WO2019138745A1 - 位置検出システム - Google Patents

位置検出システム Download PDF

Info

Publication number
WO2019138745A1
WO2019138745A1 PCT/JP2018/044906 JP2018044906W WO2019138745A1 WO 2019138745 A1 WO2019138745 A1 WO 2019138745A1 JP 2018044906 W JP2018044906 W JP 2018044906W WO 2019138745 A1 WO2019138745 A1 WO 2019138745A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
detection system
self
data
map
Prior art date
Application number
PCT/JP2018/044906
Other languages
English (en)
French (fr)
Inventor
庄司 直樹
修一 槙
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2019138745A1 publication Critical patent/WO2019138745A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a position detection system.
  • Patent Document 1 discloses a position detection system that estimates its own position and posture by collating measurement data measured by a distance sensor that measures the surrounding situation with map data.
  • An object of the present invention is to accurately estimate the self position in a position detection system.
  • the position detection system is a position detection system for a mobile body that estimates its own position within an operation area in which the mobile body moves, and the mobile body is a first sensor that measures surrounding conditions. And a second sensor for setting a plurality of mutually identifiable data acquisition regions in the operation region, and a position estimation unit for estimating the self position, the position estimation unit further comprising: A plurality of the data acquisition areas set by the sensor and the map data in the operation area in advance, The map data is collated based on the measurement data measured by the first sensor and the data acquisition area set by the second sensor, and the self position is narrowed to estimate the self position. It is characterized by
  • detection of the position and orientation of a moving object on a map is performed by collating map data with measurement data measured by a distance sensor that measures surrounding conditions.
  • a position detection system using a distance sensor when there are a plurality of self position estimation candidates, accurate self position can be estimated.
  • the estimation of the self position in addition to the surrounding situation that can be acquired from the distance sensor, data that can be acquired by the additional sensor is linked to the map, and acquired by the additional sensor at the time of self position estimation.
  • the self position candidate is narrowed down by referring to the data.
  • an additional sensor according to the use environment is added, and additional data is registered in the map when the position detection system is newly introduced or added to the position detection system.
  • the number of comparison processing operations required for self-position estimation is reduced by narrowing down the self-position candidates with the signal received by the additional sensor, and the self-position is estimated. Such time is reduced.
  • the position detection system includes a position and orientation estimation device 101, a distance sensor (first sensor) 110, and an additional sensor (second sensor) 111.
  • the position and orientation estimation device 101, the distance sensor 110, and the additional sensor 111 are mounted on the moving body 201 (see FIGS. 2A and 2B).
  • the position and orientation estimation device 101 includes an arithmetic device (processor) 102 such as a central processing unit (CPU), a memory 103, a communication device 104, and a storage device 105 such as a hard disk.
  • processor arithmetic device
  • CPU central processing unit
  • memory 103 such as a hard disk
  • communication device 104 such as a Wi-Fi device
  • storage device 105 such as a hard disk.
  • a position and orientation estimation program 106 In the storage device 105, a position and orientation estimation program 106, a communication program 107, a sensor control program 108, and a map (map data) 109 are stored.
  • the computing device 102 executes programs stored in the storage device 105 to control each component in an integrated manner, and performs various computing processes.
  • the distance sensor 110 irradiates laser light in various directions with a rotating prism or the like, and measures the surrounding situation (that is, the distance to an object in the surrounding area).
  • the distance data is obtained by measuring the geometrical shape of a measurable object around the distance sensor 110, since the irradiated angle is known, so the two-dimensional coordinates of the measured data can be restored. can do.
  • the sensor control program 108 controls laser irradiation of the distance sensor 110 and processes information such as distance data and angle obtained by the distance sensor 110.
  • the map data 109 is map data in which the shapes of objects of the surrounding environment created in advance are described.
  • the position and orientation estimation program (position and orientation estimation unit) 106 moves by comparing the distance data, which is measurement data of the distance sensor 110, with the map data 109 in which the shape of the object of the surrounding environment created in advance is described.
  • the position and posture of the body 201 (see FIGS. 2A and 2B) are estimated.
  • the distance sensor 110 mounted on the moving body 201 measures the shape of an object in the surrounding environment.
  • map data 109 all shapes of objects are described in advance.
  • the position and orientation estimation program 106 matches the map data 109 while changing the distance data to various positions and directions, and obtains the most matching position and orientation.
  • the position and posture of the mobile body 201 on the map 109 are detected.
  • the “position and posture” are the position (for example, X and Y coordinates) of the mobile body 201 on the map 109 and the direction (angle) of the mobile body 201.
  • the additional sensor 111 is, for example, a receiver of information that can be acquired in the area where the position detection system is used.
  • the position and orientation estimation program 106 narrows down based on the information received by the additional sensor 111 and the information receivable by the additional sensor 111 linked to the map 109. Then, the self position is estimated from the surrounding situation acquired by the distance sensor 110.
  • the information acquired by the additional sensor 111 is information transmitted from a wireless transmitter whose receivable range is specified.
  • the position and orientation estimation device 101, the distance sensor 110, and the additional sensor 111 are installed on the moving body 201.
  • the surrounding shape 205 is detected by the distance sensor 110 as a result of the detection of the detection area 202 of the distance sensor 110 by the building wall surface 203 and the obstacle 204.
  • the additional sensor 111 acquires data capable of narrowing down the self position.
  • a plurality of transmitters 206 are installed in a building, and it is assumed that an obtainable area 207 of data transmitted from each of the transmitters 206 exists in a circle. It is assumed that individual information is transmitted from each transmitter 206, and the obtainable range of the individual information is linked on the map 109 held by the position and orientation estimation device 101.
  • the additional sensor 111 By receiving the individual information by the additional sensor 111, it is possible to determine in which circular obtainable area 207 the present individual information can be obtained. By combining the individual information and the information of the surrounding shape 205, it is possible to narrow down when the self position is at the position of the moving body 201 in FIGS. 2A and 2B.
  • the narrowing down of the self position based on the individual information received by the additional sensor 111 and the estimation of the self position from the surrounding conditions acquired by the distance sensor 110 may be performed in any order.
  • the self position applicable to the narrowed candidate may be estimated based on the information obtained by the distance sensor 110 (usage mode of FIG. 2A).
