WO2019139239A1 - 화합물 태양전지 모듈 - Google Patents

화합물 태양전지 모듈 Download PDF

Info

Publication number
WO2019139239A1
WO2019139239A1 PCT/KR2018/013657 KR2018013657W WO2019139239A1 WO 2019139239 A1 WO2019139239 A1 WO 2019139239A1 KR 2018013657 W KR2018013657 W KR 2018013657W WO 2019139239 A1 WO2019139239 A1 WO 2019139239A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
compound
solar cell
conductive
semiconductor layer
Prior art date
Application number
PCT/KR2018/013657
Other languages
English (en)
French (fr)
Inventor
강병준
유동주
이원용
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019139239A1 publication Critical patent/WO2019139239A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a compound solar cell module having an increased light receiving area.
  • the compound semiconductor is not a single element such as silicon or germanium, but two or more elements are combined to operate as a semiconductor.
  • Various kinds of compound semiconductors are currently being developed and used in various fields.
  • the compound semiconductor solar cell is a III-V compound semiconductor such as gallium arsenide (GaAs), indium phosphorus (InP), gallium aluminum arsenide (GaAlAs), gallium indium arsenide (GaInAs), cadmium sulfur (CdS)
  • GaAs gallium arsenide
  • InP indium phosphorus
  • GaAlAs gallium aluminum arsenide
  • GaInAs gallium indium arsenide
  • CdS cadmium sulfur
  • a Group II-VI compound semiconductor such as cadmium tellurium (CdTe) or zinc sulfide (ZnS), or an I-III-VI compound semiconductor represented by copper indium selenium (CuInSe2).
  • connection method One of the proposed connection methods when constructing a module composed of the compound solar cells constructed as described above is proposed in which a part of the solar cells is overlapped for easy handling (hereinafter, referred to as a superposition connection method).
  • the compound solar cell is modularized by the overlapping connection method as described above, the neighboring first and second solar cells are overlapped with each other, so that a portion of the second solar cell is covered by the first solar cell, There is a problem that the area is reduced.
  • a compound semiconductor solar cell has a very thin thickness, and a supporting substrate is attached to one side of the solar cell for easy handling.
  • the present invention has been developed in view of the above technical background, and is aimed at easily stringing compound semiconductor solar cells while increasing the light receiving area.
  • a curved surface solar cell module includes a first region having a first curvature and a first region having a first curvature and a first compound semiconductor in an embodiment of the present invention,
  • a first compound solar cell comprising a first front electrode for collecting a conductive charge and a second rear electrode for collecting a second conductivity type charge from the rear surface of the first compound semiconductor,
  • a second compound solar cell disposed adjacent to the second compound solar cell, the third compound semiconductor including a third front surface for collecting the first conductivity type charge from the front surface of the third compound semiconductor,
  • a third compound solar cell comprising an electrode, a third rear electrode for collecting a second conductivity type charge at the rear surface of the third compound semiconductor, a third compound solar cell positioned between the first compound solar cell and the second compound solar cell,
  • a first connector for connecting the first
  • the first through third front electrodes may be elongated in a first direction, and may be formed in parallel with finger electrodes adjacent to each other in a second direction intersecting the first direction, And a bus electrode connecting ends of the finger electrodes.
  • the bus electrode of the first front electrode and the bus electrode of the second front electrode may be disposed to face each other between the first compound solar cell and the second compound solar cell.
  • the shape of the front electrode of the first solar cell may be mirror-symmetrical with the front electrode of the second solar cell.
  • the first to third rear electrodes may be sheet-like conducting electrodes.
  • the first and third compound semiconductors may include a first conductive type compound semiconductor layer, a first conductive type compound semiconductor layer formed on the entire surface of the first conductive type compound semiconductor layer, 1 conductive type impurity layer, and a second conductive type impurity layer formed on the back surface of the first conductive type compound semiconductor layer and forming a pn junction with the first conductive type compound semiconductor layer.
  • the second compound semiconductor may include a second conductive type compound semiconductor layer, a second conductive type impurity which is formed on the entire surface of the second conductive type compound semiconductor layer and contains impurities at a higher concentration than the second conductive type compound semiconductor layer And a first conductive type impurity layer formed on the rear surface of the second conductive type compound semiconductor layer and forming a pn junction with the second conductive type compound semiconductor layer.
  • the second compound semiconductor may include a first conductive type compound semiconductor layer, a second conductive type impurity layer which is formed on the entire surface of the first conductive type compound semiconductor layer and forms a pn junction with the first conductive type compound semiconductor layer And a first conductivity type impurity layer formed on the rear surface of the first conductive type compound semiconductor layer and containing impurities at a higher concentration than the first conductive type compound semiconductor layer.
  • the first and third compound semiconductors may include a second conductive type compound semiconductor layer, a first conductive layer formed on the entire surface of the second conductive type compound semiconductor layer and forming a pn junction with the second conductive type compound semiconductor layer, Type impurity layer and a second conductivity type impurity layer formed on the rear surface of the second conductivity type compound semiconductor layer and containing impurities at a higher concentration than the second conductivity type compound semiconductor layer.
  • the second compound semiconductor may include a first conductive type compound semiconductor layer, a second conductive type impurity layer which is formed on the entire surface of the first conductive type compound semiconductor layer and forms a pn junction with the first conductive type compound semiconductor layer And a first conductivity type impurity layer formed on the rear surface of the first conductive type compound semiconductor layer and containing impurities at a higher concentration than the first conductive type compound semiconductor layer.
  • At least one of the first and second connectors may be one of a ribbon, a conductive tape, and a conductive film, and preferably the first connector is a ribbon.
  • the front surface of at least one of the first and second connectors may be made of the same color as that of the first and second compound solar cells.
  • the first connector may be made of a conductive film or a conductive tape disposed to cover the entirety between the first and second compound solar cells.
  • the second connector may include a sheet-like conductive member that completely covers the entire rear surface of the second compound solar cell, the entire rear surface of the third compound solar cell, and the second compound solar cell and the second compound solar cell Film or conductive tape.
  • the strings are connected to an optimizer that divides the output of the output power by region to form an output unit. Accordingly, although the solar cells are arranged in the matrix of m ⁇ n, the output power can be adjusted for each region having different inclination angle of the solar cell, and as a result, the output power of the entire module can be effectively controlled.
  • the light receiving area can be prevented from being reduced. Also, since two neighboring compound solar cells have opposite polarity, two neighboring compound solar cells can be easily connected in series.
  • the compound solar cell module according to an embodiment of the present invention is arranged so that neighboring compound solar cells do not overlap with neighboring ones, the compound solar cell, like the conventional compound solar cell module, And a part of the connector is arranged on the rear surface of the module unlike in the past, so that it is also possible to reduce the problem that the light receiving area is reduced by the connector.
  • the compound solar cells can be easily connected.
  • the pn junctions of all the compound solar cells constituting the module are disposed close to the front surface where the light is incident, so that the power generation can be efficiently performed.
  • FIG. 1 is a plan view of a compound solar cell module according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line A-A 'of FIG.
  • the plurality of compound solar cells 10, 20, and 30 are spaced apart from each other by a predetermined distance, and a first connector 40, And the second connector 50 disposed on the rear surface, respectively.
  • the front surface refers to the side on which light enters the compound solar cell
  • the rear side refers to the opposite side of the front surface.
  • the plurality of compound solar cells 10 to 30 have a rectangular shape elongated in the longitudinal direction (y-axis direction in the figure) than in the lateral direction (x-axis direction in the figure) Can be arranged adjacent to each other and arranged side by side.
  • the first compound solar cell 10 includes a first compound semiconductor 11, a first front electrode 13 for collecting a first conductivity type charge from the front surface of the first compound semiconductor 11, a first compound semiconductor 11, And a second rear electrode 15 for collecting the second conductivity type charge from the rear surface of the second substrate 11.
  • the second compound solar cell 20 includes a second compound semiconductor 21, a second front electrode 23 for collecting a second conductivity type charge from the front surface of the second compound semiconductor 21, a second compound semiconductor 21, And a second rear electrode 25 for collecting the first conductivity type charge from the rear surface of the second substrate.
  • the third compound solar cell 30 includes a third compound semiconductor 31 and a third front electrode 33 for collecting a first conductivity type charge from the entire surface of the third compound semiconductor 31, And a third rear electrode that collects the second conductivity type charge from the backside.
  • the first conductive type refers to either n-type or p-type
  • the second conductive type refers to the conductive type opposite to the first conductive type among n-type or p-type.
  • the case where the first conductivity type is n-type and the second conductivity type is p-type is explained as an example.
  • the compound solar cell module of the embodiment is located between the first compound solar cell 10 and the second compound solar cell 20 and connects the first front electrode 13 and the second front electrode 23 at the front side
  • a second connector 40 which is located between the second compound solar cell 20 and the third compound solar cell 30 and connects the second rear electrode 25 and the third rear electrode 35 at the rear surface, (50).
  • the first compound solar cell 10 and the second compound solar cell 20 are connected in series by the first connector 40 and the second compound solar cell 20 and the third compound solar cell 30 are connected in series, Can be connected in series by the second connector 950.
  • the compound solar cell module according to an embodiment of the present invention is arranged so that neighboring compound solar cells do not overlap with neighboring ones, the compound solar cell, like the conventional compound solar cell module, And a part of the connector is arranged on the rear surface of the module unlike in the past, so that it is also possible to reduce the problem that the light receiving area is reduced by the connector.
  • the first front electrode 13 of the first compound solar cell 10 comprises the first compound semiconductor 11 so as to collect the n-type electric charge
  • the second compound semiconductor 21 is configured to collect the p-type electric charges in the front electrode 23
  • the first front electrode 11 and the second front electrode 23 are connected by the first connector 40
  • the first compound solar cell 10 and the second compound solar cell 20 can be connected in series and the second compound solar cell 10 and the second compound solar cell 30 can be connected in series There is a number.
  • the first connector 40 and the second connector 50 are formed of a ribbon coated with a solder on a conductor or a conductive tape coated with a conductive adhesive on a copper foil or synthetic fibers such as PET (polyethylene terephthalate)
  • a conductive film (for example, a ribbon) may be embedded in a film made of a conductive film, or a conductive film coated with a conductive adhesive may be used.
  • the front surface of the first connector 40 may be formed to have the same color as that of the first compound solar cell 10 and the second compound solar cell 20 so that the design is good.
  • the first connector 40 may further include a coating layer 41 made of epoxy resin paint as a whole.
  • the coating layer 41 made of an epoxy resin paint makes the color of the first connector 40 the same as that of the first and second compound solar cells 10 and 20 and when the compound solar cell module is viewed from the front, 40 are not noticeable and the first connector 40 made of a conductor is prevented from being oxidized.
  • At least one of the first connector 40 or the second connector 50 may be formed of a conductive film printed with a metal on the film, which will be described in detail later.
  • One end of the first connector 40 is located above the first front electrode 13 and the other end is located above the second front electrode 23 and electrically and physically connected by a conductive member 60 such as a conductive adhesive or solder, To the first and second front electrodes 13 and 23, respectively.
  • a conductive member 60 such as a conductive adhesive or solder
  • the second connector 50 is located on the rear surface over part of the second rear electrode 25, part of the second compound solar cell 20 and the third compound solar cell 30, and third rear electrode 35, The second rear electrode 25 and the third rear electrode 35 to the member 60, respectively.
  • FIG. 3 representatively shows a front view of a second compound solar cell of the compound solar cell module shown in FIG.
  • the front electrode 1 may be made of a combination of the bus electrode 1a and the finger electrode 1b.
  • the front electrode 1 may be formed of an electrically conductive material and may be formed of a metal such as gold (Au), platinum (Pt), titanium (Ti), tungsten (W), silicon (Si), nickel (Ni) Mg), palladium (Pd), copper (Cu), and germanium (Ge).
  • the finger electrodes 1a extend in the first direction (x-axis direction in the drawing) and are formed in parallel with the neighboring ones in the second direction (y-axis direction in the figure).
  • the finger electrode 1a may be formed as a whole on the front surface so as to effectively collect the charge toward the front surface and prevent the light incident on the front surface from being interfered with the finger electrode.
  • the bus electrode 1b may be configured to extend in the second direction to connect ends of the finger electrodes.
  • the bus electrode 1b is disposed immediately adjacent to the long side of the compound solar cell to facilitate connection with neighboring compound solar cells and prevents light incident on the front side from being blocked by the bus electrode 1b .
  • the first electrode 13 is formed to have a comb shape as a whole.
