WO2019140594A1 - 压力传感器、血压计及压力传感器制造方法 - Google Patents

压力传感器、血压计及压力传感器制造方法 Download PDF

Info

Publication number
WO2019140594A1
WO2019140594A1 PCT/CN2018/073214 CN2018073214W WO2019140594A1 WO 2019140594 A1 WO2019140594 A1 WO 2019140594A1 CN 2018073214 W CN2018073214 W CN 2018073214W WO 2019140594 A1 WO2019140594 A1 WO 2019140594A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensing
chips
temperature
sensing chip
Prior art date
Application number
PCT/CN2018/073214
Other languages
English (en)
French (fr)
Inventor
杨胜周
Original Assignee
深圳市永盟电子科技限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市永盟电子科技限公司 filed Critical 深圳市永盟电子科技限公司
Priority to PCT/CN2018/073214 priority Critical patent/WO2019140594A1/zh
Publication of WO2019140594A1 publication Critical patent/WO2019140594A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges

Definitions

  • the invention relates to a pressure sensor, a blood pressure meter and a pressure sensor manufacturing method.
  • Pressure sensors are mainly used in medical health fields to measure blood pressure in human blood pressure monitors.
  • the quality of the pressure sensor directly determines the service life of the sphygmomanometer.
  • the accuracy of the pressure sensor also directly determines the error of the result of the blood pressure measurement.
  • the traditional electronic sphygmomanometer uses a pressure sensor of a single pressure sensing chip, and the detection result is directly determined by the quality of the pressure sensor.
  • the pressure sensor When used for a long time, the pressure sensor generates a large error, and the sphygmomanometer controller cannot detect the sensor itself. The deviation caused by drift, and when the pressure sensor is damaged, the sphygmomanometer will not be pressure-protected during use, and even the air pressure generated by the sphygmomanometer inflation will be harmed to the user.
  • the present invention aims to solve the above problems, and provides a pressure sensor, a blood pressure meter and a pressure sensor manufacturing method with high detection accuracy, safety and durability.
  • a pressure sensor includes a substrate on which two pressure sensing chips and a temperature sensing chip are packaged, each pressure sensing chip is used for separately sensing the air pressure of the external gas, and the two pressure sensing chips are on the substrate.
  • the upper circuit is independent of each other, the temperature sensing chip and the circuit of the two pressure sensing chips are independent of each other, and are used for sensing a gas temperature value around the two pressure sensing chips, when the two pressure sensing chips sense the external target
  • the temperature sensing chip can sense a temperature value of the external target gas to compensate for the pressure value of the external target gas sensed by the two pressure sensing chips.
  • a sphygmomanometer comprising a controller, the controller connecting the two pressure sensing chips and the temperature sensing chip, the controller being capable of reading a target gas sensed by the two pressure sensing chips
  • the air pressure value and the reading the temperature sensing chip sense the actual temperature value of the target gas
  • the controller can determine whether the air pressure value of the target gas sensed by the two pressure sensing chips is within a preset error range Determining whether the two pressure sensing chips are working properly, the controller can be configured according to the temperature difference between the actual temperature value of the target gas sensed by the temperature sensing chip and the standard temperature, and the two pressure sensing chips The gas pressure value of the target gas sensed at the actual temperature is compensated.
  • a method of manufacturing a pressure sensor includes the following steps:
  • the two pressure sensing chips and one temperature sensing chip are packaged on the same substrate.
  • the two pressure sensing chips and the temperature sensing chip are packaged to the substrate by a microelectromechanical technology to form a surface mount sensor module.
  • the two pressure sensing chips and the temperature sensing chip are packaged to the substrate by a microelectromechanical technology to form a dual in-line sensor module.
  • the two pressure sensor chips are packaged in a gauge mode.
  • the substrate is provided with air holes, and the air holes communicate with the bottoms of the two pressure sensing chips.
  • the two pressure sensor chips are packaged in an absolute mode.
