备发送的上行数据包中的目的地的IP地址将上行数据发送给UPF1或UPF2。
S716,SMF为UPF1建立到UL CL的下行隧道。
S717,SMF为RAN建立到UL CL的上行隧道。
S718,SMF向PCF进行事件报告。事件报告中包括IP地址变换(IP Address Change)通知信息、以及UPF2对应的DNAI2。若在S701中SMF没有上报UPF1对应的DNAI,那么在本步骤中SMF还上报UPF1对应的DNAI1。
S719,PCF向SMF返回确认信息。
S720,PCF向AF进行事件报告,事件报告DNAI变化的信息、以及UPF2对应的DNAI2等信息。
S721,AF向PCF返回确认消息。
S722,PCF制定安装在UPF2的默认规则,即PCC规则3。并在向SMF提供PCC规则3时携带DNAI2。用于指示PCC规则3的对应的策略需要在UPF2执行。
S723,SMF向PCF返回确认信息。
S724,SMF根据PCC规则3和/或与UE的PDU会话相关的策略3。制定PDR3以及关联的QER3、FAR3、URR3、BAR3等信息。并根据DNAI2确定PCC规则3对应的策略需要在UPF2执行,因此PDR3以及关联的QER3、FAR3、URR3、BAR3等规则要提供给UPF2。SMF根据配置的NDAI和UPF的对应关系以及DNAI2,确定PCC规则3对应的策略需要在UPF2执行。
S725,应用功能AF执行重定向,使得UE通过UPF2访问本地的应用服务器。若应用层消息采用HTTP协议,那么应用服务器向UE发送重定向指示消息,消息中携带一个新的应用服务器的统一资源定位符(Uniform Resource Locator,URL)。UE采用新的URL进行域名系统(Domain Name System,DNS)请求操作,DNS将返回通过UPF2本地接入的应用服务器地址。该应用服务器的地址与之前下发给ULCL的UPF2的路由规则中的上行数据的目的地址匹配。UE采用IPv4 address1通过UPF2与新的应用服务器进行交互。
S726,UE用IPv4 address1与新的应用交互,该交互消息经UL CL发送给UPF2。若交互消息经NAT后转换成IPv4 address 2发送应用,同时在应用层信令携带IPv4 address 1,则AF向PCF提供新的业务信息,携带IPv4 address 1,IPv4 address 2。消息中还可能携带DNAI2。若UPF2采用隧道模式或其他非NAT方式将交互消息发送给应用AF,则AF向PCF提供业务信息请求QoS授权,携带IPv4 address1、DNAI2等信息。
S727,PCF向AF返回确认信息。
S728,PCF根据AF提供的信息,制定PCC规则4。并在向SMF提供PCC规则4时携 带IPv4 address 2或DNAI2。用于指示PCC规则4的对应的策略需要在IPv4 address 2或者DNAI2对应的UPF2执行。PCC规则4是与业务类型相关的规则。
S729,SMF向PCF返回确认信息。
S730,SMF根据PCC规则4,和/或与UE的PDU会话相关的策略4,制定PDR4以及关联的QER4、FAR4、URR4、BAR4等。并根据IPv4 address 2或DNAI2确定PCC规则4对应的策略需要在UPF2执行,因此,将PDR4以及关联的QER4、FAR4、URR4、BAR4等规则提供给UPF2。若PCF向SMF提供IPv4 address 2。SMF根据配置的IPv4 address 2与UPF的对应关系以及IPv4 address 2,确定PCC规则4对应的策略需要在UPF2执行。若PCF向SMF提供DNAI2,SMF根据配置的NDAI和UPF的对应关系以及DNAI2,确定PCC规则4对应的策略需要在UPF2执行。SMF将制定的PDR4以及关联的QER4、FAR4、URR4、BAR4等提供给UPF2去执行。
应理解,在本申请的实施例中,如果UPF2和UL CL是合一的,那么SMF只需选择UL CL即可。DNAI2就是UL CL对应的DNAI。PCF制定的需要在UPF2上执行的策略将在UL CL上执行。
还应理解,在本申请的实施例中,PCF在提供PCC规则时提供用于执行PCC规则对应策略的UPF2的指示信息。对于PCF可能制定的针对UPF2的其他策略,例如,计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、Session-AMBR策略、授权的默认服务质量参数策略等,PCF也可以通过类似方案进行指示
还应理解,在本申请的实例中,如果SMF为UE分配IPv6地址前缀,那么采用UL CL方式建立多PSA PDU会话,其步骤和上述的方法700中的步骤是类似的。上述实施例中的IPv4地址可以替换为IPv6地址或IPv6地址前缀。
本申请提供的多锚点PDU会话的策略控制的方法,在PDU会话存在多锚点的情况下,PCF向SMF网元下发策略信息时,携带指示该执行该策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该策略信息制定的规则需要在哪些PSA上执行。并将制定好的规则发送给对应的PSA。PSA接收到策略后,便执行该策略(规则)。解决了SMF无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些UPF上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。
图10是本申请另一个实施例的多锚点PDU会话的策略控制的方法800的示意性流程图,该方法800可以应用在图1所示的架构中。图10所示的流程主要包括在建立了Multi-Homing的多PSA PDU会话后,UE通过UPF2发起新的业务,PCF向SMF提供PCC规则时携带UPF2的指示信息,SMF根据该指示信息将根据PCC规则制定的规则提供给UPF2的过程。
