WO2019138731A1 - Heat management system - Google Patents

Heat management system Download PDF

Info

Publication number
WO2019138731A1
WO2019138731A1 PCT/JP2018/044453 JP2018044453W WO2019138731A1 WO 2019138731 A1 WO2019138731 A1 WO 2019138731A1 JP 2018044453 W JP2018044453 W JP 2018044453W WO 2019138731 A1 WO2019138731 A1 WO 2019138731A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
battery
cooling water
circuit
connection
Prior art date
Application number
PCT/JP2018/044453
Other languages
French (fr)
Japanese (ja)
Inventor
雄史 川口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018006797.1T priority Critical patent/DE112018006797T5/en
Priority to CN201880085599.XA priority patent/CN111556821A/en
Publication of WO2019138731A1 publication Critical patent/WO2019138731A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a thermal management system having a plurality of heat transfer medium circuits.
  • Patent Document 1 discloses a thermal management system for an electric vehicle.
  • the thermal management system for electric vehicles which concerns on patent document 1 has the air-conditioner cycle which comprises a refrigerating cycle, a high water temperature loop, and a low water temperature loop.
  • the high water temperature loop is configured to circulate cooling water via a water condenser, a radiator, and a heater core.
  • a low water temperature loop is comprised so that cooling water may be circulated via a warm water heater, a battery, and a chiller.
  • the heat management system for an electric vehicle is, for example, during battery charging or heating, in two types of heat medium circuits of a low water temperature loop and a high water temperature loop, heat generated in one heat medium circuit is used as the other heat medium circuit. It is used by Specifically, in Patent Document 1, heat generated in the low water temperature loop during battery charging and heating is pumped up by the heat pump cycle and used on the high water temperature loop side.
  • Patent Document 1 in order to use the heat generated in the low water temperature loop on the high water temperature loop side, it is necessary that sufficient heat is generated on the low water temperature loop side. Therefore, in the heating mode in Patent Document 1, when there is not enough heat on the low water temperature loop side, the heat source for heating is insufficient, and there is a possibility that sufficient heating can not be performed.
  • a hot water heater is disposed in the low water temperature loop of Patent Document 1. Therefore, it is conceivable that the cooling water of the low water temperature loop is heated by the hot water heater so that sufficient heat is generated on the low water temperature loop side.
  • the temperature of the cooling water in the low water temperature loop may be limited by the characteristics of the battery. That is, in the case of Patent Document 1, the cooling water of the low water temperature loop can not be heated to a temperature exceeding the limit due to the characteristics of the battery, and the heat of the low water temperature loop is effectively used on the high water temperature loop side. Can be difficult.
  • the present disclosure has been made in view of these points, and a heat management system having a plurality of heat medium circuits can effectively use the heat generated in one heat medium circuit in another heat medium circuit. It aims to provide a management system.
  • a thermal management system includes a temperature adjustment side heat medium circuit, a heating side heat medium circuit, a third connection flow path, a fourth connection flow path, a first switching unit, and a second switching unit. And a third switching unit.
  • the temperature adjustment side heat medium circuit includes an apparatus side heat medium circuit, a battery side heat medium circuit, a first connection flow path, a second connection flow path, and a bypass flow path.
  • the device-side heat medium circuit is a heat-generating device that generates heat with operation, a device-side heat exchanger that exchanges heat with the heat medium flowing through the heat-generating device, and a device-side heat medium pump that delivers the heat medium according to the control of the control unit
  • the heat transfer medium is configured to be able to circulate.
  • the battery side heat medium circuit includes a battery, a battery side heat exchanger for heat exchange between the heat medium flowing through the battery and the outside air, a chiller for absorbing heat of the heat medium to the low pressure refrigerant of the refrigeration cycle, and control of the control unit
  • the heat medium can be circulated via the battery side heat medium pump that delivers the heat medium.
  • the first connection flow path connects the device-side heat medium circuit and the battery-side heat medium circuit.
  • the second connection channel connects the device-side heat medium circuit and the battery-side heat medium circuit at a position different from the first connection channel.
  • the bypass flow path diverts the heat medium flowing in the battery side heat medium circuit to the battery side heat exchanger.
  • the heating-side heat medium circuit is a refrigerant heat medium heat exchanger that exchanges heat between the high-pressure refrigerant and the heat medium in the refrigeration cycle, a heating device that heats the heat medium, and a heat target fluid by heat exchange between the heat medium and the fluid to be heated.
  • the heat medium can be circulated through the heater core to be heated and the heating-side heat medium pump that delivers the heat medium according to the control of the control unit.
  • the third connection channel connects the temperature adjustment side heat medium circuit and the heating side heat medium circuit.
  • the fourth connection channel connects the temperature adjustment side heat medium circuit and the heating side heat medium circuit at a position different from the third connection channel.
  • the first switching unit switches the presence or absence of inflow and outflow of the heat medium to and from the device-side heat medium circuit according to the control of the control unit.
  • the second switching unit switches the presence or absence of the flow of the heat medium into the battery side heat medium circuit according to the control of the control unit.
  • the third switching unit switches the presence or absence of the outflow / inflow of the heat medium to the heating side heat medium circuit according to the control of the control unit.
  • the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit are mutually connected via the first connection flow path to the fourth connection flow path and the bypass flow path. ing. Then, according to the heat management system, the device-side heat medium pump, the battery-side heat medium pump, the heating-side heat medium pump, and the first switching unit, the second switching unit, and the third switching unit are operated. It is possible to switch the flow of the heat medium to and from the side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit.
  • the apparatus-side heat medium circuit and the battery-side heat medium are switched by switching the inflow and outflow of the heat medium in the apparatus-side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit.
  • the heat generated in any of the circuit and the heating side heat medium circuit can be supplied to the other heat medium circuit via the heat medium and can be effectively utilized in the other heat medium circuit.
  • a thermal management system includes an apparatus-side heat medium circuit, a battery-side heat medium circuit, a heating-side heat medium circuit, a circuit connection unit, a flow path switching unit, and a control unit.
  • the device-side heat medium circuit is configured to allow the heat medium to circulate through the heat generating device that generates heat with operation.
  • the battery side heat medium circuit is configured to be able to circulate the heat medium via the battery.
  • the heating side heat medium circuit is configured to be able to circulate the heat medium through the heating device for heating the heat medium and the heater core for heating the fluid to be heated by heat exchange between the heat medium and the fluid to be heated.
  • the circuit connection portion allows the heat medium to flow into and out of the apparatus side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit.
  • the flow path switching unit switches the flow of the heat medium in the circuit connection unit.
  • the control unit controls the operation of the flow path switching unit.
  • the control unit controls the heat medium connection state such that any one of the heat mediums of the device side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit is connected to the other heat medium connected to the other. Control the operation of the road switching unit.
  • the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit are mutually connected by the circuit connection portion so that the heat medium can flow in and out.
  • the flow of the heat medium at the circuit connection can be switched.
  • the heat management system switches to the heat medium connection state by the control unit, and any one heat medium of the device side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit flows out to the other It is possible to make it possible to enter.
  • the heat management system supplies the heat generated in any of the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit to the other heat medium circuit via the heat medium.
  • the heat can be effectively utilized in the other heat medium circuit.
  • the heat management system according to the present disclosure is applied to a vehicle heat management system 1 in an electric vehicle which obtains a driving force for vehicle traveling from a traveling electric motor.
  • the said vehicle thermal management system 1 adjusts the temperature of the heat-generating equipment such as the inverter 11, the motor generator 12, etc., and the battery 21 to an appropriate temperature, respectively, in the electric vehicle. Perform the function that
  • the vehicle heat management system 1 can switch the heating mode, the cooling mode, and the dehumidifying heating mode as the air conditioning operation mode for performing the air conditioning of the vehicle interior.
  • the heating mode is an operation mode in which the blowing air blown into the vehicle compartment is heated and blown into the vehicle compartment.
  • the blowing air in this case corresponds to the fluid to be heated in the present disclosure.
  • the cooling mode is an operation mode in which the blown air is cooled and blown into the vehicle compartment.
  • the dehumidifying and heating mode is an operation mode in which the cooled and dehumidified blown air is reheated and blown into the vehicle compartment.
  • the vehicle thermal management system 1 includes an apparatus-side coolant circuit 10, a battery-side coolant circuit 20, a heating-side coolant circuit 30, a circuit connection unit 40, and a flow path switching unit 50. And the control unit 60 and the like, and corresponds to the thermal management system according to the present disclosure.
  • the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 are cooling water circuits through which cooling water circulates.
  • the device side cooling water circuit 10 is a cooling water circuit for adjusting the temperature of a heat generating device mounted on an electric vehicle.
  • the battery side cooling water circuit 20 is a cooling water circuit for adjusting the temperature of the battery 21 mounted on the electric vehicle.
  • the temperature control side cooling water circuit 5 is configured by the device side cooling water circuit 10 and the battery side cooling water circuit 20.
  • the temperature control side cooling water circuit 5 corresponds to the temperature control side heat medium circuit in the present disclosure.
  • the heating side cooling water circuit 30 is a cooling water circuit used when heating blowing air in heating mode or dehumidification heating mode.
  • the cooling water is a fluid as a heat medium.
  • the cooling water is a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid.
  • the device-side cooling water circuit 10 is a cooling water circuit for adjusting the temperature of the inverter 11 and the motor generator 12 that generate heat with operation, and corresponds to the device-side heat medium circuit in the present disclosure.
  • the upper limit temperature of the cooling water circulating through the device-side cooling water circuit 10 is set to, for example, about 65 ° C., due to the nature of the devices such as the inverter 11 and the motor generator 12.
  • the apparatus-side cooling water circuit 10 includes an inverter 11, a motor generator 12, an apparatus-side radiator 13, a first water pump 14, and a first switching valve 15. Cooling water as a heat medium is used. It is configured to be recyclable.
  • the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device-side radiator 13 perform the cooling water circulation in this order. It is arranged in ten.
  • the inverter 11 and the motor generator 12 are in-vehicle devices mounted on an electric vehicle, and are heat-generating devices that generate heat as they operate.
  • the inverter 11 is a power conversion unit that converts DC power supplied from the battery 21 of the electric vehicle into AC power and outputs the AC power to the motor generator 12.
  • the motor generator 12 generates driving force for traveling using the electric power output from the inverter 11, and generates regenerative electric power during deceleration or downhill.
  • the inverter 11 and the motor generator 12 radiate the exhaust heat generated as a result of the operation to the cooling water of the device-side cooling water circuit 10. In other words, the inverter 11 and the motor generator 12 supply heat to the cooling water of the device-side cooling water circuit 10.
  • the device-side radiator 13 exchanges heat between the cooling water flowing through the inverter 11 and the motor generator 12 and the outside air in the device-side cooling water circuit 10. Outside air is blown to the device-side radiator 13 by an outdoor fan (not shown). Accordingly, the device-side radiator 13 can radiate the heat of the cooling water of the device-side cooling water circuit 10 to the outside air.
  • the device-side radiator 13 corresponds to the device-side heat exchanger in the present disclosure.
  • the first water pump 14 is a heat medium pump that sucks and discharges the cooling water on the cooling water flow path (that is, the heat medium flow path in the present disclosure) of the device-side cooling water circuit 10.
  • the first water pump 14 is an electric pump, and functions as part of a flow rate adjustment unit that adjusts the flow rate of the cooling water circulating in the device-side cooling water circuit 10.
  • a first switching valve 15 is connected to the discharge port side of the first water pump 14 via an inverter 11 and a motor generator 12.
  • a second connection channel 42 constituting the circuit connection portion 40 is connected to one of the outflow and inlet ports of the first switching valve 15.
  • the first water pump 14 sends out the cooling water to the second connection flow path 42 side in the device-side cooling water circuit 10 via the inverter 11 and the motor generator 12.
  • the first water pump 14 corresponds to the device-side heat medium pump in the present disclosure.
  • the first switching valve 15 is disposed between the motor generator 12 and the device-side radiator 13 in the device-side cooling water circuit 10.
  • the first switching valve 15 is constituted by a so-called electromagnetic three-way valve, and has three outflow and inlet ports.
  • the inlet / outlet of the cooling water in the device-side radiator 13 is connected to one of the inlet / outlet of the first switching valve 15, and the outlet / inlet of the motor generator 12 is connected to the other outlet / inlet. Is connected.
  • the second connection channel 42 is connected to the remaining one of the outflow and inlet ports of the first switching valve 15. That is, the first switching valve 15 is disposed at the connection position between the circulation circuit of the device-side coolant circuit 10 and the second connection flow path 42.
  • the first switching valve 15 operates the internal valve body to circulate cooling water in the equipment-side cooling water circuit 10 and stops the circulation of cooling water in the equipment-side cooling water circuit 10 And can be switched.
  • the first switching valve 15 can switch the presence or absence of the inflow and outflow of the cooling water with respect to the device-side cooling water circuit 10.
  • the operation of the first switching valve 15 is controlled by a control signal output from the control unit 60.
  • the said 1st switching valve 15 is corresponded to the 1st switching part in this indication, and comprises a part of flow-path switching part which concerns on this indication.
  • the battery side cooling water circuit 20 in the vehicle thermal management system 1 is a cooling water circuit for adjusting the temperature of the battery 21 which generates heat during rapid charging and power utilization, and corresponds to the battery side heat medium circuit in the present disclosure.
  • the battery side cooling water circuit 20 includes a battery 21, a chiller 22, a battery side radiator 23, a second water pump 24, and a second switching valve 25. Cooling water as a heat medium circulates It is configured to be possible.
  • the second water pump 24, the chiller 22, the battery 21, the second switching valve 25, and the battery side radiator 23 are such that the cooling water is circulated in this order. It is disposed in the circuit 20.
  • the battery 21 is a secondary battery that can be charged and discharged.
  • a lithium ion battery is employed as the battery 21.
  • the battery 21 supplies the charged power to an on-vehicle apparatus such as a traveling electric motor.
  • the battery 21 corresponds to the battery in the present disclosure.
  • the temperature of the cooling water (i.e., the battery water temperature TW) in the battery side cooling water circuit 20 is determined by the characteristics of the battery 21, and the battery 21 has sufficient performance. It is adjusted to be within the range that can be exhibited.
  • the water temperature upper limit value TWu which is the upper limit value of the battery water temperature TW
  • the water temperature lower limit value TWl which is the lower limit value of the battery water temperature TW
  • the water temperature upper limit value TWu is set to 30 ° C.
  • the water temperature lower limit value TWl which is the lower limit value of the battery water temperature TW
  • the chiller 22 is one of the components in the vapor compression refrigeration cycle, and is a heat medium cooling heat exchanger that cools the coolant by heat exchange between the low pressure refrigerant and the coolant in the refrigeration cycle.
  • the chiller 22 absorbs the heat of the cooling water of the battery side cooling water circuit 20 to the low pressure refrigerant of the refrigeration cycle.
  • the chiller 22 corresponds to the chiller in the present disclosure.
  • the refrigeration cycle in the first embodiment is a vapor compression refrigeration system having a compressor, a condenser, a water refrigerant heat exchanger 33, a pressure reducing device, an evaporator, a chiller 22, an outdoor heat exchanger, etc. Machine.
  • a fluorocarbon-based refrigerant is used as the refrigerant in the refrigeration cycle.
  • the refrigeration cycle is a subcritical refrigeration cycle in which the high pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • the battery side radiator 23 exchanges heat between the cooling water flowing through the battery 21 and the chiller 22 and the outside air in the battery side cooling water circuit 20. Outside air is blown to the battery side radiator 23 by an outdoor fan (not shown) as in the device side radiator 13.
  • the battery side radiator 23 can radiate the heat which the cooling water of the battery side cooling water circuit 20 has to the open air.
  • the battery side radiator 23 corresponds to the battery side heat exchanger in the present disclosure.
  • the second water pump 24 is a heat medium pump that sucks in and discharges the cooling water on the cooling water flow path of the battery side cooling water circuit 20.
  • the second water pump 24 is an electric pump, and functions as part of a flow rate adjustment unit that adjusts the flow rate of the cooling water circulating in the battery side cooling water circuit 20.
  • a second switching valve 25 is connected to the discharge port side of the second water pump 24 via a battery 21 and a chiller 22.
  • the first connection flow path 41 constituting the circuit connection portion 40 is connected to one of the outflow / inflow ports of the second switching valve 25.
  • the second water pump 24 sends the cooling water to the first connection flow path 41 via the battery 21 and the chiller 22 in the battery side cooling water circuit 20.
  • the second water pump 24 corresponds to the battery side heat medium pump in the present disclosure.
  • the second switching valve 25 is disposed between the battery 21 and the battery side radiator 23 in the battery side cooling water circuit 20. Similar to the first switching valve 15, the second switching valve 25 is constituted by a so-called electromagnetic three-way valve, and has three outflow and inlet ports.
  • the outlet of the cooling water in the battery 21 is connected to one of the inlet and outlet of the second switching valve 25, and the outlet and inlet of the battery side radiator 23 is connected to the other outlet and inlet. It is connected.
  • the first connection channel 41 is connected to the remaining one of the outflow and inlet ports of the second switching valve 25. That is, the second switching valve 25 is disposed at the connection position between the circulation circuit of the battery side cooling water circuit 20 and the first connection flow path 41.
  • the second switching valve 25 operates the internal valve body to circulate the cooling water in the battery side cooling water circuit 20 and stops the circulation of the cooling water in the battery side cooling water circuit 20. And can be switched.
  • the second switching valve 25 can switch the presence or absence of the inflow and outflow of the cooling water to and from the battery side cooling water circuit 20.
  • the operation of the second switching valve 25 is controlled by a control signal output from the control unit 60.
  • the said 2nd switching valve 25 is corresponded to the 2nd switching part in this indication, and comprises a part of flow-path switching part which concerns on this indication.
  • the heating side cooling water circuit 30 which comprises the vehicle thermal management system 1 is a cooling water circuit used when heating the vehicle interior which is air-conditioning object space, and is equivalent to the heating side heat medium circuit in this indication.
  • the heating side cooling water circuit 30 has a heater core 31, a heating device 32, a water refrigerant heat exchanger 33, a third water pump 34, and a third switching valve 35, and is used as a heat medium for cooling. Water is configured to be recyclable.
  • the third water pump 34, the water refrigerant heat exchanger 33, the heating device 32, the third switching valve 35, and the heater core 31 perform the heating so that the cooling water circulates in this order. It is disposed in the side cooling water circuit 30.
  • the heater core 31 is an air heating heat exchanger that heat-exchanges the cooling water of the heating side cooling water circuit 30 with the air blown into the vehicle interior to heat the air blown into the vehicle interior.
  • the heat of the cooling water of the heating side cooling water circuit 30 is dissipated with respect to the blowing air blown into the vehicle compartment which is the space to be air conditioned.
  • the heat of the cooling water is dissipated to the blowing air by the heater core 31, so that the blowing air can be warmed, and the heating of the vehicle interior and the dehumidifying heating can be performed.
  • the heater core 31 corresponds to the heater core in the present disclosure.
  • the heating device 32 is a heating device that heats the cooling water flowing through the heating side cooling water circuit 30.
  • the heating device 32 includes, for example, a PTC element or a nichrome wire, and generates heat when the control power output from the control unit 60 is supplied to heat the cooling water.
  • the heating capacity for the cooling water by the heating device 32 is controlled by the control power output from the control unit 60. That is, the heating device 32 functions as a heating device in the present disclosure.
  • the water refrigerant heat exchanger 33 is one of the components of the refrigeration cycle (not shown) like the chiller 22 described above, and is a high pressure refrigerant compressed by the compressor of the refrigeration cycle and cooling of the heating side cooling water circuit 30 Heat is exchanged with water to dissipate heat to the cooling water of the heating side cooling water circuit 30.
  • the cooling water of the heating side cooling water circuit 30 is heated by using the heat of the high pressure refrigerant as a heat source. That is, according to the heat management system 1 for vehicles concerned, blowing air can be heated by using the high-pressure refrigerant of a frozen cycle as a heat source at least in heating mode or dehumidification heating mode.
  • the water refrigerant heat exchanger 33 corresponds to the refrigerant heat medium heat exchanger in the present disclosure.
  • the third water pump 34 is a heat medium pump that sucks and discharges the cooling water on the cooling water flow path of the heating side cooling water circuit 30.
  • the third water pump 34 is an electric pump, and functions as part of a flow rate adjustment unit that adjusts the flow rate of the cooling water circulating through the heating side cooling water circuit 30.
  • the water refrigerant heat exchanger 33, the heating device 32, and the heater core 31 are connected to the discharge port side of the third water pump 34. Therefore, the third water pump 34 can send the coolant of the heating side coolant circuit 30 so as to pass through the water refrigerant heat exchanger 33, the heating device 32, and the heater core 31.
  • the third water pump 34 corresponds to the heating side heat medium pump in the present disclosure.
  • a third switching valve 35 is disposed between the heating device 32 and the heater core 31 in the heating side cooling water circuit 30. Similar to the first switching valve 15 and the second switching valve 25, the third switching valve 35 is constituted by a so-called electromagnetic three-way valve, and has three outflow and inlet ports.
  • an outlet / inlet of cooling water in the heater core 31 is connected to one of the inlet / outlet of the third switching valve 35. Further, the other inlet / outlet of the third switching valve 35 is connected to the outlet / inlet of the cooling water passage in the heating device 32.
  • the fourth connection flow path 44 that constitutes the circuit connection portion 40 is connected to one remaining outflow port of the third switching valve 35. That is, the third switching valve 35 is disposed at the connection position between the circulation circuit of the heating side cooling water circuit 30 and the fourth connection flow path 44.
  • the third switching valve 35 operates the internal valve element to circulate the cooling water in the heating side cooling water circuit 30 and stops the circulation of the cooling water in the heating side cooling water circuit 30. And can be switched.
  • the third switching valve 35 can switch the presence or absence of the outflow / inflow of the cooling water to the heating side cooling water circuit 30.
  • the operation of the third switching valve 35 is controlled by a control signal output from the control unit 60.
  • the said 3rd switching valve 35 is corresponded to the 3rd switching part in this indication, and comprises a part of flow-path switching part which concerns on this indication.
  • the circuit connection unit 40 is connected to the apparatus-side cooling water circuit 10, the battery-side cooling water circuit 20, and the heating-side cooling water circuit 30 by a cooling water flow path that allows cooling water as a heat medium to flow in and out mutually. It is configured.
  • the circuit connection unit 40 in the first embodiment includes a first connection channel 41, a second connection channel 42, a third connection channel 43, and a fourth connection channel 44. And a bypass flow passage 45.
  • the circuit connection unit 40 corresponds to the circuit connection unit in the present disclosure.
  • the first connection flow path 41 is a cooling water flow path connecting the device-side cooling water circuit 10 and the battery-side cooling water circuit 20, and the cooling water flow between the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 It enables inflow and outflow.
  • the said 1st connection flow path 41 is corresponded to the 1st connection flow path in this indication, and comprises a part of circuit connection part.
  • one end of the first connection channel 41 is connected between the outlet / inlet of the device-side radiator 13 and the suction port of the first water pump 14 in the device-side cooling water circuit 10. . Further, as described above, the other end portion of the first connection flow channel 41 is connected to one of the outflow and inlet ports of the second switching valve 25 of the battery side cooling water circuit 20.
  • the second connection flow path 42 is a cooling water flow path connecting the device side cooling water circuit 10 and the battery side cooling water circuit 20 at a position different from the first connection flow path 41, and the battery side cooling water circuit 20 and the other It enables the outflow and inflow of cooling water between the cooling water circuits of
  • the second connection channel 42 corresponds to the second connection channel in the present disclosure, and constitutes a part of the circuit connection portion.
  • One end of the second connection flow channel 42 is connected to one of the outflow and inlet ports of the first switching valve 15 of the device-side cooling water circuit 10.
  • the other end portion of the second connection flow path 42 is connected between the battery side radiator 23 and the suction port of the second water pump 24 in the battery side cooling water circuit 20 as shown in FIG. 1.
  • the temperature adjustment side cooling water circuit 5 in the vehicle thermal management system 1 connects the device side cooling water circuit 10 and the battery side cooling water circuit 20 by the first connection flow passage 41 and the second connection flow passage 42. It consists of
  • the third connection flow path 43 is a cooling water flow path connecting the temperature adjustment side cooling water circuit 5 and the heating side cooling water circuit 30, and between the temperature adjustment side cooling water circuit 5 and the heating side cooling water circuit 30. It enables the inflow and outflow of cooling water.
  • the said 3rd connection flow path 43 is corresponded to the 3rd connection flow path in this indication, and comprises a part of circuit connection part.
  • one end of the third connection channel 43 is connected to the second connection channel 42 in the temperature adjustment side cooling water circuit 5.
  • the other end of the third connection channel 43 is connected between the outlet / inlet of the heater core 31 in the heating side cooling water circuit 30 and the suction port of the third water pump 34.
  • the fourth connection flow path 44 is a cooling water flow path connecting the temperature adjustment side cooling water circuit 5 and the heating side cooling water circuit 30 at a position different from the third connection flow path 43, and the temperature adjustment side cooling water circuit
  • the cooling water can be flowed in and out between the heating water cooling circuit 5 and the heating side cooling water circuit 30.
  • the said 4th connection flow path 44 is corresponded to the 4th connection flow path in this indication, and comprises a part of circuit connection part.
  • one end portion of the fourth connection flow channel 44 is connected to the battery side cooling water circuit 20 side of the connection position of the third connection flow channel 43 in the second connection flow channel 42.
  • the other end of the fourth connection channel 44 is connected to one of the outflow and inlet ports of the third switching valve 35 of the heating side cooling water circuit 30.
  • the bypass channel 45 is a cooling water channel connected to the first connection channel 41 and the second connection channel 42. One end of the bypass flow path 45 is connected to an intermediate position in the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 in the first connection flow path 41.
  • the other end of the bypass flow path 45 is connected to an intermediate position in the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 in the second connection flow path 42.
  • the other end of the bypass flow path 45 is the connection position of the second connection flow path 42 and the third connection flow path 43, and the connection position of the second connection flow path 42 and the fourth connection flow path 44. And is connected to the second connection channel 42.
  • the vehicle thermal management system 1 passes the flow of the cooling water having passed through the battery 21 and the like in the battery side cooling water circuit 20 through the bypass flow passage 45.
  • the battery side radiator 23 can be bypassed. That is, the vehicle thermal management system 1 can suppress the amount of heat released to the outside air by the battery side radiator 23.
  • the flow path switching unit 50 is configured to switch the flow of the cooling water in the circuit connection unit 40 described above, and the first switching valve 15 of the device side cooling water circuit 10 and the first of the battery side cooling water circuit 20 A second switching valve 25 and a third switching valve 35 of the heating side cooling water circuit 30 are provided.
  • the flow path switching unit 50 includes the first switching valve 15, the second switching valve 25, and the third switching valve 35 in accordance with the operation states of the first water pump 14, the second water pump 24, and the third water pump 34. By combining the states, it is possible to switch the inflow and outflow of the cooling water with respect to the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30.
  • the first switching valve 15, the second switching valve 25, and the third switching valve 35 are configured by the electromagnetic three-way valve.
  • the first switching valve 15 operates the valve body to allow the flow of cooling water into and out of the equipment side cooling water circuit 10, and the state of blocking the flow of cooling water into and out of the equipment side cooling water circuit 10 Can be switched.
  • the second switching valve 25 operates the valve body to shut off the flow of the cooling water into and out of the battery side cooling water circuit 20 and the state of permitting the flow of the cooling water into and out of the battery side cooling water circuit 20. It is possible to switch between states.
  • the third switching valve 35 operates the valve body to shut off the flow of cooling water into and out of the heating side cooling water circuit 30 while permitting the flow of cooling water into and out of the heating side cooling water circuit 30. It is possible to switch between states.
  • the vehicle thermal management system 1 includes a control unit 60 for controlling the operation of the control target device in the vehicle thermal management system 1.
  • the control unit 60 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like, and peripheral circuits thereof.
  • the control unit 60 corresponds to the control unit in the present disclosure.
  • control unit 60 performs various operations and processes based on the control program stored in the ROM, and controls the operation of various control target devices connected to the output side.
  • the control contents of the control program will be described in detail later with reference to FIG.
  • the devices to be controlled by the control unit 60 include a first water pump 14, a first switching valve 15, a second water pump 24, a second switching valve 25, a third water pump 34, and a third switching valve. Contains 35.
  • the vehicle thermal management system 1 can control the flow of the cooling water in the vehicle thermal management system 1 in a desired mode by controlling the operation of these control target devices by the control unit 60.
  • a battery water temperature sensor 61 and an outside air temperature sensor 62 are connected to the input side of the control unit 60. As shown in FIG. 1, the battery coolant temperature sensor 61 is disposed in the coolant flow path between the battery 21 and the chiller 22 in the battery side coolant circuit 20.
  • the battery water temperature sensor 61 detects the temperature of the cooling water flowing through the battery side cooling water circuit 20 as the battery water temperature TW.
  • the outside air temperature sensor 62 is an outside air temperature detection unit that detects an outside temperature (outside air temperature) Tam of the electric vehicle.
  • the control unit 60 performs control related to the operation of the refrigeration cycle (not shown) and performs control related to the air volume of the blowing air blown into the vehicle compartment. That is, the control unit 60 performs operation control of the compressor, the pressure reducing device, and the blower that constitute the refrigeration cycle, and switching control of the refrigerant circuit in the refrigeration cycle. Further, on the input side of the control unit 60, a sensor group for various air conditioning control such as an internal air temperature sensor (not shown) is connected.
  • the flowcharts illustrated in FIG. 2 and the like are executed by the control unit 60 after executing a predetermined initialization process when the entire system of the electric vehicle including the vehicle thermal management system 1 is started (started). And the control by the said flowchart is repeatedly performed while the thermal management system 1 for vehicles is starting.
  • step S1 it is determined whether or not the battery 21 in the electric vehicle is rapidly charged. If the rapid charging of the battery 21 is being performed, the process proceeds to step S2, and if not, the process proceeds to traveling control in step S11. The contents of the on-running control will be described later.
  • step S2 in the heat management system 1 for a vehicle, it is determined whether the air conditioning inside the vehicle compartment is ON. If the interior air conditioning is ON, the process proceeds to step S3, and if not, the process proceeds to step S9. In step S9, battery cooling control at the time of rapid charging of the battery 21 is performed. The control contents of step S9 will be described in detail later.
  • step S3 If it transfers to step S3, it will be judged whether the content of vehicle interior air conditioning is heating operation. If the vehicle interior air conditioning is heating operation, the process proceeds to step S4, and if it is not heating operation, the process proceeds to step S10. In step S10, cooling operation control at the time of rapid charge of the battery 21 is performed. The control contents of step S10 will be described later with reference to the drawings.
  • control in step S4 to step S8 are control in the case where the passenger compartment is heated at the time of rapid charging of the battery 21.
  • the vehicle heat management system 1 when heating the vehicle interior, it is necessary to heat the blown air supplied into the vehicle interior by heat exchange in the heater core 31.
  • the cooling water passing through the heater core 31 of the heating side cooling water circuit 30 needs to have a certain amount of heat.
  • the battery 21 when the battery 21 is rapidly charged, the battery 21 generates heat. In the battery side cooling water circuit 20, the cooling water passing through the battery 21 is heated by the heat generated by the rapid charging.
  • step S4 the operation of the flow path switching unit 50 and the like is controlled in order to heat the vehicle interior by effectively utilizing the heat generated during rapid charging of the battery 21.
  • FIG. 3 shows the state of the vehicle thermal management system 1 under the control of step S4, and is an explanatory view showing the flow of the cooling water in the initial stage of the heating mode at the time of quick charge.
  • circulating is shown with the continuous line among the cooling water flow paths of the thermal management system 1 for vehicles, and the part with which the cooling water remains is shown with the broken line.
  • the control target devices in operation are indicated by solid lines, and the control target devices in which operation is stopped are indicated by broken lines.
  • step S 4 the second water pump 24 pressure-feeds the cooling water from the discharge port, and the first water pump 14 and the third water pump 34 are controlled to be kept stopped. . Further, since the operation of the refrigeration cycle is also stopped, heat exchange in the chiller 22 and the water refrigerant heat exchanger 33 is not performed, and the heating device 32 is also stopped.