  • the positive effect of the invention is that the single-package dual pressure sensing chip can greatly reduce the risk caused by the failure of the pressure sensor, and prevent the sphygmomanometer from continuing to shrink when the single pressure sensing chip fails, causing the user to be injured.
  • the single-package dual-pressure induction chip can effectively improve the detection accuracy of blood pressure, prevent the sensor itself from failing, and the compensation effect of the temperature sensing chip, expand the applicable temperature range of the sensor, and increase the ambient temperature range of the sphygmomanometer. Ensure that the pressure measurement results are stable and reliable, so that the products using the sensor can truly achieve the safe and effective expected goal.
  • FIG. 1 is a top plan view of a sensor in an embodiment of the present invention.
  • FIG. 2 is a front elevational view of the sensor of FIG. 1 with the substrate and pressure sensing chip at a cross-section.
  • FIG. 3 is a left side view of the sensor of FIG. 1 with the substrate and the pressure sensing chip at a cross section.
  • FIG. 4 is a schematic diagram of a bridge circuit of a wafer in an embodiment of the present invention.
  • Figure 5 is a schematic illustration of the sensor of Figure 1 with leads.
  • FIG. 6 is a schematic diagram of functional modules of a sphygmomanometer according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of manufacturing a pressure sensor in an embodiment of the present invention.
  • An embodiment of the invention relates to a pressure sensor, a sphygmomanometer, and a method of manufacturing a pressure sensor.
  • a pressure sensor 10 includes a substrate 11 , a first pressure sensing chip 13 , a second pressure sensing chip 14 , and a temperature sensing chip 15 .
  • the first pressure sensing chip 13, the second pressure sensing chip 14, and the temperature sensing chip 15 are packaged to the substrate 11 at a time.
  • the substrate 11 is a backing plate.
  • the substrate 11 is provided with an air hole 111 that simultaneously connects the first pressure sensing chip 13 and the second pressure sensing chip 14.
  • the circuits of the first pressure sensing chip 13 and the second pressure sensing chip 14 on the substrate 11 are independent of each other and can directly sense the external air pressure, wherein the sensing of the external target gas by one pressure sensing chip is not caused by the other pressure sensing chip. Failure to lose pressure sensing capability ensures the expected working capacity of the pressure sensor.
  • the temperature sensing chip 15 can sense the ambient temperature value around the two pressure sensing chips. The temperature sensing chip 15 and the two pressure sensor circuits are independent of each other, and the expected working capability is not lost due to the circuit failure of any of the pressure sensing chips.
  • the first pressure sensing chip 13 and the second pressure sensing chip 14 are cut by the same wafer, and the bridge resistance values of the first pressure sensing chip 13 and the second pressure sensing chip 14 are within a preset range. In this way, the consistency of the first pressure sensing chip 13 and the second pressure sensing chip 14 can be maintained in physical characteristics to achieve consistency of the pressure sensing effect.
  • the first pressure sensing chip 13, the second pressure sensing chip 14 and the temperature sensing chip 15 can be packaged into the substrate 11 by a micro-electromechanical technology (MEMS) to form a surface mount (SMT) sensor module, or can be packaged by MEMS to The substrate 11 is formed as a dual in-line (DIP) sensor module.
  • MEMS micro-electromechanical technology
  • SMT surface mount
  • DIP dual in-line
  • the first pressure sensing chip 13 and the second pressure sensing chip 14 may be packaged in a gauge mode or an absolute mode.
  • the external air pressure enters the pressure sensor sealing chamber through the air pressure conduit, and the atmospheric pressure naturally enters the bottom of the pressure sensor through the air hole 111 to measure the target air pressure.
  • the external air pressure enters the pressure sensor sealing cavity through the air pressure conduit. The bottom of the sensor is sealed and the atmospheric pressure cannot enter.
  • the first pressure sensing chip 13 includes a bridge circuit including pins 1-5.
  • the second pressure sensing chip 14 has the same structure as the first pressure sensing chip 13, and includes pins 6-10.
  • the first pressure sensing chip 13 and the second pressure sensing chip 14 have the same pin arrangement direction after being packaged on the substrate 11.
  • a sphygmomanometer 100 includes a pressure sensor 10 and a controller 30 .