  • the bus electrode 1b of the first compound solar cell 10 is disposed on the right side so that the connection between the first compound solar cell 10 and the second compound solar cell 20 is facilitated
  • the bus electrode 1b of the second compound solar cell 20 is disposed on the left side and the two are positioned in parallel in the second direction facing each other between the first compound solar cell 10 and the second compound solar cell 20 Do.
  • the bus electrode 1b serving as a pad faces the first compound solar cell 10 and the second compound solar cell 20, the bus electrode 1b can be easily connected to the first connector 40. Further, since the bus electrode 1b is elongated in the second direction, the position where the first connector 40 and the bus electrode 1b are joined can be freely changed as needed, thereby improving the degree of design freedom.
  • the bus electrode 1b may be thicker than the line width of the finger electrodes () in order to reduce the line resistance and function as a pad.
  • the pad refers to a bonding portion provided for electrical connection between two neighboring solar cells.
  • the bus electrode 1b is preferably 1 to 10 times larger than the line width of the finger electrode 1a in order to function as a pad. If the line width of the bus electrode 1b is too large, the manufacturing cost rises excessively, and the area of incident light is reduced by the bus electrode, Is preferably at most 10 times larger than the finger electrode 1a.
  • the bus electrode 1b may be formed to have the same line width as the finger electrode 1a in order to widen the area of incident light and reduce the manufacturing cost.
  • the front electrode 1 preferably includes a pad 1c). ≪ / RTI >
  • FIG. 4 is a view showing an example of a front electrode including a pad.
  • the line width of the bus electrode 1b is substantially the same as that of the finger electrode 1a.
  • the pad 1c is formed at the point where the bus electrode 1b and the finger electrode 1a meet, and the position and shape of the pad 1c can be adjusted to match the first connector 40.
  • the end of the first connector 40 is located above the pad 1c and the first connector 40 and the pad 1c can be electrically and physically connected by the conductive member 60.
  • FIG. 5 is an exemplary view showing a rear surface of a second compound solar cell of the compound solar cell module shown in FIG.
  • the rear electrode 3 is a sheet which is disposed on the entire rear surface of the compound semiconductor so as to be in surface contact with the compound semiconductor, Shaped conductor.
  • the rear electrode 3 is made of gold (Au), platinum (Pt), titanium (Ti), tungsten (W), silicon (Si), nickel (Ni), magnesium (Mg) , Palladium (Pd), copper (Cu), and germanium (Ge).
  • 6 to 8 are views showing the interlayer structure of the first to third compound semiconductor layers.
  • the first compound semiconductor 11 is configured such that the first conductive type charge (for example, n type type charge) moves to the front surface and the second conductive type charge (for example, the p type type charge)
  • the second compound semiconductor 21 can be configured to conduct the second conductivity type of the second compound semiconductor 21 to the front side and the first conductive type charge to move to the rear side
  • the third compound semiconductor 31 may be configured such that the first conductive type charge moves to the front side and the second conductive type charge moves to the rear side.
  • the compound solar cell module is configured such that the first compound solar cell 10 and the second compound solar cell 20 are connected in series by the first connector 40, And the second compound solar cell 20 and the third compound solar cell 30 can be connected in series by the second connector 50 at the rear surface.
  • the first compound semiconductor layer 11 may include a first conductive type compound semiconductor layer 111.
  • a first conductive type impurity layer 113 formed on the entire surface of the first conductive type compound semiconductor layer 111 and containing impurities at a higher concentration than the first conductive type compound semiconductor layer 111, And a second conductivity type impurity layer 115 formed on the rear surface of the first conductive type compound semiconductor layer 111 and forming a pn junction with the first conductive type compound semiconductor layer 111.
  • the first conductive type compound semiconductor layer 111 may be formed of a Group III-V semiconductor compound, a GaInP compound semiconductor containing gallium (Ga), indium (In) and phosphorus (P) Containing GaAs compound semiconductor.
  • the first conductive type compound semiconductor layer 111 is doped with a first conductive type impurity, and if the first conductive type is n type, it is doped with impurities such as silicon, selenium, tellurium, or a combination thereof,
  • the p-type can be doped with impurities consisting of carbon, magnesium, zinc, or combinations thereof.
  • the first conductive type impurity layer 113 has the same conductivity type as that of the lower layer in direct contact with the first conductive type compound semiconductor layer 111.
  • the first conductive type compound semiconductor layer 111 and the first conductive type compound semiconductor layer 111 have an energy band gap band gap between the first and second electrodes.
  • the first conductive type impurity layer 113 may be formed of any one of AlGaInP and InGaP, and may be formed entirely on the entire surface of the first conductive type compound semiconductor layer 111.
  • the first conductive type impurity layer 113 is doped with the same conductive impurity as the first conductive type compound semiconductor layer 111 but is doped with a higher impurity than the first conductive type impurity layer 113 so that an electric field can be generated therebetween.
  • the first conductivity type impurity may be doped at a concentration.
  • the second conductive impurity layer 115 may be formed on the entire rear surface of the first compound semiconductor layer 111 so as to form a pn junction with the first compound semiconductor layer 111 as a whole.
  • the second conductive impurity layer 115 is preferably formed of the same material for a physical junction with the first compound semiconductor layer 111 and may be formed for pn junction with the first compound semiconductor layer 111
  • the second conductive impurity can be doped at a high concentration so as to have conductivity opposite to that of the first compound semiconductor layer 111, that is, the second conductivity.
  • the first compound semiconductor 11 is arranged such that the pn junction 11a is disposed on the rear surface rather than the front surface, the first conductive type charge (for example, electrons) can move to the front surface, Charge (for example, holes) can move.
  • the first conductive type charge for example, electrons
  • Charge for example, holes
  • the second compound semiconductor layer 21 is formed on the entire surface of the second conductive compound semiconductor layer 211 and the second conductive compound semiconductor layer 211 and contains impurities at a higher concentration than the second conductive compound semiconductor layer
  • a first conductive impurity layer 215 formed on the rear surface of the second conductive type compound semiconductor layer 211 and forming a pn junction with the second conductive type compound semiconductor layer 211, . ≪ / RTI >
  • each layer of the second compound semiconductor 21 is the same as that of the first compound semiconductor 11, except that the impurity doped in each layer is made in the opposite manner to the first compound semiconductor 11, .
  • the second compound semiconductor 21 can be arranged such that the pn junction 11a is disposed on the rear surface rather than the front surface, the second conductive type charge (for example, a hole) can move to the front surface and the first conductive type charge , Electrons) can move.
  • the second conductive type charge for example, a hole
  • Electrons can move.
  • the third compound semiconductor 31 is formed in the same manner as the first compound semiconductor 11, detailed description thereof will be omitted.
  • the third compound semiconductor 31 is arranged such that the pn junction 11a is disposed on the rear surface rather than the front surface, and the first conductive type charge (for example, electrons) can move to the front surface And the second conductivity type charge (for example, a hole) can move to the rear surface.
  • the first conductive type charge for example, electrons
  • the second conductivity type charge for example, a hole
  • the first compound solar cell 10 and the second compound solar cell 20 can be connected in series by the first connector 40 at the front surface, and the second compound solar cell 20 and the third compound solar cell 20 can be connected in series.
  • the compound solar cells 30 can be connected in series by the second connector 950 at the rear side.
  • the pn junctions 11a, 21a and 31a in the first to third compound semiconductors 11, 21 and 31 are composed of compound semiconductor layers 111, 211 and 311 and an impurity layer
  • the pn junctions 11a, 21a and 31a in all the compound semiconductors 11, 21 and 31 can be formed at the same positions. Therefore, the photovoltaic power produced by each pn junction has substantially the same advantages in all the compound semiconductors 11, 21, and 31.
  • the interlayer structure of the compound semiconductor 11, 21, 31 according to another example will be described with reference to FIG.
  • the compound semiconductors 11, 21, and 31 are substantially the same as those described with reference to FIG. 6, .
  • the second compound semiconductor layer 21 is formed on the entire surface of the first conductive compound semiconductor layer 211 and the first conductive compound semiconductor layer 211 and forms a pn junction with the first conductive compound semiconductor layer 211
  • the second conductive type charge can move to the front surface of the second compound semiconductor 21, and the first conductive type charge can move to the rear surface.
  • first compound solar cell 10 and the second compound solar cell 20 can be connected in series by the first connector 40 at the front surface, and the second compound solar cell 20 and the third compound solar cell 20 can be connected in series.
  • the batteries 30 can be connected in series by the second connector 50 at the rear side.
  • the first compound semiconductor layer 11 is formed on the rear surfaces of the second conductive type compound semiconductor layer 111 and the second conductive type compound semiconductor layer 111 and has a higher concentration than the second conductive type compound semiconductor layer 111
  • An impurity layer 115 may be included.
  • the second compound semiconductor layer 21 is formed on the back surface of the first conductive compound semiconductor layer 211 and the first conductive compound semiconductor layer 211 and has a higher impurity concentration than the first conductive compound semiconductor layer 211
  • a second conductive impurity layer 213 formed on the entire surface of the first conductive type compound semiconductor layer 211 and forming a pn junction with the first conductive type compound semiconductor layer 211, (215).
  • the third compound semiconductor 31 has the same structure as the first compound semiconductor 11.
  • the first conductive type charge moves to the front surface of the first and third compound semiconductor 11 and 31, the second conductive type charge moves to the rear surface, and the second compound semiconductor 21
  • the first compound semiconductor 11 and the second compound semiconductor 21 are electrically connected to each other by the first connector 40 and the second compound semiconductor 21 by the first connector 40.
  • the second compound semiconductor 21 and the third compound semiconductor 31 can be connected in series between the back surface and the back surface by the second connector 50.
  • the pn junctions 11a, 21a, and 31a of the compound semiconductors 11, 21, and 31 are all disposed at the same position (the front surface of the compound semiconductor layer), so that the electromotive force And the pn junction is disposed close to the front surface, so that a higher electromotive force can be obtained than the compound semiconductors exemplified in Fig. 6 or Fig.
  • first to third compound solar cells 10, 20 and 30 have the configurations of the first to third compound semiconductors 11, 21 and 31 described above, Can be easily electrically connected by the connectors 40 and 50 without overlapping the two neighboring solar cells while keeping the front and rear shapes of the compound solar cell being the same.
  • the connectors 40 and 50 are formed to have a band shape.
  • the compound solar cells are disposed apart from each other, There may be a problem that the design falls.
  • the connectors 40 and 50 may be formed so as to completely cover the compound solar cells.
  • FIG. 9 is a view showing an example of a compound solar cell module in which the first connector is formed so as to completely cover the first compound solar cell and the second compound solar cell.
  • the first connector 40 disposed on the front surface is provided with a first compound solar cell 10 and a second compound solar cell 20 so as to completely cover the first compound solar cell 10 and the second compound solar cell 20,
  • the bus electrode 13b of the first compound solar cell 10 and the bus electrode 23b of the second compound solar cell 20 are preferably larger than the first width D1 between the compound solar cells 20, Is greater than a second width (D2) between the first and second sides.
  • the first connector 40 made of the conductive tape or the conductive film is disposed between the first compound solar cell () and the second compound solar cell to form the first compound solar cell 10) 2 compound solar cells 20 but also the front electrode 13 of the first compound solar cell 10 and the front electrode 23 of the second compound solar cell 20 may be electrically connected as well.
  • bus electrodes 13b and 23b are shielded by the first connector 40, the bus electrodes 13b and 23b can be prevented from being seen from the front, thereby improving the design.
  • FIG. 10 is a view showing an example of a compound solar cell module in which a second connector is connected between a second compound solar cell and a third compound solar cell by a sheet-like second connector 50, and Fig. 11 is a cross- B-B 'of Fig.
  • the second connector 50 has a sheet shape and is formed of the entire rear surface of the second compound solar cell 20, the entire rear surface of the third compound solar cell 30, And is physically and electrically connected to the second and third compound solar cells 20 and 30, so as to cover the entirety between the solar cell 20 and the third compound compound solar cell 30.
  • the entire rear surface of the second compound solar cell 20 is disposed so as to face the left side of the second connector 50 on the whole rear surface of the second compound solar cell 20, Is disposed so as to face the right side of the second connector (50).
  • the second connector 50 may be formed of a conductive tape or a conductive film. According to this, the process of joining the second and third compound solar cells 20 and 30 can be greatly simplified. Further, since the conductive film can replace the supporting substrate attached to the rear surface of the compound solar cell , There is also an advantage of not using a supporting substrate.
  • the conductive film 50 comprises a base substrate 51 made of synthetic fibers such as PET and a conductive adhesive 35 applied thereon.
  • the second rear electrode 25 formed on the entire rear surface of the second compound solar cell 20 is bonded to the conductive adhesive 35 in its entirety and the third rear electrode 25 formed on the entire rear surface of the third compound solar cell 30 35 are also bonded to the conductive adhesive 35 over the entire surface, the contact resistance can be reduced to the maximum, and the two can be electrically connected.