  • the first switching valve 15 is controlled so as to close the second connection flow path 42 and to communicate the motor generator 12 side with the device-side radiator 13 side.
  • the second switching valve 25 communicates with the second connection flow path 42 side and the battery 21 side, and is controlled so as to close the battery side radiator 23 side.
  • the third switching valve 35 is controlled to communicate all of the heater core 31 side, the heating device 32 side, and the fourth connection flow path 44 side.
  • the device-side coolant circuit 10 and the heating-side coolant circuit 30 are connected via the circuit connection unit 40. become. That is, the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are controlled to the heat medium connection state in the present disclosure.
  • the cooling water flows from the second water pump 24 ⁇ the chiller 22 ⁇ the battery 21 ⁇ the first connection channel 41 ⁇ the bypass channel 45 ⁇ the second connection channel 42, the battery The water is circulated in the side cooling water circuit 20.
  • the heat generated in the battery 21 due to the rapid charging is absorbed by the cooling water and transferred together with the cooling water.
  • the cooling water flowing into the second connection flow channel 42 flows into the heating side cooling water circuit 30 via the third connection flow channel 43.
  • the cooling water flowing out of the third connection channel 43 has a flow of heater core 31 ⁇ third switching valve 35, and third water pump 34 ⁇ water refrigerant heat exchanger 33 ⁇ heating device 32 ⁇ third It branches into the flow of 3 switching valve 35, and flows in parallel.
  • the vehicle thermal management system 1 can allow the cooling water warmed by the exhaust heat from the rapid charging of the battery 21 to pass through the heater core 31. That is, the vehicle thermal management system 1 can effectively utilize the exhaust heat of the battery 21 to warm the heating and heating-side coolant circuit 30 side of the vehicle interior.
  • the vehicle thermal management system 1 performs heating of the interior of the vehicle without operating the refrigeration cycle and the heating device 32, it is possible to reduce power consumption required for heating the interior of the vehicle. That is, the vehicle thermal management system 1 can enhance the charging efficiency of the battery 21 when performing the rapid charging and the heating in the passenger compartment in parallel.
  • step S4 for example, when the immediate heating setting is set by the user or the like, various control target devices are controlled so as to be the flow of the cooling water shown in FIG. Unlike the case of FIG. 3 described above, the third switching valve 35 communicates with the heater core 31 side and the fourth connection flow path 44 side, and is controlled so as to close the heating device 32 side.
  • the vehicle thermal management system 1 can use all the heat generated in the battery 21 due to the rapid charging for heating the vehicle interior, so in a shorter period of time than the case shown in FIG. It can warm the passenger compartment and improve comfort.
  • step S5 in the state of FIG. 3 or FIG. 4, it is determined whether battery water temperature TW is equal to or higher than water temperature upper limit value TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process proceeds to step S6. If not, the process returns to step S4.
  • the state in which the battery water temperature TW becomes equal to or higher than the water temperature upper limit value TWu after shifting to step S4 is referred to as the middle period of the heating mode during rapid charge.
  • step S6 the operation of the flow path switching unit 50 and the like is controlled in order to efficiently perform temperature control of the battery 21 at the time of rapid charge and heating the vehicle interior in parallel.
  • FIG. 5 shows the state of the vehicle thermal management system 1 under the control of step S6, and is an explanatory view showing the flow of cooling water in the middle stage of the heating mode at the time of quick charge.
  • step S6 the operation of each control target device is controlled so that the state of FIG. 3 or 4 according to step S4 is changed to the state of FIG.
  • the chiller 22 is controlled so that the low pressure refrigerant of the refrigeration cycle flows, and the low pressure refrigerant absorbs heat of the cooling water in the battery side cooling water circuit 20.
  • the 3rd switching valve 35 is controlled so that the heater core 31 side and the heating device 32 side may be connected, and the 4th connection channel 44 side may be closed.
  • the third water pump 34 pumps the cooling water of the heating side cooling water circuit 30.
  • the water refrigerant heat exchanger 33 is controlled so that the high pressure refrigerant of the refrigeration cycle flows, and heats the cooling water of the heating side cooling water circuit 30 by the heat of the high pressure refrigerant.
  • the operation of the other control target device in the vehicle thermal management system 1 is the same as in the state of FIG. 3 or FIG. 4.
  • independent cooling water is circulated in the battery side cooling water circuit 20 and the heating side cooling water circuit 30. Become. That is, the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are controlled to the circulation state in the present disclosure.
  • the cooling water flows from the second water pump 24 ⁇ the chiller 22 ⁇ the battery 21 ⁇ the first connection channel 41 ⁇ the bypass channel 45 ⁇ the second connection channel 42, the battery The water is circulated in the side cooling water circuit 20.
  • the heat generated in the battery 21 due to the rapid charging is absorbed by the cooling water and transferred together with the cooling water. Then, in the chiller 22, the heat of the cooling water is absorbed by the low pressure refrigerant of the refrigeration cycle. Therefore, the battery side cooling water circuit 20 can cool the battery 21 which generates heat by rapid charging by the cooling water.
  • the cooling water flows from the third water pump 34 ⁇ the water refrigerant heat exchanger 33 ⁇ the heating device 32 ⁇ the third switching valve 35 ⁇ the heater core 31 by the operation of the third water pump 34. , And circulate through the heating side cooling water circuit 30.
  • the cooling water When passing through the water refrigerant heat exchanger 33, the cooling water is heated by the high pressure refrigerant of the refrigeration cycle. That is, the said thermal management system 1 for vehicles can heat up a cooling water by pumping up the heat which arose by the rapid charge of the battery 21 by a refrigerating cycle.
  • the said vehicle thermal management system 1 can perform vehicle interior heating, using the heat which arose by the rapid charge of the battery 21 effectively.
  • step S6 the vehicle thermal management system 1 recovers the heat generated in the battery 21 by the chiller 22, and the heating side cooling water circuit 30 through the refrigeration cycle and the water refrigerant heat exchanger 33. You can warm the side indirectly.
  • step S7 in the state of FIG. 5, it will be judged whether battery water temperature TW is more than the water temperature upper limit TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process proceeds to step S8. If not, the process returns to step S6.
  • step S8 the operation of the flow path switching unit 50 and the like is controlled in order to efficiently perform temperature control of the battery 21 at the time of rapid charging and heating the vehicle interior in parallel.
  • FIG. 6 shows the state of the vehicle thermal management system 1 under the control of step S8, and is an explanatory view showing the flow of the cooling water in the late stage of the heating mode at the time of quick charge.
  • step S8 the operation of each control target device is controlled so as to change from the state of FIG. 5 in step S6 to the state of FIG.
  • the second switching valve 25 communicates the battery 21 side with the battery side radiator 23 side, and is controlled so as to close the second connection flow path 42 side.
  • the operation of the other control target device in the vehicle thermal management system 1 is the same as in the state of FIG.
  • independent cooling water is circulated in the battery side cooling water circuit 20 and the heating side cooling water circuit 30. Become. That is, the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are controlled to the circulation state in the present disclosure.
  • the cooling water flows from the second water pump 24 ⁇ the chiller 22 ⁇ the battery 21 ⁇ the battery side radiator 23 and circulates in the battery side cooling water circuit 20.
  • the heat generated in the battery 21 due to the rapid charging is absorbed by the cooling water and transferred together with the cooling water. Then, in the chiller 22, the heat of the cooling water is absorbed by the low pressure refrigerant of the refrigeration cycle.
  • the battery side cooling water circuit 20 can cool the battery 21 which generates heat by rapid charging by the cooling water.
  • the thermal management system 1 for vehicles can cool the cooling water of the battery side cooling water circuit 20 using the heat absorption effect in the chiller 22 and the heat radiation to the open air in the battery side radiator 23.
  • the vehicle thermal management system 1 can warm the temperature of the cooling water of the battery side cooling water circuit 20 more than the water temperature upper limit value TWu by the heat of the battery 21 accompanying rapid charging. Correspondingly, the temperature of the cooling water can be properly adjusted.
  • the vehicle thermal management system 1 controls the operation of the flow path switching unit 50. Can correspond to this condition.
  • the second switching valve 25 is controlled so that all of the battery 21 side, the battery side radiator 23 side, and the second connection flow path 42 side communicate with each other.
  • the first switching valve 15 communicates with the device-side radiator 13 side and the second connection flow path 42 side, and is controlled to close the motor generator 12 side.
  • the cooling water flows from the second water pump 24 ⁇ the chiller 22 ⁇ the battery 21 ⁇ the second switching valve 25 and then the battery side radiator 23 side and the first connection flow path Branch to the 41 side. Therefore, the cooling water which has flowed into the battery side radiator 23 dissipates the heat to the outside air.
  • the cooling water having flowed to the side of the first connection channel 41 flows into the device-side radiator 13 via the first connection channel 41. Therefore, the cooling water that has flowed into the device-side radiator 13 dissipates its heat to the outside air. Thereafter, the cooling water flows from the first water pump 14 to the second connection channel 42 and reaches the suction port of the second water pump 24.
  • the battery using the heat absorbing action of the chiller 22 and the heat dissipation to the outside air of the device-side radiator 13 and the battery-side radiator 23
  • the cooling water of the side cooling water circuit 20 can be cooled.
  • step S9 battery cooling control at the time of quick charge is performed. Specifically, the flow of the cooling water in the battery side cooling water circuit 20 is switched according to the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62, and the heat generated by the rapid charge is dissipated .
  • the heat radiation amount to the outside air using the battery side radiator 23 and the device side radiator 13 and the heat absorption amount by the chiller 22 are changed to change the temperature of the cooling water passing through the battery 21 adjust.
  • the battery 21 which generates heat due to rapid charging can be cooled by the cooling water adjusted to an appropriate temperature.
  • step S10 cooling operation control during rapid charging is performed.
  • the operation of each control target device of the vehicle thermal management system 1 is controlled according to the flowchart shown in FIG. The control contents in step S10 will be described in detail later with reference to FIG.
  • step S11 control at the time of driving
  • the operation of each control target device of the vehicle thermal management system 1 is controlled according to the flowchart shown in FIG. The control contents of step S11 will be described in detail later with reference to FIG.
  • step S21 When cooling operation control at the time of rapid charging in step S10 is started, first, in step S21, the operation of the refrigeration cycle and the blower is switched to the cooling mode as shown in FIG. That is, in step S21, in the refrigeration cycle, the low-pressure refrigerant reduced in pressure by the pressure reducing device flows into the evaporator, and the evaporator controls heat exchange with the air blown into the vehicle compartment by the blower. Be done.
  • step S22 using the detection result of the outside air temperature sensor 62, it is determined whether the outside air temperature Tam is equal to or more than a predetermined outside air temperature Ktam.
  • the standard outside temperature KTam is a reference value for determining whether the outside temperature Tam is high temperature, and is set to, for example, 30 ° C. If the outside air temperature Tam is equal to or higher than the outside air temperature KTam, the process proceeds to step S23. If not, the process proceeds to step S26.
  • step S23 the operation of the flow path switching unit 50 and the like is controlled in order to cool the interior of the vehicle while cooling the battery 21 that generates heat due to rapid charging.
  • the second water pump 24 delivers the cooling water of the battery side cooling water circuit 20
  • the second switching valve 25 is on the battery 21 side and the battery side radiator 23 side.
  • the first switching valve 15 is controlled so as to close the side of the inverter 11 and the motor generator 12.
  • control unit 60 controls the operation of the refrigeration cycle so that the heat of the cooling water of the battery side cooling water circuit 20 is absorbed by the low pressure refrigerant of the refrigeration cycle by the chiller 22.
  • the heat absorbed by the chiller 22 is radiated to the outside air by the outdoor heat exchanger connected to the refrigeration cycle.
  • step S23 the flow of the cooling water in the battery side cooling water circuit 20 is switched.
  • the vehicle thermal management system 1 can put the battery side cooling water circuit 20 in a circulating state, and by using the refrigeration cycle and the battery side radiator 23 and the device side radiator 13, The temperature of the cooling water of the battery side cooling water circuit 20 can be adjusted appropriately. Thereby, the said vehicle thermal management system 1 can implement
  • step S24 it is determined using the detection result of the battery water temperature sensor 61 whether the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process returns to step S23, and the heat absorption by the chiller 22 is combined with the heat radiation by the battery side radiator 23 and the device side radiator 13 to lower the temperature of the cooling water. If not, the process proceeds to step S25.
  • step S25 the operation of the flow path switching unit 50 and the like is controlled in response to the battery water temperature TW falling below the water temperature upper limit value TWu.
  • the second switching valve 25 communicates the battery 21 side and the first connection flow path 41 side, and is controlled so as to close the battery side radiator 23 side.
  • the operation of the other control target devices is the same as in step S23.
  • the cooling water is supplied from the second water pump 24 ⁇ chiller 22 ⁇ battery 21 ⁇ second switching valve 25 ⁇ first connection flow path 41 ⁇ bypass flow path It flows in the order of 45 ⁇ the second connection flow path 42 and circulates in the battery side cooling water circuit 20.
  • step S25 the vehicle thermal management system 1 cools the cooling water by utilizing the heat absorption effect of the chiller 22, and the battery side radiator 23 and the device side radiator 13 do not release the heat to the outside air. .
  • the vehicle thermal management system 1 can suppress the cooling capacity of the battery 21 by the battery side cooling water circuit 20 more than in the case of step S23, and adjusts the temperature of the battery 21 during rapid charge to an appropriate temperature. can do.
  • step S26 it will be judged whether battery water temperature TW is below water temperature upper limit TWu. If the battery water temperature TW is less than or equal to the water temperature upper limit TWu, the process proceeds to step S27. If not, the process proceeds to step S28.
  • step S27 in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature TW is lower than the water temperature upper limit TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated. Also, the operation of the refrigeration cycle is controlled so that the low pressure refrigerant of the refrigeration cycle does not flow into the chiller 22.
  • the second switching valve 25 communicates the battery 21 side, the battery side radiator 23 side, and the device side radiator 13, and the first switching valve 15 is controlled to close the inverter 11 and the motor generator 12 side.
  • the cooling water flows in the order of the second water pump 24 ⁇ chiller 22 ⁇ battery 21 ⁇ battery side radiator 23 and the equipment side radiator 13 and circulates in the battery side cooling water circuit 20.
  • the heat generated in the battery 21 by the rapid charging is dissipated from the battery side radiator 23 and the device side radiator 13 through the cooling water of the battery side cooling water circuit 20.
  • step S28 in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature is higher than the water temperature upper limit value TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated, and the second switching valve 25 connects the battery 21 side, the battery side radiator 23 side, and the device side radiator 13 side, The 1 switching valve 15 is controlled to close the side of the inverter 11 and the motor generator 12.
  • the cooling water flows in the order of the second water pump 24 ⁇ chiller 22 ⁇ battery 21 ⁇ battery side radiator 23 and the equipment side radiator 13 and circulates in the battery side cooling water circuit 20.
  • control unit 60 controls the operation of the refrigeration cycle so that the heat of the cooling water of the battery side cooling water circuit 20 is absorbed by the low pressure refrigerant of the refrigeration cycle by the chiller 22.
  • the heat absorbed by the chiller 22 is radiated to the outside air by the outdoor heat exchanger connected to the refrigeration cycle.
  • step S28 in the battery side cooling water circuit 20, the battery 21 is discharged rapidly to the outside air in the battery side radiator 23 and the device side radiator 13 due to quick charging, and the heat absorbing action in the chiller 22. It is cooled through the cooling water.
  • control contents to be executed in the traveling control in step S11 will be described with reference to FIG. As described above, this traveling control is performed when the electric vehicle is traveling.
  • the inverter 11 and the motor generator 12 generate heat as the electric vehicle travels, and the battery 21 also generates heat as the electric power is used.
  • the vehicle thermal management system 1 effectively uses the heat generated in the heat generating devices such as the inverter 11 and the motor generator 12 and the heat of the battery 21 accompanying the use of electric power. Each component in the thermal management system 1 is adjusted to an appropriate temperature.
  • step 31 it is determined whether or not the interior air conditioning is ON when the electric vehicle is traveling. If the interior air conditioning is ON, the process proceeds to step S32, and if not, the process proceeds to step S40.
  • step S40 battery cooling control is performed when the electric vehicle travels. The control contents of step S40 will be described in detail later.
  • step S32 it is determined whether the content of the air conditioning in the passenger compartment is the heating operation. If the vehicle interior air conditioning is the heating operation, the process proceeds to step S33, and if the heating operation is not performed, the process proceeds to step S39. In step S39, cooling operation control is performed when the electric vehicle travels. The control contents of step S39 will be described later with reference to the drawings.
  • control contents in the following steps S33 to S38 are control in the case where the passenger compartment is heated when the electric vehicle travels.
  • the control unit 60 controls the operation of various control target devices in order to effectively use the heat generated by the inverter 11, the motor generator 12, and the battery 21 as the electric vehicle travels for heating the vehicle interior.
  • step S33 using the detection result of the battery water temperature sensor 61, it is determined whether the battery water temperature TW is less than or equal to the water temperature lower limit value TW1. If the battery water temperature TW is equal to or lower than the water temperature lower limit value TW1, the process proceeds to step S34. If not, the process proceeds to S37.
  • step S34 the operation of the flow path switching unit 50 and the like is controlled in order to heat the vehicle interior by effectively utilizing the heat generated in the heat-generating equipment such as the inverter 11 and the like and the battery 21.
  • the battery water temperature TW is in the state of being equal to or lower than the water temperature lower limit value TWl. Therefore, in this case, in order to heat the blowing air by the heater core 31, a period for raising the temperature of the low temperature cooling water is required in the vehicle thermal management system 1.
  • the first water pump 14 pressure-feeds the cooling water from the discharge port.
  • the first switching valve 15 communicates the motor generator 12 side with the second connection flow path 42 side, and is controlled to close the device-side radiator 13 side.
  • the second water pump 24 pumps the cooling water from the discharge port.
  • the second switching valve 25 communicates the battery 21 side with the first connection flow path 41, and is controlled to close the battery side radiator 23 side. At this time, the refrigeration cycle is controlled so that the low pressure refrigerant does not flow into the chiller 22.
  • the third water pump 34 pumps cooling water from the discharge port, and the third switching valve 35 is on the heater core 31 side, the heating device 32 side, and the fourth connection flow path 44. It is controlled to connect all the sides.
  • the heating device 32 is controlled to heat the cooling water with a predetermined calorific value.
  • the refrigeration cycle is controlled such that the high pressure refrigerant of the refrigeration cycle flows into the water refrigerant heat exchanger 33.
  • the refrigeration cycle absorbs heat from the outside air by the outdoor heat exchanger (not shown), and the water refrigerant heat exchanger 33 dissipates the heat of the high pressure refrigerant to the cooling water.
  • the cooling water is heated by the heating device 32 and the water refrigerant heat exchanger 33.
  • the device-side cooling water circuit 10 By thus controlling the operation of the circuit connection unit 40, in the vehicle thermal management system 1, the device-side cooling water circuit 10, the battery-side cooling water circuit 20, and the heating-side cooling water circuit 30 It will be connected via That is, the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 are controlled to the heat medium connection state in the present disclosure.
  • the cooling water is processed by the first water pump 14 and the second water pump 24 so that the first water pump 14 ⁇ the inverter 11 ⁇ the motor generator 12 ⁇ the first switching valve 15 ⁇
  • the third connection flow channel 43 and the fourth connection flow channel 44 are connected to the second connection flow channel 42, and the third water pump 34 is operating. Therefore, part of the cooling water flowing through the second connection flow channel 42 branches to the third connection flow channel 43 side.
  • a part of the cooling water flowing out of the third connection flow path 43 flows from the third water pump 34 ⁇ the water refrigerant heat exchanger 33 ⁇ the heating device 32 ⁇ the third switching valve 35 ⁇ the heater core 31.
  • the cooling water heated by the heating device 32 and the water refrigerant heat exchanger 33 passes through the heater core 31, and the blown air can be heated.
  • part of the cooling water flowing into the third switching valve 35 flows into the fourth connection flow channel 44 and merges with the cooling water flowing through the second connection flow channel 42 on the temperature adjustment side cooling water circuit 5 side. .
  • the vehicle thermal management system 1 can utilize the exhaust heat of the heat-generating device such as the inverter 11 or the like and the battery 21 generated when the electric vehicle travels, for heating the vehicle interior via the cooling water.
  • the vehicle thermal management system 1 supplies the exhaust heat of the heat generating device such as the inverter 11 or the like generated during traveling of the electric vehicle or the battery 21 to the heating side cooling water circuit 30 via the cooling water, The components on the circuit 30 side and the entire circuit can be warmed.
  • the vehicle thermal management system 1 can cope with the case where the passenger compartment is immediately heated while the electric vehicle is traveling.
  • step S35 in the state shown in FIG. 11, it is determined whether battery water temperature TW is equal to or higher than water temperature lower limit value TW1. If the battery water temperature TW is equal to or higher than the water temperature lower limit value TW1, the cooling water circulating in the vehicle thermal management system 1 is sufficiently warmed, so the process proceeds to step S36. Otherwise, the process returns to step S34 .
  • step S36 the cooling water on the heating-side cooling water circuit 30 side is sufficiently warmed, and the diagram in step S34 is performed in order to perform heating of the vehicle interior and temperature control of the heating device such as the inverter 11 etc. and the battery 21 in parallel.
  • the operation of each control target device is controlled so that the state of 11 changes to the state of FIG.
  • the third switching valve 35 is controlled to communicate the heater core 31 side with the heating device 32 side and to close the fourth connection flow path 44 side.
  • the heating device 32, the water refrigerant heat exchanger 33, and the third water pump 34 are operating.
  • the heating side cooling water circuit 30 is separated from the temperature adjustment side cooling water circuit 5 side with respect to the flow of the cooling water in the vehicle thermal management system 1, and is circulated independently. become. That is, the cooling water flows and circulates in the order of the third water pump 34 ⁇ the water refrigerant heat exchanger 33 ⁇ the heating device 32 ⁇ the heater core 31 in the heating side cooling water circuit 30.
  • the cooling water of the heating side cooling water circuit 30 is heated by the heating device 32 and the water refrigerant heat exchanger 33, and is released to the air by the heater core 31. Therefore, the vehicle thermal management system 1 can perform heating in the passenger compartment in this state.
  • the cooling water is processed by the first water pump 14 ⁇ the inverter 11 ⁇ the motor generator 12 ⁇ by the operation of the first water pump 14 and the second water pump 24 as in step S34.
  • the first switching valve 15 ⁇ the second connection flow channel 42 ⁇ the second water pump 24 ⁇ the chiller 22 ⁇ the battery 21 ⁇ the second switching valve 25 ⁇ the first connection flow channel 41 flows in this order and circulates.
  • step S36 the operation of the refrigeration cycle is controlled such that the low pressure refrigerant flows into the chiller 22.
  • the cooling water warmed by the heat generation of the inverter 11 and the motor generator 12 and the heat of the battery 21 is cooled by heat exchange with the low pressure refrigerant by the chiller 22.
  • the heat absorbed by the chiller 22 is pumped up by the refrigeration cycle, and is dissipated to the cooling water of the heating side cooling water circuit 30 by the water refrigerant heat exchanger 33. Therefore, the said vehicle thermal management system 1 can pump up the heat of heat-producing apparatus, such as inverter 11, etc., and the battery 21 with a refrigerating cycle, and can utilize it for vehicle interior heating.
  • step S37 in the state shown in FIG. 12, it is determined whether battery water temperature TW is equal to or higher than water temperature upper limit value TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process proceeds to step S38 to lower the temperature of the cooling water to protect the battery 21 and the like, and otherwise returns to step S36.
  • step S38 the state of FIG. 12 in step S36 is changed to the state of FIG. 13 in order to perform cooling of the heat-generating equipment such as inverter 11 and cooling of battery 21 respectively in parallel and heating the vehicle interior in parallel.
  • the operation of each control target device is controlled.
  • the first switching valve 15 is controlled to communicate the motor generator 12 side with the device-side radiator 13 side and to close the second connection flow path 42 side. .
  • the cooling water flows and circulates in the order of the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device side radiator 13. Therefore, in the device side cooling water circuit 10, the exhaust heat of the inverter 11 and the motor generator 12 is dissipated from the device side radiator 13 to the outside air through the cooling water.
  • the 2nd switching valve 25 connects the battery 21 side and the battery side radiator 23 side, and is controlled so that the 1st connection flow path 41 side may be obstruct
  • the cooling water flows and circulates in the order of the second water pump 24, the chiller 22, the battery 21, the second switching valve 25, and the battery side radiator 23. Therefore, in the battery side cooling water circuit 20, the exhaust heat of the battery 21 is dissipated to the outside air from the battery side radiator 23 through the cooling water, and is absorbed by the low pressure refrigerant by the chiller 22.
  • step S36 movement of a control object apparatus is controlled similarly to the case of step S36. Accordingly, the heat generated in the heating device 32 and the water refrigerant heat exchanger 33 can be used to heat the interior of the vehicle.
  • step S38 the device-side cooling water circuit 10, the battery-side cooling water circuit 20, and the heating-side cooling water circuit 30 are each controlled to the circulation state in the present disclosure.
  • the equipment side cooling water circuit 10 can control the cooling performance according to the heat generated in the inverter 11 and the motor generator 12.
  • the battery side cooling water circuit 20 can control its cooling performance in accordance with the heat generated in the battery 21.
  • the vehicle thermal management system 1 can adjust the temperature of the cooling water so that the heat generating devices such as the inverter 11 and the motor generator 12 and the battery 21 have temperature ranges respectively suitable.
  • step S39 cooling operation control is performed when the electric vehicle travels.
  • the operation of each control target device of the vehicle thermal management system 1 is controlled according to the flowchart shown in FIG. The control contents in step S39 will be described in detail later with reference to FIG.
  • step S40 battery cooling control is performed when the electric vehicle travels. Specifically, in accordance with the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62, the flow of the cooling water in the device side cooling water circuit 10 or the battery side cooling water circuit 20 is switched, The heat generated during traveling is dissipated.
  • the heat radiation amount to the outside air using the battery side radiator 23 and the device side radiator 13 and the heat absorption amount by the chiller 22 are changed. Adjust the temperature of Thus, in step S40, the heat-generating device and the battery 21 that generate heat when traveling the electric vehicle can be cooled by the cooling water adjusted to an appropriate temperature.
  • step S41 When cooling operation control during traveling of the electric vehicle is started in step S39, as shown in FIG. 14, first, in step S41, the operation of the refrigeration cycle and the blower is switched to the cooling operation mode. This point is the same as step S21 described above.
  • step S42 using the detection result of the outside air temperature sensor 62, it is determined whether the outside air temperature Tam is equal to or higher than a reference outside air temperature KTam. If the outside air temperature Tam is equal to or higher than the outside air temperature KTam, the process proceeds to step S43. If not, the process proceeds to step S44.
  • step S43 the flow path switching unit 50 is used to cool the passenger compartment while cooling the heat-generating device and the battery 21 that are heated as the electric vehicle travels according to the environment in which the outside air temperature Tam is high. Etc. are controlled.
  • the first water pump 14 is operating, the first switching valve 15 communicates the motor generator 12 side with the device-side radiator 13 side, and the second connection is made. It is controlled to close the flow path 42 side. Thereby, in the device side cooling water circuit 10, the exhaust heat of the inverter 11 and the motor generator 12 is radiated from the device side radiator 13 to the outside air through the cooling water.
  • the 2nd water pump 24 is working, the 2nd switching valve 25 makes the 2nd water pump 24 side and the 2nd connection channel 42 side connect, and the battery side radiator It is controlled to close 23.
  • control unit 60 controls the operation of the refrigeration cycle so that the heat of the cooling water of the battery side cooling water circuit 20 is absorbed by the low pressure refrigerant of the refrigeration cycle by the chiller 22.
  • the heat absorbed by the chiller 22 is radiated to the outside air by the outdoor heat exchanger connected to the refrigeration cycle.
  • the vehicle thermal management system 1 can make the device side cooling water circuit 10 and the battery side cooling water circuit 20 circulate.
  • the heat generated in the inverter 11 and the motor generator 12 can be released from the device-side radiator 13 to the outside air, so that the heat-generating device can be adjusted to a temperature suitable for operation.
  • the heat generated in the battery 21 can be absorbed using a refrigeration cycle, and the temperature of the cooling water of the battery side cooling water circuit 20 can be appropriately adjusted.
  • the vehicle thermal management system 1 can appropriately cool the heat-generating equipment and the battery 21 generated when the electric vehicle travels while performing cooling of the passenger compartment.
  • step S44 using the detection result of the battery water temperature sensor 61, it is determined whether the battery water temperature TW is less than or equal to the water temperature upper limit value TWu. If the battery water temperature TW is less than or equal to the water temperature upper limit value TWu, the process proceeds to step S45. If not, the process proceeds to step S46.
  • step S45 in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature TW is less than or equal to the water temperature upper limit TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated. Also, the operation of the refrigeration cycle is controlled so that the low pressure refrigerant of the refrigeration cycle does not flow into the chiller 22.
  • the second switching valve 25 communicates the battery 21 side with the battery side radiator 23 side, and is controlled to close the first connection flow path 41 side. Thereby, in the battery side cooling water circuit 20, the cooling water flows in the order of the second water pump 24 ⁇ chiller 22 ⁇ battery 21 ⁇ battery side radiator 23, and circulates in the battery side cooling water circuit 20.
  • each control object apparatus is controlled similarly to step S43. That is, as in FIG. 15, in the device-side cooling water circuit 10, the cooling water flows in the order of the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device-side radiator 13. ing. And about each control object apparatus of the heating side cooling water circuit 30, the operation
  • the heat generated in the inverter 11 and the motor generator 12 by the traveling of the electric vehicle is dissipated to the outside air from the device-side radiator 13 through the cooling water on the device-side cooling water circuit 10 side.
  • the heat generated in the battery 21 by the traveling of the electric vehicle is dissipated from the battery side radiator 23 through the cooling water of the battery side cooling water circuit 20.
  • the vehicle thermal management system 1 appropriately heats the inverter 11, the heat generator of the motor generator 12, and the battery 21 in a situation where the outside air temperature Tam is low and the battery water temperature TW is less than or equal to the water temperature upper limit TWu. Can be adjusted.
  • step S46 in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature is higher than the water temperature upper limit TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated, and the chiller 22 absorbs heat of the cooling water of the battery side cooling water circuit 20 to the low pressure refrigerant of the refrigeration cycle. , Control the operation of the refrigeration cycle.
  • the second switching valve 25 communicates the battery 21 side with the battery side radiator 23 side, and is controlled to close the first connection flow path 41 side. Thereby, in the battery side cooling water circuit 20, the cooling water flows in the order of the second water pump 24 ⁇ chiller 22 ⁇ battery 21 ⁇ battery side radiator 23, and circulates in the battery side cooling water circuit 20.
  • each control object apparatus is controlled similarly to step S43. That is, as in FIG. 15, in the device-side cooling water circuit 10, the cooling water flows in the order of the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device-side radiator 13. ing.
  • each control object apparatus of the heating side cooling water circuit 30 has stopped the operation
  • step S46 the heat generated in the inverter 11 and the motor generator 12 by the traveling of the electric vehicle is radiated from the device-side radiator 13 to the outside air through the cooling water on the device-side cooling water circuit 10 side.
  • the battery 21 which generates heat due to the traveling of the electric vehicle is cooled via the cooling water of the battery side cooling water circuit 20 by the heat radiation to the outside air in the battery side radiator 23 and the heat absorbing action of the chiller 22.
  • the vehicle thermal management system 1 adjusts the heat generation equipment of the inverter 11 and the motor generator 12 and the battery 21 to an appropriate temperature in a situation where the outside air temperature Tam is low and the battery water temperature TW is higher than the water temperature upper limit TWu. be able to.
  • the vehicle thermal management system 1 includes the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30.
  • the device-side cooling water circuit 10 is a cooling water circuit that circulates the cooling water by the first water pump 14 via the heat-generating device such as the inverter 11 and the device-side radiator 13.