  • the controller 30 simultaneously connects the first pressure sensing chip 13, the second pressure sensing chip 14, and the temperature sensing chip 15 on the pressure sensor 10.
  • the controller 30 can simultaneously control the first pressure sensing chip 13 and the second pressure sensing chip 14 to perform blood pressure measurement, and the controller 30 can obtain the detection results of the first pressure sensing chip 13 and the second pressure sensing chip 14.
  • the controller 30 can determine whether the first pressure sensing chip 13 and the second pressure sensing chip 14 are based on whether the air pressure value of the external target gas sensed by the first pressure sensing chip 13 and the second pressure sensing chip 14 is within a preset error range. Working normally.
  • the pressure sensor is measured by continuously boosting to output a different voltage to form a pressure-voltage curve, at which time the pressure-voltage curve is a standard value.
  • the standard temperature such as 10 degrees Celsius or 25 degrees Celsius
  • the pressure-voltage curve actually generated by the pressure sensor will deviate from the pressure-voltage curve at the standard temperature, so The temperature difference is compensated.
  • the controller 30 can obtain the actual temperature value sensed by the temperature sensing chip 15 while the air pressure value sensed by the first pressure sensing chip 13 and the second pressure sensing chip 14 to obtain a temperature difference with respect to the standard temperature, and further The pressure values sensed by the two pressure sensing chips are compensated to make the pressure-voltage curve tend to a standard value. In this way, the applicable temperature range of the sensor is enlarged, the ambient temperature range of the sphygmomanometer is increased, and the pressure measurement result is ensured to be stable and reliable, so that the product applying the sensor truly achieves the safe and effective expected goal.
  • the first pressure sensing chip 13 and the second pressure sensing chip 14 work independently of each other, when one of the pressure sensing chips fails, the other pressure sensing chip can continue to operate, and the controller 30 will based on the result of the single pressure sensing chip. Make the output.
  • the use of a single-package dual-pressure sensor chip can greatly reduce the risk of blood pressure detection and prevent the sphygmomanometer from continuing to shrink when the single pressure sensor chip fails, causing user injury.
  • the single-package dual-pressure induction chip can effectively improve the detection accuracy of blood pressure, and the compensation effect of the temperature sensing chip 15 is more stable and reliable.
  • the sphygmomanometer can self-check the reliability of the sphygmomanometer according to the obtained air pressure value of the dual pressure sensing chip. For example, if the difference between the two air pressure values is greater than a preset value, the at least one pressure can be quickly determined.
  • the sensor chip fails, and the controller stops the blood pressure according to this, ensuring the reliability of blood pressure measurement and the safety of the user.
  • the merchant can also replace the pressure sensing chip in a targeted manner to reduce maintenance costs.
  • a method for manufacturing a pressure sensor includes the following steps:
  • Step 71 Separating a plurality of pressure sensing wafers on the same wafer.
  • Step 73 Select a pressure sensing chip with two bridge resistance values within a preset range to form a pressure sensing chip.
  • two pressure sensing chips with the closest bridge resistance values are selected within a preset range.
  • Step 75 Packing the two pressure sensing chips and the temperature sensing chip to the same substrate.
  • the two pressure sensing chips and the temperature sensing chip are packaged to the substrate by MEMS technology to form a surface mount sensor module or a dual in-line sensor module.
  • the two pressure sensor chips are packaged in a gauge mode or an absolute mode.
  • the pressure sensor can package three or more pressure sensing chips at a time, or package two or more temperature sensing chips at a time to achieve similar technical effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种压力传感器(10)、一种压力传感器(10)的制造方法及一种血压计(100)。该压力传感器(10)包括一基板(11),基板(11)上封装有两压力感应芯片(13,14)及一温度感应芯片(15),每一压力感应芯片(13,14)用于单独感测外部气体气压,两压力感应芯片(13,14)在基板(11)上的电路互相独立,温度感应芯片(15)与两压力感应芯片(13,14)的电路相互独立,并用于感测两压力感应芯片(13,14)周围的气体温度值,当两压力感应芯片(13,14)感测外部目标气体的气压时,温度感应芯片(15)能感测外部目标气体的温度值,以对两压力感应芯片(13,14)感测到外部目标气体的气压值进行补偿。