Abstract

본 발명의 일 실시예에서는 제1 화합물 반도체, 상기 제1 화합물 반도체의 전면에서 제1 도전형 전하를 수집하는 제1 전면 전극, 상기 제1 화합물 반도체의 후면에서 제2 도전형 전하를 수집하는 제2 후면 전극을 포함해 구성된 제1 화합물 태양전지, 상기 제1 화합물 태양전지에 이웃하게 배치되고, 제2 화합물 반도체, 상기 제2 화합물 반도체의 전면에서 제2 도전형 전하를 수집하는 제2 전면 전극, 상기 제2 화합물 반도체의 후면에서 제1 도전형 전하를 수집하는 제2 후면 전극을 포함해 구성된 제2 화합물 태양전지, 상기 제2 화합물 태양전지에 이웃하게 배치되고, 제3 화합물 반도체, 상기 제3 화합물 반도체의 전면에서 제1 도전형 전하를 수집하는 제3 전면 전극, 상기 제3 화합물 반도체의 후면에서 제2 도전형 전하를 수집하는 제3 후면 전극을 포함해 구성된 제3 화합물 태양전지, 상기 제1 화합물 태양전지와 상기 제2 화합물 태양전지 사이로 위치하고, 전면에서 상기 제1 전면 전극과 상기 제2 전면 전극을 연결하는 제1 커넥터, 상기 제2 화합물 태양전지와 상기 제3 화합물 태양전지 사이로 위치하고, 상기 후면에서 상기 제2 후면 전극과 상기 제3 후면 전극을 연결하는 제2 커넥터를 포함하는 화합물 태양전지 모듈을 개시한다.