  • the battery side cooling water circuit 20 is a cooling water circuit in which the cooling water is circulated by the second water pump 24 via the battery 21, the chiller 22, and the battery side radiator 23.
  • the heating side cooling water circuit 30 is a cooling water circuit in which the cooling water is circulated by the third water pump 34 via the heater core 31, the heating device 32, and the water refrigerant heat exchanger 33.
  • the first connection flow path 41 and the second connection flow path 42 connect the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 so that the cooling water can flow in and out.
  • the bypass flow path 45 bypasses the battery side radiator 23 of the battery side cooling water circuit 20 with respect to the flow of the cooling water.
  • the 3rd connection flow path 43 and the 4th connection flow path 44 are the temperature control side cooling water circuit 5 which consists of apparatus side cooling water circuit 10 and battery side cooling water circuit 20,
  • the heating side cooling water circuit 30 is connected to the cooling water so as to be able to flow in and out.
  • the said thermal management system 1 for vehicles has the 1st switching valve 15, the 2nd switching valve 25, and the 3rd switching valve 35, The operation can be controlled by the control part 60, respectively.
  • the first switching valve 15 switches the flow of the cooling water into and out of the device-side cooling water circuit 10.
  • the second switching valve 25 switches the flow of the cooling water into and out of the battery side cooling water circuit 20.
  • the third switching valve 35 switches the inflow and outflow of the cooling water to the heating side cooling water circuit 30.
  • the vehicle thermal management system 1 switches the connection state of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 by the control unit 60, and the first water pump 14 to the third water pump 14 By controlling the operating state of the water pump 34, the cooling water in any one of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 can flow into and out of the other. can do.
  • the vehicle thermal management system 1 generates heat from any of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 through the cooling water and the other It can be supplied to the cooling water circuit and can be effectively utilized in the other cooling water circuit.
  • one end of the third connection channel 43 is connected to the second connection channel 42, and the other end of the third connection channel 43 is
  • the heater core 31 of the heating side cooling water circuit 30 is connected to one side of the outlet / inlet.
  • one end of the fourth connection flow channel 44 is connected to the battery side cooling water circuit 20 side in the second connection flow channel 42 rather than the connection position with the third connection flow channel 43, and the fourth connection flow is The other end of the passage 44 is connected to one side of the outlet / inlet of the heater core 31 of the heating side coolant circuit 30.
  • the thermal management system 1 for vehicles when the temperature control side cooling water circuit 5 which consists of the said apparatus side cooling water circuit 10 and the battery side cooling water circuit 20, and the heating side cooling water circuit 30 are connected.
  • the cooling water flowing from the temperature adjustment side cooling water circuit 5 can be smoothly discharged to the temperature adjustment side cooling water circuit 5 through the entire heating side cooling water circuit 30.
  • the 1st switching valve 15 is arrange
  • the second switching valve 25 is disposed at the connection position of the battery side cooling water circuit 20 and the first connection flow path 41. Therefore, the second switching valve 25 can reliably switch the flow of the cooling water into and out of the battery side cooling water circuit 20.
  • the third switching valve 35 is disposed at the connection position of the heating side coolant circuit 30 and the fourth connection flow path 44. As a result, the third switching valve 35 can reliably switch the flow of the cooling water into and out of the heating side cooling water circuit 30.
  • the device side cooling water circuit 10 the battery side cooling water circuit 20, and the heating according to the operating states of the first switching valve 15, the second switching valve 25 and the third switching valve 35
  • the connection mode of the side cooling water circuit 30 can be switched to various states, and the heat generated in each cooling water circuit can be effectively used in other cooling water circuits.
  • the first water pump 14 connects the first connection flow path 41 to the device-side cooling water circuit 10, and the device-side cooling Between the connection position of the second connection flow path 42 to the water circuit 10, and in the cooling water flow path in which the inverter 11 and the motor generator 12 are arranged.
  • the first water pump 14 pumps the coolant to the second connection flow path 42 side via the inverter 11 and the motor generator 12 in the device-side coolant circuit 10 and sends it to another coolant circuit. ing.
  • the cooling water having heat generated in the heat generating devices of the inverter 11 and the motor generator 12 can be supplied from the device-side cooling water circuit 10 to another cooling water circuit. It is possible to effectively utilize the heat of the heat generating equipment in other cooling water circuits.
  • the second water pump 24 is connected to the connection position of the first connection flow passage 41 with respect to the battery side cooling water circuit 20, and the second Between the connection positions of the connection flow channel 42, the battery 21 and the chiller 22 are disposed in the cooling water flow channel.
  • the second water pump 24 pumps the cooling water to the first connection flow path 41 side via the battery 21 and the chiller 22, and sends it out to another cooling water circuit. There is.
  • the vehicle thermal management system 1 can supply the cooling water whose temperature is adjusted by the battery 21 and the chiller 22 from the battery side cooling water circuit 20 to another heat medium circuit, and the other cooling water circuits.
  • the heat of the cooling water can be properly utilized.
  • the third water pump 34 delivers the coolant so as to pass through the water-refrigerant heat exchanger 33, the heater 32, and the heater core 31 in the coolant flow path of the heating-side coolant circuit 30.
  • the vehicle thermal management system 1 has the first connection flow path 41 to the bypass flow path 45 in addition to the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30.
  • a flow path switching unit 50 having a circuit connection unit 40, a first switching valve 15, a second switching valve 25 and a third switching valve 35, and a control unit 60 for controlling the operation of the circuit connection unit 40 and the like. There is.
  • the vehicle thermal management system 1 controls the operation of the flow path switching unit 50 by 10, any one of the battery side cooling water circuit 20 and the heating side cooling water circuit 30 can be connected to a heat medium which can flow into and out of the other.
  • the heat generated in any one of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 is supplied to the other cooling water circuit It can be used effectively in the other cooling water.
  • the device side cooling water circuit 10 by controlling the action
  • at least one of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 can switch to a circulating state in which the cooling water circulates independently.
  • the vehicle thermal management system 1 can ensure a certain amount of heat since the heat flow through the cooling water is not performed with respect to the circulating cooling water circuit. That is, the vehicle thermal management system 1 can adjust the temperature of the cooling water to different temperature zones with respect to the cooling water circuit in a circulating state and the other cooling water circuits, and can appropriately adjust the temperature.
  • the chiller 22 is disposed in the battery side cooling water circuit 20, and the water refrigerant heat exchanger 33 is disposed in the heating side cooling water circuit 30.
  • the vehicle thermal management system 1 can be used as the battery side cooling water circuit 20.
  • the heat generated can be absorbed by the chiller 22, pumped up in the refrigeration cycle, and dissipated to the coolant on the heating side coolant circuit 30 side.
  • the said vehicle thermal management system 1 even when the battery side cooling water circuit 20 side and the heating side cooling water circuit 30 are in a circulation state, the heat which generate
  • the heating side cooling water circuit 30 can be supplied, and can be effectively utilized on the heating side cooling water circuit 30 side.
  • the vehicle thermal management system 1 is mounted on an electric vehicle, as in the first embodiment.
  • the vehicle heat management system 1 has a heat generating device such as the inverter 11 and the motor generator 12 and a temperature adjustment function of the battery 21 and an air conditioning function of the vehicle interior.
  • the vehicle thermal management system 1 includes the device side cooling water circuit 10, the battery side cooling water circuit 20, the heating side cooling water circuit 30, and the circuit connection portion 40. And a control unit 60 and the like.
  • the vehicle thermal management system 1 according to the second embodiment is different from the first embodiment in that a flow rate limiting unit 42 a is provided on the cooling water flow path that constitutes the circuit connection unit 40.
  • the configurations related to the device side cooling water circuit 10, the battery side cooling water circuit 20, the heating side cooling water circuit 30, the flow path switching unit 50, and the control unit 60 It is the same as that of the first embodiment. Moreover, the said thermal management system 1 for vehicles is controlled similarly to 1st Embodiment.
  • the circuit connection unit 40 according to the second embodiment includes the first connection flow channel 41, the second connection flow channel 42, the third connection flow channel 43, and the fourth connection flow channel 44, as in the first embodiment. And a bypass passage 45. As shown in FIG. 16, in the vehicle thermal management system 1 according to the second embodiment, the connection mode of the first connection flow passage 41 to the bypass flow passage 45 is the same as that of the first embodiment.
  • the flow rate limiting unit 42 a is disposed in the second connection flow path 42 configuring the circuit connection unit 40.
  • the flow rate limiting unit 42 a is configured by a so-called fixed throttle.
  • the flow passage area of the cooling water in the flow rate limiting unit 42 a is configured to be sharply reduced with respect to the flow passage area of the second connection flow passage 42. Therefore, the flow rate limiting unit 42 a functions as a flow resistance of the cooling water at this position, and is configured to be able to limit the flow rate of the cooling water flowing through the second connection flow path 42.
  • connection channel 43 the fourth connection channel 44, and the bypass channel 45 are connected to the second connection channel 42, respectively.
  • the third connection flow path 43 is connected to a portion of the second connection flow path 42 on the device-side cooling water circuit 10 side.
  • connection flow path 44 is connected to a portion of the second connection flow path 42 on the battery side cooling water circuit 20 side.
  • the bypass flow channel 45 is connected between the connection positions of the third connection flow channel 43 and the fourth connection flow channel 44 with respect to the second connection flow channel 42.
  • the flow rate limiting unit 42 a is disposed between the connection position of the second connection flow channel 42 and the fourth connection flow channel 44 and the connection position of the second connection flow channel 42 and the bypass flow channel 45. ing. Therefore, the flow of the cooling water that has passed through the bypass flow channel 45 and flowed into the second connection flow channel 42 is the third connection flow channel 43 rather than the fourth connection flow channel 44 due to the flow resistance of the flow restriction portion 42a. It is led to the side.
  • the flow of the cooling water that has passed through the fourth connection flow channel 44 and has flowed into the second connection flow channel 42 is the battery side cooling water circuit 20 rather than the bypass flow channel 45 side due to the water flow resistance by the flow restriction portion 42 a It is led to the side.
  • the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are brought into the heat medium connection state as in step S4 and step S5 described above.
  • the cooling water of the battery side cooling water circuit 20 can be led to the heating side cooling water circuit 30 side.
  • the vehicle thermal management system 1 when the vehicle thermal management system 1 according to the second embodiment performs heating of the vehicle interior during rapid charging of the battery 21, the exhaust heat of the battery 21 in the battery side cooling water circuit 20 is generated via the cooling water.
  • the heat can be efficiently supplied to the heating side cooling water circuit 30, and the exhaust heat of the battery 21 can be effectively used as a heat source for heating the vehicle interior.
  • the same advantages as those of the first embodiment can be obtained from the same configuration and operation as those of the first embodiment described above. be able to.
  • the flow rate limiting unit 42a includes the connection position of the second connection flow path 42 and the fourth connection flow path 44, the second connection flow path 42, and the bypass flow path. It is arranged between 45 connection positions.
  • the vehicle thermal management system 1 when the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are in the heat medium connection state, the flow rate of the cooling water of the battery side cooling water circuit 20 is limited.
  • the water flow resistance of the portion 42a can lead to the heating side cooling water circuit 30 side, and the heat generated in the battery side cooling water circuit 20 is efficiently supplied to the heating side cooling water circuit 30 via the cooling water. be able to.
  • the configuration of the thermal management system according to the present disclosure is not limited to this aspect.
  • the thermal management system according to the present disclosure may be configured as shown in FIG. Reference numerals in FIG. 17 correspond to those in the above-described embodiments.
  • a bypass flow path 45 for flowing cooling water around the battery side radiator 23 is disposed. Then, one end of the fourth connection flow path 44 is connected to the cooling water flow path of the battery side cooling water circuit 20 located between the second water pump 24 and the second switching valve 25.
  • one end of the fourth connection flow path 44 is connected to the cooling water flow path from the outlet / inlet of the battery side radiator 23 to the suction port of the second water pump 24 by the battery side cooling water circuit 20.
  • the other end of the fourth connection channel 44 is connected to the outlet / inlet of the heater core 31 via the third switching valve 35.
  • the configuration of the thermal management system according to the present disclosure may be different from the configuration shown in FIG.
  • the thermal management system according to the present disclosure can also be configured as shown in FIG. Reference numerals in FIG. 18 correspond to those in the above-described embodiments.
  • a flow path passing through the device side radiator 13 and a flow path passing through the device side radiator 13 and the battery side radiator 23 are arranged in parallel. Further, one end portion of the fourth connection flow path 44 is connected to the cooling water flow path of the battery side cooling water circuit 20 located between the chiller 22 and the second switching valve 25.
  • one end of the fourth connection flow path 44 is connected to the cooling water flow path from the outlet / inlet of the battery side radiator 23 to the suction port of the second water pump 24 in the battery side cooling water circuit 20.
  • the other end of the fourth connection channel 44 is connected to the outlet / inlet of the heater core 31 via the third switching valve 35.
  • Step S9 battery cooling control at the time of rapid charge of battery 21 is performed in Step S9 of an embodiment mentioned above.
  • the flow of the cooling water in the battery side cooling water circuit 20 is switched according to the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62.
  • FIG. 19 is a configuration diagram showing the flow of cooling water when the outside air temperature Tam is equal to or higher than the reference outside air temperature KTam and the battery water temperature TW is equal to or higher than the water temperature upper limit TWu.
  • the operation of the first water pump 14 is stopped on the device side cooling water circuit 10 side.
  • the first switching valve 15 communicates with the device-side radiator 13 side and the second connection flow path 42 side, and is controlled to close the motor generator 12 side.
  • the 2nd water pump 24 sends out cooling water from a discharge port.
  • the second switching valve 25 is controlled to communicate all of the battery 21 side, the battery side radiator 23 side, and the first connection flow path 41 side.
  • the operation of the refrigeration cycle is controlled so that the chiller 22 absorbs the heat of the cooling water to the low-pressure refrigerant of the refrigeration cycle.
  • the heat absorbed by the refrigerant of the refrigeration cycle is radiated to the outside air by the outdoor heat exchanger. And in the heating side cooling water circuit 30, the operation
  • the cooling water passes through the second water pump 24, the chiller 22 and the battery 21, and in the second switching valve 25, the battery side radiator It branches to the 23 side and the 1st connection channel 41 side.
  • the cooling water that has flowed to the battery side radiator 23 dissipates the heat added by the rapid charging of the battery 21 to the outside air when passing through the battery side radiator 23.
  • the cooling water which has flowed to the first connection flow channel 41 flows into the device-side cooling water circuit 10 and flows from the device-side radiator 13 ⁇ the first water pump 14 ⁇ the second connection flow channel 42
  • the suction port of the water pump 24 is reached. Therefore, the said cooling water thermally radiates the heat added by rapid charge of the battery 21 with external air, when passing the apparatus side radiator 13. As shown in FIG.
  • the vehicle thermal management system 1 generates heat due to rapid charging by utilizing the heat dissipation to the outside air in the device side radiator 13 and the battery side radiator 23 and the heat absorption action in the chiller 22. 21 can be cooled.
  • step S40 of the above-described embodiment battery cooling control is performed when the electric vehicle is traveling.
  • the flow of the cooling water in the device-side cooling water circuit 10 or the battery-side cooling water circuit 20 is switched according to the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62.
  • the heat generated during traveling is dissipated.
  • FIG. 20 is a configuration diagram showing the flow of the cooling water when the outside air temperature Tam is lower than the reference outside air temperature KTam and the battery water temperature TW is equal to or higher than the water temperature upper limit TWu.
  • the first water pump 14 delivers the cooling water from the discharge port.
  • the first switching valve 15 communicates the motor generator 12 side with the device-side radiator 13 side, and is controlled to close the second connection flow path 42 side.
  • the 2nd water pump 24 is sending out the cooling water from the discharge port.
  • the second switching valve 25 communicates the battery 21 side and the battery side radiator 23 side, and is controlled to close the first connection flow path 41 side.
  • the operation of the refrigeration cycle is controlled so that the chiller 22 absorbs the heat of the cooling water to the low-pressure refrigerant of the refrigeration cycle.
  • the heat absorbed by the refrigerant of the refrigeration cycle is radiated to the outside air by the outdoor heat exchanger. And in the heating side cooling water circuit 30, the operation
  • the cooling water passes through the inverter 11, which generates heat as it travels, and the motor generator 12, and then passes through the device-side radiator 13. Therefore, in the device-side cooling water circuit 10, the heat generated in the heat-generating device such as the inverter 11 is dissipated from the device-side radiator 13 to the outside air through the cooling water.
  • the cooling water warmed by the heat generated by the battery 21 is cooled by the heat radiation to the outside air in the battery side radiator 23 and the heat absorbing action in the chiller 22.
  • the vehicle thermal management system 1 converts the heat generating device such as the inverter 11 and the motor generator 12 and the battery 21 which generate heat when traveling the electric vehicle to the outside air in the device side radiator 13 and the battery side radiator 23 It can be cooled by utilizing the heat radiation of the heat sink and the heat absorption effect of the chiller 22.
  • thermal management system concerning this indication was made into the thermal management system 1 for vehicles in an electric vehicle, it is not limited to this. Application to hybrid vehicles is also possible.
  • the thermal management system according to the present disclosure can be applied to various devices as long as it has a device side heat medium circuit, a battery side heat medium circuit, and a heating side heat medium circuit, and is limited to vehicles. It is not a thing.
  • the heat medium in each heat medium circuit is not limited to the cooling water in the above-described embodiment, and various heat mediums can be used.
  • the inverter 11 and the motor generator 12 were mentioned as a heat-generation apparatus, it is not limited to this.
  • the heat generating device in the present disclosure various devices can be adopted as long as the device generates heat with operation.
  • a charger or the like for charging the battery 21 may be used as the heat generating device in the present disclosure.
  • the 1st switching valve 15, the 2nd switching valve 25, and the 3rd switching which consist of an electromagnetic three-way valve as the 1st switching part concerning this indication, the 2nd switching part, and the 3rd switching part.
  • the valve 35 was used, it is not limited to this aspect.
  • one switching unit may be configured by a plurality of (for example, three) on-off valves.
  • the flow restriction part 42a in 2nd Embodiment was comprised by what is called a fixed throttle, it is also possible to implement
  • the flow rate limiting unit may be configured by a variable throttle or an on-off valve capable of changing the flow passage area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

This heat management system comprises: a temperature adjustment-side heat medium circuit (5); a heating-side heat medium circuit (30); a third connection flow passage (43); a fourth connection flow passage (44); a first switching part (15); a second switching part (25); and a third switching part (35). The temperature adjustment-side heat medium circuit includes: an equipment-side heat medium circuit (10); a battery-side heat medium circuit (20); a first connection flow passage (41); a second connection flow passage (42); and a bypass flow passage (45). The third connection flow passage and the fourth connection flow passage connect the temperature adjustment-side heat medium circuit and the heating-side heat medium circuit. The first switching part switches, in accordance with the control of a control unit, the presence/absence of inflow and outflow of a heat medium to/from the equipment-side heat medium circuit. The second switching part switches, in accordance with the control of the control unit, whether to allow inflow or outflow of the heat medium to/from the battery-side heat medium circuit. The third switching part switches, in accordance with the control of the control unit whether to allow inflow or outflow of the heat medium to/from the heating-side heat medium circuit.

Description

熱管理システムThermal management system 関連出願の相互参照Cross-reference to related applications
 本出願は、2018年1月9日に出願された日本特許出願番号2018-001394号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-001394 filed on Jan. 9, 2018, the contents of which are incorporated herein by reference.
 本開示は、複数の熱媒体回路を有する熱管理システムに関する。 The present disclosure relates to a thermal management system having a plurality of heat transfer medium circuits.
 従来、熱媒体が循環する熱媒体回路を複数有する熱管理システムが知られている。例えば、特許文献1には、電動車両用熱管理システムが開示されている。特許文献1に係る電動車両用熱管理システムは、冷凍サイクルを構成するエアコンサイクルと、高水温ループと、低水温ループとを有している。 BACKGROUND Conventionally, a thermal management system having a plurality of heat medium circuits in which a heat medium circulates is known. For example, Patent Document 1 discloses a thermal management system for an electric vehicle. The thermal management system for electric vehicles which concerns on patent document 1 has the air-conditioner cycle which comprises a refrigerating cycle, a high water temperature loop, and a low water temperature loop.
 特許文献1において、高水温ループは、水コンデンサと、ラジエータと、ヒータコアを介して、冷却水を循環させるように構成されている。そして、低水温ループは、温水ヒータと、バッテリと、チラーを介して、冷却水を循環させるように構成されている。 In Patent Document 1, the high water temperature loop is configured to circulate cooling water via a water condenser, a radiator, and a heater core. And a low water temperature loop is comprised so that cooling water may be circulated via a warm water heater, a battery, and a chiller.
 当該電動車用熱管理システムは、例えば、バッテリ充電時や暖房時において、低水温ループと高水温ループという2種類の熱媒体回路において、一方の熱媒体回路に生じた熱を他方の熱媒体回路にて利用している。具体的には、特許文献1では、バッテリ充電時や暖房時において、低水温ループに発生した熱が、ヒートポンプサイクルにて汲み上げられ、高水温ループ側で利用されている。 The heat management system for an electric vehicle is, for example, during battery charging or heating, in two types of heat medium circuits of a low water temperature loop and a high water temperature loop, heat generated in one heat medium circuit is used as the other heat medium circuit. It is used by Specifically, in Patent Document 1, heat generated in the low water temperature loop during battery charging and heating is pumped up by the heat pump cycle and used on the high water temperature loop side.
特開2014-37178号公報JP, 2014-37178, A
 特許文献1において、高水温ループ側にて、低水温ループで生じた熱を利用する為には、低水温ループ側に十分な熱が生じていることが必要である。従って、特許文献1における暖房モードでは、低水温ループ側に十分な熱がない場合には、暖房する為の熱源が不足して、十分な暖房を行えないおそれがある。 In Patent Document 1, in order to use the heat generated in the low water temperature loop on the high water temperature loop side, it is necessary that sufficient heat is generated on the low water temperature loop side. Therefore, in the heating mode in Patent Document 1, when there is not enough heat on the low water temperature loop side, the heat source for heating is insufficient, and there is a possibility that sufficient heating can not be performed.
 ここで、特許文献1の低水温ループには、温水ヒータが配置されている。従って、低水温ループの冷却水を温水ヒータで加熱して、低水温ループ側に十分な熱が発生している状態にすることが考えられる。 Here, a hot water heater is disposed in the low water temperature loop of Patent Document 1. Therefore, it is conceivable that the cooling water of the low water temperature loop is heated by the hot water heater so that sufficient heat is generated on the low water temperature loop side.
 当該低水温ループには、バッテリが配置されている為、低水温ループにおける冷却水の温度はバッテリの特性による制限を受けるおそれがある。つまり、特許文献1の場合、バッテリの特性による制限を超える温度まで、低水温ループの冷却水を加熱することはできず、低水温ループ側の熱を、高水温ループ側で有効に利用することは困難な場合がある。 Since a battery is disposed in the low water temperature loop, the temperature of the cooling water in the low water temperature loop may be limited by the characteristics of the battery. That is, in the case of Patent Document 1, the cooling water of the low water temperature loop can not be heated to a temperature exceeding the limit due to the characteristics of the battery, and the heat of the low water temperature loop is effectively used on the high water temperature loop side. Can be difficult.
 本開示は、これらの点に鑑みてなされており、複数の熱媒体回路を有する熱管理システムにて、或る熱媒体回路に発生した熱を他の熱媒体回路にて有効に利用可能な熱管理システムを提供することを目的とする。 The present disclosure has been made in view of these points, and a heat management system having a plurality of heat medium circuits can effectively use the heat generated in one heat medium circuit in another heat medium circuit. It aims to provide a management system.
 本開示の一態様による熱管理システムは、温度調整側熱媒体回路と、加熱側熱媒体回路と、第3接続流路と、第4接続流路と、第1切替部と、第2切替部と、第3切替部と、を有する。温度調整側熱媒体回路は、機器側熱媒体回路と、バッテリ側熱媒体回路と、第1接続流路と、第2接続流路と、バイパス流路と、を有する。機器側熱媒体回路は、作動に伴い発熱する発熱機器、発熱機器を流通する熱媒体と外気を熱交換させる機器側熱交換器及び、制御部の制御に従って熱媒体を送出する機器側熱媒体ポンプを介して、熱媒体が循環可能に構成される。バッテリ側熱媒体回路は、バッテリ、バッテリを流通する熱媒体と外気とを熱交換させるバッテリ側熱交換器、熱媒体の有する熱を冷凍サイクルの低圧冷媒に吸熱させるチラー及び、制御部の制御に従って熱媒体を送出するバッテリ側熱媒体ポンプを介して、熱媒体が循環可能に構成される。第1接続流路は、機器側熱媒体回路とバッテリ側熱媒体回路とを接続する。第2接続流路は、第1接続流路と異なる位置にて、機器側熱媒体回路とバッテリ側熱媒体回路とを接続する。バイパス流路は、バッテリ側熱媒体回路を流れる熱媒体を、バッテリ側熱交換器を迂回させる。加熱側熱媒体回路は、冷凍サイクルの高圧冷媒と熱媒体とを熱交換させる冷媒熱媒体熱交換器、熱媒体を加熱する加熱装置、熱媒体と加熱対象流体との熱交換により加熱対象流体を加熱するヒータコア及び、制御部の制御に従って熱媒体を送出する加熱側熱媒体ポンプを介して、熱媒体を循環可能に構成される。第3接続流路は、温度調整側熱媒体回路と加熱側熱媒体回路とを接続する。第4接続流路は、第3接続流路と異なる位置にて、温度調整側熱媒体回路と加熱側熱媒体回路とを接続する。第1切替部は、制御部の制御に従って、機器側熱媒体回路に対する熱媒体の流出入の有無を切り替える。第2切替部は、制御部の制御に従って、バッテリ側熱媒体回路に対する熱媒体の流出入の有無を切り替える。第3切替部は、制御部の制御に従って、加熱側熱媒体回路に対する熱媒体の流出入の有無を切り替える。 A thermal management system according to an aspect of the present disclosure includes a temperature adjustment side heat medium circuit, a heating side heat medium circuit, a third connection flow path, a fourth connection flow path, a first switching unit, and a second switching unit. And a third switching unit. The temperature adjustment side heat medium circuit includes an apparatus side heat medium circuit, a battery side heat medium circuit, a first connection flow path, a second connection flow path, and a bypass flow path. The device-side heat medium circuit is a heat-generating device that generates heat with operation, a device-side heat exchanger that exchanges heat with the heat medium flowing through the heat-generating device, and a device-side heat medium pump that delivers the heat medium according to the control of the control unit The heat transfer medium is configured to be able to circulate. The battery side heat medium circuit includes a battery, a battery side heat exchanger for heat exchange between the heat medium flowing through the battery and the outside air, a chiller for absorbing heat of the heat medium to the low pressure refrigerant of the refrigeration cycle, and control of the control unit The heat medium can be circulated via the battery side heat medium pump that delivers the heat medium. The first connection flow path connects the device-side heat medium circuit and the battery-side heat medium circuit. The second connection channel connects the device-side heat medium circuit and the battery-side heat medium circuit at a position different from the first connection channel. The bypass flow path diverts the heat medium flowing in the battery side heat medium circuit to the battery side heat exchanger. The heating-side heat medium circuit is a refrigerant heat medium heat exchanger that exchanges heat between the high-pressure refrigerant and the heat medium in the refrigeration cycle, a heating device that heats the heat medium, and a heat target fluid by heat exchange between the heat medium and the fluid to be heated. The heat medium can be circulated through the heater core to be heated and the heating-side heat medium pump that delivers the heat medium according to the control of the control unit. The third connection channel connects the temperature adjustment side heat medium circuit and the heating side heat medium circuit. The fourth connection channel connects the temperature adjustment side heat medium circuit and the heating side heat medium circuit at a position different from the third connection channel. The first switching unit switches the presence or absence of inflow and outflow of the heat medium to and from the device-side heat medium circuit according to the control of the control unit. The second switching unit switches the presence or absence of the flow of the heat medium into the battery side heat medium circuit according to the control of the control unit. The third switching unit switches the presence or absence of the outflow / inflow of the heat medium to the heating side heat medium circuit according to the control of the control unit.
 当該熱管理システムにおいては、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路が、第1接続流路~第4接続流路及びバイパス流路を介して、相互に接続されている。そして、当該熱管理システムによれば、機器側熱媒体ポンプ、バッテリ側熱媒体ポンプ及び加熱側熱媒体ポンプや、第1切替部、第2切替部及び第3切替部を動作させることで、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路に対する熱媒体の流出入を、それぞれ切り替えることができる。 In the thermal management system, the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit are mutually connected via the first connection flow path to the fourth connection flow path and the bypass flow path. ing. Then, according to the heat management system, the device-side heat medium pump, the battery-side heat medium pump, the heating-side heat medium pump, and the first switching unit, the second switching unit, and the third switching unit are operated. It is possible to switch the flow of the heat medium to and from the side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit.
 つまり、当該熱管理システムによれば、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路における熱媒体の流出入をそれぞれ切り替えることによって、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路の何れかで生じた熱を、熱媒体を介して、他の熱媒体回路に供給することができ、他の熱媒体回路にて有効に活用することができる。 That is, according to the heat management system, the apparatus-side heat medium circuit and the battery-side heat medium are switched by switching the inflow and outflow of the heat medium in the apparatus-side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit. The heat generated in any of the circuit and the heating side heat medium circuit can be supplied to the other heat medium circuit via the heat medium and can be effectively utilized in the other heat medium circuit.
 本開示の他の態様による熱管理システムは、機器側熱媒体回路と、バッテリ側熱媒体回路と、加熱側熱媒体回路と、回路接続部と、流路切替部と、制御部と、を有する。機器側熱媒体回路は、作動に伴い発熱する発熱機器を介して熱媒体が循環可能に構成される。バッテリ側熱媒体回路は、バッテリを介して熱媒体が循環可能に構成される。加熱側熱媒体回路は、熱媒体を加熱する加熱装置及び、熱媒体と加熱対象流体との熱交換により加熱対象流体を加熱するヒータコアを介して、熱媒体を循環可能に構成される。回路接続部は、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路に関して、相互に熱媒体の流出入可能に接続する。流路切替部は、回路接続部における熱媒体の流れを切り替える。制御部は、流路切替部の作動を制御する。制御部は、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路の何れか一方の熱媒体が他方に対して流出入可能に接続された熱媒体接続状態に切り替えるように流路切替部の作動を制御する。 A thermal management system according to another aspect of the present disclosure includes an apparatus-side heat medium circuit, a battery-side heat medium circuit, a heating-side heat medium circuit, a circuit connection unit, a flow path switching unit, and a control unit. . The device-side heat medium circuit is configured to allow the heat medium to circulate through the heat generating device that generates heat with operation. The battery side heat medium circuit is configured to be able to circulate the heat medium via the battery. The heating side heat medium circuit is configured to be able to circulate the heat medium through the heating device for heating the heat medium and the heater core for heating the fluid to be heated by heat exchange between the heat medium and the fluid to be heated. The circuit connection portion allows the heat medium to flow into and out of the apparatus side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit. The flow path switching unit switches the flow of the heat medium in the circuit connection unit. The control unit controls the operation of the flow path switching unit. The control unit controls the heat medium connection state such that any one of the heat mediums of the device side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit is connected to the other heat medium connected to the other. Control the operation of the road switching unit.
 当該熱管理システムにおいては、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路が、回路接続部によって、熱媒体の流出入可能に相互に接続されており、制御部にて、回路接続部における熱媒体の流れを切り替えることができる。 In the thermal management system, the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit are mutually connected by the circuit connection portion so that the heat medium can flow in and out. The flow of the heat medium at the circuit connection can be switched.
 従って、当該熱管理システムは、制御部によって、熱媒体接続状態に切り替え、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路の何れか一方の熱媒体が他方に対して流出入可能な状態にすることができる。 Therefore, the heat management system switches to the heat medium connection state by the control unit, and any one heat medium of the device side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit flows out to the other It is possible to make it possible to enter.