  • the narrowing may be performed by the information acquired by the additional sensor 111 (usage mode of FIG. 2B ).
  • the usage mode of estimating the self position applicable to the narrowed candidate based on the information obtained by the distance sensor 110 explain.
  • a range in which data can not be received is a self position search target. After narrowing down the self position candidates, the data of the distance sensor 110 is acquired in S303, and in S304, the map data to be the self position search is read.
  • a comparison process is performed to determine whether there is a matching position for the search target area in the map 109 read in S305.
  • the self is determined based on the information such as the degree of coincidence between the map 109 when determined as the self position candidate and the surrounding shape measured by the distance sensor 110. Narrow down the position.
  • the processing may be executed in parallel on a plurality of map data 109.
  • the self position search target When narrowing down the self position search target, the self position search target is narrowed down and then the self position is estimated. Enables position estimation.
  • the present invention is also applied to the case where the same information can be obtained with the maps 109 located in the periphery among the plurality of maps 109 present in the position and orientation estimation apparatus.
  • the space indicated by two or more different maps 109 stored in the position and orientation estimation device is adjacent to each other in the real space, or adjacent to each other in the vertical direction. If present in the
  • the distance sensor 110 After narrowing down the map 109 and the self position candidate to be subjected to the detailed self position estimation based on the information obtained by the additional sensor 111, the distance sensor 110 performs the detailed self position estimation. As a result, compared with the case where the self position estimation is performed using only the distance sensor 110, it is possible to reduce the number of objects to be compared. As a result, the computation amount can be reduced and estimation can be performed in a shorter time.
  • FIG. 4 With reference to FIG. 4, the case where the positions are vertically adjacent to each other will be described as an example. As shown in FIG. 4, there is a movable body 401 on which the position and orientation estimation device 101, the distance sensor 110, and the additional sensor 111 are mounted, and an area that can be measured by the distance sensor 110 is taken as a measurable area 402.
  • the additional sensor 111 can receive the signal transmitted by the transmitter 206, the position where the mobile unit 401 is present is within the circular area of the receivable area 207. For this reason, the self position search candidate is narrowed down to the area of the receivable area 207 in the map existing in the position and orientation estimation device.
  • the additional sensors may be narrowed down to one from a plurality of self position candidates having similar peripheral shapes measured by the distance sensor 110. Accurate self-position estimation can be performed by using 111 in combination.
  • the map 109 read in S503 is compared to determine whether there is a matching position.
  • the self position is narrowed based on the information such as the degree of coincidence with the surrounding shape measured by the distance sensor 110.
  • the processing may be executed in parallel on a plurality of maps 109.
  • narrowing down is performed when there are a plurality of candidates after self position estimation
  • processing of data acquired by the additional sensor 111 is performed only when necessary, when self position can be estimated only by the information of the distance sensor 110 Do.
  • it is unnecessary it is possible to omit the processing of data acquired by the additional sensor 111, and it is possible to suppress the execution of the additional processing.
  • a wireless LAN slave device is used as the additional sensor 111.
  • an SSID Service Set Identifier
  • an MAC address Media Access Control address
  • an IP address Internet Protocol Address
  • connection data may be prepared on a connectable network and may be referred to as necessary.
  • the Bluetooth compatible device has a BD address (Bluetooth Device address) and a device name. It becomes possible to narrow down the candidate of the self position based on the information which can be acquired by additional sensor 111 by using either of these.
  • Information of either or both of the BD address and the device name is linked to a part of the map 109 or the map 109 held by the position and orientation estimation apparatus 101.
  • narrowing down of the map 109 associated with the acquired information or the self position candidate search target area in the map 109 is performed.
  • connection data may be prepared on a connectable network and may be referred to as necessary.
  • GNSS Global Navigation Satellite System
  • the GNSS receiver specifies its own position based on a signal transmitted from a positioning satellite, and outputs position information such as its latitude, longitude, and altitude. Since position information may show errors depending on the position and environment to be received, the map 109 existing in the position and orientation estimation apparatus 101 is linked by setting ranges of latitude and longitude in consideration of errors.
  • the received latitude and longitude are within the range set for each map, it is possible to apply the map by selecting the map as a self position candidate search target.
  • the magnitude of the error depends on the environment inside and outside the map 109 and the arrangement of the positioning satellites.
  • the range of the error can be narrowed down with higher accuracy by setting according to the building materials and structure of the building targeted for the map 109 and the surrounding environment.
  • connection data may be prepared on a connectable network and may be referred to as necessary.
  • the additional sensor 111 In the position detection system shown in the first embodiment, it is assumed that a receiver capable of receiving a signal conforming to the IMES message specification is used as the additional sensor 111.
  • the receiver outputs latitude, longitude, altitude information and the like when a signal is received.
  • the information output from the receiver is information such as the latitude, longitude, and floor number of the attached position of the transmitter transmitted from the transmitter. Therefore, it is not necessary to perform positioning calculation on the receiver side, and it is possible to reduce the setting of the error range even when used indoors.
  • connection data may be prepared on a connectable network and may be referred to as necessary.
  • a mark such as a bar code, a QR code (registered trademark) or a distinctive pattern or shape that can be recognized by a camera is installed at a position in a building that can be photographed by a camera attached to the position detection system.
  • the arrangement and contents of the mark are linked to the map 109 or a part of the map 109 held by the position and orientation estimation apparatus 101.
  • connection data may be prepared on a connectable network and may be referred to as necessary.
  • additional sensor 111 uses a wireless LAN handset and a Bluetooth receiver capable of receiving beacons.
  • the estimation calculation of the self position may be performed based on the surrounding situation acquired by the distance sensor 110 only for the range in which both of the maps 109 can be simultaneously received. For this reason, it is possible to narrow down the candidate locations for position estimation as compared to the case where a single additional sensor 111 is used.
  • the condition is satisfied even if only one of the wireless LAN handset and the Bluetooth receiver receives data, or if both additional sensors 111 do not receive data. Only candidate locations for position estimation are to be verified. Therefore, it is possible to narrow down candidate positions for position estimation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