Description

화합물 태양전지 모듈
본 발명은 수광 면적을 넓힌 화합물 태양전지 모듈에 관한 것이다.
화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작한다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다.
이 중에서 화합물 반도체 태양전지는 갈륨 아세나이드(GaAs), 인듐 인(InP), 갈륨 알루미늄 아세나이드(GaAlAs), 갈륨 인듐 아세나이드(GaInAs) 등의 Ⅲ-V족 화합물 반도체, 카드뮴 황(CdS), 카드뮴 텔루륨(CdTe), 아연 황(ZnS) 등의 Ⅱ-Ⅵ족 화합물 반도체, 구리 인듐 셀레늄(CuInSe2)으로 대표되는 I-Ⅲ-Ⅵ족 화합물 반도체 등으로 형성된 화합물 반도체층을 구비해 만들어진다.
이 치럼 구성된 화합물 태양전지를 연결해 모듈로 구성할 때 제안된 연결 방법 중 하나는, 취급이 쉽도록 태양전지의 일부를 겹쳐 연결하는 방식(이하, 중첩 연결 방식이라 함)이 제안되었다.
이 같은 중첩 연결 방식으로 화합물 태양전지를 모듈화 하는 경우, 이웃한 제1 및 제2 태양전지가 겹쳐 배열됨으로 제1 태양전지에 의해 제2 태양전지 일부가 가려지게 되고, 결국 화합물 태양전지 모듈의 수광 면적이 줄어드는 문제가 있다.
또한, 화합물 반도체 태양전지는 매우 얇은 두께를 가지고 있어, 다루기 쉽게 태양전지의 일면에 지지 기판을 붙여 사용하기도 한다.
그런데, 지지 기판이 구비된 화합물 반도체 태양전지를 겹쳐 스트링하는 경우에 지지 기판으로 인해 전극이 외부로 노출되지 않아, 태양전지 사이를 전기적으로 연결하는데 어려움이 있다.
본 발명은 이 같은 기술적 배경에서 창안된 것으로, 수광 면적을 넓히면서도 화합물 반도체 태양전지를 손 쉽게 스트링하는데 있다.
본 발명의 일 실시예에 따른 곡면 태양전지 모듈은, 제1 곡률을 갖는 제1 영역과 상기 제1 곡률과 다본 발명의 일 실시예에서는 제1 화합물 반도체, 상기 제1 화합물 반도체의 전면에서 제1 도전형 전하를 수집하는 제1 전면 전극, 상기 제1 화합물 반도체의 후면에서 제2 도전형 전하를 수집하는 제2 후면 전극을 포함해 구성된 제1 화합물 태양전지, 상기 제1 화합물 태양전지에 이웃하게 배치되고, 제2 화합물 반도체, 상기 제2 화합물 반도체의 전면에서 제2 도전형 전하를 수집하는 제2 전면 전극, 상기 제2 화합물 반도체의 후면에서 제1 도전형 전하를 수집하는 제2 후면 전극을 포함해 구성된 제2 화합물 태양전지, 상기 제2 화합물 태양전지에 이웃하게 배치되고, 제3 화합물 반도체, 상기 제3 화합물 반도체의 전면에서 제1 도전형 전하를 수집하는 제3 전면 전극, 상기 제3 화합물 반도체의 후면에서 제2 도전형 전하를 수집하는 제3 후면 전극을 포함해 구성된 제3 화합물 태양전지, 상기 제1 화합물 태양전지와 상기 제2 화합물 태양전지 사이로 위치하고, 전면에서 상기 제1 전면 전극과 상기 제2 전면 전극을 연결하는 제1 커넥터, 상기 제2 화합물 태양전지와 상기 제3 화합물 태양전지 사이로 위치하고, 상기 후면에서 상기 제2 후면 전극과 상기 제3 후면 전극을 연결하는 제2 커넥터를 포함하는 화합물 태양전지 모듈을 개시한다.
일 예로, 상기 제1 내지 제3 전면 전극은 제1 방향으로 길게 형성되고, 상기 제1 방향과 교차하는 제2 방향에서 이웃한 것과 나란하게 형성된 핑거 전극들과, 상기 제2 방향으로 길게 형성되어 상기 핑거 전극들의 끝을 연결하는 버스 전극을 포함한다.
일 예로, 상기 제1 전면 전극의 버스 전극과 상기 제2 전면 전극의 버스 전극은 상기 제1 화합물 태양전지와 상기 제2 화합물 태양전지 사이에서 마주하게 배치될 수 있다.
일 예로, 상기 제1 태양전지의 전면 전극의 형상은 상기 제2 태양전지의 전면 전극과 거울 대칭을 이루고 있을 수 있다.
일 예로, 상기 제1 내지 제3 후면 전극은 시트 형상의 통 전극일 수 있다.
일 예로, 상기 제1 및 제3 화합물 반도체는 제1 도전형 화합물 반도체층, 상기 제1 도전형 화합물 반도체층의 전면으로 형성되고, 상기 제1 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제1 도전형 불순물층, 상기 제1 도전형 화합물 반도체층의 후면으로 형성되고 상기 제1 도전형 화합물 반도체층과 pn 접합을 형성하는 제2 도전형 불순물층을 포함할 수 있다.
일 예로, 상기 제2 화합물 반도체는 제2 도전형 화합물 반도체층, 상기 제2 도전형 화합물 반도체층의 전면으로 형성되고 상기 제2 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제2 도전형 불순물층, 상기 제2 도전형 화합물 반도체층의 후면으로 형성되고, 상기 제2 도전형 화합물 반도체층과 pn 접합을 이루는 제1 도전형 불순물층을 포함할 수 있다.
일 예로, 상기 제2 화합물 반도체는 제1 도전형 화합물 반도체층, 상기 제1 도전형 화합물 반도체층의 전면으로 형성되고 상기 제1 도전형 화합물 반도체층과 pn 접합을 형성하는 제2 도전형 불순물층, 상기 제1 도전형 화합물 반도체층의 후면으로 형성되고 상기 제1 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제1 도전형 불순물층을 포함할 수 있다.
일 예로, 상기 제1 및 제3 화합물 반도체는 제2 도전형 화합물 반도체층, 상기 제2 도전형 화합물 반도체층의 전면으로 형성되고 상기 제2 도전형 화합물 반도체층과 pn 접합을 형성하는 제1 도전형 불순물층, 상기 제2 도전형 화합물 반도체층의 후면으로 형성되고 상기 제2 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제2 도전형 불순물층을 포함할 수 있다.
일 예로, 상기 제2 화합물 반도체는 제1 도전형 화합물 반도체층, 상기 제1 도전형 화합물 반도체층의 전면으로 형성되고 상기 제1 도전형 화합물 반도체층과 pn 접합을 형성하는 제2 도전형 불순물층, 상기 제1 도전형 화합물 반도체층의 후면으로 형성되고 상기 제1 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제1 도전형 불순물층을 포함할 수 있다.
일 예로, 상기 제1 및 제2 커넥터 중 적어도 하나는 리본, 도전성 테이프, 도전성 필름 중 하나일 수 있고, 바람직하게 상기 제1 커넥터는 리본이다.
일 예로, 상기 제1 및 제2 커넥터 중 적어도 하나의 전면은 상기 제1 및 제2 화합물 태양전지의 색깔과 동일한 색깔로 만들어 질 수 있다.
일 예로, 상기 제1 커넥터는 상기 제1 및 제2 화합물 태양전지 사이 전체를 가리도록 배치된 도전성 필름 또는 도전성 테이프로 이뤄질 수 있다.
일 예로, 상기 제2 커넥터는 상기 제2 화합물 태양전지의 후면 전체, 상기 제3 화합물 태양전지의 후면 전체, 그리고 상기 제2 화합물 태양전지와 상기 제2 화합물 태양전지 사이를 완전히 가리는 시트 형상의 도전성 필름 또는 도전성 테이프로 이뤄질 수 있다.
본 발명의 일 실시예에서, 스트링들은 영역별로 나눠져 출력 전력을 조절하는 옵티마이저에 연결돼 출력부를 구성하고 있다. 따라서, 태양전지들은 m×n 행렬 배열을 이루고 있음에도 태양전지의 경사 각도가 다른 영역별로 출력 전력을 조절할 수가 있고, 결과적으로 전체 모듈의 출력 전력을 효과적으로 조절할 수가 있다.
본 발명의 실시예에 따르면, 이웃한 두 화합물 태양전지는 떨어진 채 연결되므로 수광 면적이 줄어드는 것을 방지할 수가 있다. 또한 이웃한 두 화합물 태양전지는 극성이 반대로 배치가 되므로 이웃한 두 화합물 태양전지를 손쉽게 직렬 연결할 수가 있다.
본 발명의 일 실시예에 따른 화합물 태양전지 모듈은 이처럼 이웃하고 있는 화합물 태양전지들이 이웃한 것과 중첩되지 않고 떨어져 배치되므로, 종래 화합물 태양전지 모듈처럼 화합물 태양전지가 이웃한 화합물 태양전지에 가려 수광 면적이 줄어드는 것을 방지할 수 있고, 또한 종전과 다르게 커넥터의 일부는 모듈의 후면에 배치가 되므로 커넥터에 의해 수광 면적이 줄어드는 문제 역시 줄일 수가 있다.
또한, 이웃하고 있는 두 태양전지는 동일한 면, 즉 전면은 전면끼리, 후면은 후면끼리 연결되므로 화합물 태양전지 사이를 손쉽게 연결할 수가 있다.
또한, 본 발명의 일 실시예에서, 모듈을 구성하는 모든 화합물 태양전지들의 pn 접합은 빛이 입사되는 전면에 가깝게 배치가 되므로, 효율적으로 발전을 할 수가 있다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 간단히 하거나 생략될 수 있다. 또한, 도면에서 도시하고 있는 다양한 실시예들은 예시적으로 제시된 것이고, 설명의 편의를 위해 실제와 다르게 구성 요소를 단순화해 도시한다. 이하의 상세한 설명에서는 실시예에 따라 차이가 없는 동일한 구성에 대해서는 동일한 도면번호를 붙이고 그 설명은 반복하지 않는다.
이하, 첨부한 도면을 참조로, 본 발명의 일 실시예에 따른 화합물 태양전지에 대해 자세히 설명한다.
먼저, 도 1 및 도 2를 참조로, 본 발명의 일 실시예에 따른 화합물 태양전지 모듈의 전체 구성을 설명한다. 도 1은 본 발명의 일 실시예에 따른 화합물 태양전지 모듈의 평면 모습을 도시한 것이며, 도 2는 도 1의 A-A'선에 따른 단면 모습을 보여준다.
도 1 및 도 2를 참조하면, 본 발명의 바람직한 실시예에서 복수의 화합물 태양전지들(10, 20, 30)은 이웃한 것과 일정 간격 떨어져 배치가 되며, 전면에 배치되는 제1 커넥터(40)와 후면에 배치되는 제2 커넥터(50)에 의해 이웃한 화합물 태양전지와 각각 연결되도록 구성이 된다. 본 명세서에서, 전면은 빛이 화합물 태양전지로 입사되는 면을 말하고, 후면은 전면의 반대면을 말한다.
복수의 화합물 태양전지들(10~30)은 가로(도면의 x축 방향)보다는 세로(도면의 y축 방향)가 긴 직 사각형 형상을 가지며, 이웃한 것(도면의 x축 방향 기준)과 장변이 서로 인접하고 나란하게 배치될 수가 있다.
제1 화합물 태양전지(10)는 제1 화합물 반도체(11), 제1 화합물 반도체(11)의 전면에서 제1 도전형 전하를 수집하는 제1 전면 전극(13), 제1 화합물 반도체(11)의 후면에서 제2 도전형 전하를 수집하는 제2 후면 전극(15)을 포함해 구성될 수 있다.
제2 화합물 태양전지(20)는 제2 화합물 반도체(21), 제2 화합물 반도체(21)의 전면에서 제2 도전형 전하를 수집하는 제2 전면 전극(23), 제2 화합물 반도체(21)의 후면에서 제1 도전형 전하를 수집하는 제2 후면 전극(25)을 포함해 구성될 수 있다.
제3 화합물 태양전지(30)는 제3 화합물 반도체(31), 제3 화합물 반도체(31)의 전면에서 제1 도전형 전하를 수집하는 제3 전면 전극(33), 상기 제3 화합물 반도체(의 후면에서 제2 도전형 전하를 수집하는 제3 후면 전극을 포함해 구성될 수 있다.
여기서, 제1 도전형은 n형 또는 p형 중 어느 하나를 말하며, 제2 도전형은 n형 또는 p형 중 제1 도전형과 반대의 도전형인 것을 말한다. 이하의 설명에서는 제1 도전형이 n형이고, 제2 도전형이 p형인 경우를 예로 설명한다.