 これにより、当該熱管理システムは、機器側熱媒体回路、バッテリ側熱媒体回路、及び加熱側熱媒体回路の何れかに生じている熱を、熱媒体を介して、他の熱媒体回路に供給することができ、当該他の熱媒体回路にて熱を有効に活用することができる。 Thus, the heat management system supplies the heat generated in any of the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit to the other heat medium circuit via the heat medium. The heat can be effectively utilized in the other heat medium circuit.
第1実施形態に係る車両用熱管理システムの全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the thermal management system for vehicles which concerns on 1st Embodiment. 第1実施形態に車両用熱管理システムの制御処理のフローチャートである。It is a flowchart of control processing of a thermal management system for vehicles in a 1st embodiment. 第1実施形態に係る急速充電時の暖房モード初期における冷却水流れを示す構成図である。It is a block diagram which shows the cooling water flow in the heating mode initial stage at the time of the rapid charge which concerns on 1st Embodiment. 第1実施形態に係る急速充電時の暖房モード初期における冷却水流れの他の例を示す構成図である。It is a block diagram which shows the other example of the cooling water flow in the heating mode initial stage at the time of the rapid charge which concerns on 1st Embodiment. 第1実施形態に係る急速充電時の暖房モード中期における冷却水流れを示す構成図である。It is a block diagram which shows the cooling water flow in the heating mode middle stage at the time of rapid charge which concerns on 1st Embodiment. 第1実施形態に係る急速充電時の暖房モード後期における冷却水流れを示す構成図である。It is a block diagram which shows the cooling water flow in the heating mode latter period at the time of rapid charge which concerns on 1st Embodiment. 第1実施形態に係る急速充電時の暖房モード後期における冷却水流れの他の例を示す構成図である。It is a block diagram which shows the other example of the cooling water flow in the heating mode latter period at the time of the rapid charge which concerns on 1st Embodiment. 第1実施形態に係る急速充電時の冷房運転制御の内容を示すフローチャートである。It is a flowchart which shows the content of cooling operation control at the time of the rapid charge which concerns on 1st Embodiment. 第1実施形態に係る急速充電時の冷房モードにおける冷却水流れの一例を示す構成図である。It is a block diagram which shows an example of the cooling water flow in cooling mode at the time of the rapid charge which concerns on 1st Embodiment. 第1実施形態に係る走行時制御の内容を示すフローチャートである。It is a flowchart which shows the content of control at the time of driving | running | working which concerns on 1st Embodiment. 第1実施形態に係る車両走行時の暖房モード初期における冷却水流れを示す構成図である。It is a block diagram which shows the cooling water flow in the heating mode initial stage at the time of vehicle travel which concerns on 1st Embodiment. 第1実施形態に係る車両走行時の暖房モード中期における冷却水流れを示す構成図である。It is a block diagram which shows the cooling water flow in the heating mode middle period at the time of vehicle travel which concerns on 1st Embodiment. 第1実施形態に係る車両走行時の暖房モード後期における冷却水流れを示す構成図である。It is a block diagram which shows the cooling water flow in the heating mode latter period at the time of vehicle travel which concerns on 1st Embodiment. 第1実施形態に係る車両走行時の冷房運転制御の内容を示すフローチャートである。It is a flowchart which shows the content of cooling operation control at the time of vehicle travel which concerns on 1st Embodiment. 第1実施形態に係る車両走行時の冷房モードにおける冷却水流れの一例を示す構成図である。It is a block diagram which shows an example of the cooling water flow in cooling mode at the time of vehicle travel which concerns on 1st Embodiment. 第2実施形態に係る車両用熱管理システムの全体構成図である。It is a whole block diagram of the thermal management system for vehicles which concerns on 2nd Embodiment. 本開示に係る熱管理システムの全体構成に関する第1変形例を示す構成図である。It is a block diagram which shows the 1st modification regarding the whole structure of the thermal management system which concerns on this indication. 本開示に係る熱管理システムの全体構成に関する第2変形例を示す構成図である。It is a block diagram which shows the 2nd modification regarding the whole structure of the heat management system concerning this indication. 熱管理システムの急速充電時にてバッテリ冷却制御を行う際の冷却水流れの一例を示す構成図である。It is a block diagram which shows an example of the cooling water flow at the time of performing battery cooling control at the time of rapid charge of a thermal management system. 熱管理システムの車両走行時にてバッテリ冷却制御を行う際の冷却水流れの一例を示す構成図である。It is a block diagram which shows an example of the cooling water flow at the time of performing battery cooling control at the time of vehicle travel of a thermal management system.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. The same referential mark may be attached | subjected to the part corresponding to the matter demonstrated by the form preceded in each form, and the overlapping description may be abbreviate | omitted. When only a part of the configuration is described in each form, the other forms described above can be applied to other parts of the configuration. Not only combinations of parts which clearly indicate that combinations are possible in each embodiment, but also combinations of embodiments even if they are not specified unless there is a problem with the combination. Is also possible.
 以下、本開示の実施形態について図に基づいて説明する。以下の実施形態において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts which are the same as or equivalent to each other are given the same reference numerals in the drawings.
 (第1実施形態)
 先ず、本開示の第1実施形態について、図1~図3を参照しつつ説明する。第1実施形態では、本開示に係る熱管理システムを、車両走行用の駆動力を走行用電動モータから得る電気自動車における車両用熱管理システム1に適用している。当該車両用熱管理システム1は、電気自動車において、空調対象空間である車室内の空調を行う機能や、インバータ11、モータジェネレータ12等の発熱機器や、バッテリ21の温度をそれぞれ適切な温度に調整する機能を果たす。
First Embodiment
First, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. In the first embodiment, the heat management system according to the present disclosure is applied to a vehicle heat management system 1 in an electric vehicle which obtains a driving force for vehicle traveling from a traveling electric motor. The said vehicle thermal management system 1 adjusts the temperature of the heat-generating equipment such as the inverter 11, the motor generator 12, etc., and the battery 21 to an appropriate temperature, respectively, in the electric vehicle. Perform the function that
 そして、第1実施形態に係る車両用熱管理システム1は、車室内の空調を行う空調用運転モードとして、暖房モード、冷房モード、除湿暖房モードを切り替えることができる。 The vehicle heat management system 1 according to the first embodiment can switch the heating mode, the cooling mode, and the dehumidifying heating mode as the air conditioning operation mode for performing the air conditioning of the vehicle interior.
 暖房モードは、車室内に送風される送風空気を加熱して車室内へ吹き出す運転モードである。この場合の送風空気は、本開示における加熱対象流体に相当する。そして、冷房モードは、送風空気を冷却して車室内へ吹き出す運転モードである。除湿暖房モードは、冷却して除湿された送風空気を再加熱して車室内へ吹き出す運転モードである。 The heating mode is an operation mode in which the blowing air blown into the vehicle compartment is heated and blown into the vehicle compartment. The blowing air in this case corresponds to the fluid to be heated in the present disclosure. The cooling mode is an operation mode in which the blown air is cooled and blown into the vehicle compartment. The dehumidifying and heating mode is an operation mode in which the cooled and dehumidified blown air is reheated and blown into the vehicle compartment.
 図1に示すように、車両用熱管理システム1は、機器側冷却水回路10と、バッテリ側冷却水回路20と、加熱側冷却水回路30と、回路接続部40と、流路切替部50と、制御部60等を有しており、本開示に係る熱管理システムに相当する。 As shown in FIG. 1, the vehicle thermal management system 1 includes an apparatus-side coolant circuit 10, a battery-side coolant circuit 20, a heating-side coolant circuit 30, a circuit connection unit 40, and a flow path switching unit 50. And the control unit 60 and the like, and corresponds to the thermal management system according to the present disclosure.
 機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30は、冷却水が循環する冷却水回路である。機器側冷却水回路10は、電気自動車に搭載された発熱機器を温度調整する為の冷却水回路である。バッテリ側冷却水回路20は、電気自動車に搭載されたバッテリ21を温度調整する為の冷却水回路である。 The device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 are cooling water circuits through which cooling water circulates. The device side cooling water circuit 10 is a cooling water circuit for adjusting the temperature of a heat generating device mounted on an electric vehicle. The battery side cooling water circuit 20 is a cooling water circuit for adjusting the temperature of the battery 21 mounted on the electric vehicle.
 当該車両用熱管理システム1においては、機器側冷却水回路10及びバッテリ側冷却水回路20によって、温度調整側冷却水回路5が構成されている。当該温度調整側冷却水回路5は、本開示における温度調整側熱媒体回路に相当する。そして、加熱側冷却水回路30は、暖房モードや除湿暖房モードにおいて、送風空気を加熱する際に用いられる冷却水回路である。 In the vehicle thermal management system 1, the temperature control side cooling water circuit 5 is configured by the device side cooling water circuit 10 and the battery side cooling water circuit 20. The temperature control side cooling water circuit 5 corresponds to the temperature control side heat medium circuit in the present disclosure. And the heating side cooling water circuit 30 is a cooling water circuit used when heating blowing air in heating mode or dehumidification heating mode.
 当該冷却水は、熱媒体としての流体である。例えば、冷却水は、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、又は不凍液体である。 The cooling water is a fluid as a heat medium. For example, the cooling water is a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid.
 図1に示すように、機器側冷却水回路10は、作動に伴い発熱するインバータ11、モータジェネレータ12を温度調整する為の冷却水回路であり、本開示における機器側熱媒体回路に相当する。インバータ11、モータジェネレータ12という機器の性質上、機器側冷却水回路10を循環する冷却水の上限温度は、例えば、65℃程度に定められる。 As shown in FIG. 1, the device-side cooling water circuit 10 is a cooling water circuit for adjusting the temperature of the inverter 11 and the motor generator 12 that generate heat with operation, and corresponds to the device-side heat medium circuit in the present disclosure. The upper limit temperature of the cooling water circulating through the device-side cooling water circuit 10 is set to, for example, about 65 ° C., due to the nature of the devices such as the inverter 11 and the motor generator 12.
 当該機器側冷却水回路10は、インバータ11と、モータジェネレータ12と、機器側ラジエータ13と、第1ウォータポンプ14と、第1切替弁15とを有しており、熱媒体としての冷却水が循環可能に構成されている。 The apparatus-side cooling water circuit 10 includes an inverter 11, a motor generator 12, an apparatus-side radiator 13, a first water pump 14, and a first switching valve 15. Cooling water as a heat medium is used. It is configured to be recyclable.
 機器側冷却水回路10において、第1ウォータポンプ14、インバータ11、モータジェネレータ12、第1切替弁15、機器側ラジエータ13は、この順で冷却水が循環するように、当該機器側冷却水回路10に配置されている。 In the device-side cooling water circuit 10, the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device-side radiator 13 perform the cooling water circulation in this order. It is arranged in ten.
 インバータ11及びモータジェネレータ12は、電気自動車に搭載された車載機器であり、作動に伴って発熱する発熱機器である。そして、インバータ11は、電気自動車のバッテリ21から供給された直流電力を交流電力に変換してモータジェネレータ12に出力する電力変換部である。 The inverter 11 and the motor generator 12 are in-vehicle devices mounted on an electric vehicle, and are heat-generating devices that generate heat as they operate. The inverter 11 is a power conversion unit that converts DC power supplied from the battery 21 of the electric vehicle into AC power and outputs the AC power to the motor generator 12.
 又、モータジェネレータ12は、インバータ11から出力された電力を利用して走行用駆動力を発生すると共に、減速中や降坂中に回生電力を発生させる。インバータ11及びモータジェネレータ12は、作動に伴って発生する排熱を機器側冷却水回路10の冷却水に放熱する。換言すれば、インバータ11及びモータジェネレータ12は、機器側冷却水回路10の冷却水に熱を供給する。 Further, the motor generator 12 generates driving force for traveling using the electric power output from the inverter 11, and generates regenerative electric power during deceleration or downhill. The inverter 11 and the motor generator 12 radiate the exhaust heat generated as a result of the operation to the cooling water of the device-side cooling water circuit 10. In other words, the inverter 11 and the motor generator 12 supply heat to the cooling water of the device-side cooling water circuit 10.
 機器側ラジエータ13は、機器側冷却水回路10において、インバータ11、モータジェネレータ12を流通する冷却水と外気とを熱交換させる。機器側ラジエータ13には、図示しない室外送風機によって外気が送風される。従って、機器側ラジエータ13は、機器側冷却水回路10の冷却水が有する熱を外気に放熱させることができる。当該機器側ラジエータ13は、本開示における機器側熱交換器に相当する。 The device-side radiator 13 exchanges heat between the cooling water flowing through the inverter 11 and the motor generator 12 and the outside air in the device-side cooling water circuit 10. Outside air is blown to the device-side radiator 13 by an outdoor fan (not shown). Accordingly, the device-side radiator 13 can radiate the heat of the cooling water of the device-side cooling water circuit 10 to the outside air. The device-side radiator 13 corresponds to the device-side heat exchanger in the present disclosure.
 第1ウォータポンプ14は、機器側冷却水回路10の冷却水流路(即ち、本開示における熱媒体流路)上において、冷却水を吸入して吐出する熱媒体ポンプである。当該第1ウォータポンプ14は、電動式のポンプであり、機器側冷却水回路10を循環する冷却水の流量を調整する流量調整部の一部として機能する。 The first water pump 14 is a heat medium pump that sucks and discharges the cooling water on the cooling water flow path (that is, the heat medium flow path in the present disclosure) of the device-side cooling water circuit 10. The first water pump 14 is an electric pump, and functions as part of a flow rate adjustment unit that adjusts the flow rate of the cooling water circulating in the device-side cooling water circuit 10.
 図1に示すように、第1ウォータポンプ14の吐出口側には、インバータ11及びモータジェネレータ12を介して、第1切替弁15が接続されている。第1切替弁15における流出入口の一つには、回路接続部40を構成する第2接続流路42が接続されている。 As shown in FIG. 1, a first switching valve 15 is connected to the discharge port side of the first water pump 14 via an inverter 11 and a motor generator 12. A second connection channel 42 constituting the circuit connection portion 40 is connected to one of the outflow and inlet ports of the first switching valve 15.
 従って、第1ウォータポンプ14は、機器側冷却水回路10において、インバータ11及びモータジェネレータ12を介して、第2接続流路42側へ冷却水を送出する。当該第1ウォータポンプ14は、本開示における機器側熱媒体ポンプに相当する。 Therefore, the first water pump 14 sends out the cooling water to the second connection flow path 42 side in the device-side cooling water circuit 10 via the inverter 11 and the motor generator 12. The first water pump 14 corresponds to the device-side heat medium pump in the present disclosure.
 第1切替弁15は、機器側冷却水回路10において、モータジェネレータ12と機器側ラジエータ13の間に配置されている。第1切替弁15は、いわゆる電磁式三方弁によって構成されており、三つの流出入口を有している。 The first switching valve 15 is disposed between the motor generator 12 and the device-side radiator 13 in the device-side cooling water circuit 10. The first switching valve 15 is constituted by a so-called electromagnetic three-way valve, and has three outflow and inlet ports.
 図1に示すように、第1切替弁15の流出入口の一つには、機器側ラジエータ13における冷却水の流出入口が接続されており、他の流出入口には、モータジェネレータ12の流出入口が接続されている。 As shown in FIG. 1, the inlet / outlet of the cooling water in the device-side radiator 13 is connected to one of the inlet / outlet of the first switching valve 15, and the outlet / inlet of the motor generator 12 is connected to the other outlet / inlet. Is connected.
 そして、第1切替弁15における流出入口の残る一つには、第2接続流路42が接続されている。即ち、第1切替弁15は、機器側冷却水回路10の循環回路と第2接続流路42との接続位置に配置されている。 The second connection channel 42 is connected to the remaining one of the outflow and inlet ports of the first switching valve 15. That is, the first switching valve 15 is disposed at the connection position between the circulation circuit of the device-side coolant circuit 10 and the second connection flow path 42.
 第1切替弁15は、その内部の弁体を作動させることで、機器側冷却水回路10にて冷却水を循環させる状態と、機器側冷却水回路10における冷却水の循環を停止させた状態とを切り替えることができる。 The first switching valve 15 operates the internal valve body to circulate cooling water in the equipment-side cooling water circuit 10 and stops the circulation of cooling water in the equipment-side cooling water circuit 10 And can be switched.
 又、第1切替弁15は、機器側冷却水回路10に対する冷却水の流出入の有無を切り替えることができる。第1切替弁15の作動は、制御部60から出力される制御信号によって制御される。当該第1切替弁15は、本開示における第1切替部に相当し、本開示に係る流路切替部の一部を構成する。 Further, the first switching valve 15 can switch the presence or absence of the inflow and outflow of the cooling water with respect to the device-side cooling water circuit 10. The operation of the first switching valve 15 is controlled by a control signal output from the control unit 60. The said 1st switching valve 15 is corresponded to the 1st switching part in this indication, and comprises a part of flow-path switching part which concerns on this indication.
 車両用熱管理システム1におけるバッテリ側冷却水回路20は、急速充電時や電力利用時に発熱するバッテリ21を温度調整する為の冷却水回路であり、本開示におけるバッテリ側熱媒体回路に相当する。 The battery side cooling water circuit 20 in the vehicle thermal management system 1 is a cooling water circuit for adjusting the temperature of the battery 21 which generates heat during rapid charging and power utilization, and corresponds to the battery side heat medium circuit in the present disclosure.
 当該バッテリ側冷却水回路20は、バッテリ21と、チラー22と、バッテリ側ラジエータ23と、第2ウォータポンプ24と、第2切替弁25とを有しており、熱媒体としての冷却水が循環可能に構成されている。 The battery side cooling water circuit 20 includes a battery 21, a chiller 22, a battery side radiator 23, a second water pump 24, and a second switching valve 25. Cooling water as a heat medium circulates It is configured to be possible.
 そして、バッテリ側冷却水回路20において、第2ウォータポンプ24、チラー22、バッテリ21、第2切替弁25、バッテリ側ラジエータ23は、この順で冷却水が循環するように、当該バッテリ側冷却水回路20に配置されている。 Then, in the battery side cooling water circuit 20, the second water pump 24, the chiller 22, the battery 21, the second switching valve 25, and the battery side radiator 23 are such that the cooling water is circulated in this order. It is disposed in the circuit 20.
 バッテリ21は、充放電が可能な二次電池である。第1実施形態では、バッテリ21としてリチウムイオン電池が採用されている。バッテリ21は、充電された電力を走行用電動モータ等の電気式の車載機器に供給する。バッテリ21は、本開示におけるバッテリに相当する。 The battery 21 is a secondary battery that can be charged and discharged. In the first embodiment, a lithium ion battery is employed as the battery 21. The battery 21 supplies the charged power to an on-vehicle apparatus such as a traveling electric motor. The battery 21 corresponds to the battery in the present disclosure.
 ここで、この種のバッテリ21では、低温になると化学反応が進みにくく充放電に関して充分な性能を得にくい。一方、高温になると劣化が進行しやすくなる。従って、バッテリ21の温度を所定の温度範囲内に調整する必要性がある。 Here, in the battery 21 of this type, when the temperature is low, the chemical reaction does not proceed easily, and it is difficult to obtain sufficient performance regarding charge and discharge. On the other hand, when the temperature becomes high, the deterioration tends to progress. Therefore, there is a need to adjust the temperature of the battery 21 within a predetermined temperature range.
 第1実施形態に係る車両用熱管理システム1において、バッテリ側冷却水回路20における冷却水の温度(即ち、バッテリ水温TW)は、このバッテリ21の特性によって定められ、バッテリ21が充分な性能を発揮できる範囲となるように調整される。 In the vehicle thermal management system 1 according to the first embodiment, the temperature of the cooling water (i.e., the battery water temperature TW) in the battery side cooling water circuit 20 is determined by the characteristics of the battery 21, and the battery 21 has sufficient performance. It is adjusted to be within the range that can be exhibited.
 具体的には、第1実施形態においては、バッテリ水温TWの上限値である水温上限値TWuは、例えば、30℃に定められる。又、バッテリ水温TWの下限値である水温下限値TWlは、例えば、0℃に定められる。 Specifically, in the first embodiment, the water temperature upper limit value TWu, which is the upper limit value of the battery water temperature TW, is set to 30 ° C., for example. Further, the water temperature lower limit value TWl, which is the lower limit value of the battery water temperature TW, is set to, for example, 0 ° C.
 チラー22は、蒸気圧縮式の冷凍サイクルにおける構成機器の一つであり、当該冷凍サイクルの低圧冷媒と冷却水とを熱交換させることによって冷却水を冷却する熱媒体冷却用熱交換器である。チラー22は、バッテリ側冷却水回路20の冷却水が有する熱を、冷凍サイクルの低圧冷媒に吸熱させる。チラー22は、本開示におけるチラーに相当する。 The chiller 22 is one of the components in the vapor compression refrigeration cycle, and is a heat medium cooling heat exchanger that cools the coolant by heat exchange between the low pressure refrigerant and the coolant in the refrigeration cycle. The chiller 22 absorbs the heat of the cooling water of the battery side cooling water circuit 20 to the low pressure refrigerant of the refrigeration cycle. The chiller 22 corresponds to the chiller in the present disclosure.
 尚、図示は省略するが、第1実施形態における冷凍サイクルは、圧縮機、凝縮器、水冷媒熱交換器33、減圧装置、蒸発器、チラー22、室外熱交換器等を有する蒸気圧縮式冷凍機である。当該冷凍サイクルにおける冷媒としては、フロン系冷媒が用いられている。そして、冷凍サイクルは、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルである。 Although not shown, the refrigeration cycle in the first embodiment is a vapor compression refrigeration system having a compressor, a condenser, a water refrigerant heat exchanger 33, a pressure reducing device, an evaporator, a chiller 22, an outdoor heat exchanger, etc. Machine. A fluorocarbon-based refrigerant is used as the refrigerant in the refrigeration cycle. The refrigeration cycle is a subcritical refrigeration cycle in which the high pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
 従って、チラー22においては、冷凍サイクルの減圧装置にて減圧された低圧冷媒と、バッテリ側冷却水回路20を流れる冷却水との熱交換が行われ、冷却水の熱が低圧冷媒に吸熱される。 Therefore, in the chiller 22, heat exchange is performed between the low pressure refrigerant decompressed by the pressure reducing device of the refrigeration cycle and the cooling water flowing through the battery side cooling water circuit 20, and the heat of the cooling water is absorbed by the low pressure refrigerant .
 バッテリ側ラジエータ23は、バッテリ側冷却水回路20において、バッテリ21、チラー22を流通する冷却水と外気とを熱交換させる。バッテリ側ラジエータ23には、機器側ラジエータ13と同様に、図示しない室外送風機によって外気が送風される。 The battery side radiator 23 exchanges heat between the cooling water flowing through the battery 21 and the chiller 22 and the outside air in the battery side cooling water circuit 20. Outside air is blown to the battery side radiator 23 by an outdoor fan (not shown) as in the device side radiator 13.
 即ち、バッテリ側ラジエータ23は、バッテリ側冷却水回路20の冷却水が有する熱を外気に放熱させることができる。当該バッテリ側ラジエータ23は、本開示におけるバッテリ側熱交換器に相当する。 That is, the battery side radiator 23 can radiate the heat which the cooling water of the battery side cooling water circuit 20 has to the open air. The battery side radiator 23 corresponds to the battery side heat exchanger in the present disclosure.
 第2ウォータポンプ24は、バッテリ側冷却水回路20の冷却水流路上において、冷却水を吸入して吐出する熱媒体ポンプである。当該第2ウォータポンプ24は、電動式のポンプであり、バッテリ側冷却水回路20を循環する冷却水の流量を調整する流量調整部の一部として機能する。 The second water pump 24 is a heat medium pump that sucks in and discharges the cooling water on the cooling water flow path of the battery side cooling water circuit 20. The second water pump 24 is an electric pump, and functions as part of a flow rate adjustment unit that adjusts the flow rate of the cooling water circulating in the battery side cooling water circuit 20.
 図1に示すように、第2ウォータポンプ24の吐出口側には、バッテリ21及びチラー22を介して、第2切替弁25が接続されている。当該第2切替弁25における流出入口の一つには、回路接続部40を構成する第1接続流路41が接続されている。 As shown in FIG. 1, a second switching valve 25 is connected to the discharge port side of the second water pump 24 via a battery 21 and a chiller 22. The first connection flow path 41 constituting the circuit connection portion 40 is connected to one of the outflow / inflow ports of the second switching valve 25.
 従って、第2ウォータポンプ24は、バッテリ側冷却水回路20において、バッテリ21及びチラー22を介して、第1接続流路41側へ冷却水を送出する。当該第2ウォータポンプ24は、本開示におけるバッテリ側熱媒体ポンプに相当する。 Therefore, the second water pump 24 sends the cooling water to the first connection flow path 41 via the battery 21 and the chiller 22 in the battery side cooling water circuit 20. The second water pump 24 corresponds to the battery side heat medium pump in the present disclosure.
 第2切替弁25は、バッテリ側冷却水回路20において、バッテリ21とバッテリ側ラジエータ23の間に配置されている。第2切替弁25は、第1切替弁15と同様に、いわゆる電磁式三方弁によって構成されており、三つの流出入口を有している。 The second switching valve 25 is disposed between the battery 21 and the battery side radiator 23 in the battery side cooling water circuit 20. Similar to the first switching valve 15, the second switching valve 25 is constituted by a so-called electromagnetic three-way valve, and has three outflow and inlet ports.
 図1に示すように、第2切替弁25の流出入口の一つには、バッテリ21における冷却水の流出入口が接続されており、他の流出入口には、バッテリ側ラジエータ23の流出入口が接続されている。 As shown in FIG. 1, the outlet of the cooling water in the battery 21 is connected to one of the inlet and outlet of the second switching valve 25, and the outlet and inlet of the battery side radiator 23 is connected to the other outlet and inlet. It is connected.
 そして、第2切替弁25における流出入口の残る一つには、第1接続流路41が接続されている。即ち、第2切替弁25は、バッテリ側冷却水回路20の循環回路と第1接続流路41との接続位置に配置されている。 The first connection channel 41 is connected to the remaining one of the outflow and inlet ports of the second switching valve 25. That is, the second switching valve 25 is disposed at the connection position between the circulation circuit of the battery side cooling water circuit 20 and the first connection flow path 41.
 第2切替弁25は、その内部の弁体を作動させることで、バッテリ側冷却水回路20にて冷却水を循環させる状態と、バッテリ側冷却水回路20における冷却水の循環を停止させた状態とを切り替えることができる。 The second switching valve 25 operates the internal valve body to circulate the cooling water in the battery side cooling water circuit 20 and stops the circulation of the cooling water in the battery side cooling water circuit 20. And can be switched.
 又、第2切替弁25は、バッテリ側冷却水回路20に対する冷却水の流出入の有無を切り替えることができる。第2切替弁25の作動は、制御部60から出力される制御信号によって制御される。当該第2切替弁25は、本開示における第2切替部に相当し、本開示に係る流路切替部の一部を構成する。 Further, the second switching valve 25 can switch the presence or absence of the inflow and outflow of the cooling water to and from the battery side cooling water circuit 20. The operation of the second switching valve 25 is controlled by a control signal output from the control unit 60. The said 2nd switching valve 25 is corresponded to the 2nd switching part in this indication, and comprises a part of flow-path switching part which concerns on this indication.
 車両用熱管理システム1を構成する加熱側冷却水回路30は、空調対象空間である車室内を暖房する際に用いられる冷却水回路であり、本開示における加熱側熱媒体回路に相当する。 The heating side cooling water circuit 30 which comprises the vehicle thermal management system 1 is a cooling water circuit used when heating the vehicle interior which is air-conditioning object space, and is equivalent to the heating side heat medium circuit in this indication.
 当該加熱側冷却水回路30は、ヒータコア31と、加熱装置32と、水冷媒熱交換器33と、第3ウォータポンプ34と、第3切替弁35とを有しており、熱媒体としての冷却水が循環可能に構成されている。 The heating side cooling water circuit 30 has a heater core 31, a heating device 32, a water refrigerant heat exchanger 33, a third water pump 34, and a third switching valve 35, and is used as a heat medium for cooling. Water is configured to be recyclable.
 そして、加熱側冷却水回路30において、第3ウォータポンプ34、水冷媒熱交換器33、加熱装置32、第3切替弁35、ヒータコア31は、この順で冷却水が循環するように、当該加熱側冷却水回路30に配置されている。 Then, in the heating side cooling water circuit 30, the third water pump 34, the water refrigerant heat exchanger 33, the heating device 32, the third switching valve 35, and the heater core 31 perform the heating so that the cooling water circulates in this order. It is disposed in the side cooling water circuit 30.
 ヒータコア31は、加熱側冷却水回路30の冷却水と車室内へ送風される送風空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。当該ヒータコア31では、加熱側冷却水回路30の冷却水の有する熱が、空調対象空間である車室内に送風される送風空気に対して放熱される。 The heater core 31 is an air heating heat exchanger that heat-exchanges the cooling water of the heating side cooling water circuit 30 with the air blown into the vehicle interior to heat the air blown into the vehicle interior. In the heater core 31, the heat of the cooling water of the heating side cooling water circuit 30 is dissipated with respect to the blowing air blown into the vehicle compartment which is the space to be air conditioned.
 従って、当該車両用熱管理システム1においては、ヒータコア31にて冷却水の熱を送風空気に放熱することで、送風空気を暖めることができ、車室内の暖房や除湿暖房を行うことができる。当該ヒータコア31は、本開示におけるヒータコアに相当する。 Therefore, in the vehicle thermal management system 1, the heat of the cooling water is dissipated to the blowing air by the heater core 31, so that the blowing air can be warmed, and the heating of the vehicle interior and the dehumidifying heating can be performed. The heater core 31 corresponds to the heater core in the present disclosure.
 加熱装置32は、加熱側冷却水回路30を流れる冷却水を加熱する加熱装置である。当該加熱装置32は、例えば、PTC素子やニクロム線等を有しており、制御部60から出力される制御電力が供給されることによって発熱して冷却水を加熱する。 The heating device 32 is a heating device that heats the cooling water flowing through the heating side cooling water circuit 30. The heating device 32 includes, for example, a PTC element or a nichrome wire, and generates heat when the control power output from the control unit 60 is supplied to heat the cooling water.
 従って、加熱装置32による冷却水に対する加熱能力は、制御部60から出力される制御電力によって制御される。即ち、加熱装置32は、本開示における加熱装置として機能する。 Therefore, the heating capacity for the cooling water by the heating device 32 is controlled by the control power output from the control unit 60. That is, the heating device 32 functions as a heating device in the present disclosure.
 水冷媒熱交換器33は、上述したチラー22と同様に、図示しない冷凍サイクルの構成機器の一つであり、冷凍サイクルの圧縮機で圧縮された高圧冷媒と、加熱側冷却水回路30の冷却水とを熱交換させて、加熱側冷却水回路30の冷却水に対して放熱する。 The water refrigerant heat exchanger 33 is one of the components of the refrigeration cycle (not shown) like the chiller 22 described above, and is a high pressure refrigerant compressed by the compressor of the refrigeration cycle and cooling of the heating side cooling water circuit 30 Heat is exchanged with water to dissipate heat to the cooling water of the heating side cooling water circuit 30.
 これにより、水冷媒熱交換器33では、高圧冷媒の熱を熱源として、加熱側冷却水回路30の冷却水が加熱される。即ち、当該車両用熱管理システム1によれば、少なくとも暖房モードや除湿暖房モードにおいて、冷凍サイクルの高圧冷媒を熱源として、送風空気を加熱することができる。当該水冷媒熱交換器33は、本開示における冷媒熱媒体熱交換器に相当する。 Thereby, in the water refrigerant heat exchanger 33, the cooling water of the heating side cooling water circuit 30 is heated by using the heat of the high pressure refrigerant as a heat source. That is, according to the heat management system 1 for vehicles concerned, blowing air can be heated by using the high-pressure refrigerant of a frozen cycle as a heat source at least in heating mode or dehumidification heating mode. The water refrigerant heat exchanger 33 corresponds to the refrigerant heat medium heat exchanger in the present disclosure.