Description

压力传感器、血压计及压力传感器制造方法 技术领域
本发明涉及一种压力传感器、血压计及压力传感器制造方法。
背景技术
压力传感器在医学健康领域主要应用于电子血压计中,用于感测人体血压。压力传感器的自身品质直接决定血压计的使用寿命,压力传感器的精度也直接决定血压测量的结果误差大小。传统电子血压计使用单一压力感应芯片的压力传感器,检测结果直接由该压力传感器的品质决定,在长时间使用时,该类压力传感器产生的误差较大,而且血压计控制器无法检测到传感器自身漂移引起的偏差,同时当压力传感器损坏时,血压计在使用过程中不会进行压力保护,甚至会使血压计充气产生的气压伤害到用户。
技术问题
本发明旨在解决上述问题,而提供一种检测精度高,安全耐用的压力传感器、血压计及压力传感器制造方法。
技术解决方案
一种压力传感器,包括一基板,所述基板上封装有两压力感应芯片及一温度感应芯片,每一压力感应芯片用于单独感测外部气体的气压,所述两压力感应芯片在所述基板上的电路互相独立,所述温度感应芯片与所述两压力感应芯片的电路相互独立,并用于感测所述两压力感应芯片周围的气体温度值,当两压力感应芯片感测所述外部目标气体的气压时,所述温度感应芯片能感测所述外部目标气体的温度值,以对所述两压力感应芯片感测到所述外部目标气体的气压值进行补偿。
一种血压计,所述血压计包括控制器,所述控制器连接所述两压力感应芯片及所述温度感应芯片,所述控制器能读取所述两压力感应芯片感测的目标气体的气压值及读取所述温度感应芯片感测所述目标气体的实际温度值,所述控制器能根据所述两压力感应芯片感测的所述目标气体的气压值是否在预设的误差范围判断所述两压力感应芯片是否工作正常,所述控制器能根据所述温度感应芯片感测的所述目标气体的实际温度值相对于标准温度下的温度差值,对所述两压力感应芯片在所述实际温度下感测的所述目标气体的气压值进行补偿。
一种压力传感器的制造方法包括以下步骤:
在同一晶圆上分隔出若干压力感应晶片;
选取两电桥电阻值在预设范围内的压力感应晶片制成压力感应芯片;及
将所述两压力感应芯片及一温度感应芯片封装至同一基板。
进一步地,所述两压力感应芯片及所述温度感应芯片通过微机电技术封装至所述基板形成表面贴装式传感器模组。
进一步地,所述两压力感应芯片及所述温度感应芯片通过微机电技术封装至所述基板形成双列直插式传感器模组。
进一步地,所述两压力传感器芯片被封装为表压模式。
进一步地,所述基板上开设有气孔,所述气孔连通两压力感应芯片底部。
进一步地,所述两压力传感器芯片被封装为绝压模式。
有益效果
本发明的积极效果在于,单体封装的双压力感应芯片可以大大降低压力传感器失效带来的风险,防止血压计在单一压力感应芯片失效时,臂带继续收缩造成用户伤害的问题。同时,单体封装的双压力感应芯片可有效提高血压的检测精度,防止传感器自身失效,配以温度感应芯片的补偿效果,扩大传感器的适用温度范围,使血压计的使用环境温度范围增大,保证压力测量结果稳定可靠,使应用该传感器的产品真正达到安全有效的预期目标。
附图说明
图1是本发明实施方式中传感器的俯视示意图。
图2是图1中传感器的正视示意图,其中基板及压力感应芯片处做剖视。
图3是图1中传感器的左视示意图,其中基板及压力感应芯片处做剖视。
图4是本发明实施方式中一晶片的电桥电路示意图。
图5是图1中传感器带有引脚的示意图。
图6是本发明实施方式中一血压计的功能模块示意图。
图7是本发明实施方式中一压力传感器制造方法的流程图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中设置的元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中设置的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明一实施方式涉及一种压力传感器、血压计及压力传感器制造方法。