그리고, 일 실시예의 화합물 태양전지 모듈은 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이로 위치하고, 전면에서 제1 전면 전극(13)과 제2 전면 전극(23)을 연결하는 제1 커넥터(40), 제2 화합물 태양전지(20)와 제3 화합물 태양전지(30) 사이로 위치하고, 후면에서 제2 후면 전극(25)과 제3 후면 전극(35)을 연결하는 제2 커넥터(50)을 포함해 구성된다.
이에 따르면, 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20)는 제1 커넥터(40)에 의해 직렬 연결되며, 제2 화합물 태양전지(20)와 제3 화합물 태양전지(30)는 제2 커넥터950)에 의해 직렬 연결될 수가 있다.
본 발명의 일 실시예에 따른 화합물 태양전지 모듈은 이처럼 이웃하고 있는 화합물 태양전지들이 이웃한 것과 중첩되지 않고 떨어져 배치되므로, 종래 화합물 태양전지 모듈처럼 화합물 태양전지가 이웃한 화합물 태양전지에 가려 수광 면적이 줄어드는 것을 방지할 수 있고, 또한 종전과 다르게 커넥터의 일부는 모듈의 후면에 배치가 되므로 커넥터에 의해 수광 면적이 줄어드는 문제 역시 줄일 수가 있다.
또한, 이웃하고 있는 두 태양전지는 동일한 면에서 연결이 되므로 화합물 태양전지 사이를 손쉽게 연결할 또는 수가 있다. 도시된 바에 따르면, 제1 화합물 태양전지(10)의 제1 전면 전극(13)은 n형 전하를 수집하도록 제1 화합물 반도체(11)가 구성되어 있고, 제2 화합물 태양전지(20)의 제2 전면 전극(23)은 p형 전하를 수집하도록 제2 화합물 반도체(21)가 구성되므로, 제1 전면 전극(11)과 제2 전면 전극(23)을 제1 커넥터(40로 연결함으로써, 전면에서 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이를 직렬 연결할 수가 있고, 동일하게 후면에서 제2 화합물 태양전지(10)와 제2 화합물 태양전지(30) 사이를 직렬 연결할 수가 있다.
바람직한 한 예에서, 제1 커넥터(40) 및 제2 커넥터(50)는 솔더가 도체를 코팅하고 있는 리본, 또는 구리 호일 위에 도전성 접착제가 도포된 도전성 테이프, 또는 PET(polyethylene terephthalate)과 같은 합성 섬유로 만들어진 필름에 도체(예로, 리본)가 내장되거나 도전성 접착제가 도포된 도전성 필름이 사용될 수가 있다.
또한, 제1 커넥터(40)의 전면은 디자인이 좋도록 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20)의 색깔과 동일한 색깔을 나타내도록 형성될 수 있다. 일 예로, 제1 커넥터(40)는 전면으로 에폭시 수지 도료(epoxide resin paint)로 만들진 코팅층(41)을 더 포함해 구성될 수 있다. 에폭시 수지 도료로 만들어진 코팅층(41)은 제1 커넥터(40)의 색깔이 제1 및 제2 화합물 태양전지(10, 20)와 동일하게 만들어, 전면에서 화합물 태양전지 모듈을 보았을 때 제1 커넥터(40)가 눈에 띠지 않도록 하며, 도체로 만들어진 제1 커넥터(40)가 산화되는 것을 방지한다.
또한, 제1 커넥터(40) 또는 제2 커넥터(50) 중 적어도 하나는 필름 위에 금속이 인쇄된 도전성 필름으로 형성될 수 있으며, 이에 대해서는 아래에서 자세히 후술한다.
제1 커넥터(40)의 한쪽 끝은 제1 전면 전극(13) 위로 위치하고, 다른 한쪽 끝은 제2 전면 전극(23) 위로 위치해, 각각 도전성 접착제, 솔더와 같은 도전성 부재(60)에 의해 전기적 물리적으로 제1 및 제2 전면 전극(13, 23)과 각각 연결될 수가 있다.
제2 커넥터(50)는 후면으로 제2 후면 전극(25) 일부, 제2 화합물 태양전지(20)와 제3 화합물 태양전지(30), 그리고 제3 후면 전극(35) 일부에 걸쳐 위치하고, 도전성 부재(60)에 제2 후면 전극(25) 그리고 제3 후면 전극(35)에 각각 연결된다.
도 3은 도 1에 도시한 화합물 태양전지 모듈 중 제2 화합물 태양전지의 전면을 대표적으로 도시한 것이다.
바람직한 한 형태에서, 본 발명의 일 실시예에서 사용되는 화합물 태양전지들(10~30)에서 전면 전극(1)은 버스 전극(1a)과 핑거 전극(1b)의 조합으로 만들어질 수 있다.
이 전면 전극(1)은 전기 전도성 물질을 포함하여 형성될 수 있으며, 금(Au), 백금(Pt), 티타늄(Ti), 텅스텐(W), 규소(Si), 니켈(Ni), 마그네슘(Mg), 팔라듐(Pd), 구리(Cu), 및 게르마늄(Ge) 중에서 선택된 적어도 어느 한 물질을 포함해 형성될 수 있다.
핑거 전극(1a)은 제1 방향(도면의 x축 방향)을 따라 연장되고, 제2 방향(도면의 y축 방향)으로 이웃한 것과 나란하게 형성이 된다. 이 핑거 전극(1a)은 이처럼 전면에 전체적으로 형성되어, 전면으로 향하는 전하를 효과적으로 수집하며, 전면으로 입사되는 빛이 핑거 전극에 의해 간섭되는 것을 방지하도록 구성될 수 있다.
버스 전극(1b)은 제2 방향으로 길게 연장되어 상기 핑거 전극들()의 끝을 연결하도록 구성될 수 있다. 이 버스 전극(1b)은 화합물 태양전지의 장변에 바로 이웃하도록 배치되어 이웃하고 있는 화합물 태양전지와 연결이 쉽도록 하고, 또한 전면으로 입사되는 빛이 버스 전극(1b)에 의해 가려지는 것을 방지한다.
이에 따라, 본 발명의 일 실시예에서 제1 전극(13)은 전체적으로 빗 모양을 갖도록 형성이 된다.
한편, 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20)의 연결이 쉽도록 제1 화합물 태양전지(10)의 버스 전극(1b)은 오른편에 배치되고, 제2 화합물 태양전지(20)의 버스 전극(1b)은 왼편에 배치가 되어, 이 둘은 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이를 두고 마주해 제2 방향으로 나란하게 위치하는 것이 바람직하다.
이에 의하면, 패드 기능을 하는 버스 전극(1b)이 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이를 두고 마주하므로, 제1 커넥터(40)와 쉽게 연결할 수가 있다. 또한 버스 전극(1b)이 제2 방향으로 길게 형성되어 있으므로, 제1 커넥터(40)와 버스 전극(1b)이 접합되는 위치를 필요에 따라 자유롭게 변경할 수가 있어 설계 자유도를 높이는 효과가 있다.
바람직한 예에서, 버스 전극(1b)은 라인 저항을 줄이고, 패드로 기능하기 위해서 핑거 전극들()의 선폭보다는 두꺼울 수 있다. 여기서, 패드는 이웃하는 두 태양전지의 전기적 연결을 위해 제공된 접착 부분을 말한다.
버스 전극(1b)은 패드로 기능하기 위해서 핑거 전극(1a)의 선폭과 비교해서 1~10배 큰 것이 바람직하다. 버스 전극(1b)의 선폭이 너무 크게 되면 제조 비용이 지나치게 상승하고 버스 전극(에 의해 빛이 입사되는 면적이 줄어 태양전지의 발전효율이 떨지는 문제가 있다. 이러한 점을 고려해 버스 전극(1b)의 선폭은 핑거 전극(1a)보다 최대 10배 큰 것이 바람직하다.
이와 반대로, 버스 전극(1b)은 빛이 입사되는 면적을 넓히고 제조 비용을 줄이기 위해 핑거 전극(1a)과 동일한 선폭을 갖도록 형성될 수도 있으며, 이 같은 예에서 바람직하게 전면 전극(1)은 패드(1c)를 더 포함하도록 구성될 수 있다.
도 4는 패드가 포함된 전면 전극의 일 예를 보여주는 도면이다.
도 4에서 예시하는 바와 같이, 전면 전극(1)이 패드(1c)를 포함하는 경우, 버스 전극(1b)의 선폭은 실질적으로 핑거 전극(1a)과 동일하다.
바람직한 한 형태에서, 패드(1c)는 버스 전극(1b)과 핑거 전극(1a)이 만나는 지점에 형성되며, 패드(1c)의 위치나 형상은 제1 커넥터(40)에 맞춰 조정될 수가 있다. 제1 커넥터(40)의 끝은 패드(1c) 위로 위치하고, 제1 커넥터(40)와 패드(1c)는 도전성 부재(60)에 의해 전기적 물리적으로 연결될 수가 있다.
도 5는 도 1에 도시한 화합물 태양전지 모듈 중 제2 화합물 태양전지의 후면을 대표적으로 도시한 것이다.
바람직한 한 형태에서, 본 발명의 일 실시예에서 사용되는 화합물 태양전지들(10~30)에서 후면 전극(3)은 화합물 반도체와 면접(面接)하도록 화합물 반도체의 후면 전체에 위치하는 시트(Sheet) 형상의 도전체로 형성될 수 있다.
이 후면 전극(3)은 전면 전극(1)과 동일하게, 금(Au), 백금(Pt), 티타늄(Ti), 텅스텐(W), 규소(Si), 니켈(Ni), 마그네슘(Mg), 팔라듐(Pd), 구리(Cu), 및 게르마늄(Ge) 중에서 선택된 적어도 어느 한 물질을 포함해 형성될 수 있다.
도 6 내지 도 8은 제1 내지 제3 화합물 반도체의 층간 구성을 보여주는 도면들이다.
본 발명의 일 실시예에서, 제1 화합물 반도체(11)는 전면으로 제1 도전형 전하(예로, n형 전하)가 이동하도록 구성되고, 후면으로 제2 도전형 전하(예로, p형 전하)가 이동하도록 구성되며, 제2 화합물 반도체(21)는 이와 반대로 제2 화합물 반도체(21)는 전면으로 제2 도전형 전하기 이동하도록 구성되고, 후면으로 제1 도전형 전하가 이동하도록 구성될 수 있다. 또한, 제3 화합물 반도체(31)는 전면으로 제1 도전형 전하가 이동하도록 구성되고, 후면으로 제2 도전형 전하가 이동하도록 구성될 수 있다.
이 같은 구성에 의해, 본 발명의 일 실시예에 따른 화합물 태양전지 모듈은, 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이가 전면에서 제1 커넥터(40)에 의해 직렬 연결될 수가 있고 제2 화합물 태양전지(20)와 제3 화합물 태양전지(30) 사이가 후면에서 제2 커넥터(50)에 의해 직렬 연결될 수가 있다.
먼저, 도 6을 참조하면 일 예에서 제1 화합물 반도체(11)는 제1 도전형 화합물 반도체층(111). 제1 도전형 화합물 반도체층(111)의 전면으로 형성되고 제1 도전형 화합물 반도체층(111)보다 고농도의 불순물을 포함하는 제1 도전형 불순물층(113), 제1 도전형 화합물 반도체층(111)의 후면으로 형성되고 제1 도전형 화합물 반도체층(111)과 pn 접합을 형성하는 제2 도전형 불순물층(115)을 포함해 구성될 수 있다.
제1 도전형 화합물 반도체층(111)은 예로 III-V족 반도체 화합물, 갈륨(Ga), 인듐(In) 및 인(P)이 함유된 GaInP 화합물 반도체 또는 갈륨(Ga)과 비소(As)가 함유된 GaAs 화합물 반도체로 구성될 수 있다. 이 제1 도전형 화합물 반도체층(111)은 제1 도전형 불순물로 도핑되며, 제1 도전형이 n형이면 실리콘, 셀레늄, 텔러륨 또는 이들의 조합으로 이뤄진 불순물로 도핑되며, 제1 도전형이 p형이면 탄소, 마그네슘, 아연 또는 이들의 조합으로 이뤄진 불순물로 도핑될 수 있다.
제1 도전형 불순물층(113)은 직접 접촉하는 하부의 층, 즉 제1 도전형 화합물 반도체층(111)과 동일한 도전성 타입을 가지며, 제1 도전형 화합물 반도체층(111)과 에너지 밴드 갭(band gap) 차이를 만들기 위해 다른 물질로 형성되는 것이 바람직하다. 일 예로, 제1 도전형 불순물층(113)은 AlGaInP, InGaP 중 어느 하나로 만들어질 수 있으며, 제1 도전형 화합물 반도체층(111)의 전면에 전체적으로(entirely) 형성될 수 있다.