 第3ウォータポンプ34は、加熱側冷却水回路30の冷却水流路上において、冷却水を吸入して吐出する熱媒体ポンプである。当該第3ウォータポンプ34は、電動式のポンプであり、加熱側冷却水回路30を循環する冷却水の流量を調整する流量調整部の一部として機能する。 The third water pump 34 is a heat medium pump that sucks and discharges the cooling water on the cooling water flow path of the heating side cooling water circuit 30. The third water pump 34 is an electric pump, and functions as part of a flow rate adjustment unit that adjusts the flow rate of the cooling water circulating through the heating side cooling water circuit 30.
 図1に示すように、第3ウォータポンプ34の吐出口側には、水冷媒熱交換器33、加熱装置32、及びヒータコア31が接続されている。従って、当該第3ウォータポンプ34は、水冷媒熱交換器33、加熱装置32、ヒータコア31を通過するように、加熱側冷却水回路30の冷却水を送出することができる。第3ウォータポンプ34は、本開示における加熱側熱媒体ポンプに相当する。 As shown in FIG. 1, the water refrigerant heat exchanger 33, the heating device 32, and the heater core 31 are connected to the discharge port side of the third water pump 34. Therefore, the third water pump 34 can send the coolant of the heating side coolant circuit 30 so as to pass through the water refrigerant heat exchanger 33, the heating device 32, and the heater core 31. The third water pump 34 corresponds to the heating side heat medium pump in the present disclosure.
 そして、加熱側冷却水回路30における加熱装置32とヒータコア31の間には、第3切替弁35が配置されている。第3切替弁35は、第1切替弁15、第2切替弁25と同様に、いわゆる電磁式三方弁によって構成されており、三つの流出入口を有している。 A third switching valve 35 is disposed between the heating device 32 and the heater core 31 in the heating side cooling water circuit 30. Similar to the first switching valve 15 and the second switching valve 25, the third switching valve 35 is constituted by a so-called electromagnetic three-way valve, and has three outflow and inlet ports.
 図1に示すように、第3切替弁35の流出入口の一つには、ヒータコア31における冷却水の流出入口が接続されている。又、第3切替弁35における他の流出入口には、加熱装置32における冷却水通路の流出入口が接続されている。 As shown in FIG. 1, an outlet / inlet of cooling water in the heater core 31 is connected to one of the inlet / outlet of the third switching valve 35. Further, the other inlet / outlet of the third switching valve 35 is connected to the outlet / inlet of the cooling water passage in the heating device 32.
 そして、第3切替弁35における残る一つの流出入口には、回路接続部40を構成する第4接続流路44が接続されている。即ち、第3切替弁35は、加熱側冷却水回路30の循環回路と第4接続流路44との接続位置に配置されている。 Further, the fourth connection flow path 44 that constitutes the circuit connection portion 40 is connected to one remaining outflow port of the third switching valve 35. That is, the third switching valve 35 is disposed at the connection position between the circulation circuit of the heating side cooling water circuit 30 and the fourth connection flow path 44.
 第3切替弁35は、その内部の弁体を作動させることで、加熱側冷却水回路30にて冷却水を循環させる状態と、加熱側冷却水回路30における冷却水の循環を停止させた状態とを切り替えることができる。 The third switching valve 35 operates the internal valve element to circulate the cooling water in the heating side cooling water circuit 30 and stops the circulation of the cooling water in the heating side cooling water circuit 30. And can be switched.
 又、第3切替弁35は、加熱側冷却水回路30に対する冷却水の流出入の有無を切り替えることができる。第3切替弁35の作動は、制御部60から出力される制御信号によって制御される。当該第3切替弁35は、本開示における第3切替部に相当し、本開示に係る流路切替部の一部を構成する。 Further, the third switching valve 35 can switch the presence or absence of the outflow / inflow of the cooling water to the heating side cooling water circuit 30. The operation of the third switching valve 35 is controlled by a control signal output from the control unit 60. The said 3rd switching valve 35 is corresponded to the 3rd switching part in this indication, and comprises a part of flow-path switching part which concerns on this indication.
 次に、車両用熱管理システム1における回路接続部40の構成について説明する。当該回路接続部40は、機器側冷却水回路10、バッテリ側冷却水回路20及び加熱側冷却水回路30について、熱媒体である冷却水が相互に流出入可能なように接続する冷却水流路によって構成されている。 Next, the configuration of the circuit connection unit 40 in the vehicle thermal management system 1 will be described. The circuit connection unit 40 is connected to the apparatus-side cooling water circuit 10, the battery-side cooling water circuit 20, and the heating-side cooling water circuit 30 by a cooling water flow path that allows cooling water as a heat medium to flow in and out mutually. It is configured.
 図1に示すように、第1実施形態における回路接続部40は、第1接続流路41と、第2接続流路42と、第3接続流路43と、第4接続流路44と、バイパス流路45とを有している。当該回路接続部40は、本開示における回路接続部に相当する。 As shown in FIG. 1, the circuit connection unit 40 in the first embodiment includes a first connection channel 41, a second connection channel 42, a third connection channel 43, and a fourth connection channel 44. And a bypass flow passage 45. The circuit connection unit 40 corresponds to the circuit connection unit in the present disclosure.
 第1接続流路41は、機器側冷却水回路10とバッテリ側冷却水回路20とを接続する冷却水流路であり、機器側冷却水回路10とバッテリ側冷却水回路20の間における冷却水の流出入を可能にしている。当該第1接続流路41は、本開示における第1接続流路に相当し、回路接続部の一部を構成している。 The first connection flow path 41 is a cooling water flow path connecting the device-side cooling water circuit 10 and the battery-side cooling water circuit 20, and the cooling water flow between the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 It enables inflow and outflow. The said 1st connection flow path 41 is corresponded to the 1st connection flow path in this indication, and comprises a part of circuit connection part.
 図1に示すように、第1接続流路41の一端部は、機器側冷却水回路10において、機器側ラジエータ13の流出入口と第1ウォータポンプ14の吸入口との間に接続されている。又、第1接続流路41の他端部は、上述したように、バッテリ側冷却水回路20の第2切替弁25における流出入口の一つに接続されている。 As shown in FIG. 1, one end of the first connection channel 41 is connected between the outlet / inlet of the device-side radiator 13 and the suction port of the first water pump 14 in the device-side cooling water circuit 10. . Further, as described above, the other end portion of the first connection flow channel 41 is connected to one of the outflow and inlet ports of the second switching valve 25 of the battery side cooling water circuit 20.
 第2接続流路42は、第1接続流路41と異なる位置にて、機器側冷却水回路10とバッテリ側冷却水回路20を接続する冷却水流路であり、バッテリ側冷却水回路20と他の冷却水回路の間における冷却水の流出入を可能にしている。当該第2接続流路42は、本開示における第2接続流路に相当し、回路接続部の一部を構成している。 The second connection flow path 42 is a cooling water flow path connecting the device side cooling water circuit 10 and the battery side cooling water circuit 20 at a position different from the first connection flow path 41, and the battery side cooling water circuit 20 and the other It enables the outflow and inflow of cooling water between the cooling water circuits of The second connection channel 42 corresponds to the second connection channel in the present disclosure, and constitutes a part of the circuit connection portion.
 第2接続流路42の一端部は、機器側冷却水回路10の第1切替弁15における流出入口の一つに接続されている。そして、第2接続流路42の他端部は、図1に示すように、バッテリ側冷却水回路20におけるバッテリ側ラジエータ23と第2ウォータポンプ24の吸入口との間に接続されている。 One end of the second connection flow channel 42 is connected to one of the outflow and inlet ports of the first switching valve 15 of the device-side cooling water circuit 10. The other end portion of the second connection flow path 42 is connected between the battery side radiator 23 and the suction port of the second water pump 24 in the battery side cooling water circuit 20 as shown in FIG. 1.
 当該車両用熱管理システム1における温度調整側冷却水回路5は、機器側冷却水回路10とバッテリ側冷却水回路20を、第1接続流路41及び第2接続流路42にて接続することで構成されている。 The temperature adjustment side cooling water circuit 5 in the vehicle thermal management system 1 connects the device side cooling water circuit 10 and the battery side cooling water circuit 20 by the first connection flow passage 41 and the second connection flow passage 42. It consists of
 そして、第3接続流路43は、温度調整側冷却水回路5と加熱側冷却水回路30を接続する冷却水流路であり、温度調整側冷却水回路5と加熱側冷却水回路30の間における冷却水の流出入を可能にしている。当該第3接続流路43は、本開示における第3接続流路に相当し、回路接続部の一部を構成している。 The third connection flow path 43 is a cooling water flow path connecting the temperature adjustment side cooling water circuit 5 and the heating side cooling water circuit 30, and between the temperature adjustment side cooling water circuit 5 and the heating side cooling water circuit 30. It enables the inflow and outflow of cooling water. The said 3rd connection flow path 43 is corresponded to the 3rd connection flow path in this indication, and comprises a part of circuit connection part.
 図1に示すように、第3接続流路43の一端部は、温度調整側冷却水回路5における第2接続流路42に接続されている。そして、第3接続流路43の他端部は、加熱側冷却水回路30におけるヒータコア31の流出入口と第3ウォータポンプ34の吸入口との間に接続されている。 As shown in FIG. 1, one end of the third connection channel 43 is connected to the second connection channel 42 in the temperature adjustment side cooling water circuit 5. The other end of the third connection channel 43 is connected between the outlet / inlet of the heater core 31 in the heating side cooling water circuit 30 and the suction port of the third water pump 34.
 第4接続流路44は、第3接続流路43と異なる位置にて、温度調整側冷却水回路5と加熱側冷却水回路30とを接続する冷却水流路であり、温度調整側冷却水回路5と加熱側冷却水回路30の間における冷却水の流出入を可能にしている。そして、当該第4接続流路44は、本開示における第4接続流路に相当し、回路接続部の一部を構成している。 The fourth connection flow path 44 is a cooling water flow path connecting the temperature adjustment side cooling water circuit 5 and the heating side cooling water circuit 30 at a position different from the third connection flow path 43, and the temperature adjustment side cooling water circuit The cooling water can be flowed in and out between the heating water cooling circuit 5 and the heating side cooling water circuit 30. And the said 4th connection flow path 44 is corresponded to the 4th connection flow path in this indication, and comprises a part of circuit connection part.
 図1に示すように、第4接続流路44の一端部は、第2接続流路42において、第3接続流路43の接続位置よりもバッテリ側冷却水回路20側に接続されている。そして、第4接続流路44の他端部は、加熱側冷却水回路30の第3切替弁35における流出入口の一つに接続されている。 As shown in FIG. 1, one end portion of the fourth connection flow channel 44 is connected to the battery side cooling water circuit 20 side of the connection position of the third connection flow channel 43 in the second connection flow channel 42. The other end of the fourth connection channel 44 is connected to one of the outflow and inlet ports of the third switching valve 35 of the heating side cooling water circuit 30.
 そして、バイパス流路45は、第1接続流路41と第2接続流路42と接続する冷却水流路である。当該バイパス流路45の一端部は、第1接続流路41において、機器側冷却水回路10とバッテリ側冷却水回路20における中間位置に接続されている。 The bypass channel 45 is a cooling water channel connected to the first connection channel 41 and the second connection channel 42. One end of the bypass flow path 45 is connected to an intermediate position in the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 in the first connection flow path 41.
 図1に示すように、バイパス流路45の他端部は、第2接続流路42において、機器側冷却水回路10とバッテリ側冷却水回路20における中間位置に接続されている。具体的には、当該バイパス流路45の他端部は、第2接続流路42と第3接続流路43の接続位置と、第2接続流路42と第4接続流路44の接続位置との間において、第2接続流路42に接続されている。 As shown in FIG. 1, the other end of the bypass flow path 45 is connected to an intermediate position in the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 in the second connection flow path 42. Specifically, the other end of the bypass flow path 45 is the connection position of the second connection flow path 42 and the third connection flow path 43, and the connection position of the second connection flow path 42 and the fourth connection flow path 44. And is connected to the second connection channel 42.
 これにより、当該車両用熱管理システム1は、後述する図3~図5に示すように、バッテリ側冷却水回路20でバッテリ21等を通過した冷却水の流れを、バイパス流路45を通過するように調整することで、バッテリ側ラジエータ23を迂回させることができる。即ち、車両用熱管理システム1は、バッテリ側ラジエータ23による外気への放熱量を抑制することができる。 Thereby, as shown in FIGS. 3 to 5 described later, the vehicle thermal management system 1 passes the flow of the cooling water having passed through the battery 21 and the like in the battery side cooling water circuit 20 through the bypass flow passage 45. By adjusting in this way, the battery side radiator 23 can be bypassed. That is, the vehicle thermal management system 1 can suppress the amount of heat released to the outside air by the battery side radiator 23.
 続いて、車両用熱管理システム1における流路切替部50の構成について説明する。当該流路切替部50は、上述した回路接続部40における冷却水の流れを切り替える為に構成されており、機器側冷却水回路10の第1切替弁15と、バッテリ側冷却水回路20の第2切替弁25と、加熱側冷却水回路30の第3切替弁35とを有している。 Subsequently, the configuration of the flow path switching unit 50 in the vehicle thermal management system 1 will be described. The flow path switching unit 50 is configured to switch the flow of the cooling water in the circuit connection unit 40 described above, and the first switching valve 15 of the device side cooling water circuit 10 and the first of the battery side cooling water circuit 20 A second switching valve 25 and a third switching valve 35 of the heating side cooling water circuit 30 are provided.
 当該流路切替部50は、第1ウォータポンプ14、第2ウォータポンプ24、第3ウォータポンプ34の作動状態に応じて、第1切替弁15、第2切替弁25、第3切替弁35の状態を組み合わせることで、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30に対する冷却水の流出入を切り替えることができる。 The flow path switching unit 50 includes the first switching valve 15, the second switching valve 25, and the third switching valve 35 in accordance with the operation states of the first water pump 14, the second water pump 24, and the third water pump 34. By combining the states, it is possible to switch the inflow and outflow of the cooling water with respect to the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30.
 上述したように、第1切替弁15、第2切替弁25、第3切替弁35は、電磁式三方弁によって構成されている。第1切替弁15は、弁体を動作させることで、機器側冷却水回路10に対する冷却水の流出入を許容する状態と、機器側冷却水回路10に対する冷却水の流出入を遮断する状態とを切り替えることができる。 As described above, the first switching valve 15, the second switching valve 25, and the third switching valve 35 are configured by the electromagnetic three-way valve. The first switching valve 15 operates the valve body to allow the flow of cooling water into and out of the equipment side cooling water circuit 10, and the state of blocking the flow of cooling water into and out of the equipment side cooling water circuit 10 Can be switched.
 そして、第2切替弁25は、弁体を動作させることで、バッテリ側冷却水回路20に対する冷却水の流出入を許容する状態と、バッテリ側冷却水回路20に対する冷却水の流出入を遮断する状態とを切り替えることができる。 Then, the second switching valve 25 operates the valve body to shut off the flow of the cooling water into and out of the battery side cooling water circuit 20 and the state of permitting the flow of the cooling water into and out of the battery side cooling water circuit 20. It is possible to switch between states.
 又、第3切替弁35は、弁体を動作させることで、加熱側冷却水回路30に対する冷却水の流出入を許容する状態と、加熱側冷却水回路30に対する冷却水の流出入を遮断する状態とを切り替えることができる。 Further, the third switching valve 35 operates the valve body to shut off the flow of cooling water into and out of the heating side cooling water circuit 30 while permitting the flow of cooling water into and out of the heating side cooling water circuit 30. It is possible to switch between states.
 次に、第1実施形態に係る車両用熱管理システム1の制御系について説明する。図1に示すように、車両用熱管理システム1は、当該車両用熱管理システム1における制御対象機器の作動を制御する為の制御部60を有している。制御部60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。当該制御部60は、本開示における制御部に相当する。 Next, a control system of the vehicle thermal management system 1 according to the first embodiment will be described. As shown in FIG. 1, the vehicle thermal management system 1 includes a control unit 60 for controlling the operation of the control target device in the vehicle thermal management system 1. The control unit 60 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like, and peripheral circuits thereof. The control unit 60 corresponds to the control unit in the present disclosure.
 そして、当該制御部60は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器の作動を制御する。制御プログラムによる制御内容については、後に、図2等を参照しつつ詳細に説明する。 Then, the control unit 60 performs various operations and processes based on the control program stored in the ROM, and controls the operation of various control target devices connected to the output side. The control contents of the control program will be described in detail later with reference to FIG.
 図1に示すように、制御部60による制御対象機器は、第1ウォータポンプ14、第1切替弁15、第2ウォータポンプ24、第2切替弁25、第3ウォータポンプ34、第3切替弁35を含んでいる。 As shown in FIG. 1, the devices to be controlled by the control unit 60 include a first water pump 14, a first switching valve 15, a second water pump 24, a second switching valve 25, a third water pump 34, and a third switching valve. Contains 35.
 当該車両用熱管理システム1は、制御部60によって、これらの制御対象機器の作動を制御することで、車両用熱管理システム1における冷却水の流れを所望の態様に制御することができる。 The vehicle thermal management system 1 can control the flow of the cooling water in the vehicle thermal management system 1 in a desired mode by controlling the operation of these control target devices by the control unit 60.
 又、制御部60の入力側には、バッテリ水温センサ61と、外気温センサ62が接続されている。図1に示すように、バッテリ水温センサ61は、バッテリ側冷却水回路20において、バッテリ21とチラー22の間の冷却水流路に配置されている。 Further, a battery water temperature sensor 61 and an outside air temperature sensor 62 are connected to the input side of the control unit 60. As shown in FIG. 1, the battery coolant temperature sensor 61 is disposed in the coolant flow path between the battery 21 and the chiller 22 in the battery side coolant circuit 20.
 バッテリ水温センサ61は、当該バッテリ側冷却水回路20を流れる冷却水の温度を、バッテリ水温TWとして検出する。外気温センサ62は、電気自動車の車室外温度(外気温)Tamを検出する外気温検出部である。 The battery water temperature sensor 61 detects the temperature of the cooling water flowing through the battery side cooling water circuit 20 as the battery water temperature TW. The outside air temperature sensor 62 is an outside air temperature detection unit that detects an outside temperature (outside air temperature) Tam of the electric vehicle.
 尚、制御部60は、図示しない冷凍サイクルの作動に関する制御を行うと共に、車室内へ送風される送風空気の風量に関する制御を行う。つまり、制御部60は、冷凍サイクルを構成する圧縮機、減圧装置、送風機の作動制御や、冷凍サイクルにおける冷媒回路の切替制御を行う。又、制御部60の入力側には、図示しない内気温センサ等の各種空調制御用のセンサ群が接続されている。 The control unit 60 performs control related to the operation of the refrigeration cycle (not shown) and performs control related to the air volume of the blowing air blown into the vehicle compartment. That is, the control unit 60 performs operation control of the compressor, the pressure reducing device, and the blower that constitute the refrigeration cycle, and switching control of the refrigerant circuit in the refrigeration cycle. Further, on the input side of the control unit 60, a sensor group for various air conditioning control such as an internal air temperature sensor (not shown) is connected.
 次に、第1実施形態に係る車両用熱管理システム1における制御内容について、図2~図15を参照しつつ説明する。 Next, control contents in the vehicle thermal management system 1 according to the first embodiment will be described with reference to FIGS. 2 to 15.
 そして、図2等に示すフローチャートは、車両用熱管理システム1を含む電気自動車のシステム全体が起動(スタート)すると、予め定められた初期化処理を実行した後、制御部60によって実行される。そして、当該フローチャートによる制御は、車両用熱管理システム1が起動している間、繰り返し実行される。 The flowcharts illustrated in FIG. 2 and the like are executed by the control unit 60 after executing a predetermined initialization process when the entire system of the electric vehicle including the vehicle thermal management system 1 is started (started). And the control by the said flowchart is repeatedly performed while the thermal management system 1 for vehicles is starting.
 図2に示すように、ステップS1では、当該電気自動車におけるバッテリ21が急速充電されているか否かが判断される。バッテリ21の急速充電が実行されている場合は、ステップS2に進み、そうでない場合は、ステップS11の走行時制御に移行する。走行時制御の内容については後述する。 As shown in FIG. 2, in step S1, it is determined whether or not the battery 21 in the electric vehicle is rapidly charged. If the rapid charging of the battery 21 is being performed, the process proceeds to step S2, and if not, the process proceeds to traveling control in step S11. The contents of the on-running control will be described later.
 ステップS2においては、当該車両用熱管理システム1において、車室内空調がONであるか否かが判断される。車室内空調がONである場合には、ステップS3に進み、そうでない場合には、ステップS9に移行する。尚、ステップS9では、バッテリ21の急速充電時におけるバッテリ冷却制御が行われる。このステップS9の制御内容については、後に詳細に説明する。 In step S2, in the heat management system 1 for a vehicle, it is determined whether the air conditioning inside the vehicle compartment is ON. If the interior air conditioning is ON, the process proceeds to step S3, and if not, the process proceeds to step S9. In step S9, battery cooling control at the time of rapid charging of the battery 21 is performed. The control contents of step S9 will be described in detail later.
 ステップS3に移行すると、車室内空調の内容が暖房運転であるか否かが判断される。車室内空調が暖房運転である場合には、ステップS4に進み、暖房運転でない場合は、ステップS10に移行する。このステップS10では、バッテリ21の急速充電時における冷房運転制御が行われる。当該ステップS10の制御内容については、後に図面を参照しつつ説明する。 If it transfers to step S3, it will be judged whether the content of vehicle interior air conditioning is heating operation. If the vehicle interior air conditioning is heating operation, the process proceeds to step S4, and if it is not heating operation, the process proceeds to step S10. In step S10, cooling operation control at the time of rapid charge of the battery 21 is performed. The control contents of step S10 will be described later with reference to the drawings.
 ステップS4~ステップS8における制御内容は、バッテリ21の急速充電時に車室内を暖房する場合の制御である。ここで、当該車両用熱管理システム1において、車室内を暖房する際には、車室内に供給される送風空気を、ヒータコア31における熱交換によって加熱する必要がある。 The contents of control in step S4 to step S8 are control in the case where the passenger compartment is heated at the time of rapid charging of the battery 21. Here, in the vehicle heat management system 1, when heating the vehicle interior, it is necessary to heat the blown air supplied into the vehicle interior by heat exchange in the heater core 31.
 つまり、加熱側冷却水回路30のヒータコア31を通過する冷却水が、或る程度の熱を有している必要がある。一方、バッテリ21の急速充電に際して、バッテリ21は発熱する。バッテリ側冷却水回路20にて、バッテリ21を通過する冷却水は、急速充電に伴って生じた熱により加熱された状態となる。 That is, the cooling water passing through the heater core 31 of the heating side cooling water circuit 30 needs to have a certain amount of heat. On the other hand, when the battery 21 is rapidly charged, the battery 21 generates heat. In the battery side cooling water circuit 20, the cooling water passing through the battery 21 is heated by the heat generated by the rapid charging.
 ステップS4では、バッテリ21の急速充電時に生じた熱を有効に活用して車室内の暖房を行う為に、流路切替部50等の作動が制御される。図3は、ステップS4の制御による車両用熱管理システム1の状態を示しており、急速充電時の暖房モードの初期段階に関する冷却水の流れを示す説明図である。 In step S4, the operation of the flow path switching unit 50 and the like is controlled in order to heat the vehicle interior by effectively utilizing the heat generated during rapid charging of the battery 21. FIG. 3 shows the state of the vehicle thermal management system 1 under the control of step S4, and is an explanatory view showing the flow of the cooling water in the initial stage of the heating mode at the time of quick charge.
 この図3等においては、車両用熱管理システム1の冷却水流路のうち、冷却水が流通している部分を実線で示しており、冷却水が留まっている部分を破線で示している。又、車両用熱管理システム1の各種制御対象機器においても、作動している制御対象機器を実線で示し、作動を停止している制御対象機器を破線で示している。これらの点については、後述する各種冷却水流れを示す構成図でも同様である。 In this FIG. 3 etc., the part through which the cooling water is distribute | circulating is shown with the continuous line among the cooling water flow paths of the thermal management system 1 for vehicles, and the part with which the cooling water remains is shown with the broken line. Further, also in various control target devices of the vehicle thermal management system 1, the control target devices in operation are indicated by solid lines, and the control target devices in which operation is stopped are indicated by broken lines. About these points, it is the same also in the block diagram which shows the various cooling water flows mentioned later.
 図3に示すように、ステップS4では、第2ウォータポンプ24は、冷却水を吐出口から圧送し、第1ウォータポンプ14、第3ウォータポンプ34は停止した状態を維持するように制御される。又、冷凍サイクルの作動も停止している為、チラー22及び水冷媒熱交換器33における熱交換は行われず、加熱装置32も停止した状態である。 As shown in FIG. 3, in step S 4, the second water pump 24 pressure-feeds the cooling water from the discharge port, and the first water pump 14 and the third water pump 34 are controlled to be kept stopped. . Further, since the operation of the refrigeration cycle is also stopped, heat exchange in the chiller 22 and the water refrigerant heat exchanger 33 is not performed, and the heating device 32 is also stopped.
 第1切替弁15は、第2接続流路42側を閉塞し、モータジェネレータ12側と機器側ラジエータ13側を連通するように制御される。一方、第2切替弁25は、第2接続流路42側とバッテリ21側を連通し、バッテリ側ラジエータ23側を閉塞するように制御される。そして、第3切替弁35は、ヒータコア31側、加熱装置32側、第4接続流路44側の全てを連通するように制御される。 The first switching valve 15 is controlled so as to close the second connection flow path 42 and to communicate the motor generator 12 side with the device-side radiator 13 side. On the other hand, the second switching valve 25 communicates with the second connection flow path 42 side and the battery 21 side, and is controlled so as to close the battery side radiator 23 side. The third switching valve 35 is controlled to communicate all of the heater core 31 side, the heating device 32 side, and the fourth connection flow path 44 side.
 このように回路接続部40の作動を制御することで、車両用熱管理システム1においては、機器側冷却水回路10及び加熱側冷却水回路30が、回路接続部40を介して接続された状態になる。即ち、バッテリ側冷却水回路20と加熱側冷却水回路30が本開示における熱媒体接続状態に制御される。 By controlling the operation of the circuit connection unit 40 in this manner, in the vehicle thermal management system 1, the device-side coolant circuit 10 and the heating-side coolant circuit 30 are connected via the circuit connection unit 40. become. That is, the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are controlled to the heat medium connection state in the present disclosure.
 この時、第2ウォータポンプ24の作動によって、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→第1接続流路41→バイパス流路45→第2接続流路42と流れ、バッテリ側冷却水回路20を循環する。これにより、急速充電によってバッテリ21に生じた熱が冷却水に吸熱され、冷却水と共に移送される。 At this time, by the operation of the second water pump 24, the cooling water flows from the second water pump 24 → the chiller 22 → the battery 21 → the first connection channel 41 → the bypass channel 45 → the second connection channel 42, the battery The water is circulated in the side cooling water circuit 20. As a result, the heat generated in the battery 21 due to the rapid charging is absorbed by the cooling water and transferred together with the cooling water.
 第2接続流路42に流入した冷却水は、第3接続流路43を介して、加熱側冷却水回路30へ流入する。図3に示すように、第3接続流路43から流出した冷却水は、ヒータコア31→第3切替弁35という流れと、第3ウォータポンプ34→水冷媒熱交換器33→加熱装置32→第3切替弁35という流れに分岐して、並列に流れる。 The cooling water flowing into the second connection flow channel 42 flows into the heating side cooling water circuit 30 via the third connection flow channel 43. As shown in FIG. 3, the cooling water flowing out of the third connection channel 43 has a flow of heater core 31 → third switching valve 35, and third water pump 34 → water refrigerant heat exchanger 33 → heating device 32 → third It branches into the flow of 3 switching valve 35, and flows in parallel.
 これにより、当該車両用熱管理システム1は、バッテリ21の急速充電による排熱で暖められた冷却水を、ヒータコア31を通過させることができる。つまり、車両用熱管理システム1は、バッテリ21の排熱を有効活用して、車室内の暖房及び加熱側冷却水回路30側を暖めることができる。 As a result, the vehicle thermal management system 1 can allow the cooling water warmed by the exhaust heat from the rapid charging of the battery 21 to pass through the heater core 31. That is, the vehicle thermal management system 1 can effectively utilize the exhaust heat of the battery 21 to warm the heating and heating-side coolant circuit 30 side of the vehicle interior.
 又、当該車両用熱管理システム1は、冷凍サイクル及び加熱装置32を作動させることなく車室内暖房を行う為、車室内暖房に要する電力消費を抑えることができる。つまり、車両用熱管理システム1は、急速充電と車室内暖房を並行して行う場合において、バッテリ21の充電効率を高めることができる。 Further, since the vehicle thermal management system 1 performs heating of the interior of the vehicle without operating the refrigeration cycle and the heating device 32, it is possible to reduce power consumption required for heating the interior of the vehicle. That is, the vehicle thermal management system 1 can enhance the charging efficiency of the battery 21 when performing the rapid charging and the heating in the passenger compartment in parallel.
 尚、ステップS4に移行した際に、例えば、ユーザ等によって即時暖房設定が設定されていた場合、図4に示す冷却水の流れになるように、各種制御対象機器を制御する。上述した図3の場合とは異なり、第3切替弁35は、ヒータコア31側、第4接続流路44側を連通し、加熱装置32側を閉塞するように制御される。 When the process proceeds to step S4, for example, when the immediate heating setting is set by the user or the like, various control target devices are controlled so as to be the flow of the cooling water shown in FIG. Unlike the case of FIG. 3 described above, the third switching valve 35 communicates with the heater core 31 side and the fourth connection flow path 44 side, and is controlled so as to close the heating device 32 side.
 これにより、第3接続流路43を通過した冷却水の全てがヒータコア31及び第3切替弁35を通過することになる。即ち、この場合には、車両用熱管理システム1は、急速充電によりバッテリ21に生じた熱を、全て車室内の暖房に利用することができるので、図3に示す場合よりも、短期間で車室内を暖め、快適性を向上させることができる。 As a result, all the cooling water that has passed through the third connection flow path 43 passes through the heater core 31 and the third switching valve 35. That is, in this case, the vehicle thermal management system 1 can use all the heat generated in the battery 21 due to the rapid charging for heating the vehicle interior, so in a shorter period of time than the case shown in FIG. It can warm the passenger compartment and improve comfort.
 ステップS5においては、図3又は図4の状態において、バッテリ水温TWが水温上限値TWu以上であるか否かが判断される。バッテリ水温TWが水温上限値TWu以上である場合には、ステップS6に進み、そうでない場合は、ステップS4に戻る。尚、第1実施形態においては、ステップS4に移行した後に、バッテリ水温TWが水温上限値TWu以上となった状態を、急速充電時の暖房モードの中期という。 In step S5, in the state of FIG. 3 or FIG. 4, it is determined whether battery water temperature TW is equal to or higher than water temperature upper limit value TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process proceeds to step S6. If not, the process returns to step S4. In the first embodiment, the state in which the battery water temperature TW becomes equal to or higher than the water temperature upper limit value TWu after shifting to step S4 is referred to as the middle period of the heating mode during rapid charge.
 ステップS6では、急速充電時におけるバッテリ21の温度調整と、車室内暖房とを効率よく並行して行う為に、流路切替部50等の作動が制御される。図5は、ステップS6の制御による車両用熱管理システム1の状態を示しており、急速充電時の暖房モードの中期段階に関する冷却水の流れを示す説明図である。 In step S6, the operation of the flow path switching unit 50 and the like is controlled in order to efficiently perform temperature control of the battery 21 at the time of rapid charge and heating the vehicle interior in parallel. FIG. 5 shows the state of the vehicle thermal management system 1 under the control of step S6, and is an explanatory view showing the flow of cooling water in the middle stage of the heating mode at the time of quick charge.
 ステップS6においては、ステップS4に係る図3又は4の状態から図5の状態になるように、各制御対象機器の作動が制御される。具体的には、バッテリ側冷却水回路20においては、チラー22は、冷凍サイクルの低圧冷媒が流れるように制御され、バッテリ側冷却水回路20における冷却水の熱を当該低圧冷媒に吸熱させる。 In step S6, the operation of each control target device is controlled so that the state of FIG. 3 or 4 according to step S4 is changed to the state of FIG. Specifically, in the battery side cooling water circuit 20, the chiller 22 is controlled so that the low pressure refrigerant of the refrigeration cycle flows, and the low pressure refrigerant absorbs heat of the cooling water in the battery side cooling water circuit 20.