如图10所示,该方法800包括:
S801,UE接入网络建立PDU会话,SMF选择UPF1作为锚点,并为UE分配对应于UPF1的IPv4 address1,并将IPv4 address1通知PCF。PCF为UE制定默认PCC规则和/或其他与PDU会话相关的策略,并将该默认PCC规则和/或其他与PDU会话相关的策略提供给SMF。SMF分别向UE、UPF1,RAN等提供上述信息。SMF根据默认PCC规则和/或其他与PDU会话相关的策略制定PDR,以及与PDR关联的QER、FAR、URR和/或BAR等规则,并将这些规则提供给UPF1执行。SMF决定新增一个PSA,SMF为PDU会话选择一个新锚点UPF2,并插入UL CL,建立相应的用户面隧道。可选的,SMF向PCF发送插入UL CL的指示以及 UPF2对应的DNAI2等信息。PCF制定在UPF2执行的PCC规则2和其他PDU会话相关的策略2,并提供给SMF。SMF根据默认PCC规则2和/或其他与PDU会话相关的策略2制定PDR2,以及PDR2关联的QER2、FAR2、URR2、BAR2等规则,并将这这些规则提供给UPF2执行。如果SMF不向PCF发送插入UL CL的指示等信息,那么SFM将根据本地配置向UPF2提供策略信息。
S802,UE用IPv4 address1与新的应用交互,该交互消息经UL CL发送给UPF2。若交互消息经NAT后转换成IPv4 address 2发送应用,同时在应用层信令携带IPv4 address 1,则AF向PCF提供新的业务信息请求QoS授权。QoS请求信息中携带IPv4 address 1、IPv4 address 2。QoS请求消息中还可能携带DNAI2。若UPF2采用隧道模式或其他非NAT方式将交互消息发送给应用AF,则AF向PCF提供业务信息请求QoS授权,携带IPv4 address1、DNAI2等信息。
S803,PCF向AF返回确认信息。
S804,PCF执行策略决策,制定PCC规则。若PCF之前接收到了插入UL CL的指示,那么PCF可以进一步判断这个新的业务请求是否是经过新锚点访问产生的。
S805,PCF向SMF提供PCC规则,并携带IPv4 address2或DNAI2。用于指示PCC规则的对应的策略需要在IPv4 address2或者DNAI2对应的UPF2执行。
S806,SMF向PCF返回确认信息。
S807,SMF根据PCC规则,和/或与UE的PDU会话相关的策略,制定PDR以及关联的QER、FAR、URR、BAR等规则
S808,SMF根据IPv4 address2(若PCF提供的话)和配置的NAT后的地址段与UPF的对应关系,或者SMF根据DNAI2和配置的DNAI和UPF的对应关系,判断PDR以及关联的QER、FAR、URR、BAR等要提供给UPF2。SMF向UPF2提供规则。
应理解,在本申请的实例中,如果SMF为UE分配IPv6地址前缀,那么采用UL CL方式,建立多PSA PDU会话,其步骤和上述的方法800中的步骤是类似的。上述实施例中的IPv4地址可以替换为IPv6地址或IPv6地址前缀。
本申请提供的多锚点PDU会话的策略控制的方法,针对UE访问的业务不同,PCF制定与该业务相对应的PCC规则和相关的策略信息。PCF向SMF网元下发策略信息时,携带指示该执行该策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该策略信息制定的规则需要在哪些PSA上执行。并将制定好的规则发送给对应的PSA。使得UE访问不同的业务时所利用的策略是不同的,提高UE访问不同业务时的效率和准确性。提高通信效率,避免了某些PSA上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。
应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,例如,上述方法500至800中某些步骤可以不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图10,详细描述了本申请实施例的多锚点PDU会话的策略控制的方法,下 面将结合图11至图14,详细描述本申请实施例的通信装置。
图11是本申请一个实施例的通信装置的示意性框图。应理解,该通信装置可以指上述的会话管理功能网元,图11所示的通信装置900可以用于执行对应于图4至图10中、方法400至方法800中会话管理功能SFM执行的步骤。通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例,该通信装置900包括:处理器910、存储器920和收发器930,处理器910、存储器920和收发器930通过通信连接,存储器920存储指令,处理器910用于执行存储器920存储的指令,收发器930用于在处理器910的驱动下执行具体的信号收发。
收发器930,用于接收策略控制功能PCF网元发送的第一策略信息和指示信息,该指示信息用于指示执行该第一策略信息对应的策略的PDU会话的锚点PSA;
可选的,处理器910,用于根据该第一策略信息,确定第二策略信息;
收发器930,还用于向该PSA发送该第二策略信息,该第二策略信息用于指示该PSA执行该策略。
本申请提供的通信装置,在PDU会话存在多锚点的情况下,PCF可以向通信装置下发第一策略信息时,携带指示该执行该第一策略信息对应的策略(规则)的PSA的指示信息。这样,通信装置便可以知道根据该第一策略信息制定的规则需要在哪些PSA上执行。通信装置根据该第一策略信息,制定第二策略信息。该第二策略信息包括与该第一策略信息对应的策略(规则)。并将制定好的第二策略信息发送给对应的PSA。PSA接收到第二策略信息,便执行第二策略信息对应的策略(规则)。解决了通信装置无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些UPF上安装无用或者错误的规则。确保用户可以正常正确的进行通信,提高用户的通信质量和用户体验。节省通信资源。