이 제1 도전형 불순물층(113)은 제1 도전형 화합물 반도체층(111)과 동일한 도전성의 불순물로 도핑되나, 둘 사이에 전계가 만들어질 수 있도록 제1 도전형 불순물층(113)보다는 높은 농도로 제1 도전형 불순물이 도핑될 수 있다.
제2 도전형 불순물층(115)은 제1 화합물 반도체층(111)의 후면 전체에 형성되어, 제1 화합물 반도체층(111)과 전체적으로 pn 접합이 형성되도록 만들어 질 수 있다. 이 제2 도전형 불순물층(115)은 제1 화합물 반도체층(111)과 물리적 접합(junction)을 위해 동종의 물질로 형성되는 것이 바람직하며, 제1 화합물 반도체층(111)과 pn 접합을 위해 제1 화합물 반도체층(111)과 반대의 도전성, 즉 제2 도전성을 갖도록 제2 도전성 불순물이 고농도로 도핑될 수 있다.
이 같은 구성에 의해, 제1 화합물 반도체(11)는 pn 접합(11a)이 전면보다는 후면에 배치되고, 전면으로 제1 도전형 전하(예로, 전자)가 이동할 수가 있고, 후면으로 제2 도전형 전하(예로, 정공)가 이동할 수가 있다.
그리고, 제2 화합물 반도체(21)는 제2 도전형 화합물 반도체층(211), 제2 도전형 화합물 반도체층(211)의 전면으로 형성되고 상기 제2 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제2 도전형 불순물층(213), 제2 도전형 화합물 반도체층(211)의 후면으로 형성되고 제2 도전형 화합물 반도체층(211)과 pn 접합을 이루는 제1 도전형 불순물층(215)을 포함해 구성될 수 있다.
여기서, 제2 화합물 반도체(21)의 각 층을 구성하는 물질은 제1 화합물 반도체(11)와 동일하며, 다만 각 층에 도핑된 불순물이 제1 화합물 반도체(11)와 반대로 이뤄진다는 점에서 차이가 있다.
이에 따라, 제2 화합물 반도체(21)는 pn 접합(11a)이 전면보다는 후면에 배치되고, 전면으로 제2 도전형 전하(예로, 정공)가 이동할 수가 있고, 후면으로 제1 도전형 전하(예로, 전자)가 이동할 수가 있다.
그리고, 제3 화합물 반도체(31)는 제1 화합물 반도체(11)와 동일하게 구성되므로, 그 구성에 대한 상세한 설명은 생략한다.
이에 따라, 제3 화합물 반도체(31)는 제1 화합물 반도체(11)와 동일하게, pn 접합(11a)이 전면보다는 후면에 배치되고, 전면으로 제1 도전형 전하(예로, 전자)가 이동할 수가 있고, 후면으로 제2 도전형 전하(예로, 정공)가 이동할 수가 있다.
이 같은 구성에 의해 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이는 전면에서 제1 커넥터(40)에 의해 직렬 연결될 수가 있고, 제2 화합물 태양전지(20)와 제3 화합물 태양전지(30) 사이는 후면에서 제2 커넥터950)에 의해 직렬 연결될 수가 있다.
그리고, 제1 내지 제3 화합물 반도체(11, 21, 31)에서 pn 접합(11a, 21a, 31a)은 화합물 반도체층(111, 211, 311)과 이 반도체층의 후면에 면접하도록 형성된 불순물층(115, 215, 315)에 의해 형성되므로, 모든 화합물 반도체(11, 21, 31)에서 pn 접합(11a, 21a, 31a)은 동일한 위치에 형성될 수 있다. 따라서, 각 pn 접합에 의해 만들어진 광기전력은 모든 화합물 반도체(11, 21, 31)에서 실질적으로 동일한 장점이 있다.
이하, 도 7을 참조로 다른 예에 따른 화합물 반도체(11, 21, 31)의 층간 구성에 대해 설명한다. 이하, 도 7 및 도 8의 설명에서 화합물 반도체(11, 21, 31)는 실질적으로 도 6을 통해 설명한 바와 동일하고, 각 층의 도전형에 있어서만 차이가 있으므로, 이하에서는 각 층의 도전형을 위주로 설명한다.
도 7에서, 제1 및 제3 화합물 반도체(11, 31)의 층간 구성은 도 6을 통해 설명한 바와 동일하므로, 여기서 그 상세한 설명은 생략한다.
제2 화합물 반도체(21)는 제1 도전형 화합물 반도체층(211), 제1 도전형 화합물 반도체층(211)의 전면으로 형성되고 제1 도전형 화합물 반도체층(211)과 pn 접합을 형성하는 제2 도전형 불순물층(215), 제1 도전형 화합물 반도체층(211)의 후면으로 형성되고 제1 도전형 화합물 반도체층(211)보다 고농도의 불순물을 포함하는 제1 도전형 불순물층(215)을 포함해 구성된다.
이 같은 구성에 의해, 제2 화합물 반도체(21)는 전면으로 제2 도전형 전하가 이동할 수가 있고, 후면으로 제1 도전형 전하가 이동할 수가 있다.
이에 따라, 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이는 전면에서 제1 커넥터(40)에 의해 직렬 연결될 수가 있고, 제2 화합물 태양전지(20)와 제3 화합물 태양전지(30) 사이는 후면에서 제2 커넥터(50)에 의해 직렬 연결될 수가 있다.
이하, 도 8을 참조로 또 다른 예에 따른 화합물 반도체(11, 21, 31)의 층간 구성에 대해 설명한다.
도 8에서, 제1 화합물 반도체(11)는 제2 도전형 화합물 반도체층(111), 제2 도전형 화합물 반도체층(111)의 후면으로 형성되고 제2 도전형 화합물 반도체층(111)보다 고농도의 불순물을 포함하는 제2 도전형 불순물층(113), 제2 도전형 화합물 반도체층(111)의 전면으로 형성되고 제2 도전형 화합물 반도체층(111)과 pn 접합을 형성하는 제1 도전형 불순물층(115)를 포함해 구성될 수 있다.
그리고, 제2 화합물 반도체(21)는 제1 도전형 화합물 반도체층(211), 제1 도전형 화합물 반도체층(211)의 후면으로 형성되고 제1 도전형 화합물 반도체층(211)보다 고농도의 불순물을 포함하는 제1 도전형 불순물층(213), 제1 도전형 화합물 반도체층(211)의 전면으로 형성되고 제1 도전형 화합물 반도체층(211)과 pn 접합을 형성하는 제2 도전형 불순물층(215)을 포함해 구성될 수 있다.
그리고, 제3 화합물 반도체(31)는 제1 화합물 반도체(11)와 동일한 구성을 갖는다.
이 같은 구성에 의해, 제1 및 제3 화합물 반도체(11, 31) 전면으로는 제1 도전형 전하가 이동하고, 후면으로는 제2 도전형 전하가 이동되며, 이와 반대로 제2 화합물 반도체(21) 전면으로는 제2 도전형 전하가 이동하고, 후면으로는 제1 도전형 전하가 이동되므로, 제1 화합물 반도체(11)와 제2 화합물 반도체(21)는 제1 커넥터(40)에 의해 전면에서 둘 사이가 직렬 연결될 수 있고, 제2 화합물 반도체(21)와 제3 화합물 반도체(31)는 제2 커넥터(50)에 의해 후면에서 둘 사이가 직렬 연결될 수가 있다.
또한, 도 8과 같은 예에서 각 화합물 반도체(11, 21, 31)의 pn 접합(11a, 21a, 31a)은 모두 동일한 위치(화합물 반도체층의 전면)로 배치가 되므로, 각 화합물 태양전지의 기전력은 모두 동일할 수가 있고, 또한 pn 접합이 전면에 가깝게 배치가 되므로 도 6 또는 도 7에서 예시하는 화합물 반도체들보다 높은 기전력을 얻을 수 있다.
또한, 본 발명의 일 실시예에 따른 제1 내지 제3 화합물 태양전지(10, 20, 30)는 상술한 제1 내지 제3 화합물 반도체(11, 21, 31)의 구성을 갖고 있기 때문에, 모듈을 구성하는 화합물 태양전지의 전면과 후면 형상은 모두 동일하게 유지한 채, 이웃한 두 태양전지를 겹쳐 배열할 필요없이 커넥터(40, 50)에 의해 손쉽게 전기적으로 연결할 수가 있다.
한편, 상술한 설명에서는 커넥터(40, 50)가 띠 형상을 갖도록 형성된 경우에 대해 설명하였으나, 본 발명의 일 실시예에 따르면 화합물 태양전지들 사이가 떨어져 배치됨에 따라 화합물 태양전지 사이가 전면에서 보이게 되므로 디자인이 떨어지는 문제가 있을 수 있다.
이 같은 점을 고려해 커넥터(40, 50)는 화합물 태양전지 사이를 완전히 가리도록 형성될 수 있다.
도 9는 제1 커넥터가 제1 화합물 태양전지와 제2 화합물 태양전지 사이를 완전히 가리도록 형성된 화합물 태양전지 모듈의 일 예를 보여주는 도면이다.
바람직한 한 형태에서, 전면에 배치된 제1 커넥터(40)는 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이를 완전히 가릴 수 있도록 제1 화합물 태양전지(10)와 제2 화합물 태양전지(20) 사이의 제1 폭(D1)보다는 크고, 보다 바람직하게는 제1 화합물 태양전지(10)의 버스 전극(13b)과 제2 화합물 태양전지(20)의 버스 전극(23b) 사이의 제2 폭(D2) 보다는 큰 것이 바람직하다.
이에 의하면, 바람직한 한 형태에서, 도전성 테이프 또는 도전성 필름으로 만들어진 제1 커넥터(40)는 제1 화합물 태양전지()와 제2 화합물 태양전지 사이에 배치되어 제1 화합물 태양전지(10))와 제2 화합물 태양전지(20) 사이를 가릴 뿐만 아니라, 제1 화합물 태양전지(10)의 전면 전극(13)과 제2 화합물 태양전지(20)의 전면 전극(23)을 전기적으로도 연결할 수도 있다.
또한, 제1 커넥터(40)에 의해 버스 전극(13b, 23b)이 가려지므로, 버스 전극(13b, 23b)을 전면에서 보이지 않도록 해 디자인을 좋게 하는 효과가 있다.
도 10은 제2 커넥터가 제2 화합물 태양전지와 제3 화합물 태양전지 사이를 시트 형상의 제2 커넥터(50)에 의해 연결된 화합물 태양전지 모듈의 일 예를 보여주는 도면이고, 도 11은 도 10의 B-B'선에 따른 단면 모습을 보여주는 도면이다.
이 도면들을 참조하면, 바람직한 한 형태에서 제2 커넥터(50)는 시트 형상을 가지며, 제2 화합물 태양전지(20)의 후면 전체, 제3 화합물 태양전지(30)의 후면 전체, 그리고 제2 화합물 태양전지(20)와 제3 화합물 화합물 태양전지(30) 사이 전체를 가리도록 후면에 배치되고, 제2 및 제3 화합물 태양전지(20, 30)에 물리적 전기적으로 연결될 수 있다.
바람직하게, 제2 화합물 태양전지(20)의 후면 전체는 제2 커넥터(50)의 후면 전체는 제2 커넥터(50)의 왼편과 면접하도록 배치되고, 제3 화합물 태양전지(30)의 후면 전체는 제2 커넥터(50)의 오른편과 면접하도록 배치된다.
이 예에서, 제2 커넥터(50)는 도전성 테이프 또는 도전성 필름으로 형성될 수가 있다. 이에 의하면, 제2 및 제3 화합물 태양전지(20, 30) 사이를 접합하는 공정을 매우 단순화할 수 있는 장점이 있고, 나아가 화합물 태양전지의 후면에 부착되는 지지 기판을 도전성 필름이 대신할 수 있으므로, 지지 기판을 사용하지 않아도 되는 이점 또한 있다.
일 예에서, 도전성 필름(50)은 PET과 같은 합성 섬유로 만들어진 베이스 기판(51)과 그 위에 도포된 도전성 접착제(35)를 포함해 구성된다. 제2 화합물 태양전지(20)의 후면 전체에 형성된 제2 후면전극(25)은 도전성 접착제(35)에 전면적으로 접합되고, 제3 화합물 태양전지(30)의 후면 전체에 형성된 제3 후면 전극(35) 역시 도전성 접착제(35)에 전면적으로 접합되므로, 접촉 저항을 최대로 줄이며 둘 사이는 전기적으로 연결될 수가 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (15)