距離センサで計測した計測データと追加センサで設定されたデータ取得領域とに基づいて地図を照合し、自己位置の絞り込みを行って自己位置を推定する。

Description

位置検出システム
 本発明は、位置検出システムに関する。
 近年、移動体に取り付けられた距離センサなどの計測データから環境の地図を生成し、地図上における移動体の位置及び姿勢を検出する技術が実用化されつつある。地図上における移動体の位置及び姿勢の検出は、一般的に地図データと計測データを照合することで行われる。
 例えば、特許文献1には、周囲の状況を計測する距離センサで計測した計測データと地図データを照合することにより、自己の位置及び姿勢を推定する位置検出システムが開示されている。
特開2015-094669号公報
 しかし、特許文献1の位置検出システムでは、距離センサで計測した計測データが地図上の複数の地点において当てはまる場合に、正確に自己位置を推定することは困難である。本発明の目的は、位置検出システムにおいて、自己位置の推定を正確に行うことにある。
 本発明の一態様の位置検出システムは、移動体が移動する動作領域内において自己位置を推定する移動体の位置検出システムであって、前記移動体は、周囲の状況を計測する第1のセンサと、前記動作領域内に、互いに識別可能な複数のデータ取得領域を設定する第2のセンサと、前記自己位置を推定する位置推定部と、を有し、前記位置推定部は、前記第2のセンサで設定された複数の前記データ取得領域と前記動作領域内の地図データとを予め結び付けておき、
 前記第1のセンサで計測した前記計測データと前記第2のセンサで設定された前記データ取得領域とに基づいて前記地図データを照合し、前記自己位置の絞り込みを行って前記自己位置を推定することを特徴とする。
 本発明の一態様によれば、位置検出システムにおいて、自己位置の推定を正確に行うことができる。
位置検知システムの構成を示す図である。 位置検知システムの使用態様を示す図である。 位置検知システムの他の使用態様を示す図である。 位置検知システムの動作を説明するためのフローチャートである。 追加センサにより自己位置候補検索領域を絞り込み可能な場合の一例を示す図である。 位置検知システムの動作を説明するためのフローチャートである。
 一般的に、地図上における移動体の位置及び姿勢の検出は、周囲の状況を計測する距離センサで計測した計測データと地図データを照合することにより行われている。
 しかし、距離センサで計測した計測データと地図データを照合するだけでは、距離センサで計測した計測データが地図上の複数の地点において当てはまる場合に、正確に自己位置を推定することは困難である。このような事象は特に初期位置の推定において起こりやすい。
  具体的には、初期位置の推定では、位置検出システムの保有する複数の地図の内、距離センサで取得可能な計測データのみを利用して、正しい地図を選択した上で地図上の自己位置を推定する必要がある。
 しかし、周囲環境との距離データのみでは、合致する位置が複数の地図上に存在する可能性がある。あるいは、単一の地図であっても複数個所に当てはまる可能性がある。
  初期位置の推定において前記事象が発生すると、オペレータによる初期位置手動入力や機器移動操作など外部からの入力が必要となる。このため、位置検出システムが期待通りに動作しない可能性がある。また、位置検出システムを利用した搬送システムの自動化などが期待された通り動作しない可能性がある。
 さらに、自己位置推定を行うべき候補が多い場合には、その確認のために多くの演算が必要となり、自己位置推定の完了までに必要となる時間が長くなる。
 実施形態では、距離センサを利用した位置検出システムにおいて、自己位置推定候補が複数ある場合に、正確な自己位置を推定可能にする。具体的には、自己位置の推定において、距離センサから取得可能な周囲状況の他に、追加センサにより取得可能なデータを地図に結びつけておき、自己位置推定の際に追加センサで入手しているデータを参照することで自己位置候補の絞り込みを行う。
 実施形態では、使用環境に応じた追加センサを追加し、位置検出システムの新規導入時、又は追加センサの位置検出システムへの追加時に追加のデータを地図に登録する。これにより、距離センサのみでは自己位置の推定が困難である場合にも推定が可能となり、自己位置の推定精度が向上する。
 また、周辺環境との距離による推定だけでなく、追加センサの受信する信号で自己位置の候補を絞り込むことで、自己位置推定のために必要な比較処理演算数が減少し、自己位置の推定にかかる時間が短縮される。
  以下、図面を参照して、実施例について説明する。
 図1を参照して、位置検知システムの構成について説明する。
  図1に示すように、位置検知システムは、位置姿勢推定装置101、距離センサ(第1のセンサ)110及び追加センサ(第2のセンサ)111を有する。位置姿勢推定装置101、距離センサ110及び追加センサ111は、移動体201(図2A、図2B参照)に搭載される。
 位置姿勢推定装置101は、中央演算処理部(CPU:Central Processing Unit)などの演算装置(プロセッサ)102と、メモリ103と、通信装置104と及びハードディスクなどの記憶装置105を有する。
 記憶装置105には、位置姿勢推定プログラム106、通信プログラム107、センサ制御プログラム108及び地図(地図データ)109が格納されている。
 演算装置102は、記憶装置105に格納されたプログラムを実行することで、各構成要素を統括的に制御し、様々な演算処理を行う。