通信装置900中的各个组件通过通信连接,即处理器910、存储器920和收发器930之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,该指示信息所指示的执行该第一策略信息对应的策略的PDU会话的锚点PSA,为该PDU会话的所有PSA或者部分PSA。
可选的,在本申请的另一个实施例中,该指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、该PSA的标识信息,其中,该终端装置的第一地址信息为该SMF网元为该终端装置分配的与该PSA对应的地址信息。
可选的,在本申请的另一个实施例中,该PSA的标识信息包括:该PSA对应的数据网络接入标识DNAI、该PSA的网络功能标识中的至少一个。
可选的,在本申请的另一个实施例中,该第一策略信息包括策略和计费控制PCC规则和/或与该PDU会话相关的策略。
可选的,在本申请的另一个实施例中,该与该PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。
可选的,在本申请的另一个实施例中,该收发器930还用于:向该PCF网元发送第二信息,该第二信息包括该SMF为终端装置在该PDU会话中分配的与该PSA对应的地址信息和/或该PSA的标识信息。
应注意,本申请实施例中,处理器910可以由处理模块实现,存储器920可以由存储模块实现,收发器930可以由收发模块实现,如图12所示,通信装置1000可以包括处理模块1010、存储模块1020和收发模块1030。
图11所示的通信装置900或图12所示的通信装置1000能够实现前述图4至图10中、方法400至方法800中会话管理功能SFM执行的步骤,类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图13示出了本申请一个实施例的通信装置1100的示意性框图。应理解,通信装置实施例与方法实施例相互对应,,图13所示的通信装置1100可以用于执行对应于图4至图10中、方法400至方法800中策略控制功能PCF执行的步骤。类似的描述可以参照方法实施例,如图13所示,该通信装置1100包括:处理器1110、存储器1120和收发器1130,处理器1110、存储器1120和收发器1130通过通信连接,存储器1120存储指令,处理器1110用于执行存储器1120存储的指令,收发器1130用于在处理器1110的驱动下执行具体的信号收发。
该处理器1110,用于生成第一策略信息和所述指示信息,该指示信息用于指示执行该第一策略信息对应的策略的PDU会话的锚点PSA。
收发器1130,用于向会话管理功能SMF网元发送该第一策略信息和所述指示信息。
本申请提供的通信装置,在PDU会话存在多锚点的情况下,通信装置向SMF网元下发策略信息时,携带指示该执行该策略信息对应的策略(规则)的PSA的指示信息。这样,SMF便可以知道根据该策略信息制定的规则需要在哪些PSA上执行。并将制定好的规则发送给对应的PSA。PSA接收到策略后,便执行该策略(规则)。解决了SMF无法判断制定的策略(规则)需要在哪个PSA上执行的问题。避免了某些UPF上安装无用或者错误的规则。提高用户的通信质量和用户体验。节省通信资源。
通信装置1100中的各个组件通过通信连接,即处理器1110、存储器1120和收发器1230之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步 骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,该指示信息所指示的执行该第一策略信息对应的策略的PDU会话的锚点PSA,为该PDU会话的所有PSA或者部分PSA。
可选的,在本申请的另一个实施例中,该指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、该PSA的标识信息,其中,该终端装置的第一地址信息为该SMF网元为该终端装置分配的与该PSA对应的地址信息。
可选的,在本申请的另一个实施例中,该PSA的标识信息包括:该PSA对应的数据网络接入标识DNAI、该PSA的网络功能标识中的至少一个。
可选的,在本申请的另一个实施例中,该第一策略信息包括:策略和计费控制PCC规则和/或与该PDU会话相关的策略。
可选的,在本申请的另一个实施例中,该与该PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。
可选的,在本申请的另一个实施例中,该收发器1130还用于:接收应用功能AF网元发送的第三信息,该第三信息包括终端装置访问业务时所经过的PSA的信息和该业务的信息,其中,该终端装置访问业务时所经过的PSA为该SMF为该PDU会话分配的PSA中的至少一个。处理器1110具体用于:根据该第三信息,生成该第一策略信息和该指示信息。
可选的,在本申请的另一个实施例中,该终端装置访问业务时所经过的PSA的信息包括:该终端装置访问业务时所经过的PSA的标识信息、该终端装置访问业务时所经过的PSA对应的该终端装置的第一地址信息、该终端装置访问业务时所经过的PSA对应的该终端装置的第一地址信息经过网络地址转换后的第二地址信息中的至少一个。
可选的,在本申请的另一个实施例中,该收发器1130还用于:接收该SMF网元发送的第二信息,该第二信息包括该SMF为终端装置分配的与该PSA对应的地址信息和/或该PSA的标识信息,处理器1110具体用于:根据该第二信息,生成该第一策略信息和该指示信息。
应注意,本申请实施例中,处理器1110可以由处理模块实现,存储器1120可以由存储模块实现,收发器1130可以由收发模块实现,如图14所示,通信装置1200可以包括处理模块1210、存储模块1220和收发模块1230。