  1. 제1 화합물 반도체, 상기 제1 화합물 반도체의 전면에서 제1 도전형 전하를 수집하는 제1 전면 전극, 상기 제1 화합물 반도체의 후면에서 제2 도전형 전하를 수집하는 제2 후면 전극을 포함해 구성된 제1 화합물 태양전지;
    상기 제1 화합물 태양전지에 이웃하게 배치되고, 제2 화합물 반도체, 상기 제2 화합물 반도체의 전면에서 제2 도전형 전하를 수집하는 제2 전면 전극, 상기 제2 화합물 반도체의 후면에서 제1 도전형 전하를 수집하는 제2 후면 전극을 포함해 구성된 제2 화합물 태양전지;
    상기 제2 화합물 태양전지에 이웃하게 배치되고, 제3 화합물 반도체, 상기 제3 화합물 반도체의 전면에서 제1 도전형 전하를 수집하는 제3 전면 전극, 상기 제3 화합물 반도체의 후면에서 제2 도전형 전하를 수집하는 제3 후면 전극을 포함해 구성된 제3 화합물 태양전지;
    상기 제1 화합물 태양전지와 상기 제2 화합물 태양전지 사이로 위치하고, 전면에서 상기 제1 전면 전극과 상기 제2 전면 전극을 연결하는 제1 커넥터; 및
    상기 제2 화합물 태양전지와 상기 제3 화합물 태양전지 사이로 위치하고, 상기 후면에서 상기 제2 후면 전극과 상기 제3 후면 전극을 연결하는 제2 커넥터,
    를 포함하는 화합물 태양전지 모듈.
  2. 제1항에 있어서,
    상기 제1 내지 제3 전면 전극은,
    제1 방향으로 길게 형성되고, 상기 제1 방향과 교차하는 제2 방향에서 이웃한 것과 나란하게 형성된 핑거 전극들과,
    상기 제2 방향으로 길게 형성되어 상기 핑거 전극들의 끝을 연결하는 버스 전극,
    을 포함하는 화합물 태양전지 모듈.
  3. 제2항에 있어서,
    상기 제1 전면 전극의 버스 전극과 상기 제2 전면 전극의 버스 전극은 상기 제1 화합물 태양전지와 상기 제2 화합물 태양전지 사이에서 마주하게 배치된 화합물 태양전지 모듈.
  4. 제1항에 있어서,
    상기 제1 태양전지의 전면 전극의 형상은 상기 제2 태양전지의 전면 전극과 거울 대칭을 이루고 있는 화합물 태양전지 모듈.
  5. 제2항에 있어서,
    상기 제1 내지 제3 후면 전극은, 시트 형상의 통 전극인 화합물 태양전지 모듈.
  6. 제1항에 있어서,
    상기 제1 및 제3 화합물 반도체는,
    제1 도전형 화합물 반도체층;
    상기 제1 도전형 화합물 반도체층의 전면으로 형성되고, 상기 제1 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제1 도전형 불순물층; 및
    상기 제1 도전형 화합물 반도체층의 후면으로 형성되고, 상기 제1 도전형 화합물 반도체층과 pn 접합을 형성하는 제2 도전형 불순물층,
    을 포함하는 화합물 태양전지 모듈.
  7. 제6항에 있어서,
    상기 제2 화합물 반도체는,
    제2 도전형 화합물 반도체층;
    상기 제2 도전형 화합물 반도체층의 전면으로 형성되고, 상기 제2 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제2 도전형 불순물층; 및
    상기 제2 도전형 화합물 반도체층의 후면으로 형성되고, 상기 제2 도전형 화합물 반도체층과 pn 접합을 이루는 제1 도전형 불순물층,
    을 포함하는 화합물 태양전지 모듈.
  8. 제7항에 있어서,
    상기 제2 화합물 반도체는,
    제1 도전형 화합물 반도체층;
    상기 제1 도전형 화합물 반도체층의 전면으로 형성되고, 상기 제1 도전형 화합물 반도체층과 pn 접합을 형성하는 제2 도전형 불순물층; 및
    상기 제1 도전형 화합물 반도체층의 후면으로 형성되고, 상기 제1 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제1 도전형 불순물층,
    을 포함하는 화합물 태양전지 모듈.
  9. 제1항에 있어서,
    상기 제1 및 제3 화합물 반도체는,
    제2 도전형 화합물 반도체층;
    상기 제2 도전형 화합물 반도체층의 전면으로 형성되고, 상기 제2 도전형 화합물 반도체층과 pn 접합을 형성하는 제1 도전형 불순물층; 및
    상기 제2 도전형 화합물 반도체층의 후면으로 형성되고, 상기 제2 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제2 도전형 불순물층,
    을 포함하는 화합물 태양전지 모듈.
  10. 제9항에 있어서,
    상기 제2 화합물 반도체는,
    제1 도전형 화합물 반도체층;
    상기 제1 도전형 화합물 반도체층의 전면으로 형성되고, 상기 제1 도전형 화합물 반도체층과 pn 접합을 형성하는 제2 도전형 불순물층; 및
    상기 제1 도전형 화합물 반도체층의 후면으로 형성되고, 상기 제1 도전형 화합물 반도체층보다 고농도의 불순물을 포함하는 제1 도전형 불순물층,
    을 포함하는 화합물 태양전지 모듈.
  11. 제1항에 있어서,
    상기 제1 및 제2 커넥터 중 적어도 하나는 리본, 도전성 테이프, 도전성 필름 중 하나로 이뤄진 화합물 태양전지 모듈.
  12. 제11항에 있어서,
    상기 제1 커넥터는 리본인 화합물 태양전지 모듈.
  13. 제11항에 있어서,
    상기 제1 및 제2 커넥터 중 적어도 하나의 전면은 상기 제1 및 제2 화합물 태양전지의 색깔과 동일한 색깔로 만들어진 화합물 태양전지 모듈.
  14. 제11항에 있어서,
    상기 제1 커넥터는 상기 제1 및 제2 화합물 태양전지 사이 전체를 가리도록 배치된 도전성 필름 또는 도전성 테이프로 이뤄진 화합물 태양전지 모듈.
  15. 제11항에 있어서,
    상기 제2 커넥터는 상기 제2 화합물 태양전지의 후면 전체, 상기 제3 화합물 태양전지의 후면 전체, 그리고 상기 제2 화합물 태양전지와 상기 제2 화합물 태양전지 사이를 완전히 가리는 시트 형상의 도전성 필름 또는 도전성 테이프로 이뤄진 화합물 태양전지 모듈.
PCT/KR2018/013657 2018-01-11 2018-11-09 화합물 태양전지 모듈 WO2019139239A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0004056 2018-01-11
KR1020180004056A KR20190085786A (ko) 2018-01-11 2018-01-11 화합물 태양전지 모듈