 距離センサ110は、レーザ光を回転プリズムなどで様々な方向に照射し、周囲の状況(すなわち、周囲にある物体との距離)を計測する。距離データは、照射された角度が既知であるため、計測したデータの2次元座標を復元することができ、距離センサ110の周囲にある計測可能な物体の幾何学的な形状を計測して取得することができる。
 センサ制御プログラム108は、距離センサ110のレーザの照射等の制御を行うとともに、距離センサ110により得られた距離データ及び角度などの情報を処理する。
 地図データ109は、あらかじめ作成された周囲環境の物体の形状が記載された地図データである。
  位置姿勢推定プログラム(位置姿勢推定部)106は、距離センサ110の計測データである距離データと、予め作成された周囲環境の物体の形状が記載された地図データ109とを照合することによって、移動体201(図2A、図2B参照)の位置及び姿勢を推定する。
 移動体201に搭載された距離センサ110は、周囲環境にある物体の形状を計測する。地図データ109には予め物体の形状がすべて記載されている。このため、位置姿勢推定プログラム106は、距離データを様々な位置と方向に変化させながら地図データ109とマッチングし、最も一致する位置及び姿勢を求める。これにより、地図109上における移動体201の位置及び姿勢を検出する。
  ここで、「位置及び姿勢」とは、地図109上における移動体201の位置(例えば、X、Y座標)及び移動体201の向き(角度)である。
 追加センサ111は、例えば、位置検知システムを使用する領域において取得可能な情報の受信機である。
  追加センサ111において受信した情報と地図109に結び付けられた追加センサ111において受信可能な情報を基に、位置姿勢推定プログラム106により絞り込みを行う。そして、距離センサ110によって取得される周囲の状況から自己位置を推定する。ここで、地図109は複数あってもよい。
 次に、図2A、図2Bを参照して、位置検知システムの使用態様について説明する。
  一例として、追加センサ111で取得する情報は、受信可能範囲が特定された無線送信機から送信された情報とする。移動体201に位置姿勢推定装置101、距離センサ110及び追加センサ111が設置されている。
 位置検知システムを起動した際に、距離センサ110の検出領域202を建物壁面203及び障害物204が遮った結果、距離センサ110にて周囲形状205が検知されているとする。
 周囲形状205を基に自己位置の推定を行うと、建物壁面203内で合致する位置が複数存在することになるため、自己位置を確定することができない。このため、追加センサ111により自己位置の絞り込み可能なデータを取得する。
 送信機206が建物内に複数設置されており、各送信機206から送信されるデータの取得可能領域207が円状に存在するとする。各送信機206からは個別情報が送信されており、個別情報の取得可能範囲が位置姿勢推定装置101の保有する地図109上に紐づけられているとする。
 追加センサ111により個別情報を受信することで、受信した個別情報により、どの円状の取得可能領域207内に存在するかが確定可能となる。この個別情報と周囲形状205の情報を合わせることで、自己位置が図2A、図2B中の移動体201の位置にあると絞り込むことが可能となる。
 追加センサ111において受信した個別情報による自己位置の絞り込みと、距離センサ110によって取得される周囲の状況からの自己位置の推定は、その順序を問わない。
 例えば、追加センサ111において受信した情報によって自己位置候補を絞り込んだ後に、絞り込まれた候補に当てはまる自己位置を距離センサ110によって得られる情報を基に推定しても良い(図2Aの使用態様)。
  あるいは、距離センサ110によって取得される周囲の状況からの自己位置推定後、推定される位置が複数ある場合に、追加センサ111によって取得される情報により絞り込みを行っても良い(図2Bの使用態様)。
 図2A、図3を参照して、追加センサ111において受信した情報によって自己位置候補を絞り込んだ後に、絞り込まれた候補に当てはまる自己位置を距離センサ110によって得られる情報を基に推定する使用態様について説明する。
 図3に示すように、自己位置の推定を開始するとS301にて追加センサ111によりデータの取得を行う。データの取得後、S302にて位置姿勢推定装置101内に存在する地図(地図データ)109から追加センサ111によって取得されたデータの取得可能な領域を絞り込み、該当するデータを受信可能な地図データ109内の領域を自己位置検索の対象とする。
 追加センサ111によりデータの取得が行うことができない場合は、データの受信できない範囲が自己位置検索対象となる。自己位置候補の絞り込み後、S303にて距離センサ110のデータの取得を行い、S304にて自己位置検索となる地図データの読み込みを行う。
 S305にて読み込んだ地図109内の検索対象領域に対して、S303で取得した距離センサ110の計測データを基に、一致する位置があるかの比較処理を行う。
 S306にて読み込んだ地図109上に一致する位置があるか否かの判定を行い、一致する位置が存在する場合にはS307にて自己位置候補として保存する。
 S306にて一致する位置が検索された地図109上にないと判定された場合には、S307の処理を省略し、S308にて読み込み済み地図109を格納して、自己位置候補を検索した地図データを閉じる。
 候補となっている地図データ109すべてが検索されたかの判定をS309にて行い、候補となっている地図109すべてが検索されていない場合には、S310にて候補となっている別の地図109を読み込み、S305の処理に戻り、引き続き処理を実施する。
 S309にて候補となっている地図データ109すべてが検索されていると判定された場合には、S311にてS307にて保存された自己位置候補の内から最も確からしい自己位置を絞り込む。