 そして、加熱側冷却水回路30では、第3切替弁35は、ヒータコア31側と加熱装置32側を連通させ、第4接続流路44側を閉塞するように制御される。第3ウォータポンプ34は、加熱側冷却水回路30の冷却水を圧送する。 And in the heating side cooling water circuit 30, the 3rd switching valve 35 is controlled so that the heater core 31 side and the heating device 32 side may be connected, and the 4th connection channel 44 side may be closed. The third water pump 34 pumps the cooling water of the heating side cooling water circuit 30.
 水冷媒熱交換器33は、冷凍サイクルの高圧冷媒が流通するように制御され、当該高圧冷媒の熱によって、加熱側冷却水回路30の冷却水を加熱する。当該車両用熱管理システム1における他の制御対象機器の作動は、図3又は図4の状態と同様である。 The water refrigerant heat exchanger 33 is controlled so that the high pressure refrigerant of the refrigeration cycle flows, and heats the cooling water of the heating side cooling water circuit 30 by the heat of the high pressure refrigerant. The operation of the other control target device in the vehicle thermal management system 1 is the same as in the state of FIG. 3 or FIG. 4.
 このように回路接続部40の作動を制御することで、車両用熱管理システム1においては、バッテリ側冷却水回路20、加熱側冷却水回路30にて、それぞれ独立した冷却水が循環する状態になる。即ち、バッテリ側冷却水回路20と加熱側冷却水回路30が本開示における循環状態に制御される。 By controlling the operation of the circuit connection portion 40 in this manner, in the vehicle thermal management system 1, independent cooling water is circulated in the battery side cooling water circuit 20 and the heating side cooling water circuit 30. Become. That is, the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are controlled to the circulation state in the present disclosure.
 この時、第2ウォータポンプ24の作動によって、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→第1接続流路41→バイパス流路45→第2接続流路42と流れ、バッテリ側冷却水回路20を循環する。 At this time, by the operation of the second water pump 24, the cooling water flows from the second water pump 24 → the chiller 22 → the battery 21 → the first connection channel 41 → the bypass channel 45 → the second connection channel 42, the battery The water is circulated in the side cooling water circuit 20.
 これにより、急速充電によってバッテリ21に生じた熱が冷却水に吸熱され、冷却水と共に移送される。そして、チラー22において、冷却水の熱は冷凍サイクルの低圧冷媒に吸熱される。従って、バッテリ側冷却水回路20は、急速充電によって発熱するバッテリ21を、冷却水によって冷却することができる。 As a result, the heat generated in the battery 21 due to the rapid charging is absorbed by the cooling water and transferred together with the cooling water. Then, in the chiller 22, the heat of the cooling water is absorbed by the low pressure refrigerant of the refrigeration cycle. Therefore, the battery side cooling water circuit 20 can cool the battery 21 which generates heat by rapid charging by the cooling water.
 そして、加熱側冷却水回路30では、第3ウォータポンプ34の作動によって、冷却水は、第3ウォータポンプ34→水冷媒熱交換器33→加熱装置32→第3切替弁35→ヒータコア31と流れ、加熱側冷却水回路30を循環する。 Then, in the heating side cooling water circuit 30, the cooling water flows from the third water pump 34 → the water refrigerant heat exchanger 33 → the heating device 32 → the third switching valve 35 → the heater core 31 by the operation of the third water pump 34. , And circulate through the heating side cooling water circuit 30.
 水冷媒熱交換器33を通過する際に、冷却水は、冷凍サイクルの高圧冷媒によって加熱される。即ち、当該車両用熱管理システム1は、バッテリ21の急速充電により生じた熱を冷凍サイクルにて汲み上げて、冷却水を加熱することができる。 When passing through the water refrigerant heat exchanger 33, the cooling water is heated by the high pressure refrigerant of the refrigeration cycle. That is, the said thermal management system 1 for vehicles can heat up a cooling water by pumping up the heat which arose by the rapid charge of the battery 21 by a refrigerating cycle.
 水冷媒熱交換器33で加熱された冷却水は、ヒータコア31を通過する際に、送風空気に対して放熱する。従って、当該車両用熱管理システム1は、バッテリ21の急速充電により生じた熱を有効に活用して、車室内暖房を行うことができる。 When passing through the heater core 31, the cooling water heated by the water refrigerant heat exchanger 33 releases heat to the blowing air. Therefore, the said vehicle thermal management system 1 can perform vehicle interior heating, using the heat which arose by the rapid charge of the battery 21 effectively.
 このステップS6の状態にすれば、車両用熱管理システム1は、バッテリ21に生じた熱をチラー22にて回収し、冷凍サイクル及び水冷媒熱交換器33を介して、加熱側冷却水回路30側を間接的に暖めることができる。 In the state of step S6, the vehicle thermal management system 1 recovers the heat generated in the battery 21 by the chiller 22, and the heating side cooling water circuit 30 through the refrigeration cycle and the water refrigerant heat exchanger 33. You can warm the side indirectly.
 ステップS7に移行すると、図5の状態において、バッテリ水温TWが水温上限値TWu以上であるか否かが判断される。バッテリ水温TWが水温上限値TWu以上である場合には、ステップS8に進み、そうでない場合は、ステップS6に戻る。 If it transfers to step S7, in the state of FIG. 5, it will be judged whether battery water temperature TW is more than the water temperature upper limit TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process proceeds to step S8. If not, the process returns to step S6.
 ステップS8では、急速充電時におけるバッテリ21の温度調整と、車室内暖房とを効率よく並行して行う為に、流路切替部50等の作動が制御される。図6は、ステップS8の制御による車両用熱管理システム1の状態を示しており、急速充電時の暖房モードの後期段階に関する冷却水の流れを示す説明図である。 In step S8, the operation of the flow path switching unit 50 and the like is controlled in order to efficiently perform temperature control of the battery 21 at the time of rapid charging and heating the vehicle interior in parallel. FIG. 6 shows the state of the vehicle thermal management system 1 under the control of step S8, and is an explanatory view showing the flow of the cooling water in the late stage of the heating mode at the time of quick charge.
 ステップS8においては、ステップS6における図5の状態から図6の状態になるように、各制御対象機器の作動が制御される。具体的には、バッテリ側冷却水回路20においては、第2切替弁25は、バッテリ21側とバッテリ側ラジエータ23側を連通し、第2接続流路42側を閉塞するように制御される。当該車両用熱管理システム1における他の制御対象機器の作動は、図5の状態と同様である。 In step S8, the operation of each control target device is controlled so as to change from the state of FIG. 5 in step S6 to the state of FIG. Specifically, in the battery side cooling water circuit 20, the second switching valve 25 communicates the battery 21 side with the battery side radiator 23 side, and is controlled so as to close the second connection flow path 42 side. The operation of the other control target device in the vehicle thermal management system 1 is the same as in the state of FIG.
 このように回路接続部40の作動を制御することで、車両用熱管理システム1においては、バッテリ側冷却水回路20、加熱側冷却水回路30にて、それぞれ独立した冷却水が循環する状態になる。即ち、バッテリ側冷却水回路20と加熱側冷却水回路30が本開示における循環状態に制御される。 By controlling the operation of the circuit connection portion 40 in this manner, in the vehicle thermal management system 1, independent cooling water is circulated in the battery side cooling water circuit 20 and the heating side cooling water circuit 30. Become. That is, the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are controlled to the circulation state in the present disclosure.
 この時、第2ウォータポンプ24の作動によって、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→バッテリ側ラジエータ23と流れ、バッテリ側冷却水回路20を循環する。 At this time, by the operation of the second water pump 24, the cooling water flows from the second water pump 24 → the chiller 22 → the battery 21 → the battery side radiator 23 and circulates in the battery side cooling water circuit 20.
 これにより、急速充電によってバッテリ21に生じた熱が冷却水に吸熱され、冷却水と共に移送される。そして、チラー22において、冷却水の熱は冷凍サイクルの低圧冷媒に吸熱される。 As a result, the heat generated in the battery 21 due to the rapid charging is absorbed by the cooling water and transferred together with the cooling water. Then, in the chiller 22, the heat of the cooling water is absorbed by the low pressure refrigerant of the refrigeration cycle.
 更に、バッテリ側ラジエータ23を通過することで、バッテリ側冷却水回路20の冷却水における余剰の熱は外気に対して放熱され、冷却水の温度を低下させることができる。従って、バッテリ側冷却水回路20は、急速充電によって発熱するバッテリ21を、冷却水によって冷却することができる。 Furthermore, by passing through the battery side radiator 23, the excess heat in the cooling water of the battery side cooling water circuit 20 is radiated to the outside air, and the temperature of the cooling water can be lowered. Therefore, the battery side cooling water circuit 20 can cool the battery 21 which generates heat by rapid charging by the cooling water.
 従って、当該車両用熱管理システム1は、チラー22における吸熱作用と、バッテリ側ラジエータ23における外気への放熱を用いて、バッテリ側冷却水回路20の冷却水を冷却することができる。 Therefore, the thermal management system 1 for vehicles can cool the cooling water of the battery side cooling water circuit 20 using the heat absorption effect in the chiller 22 and the heat radiation to the open air in the battery side radiator 23.
 これにより、当該車両用熱管理システム1は、図5の状態でも、バッテリ側冷却水回路20の冷却水の温度が急速充電に伴うバッテリ21の熱で水温上限値TWuよりも温められた場合に対応して、冷却水の温度を適切に調整することができる。 Thus, even in the state shown in FIG. 5, the vehicle thermal management system 1 can warm the temperature of the cooling water of the battery side cooling water circuit 20 more than the water temperature upper limit value TWu by the heat of the battery 21 accompanying rapid charging. Correspondingly, the temperature of the cooling water can be properly adjusted.
 尚、ステップS8による図6の状態において、バッテリ側冷却水回路20の冷却水の温度が更に上昇した場合には、当該車両用熱管理システム1は、流路切替部50の作動を制御することで、この状態に対応させることができる。 In the state of FIG. 6 at step S8, when the temperature of the cooling water of the battery side cooling water circuit 20 further rises, the vehicle thermal management system 1 controls the operation of the flow path switching unit 50. Can correspond to this condition.
 具体的には、第2切替弁25は、図6の状態から、バッテリ21側、バッテリ側ラジエータ23側、第2接続流路42側の全てを連通するように制御される。そして、第1切替弁15は、機器側ラジエータ13側と第2接続流路42側を連通し、モータジェネレータ12側を閉塞するように制御される。 Specifically, from the state of FIG. 6, the second switching valve 25 is controlled so that all of the battery 21 side, the battery side radiator 23 side, and the second connection flow path 42 side communicate with each other. The first switching valve 15 communicates with the device-side radiator 13 side and the second connection flow path 42 side, and is controlled to close the motor generator 12 side.
 これにより、温度調整側冷却水回路5側において、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→第2切替弁25まで流れた後、バッテリ側ラジエータ23側と第1接続流路41側とに分岐する。従って、バッテリ側ラジエータ23に流入した冷却水は、その熱を外気に対して放熱する。 Thereby, on the temperature adjustment side cooling water circuit 5 side, the cooling water flows from the second water pump 24 → the chiller 22 → the battery 21 → the second switching valve 25 and then the battery side radiator 23 side and the first connection flow path Branch to the 41 side. Therefore, the cooling water which has flowed into the battery side radiator 23 dissipates the heat to the outside air.
 一方、第1接続流路41側に流れた冷却水は、第1接続流路41を介して、機器側ラジエータ13に流入する。従って、機器側ラジエータ13に流入した冷却水は、その熱を外気に対して放熱する。その後、冷却水は、第1ウォータポンプ14→第2接続流路42と流れて、第2ウォータポンプ24の吸入口に至る。 On the other hand, the cooling water having flowed to the side of the first connection channel 41 flows into the device-side radiator 13 via the first connection channel 41. Therefore, the cooling water that has flowed into the device-side radiator 13 dissipates its heat to the outside air. Thereafter, the cooling water flows from the first water pump 14 to the second connection channel 42 and reaches the suction port of the second water pump 24.
 このように、当該車両用熱管理システム1は、図7に示す状態に制御することで、チラー22における吸熱作用と、機器側ラジエータ13及びバッテリ側ラジエータ23における外気への放熱を用いて、バッテリ側冷却水回路20の冷却水を冷却することができる。 Thus, by controlling the vehicle thermal management system 1 to the state shown in FIG. 7, the battery using the heat absorbing action of the chiller 22 and the heat dissipation to the outside air of the device-side radiator 13 and the battery-side radiator 23 The cooling water of the side cooling water circuit 20 can be cooled.
 ステップS9では、急速充電時におけるバッテリ冷却制御が行われる。具体的には、バッテリ水温センサ61のバッテリ水温TWや外気温センサ62による外気温Tamに応じて、バッテリ側冷却水回路20における冷却水の流れが切り替えられ、急速充電により生じた熱を放熱させる。 In step S9, battery cooling control at the time of quick charge is performed. Specifically, the flow of the cooling water in the battery side cooling water circuit 20 is switched according to the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62, and the heat generated by the rapid charge is dissipated .
 例えば、バッテリ水温TWや外気温Tamに応じて、バッテリ側ラジエータ23、機器側ラジエータ13を用いた外気に対する放熱量や、チラー22による吸熱量を変更し、バッテリ21を通過する冷却水の温度を調整する。これにより、ステップS9では、急速充電により発熱するバッテリ21を、適切な温度に調整された冷却水で冷却することができる。 For example, according to the battery water temperature TW and the outside air temperature Tam, the heat radiation amount to the outside air using the battery side radiator 23 and the device side radiator 13 and the heat absorption amount by the chiller 22 are changed to change the temperature of the cooling water passing through the battery 21 adjust. Thereby, in step S9, the battery 21 which generates heat due to rapid charging can be cooled by the cooling water adjusted to an appropriate temperature.
 ステップS10においては、急速充電時における冷房運転制御が行われる。この急速充電時における冷房運転制御では、図8に示すフローチャートに従って、車両用熱管理システム1の各制御対象機器の作動が制御される。ステップS10における制御内容については、図8を参照しつつ後に詳細に説明する。 In step S10, cooling operation control during rapid charging is performed. In the cooling operation control at the time of rapid charging, the operation of each control target device of the vehicle thermal management system 1 is controlled according to the flowchart shown in FIG. The control contents in step S10 will be described in detail later with reference to FIG.
 そして、ステップS11に移行すると、電気自動車が走行している場合の走行時制御が行われる。走行時制御では、図10に示すフローチャートに従って、車両用熱管理システム1の各制御対象機器の作動が制御される。ステップS11の制御内容に関しては、図10を参照しつつ後に詳細に説明する。 And if it transfers to step S11, control at the time of driving | running | working in case the electric vehicle is drive | working will be performed. In the traveling control, the operation of each control target device of the vehicle thermal management system 1 is controlled according to the flowchart shown in FIG. The control contents of step S11 will be described in detail later with reference to FIG.
 次に、ステップS10の急速充電時における冷房運転制御の制御内容について、図8、図9を参照しつつ説明する。 Next, control contents of the cooling operation control at the time of rapid charge in step S10 will be described with reference to FIGS. 8 and 9.
 ステップS10の急速充電時における冷房運転制御を開始すると、図8に示すように、先ず、ステップS21にて、冷凍サイクル及び送風機の作動が冷房モードに切り替えられる。即ち、ステップS21では、冷凍サイクルにて、減圧装置にて減圧された低圧冷媒が蒸発器に流入し、当該蒸発器にて、送風機によって車室内に送風される送風空気と熱交換するように制御される。 When cooling operation control at the time of rapid charging in step S10 is started, first, in step S21, the operation of the refrigeration cycle and the blower is switched to the cooling mode as shown in FIG. That is, in step S21, in the refrigeration cycle, the low-pressure refrigerant reduced in pressure by the pressure reducing device flows into the evaporator, and the evaporator controls heat exchange with the air blown into the vehicle compartment by the blower. Be done.
 ステップS22では、外気温センサ62の検出結果を用いて、外気温Tamが予め定められた基準外気温Ktam以上であるか否かが判断される。基準外気温KTamは、外気温Tamが高温であるか否かを判断する為の基準値であり、例えば、30℃に設定されている。外気温Tamが基準外気温KTam以上である場合には、ステップS23に進み、そうでない場合は、ステップS26に進む。 In step S22, using the detection result of the outside air temperature sensor 62, it is determined whether the outside air temperature Tam is equal to or more than a predetermined outside air temperature Ktam. The standard outside temperature KTam is a reference value for determining whether the outside temperature Tam is high temperature, and is set to, for example, 30 ° C. If the outside air temperature Tam is equal to or higher than the outside air temperature KTam, the process proceeds to step S23. If not, the process proceeds to step S26.
 ステップS23においては、急速充電により発熱するバッテリ21の冷却を行いつつ、車室内の冷房を行う為に、流路切替部50等の作動が制御される。具体的には、バッテリ側冷却水回路20において、第2ウォータポンプ24は、バッテリ側冷却水回路20の冷却水を送出すると共に、第2切替弁25は、バッテリ21側とバッテリ側ラジエータ23側と機器側ラジエータ13を連通し、第1切替弁15は、インバータ11、モータジェネレータ12側を閉塞するように制御される。 In step S23, the operation of the flow path switching unit 50 and the like is controlled in order to cool the interior of the vehicle while cooling the battery 21 that generates heat due to rapid charging. Specifically, in the battery side cooling water circuit 20, the second water pump 24 delivers the cooling water of the battery side cooling water circuit 20, and the second switching valve 25 is on the battery 21 side and the battery side radiator 23 side. The first switching valve 15 is controlled so as to close the side of the inverter 11 and the motor generator 12.
 この時、制御部60は、チラー22にて冷凍サイクルの低圧冷媒に、バッテリ側冷却水回路20の冷却水の熱を吸熱させるように、冷凍サイクルの作動を制御する。尚、冷凍サイクルにおいて、チラー22にて吸熱された熱は、当該冷凍サイクルに接続された室外熱交換器にて、外気に対して放熱される。 At this time, the control unit 60 controls the operation of the refrigeration cycle so that the heat of the cooling water of the battery side cooling water circuit 20 is absorbed by the low pressure refrigerant of the refrigeration cycle by the chiller 22. In the refrigeration cycle, the heat absorbed by the chiller 22 is radiated to the outside air by the outdoor heat exchanger connected to the refrigeration cycle.
 尚、機器側冷却水回路10及び加熱側冷却水回路30における各制御対象機器については、その作動を停止している。従って、ステップS23では、バッテリ側冷却水回路20における冷却水の流れが切り替えられる。 The operation of each control target device in the device-side cooling water circuit 10 and the heating-side cooling water circuit 30 is stopped. Therefore, in step S23, the flow of the cooling water in the battery side cooling water circuit 20 is switched.
 このような回路構成とすることで、当該車両用熱管理システム1は、バッテリ側冷却水回路20を循環状態にすることができ、冷凍サイクル及びバッテリ側ラジエータ23と機器側ラジエータ13を用いて、バッテリ側冷却水回路20の冷却水の温度を適切に調整することができる。これにより、当該車両用熱管理システム1は、車室内冷房を実行しつつ、急速充電時におけるバッテリ21の冷却を実現することができる。 With such a circuit configuration, the vehicle thermal management system 1 can put the battery side cooling water circuit 20 in a circulating state, and by using the refrigeration cycle and the battery side radiator 23 and the device side radiator 13, The temperature of the cooling water of the battery side cooling water circuit 20 can be adjusted appropriately. Thereby, the said vehicle thermal management system 1 can implement | achieve cooling of the battery 21 at the time of rapid charge, performing room cooling.
 その後、ステップS24に移行すると、バッテリ水温センサ61の検出結果を用いて、バッテリ水温TWが水温上限値TWu以上であるか否かが判断される。バッテリ水温TWが水温上限値TWu以上である場合、ステップS23に戻り、チラー22による吸熱とバッテリ側ラジエータ23と機器側ラジエータ13による放熱を併用して、冷却水の温度を低下させる。一方、そうでない場合にはステップS25に進む。 Thereafter, when the process proceeds to step S24, it is determined using the detection result of the battery water temperature sensor 61 whether the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process returns to step S23, and the heat absorption by the chiller 22 is combined with the heat radiation by the battery side radiator 23 and the device side radiator 13 to lower the temperature of the cooling water. If not, the process proceeds to step S25.
 ステップS25においては、バッテリ水温TWが水温上限値TWuよりも下がったことに伴って、流路切替部50等の作動が制御される。 In step S25, the operation of the flow path switching unit 50 and the like is controlled in response to the battery water temperature TW falling below the water temperature upper limit value TWu.
 具体的には、第2切替弁25が、バッテリ21側と第1接続流路41側とを連通し、バッテリ側ラジエータ23側を閉塞するように制御される。その他の制御対象機器の作動については、ステップS23と同じ状態である。 Specifically, the second switching valve 25 communicates the battery 21 side and the first connection flow path 41 side, and is controlled so as to close the battery side radiator 23 side. The operation of the other control target devices is the same as in step S23.
 この結果、図9に示すように、バッテリ側冷却水回路20において、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→第2切替弁25→第1接続流路41→バイパス流路45→第2接続流路42の順に流れ、バッテリ側冷却水回路20を循環する。 As a result, as shown in FIG. 9, in the battery side cooling water circuit 20, the cooling water is supplied from the second water pump 24 → chiller 22 → battery 21 → second switching valve 25 → first connection flow path 41 → bypass flow path It flows in the order of 45 → the second connection flow path 42 and circulates in the battery side cooling water circuit 20.
 従って、ステップS25の場合、車両用熱管理システム1は、チラー22による吸熱作用を利用して冷却水を冷却しており、バッテリ側ラジエータ23と機器側ラジエータ13によって、外気へ放熱することはない。 Therefore, in the case of step S25, the vehicle thermal management system 1 cools the cooling water by utilizing the heat absorption effect of the chiller 22, and the battery side radiator 23 and the device side radiator 13 do not release the heat to the outside air. .
 つまり、当該車両用熱管理システム1は、ステップS23の場合よりも、バッテリ側冷却水回路20によるバッテリ21の冷却能力を抑えることができ、急速充電中のバッテリ21の温度を適切な温度に調整することができる。 That is, the vehicle thermal management system 1 can suppress the cooling capacity of the battery 21 by the battery side cooling water circuit 20 more than in the case of step S23, and adjusts the temperature of the battery 21 during rapid charge to an appropriate temperature. can do.
 そして、ステップS26に移行すると、バッテリ水温TWが水温上限値TWu以下であるか否かが判断される。バッテリ水温TWが水温上限値TWu以下である場合には、ステップS27に進み、そうでない場合には、ステップS28に進む。 And if it transfers to step S26, it will be judged whether battery water temperature TW is below water temperature upper limit TWu. If the battery water temperature TW is less than or equal to the water temperature upper limit TWu, the process proceeds to step S27. If not, the process proceeds to step S28.
 ステップS27においては、外気温Tamが低く、バッテリ水温TWが水温上限値TWuよりも低い状況に対応する為に、流路切替部50等の作動を制御する。具体的には、バッテリ側冷却水回路20において、第2ウォータポンプ24を作動させる。又、チラー22に冷凍サイクルの低圧冷媒が流入しないように、冷凍サイクルの作動が制御される。 In step S27, in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature TW is lower than the water temperature upper limit TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated. Also, the operation of the refrigeration cycle is controlled so that the low pressure refrigerant of the refrigeration cycle does not flow into the chiller 22.
 そして、第2切替弁25は、バッテリ21側とバッテリ側ラジエータ23側と機器側ラジエータ13を連通し、第1切替弁15は、インバータ11、モータジェネレータ12側を閉塞するように制御される。これにより、バッテリ側冷却水回路20では、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→バッテリ側ラジエータ23及び機器側ラジエータ13の順に流れ、バッテリ側冷却水回路20を循環する。 The second switching valve 25 communicates the battery 21 side, the battery side radiator 23 side, and the device side radiator 13, and the first switching valve 15 is controlled to close the inverter 11 and the motor generator 12 side. Thereby, in the battery side cooling water circuit 20, the cooling water flows in the order of the second water pump 24 → chiller 22 → battery 21 → battery side radiator 23 and the equipment side radiator 13 and circulates in the battery side cooling water circuit 20.
 従って、急速充電によりバッテリ21に生じた熱は、バッテリ側冷却水回路20の冷却水を介して、バッテリ側ラジエータ23と機器側ラジエータ13から外気に放熱される。 Therefore, the heat generated in the battery 21 by the rapid charging is dissipated from the battery side radiator 23 and the device side radiator 13 through the cooling water of the battery side cooling water circuit 20.
 一方、ステップS28では、外気温Tamが低く、バッテリ水温が水温上限値TWu以上である状況に対応する為に、流路切替部50等の作動を制御する。具体的には、バッテリ側冷却水回路20において、第2ウォータポンプ24を作動させると共に、第2切替弁25は、バッテリ21側とバッテリ側ラジエータ23側と機器側ラジエータ13側を連通し、第1切替弁15はインバータ11、モータジェネレータ12側を閉塞するように制御される。 On the other hand, in step S28, in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature is higher than the water temperature upper limit value TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated, and the second switching valve 25 connects the battery 21 side, the battery side radiator 23 side, and the device side radiator 13 side, The 1 switching valve 15 is controlled to close the side of the inverter 11 and the motor generator 12.
 これにより、バッテリ側冷却水回路20では、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→バッテリ側ラジエータ23及び機器側ラジエータ13の順に流れ、バッテリ側冷却水回路20を循環する。 Thereby, in the battery side cooling water circuit 20, the cooling water flows in the order of the second water pump 24 → chiller 22 → battery 21 → battery side radiator 23 and the equipment side radiator 13 and circulates in the battery side cooling water circuit 20.
 この時、制御部60は、チラー22にて冷凍サイクルの低圧冷媒に、バッテリ側冷却水回路20の冷却水の熱を吸熱させるように、冷凍サイクルの作動を制御する。尚、冷凍サイクルにおいて、チラー22にて吸熱された熱は、当該冷凍サイクルに接続された室外熱交換器にて、外気に対して放熱される。 At this time, the control unit 60 controls the operation of the refrigeration cycle so that the heat of the cooling water of the battery side cooling water circuit 20 is absorbed by the low pressure refrigerant of the refrigeration cycle by the chiller 22. In the refrigeration cycle, the heat absorbed by the chiller 22 is radiated to the outside air by the outdoor heat exchanger connected to the refrigeration cycle.
 従って、ステップS28では、バッテリ側冷却水回路20において、急速充電によりバッテリ21は、バッテリ側ラジエータ23及び機器側ラジエータ13における外気への放熱と、チラー22における吸熱作用によって、バッテリ側冷却水回路20の冷却水を介して冷却される。 Therefore, in step S28, in the battery side cooling water circuit 20, the battery 21 is discharged rapidly to the outside air in the battery side radiator 23 and the device side radiator 13 due to quick charging, and the heat absorbing action in the chiller 22. It is cooled through the cooling water.
 次に、ステップS11の走行時制御にて実行される制御内容について、図10を参照しつつ説明する。上述したように、この走行時制御は、電気自動車が走行している場合に実行される。 Next, control contents to be executed in the traveling control in step S11 will be described with reference to FIG. As described above, this traveling control is performed when the electric vehicle is traveling.
 この為、当該車両用熱管理システム1では、電気自動車の走行に伴って、インバータ11、モータジェネレータ12がその作動に伴って発熱し、バッテリ21も電力の利用に伴って発熱する。 Therefore, in the vehicle thermal management system 1, the inverter 11 and the motor generator 12 generate heat as the electric vehicle travels, and the battery 21 also generates heat as the electric power is used.
 従って、走行時制御においては、車両用熱管理システム1は、インバータ11、モータジェネレータ12等の発熱機器に生じた熱と、電力利用に伴うバッテリ21の熱とを有効に活用しつつ、車両用熱管理システム1における各構成機器を適切な温度に調整する。 Therefore, in the on-the-fly control, the vehicle thermal management system 1 effectively uses the heat generated in the heat generating devices such as the inverter 11 and the motor generator 12 and the heat of the battery 21 accompanying the use of electric power. Each component in the thermal management system 1 is adjusted to an appropriate temperature.
 図10に示すように、先ず、ステップ31において、電気自動車の走行時において、車室内空調がONであるか否かが判断される。車室内空調がONである場合には、ステップS32に進み、そうでない場合には、ステップS40に移行する。尚、ステップS40では、電気自動車の走行時におけるバッテリ冷却制御が行われる。このステップS40の制御内容については、後に詳細に説明する。 As shown in FIG. 10, first, at step 31, it is determined whether or not the interior air conditioning is ON when the electric vehicle is traveling. If the interior air conditioning is ON, the process proceeds to step S32, and if not, the process proceeds to step S40. In step S40, battery cooling control is performed when the electric vehicle travels. The control contents of step S40 will be described in detail later.
 ステップS32においては、車室内空調の内容が暖房運転であるか否かが判断される。車室内空調が暖房運転である場合には、ステップS33に進み、暖房運転でない場合は、ステップS39に移行する。このステップS39では、電気自動車の走行時における冷房運転制御が行われる。当該ステップS39の制御内容については、後に図面を参照しつつ説明する。 In step S32, it is determined whether the content of the air conditioning in the passenger compartment is the heating operation. If the vehicle interior air conditioning is the heating operation, the process proceeds to step S33, and if the heating operation is not performed, the process proceeds to step S39. In step S39, cooling operation control is performed when the electric vehicle travels. The control contents of step S39 will be described later with reference to the drawings.
 続くステップS33~ステップS38における制御内容は、電気自動車の走行時に車室内を暖房する場合の制御である。制御部60は、電気自動車の走行に伴ってインバータ11、モータジェネレータ12、バッテリ21で発生する熱を、車室内の暖房に有効に活用する為に、各種制御対象機器の作動を制御する。 The control contents in the following steps S33 to S38 are control in the case where the passenger compartment is heated when the electric vehicle travels. The control unit 60 controls the operation of various control target devices in order to effectively use the heat generated by the inverter 11, the motor generator 12, and the battery 21 as the electric vehicle travels for heating the vehicle interior.
 ステップS33では、バッテリ水温センサ61の検出結果を用いて、バッテリ水温TWが水温下限値TWl以下であるか否かが判断される。バッテリ水温TWが水温下限値TWl以下である場合、ステップS34に進み、そうでない場合には、S37に移行する。 In step S33, using the detection result of the battery water temperature sensor 61, it is determined whether the battery water temperature TW is less than or equal to the water temperature lower limit value TW1. If the battery water temperature TW is equal to or lower than the water temperature lower limit value TW1, the process proceeds to step S34. If not, the process proceeds to S37.
 ステップS34においては、インバータ11等の発熱機器やバッテリ21に生じた熱を有効に活用して車室内の暖房を行う為に、流路切替部50等の作動が制御される。 In step S34, the operation of the flow path switching unit 50 and the like is controlled in order to heat the vehicle interior by effectively utilizing the heat generated in the heat-generating equipment such as the inverter 11 and the like and the battery 21.
 ここで、ステップS34に移行する場合は、バッテリ水温TWが水温下限値TWl以下の状態である。従って、この場合にヒータコア31にて送風空気を加熱する為には、車両用熱管理システム1にて、低温である冷却水の温度を上昇させる為の期間が必要となる。 Here, when the process proceeds to step S34, the battery water temperature TW is in the state of being equal to or lower than the water temperature lower limit value TWl. Therefore, in this case, in order to heat the blowing air by the heater core 31, a period for raising the temperature of the low temperature cooling water is required in the vehicle thermal management system 1.
 図11に示すように、機器側冷却水回路10において、第1ウォータポンプ14は、冷却水を吐出口から圧送する。第1切替弁15は、モータジェネレータ12側と第2接続流路42側とを連通し、機器側ラジエータ13側を閉塞するように制御される。 As shown in FIG. 11, in the apparatus-side cooling water circuit 10, the first water pump 14 pressure-feeds the cooling water from the discharge port. The first switching valve 15 communicates the motor generator 12 side with the second connection flow path 42 side, and is controlled to close the device-side radiator 13 side.