请参阅图1至图3,一实施方式中,一压力传感器10包括一基板11、一第一压力感应芯片13、一第二压力感应芯片14及一温度感应芯片15。第一压力感应芯片13、第二压力感应芯片14及温度感应芯片15被一次封装至基板11。基板11为一衬托底板。基板11开设有同时连通第一压力感应芯片13与第二压力感应芯片14的气孔111。第一压力感应芯片13及第二压力感应芯片14在基板11上的电路互相独立并能单独感测外部气压,其中一压力感应芯片对外部目标气体的感测不会因另一压力感应芯片的失效而失去压力感测能力,保证了压力传感器的预期工作能力。温度感应芯片15能感测所述两压力感应芯片周围的环境温度值,温度感应芯片15与两压力传感器的电路相互独立,且不会因任一压力感应芯片的电路失效而失去预期工作能力。
在本实施方式中,第一压力感应芯片13与第二压力感应芯片14选用同一晶圆切割,且第一压力感应芯片13与第二压力感应芯片14的电桥电阻值在预设范围内。这样,可在物理特征上保持第一压力感应芯片13与第二压力感应芯片14的一致以实现压力感测效果的一致性。
第一压力感应芯片13、第二压力感应芯片14及温度感应芯片15可通过微机电技术(MEMS)的方式封装至基板11形成表面贴装式(SMT)传感器模组,也可通过MEMS封装至基板11形成为双列直插式(DIP)传感器模组。
第一压力感应芯片13与第二压力感应芯片14可被封装为表压模式或绝压模式。封装为表压模式时,请参照图2与图3,外部气压通过气压导管进入压力传感器密封腔,大气压通过气孔111自然进入压力传感器底部,进行目标气压的测量。封装为绝压模式时,外部气压通过气压导管进入压力传感器密封腔,传感器底部密封,大气压则不能进入。
请继续参阅图4与图5,在本实施方式中,第一压力感应芯片13包括一电桥电路,该电桥电路包括引脚1-5。第二压力感应芯片14与第一压力感应芯片13具有相同结构,包括引脚6-10。第一压力感应芯片13与第二压力感应芯片14封装在基板11上后具有相同的引脚排列方向。
请继续参阅图6,本实施方式中,一血压计100包括压力传感器10及一控制器30。控制器30同时连接压力传感器10上的第一压力感应芯片13、第二压力感应芯片14及温度感应芯片15。控制器30能同时控制第一压力感应芯片13及第二压力感应芯片14进行血压测量,控制器30可获得第一压力感应芯片13及第二压力感应芯片14的检测结果。控制器30能根据第一压力感应芯片13及第二压力感应芯片14感测的外部目标气体的气压值是否在预设的误差范围来判断第一压力感应芯片13及第二压力感应芯片14是否工作正常。
正常情况下,当血压计100在标准温度,如摄氏20度时工作,压力传感器通过不断增压以输出不同的电压进行测量形成压力-电压曲线,此时,压力-电压曲线为标准值。当血压计100在相同条件下不同于标准温度,如摄氏10度或摄氏25度时工作,压力传感器实际产生的压力-电压曲线会与标准温度下的压力-电压曲线产生偏差,这样就需要根据温度差值进行补偿。
控制器30能在第一压力感应芯片13及第二压力感应芯片14感测到的气压值的同时获得温度感应芯片15感测的实际温度值,获得相对于标准温度下的温度差值,进而对两压力感应芯片感测的气压值进行补偿,使压力-电压曲线趋于标准值。这样,扩大传感器的适用温度范围,使血压计的使用环境温度范围增大,保证压力测量结果稳定可靠,使应用该传感器的产品真正达到安全有效的预期目标。
由于第一压力感应芯片13与第二压力感应芯片14分别独立工作互不影响,当其中一压力感应芯片失效时,另一压力感应芯片可继续工作,控制器30会基于单一压力感应芯片的结果进行输出。单封装的双压力感应芯片的使用可以大大地降低血压检测的风险,防止血压计在单一压力感应芯片失效时,臂带继续收缩造成用户伤害的问题。同时,单封装的双压力感应芯片可有效提高血压的检测精度,配以温度感应芯片15的补偿效果,测量结果更加稳定可靠。另一方面,血压计可根据获得的双压力感应芯片的气压值对血压计的可靠性进行自检,例如,如两个气压值的差值大于一预设值时,可快速判断至少一压力感应芯片失效,控制器据此让血压停止工作,保证血压测量的可靠性和用户使用的安全性。维修时,还可让商家针对性更换压力感应芯片,降低维修成本。