图13所示的通信装置1100或图14所示的通信装置1200能够实现前述图4至图10中、方法400至方法800中策略控制功能PCF执行的步骤,类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
本申请实施例还提供了一种装置,该装置可以执行上述的任意一个方法权利要求中所述的多锚点协议数据单元会话的策略控制的方法。本申请实施例提供的装置,解决了多PSA的PDU会话时,SMF无法判断制定的规则需要在哪个PSA上执行的问题。避免了某些PSA上安装无用或者错误的规则。提高用户的正常通信质量和用户体验。节省通信资源。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序 包括用于执行上述方法400至方法800中本申请实施例的多锚点协议数据单元PDU会话的策略控制的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被执行时,以使得所述管理设备、网关设备、接入网设备可以执行对应于上述方法的管理设备、网关设备、接入网设备或终端设备的操作。
本申请实施例还提供了一种通信系统,该通信系统包括上述本申请实施例提供的通信装置,该通信系统可以完成本申请实施例提供的任一种多锚点协议数据单元PDU会话的策略控制的方法。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种多锚点协议数据单元PDU会话的策略控制的方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的多锚点协议数据单元PDU会话的策略控制的方法的程序执行的集成电路。
应理解,本文中术语“和/或”以及“A或B中的至少一种”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种多锚点协议数据单元PDU会话的策略控制的方法,其特征在于,包括:
    会话管理功能SMF网元接收策略控制功能PCF网元发送的第一策略信息和指示信息,所述指示信息用于指示执行所述第一策略信息对应的策略的PDU会话的锚点PSA;
    所述SMF网元向所述PSA发送第二策略信息,所述第二策略信息用于指示所述PSA执行所述策略。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息所指示的执行所述第一策略信息对应的策略的PDU会话的锚点PSA,为所述PDU会话的所有PSA或者部分PSA。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、所述PSA的标识信息,其中,所述终端装置的第一地址信息为所述SMF网元为所述终端装置分配的与所述PSA对应的地址信息。
  4. 根据权利要求3所述的方法,其特征在于,所述PSA的标识信息包括:所述PSA对应的数据网络接入标识DNAI、所述PSA的网络功能标识中的至少一个。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一策略信息包括策略和计费控制PCC规则和/或与所述PDU会话相关的策略。
  6. 根据权利要求5所述的方法,其特征在于,所述与所述PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述SMF网元向所述PCF网元发送第二信息,所述第二信息包括所述SMF为终端装置在所述PDU会话中分配的与所述PSA对应的地址信息和/或所述PSA的标识信息。
  8. 一种多锚点协议数据单元PDU会话的策略控制的方法,其特征在于,包括:
    策略控制功能PCF网元生成第一策略信息和指示信息,所述指示信息用于指示执行所述第一策略信息对应的策略的PDU会话的锚点PSA;
    所述PCF网元向会话管理功能SMF网元发送所述第一策略信息和所述指示信息。
  9. 根据权利要求8所述的方法,其特征在于,所述指示信息所指示的执行所述第一策略信息对应的策略的PDU会话的锚点PSA,为所述PDU会话的所有PSA或者部分PSA。
  10. 根据权利要求8或9所述的方法,其特征在于,所述指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、所述PSA的标识信息,其中,所述终端装置的第一地址信息为所述SMF网元为所述终端装置分配的与所述PSA对应的地址信息。
  11. 根据权利要求10所述的方法,其特征在于,所述PSA的标识信息包括:所述PSA对应的数据网络接入标识DNAI、所述PSA的网络功能标识中的至少一个。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述第一策略信息包括:
    策略和计费控制PCC规则和/或与所述PDU会话相关的策略。
  13. 根据权利要求12所述的方法,其特征在于,所述与所述PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述PCF网元接收所述SMF网元发送的第二信息,所述第二信息包括所述SMF为终端装置在所述PDU会话中分配的与所述PSA对应的地址信息和/或所述PSA的标识信息,
    所述PCF网元生成第一策略信息和指示信息,包括:
    所述PCF网元根据所述第二信息,生成所述第一策略信息和所述指示信息。
  15. 根据权利要求8至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述PCF网元接收应用功能AF网元发送的第三信息,所述第三信息包括终端装置访问业务时所经过的PSA的信息和所述业务的信息,其中,所述终端装置访问业务时所经过的PSA为所述SMF为所述PDU会话分配的PSA中的至少一个,