 そして、バッテリ側冷却水回路20では、第2ウォータポンプ24は、冷却水を吐出口から圧送する。第2切替弁25は、バッテリ21側と第1接続流路41とを連通し、バッテリ側ラジエータ23側を閉塞するように制御される。この時、冷凍サイクルは、チラー22に低圧冷媒が流入しないように制御される。 Then, in the battery side cooling water circuit 20, the second water pump 24 pumps the cooling water from the discharge port. The second switching valve 25 communicates the battery 21 side with the first connection flow path 41, and is controlled to close the battery side radiator 23 side. At this time, the refrigeration cycle is controlled so that the low pressure refrigerant does not flow into the chiller 22.
 又、加熱側冷却水回路30においては、第3ウォータポンプ34は、冷却水を吐出口から圧送すると共に、第3切替弁35は、ヒータコア31側、加熱装置32側、第4接続流路44側の全てを連通するように制御される。 In the heating side cooling water circuit 30, the third water pump 34 pumps cooling water from the discharge port, and the third switching valve 35 is on the heater core 31 side, the heating device 32 side, and the fourth connection flow path 44. It is controlled to connect all the sides.
 この時、加熱装置32は、所定の発熱量で冷却水を加熱するように制御される。又、冷凍サイクルは、冷凍サイクルの高圧冷媒が水冷媒熱交換器33に流入するように制御される。この時、冷凍サイクルは、図示しない室外熱交換器にて外気から吸熱して、水冷媒熱交換器33で高圧冷媒の熱を冷却水に放熱する。これにより、冷却水は、加熱装置32及び水冷媒熱交換器33によって加熱される。 At this time, the heating device 32 is controlled to heat the cooling water with a predetermined calorific value. In addition, the refrigeration cycle is controlled such that the high pressure refrigerant of the refrigeration cycle flows into the water refrigerant heat exchanger 33. At this time, the refrigeration cycle absorbs heat from the outside air by the outdoor heat exchanger (not shown), and the water refrigerant heat exchanger 33 dissipates the heat of the high pressure refrigerant to the cooling water. Thereby, the cooling water is heated by the heating device 32 and the water refrigerant heat exchanger 33.
 このように回路接続部40の作動を制御することで、車両用熱管理システム1においては、機器側冷却水回路10、バッテリ側冷却水回路20及び加熱側冷却水回路30が、回路接続部40を介して接続された状態になる。即ち、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30が本開示における熱媒体接続状態に制御される。 By thus controlling the operation of the circuit connection unit 40, in the vehicle thermal management system 1, the device-side cooling water circuit 10, the battery-side cooling water circuit 20, and the heating-side cooling water circuit 30 It will be connected via That is, the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 are controlled to the heat medium connection state in the present disclosure.
 従って、温度調整側冷却水回路5側においては、冷却水は、第1ウォータポンプ14及び第2ウォータポンプ24の作動によって、第1ウォータポンプ14→インバータ11→モータジェネレータ12→第1切替弁15→第2接続流路42→第2ウォータポンプ24→チラー22→バッテリ21→第2切替弁25→第1接続流路41の順に流れる。 Therefore, on the temperature adjustment side cooling water circuit 5 side, the cooling water is processed by the first water pump 14 and the second water pump 24 so that the first water pump 14 → the inverter 11 → the motor generator 12 → the first switching valve 15 → The second connection flow channel 42 → the second water pump 24 → the chiller 22 → the battery 21 → the second switching valve 25 → the first connection flow channel 41 flows in this order.
 上述したように、第2接続流路42には、第3接続流路43及び第4接続流路44が接続されており、第3ウォータポンプ34が作動している。この為、第2接続流路42を流れる冷却水の一部は、第3接続流路43側へ分岐する。 As described above, the third connection flow channel 43 and the fourth connection flow channel 44 are connected to the second connection flow channel 42, and the third water pump 34 is operating. Therefore, part of the cooling water flowing through the second connection flow channel 42 branches to the third connection flow channel 43 side.
 第3接続流路43から流出した冷却水の一部は、第3ウォータポンプ34→水冷媒熱交換器33→加熱装置32→第3切替弁35→ヒータコア31へ流れる。これにより、加熱装置32及び水冷媒熱交換器33にて加熱された冷却水がヒータコア31を通過することになり、送風空気を加熱することができる。 A part of the cooling water flowing out of the third connection flow path 43 flows from the third water pump 34 → the water refrigerant heat exchanger 33 → the heating device 32 → the third switching valve 35 → the heater core 31. As a result, the cooling water heated by the heating device 32 and the water refrigerant heat exchanger 33 passes through the heater core 31, and the blown air can be heated.
 そして、第3切替弁35に流入した冷却水の一部は、第4接続流路44へ流入して、温度調整側冷却水回路5側の第2接続流路42を流れる冷却水と合流する。 Then, part of the cooling water flowing into the third switching valve 35 flows into the fourth connection flow channel 44 and merges with the cooling water flowing through the second connection flow channel 42 on the temperature adjustment side cooling water circuit 5 side. .
 これにより、当該車両用熱管理システム1は、電気自動車の走行時に生じるインバータ11等の発熱機器やバッテリ21の排熱を、冷却水を介して、車室内暖房に利用することができる。 As a result, the vehicle thermal management system 1 can utilize the exhaust heat of the heat-generating device such as the inverter 11 or the like and the battery 21 generated when the electric vehicle travels, for heating the vehicle interior via the cooling water.
 又、当該車両用熱管理システム1は、電気自動車の走行時に生じるインバータ11等の発熱機器やバッテリ21の排熱を、冷却水を介して加熱側冷却水回路30に供給し、加熱側冷却水回路30側の構成機器及び回路全体を暖めることができる。これにより、車両用熱管理システム1は、電気自動車の走行時において、早急に車室内を暖房した場合にも対応することができる。 In addition, the vehicle thermal management system 1 supplies the exhaust heat of the heat generating device such as the inverter 11 or the like generated during traveling of the electric vehicle or the battery 21 to the heating side cooling water circuit 30 via the cooling water, The components on the circuit 30 side and the entire circuit can be warmed. Thus, the vehicle thermal management system 1 can cope with the case where the passenger compartment is immediately heated while the electric vehicle is traveling.
 ステップS35では、図11に示す状態において、バッテリ水温TWが水温下限値TWl以上であるか否かが判断される。バッテリ水温TWが水温下限値TWl以上である場合には、車両用熱管理システム1で循環する冷却水が十分に温まっているので、ステップS36に移行し、そうでない場合には、ステップS34に戻る。 In step S35, in the state shown in FIG. 11, it is determined whether battery water temperature TW is equal to or higher than water temperature lower limit value TW1. If the battery water temperature TW is equal to or higher than the water temperature lower limit value TW1, the cooling water circulating in the vehicle thermal management system 1 is sufficiently warmed, so the process proceeds to step S36. Otherwise, the process returns to step S34 .
 ステップS36においては、加熱側冷却水回路30側の冷却水が十分に温まり、車室内暖房と、インバータ11等の発熱機器とバッテリ21の温度調整とを並行して行う為に、ステップS34における図11の状態から図12の状態になるように、各制御対象機器の作動が制御される。 In step S36, the cooling water on the heating-side cooling water circuit 30 side is sufficiently warmed, and the diagram in step S34 is performed in order to perform heating of the vehicle interior and temperature control of the heating device such as the inverter 11 etc. and the battery 21 in parallel. The operation of each control target device is controlled so that the state of 11 changes to the state of FIG.
 具体的には、加熱側冷却水回路30において、第3切替弁35は、ヒータコア31側と加熱装置32側を連通し、第4接続流路44側を閉塞するように制御される。上述したように、加熱装置32、水冷媒熱交換器33、第3ウォータポンプ34は作動している。 Specifically, in the heating side cooling water circuit 30, the third switching valve 35 is controlled to communicate the heater core 31 side with the heating device 32 side and to close the fourth connection flow path 44 side. As described above, the heating device 32, the water refrigerant heat exchanger 33, and the third water pump 34 are operating.
 これにより、図12に示すように、加熱側冷却水回路30は、車両用熱管理システム1における冷却水の流れに関して、温度調整側冷却水回路5側から分離され、独立して循環する循環状態になる。つまり、冷却水は、加熱側冷却水回路30にて、第3ウォータポンプ34→水冷媒熱交換器33→加熱装置32→ヒータコア31の順に流れて循環する。 Thereby, as shown in FIG. 12, the heating side cooling water circuit 30 is separated from the temperature adjustment side cooling water circuit 5 side with respect to the flow of the cooling water in the vehicle thermal management system 1, and is circulated independently. become. That is, the cooling water flows and circulates in the order of the third water pump 34 → the water refrigerant heat exchanger 33 → the heating device 32 → the heater core 31 in the heating side cooling water circuit 30.
 そして、加熱側冷却水回路30の冷却水は、加熱装置32、水冷媒熱交換器33により加熱され、ヒータコア31にて送風空気に放熱する。従って、当該車両用熱管理システム1は、この状態で車室内暖房を行うことができる。 Then, the cooling water of the heating side cooling water circuit 30 is heated by the heating device 32 and the water refrigerant heat exchanger 33, and is released to the air by the heater core 31. Therefore, the vehicle thermal management system 1 can perform heating in the passenger compartment in this state.
 一方、温度調整側冷却水回路5側において、ステップS34と同様に、冷却水は、第1ウォータポンプ14及び第2ウォータポンプ24の作動によって、第1ウォータポンプ14→インバータ11→モータジェネレータ12→第1切替弁15→第2接続流路42→第2ウォータポンプ24→チラー22→バッテリ21→第2切替弁25→第1接続流路41の順に流れて循環する。 On the other hand, on the temperature adjustment side cooling water circuit 5 side, the cooling water is processed by the first water pump 14 → the inverter 11 → the motor generator 12 → by the operation of the first water pump 14 and the second water pump 24 as in step S34. The first switching valve 15 → the second connection flow channel 42 → the second water pump 24 → the chiller 22 → the battery 21 → the second switching valve 25 → the first connection flow channel 41 flows in this order and circulates.
 ステップS36では、チラー22に低圧冷媒が流入するように、冷凍サイクルの作動が制御される。これにより、インバータ11、モータジェネレータ12の発熱やバッテリ21の熱によって暖められた冷却水は、チラー22にて低圧冷媒と熱交換することで、冷却される。 In step S36, the operation of the refrigeration cycle is controlled such that the low pressure refrigerant flows into the chiller 22. Thus, the cooling water warmed by the heat generation of the inverter 11 and the motor generator 12 and the heat of the battery 21 is cooled by heat exchange with the low pressure refrigerant by the chiller 22.
 図12に示すように、チラー22にて吸熱された熱は、冷凍サイクルによって汲み上げられ、水冷媒熱交換器33にて、加熱側冷却水回路30の冷却水に対して放熱される。従って、当該車両用熱管理システム1は、インバータ11等の発熱機器やバッテリ21の熱を、冷凍サイクルで汲み上げて、車室内暖房に利用することができる。 As shown in FIG. 12, the heat absorbed by the chiller 22 is pumped up by the refrigeration cycle, and is dissipated to the cooling water of the heating side cooling water circuit 30 by the water refrigerant heat exchanger 33. Therefore, the said vehicle thermal management system 1 can pump up the heat of heat-producing apparatus, such as inverter 11, etc., and the battery 21 with a refrigerating cycle, and can utilize it for vehicle interior heating.
 ステップS37においては、図12に示す状態において、バッテリ水温TWが水温上限値TWu以上であるか否かが判断される。バッテリ水温TWが水温上限値TWu以上である場合には、冷却水の温度を下げてバッテリ21等を保護する為に、ステップS38に進み、そうでない場合には、ステップS36に戻る。 In step S37, in the state shown in FIG. 12, it is determined whether battery water temperature TW is equal to or higher than water temperature upper limit value TWu. If the battery water temperature TW is equal to or higher than the water temperature upper limit value TWu, the process proceeds to step S38 to lower the temperature of the cooling water to protect the battery 21 and the like, and otherwise returns to step S36.
 ステップS38においては、インバータ11等の発熱機器の冷却とバッテリ21の冷却を夫々適切に行うと共に、車室内暖房とを並行して行う為に、ステップS36における図12の状態から図13の状態になるように、各制御対象機器の作動が制御される。 In step S38, the state of FIG. 12 in step S36 is changed to the state of FIG. 13 in order to perform cooling of the heat-generating equipment such as inverter 11 and cooling of battery 21 respectively in parallel and heating the vehicle interior in parallel. Thus, the operation of each control target device is controlled.
 具体的には、機器側冷却水回路10においては、第1切替弁15は、モータジェネレータ12側と機器側ラジエータ13側を連通し、第2接続流路42側を閉塞するように制御される。 Specifically, in the device-side cooling water circuit 10, the first switching valve 15 is controlled to communicate the motor generator 12 side with the device-side radiator 13 side and to close the second connection flow path 42 side. .
 これにより、機器側冷却水回路10において、冷却水は、第1ウォータポンプ14→インバータ11→モータジェネレータ12→第1切替弁15→機器側ラジエータ13の順に流れて循環する。従って、機器側冷却水回路10において、インバータ11、モータジェネレータ12の排熱は、冷却水を介して、機器側ラジエータ13から外気へ放熱される。 Thereby, in the device side cooling water circuit 10, the cooling water flows and circulates in the order of the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device side radiator 13. Therefore, in the device side cooling water circuit 10, the exhaust heat of the inverter 11 and the motor generator 12 is dissipated from the device side radiator 13 to the outside air through the cooling water.
 又、バッテリ側冷却水回路20では、第2切替弁25は、バッテリ21側とバッテリ側ラジエータ23側を連通し、第1接続流路41側を閉塞するように制御される。又、チラー22に低圧冷媒が流入するように、冷凍サイクルの作動が制御される。 Moreover, in the battery side cooling water circuit 20, the 2nd switching valve 25 connects the battery 21 side and the battery side radiator 23 side, and is controlled so that the 1st connection flow path 41 side may be obstruct | occluded. Also, the operation of the refrigeration cycle is controlled so that the low pressure refrigerant flows into the chiller 22.
 これにより、バッテリ側冷却水回路20では、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→第2切替弁25→バッテリ側ラジエータ23の順に流れて循環する。従って、バッテリ側冷却水回路20において、バッテリ21の排熱は、冷却水を介して、バッテリ側ラジエータ23から外気へ放熱されると共に、チラー22にて低圧冷媒に吸熱される。 Thereby, in the battery side cooling water circuit 20, the cooling water flows and circulates in the order of the second water pump 24, the chiller 22, the battery 21, the second switching valve 25, and the battery side radiator 23. Therefore, in the battery side cooling water circuit 20, the exhaust heat of the battery 21 is dissipated to the outside air from the battery side radiator 23 through the cooling water, and is absorbed by the low pressure refrigerant by the chiller 22.
 そして、加熱側冷却水回路30においては、ステップS36の場合と同様に、制御対象機器の作動が制御される。従って、加熱装置32、水冷媒熱交換器33に生じる熱を用いて、車室内暖房を行うことができる。 And in the heating side cooling water circuit 30, operation | movement of a control object apparatus is controlled similarly to the case of step S36. Accordingly, the heat generated in the heating device 32 and the water refrigerant heat exchanger 33 can be used to heat the interior of the vehicle.
 図13に示すように、ステップS38では、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30は、それぞれ本開示における循環状態に制御される。これにより、機器側冷却水回路10は、インバータ11、モータジェネレータ12に生じた熱に応じて、その冷却性能を制御することができる。又、バッテリ側冷却水回路20は、バッテリ21に生じた熱に応じて、その冷却性能を制御することができる。 As shown in FIG. 13, in step S38, the device-side cooling water circuit 10, the battery-side cooling water circuit 20, and the heating-side cooling water circuit 30 are each controlled to the circulation state in the present disclosure. Thereby, the equipment side cooling water circuit 10 can control the cooling performance according to the heat generated in the inverter 11 and the motor generator 12. Further, the battery side cooling water circuit 20 can control its cooling performance in accordance with the heat generated in the battery 21.
 つまり、車両用熱管理システム1は、インバータ11、モータジェネレータ12といった発熱機器と、バッテリ21とを夫々に適した温度範囲となるように、冷却水の温度を調整することができる。 That is, the vehicle thermal management system 1 can adjust the temperature of the cooling water so that the heat generating devices such as the inverter 11 and the motor generator 12 and the battery 21 have temperature ranges respectively suitable.
 ステップS39では、電気自動車の走行時における冷房運転制御が行われる。この電気自動車の走行時における冷房運転制御では、図14に示すフローチャートに従って、車両用熱管理システム1の各制御対象機器の作動が制御される。ステップS39における制御内容については、図14を参照しつつ後に詳細に説明する。 In step S39, cooling operation control is performed when the electric vehicle travels. In the cooling operation control during traveling of the electric vehicle, the operation of each control target device of the vehicle thermal management system 1 is controlled according to the flowchart shown in FIG. The control contents in step S39 will be described in detail later with reference to FIG.
 ステップS40では、電気自動車の走行時におけるバッテリ冷却制御が行われる。具体的には、バッテリ水温センサ61のバッテリ水温TWや外気温センサ62による外気温Tamに応じて、機器側冷却水回路10やバッテリ側冷却水回路20における冷却水の流れが切り替えられ、電気自動車の走行に際して生じた熱を放熱させる。 In step S40, battery cooling control is performed when the electric vehicle travels. Specifically, in accordance with the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62, the flow of the cooling water in the device side cooling water circuit 10 or the battery side cooling water circuit 20 is switched, The heat generated during traveling is dissipated.
 例えば、バッテリ水温TWや外気温Tamに応じて、バッテリ側ラジエータ23、機器側ラジエータ13を用いた外気に対する放熱量や、チラー22による吸熱量を変更し、発熱機器やバッテリ21を通過する冷却水の温度を調整する。これにより、ステップS40では、電気自動車の走行に際して発熱する発熱機器やバッテリ21を、適切な温度に調整された冷却水で冷却することができる。 For example, according to the battery water temperature TW and the outside air temperature Tam, the heat radiation amount to the outside air using the battery side radiator 23 and the device side radiator 13 and the heat absorption amount by the chiller 22 are changed. Adjust the temperature of Thus, in step S40, the heat-generating device and the battery 21 that generate heat when traveling the electric vehicle can be cooled by the cooling water adjusted to an appropriate temperature.
 次に、ステップS39の電気自動車の走行時における冷房運転制御の制御内容について、図14、図15を参照しつつ説明する。 Next, the control contents of the cooling operation control at the time of traveling of the electric vehicle in step S39 will be described with reference to FIGS.
 ステップS39にて、電気自動車の走行時における冷房運転制御を開始すると、図14に示すように、先ず、ステップS41にて、冷凍サイクル及び送風機の作動が冷房運転モードに切り替えられる。この点については、上述したステップS21と同様である。 When cooling operation control during traveling of the electric vehicle is started in step S39, as shown in FIG. 14, first, in step S41, the operation of the refrigeration cycle and the blower is switched to the cooling operation mode. This point is the same as step S21 described above.
 ステップS42においては、外気温センサ62の検出結果を用いて、外気温Tamが基準外気温KTam以上であるか否かが判断される。外気温Tamが基準外気温KTam以上である場合には、ステップS43に進み、そうでない場合には、ステップS44に移行する。 In step S42, using the detection result of the outside air temperature sensor 62, it is determined whether the outside air temperature Tam is equal to or higher than a reference outside air temperature KTam. If the outside air temperature Tam is equal to or higher than the outside air temperature KTam, the process proceeds to step S43. If not, the process proceeds to step S44.
 ステップS43では、外気温Tamが高温状態である環境に応じて、電気自動車の走行に伴い発熱する発熱機器、バッテリ21の冷却を行いつつ、車室内の冷房を行う為に、流路切替部50等の作動が制御される。 In step S43, the flow path switching unit 50 is used to cool the passenger compartment while cooling the heat-generating device and the battery 21 that are heated as the electric vehicle travels according to the environment in which the outside air temperature Tam is high. Etc. are controlled.
 図15に示すように、機器側冷却水回路10では、第1ウォータポンプ14が作動しており、第1切替弁15は、モータジェネレータ12側と機器側ラジエータ13側を連通し、第2接続流路42側を閉塞するように制御される。これにより、機器側冷却水回路10では、インバータ11、モータジェネレータ12の排熱が、冷却水を介して、機器側ラジエータ13から外気へ放熱される。 As shown in FIG. 15, in the device-side cooling water circuit 10, the first water pump 14 is operating, the first switching valve 15 communicates the motor generator 12 side with the device-side radiator 13 side, and the second connection is made. It is controlled to close the flow path 42 side. Thereby, in the device side cooling water circuit 10, the exhaust heat of the inverter 11 and the motor generator 12 is radiated from the device side radiator 13 to the outside air through the cooling water.
 そして、バッテリ側冷却水回路20においては、第2ウォータポンプ24が作動しており、第2切替弁25は、第2ウォータポンプ24側と第2接続流路42側を連通し、バッテリ側ラジエータ23を閉塞するように制御される。 And in the battery side cooling water circuit 20, the 2nd water pump 24 is working, the 2nd switching valve 25 makes the 2nd water pump 24 side and the 2nd connection channel 42 side connect, and the battery side radiator It is controlled to close 23.
 この時、制御部60は、チラー22にて冷凍サイクルの低圧冷媒に、バッテリ側冷却水回路20の冷却水の熱を吸熱させるように、冷凍サイクルの作動を制御する。尚、冷凍サイクルにおいて、チラー22にて吸熱された熱は、当該冷凍サイクルに接続された室外熱交換器にて、外気に対して放熱される。 At this time, the control unit 60 controls the operation of the refrigeration cycle so that the heat of the cooling water of the battery side cooling water circuit 20 is absorbed by the low pressure refrigerant of the refrigeration cycle by the chiller 22. In the refrigeration cycle, the heat absorbed by the chiller 22 is radiated to the outside air by the outdoor heat exchanger connected to the refrigeration cycle.
 尚、図15に示すように、加熱側冷却水回路30における各制御対象機器については、その作動を停止している。 In addition, as shown in FIG. 15, the operation of each control target device in the heating side cooling water circuit 30 is stopped.
 このような回路構成とすることで、当該車両用熱管理システム1は、機器側冷却水回路10及びバッテリ側冷却水回路20をそれぞれ循環状態にすることができる。機器側冷却水回路10においては、インバータ11、モータジェネレータ12に生じた熱を、機器側ラジエータ13から外気に放熱することで、発熱機器を作動に適した温度に調整することができる。 With such a circuit configuration, the vehicle thermal management system 1 can make the device side cooling water circuit 10 and the battery side cooling water circuit 20 circulate. In the device-side cooling water circuit 10, the heat generated in the inverter 11 and the motor generator 12 can be released from the device-side radiator 13 to the outside air, so that the heat-generating device can be adjusted to a temperature suitable for operation.
 又、バッテリ側冷却水回路20においては、バッテリ21に生じた熱を、冷凍サイクルを用いて吸熱することができ、バッテリ側冷却水回路20の冷却水の温度を適切に調整することができる。これにより、当該車両用熱管理システム1は、車室内冷房を実行しつつ、電気自動車の走行時に生じる発熱機器、バッテリ21をそれぞれ適切に冷却することができる。 Further, in the battery side cooling water circuit 20, the heat generated in the battery 21 can be absorbed using a refrigeration cycle, and the temperature of the cooling water of the battery side cooling water circuit 20 can be appropriately adjusted. As a result, the vehicle thermal management system 1 can appropriately cool the heat-generating equipment and the battery 21 generated when the electric vehicle travels while performing cooling of the passenger compartment.
 ステップS44においては、バッテリ水温センサ61の検出結果を用いて、バッテリ水温TWが水温上限値TWu以下であるか否かが判断される。バッテリ水温TWが水温上限値TWu以下である場合には、ステップS45に進み、そうでない場合には、ステップS46に移行する。 In step S44, using the detection result of the battery water temperature sensor 61, it is determined whether the battery water temperature TW is less than or equal to the water temperature upper limit value TWu. If the battery water temperature TW is less than or equal to the water temperature upper limit value TWu, the process proceeds to step S45. If not, the process proceeds to step S46.
 ステップS45では、外気温Tamが低く、バッテリ水温TWが水温上限値TWu以下である状況に対応する為に、流路切替部50等の作動を制御する。具体的には、バッテリ側冷却水回路20において、第2ウォータポンプ24を作動させる。又、チラー22に冷凍サイクルの低圧冷媒が流入しないように、冷凍サイクルの作動が制御される。 In step S45, in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature TW is less than or equal to the water temperature upper limit TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated. Also, the operation of the refrigeration cycle is controlled so that the low pressure refrigerant of the refrigeration cycle does not flow into the chiller 22.
 そして、第2切替弁25は、バッテリ21側とバッテリ側ラジエータ23側とを連通し、第1接続流路41側を閉塞するように制御される。これにより、バッテリ側冷却水回路20では、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→バッテリ側ラジエータ23の順に流れ、バッテリ側冷却水回路20を循環する。 The second switching valve 25 communicates the battery 21 side with the battery side radiator 23 side, and is controlled to close the first connection flow path 41 side. Thereby, in the battery side cooling water circuit 20, the cooling water flows in the order of the second water pump 24 → chiller 22 → battery 21 → battery side radiator 23, and circulates in the battery side cooling water circuit 20.
 尚、機器側冷却水回路10、加熱側冷却水回路30においては、各制御対象機器は、ステップS43と同様に制御される。つまり、図15と同様に、機器側冷却水回路10においては、冷却水は、第1ウォータポンプ14→インバータ11→モータジェネレータ12→第1切替弁15→機器側ラジエータ13の順に流れて循環している。そして、加熱側冷却水回路30の各制御対象機器については、その作動を停止している。 In addition, in the apparatus side cooling water circuit 10 and the heating side cooling water circuit 30, each control object apparatus is controlled similarly to step S43. That is, as in FIG. 15, in the device-side cooling water circuit 10, the cooling water flows in the order of the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device-side radiator 13. ing. And about each control object apparatus of the heating side cooling water circuit 30, the operation | movement is stopped.
 従って、電気自動車の走行によりインバータ11、モータジェネレータ12に生じた熱は、機器側冷却水回路10側の冷却水を介して、機器側ラジエータ13から外気に放熱される。同様に、電気自動車の走行によりバッテリ21に生じた熱は、バッテリ側冷却水回路20の冷却水を介して、バッテリ側ラジエータ23から外気に放熱される。 Therefore, the heat generated in the inverter 11 and the motor generator 12 by the traveling of the electric vehicle is dissipated to the outside air from the device-side radiator 13 through the cooling water on the device-side cooling water circuit 10 side. Similarly, the heat generated in the battery 21 by the traveling of the electric vehicle is dissipated from the battery side radiator 23 through the cooling water of the battery side cooling water circuit 20.
 これにより、当該車両用熱管理システム1は、外気温Tamが低く、バッテリ水温TWが水温上限値TWu以下である状況において、インバータ11、モータジェネレータ12の発熱機器と、バッテリ21とを適切な温度に調整することができる。 Thus, the vehicle thermal management system 1 appropriately heats the inverter 11, the heat generator of the motor generator 12, and the battery 21 in a situation where the outside air temperature Tam is low and the battery water temperature TW is less than or equal to the water temperature upper limit TWu. Can be adjusted.
 一方、ステップS46では、外気温Tamが低く、バッテリ水温が水温上限値TWuよりも高い状況に対応する為に、流路切替部50等の作動を制御する。具体的には、バッテリ側冷却水回路20において、第2ウォータポンプ24を作動させると共に、チラー22にて冷凍サイクルの低圧冷媒に、バッテリ側冷却水回路20の冷却水の熱を吸熱させるように、冷凍サイクルの作動を制御する。 On the other hand, in step S46, in order to cope with the situation where the outside air temperature Tam is low and the battery water temperature is higher than the water temperature upper limit TWu, the operation of the flow path switching unit 50 etc. is controlled. Specifically, in the battery side cooling water circuit 20, the second water pump 24 is operated, and the chiller 22 absorbs heat of the cooling water of the battery side cooling water circuit 20 to the low pressure refrigerant of the refrigeration cycle. , Control the operation of the refrigeration cycle.
 又、第2切替弁25は、バッテリ21側とバッテリ側ラジエータ23側とを連通し、第1接続流路41側を閉塞するように制御される。これにより、バッテリ側冷却水回路20では、冷却水は、第2ウォータポンプ24→チラー22→バッテリ21→バッテリ側ラジエータ23の順に流れ、バッテリ側冷却水回路20を循環する。 The second switching valve 25 communicates the battery 21 side with the battery side radiator 23 side, and is controlled to close the first connection flow path 41 side. Thereby, in the battery side cooling water circuit 20, the cooling water flows in the order of the second water pump 24 → chiller 22 → battery 21 → battery side radiator 23, and circulates in the battery side cooling water circuit 20.
 尚、機器側冷却水回路10、加熱側冷却水回路30においては、各制御対象機器は、ステップS43と同様に制御される。つまり、図15と同様に、機器側冷却水回路10においては、冷却水は、第1ウォータポンプ14→インバータ11→モータジェネレータ12→第1切替弁15→機器側ラジエータ13の順に流れて循環している。 In addition, in the apparatus side cooling water circuit 10 and the heating side cooling water circuit 30, each control object apparatus is controlled similarly to step S43. That is, as in FIG. 15, in the device-side cooling water circuit 10, the cooling water flows in the order of the first water pump 14, the inverter 11, the motor generator 12, the first switching valve 15, and the device-side radiator 13. ing.
 そして、加熱側冷却水回路30の各制御対象機器は、その作動を停止している。即ち、チラー22にて吸熱された熱は、当該冷凍サイクルに接続された室外熱交換器にて、外気に対して放熱される。 And each control object apparatus of the heating side cooling water circuit 30 has stopped the operation | movement. That is, the heat absorbed by the chiller 22 is radiated to the outside air by the outdoor heat exchanger connected to the refrigeration cycle.
 従って、ステップS46では、電気自動車の走行によりインバータ11、モータジェネレータ12に生じた熱は、機器側冷却水回路10側の冷却水を介して、機器側ラジエータ13から外気に放熱される。同様に、電気自動車の走行により発熱したバッテリ21は、バッテリ側ラジエータ23における外気への放熱と、チラー22における吸熱作用によって、バッテリ側冷却水回路20の冷却水を介して冷却される。 Therefore, in step S46, the heat generated in the inverter 11 and the motor generator 12 by the traveling of the electric vehicle is radiated from the device-side radiator 13 to the outside air through the cooling water on the device-side cooling water circuit 10 side. Similarly, the battery 21 which generates heat due to the traveling of the electric vehicle is cooled via the cooling water of the battery side cooling water circuit 20 by the heat radiation to the outside air in the battery side radiator 23 and the heat absorbing action of the chiller 22.
 当該車両用熱管理システム1は、外気温Tamが低く、バッテリ水温TWが水温上限値TWuよりも高い状況において、インバータ11、モータジェネレータ12の発熱機器と、バッテリ21とを適切な温度に調整することができる。 The vehicle thermal management system 1 adjusts the heat generation equipment of the inverter 11 and the motor generator 12 and the battery 21 to an appropriate temperature in a situation where the outside air temperature Tam is low and the battery water temperature TW is higher than the water temperature upper limit TWu. be able to.
 以上説明したように、第1実施形態に係る車両用熱管理システム1は、機器側冷却水回路10と、バッテリ側冷却水回路20と、加熱側冷却水回路30を有している。機器側冷却水回路10は、第1ウォータポンプ14によって、インバータ11等の発熱機器及び機器側ラジエータ13を介して冷却水を循環させる冷却水回路である。 As described above, the vehicle thermal management system 1 according to the first embodiment includes the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30. The device-side cooling water circuit 10 is a cooling water circuit that circulates the cooling water by the first water pump 14 via the heat-generating device such as the inverter 11 and the device-side radiator 13.