 S311では、S306において複数の自己位置候補が存在している場合には、自己位置候補として判定した際の地図109と距離センサ110により測定された周囲形状との一致度などの情報を基に自己位置を絞り込む。
 自己位置候補が1つしかない場合には、そのまま自己位置と判定する。自己位置候補が存在しない場合には、地図109内に自己位置候補が存在しないとして判定する。S304からS310の地図データ109上の自己位置候補の検索処理に関しては、複数の地図データ109に対し、並列して処理を実行しても良い。
 自己位置検索対象を先に絞り込む場合には、自己位置検索対象を絞り込んだうえで自己位置の推定を行うため、自己位置の推定の際に比較する対象領域を少なくし、より短時間での自己位置推定を可能とする。この場合には、位置姿勢推定装置内に複数存在する地図109の内、周辺に位置する地図109で同一の情報が取れる場合にも適用される。
 この場合の周辺に位置するとは、位置姿勢推定装置内に保管された異なる2つ以上の地図109が示す空間が、実空間において隣り合う位置に存在する場合や、鉛直方向の上下に隣り合う位置に存在する場合などを示す。
 追加センサ111により得られる情報を基に詳細な自己位置推定を行うべき地図109及び自己位置候補を絞り込んだ後、距離センサ110により詳細な自己位置推定を行う。これにより、距離センサ110のみを用いて自己位置推定を行う場合に比べ、比較処理を行う対象を低減することが可能となる。この結果、演算量を抑えより短時間での推定が可能となる。
 図4を参照して、鉛直方向の上下に隣り合う位置に存在する場合を例に取り説明する。
  図4に示すように、位置姿勢推定装置101、距離センサ110及び追加センサ111を搭載した移動体401が存在しており、距離センサ110で計測可能な領域を計測可能領域402とする。
 1階の地図403及び2階の地図404が存在し、1階に取り付けられた送信機206の送信する信号が1階の天井及び2階の床面を通過し1階及び2階の一部で受信可能となっている。その受信可能領域が207として1階の地図403及び2階の地図404に紐づけられているとする。
 複数存在する送信機206の内、追加センサ111で受信している信号を送信しているものを図4中に表記しているものとする。追加センサ111にて送信機206の送信する信号が受信できることにより、移動体401の存在する位置は受信可能領域207の円状の領域内となる。このため、自己位置検索候補は位置姿勢推定装置内に存在する地図の内、受信可能領域207の領域内に絞られる。
 この絞り込み後、計測可能領域402内の周囲形状により自己位置推定を行い、移動体401の存在する位置及び姿勢が地図403上の移動体401の位置及び姿勢であることが判明する。
 また、追加センサ111により得られる情報を用いて自己位置候補を絞り込む際に、距離センサ110で測定される周囲形状が類似となる複数の自己位置候補から1つに絞り込まれる場合には、追加センサ111を併用することにより正確な自己位置推定ができる。
 図2B、図5を参照して、距離センサ110によって取得される周囲の状況からの自己位置推定後、推定される位置が複数ある場合に、追加センサ111によって取得される情報により絞り込みを行う使用態様について説明する。
 図5に示すように、自己位置の推定を開始すると、S501にて距離センサ110の計測データの取得を行う。距離センサ110の計測データの取得後、S502にて位置姿勢推定装置101の保有する地図109を読み込む。
 S503にて読み込んだ地図109に対して、S501で取得した距離センサ110の計測データを基に、一致する位置があるかの比較処理を行う。
 S504にて読み込んだ地図109上に一致する位置があるか否かの判定を行い、一致する位置が存在する場合にはS505にて自己位置候補として保存する。
 S504にて一致する位置が検索された地図109上にないと判定された場合には、S505の処理を省略し、S506にて読み込み済み地図109を格納して、自己位置候補を検索した地図109を閉じる。
 自己位置推定装置に保存された地図109すべてが検索されたかの判定をS507にて行う。地図109がすべて検索されていない場合には、S508にて別の地図109を読み込み、S503の処理に戻り、引き続き処理を実施する。
 S507にて地図109すべてが検索されていると判定された場合には、S509にて自己位置の候補が2つ以上存在するか否かの判定を行う。自己位置の候補が2つ以上存在する場合には、S510にて追加センサ111のデータを取得し、S511にて取得したデータを基に自己位置の候補の絞り込みを行う。
 追加センサ111のデータのみでは自己位置候補を絞り込めない場合には、距離センサ110により測定された周囲形状との一致度などの情報を基に自己位置を絞り込む。
 S509にて自己位置の候補が2つ以上ないと判定された場合に、自己位置候補が1つしかない場合には、そのまま自己位置として判定する。自己位置候補が存在しない場合には、地図109内に自己位置候補が存在しないとして判定する。
 S502からS508の地図109上の自己位置候補の検索処理に関しては、複数の地図109に対し、並列して処理を実行しても良い。
  自己位置推定後に候補が複数ある場合に絞り込みを行う場合には、距離センサ110の情報のみで自己位置が推定可能である場合には、必要な場合にのみ追加センサ111で取得するデータの処理を行う。これにより、不要な場合には、追加センサ111の取得するデータの処理を省くことが可能であり、追加の処理の実行を押さえることが可能である。