    所述PCF网元生成第一策略信息和指示信息,包括:
    所述PCF网元根据所述第三信息,生成所述第一策略信息和所述指示信息。
  16. 根据权利要求15所述的方法,其特征在于,所述终端装置访问业务时所经过的PSA的信息包括:所述终端装置访问业务时所经过的PSA的标识信息、所述终端装置访问业务时所经过的PSA对应的所述终端装置的第一地址信息、所述终端装置访问业务时所经过的PSA对应的所述终端装置的第一地址信息经过网络地址转换后的第二地址信息中的至少一个。
  17. 一种通信装置,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于接收策略控制功能PCF网元发送的第一策略信息和指示信息,所述指示信息用于指示执行所述第一策略信息对应的策略的PDU会话的锚点PSA;
    所述收发器还用于:向所述PSA发送第二策略信息,所述第二策略信息用于指示所述PSA执行所述策略。
  18. 根据权利要求17所述的通信装置,其特征在于,所述指示信息所指示的执行所述第一策略信息对应的策略的PDU会话的锚点PSA,为所述PDU会话的所有PSA或者部分PSA。
  19. 根据权利要求17或18所述的通信装置,其特征在于,所述指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、所述PSA的标识信息,其中,所述终端装置的第一地址信息为所述SMF网元为所述终端装置分配的与所述PSA对应的地址信息。
  20. 根据权利要求19所述的通信装置,其特征在于,所述PSA的标识信息包括:所述PSA对应的数据网络接入标识DNAI、所述PSA的网络功能标识中的至少一个。
  21. 根据权利要求17至20中任一项所述的通信装置,其特征在于,所述第一策略信息包括:策略和计费控制PCC规则和/或与所述PDU会话相关的策略。
  22. 根据权利要求21所述的通信装置,其特征在于,所述与所述PDU会话相关的策 略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。
  23. 根据权利要求17至22中任一项所述的通信装置,其特征在于,所述收发器还用于:
    向所述PCF网元发送第二信息,所述第二信息包括所述SMF为终端装置在所述PDU会话中分配的与所述PSA对应的地址信息和/或所述PSA的标识信息。
  24. 一种通信装置,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述处理器,用于生成第一策略信息和指示信息,所述指示信息用于指示执行所述第一策略信息对应的策略的PDU会话的锚点PSA;
    所述收发器,用于向会话管理功能SMF网元发送所述第一策略信息和所述指示信息。
  25. 根据权利要求24所述的通信装置,其特征在于,所述指示信息所指示的执行所述第一策略信息对应的策略的PDU会话的锚点PSA,为所述PDU会话的所有PSA或者部分PSA。
  26. 根据权利要求23或24所述的通信装置,其特征在于,所述指示信息包括以下信息中的至少一个:终端装置的第一地址信息、终端装置的第一地址信息经过网络地址转换后的第二地址信息、所述PSA的标识信息,其中,所述终端装置的第一地址信息为所述SMF网元为所述终端装置分配的与所述PSA对应的地址信息。
  27. 根据权利要求26所述的通信装置,其特征在于,所述PSA的标识信息包括:所述PSA对应的数据网络接入标识DNAI、所述PSA的网络功能标识中的至少一个。
  28. 根据权利要求24至27中任一项所述的通信装置,其特征在于,所述第一策略信息包括:
    策略和计费控制PCC规则和/或与所述PDU会话相关的策略。
  29. 根据权利要求28所述的通信装置,其特征在于,所述与所述PDU会话相关的策略包括以下策略中的至少一个:计费策略、默认计费策略、事件触发器策略、重授权时间限制策略、出现报告区域PRA标识和PRA元素列表策略、互联网协议IP索引策略、授权的会话聚合最大速率策略、授权的默认服务质量参数策略。
  30. 根据权利要求24至29中任一项所述的通信装置,其特征在于,所述收发器还用于:
    接收所述SMF网元发送的第二信息,所述第二信息包括所述SMF为终端装置在所述PDU会话中分配的与所述PSA对应的地址信息和/或所述PSA的标识信息,
    所述处理器具体用于:根据所述第二信息,生成所述第一策略信息和所述指示信息。
  31. 根据权利要求24至30中任一项所述的通信装置,其特征在于,所述收发器还用于:接收应用功能AF网元发送的第三信息,所述第三信息包括终端装置访问业务时所经过的PSA的信息和所述业务的信息,其中,所述终端装置访问业务时所经过的PSA为所述SMF为所述PDU会话分配的PSA中的至少一个,
    所述处理器具体用于:根据所述第三信息,生成所述第一策略信息和所述指示信息。
  32. 根据权利要求31所述的通信装置,其特征在于,所述终端装置访问业务时所经 过的PSA的信息包括:所述终端装置访问业务时所经过的PSA的标识信息、所述终端装置访问业务时所经过的PSA对应的所述终端装置的第一地址信息、所述终端装置访问业务时所经过的PSA对应的所述终端装置的第一地址信息经过网络地址转换后的第二地址信息中的至少一个。
  33. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序用于执行根据权利要求1至16中任一项所述的多锚点协议数据单元PDU会话的策略控制的方法的指令。
  34. 一种系统芯片,包括处理单元和通信单元,该处理单元可执行计算机指令,以使该系统芯片执行根据权利要求1至16中任一项所述的多锚点协议数据单元PDU会话的策略控制的方法。