Publications (1)

Publication Number Publication Date
WO2019139239A1 true WO2019139239A1 (ko) 2019-07-18

Family

ID=67219096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013657 WO2019139239A1 (ko) 2018-01-11 2018-11-09 화합물 태양전지 모듈

Country Status (2)

Country Link
KR (1) KR20190085786A (ko)
WO (1) WO2019139239A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196995A1 (ko) * 2021-03-17 2022-09-22 울산과학기술원 태양 전지 모듈
KR102613582B1 (ko) * 2021-07-12 2023-12-14 울산과학기술원 엣지 버스바 전극을 이용한 투명 태양 전지 모듈
KR102620243B1 (ko) * 2021-03-17 2024-01-02 울산과학기술원 태양 전지 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064969A (ko) * 2009-12-09 2011-06-15 엘지전자 주식회사 태양 전지 모듈
KR101470492B1 (ko) * 2012-05-21 2014-12-09 주성엔지니어링(주) 태양전지 및 태양전지 블록
KR20150084521A (ko) * 2014-01-14 2015-07-22 엘지전자 주식회사 태양 전지 모듈
KR20160094396A (ko) * 2014-01-13 2016-08-09 솔라시티 코포레이션 낮은 비저항 전극들을 갖는 태양 전지들의 모듈 제조
KR101721360B1 (ko) * 2016-02-12 2017-03-29 주식회사 신성솔라에너지 태양전지 모듈 및 태양전지 어레이

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064969A (ko) * 2009-12-09 2011-06-15 엘지전자 주식회사 태양 전지 모듈
KR101470492B1 (ko) * 2012-05-21 2014-12-09 주성엔지니어링(주) 태양전지 및 태양전지 블록
KR20160094396A (ko) * 2014-01-13 2016-08-09 솔라시티 코포레이션 낮은 비저항 전극들을 갖는 태양 전지들의 모듈 제조
KR20150084521A (ko) * 2014-01-14 2015-07-22 엘지전자 주식회사 태양 전지 모듈
KR101721360B1 (ko) * 2016-02-12 2017-03-29 주식회사 신성솔라에너지 태양전지 모듈 및 태양전지 어레이

Also Published As

Publication number Publication date
KR20190085786A (ko) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2011071227A1 (en) Solar cell module
WO2019139239A1 (ko) 화합물 태양전지 모듈
WO2011030978A1 (en) Solar cell
US6353175B1 (en) Two-terminal cell-interconnected-circuits using mechanically-stacked photovoltaic cells for line-focus concentrator arrays
WO2011043517A1 (en) Solar cell and solar cell module
WO2010131816A1 (en) Solar cell
WO2011002230A2 (ko) 태양전지 및 이의 제조방법
WO2010013956A2 (en) Solar cell, method of manufacturing the same, and solar cell module
WO2011062380A2 (ko) 태양광 발전장치
WO2012033274A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2015056934A1 (ko) 태양전지 모듈
WO2021201342A1 (ko) 디자이너블 슁글드 태양광 모듈 및 그 제조 방법
WO2019083059A1 (ko) 에지 수집전극을 구비하는 태양전지 및 이를 포함하는 태양전지 모듈
WO2017131306A1 (ko) 플렉서블 센서 모듈 및 이의 제조 방법
WO2012023663A1 (en) Solar cell panel
WO2012015108A1 (en) Solar cell panel
WO2017043805A1 (ko) 박막형 태양전지 및 그 제조 방법
WO2011052875A2 (en) Solar cell, method of manufacturing the same, and solar cell module
WO2012015150A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2012015286A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012046934A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2011071226A1 (en) Solar cell module
WO2011083994A2 (ko) 태양광 발전장치
WO2011083995A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011055954A2 (ko) 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899158

Country of ref document: EP

Kind code of ref document: A1