 実施例1に示す位置検知システムにおいて、追加センサ111として、無線LAN子機を使用する場合を想定する。無線LAN親機にはSSID(Service Set Identifier)およびMACアドレス(Media Access Control address)、IPアドレス(Internet Protocol Address)と呼ばれる識別子とが存在する。
 これらのいずれかを用いることで追加センサ111にて入手可能な情報を基にした自己位置の候補を絞りこむことが可能となる。無線LAN親機のSSID、MACアドレス、IPアドレスのいずれか又は複数の情報を、位置姿勢推定装置101の保有する地図109又は地図109の一部に紐づけておく。
 追加センサ111にて情報を入手した際に、入手した情報に紐づけられた地図109又は地図109内の自己位置候補検索対象領域の絞り込みを行う。ハードウェア又は実装の構成によっては、接続可能なネットワーク上に紐づけデータを用意し、必要に応じて参照するようにしても良い。
 実施例1に示す位置検知システムにおいて、追加センサ111として、Bluetooth(登録商標)対応機器を使用する場合を想定する。Bluetooth対応機器には、BDアドレス(Bluetooth Device address)およびデバイス名が存在する。これらのいずれかを用いることで追加センサ111にて入手可能な情報を基にした自己位置の候補を絞り込むことが可能となる。
 BDアドレス又はデバイス名のいずれか又は双方の情報を、位置姿勢推定装置101の保有する地図109又は地図109の一部に紐づけておく。追加センサ111にて情報を入手した際に、入手した情報に紐づけられた地図109又は地図109内の自己位置候補検索対象領域の絞り込みを行う。
 ハードウェア又は実装の構成によっては、接続可能なネットワーク上に紐づけデータを用意し、必要に応じて参照するようにしても良い。
 実施例1に示す位置検知システムにおいて、追加センサ111として、GNSS(Global Navigation Satellite System)受信機を用いる場合を想定する。
 GNSS受信機では、測位衛星から送信される信号を基に自己位置を特定し、その緯度、経度、高度などの位置情報を出力する。位置情報は受信する位置や環境により誤差が見られる場合が存在するため、位置姿勢推定装置101内に存在する地図109に対し、誤差を加味した緯度、経度の範囲を設定した紐づけを行う。
 受信した緯度、経度がそれぞれの地図に対して設定した範囲に収まっている場合に、当該の地図を自己位置候補検索対象とすることで適用が可能である。誤差の大小は地図109の内外の環境および測位衛星の配置に依存する。誤差の範囲については地図109の対象となる建物の建材や構造、周囲環境に合わせて設定することでより精度よく絞り込みが可能となる。
 ハードウェア又は実装の構成によっては、接続可能なネットワーク上に紐づけデータを用意し、必要に応じて参照するようにしても良い。
 実施例1に示す位置検知システムにおいて、追加センサ111として、IMESメッセージ仕様に準拠した信号を受信可能な受信機を用いる場合を想定する。
  この受信機では、信号を受信した際に、緯度、経度、高度情報などを出力する。このため、実施例6と同様に使用可能であるが、受信機の出力する情報は、送信機から送信された送信機の取り付けられた位置の緯度、経度、階数といった情報である。このため、受信機側で測位演算をする必要がなく、屋内で利用する場合にも誤差範囲の設定を小さくすることが可能である。
 ハードウェアまたは実装の構成によっては、接続可能なネットワーク上に紐づけデータを用意し、必要に応じて参照するようにしても良い。
 実施例1に示す位置検知システムに置いて、追加センサ111として、カメラを用いる場合を想定する。
  位置検知システムに取り付けたカメラで撮影可能な建物内の位置にバーコードやQRコード(登録商標)又はカメラにて認識可能な特徴的な模様や形状などの目印を設置する。目印の配置および内容を、位置姿勢推定装置101の保有する地図109又は地図109の一部に紐づけておく。
 追加センサ111にて情報を入手した際に、入手した情報に紐づけられた地図109内の自己位置検索対象領域の絞り込みを行う。バーコードやQRコードを目印として使用する場合には、バーコードやQRコード自体に直接参照すべき地図109や対象領域の情報を埋め込んでも良い。
 ハードウェアまたは実装の構成によっては、接続可能なネットワーク上に紐づけデータを用意し、必要に応じて参照するようにしても良い。
 追加センサ111は1種類のみでなく複数の種類を合わせて用いても良い。複数の追加センサ111から得られるデータを複合的に処理を行うことで、正確な自己位置を短時間で推定可能となる。一例として、追加センサ111として無線LAN用の子機とビーコンを受信可能なBluetoothの受信機を使用した場合を考える。
 これら双方同時に受信していた場合は、地図109上の双方を同時に受信可能な範囲のみに対し、距離センサ110によって取得される周囲の状況から自己位置の推定計算を行えば良い。このため、単独の追加センサ111を使用した場合に比べ、位置推定の候補箇所を絞り込むことが可能である。
 反対に無線LAN用の子機と前記Bluetoothの受信機のどちらか片方のみがデータを受信している場合や、双方の追加センサ111がデータを受信していない場合にも、それぞれの条件を満たす位置推定の候補箇所のみが確認対象となる。このため、位置推定の候補箇所を絞り込むことは可能である。
101 位置姿勢推定装置
102 演算装置
103 メモリ
104 通信装置
105 記憶装置
106 位置姿勢推定プログラム
107 通信プログラム
108 センサ制御プログラム
109 地図
201 移動体