PCT/CN2019/071842 2018-01-16 2019-01-16 多锚点协议数据单元会话的策略控制的方法和通信装置 WO2019141169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810041748.4A CN110048873A (zh) 2018-01-16 2018-01-16 多锚点协议数据单元会话的策略控制的方法和通信装置
CN201810041748.4 2018-01-16

Publications (1)

Publication Number Publication Date
WO2019141169A1 true WO2019141169A1 (zh) 2019-07-25

Family

ID=67273461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071842 WO2019141169A1 (zh) 2018-01-16 2019-01-16 多锚点协议数据单元会话的策略控制的方法和通信装置

Country Status (2)

Country Link
CN (1) CN110048873A (zh)
WO (1) WO2019141169A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118600A (zh) * 2020-09-18 2020-12-22 恒安嘉新(北京)科技股份公司 一种5g独立组网sa架构下的流量牵引系统
CN112584437A (zh) * 2019-09-30 2021-03-30 中国移动通信有限公司研究院 一种数据分流方法及装置
CN112654100A (zh) * 2019-10-10 2021-04-13 中国移动通信有限公司研究院 一种信息处理方法和相关网络设备
CN112953843A (zh) * 2019-11-26 2021-06-11 华为技术有限公司 一种数据传输方法及其装置
CN113114649A (zh) * 2021-04-02 2021-07-13 腾讯科技(深圳)有限公司 拒绝服务攻击的解决方法、装置、设备及介质
WO2021197155A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 一种通信方法及装置
CN113498110A (zh) * 2020-04-03 2021-10-12 华为技术有限公司 业务报文传输方法及相关设备
CN114615132A (zh) * 2022-02-25 2022-06-10 亚信科技(中国)有限公司 一种分流upf的故障处理方法、装置、设备和存储介质
EP3968689A4 (en) * 2019-07-26 2022-07-06 Huawei Technologies Co., Ltd. METHOD, DEVICE AND POLICY CONTROL SYSTEM
CN115486032A (zh) * 2020-06-24 2022-12-16 华为技术有限公司 用于通信系统的有效预定义策略和计费控制pcc指令处理机制
EP4080984A4 (en) * 2019-12-31 2023-06-21 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223178A (zh) * 2019-08-19 2022-03-22 瑞典爱立信有限公司 用于在核心网络中执行保护控制的方法和设备
CN112449358B (zh) * 2019-08-30 2022-05-24 华为技术有限公司 一种统计业务流量的方法和装置
CN112468529B (zh) * 2019-09-09 2022-08-23 中国移动通信有限公司研究院 一种会话管理方法及设备
CN112583713B (zh) * 2019-09-30 2023-09-29 中兴通讯股份有限公司 流量路由控制方法、网络设备、系统及存储介质
CN112866323A (zh) * 2019-11-28 2021-05-28 中兴通讯股份有限公司 一种会话更新方法、装置、终端设备和存储介质
CN111092937A (zh) * 2019-12-04 2020-05-01 中兴通讯股份有限公司 会话创建方法、控制方法、会话创建系统、网元及介质
CN113132322B (zh) * 2019-12-31 2022-05-17 华为技术有限公司 一种通信的方法及装置
WO2021138804A1 (en) * 2020-01-07 2021-07-15 Nokia Shanghai Bell Co., Ltd. Method and apparatus for resolving domain name in case of local access to data network
CN111314347A (zh) * 2020-02-19 2020-06-19 联想(北京)有限公司 一种非法流量的处理方法、装置、系统和存储介质
KR20220140833A (ko) * 2020-02-26 2022-10-18 후아웨이 테크놀러지 컴퍼니 리미티드 애플리케이션 탐지 방법 및 장치, 그리고 시스템
WO2021168715A1 (zh) * 2020-02-26 2021-09-02 华为技术有限公司 一种发现应用的方法、装置及系统
CN113472651B (zh) * 2020-03-31 2023-02-10 华为技术有限公司 一种通信方法及装置
CN113973322A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 一种通信方法及装置
CN114095551A (zh) * 2020-08-06 2022-02-25 中兴通讯股份有限公司 会话控制方法、装置、系统、网元及介质