请参阅图7,一实施方式中,一种压力传感器的制造方法,包括以下步骤:
步骤71:在同一晶圆上分隔出若干压力感应晶片。
步骤73:选取两电桥电阻值在预设范围内的压力感应晶片制成压力感应芯片,在本实施方式中,在预设的范围内选择两电桥电阻值最接近的两压力感应芯片。
步骤75:将两压力感应芯片及温度感应芯片封装至同一基板。
上述方法中,两压力感应芯片及温度感应芯片通过微机电技术封装至所述基板形成表面贴装式传感器模组或双列直插式传感器模组。两压力传感器芯片被封装为表压模式或绝压模式。
在另一实施方式中,压力传感器可一次封装3个或以上压力感应芯片,或一次封装2个或以上温度感应芯片,以实现类似的技术效果。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种压力传感器,包括一基板,其特征在于:所述基板上封装有两压力感应芯片及一温度感应芯片,每一压力感应芯片用于单独感测外部气体的气压,所述两压力感应芯片在所述基板上的电路互相独立,所述温度感应芯片与所述两压力感应芯片的电路相互独立,并用于感测所述两压力感应芯片周围的气体温度值,当两压力感应芯片感测所述外部目标气体的气压时,所述温度感应芯片能感测所述外部目标气体的温度值,以对所述两压力感应芯片感测到所述外部目标气体的气压值进行补偿。
  2. 一种采用如权利要求1所述的压力传感器的血压计,其特征在于:所述血压计包括控制器,所述控制器连接所述两压力感应芯片及所述温度感应芯片,所述控制器能读取所述两压力感应芯片感测的目标气体的气压值及读取所述温度感应芯片感测所述目标气体的实际温度值,所述控制器能根据所述两压力感应芯片感测的所述目标气体的气压值是否在预设的误差范围判断所述两压力感应芯片是否工作正常,所述控制器能根据所述温度感应芯片感测的所述目标气体的实际温度值相对于标准温度下的温度差值,对所述两压力感应芯片在所述实际温度下感测的所述目标气体的气压值进行补偿。
  3. 一种如权利要求1所述的压力传感器的制造方法,其特征在于:所述方法包括以下步骤:
    在同一晶圆上分隔出若干压力感应晶片;
    选取两电桥电阻值在预设范围内的压力感应晶片制成压力感应芯片;及
    将所述两压力感应芯片及一温度感应芯片封装至同一基板。
  4. 如权利要求3所述的压力传感器的制造方法,其特征在于:所述两压力感应芯片及所述温度感应芯片通过微机电技术封装至所述基板形成表面贴装式传感器模组。
  5. 如权利要求3所述的压力传感器的制造方法,其特征在于:所述两压力感应芯片及所述温度感应芯片通过微机电技术封装至所述基板形成双列直插式传感器模组。
  6. 如权利要求3所述的压力传感器的制造方法,其特征在于:所述两压力传感器芯片被封装为表压模式。
  7. 如权利要求6所述的压力传感器的制造方法,其特征在于:所述基板上开设有气孔,所述气孔连通两压力感应芯片底部。
  8. 如权利要求3所述的压力传感器的制造方法,其特征在于:所述两压力传感器芯片被封装为绝压模式。
PCT/CN2018/073214 2018-01-18 2018-01-18 压力传感器、血压计及压力传感器制造方法 WO2019140594A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073214 WO2019140594A1 (zh) 2018-01-18 2018-01-18 压力传感器、血压计及压力传感器制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073214 WO2019140594A1 (zh) 2018-01-18 2018-01-18 压力传感器、血压计及压力传感器制造方法