Claims (10)

  1.  移動体が移動する動作領域内において自己位置を推定する移動体の位置検出システムであって、
     前記移動体は、
     周囲の状況を計測する第1のセンサと、
     前記動作領域内に、互いに識別可能な複数のデータ取得領域を設定する第2のセンサと、
     前記自己位置を推定する位置推定部と、を有し、
     前記位置推定部は、
     前記第2のセンサで設定された複数の前記データ取得領域と前記動作領域内の地図データとを予め結び付けておき、
     前記第1のセンサで計測した前記計測データと前記第2のセンサで設定された前記データ取得領域とに基づいて前記地図データを照合し、前記自己位置の絞り込みを行って前記自己位置を推定することを特徴とする位置検出システム。
  2.  前記位置推定部は、
     前記第1のセンサで計測した前記計測データに基づいて前記地図データを照合した後に、前記第2のセンサで設定された前記データ取得領域に基づいて前記地図データを照合して前記自己位置の絞り込みを行うことを特徴とする請求項1に記載の位置検出システム。
  3.  前記位置推定部は、
     前記第1のセンサで計測した前記計測データに基づいて前記地図データを照合した結果、前記動作領域内に前記自己位置の候補が複数存在する場合に、前記第2のセンサで設定された前記データ取得領域に基づいて前記地図データを照合して、前記自己位置の複数の候補の中から最終的な前記自己位置の絞り込みを行うことを特徴とする請求項2に記載の位置検出システム。
  4.  前記位置推定部は、
     前記第2のセンサで設定された前記データ取得領域に基づいて前記地図データを照合した後に、前記第1のセンサで計測した前記計測データに基づいて前記地図データを照合して前記自己位置の絞り込みを行うことを特徴とする請求項1に記載の位置検出システム。
  5.  前記位置推定部は、
     前記第2のセンサで設定された前記データ取得領域に基づいて前記地図データを照合した結果、前記前記データ取得領域内に前記自己位置の候補が複数存在する場合に、前記第1のセンサで計測した前記計測データに基づいて前記地図データを照合して、前記自己位置の複数の候補の中から最終的な前記自己位置の絞り込みを行うことを特徴とする請求項4に記載の位置検出システム。
  6.  前記第2のセンサは、
     受信可能範囲が特定された送信機から送信された情報を受信して、前記動作領域内に複数の前記データ取得領域を設定する受信機により構成されることを特徴とする請求項1に記載の位置検出システム。
  7.  前記送信機は前記動作領域内に複数設置されており、複数の前記送信機から個別情報がそれぞれ送信されており、
     前記個別情報の取得可能範囲が前記データ取得領域として前記地図データに予め結び付けられており、
     前記受信機により前記個別情報を受信することにより、複数の前記データ取得領域の中から前記移動体が存在する前記データ取得領域を特定して前記自己位置の絞り込みを行うことを特徴とする請求項6に記載の位置検出システム。
  8.  前記送信機は無線LAN親機であり、
     前記受信機は無線LAN子機であり、
     前記無線LAN親機には前記個別情報として識別子が付与されていることを特徴とする請求項7に記載の位置検出システム。
  9.  前記第1のセンサは、レーザ光を照射して前記周囲の状況を計測する距離センサにより構成されることを特徴とする請求項1に記載の位置検出システム。
  10.  前記移動体は、
     前記動作領域内に配置された複数の障害物に対する前記自己位置を推定しながら前記障害物を回避して移動し、
     前記距離センサは、
     前記障害物に向けて前記レーザ光を照射し、前記障害物からの反射光を受光することにより前記周囲の状況を計測することを特徴とする請求項9に記載の位置検出システム。
PCT/JP2018/044906 2018-01-12 2018-12-06 位置検出システム WO2019138745A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-003125 2018-01-12
JP2018003125A JP6923455B2 (ja) 2018-01-12 2018-01-12 位置検出システム