CN114339847A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 通信方法及装置
CN114513546A (zh) * 2020-10-28 2022-05-17 中国电信股份有限公司 业务保障方法、系统和存储介质
CN112637896B (zh) * 2020-12-10 2023-04-07 中国联合网络通信集团有限公司 最大聚合速率的分配方法、会话管理功能实体及终端
WO2022165745A1 (zh) * 2021-02-05 2022-08-11 华为技术有限公司 数据配置方法、装置、系统及存储介质
CN114915929A (zh) * 2021-02-09 2022-08-16 华为技术有限公司 确定策略的方法和通信装置
CN114979079B (zh) * 2021-02-18 2023-07-21 中国移动通信有限公司研究院 信息处理方法、装置、相关设备和存储介质
CN115134769A (zh) * 2021-03-25 2022-09-30 中国移动通信有限公司研究院 一种业务处理方法、设备及存储介质
CN113993118B (zh) * 2021-10-15 2023-07-25 中国联合网络通信集团有限公司 数据分流方法、装置、设备、功能实体及存储介质
WO2023143450A1 (zh) * 2022-01-27 2023-08-03 维沃移动通信有限公司 数据处理规则的配置方法、终端及网络侧设备
CN117750348A (zh) * 2022-09-20 2024-03-22 中国移动通信集团设计院有限公司 数据分流方法、双域专网系统、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018542A (zh) * 2017-03-27 2017-08-04 中兴通讯股份有限公司 网络系统中状态信息的处理方法、装置及存储介质
CN107547218A (zh) * 2016-06-24 2018-01-05 中兴通讯股份有限公司 一种网元管理方法、设备、系统及控制面功能实体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444850B2 (en) * 2016-05-02 2022-09-13 Huawei Technologies Co., Ltd. Method and apparatus for communication network quality of service capability exposure
CN109560929B (zh) * 2016-07-01 2020-06-16 华为技术有限公司 密钥配置及安全策略确定方法、装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547218A (zh) * 2016-06-24 2018-01-05 中兴通讯股份有限公司 一种网元管理方法、设备、系统及控制面功能实体
CN107018542A (zh) * 2017-03-27 2017-08-04 中兴通讯股份有限公司 网络系统中状态信息的处理方法、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "23.502 PDU Session Modification procedures", 3GPP SA WG2 MEETING #119 S2-171005, 17 February 2017 (2017-02-17), XP051217126 *
CATT: "PDU Session Modification procedures", 3GPP SA WG2 MEETING #118-BIS S2-170253, 20 January 2017 (2017-01-20), XP051205691 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968689A4 (en) * 2019-07-26 2022-07-06 Huawei Technologies Co., Ltd. METHOD, DEVICE AND POLICY CONTROL SYSTEM
CN112584437A (zh) * 2019-09-30 2021-03-30 中国移动通信有限公司研究院 一种数据分流方法及装置
CN112584437B (zh) * 2019-09-30 2023-03-28 中国移动通信有限公司研究院 一种数据分流方法及装置
CN112654100A (zh) * 2019-10-10 2021-04-13 中国移动通信有限公司研究院 一种信息处理方法和相关网络设备
WO2021068706A1 (zh) * 2019-10-10 2021-04-15 中国移动通信有限公司研究院 一种信息处理方法和相关网络设备
CN112654100B9 (zh) * 2019-10-10 2023-11-03 中国移动通信有限公司研究院 一种信息处理方法和相关网络设备
CN112654100B (zh) * 2019-10-10 2022-10-21 中国移动通信有限公司研究院 一种信息处理方法和相关网络设备
CN112953843A (zh) * 2019-11-26 2021-06-11 华为技术有限公司 一种数据传输方法及其装置
CN112953843B (zh) * 2019-11-26 2022-12-30 华为技术有限公司 一种数据传输方法及其装置
EP4080984A4 (en) * 2019-12-31 2023-06-21 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