Publications (1)

Publication Number Publication Date
WO2019140594A1 true WO2019140594A1 (zh) 2019-07-25

Family

ID=67301904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073214 WO2019140594A1 (zh) 2018-01-18 2018-01-18 压力传感器、血压计及压力传感器制造方法

Country Status (1)

Country Link
WO (1) WO2019140594A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228422A (zh) * 2005-03-10 2008-07-23 北美泰密克汽车公司 介质隔离式绝对压力传感器
US7698950B2 (en) * 2008-04-04 2010-04-20 Wika Alexander Wiegand Gmbh & Co. Kg Pressure sensor assembly for measuring absolute pressure
CN103308239A (zh) * 2012-03-08 2013-09-18 Nxp股份有限公司 Mems电容式压力传感器
CN105967138A (zh) * 2015-03-12 2016-09-28 台湾积体电路制造股份有限公司 用于集成压力、温度和气体传感器的单片微电子机械系统平台
CN107095662A (zh) * 2010-07-23 2017-08-29 尤里·格罗托夫 血压监测仪校正
CN107121221A (zh) * 2016-02-24 2017-09-01 英属开曼群岛商智动全球股份有限公司 微传感器及其制造方法
CN107436205A (zh) * 2017-08-14 2017-12-05 中北大学 一种片内温度补偿石墨烯压力传感器
CN107966236A (zh) * 2018-01-18 2018-04-27 深圳市永盟电子科技限公司 压力传感器、血压计及压力传感器制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228422A (zh) * 2005-03-10 2008-07-23 北美泰密克汽车公司 介质隔离式绝对压力传感器
US7698950B2 (en) * 2008-04-04 2010-04-20 Wika Alexander Wiegand Gmbh & Co. Kg Pressure sensor assembly for measuring absolute pressure
CN107095662A (zh) * 2010-07-23 2017-08-29 尤里·格罗托夫 血压监测仪校正
CN103308239A (zh) * 2012-03-08 2013-09-18 Nxp股份有限公司 Mems电容式压力传感器
CN105967138A (zh) * 2015-03-12 2016-09-28 台湾积体电路制造股份有限公司 用于集成压力、温度和气体传感器的单片微电子机械系统平台
CN107121221A (zh) * 2016-02-24 2017-09-01 英属开曼群岛商智动全球股份有限公司 微传感器及其制造方法
CN107436205A (zh) * 2017-08-14 2017-12-05 中北大学 一种片内温度补偿石墨烯压力传感器
CN107966236A (zh) * 2018-01-18 2018-04-27 深圳市永盟电子科技限公司 压力传感器、血压计及压力传感器制造方法

Similar Documents

Publication Publication Date Title
US10656036B2 (en) Self-heated pressure sensor assemblies
US6023978A (en) Pressure transducer with error compensation from cross-coupling outputs of two sensors
US7866215B2 (en) Redundant self compensating leadless pressure sensor
CN107782485B (zh) 集成有共模误差补偿的差压传感器
WO2019140594A1 (zh) 压力传感器、血压计及压力传感器制造方法
US10136858B2 (en) Method for inspecting pressure pulse wave sensor and method for manufacturing pressure pulse wave sensor
US9983081B2 (en) Pressure sensor
KR101892793B1 (ko) 압력 센서
KR20150058249A (ko) 스트레인 전송기
CN208043313U (zh) 压力传感器及血压计
JP2003214967A (ja) ブリッジ回路型検出素子
CN108024731A (zh) 压力脉搏波传感器以及生物体信息测定装置
JP2009288170A (ja) 半導体圧力センサ
US11560302B2 (en) Micromechanical pressure sensor with two cavities and diaphragms and corresponding production method
EP3056865B1 (en) Sensor arrangement
CN107560788A (zh) 压力传感器芯片的测试方法
US20140260650A1 (en) Silicon plate in plastic package
US11499882B2 (en) Pressure sensor
TWI598575B (zh) 氣壓量測裝置及氣壓量測方法
TWI753722B (zh) 壓力感測器校正系統
JPH0399241A (ja) 半導体圧力センサ
Hassan et al. World’s Smallest, Membrane-Based Capacitive Differential Pressure Sensor-Package Structure, Material Selection, Assembly Challenges and Solutions
JPH0312531A (ja) 半導体微差圧センサー装置
JPS61204529A (ja) 半導体圧力センサ
CN107532952A (zh) 力检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18901745

Country of ref document: EP

Kind code of ref document: A1