Publications (1)

Publication Number Publication Date
WO2019138745A1 true WO2019138745A1 (ja) 2019-07-18

Family

ID=67219604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044906 WO2019138745A1 (ja) 2018-01-12 2018-12-06 位置検出システム

Country Status (2)

Country Link
JP (1) JP6923455B2 (ja)
WO (1) WO2019138745A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534640A (ja) * 2012-09-19 2015-12-03 キャタピラー インコーポレイテッドCaterpillar Incorporated 無線周波数信号を用いた測位システム
JP2016536613A (ja) * 2013-09-20 2016-11-24 キャタピラー インコーポレイテッドCaterpillar Incorporated 無線周波数信号を用いた位置決めシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5800613B2 (ja) * 2011-07-08 2015-10-28 株式会社日立産機システム 移動体の位置・姿勢推定システム
US9606217B2 (en) * 2012-05-01 2017-03-28 5D Robotics, Inc. Collaborative spatial positioning
AU2015331288B2 (en) * 2015-10-30 2017-08-17 Komatsu Ltd. Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
CN105911518A (zh) * 2016-03-31 2016-08-31 山东大学 机器人定位方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534640A (ja) * 2012-09-19 2015-12-03 キャタピラー インコーポレイテッドCaterpillar Incorporated 無線周波数信号を用いた測位システム
JP2016536613A (ja) * 2013-09-20 2016-11-24 キャタピラー インコーポレイテッドCaterpillar Incorporated 無線周波数信号を用いた位置決めシステム

Also Published As

Publication number Publication date
JP6923455B2 (ja) 2021-08-18
JP2019124472A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP5976876B2 (ja) 無線位置決定のための配備後較正
JP6187592B2 (ja) センサ設置位置特定支援システム、及びセンサ設置位置特定支援方法
KR102604366B1 (ko) 측위 시스템 및 그 방법
US20170245116A1 (en) Indoor positioning system and method having improved accuracy
US9377519B2 (en) Server-based mobile device regional candidate position fix mode selection
KR20150018827A (ko) 액세스 포인트들의 위치들을 결정하기 위한 방법 및 장치
KR20160018847A (ko) 소실점 결정에 기초하는 센서 교정 및 포지션 추정
JP2004212400A (ja) ロボット用位置方向推定システム
US20180321352A1 (en) Pose Estimation Using Radio Frequency Identification (RFID) Tags
JP2010071686A (ja) 測位装置、コンピュータプログラム及び測位方法
JP2019101694A (ja) 位置特定装置、位置特定プログラム及び位置特定方法、並びに、撮影画像登録装置、撮影画像登録プログラム及び撮影画像登録方法
CN112272782A (zh) 使用附近的超声信号对移动设备进行临时定位
US9939516B2 (en) Determining location and orientation of directional transceivers
WO2019138745A1 (ja) 位置検出システム
JP7054340B2 (ja) 移動体
KR101775513B1 (ko) 조명 위치 측정 장치 및 방법
JP2017032486A (ja) 携帯端末の位置測定システム、携帯端末及び位置測定プログラム
JP6521853B2 (ja) 情報処理装置、測位システム、情報処理方法、及びコンピュータプログラム
Rodrigues et al. Indoor position tracking: An application using the Arduino mobile platform
WO2017220643A1 (en) Indoor radio map verification
KR20210012620A (ko) 위치 인식 시스템 및 방법
Mautz et al. A robust indoor positioning and auto-localisation algorithm
KR102036080B1 (ko) 휴대형 위치 결정 장치 및 휴대형 위치 결정 장치 동작 방법
JP7467190B2 (ja) 位置推定装置、位置推定システム及び位置推定方法
JP2019113934A (ja) 移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900341

Country of ref document: EP

Kind code of ref document: A1