WO2021197155A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 一种通信方法及装置
US11863519B2 (en) 2020-03-31 2024-01-02 Huawei Technologies Co., Ltd. Communication method and apparatus for handling DNS messages
CN113498110A (zh) * 2020-04-03 2021-10-12 华为技术有限公司 业务报文传输方法及相关设备
CN113498110B (zh) * 2020-04-03 2023-03-24 华为技术有限公司 业务报文传输方法及相关设备
CN115486032A (zh) * 2020-06-24 2022-12-16 华为技术有限公司 用于通信系统的有效预定义策略和计费控制pcc指令处理机制
CN115486032B (zh) * 2020-06-24 2024-04-26 华为技术有限公司 用于通信系统的有效预定义策略和计费控制pcc指令处理机制
CN112118600A (zh) * 2020-09-18 2020-12-22 恒安嘉新(北京)科技股份公司 一种5g独立组网sa架构下的流量牵引系统
CN112118600B (zh) * 2020-09-18 2024-05-03 恒安嘉新(北京)科技股份公司 一种5g独立组网sa架构下的流量牵引系统
CN113114649A (zh) * 2021-04-02 2021-07-13 腾讯科技(深圳)有限公司 拒绝服务攻击的解决方法、装置、设备及介质
CN113114649B (zh) * 2021-04-02 2024-01-05 腾讯科技(深圳)有限公司 拒绝服务攻击的解决方法、装置、设备及介质
CN114615132A (zh) * 2022-02-25 2022-06-10 亚信科技(中国)有限公司 一种分流upf的故障处理方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN110048873A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2019141169A1 (zh) 多锚点协议数据单元会话的策略控制的方法和通信装置
JP7118237B2 (ja) 通信方法及び通信装置
US11811670B2 (en) Packet delay parameter obtaining method, system, and apparatus
WO2019137524A1 (zh) 确定网络服务质量流的方法、网元和系统
US20220377819A1 (en) Method and apparatus for establishing data transmission link and computer-readable storage medium
US9788353B2 (en) Mobile network communications method, communications apparatus, and communications system
US20220345929A1 (en) Apparatus and method for psa-upf relocation in wireless communication system
CN110830356B (zh) 传输报文的方法和装置
US20130235728A1 (en) Estimation of access quality in mobile communication systems
WO2019101041A1 (zh) 一种通信方法及其装置
TWI830016B (zh) 增加和改變條件主輔小區的方法
US11910231B2 (en) Delay measurement method and apparatus
CN109309904B (zh) 组播数据传输方法、相关设备及通信系统
US20130235747A1 (en) Estimation of access quality in mobile communication systems
WO2022012370A1 (zh) 多接入连接建立的方法、装置和系统
US20230189368A1 (en) Associating transport identifiers with quality of service flows
CN114128228A (zh) 通过SRv6头传输MTNC-ID以实现5G传输
JP2021530171A (ja) 経路選択方法、端末デバイス及びネットワークデバイス
WO2020151614A1 (zh) 用户面安全保护的方法和装置
US11882513B2 (en) Transporting MTNC-ID over SRV6-enabled dataplane for 5G transport
WO2019109983A1 (zh) 数据传输的方法和装置
EP4186319A1 (en) Multicast and broadcast service establishment
US10841214B2 (en) Reusing a tag
JP7358618B2 (ja) 改良パケット検出ルールのプロビジョニングのための方法および装置
WO2023138642A1 (zh) 数据传输方法、电子设备、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741562

Country of ref document: EP

Kind code of ref document: A1