 バッテリ側冷却水回路20は、第2ウォータポンプ24によって、バッテリ21、チラー22、バッテリ側ラジエータ23を介して冷却水を循環させる冷却水回路である。加熱側冷却水回路30は、第3ウォータポンプ34によって、ヒータコア31、加熱装置32、水冷媒熱交換器33を介して冷却水を循環させる冷却水回路である。 The battery side cooling water circuit 20 is a cooling water circuit in which the cooling water is circulated by the second water pump 24 via the battery 21, the chiller 22, and the battery side radiator 23. The heating side cooling water circuit 30 is a cooling water circuit in which the cooling water is circulated by the third water pump 34 via the heater core 31, the heating device 32, and the water refrigerant heat exchanger 33.
 当該車両用熱管理システム1において、第1接続流路41と第2接続流路42は、機器側冷却水回路10とバッテリ側冷却水回路20とを冷却水の流出入可能に接続している。又、バイパス流路45は、冷却水の流れに関して、バッテリ側冷却水回路20のバッテリ側ラジエータ23を迂回させる。 In the vehicle thermal management system 1, the first connection flow path 41 and the second connection flow path 42 connect the device-side cooling water circuit 10 and the battery-side cooling water circuit 20 so that the cooling water can flow in and out. . Further, the bypass flow path 45 bypasses the battery side radiator 23 of the battery side cooling water circuit 20 with respect to the flow of the cooling water.
 そして、当該車両用熱管理システム1において、第3接続流路43と第4接続流路44は、機器側冷却水回路10、バッテリ側冷却水回路20からなる温度調整側冷却水回路5と、加熱側冷却水回路30とを冷却水の流出入可能に接続している。 And in the said thermal management system 1 for vehicles, the 3rd connection flow path 43 and the 4th connection flow path 44 are the temperature control side cooling water circuit 5 which consists of apparatus side cooling water circuit 10 and battery side cooling water circuit 20, The heating side cooling water circuit 30 is connected to the cooling water so as to be able to flow in and out.
 更に、当該車両用熱管理システム1は、第1切替弁15、第2切替弁25、第3切替弁35を有しており、それぞれ制御部60によってその作動を制御することができる。第1切替弁15は、機器側冷却水回路10に対する冷却水の流出入を切り替える。第2切替弁25は、バッテリ側冷却水回路20に対する冷却水の流出入を切り替える。第3切替弁35は、加熱側冷却水回路30に対する冷却水の流出入を切り替える。 Furthermore, the said thermal management system 1 for vehicles has the 1st switching valve 15, the 2nd switching valve 25, and the 3rd switching valve 35, The operation can be controlled by the control part 60, respectively. The first switching valve 15 switches the flow of the cooling water into and out of the device-side cooling water circuit 10. The second switching valve 25 switches the flow of the cooling water into and out of the battery side cooling water circuit 20. The third switching valve 35 switches the inflow and outflow of the cooling water to the heating side cooling water circuit 30.
 従って、当該車両用熱管理システム1は、制御部60によって、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30における接続状態を切り替え、第1ウォータポンプ14~第3ウォータポンプ34の作動状態を制御することで、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30の何れか一方における冷却水が他方に対して流出入可能な状態にすることができる。 Therefore, the vehicle thermal management system 1 switches the connection state of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 by the control unit 60, and the first water pump 14 to the third water pump 14 By controlling the operating state of the water pump 34, the cooling water in any one of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 can flow into and out of the other. can do.
 これにより、当該車両用熱管理システム1は、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30の何れかに生じている熱を、冷却水を介して、他の冷却水回路に供給することができ、当該他の冷却水回路にて有効に活用することができる。 As a result, the vehicle thermal management system 1 generates heat from any of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 through the cooling water and the other It can be supplied to the cooling water circuit and can be effectively utilized in the other cooling water circuit.
 図1に示すように、当該車両用熱管理システム1において、第3接続流路43の一端部は、第2接続流路42に接続されており、第3接続流路43の他端部は、加熱側冷却水回路30のヒータコア31における流出入口の一方側に接続されている。 As shown in FIG. 1, in the vehicle thermal management system 1, one end of the third connection channel 43 is connected to the second connection channel 42, and the other end of the third connection channel 43 is The heater core 31 of the heating side cooling water circuit 30 is connected to one side of the outlet / inlet.
 そして、第4接続流路44の一端部は、第2接続流路42において、第3接続流路43との接続位置よりもバッテリ側冷却水回路20側に接続されており、第4接続流路44の他端部は、加熱側冷却水回路30のヒータコア31における流出入口の一方側に接続されている。 Then, one end of the fourth connection flow channel 44 is connected to the battery side cooling water circuit 20 side in the second connection flow channel 42 rather than the connection position with the third connection flow channel 43, and the fourth connection flow is The other end of the passage 44 is connected to one side of the outlet / inlet of the heater core 31 of the heating side coolant circuit 30.
 これにより、車両用熱管理システム1によれば、当該機器側冷却水回路10及びバッテリ側冷却水回路20からなる温度調整側冷却水回路5と、加熱側冷却水回路30とを接続した場合に、温度調整側冷却水回路5側から流入した冷却水を、加熱側冷却水回路30全体を経由させて、温度調整側冷却水回路5側へ円滑に流出させることができる。 Thereby, according to the thermal management system 1 for vehicles, when the temperature control side cooling water circuit 5 which consists of the said apparatus side cooling water circuit 10 and the battery side cooling water circuit 20, and the heating side cooling water circuit 30 are connected. The cooling water flowing from the temperature adjustment side cooling water circuit 5 can be smoothly discharged to the temperature adjustment side cooling water circuit 5 through the entire heating side cooling water circuit 30.
 又、当該車両用熱管理システム1においては、第1切替弁15は、機器側冷却水回路10と第2接続流路42との接続位置に配置されている。これにより、第1切替弁15は、機器側冷却水回路10に対する冷却水の流出入を確実に切り替えることができる。 Moreover, in the said thermal management system 1 for vehicles, the 1st switching valve 15 is arrange | positioned in the connection position of the apparatus side cooling water circuit 10 and the 2nd connection flow path 42. As shown in FIG. Thereby, the 1st switching valve 15 can switch the outflow and inflow of the cooling water with respect to the apparatus side cooling water circuit 10 reliably.
 そして、第2切替弁25は、バッテリ側冷却水回路20と第1接続流路41の接続位置に配置されている。従って、第2切替弁25は、バッテリ側冷却水回路20に対する冷却水の流出入を確実に切り替えることができる。 The second switching valve 25 is disposed at the connection position of the battery side cooling water circuit 20 and the first connection flow path 41. Therefore, the second switching valve 25 can reliably switch the flow of the cooling water into and out of the battery side cooling water circuit 20.
 更に、第3切替弁35は、加熱側冷却水回路30と第4接続流路44の接続位置に配置されている。この結果、第3切替弁35は、加熱側冷却水回路30に対する冷却水の流出入を確実に切り替えることができる。 Furthermore, the third switching valve 35 is disposed at the connection position of the heating side coolant circuit 30 and the fourth connection flow path 44. As a result, the third switching valve 35 can reliably switch the flow of the cooling water into and out of the heating side cooling water circuit 30.
 つまり、当該車両用熱管理システム1によれば、第1切替弁15、第2切替弁25、第3切替弁35の作動状態によって、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30の接続態様を様々な状態に切り替えることができ、各冷却水回路にて発生した熱を、他の冷却水回路にて有効に活用することができる。 That is, according to the heat management system 1 for a vehicle, the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating according to the operating states of the first switching valve 15, the second switching valve 25 and the third switching valve 35 The connection mode of the side cooling water circuit 30 can be switched to various states, and the heat generated in each cooling water circuit can be effectively used in other cooling water circuits.
 図1等に示すように、第1ウォータポンプ14は、機器側冷却水回路10の冷却水流路において、当該機器側冷却水回路10に対する第1接続流路41の接続位置と、当該機器側冷却水回路10に対する第2接続流路42の接続位置の間で、且つ、インバータ11、モータジェネレータ12が配置された冷却水流路に配置されている。 As shown in FIG. 1 etc., in the cooling water flow path of the device-side cooling water circuit 10, the first water pump 14 connects the first connection flow path 41 to the device-side cooling water circuit 10, and the device-side cooling Between the connection position of the second connection flow path 42 to the water circuit 10, and in the cooling water flow path in which the inverter 11 and the motor generator 12 are arranged.
 そして、当該第1ウォータポンプ14は、機器側冷却水回路10において、インバータ11、モータジェネレータ12を介して、第2接続流路42側へ冷却水を圧送して他の冷却水回路へ送出している。 Then, the first water pump 14 pumps the coolant to the second connection flow path 42 side via the inverter 11 and the motor generator 12 in the device-side coolant circuit 10 and sends it to another coolant circuit. ing.
 従って、当該車両用熱管理システム1によれば、インバータ11、モータジェネレータ12の発熱機器に生じた熱を有した冷却水を、機器側冷却水回路10から他の冷却水回路に供給することができ、他の冷却水回路にて発熱機器の熱を有効に活用できる。 Therefore, according to the vehicle thermal management system 1, the cooling water having heat generated in the heat generating devices of the inverter 11 and the motor generator 12 can be supplied from the device-side cooling water circuit 10 to another cooling water circuit. It is possible to effectively utilize the heat of the heat generating equipment in other cooling water circuits.
 又、第2ウォータポンプ24は、バッテリ側冷却水回路20の冷却水流路において、当該バッテリ側冷却水回路20に対する第1接続流路41の接続位置と、当該バッテリ側冷却水回路20に対する第2接続流路42の接続位置の間で、且つ、バッテリ21及びチラー22が配置された冷却水流路に配置されている。 Further, in the cooling water flow passage of the battery side cooling water circuit 20, the second water pump 24 is connected to the connection position of the first connection flow passage 41 with respect to the battery side cooling water circuit 20, and the second Between the connection positions of the connection flow channel 42, the battery 21 and the chiller 22 are disposed in the cooling water flow channel.
 そして、当該第2ウォータポンプ24は、バッテリ側冷却水回路20において、バッテリ21及びチラー22を介して、第1接続流路41側へ冷却水を圧送して他の冷却水回路に送出している。 Then, in the battery side cooling water circuit 20, the second water pump 24 pumps the cooling water to the first connection flow path 41 side via the battery 21 and the chiller 22, and sends it out to another cooling water circuit. There is.
 これにより、当該車両用熱管理システム1は、バッテリ21及びチラー22により温度調整された冷却水を、バッテリ側冷却水回路20から他の熱媒体回路に供給することができ、他の冷却水回路にて冷却水の熱を適切に活用することができる。 Thus, the vehicle thermal management system 1 can supply the cooling water whose temperature is adjusted by the battery 21 and the chiller 22 from the battery side cooling water circuit 20 to another heat medium circuit, and the other cooling water circuits. The heat of the cooling water can be properly utilized.
 そして、第3ウォータポンプ34は、加熱側冷却水回路30の冷却水流路において、水冷媒熱交換器33、加熱装置32、ヒータコア31を通過するように、冷却水を送出している。これにより、当該車両用熱管理システム1によれば、水冷媒熱交換器33、加熱装置32出温度調整された冷却水を、ヒータコア31に供給することができるので、冷却水の熱によって加熱対象流体を効率よく暖めることができる。 The third water pump 34 delivers the coolant so as to pass through the water-refrigerant heat exchanger 33, the heater 32, and the heater core 31 in the coolant flow path of the heating-side coolant circuit 30. Thereby, according to the said vehicle thermal management system 1, since the water refrigerant heat exchanger 33 and the cooling water from which the heating apparatus 32 temperature adjustment was carried out can be supplied to the heater core 31, heating object is heated by the heat of cooling water. The fluid can be warmed efficiently.
 又、当該車両用熱管理システム1は、機器側冷却水回路10と、バッテリ側冷却水回路20と、加熱側冷却水回路30に加えて、第1接続流路41~バイパス流路45を有する回路接続部40と、第1切替弁15、第2切替弁25、第3切替弁35を有する流路切替部50と、回路接続部40等の作動を制御する制御部60とを有している。 Further, the vehicle thermal management system 1 has the first connection flow path 41 to the bypass flow path 45 in addition to the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30. A flow path switching unit 50 having a circuit connection unit 40, a first switching valve 15, a second switching valve 25 and a third switching valve 35, and a control unit 60 for controlling the operation of the circuit connection unit 40 and the like. There is.
 図3、図4、図7、図11、図12に示すように、当該車両用熱管理システム1は、制御部60によって流路切替部50の作動を制御することで、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30の何れか一方の冷却水を他方に対して流出入可能な熱媒体接続状態にすることができる。 As shown in FIG. 3, FIG. 4, FIG. 7, FIG. 11 and FIG. 12, the vehicle thermal management system 1 controls the operation of the flow path switching unit 50 by 10, any one of the battery side cooling water circuit 20 and the heating side cooling water circuit 30 can be connected to a heat medium which can flow into and out of the other.
 即ち、当該車両用熱管理システム1によれば、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30の何れか一方で生じた熱を、他方の冷却水回路に供給することができ、他方の冷却水において有効に活用することができる。 That is, according to the vehicle thermal management system 1, the heat generated in any one of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 is supplied to the other cooling water circuit It can be used effectively in the other cooling water.
 又、当該車両用熱管理システム1においては、制御部60によって流路切替部50の作動を制御することによって、図5、図6、図7、図9、図12、図13、図15に示すように、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30の少なくとも1つにて冷却水が独立して循環する循環状態に切り替えることができる。 Moreover, in the said thermal management system 1 for vehicles, by controlling the action | operation of the flow-path switching part 50 by the control part 60, FIG.5, FIG.6, FIG.7, FIG.9, FIG.12, FIG.13, FIG. As shown, at least one of the device side cooling water circuit 10, the battery side cooling water circuit 20, and the heating side cooling water circuit 30 can switch to a circulating state in which the cooling water circulates independently.
 これにより、当該車両用熱管理システム1は、循環状態の冷却水回路に関して、冷却水を介した熱の流出入が行われることがないので、一定の熱量を確保することができる。即ち、当該車両用熱管理システム1は、循環状態の冷却水回路と、他の冷却水回路に関し、冷却水の温度を異なる温度帯に調整することができ、適切に温度調整することができる。 As a result, the vehicle thermal management system 1 can ensure a certain amount of heat since the heat flow through the cooling water is not performed with respect to the circulating cooling water circuit. That is, the vehicle thermal management system 1 can adjust the temperature of the cooling water to different temperature zones with respect to the cooling water circuit in a circulating state and the other cooling water circuits, and can appropriately adjust the temperature.
 そして、当該車両用熱管理システム1において、バッテリ側冷却水回路20には、チラー22が配置されており、加熱側冷却水回路30には、水冷媒熱交換器33が配置されている。 In the vehicle thermal management system 1, the chiller 22 is disposed in the battery side cooling water circuit 20, and the water refrigerant heat exchanger 33 is disposed in the heating side cooling water circuit 30.
 従って、当該車両用熱管理システム1は、バッテリ側冷却水回路20側と加熱側冷却水回路30との関係性が循環状態に切り替えられている場合であっても、バッテリ側冷却水回路20に生じた熱をチラー22により吸熱して、冷凍サイクルで汲み上げて、加熱側冷却水回路30側の冷却水に放熱することができる。 Therefore, even if the relationship between the battery side cooling water circuit 20 side and the heating side cooling water circuit 30 is switched to the circulation state, the vehicle thermal management system 1 can be used as the battery side cooling water circuit 20. The heat generated can be absorbed by the chiller 22, pumped up in the refrigeration cycle, and dissipated to the coolant on the heating side coolant circuit 30 side.
 これにより、当該車両用熱管理システム1によれば、バッテリ側冷却水回路20側と加熱側冷却水回路30が循環状態の場合であっても、バッテリ側冷却水回路20側で生じた熱を、加熱側冷却水回路30へ供給することができ、加熱側冷却水回路30側にて有効に活用することができる。 Thereby, according to the said vehicle thermal management system 1, even when the battery side cooling water circuit 20 side and the heating side cooling water circuit 30 are in a circulation state, the heat which generate | occur | produced in the battery side cooling water circuit 20 side The heating side cooling water circuit 30 can be supplied, and can be effectively utilized on the heating side cooling water circuit 30 side.
 (第2実施形態)
 続いて、上述した第1実施形態とは異なる第2実施形態について、図16を参照しつつ説明する。
Second Embodiment
Subsequently, a second embodiment different from the above-described first embodiment will be described with reference to FIG.
 第2実施形態に係る車両用熱管理システム1は、第1実施形態と同様に、電気自動車に搭載されている。そして、当該車両用熱管理システム1は、インバータ11、モータジェネレータ12等の発熱機器とバッテリ21の温度調整機能と、車室内の空調機能を有している。 The vehicle thermal management system 1 according to the second embodiment is mounted on an electric vehicle, as in the first embodiment. The vehicle heat management system 1 has a heat generating device such as the inverter 11 and the motor generator 12 and a temperature adjustment function of the battery 21 and an air conditioning function of the vehicle interior.
 図16に示すように、第2実施形態に係る車両用熱管理システム1は、機器側冷却水回路10と、バッテリ側冷却水回路20と、加熱側冷却水回路30と、回路接続部40と、流路切替部50と、制御部60等を有している。 As shown in FIG. 16, the vehicle thermal management system 1 according to the second embodiment includes the device side cooling water circuit 10, the battery side cooling water circuit 20, the heating side cooling water circuit 30, and the circuit connection portion 40. And a control unit 60 and the like.
 第2実施形態に係る車両用熱管理システム1は、回路接続部40を構成する冷却水流路上に流量制限部42aを有する点で第1実施形態と相違している。 The vehicle thermal management system 1 according to the second embodiment is different from the first embodiment in that a flow rate limiting unit 42 a is provided on the cooling water flow path that constitutes the circuit connection unit 40.
 即ち、第2実施形態に係る車両用熱管理システム1において、機器側冷却水回路10、バッテリ側冷却水回路20、加熱側冷却水回路30、流路切替部50、制御部60に係る構成は第1実施形態と同様である。又、当該車両用熱管理システム1は、第1実施形態と同様に制御される。 That is, in the vehicle thermal management system 1 according to the second embodiment, the configurations related to the device side cooling water circuit 10, the battery side cooling water circuit 20, the heating side cooling water circuit 30, the flow path switching unit 50, and the control unit 60 It is the same as that of the first embodiment. Moreover, the said thermal management system 1 for vehicles is controlled similarly to 1st Embodiment.
 ここで、第2実施形態に係る車両用熱管理システム1における回路接続部40の構成について、図16を参照しつつ説明する。 Here, the configuration of the circuit connection unit 40 in the vehicle thermal management system 1 according to the second embodiment will be described with reference to FIG.
 第2実施形態に係る回路接続部40は、第1実施形態と同様に、第1接続流路41と、第2接続流路42と、第3接続流路43と、第4接続流路44と、バイパス流路45を有している。図16に示すように、第2実施形態に係る車両用熱管理システム1において、第1接続流路41~バイパス流路45の接続態様は、第1実施形態と同様である。 The circuit connection unit 40 according to the second embodiment includes the first connection flow channel 41, the second connection flow channel 42, the third connection flow channel 43, and the fourth connection flow channel 44, as in the first embodiment. And a bypass passage 45. As shown in FIG. 16, in the vehicle thermal management system 1 according to the second embodiment, the connection mode of the first connection flow passage 41 to the bypass flow passage 45 is the same as that of the first embodiment.
 第2実施形態に係る車両用熱管理システム1においては、流量制限部42aが、回路接続部40を構成する第2接続流路42に配置されている。 In the vehicle thermal management system 1 according to the second embodiment, the flow rate limiting unit 42 a is disposed in the second connection flow path 42 configuring the circuit connection unit 40.
 当該流量制限部42aは、いわゆる固定絞りによって構成されている。流量制限部42aにおける冷却水の流路面積は、第2接続流路42の流路面積に対して急縮小するように構成されている。従って、流量制限部42aは、この位置における冷却水の通水抵抗として機能し、第2接続流路42を流れる冷却水の流量を制限可能に構成されている。 The flow rate limiting unit 42 a is configured by a so-called fixed throttle. The flow passage area of the cooling water in the flow rate limiting unit 42 a is configured to be sharply reduced with respect to the flow passage area of the second connection flow passage 42. Therefore, the flow rate limiting unit 42 a functions as a flow resistance of the cooling water at this position, and is configured to be able to limit the flow rate of the cooling water flowing through the second connection flow path 42.
 ここで、第2接続流路42には、第3接続流路43、第4接続流路44、バイパス流路45が夫々接続されている。第3接続流路43は、第2接続流路42における機器側冷却水回路10側の部分に接続されている。 Here, the third connection channel 43, the fourth connection channel 44, and the bypass channel 45 are connected to the second connection channel 42, respectively. The third connection flow path 43 is connected to a portion of the second connection flow path 42 on the device-side cooling water circuit 10 side.
 一方、第4接続流路44は、第2接続流路42におけるバッテリ側冷却水回路20側の部分に接続されている。そして、バイパス流路45は、第2接続流路42に対する第3接続流路43、第4接続流路44の接続位置の間に接続されている。 On the other hand, the fourth connection flow path 44 is connected to a portion of the second connection flow path 42 on the battery side cooling water circuit 20 side. The bypass flow channel 45 is connected between the connection positions of the third connection flow channel 43 and the fourth connection flow channel 44 with respect to the second connection flow channel 42.
 図16に示すように、流量制限部42aは、第2接続流路42と第4接続流路44の接続位置と、第2接続流路42とバイパス流路45の接続位置の間に配置されている。従って、バイパス流路45を通過して第2接続流路42に流入した冷却水の流れは、流量制限部42aによる通水抵抗によって、第4接続流路44側よりも第3接続流路43側へ導かれる。 As shown in FIG. 16, the flow rate limiting unit 42 a is disposed between the connection position of the second connection flow channel 42 and the fourth connection flow channel 44 and the connection position of the second connection flow channel 42 and the bypass flow channel 45. ing. Therefore, the flow of the cooling water that has passed through the bypass flow channel 45 and flowed into the second connection flow channel 42 is the third connection flow channel 43 rather than the fourth connection flow channel 44 due to the flow resistance of the flow restriction portion 42a. It is led to the side.
 又、第4接続流路44を通過して第2接続流路42に流入した冷却水の流れは、流量制限部42aによる通水抵抗によって、バイパス流路45側よりもバッテリ側冷却水回路20側へ導かれる。 Also, the flow of the cooling water that has passed through the fourth connection flow channel 44 and has flowed into the second connection flow channel 42 is the battery side cooling water circuit 20 rather than the bypass flow channel 45 side due to the water flow resistance by the flow restriction portion 42 a It is led to the side.
 即ち、第2実施形態に係る車両用熱管理システム1において、上述したステップS4,ステップS5のように、バッテリ側冷却水回路20と加熱側冷却水回路30とを熱媒体接続状態にした場合に、バッテリ側冷却水回路20の冷却水を、加熱側冷却水回路30側へ導くことができる。 That is, in the vehicle thermal management system 1 according to the second embodiment, when the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are brought into the heat medium connection state as in step S4 and step S5 described above. The cooling water of the battery side cooling water circuit 20 can be led to the heating side cooling water circuit 30 side.
 これにより、第2実施形態に係る車両用熱管理システム1は、バッテリ21の急速充電中に車室内暖房を行う際に、バッテリ側冷却水回路20におけるバッテリ21の排熱を、冷却水を介して、加熱側冷却水回路30へ効率よく供給することができ、バッテリ21の排熱を車室内暖房の熱源として有効活用することができる。 As a result, when the vehicle thermal management system 1 according to the second embodiment performs heating of the vehicle interior during rapid charging of the battery 21, the exhaust heat of the battery 21 in the battery side cooling water circuit 20 is generated via the cooling water. Thus, the heat can be efficiently supplied to the heating side cooling water circuit 30, and the exhaust heat of the battery 21 can be effectively used as a heat source for heating the vehicle interior.
 以上説明したように、第2実施形態に係る車両用熱管理システム1によれば、上述した第1実施形態と共通の構成及び作動から奏される作用効果を、第1実施形態と同様に得ることができる。 As described above, according to the vehicle thermal management system 1 of the second embodiment, the same advantages as those of the first embodiment can be obtained from the same configuration and operation as those of the first embodiment described above. be able to.
 又、第2実施形態に係る車両用熱管理システム1において、流量制限部42aは、第2接続流路42と第4接続流路44の接続位置と、第2接続流路42とバイパス流路45の接続位置の間に配置されている。 In the vehicle heat management system 1 according to the second embodiment, the flow rate limiting unit 42a includes the connection position of the second connection flow path 42 and the fourth connection flow path 44, the second connection flow path 42, and the bypass flow path. It is arranged between 45 connection positions.
 従って、当該車両用熱管理システム1によれば、バッテリ側冷却水回路20と加熱側冷却水回路30とを熱媒体接続状態にした場合に、バッテリ側冷却水回路20の冷却水を、流量制限部42aの通水抵抗によって、加熱側冷却水回路30側へ導くことができ、バッテリ側冷却水回路20に生じた熱を、冷却水を介して、加熱側冷却水回路30へ効率よく供給することができる。 Therefore, according to the vehicle thermal management system 1, when the battery side cooling water circuit 20 and the heating side cooling water circuit 30 are in the heat medium connection state, the flow rate of the cooling water of the battery side cooling water circuit 20 is limited. The water flow resistance of the portion 42a can lead to the heating side cooling water circuit 30 side, and the heat generated in the battery side cooling water circuit 20 is efficiently supplied to the heating side cooling water circuit 30 via the cooling water. be able to.
 以上、実施形態に基づき本開示を説明したが、本開示は上述した実施形態に何ら限定されるものではない。即ち、本開示の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。 Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments. That is, various improvements and modifications are possible without departing from the scope of the present disclosure. For example, the above-described embodiments may be combined as appropriate, or various modifications of the above-described embodiments may be made.
 上述した実施形態においては、基本的に、図1に示す構成をもって説明していたが、本開示に係る熱管理システムの構成は、この態様に限定されるものではない。本開示に係る熱管理システムを、図17に示す構成とすることも可能である。尚、図17における参照符号は、上述した各実施形態における符号に対応している。 Although the embodiment described above basically describes the configuration shown in FIG. 1, the configuration of the thermal management system according to the present disclosure is not limited to this aspect. The thermal management system according to the present disclosure may be configured as shown in FIG. Reference numerals in FIG. 17 correspond to those in the above-described embodiments.
 図17に示す構成のように、バッテリ側ラジエータ23を迂回して冷却水を流す為のバイパス流路45が配置されている。そして、第4接続流路44の一端部は、第2ウォータポンプ24と第2切替弁25の間に位置するバッテリ側冷却水回路20の冷却水流路に接続されている。 As in the configuration shown in FIG. 17, a bypass flow path 45 for flowing cooling water around the battery side radiator 23 is disposed. Then, one end of the fourth connection flow path 44 is connected to the cooling water flow path of the battery side cooling water circuit 20 located between the second water pump 24 and the second switching valve 25.
 即ち、第4接続流路44の一端部は、バッテリ側冷却水回路20にて、バッテリ側ラジエータ23の流出入口から第2ウォータポンプ24の吸入口までの冷却水流路に接続されている。そして、第4接続流路44の他端部は、第3切替弁35を介して、ヒータコア31の流出入口に接続されている。 That is, one end of the fourth connection flow path 44 is connected to the cooling water flow path from the outlet / inlet of the battery side radiator 23 to the suction port of the second water pump 24 by the battery side cooling water circuit 20. The other end of the fourth connection channel 44 is connected to the outlet / inlet of the heater core 31 via the third switching valve 35.
 このように構成した熱管理システムにおいても、上述した実施形態と共通の構成及び作動から奏される作用効果を、上述した実施形態と同様に得ることができる。 Also in the thermal management system configured as described above, it is possible to obtain the same effects as those of the above-described embodiment, from the configuration and operation common to the above-described embodiment.
 又、本開示に係る熱管理システムの構成は、図17に示す構成とは異なる構成とすることも可能である。例えば、本開示に係る熱管理システムは、図18に示す構成にすることも可能である。尚、図18における参照符号は、上述した各実施形態における符号に対応している。 In addition, the configuration of the thermal management system according to the present disclosure may be different from the configuration shown in FIG. For example, the thermal management system according to the present disclosure can also be configured as shown in FIG. Reference numerals in FIG. 18 correspond to those in the above-described embodiments.
 図18に示す構成においては、冷却水の熱を外気に放熱する際の冷却水流路として、機器側ラジエータ13を通過する流路と、機器側ラジエータ13及びバッテリ側ラジエータ23を通過する流路とが並列に配置されている。又、第4接続流路44の一端部は、チラー22と第2切替弁25の間に位置するバッテリ側冷却水回路20の冷却水流路に接続されている。 In the configuration shown in FIG. 18, as a cooling water flow path when radiating heat of the cooling water to the outside air, a flow path passing through the device side radiator 13 and a flow path passing through the device side radiator 13 and the battery side radiator 23 Are arranged in parallel. Further, one end portion of the fourth connection flow path 44 is connected to the cooling water flow path of the battery side cooling water circuit 20 located between the chiller 22 and the second switching valve 25.
 即ち、第4接続流路44の一端部は、バッテリ側冷却水回路20において、バッテリ側ラジエータ23の流出入口から第2ウォータポンプ24の吸入口までの冷却水流路に対して接続されている。そして、第4接続流路44の他端部は、第3切替弁35を介して、ヒータコア31の流出入口に接続されている。 That is, one end of the fourth connection flow path 44 is connected to the cooling water flow path from the outlet / inlet of the battery side radiator 23 to the suction port of the second water pump 24 in the battery side cooling water circuit 20. The other end of the fourth connection channel 44 is connected to the outlet / inlet of the heater core 31 via the third switching valve 35.
 図18のように構成した熱管理システムにおいても、上述した実施形態と共通の構成及び作動から奏される作用効果を、上述した実施形態と同様に得ることができる。 Also in the thermal management system configured as shown in FIG. 18, the same advantages as those of the above-described embodiment can be obtained from the configuration and operation common to the above-described embodiment.
 そして、上述した実施形態のステップS9において、バッテリ21の急速充電時におけるバッテリ冷却制御が行われる。このステップS9において、バッテリ水温センサ61のバッテリ水温TWや外気温センサ62による外気温Tamに応じて、バッテリ側冷却水回路20における冷却水の流れが切り替えられている。 And battery cooling control at the time of rapid charge of battery 21 is performed in Step S9 of an embodiment mentioned above. In this step S9, the flow of the cooling water in the battery side cooling water circuit 20 is switched according to the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62.
 このステップS9における制御内容を、図19に示す具体例を挙げて説明する。図19は、外気温Tamが基準外気温KTam以上であり、バッテリ水温TWが水温上限値TWu以上である場合の冷却水流れを示す構成図である。 The control contents in step S9 will be described with reference to a specific example shown in FIG. FIG. 19 is a configuration diagram showing the flow of cooling water when the outside air temperature Tam is equal to or higher than the reference outside air temperature KTam and the battery water temperature TW is equal to or higher than the water temperature upper limit TWu.
 この図19に示す例では、機器側冷却水回路10側においては、第1ウォータポンプ14の作動が停止されている。第1切替弁15は、機器側ラジエータ13側と第2接続流路42側とを連通し、モータジェネレータ12側を閉塞するように制御される。 In the example shown in FIG. 19, the operation of the first water pump 14 is stopped on the device side cooling water circuit 10 side. The first switching valve 15 communicates with the device-side radiator 13 side and the second connection flow path 42 side, and is controlled to close the motor generator 12 side.
 そして、バッテリ側冷却水回路20においては、第2ウォータポンプ24は、冷却水を吐出口から送出している。第2切替弁25は、バッテリ21側、バッテリ側ラジエータ23側、第1接続流路41側の全てを連通するように制御される。 And in the battery side cooling water circuit 20, the 2nd water pump 24 sends out cooling water from a discharge port. The second switching valve 25 is controlled to communicate all of the battery 21 side, the battery side radiator 23 side, and the first connection flow path 41 side.
 尚、チラー22が冷凍サイクルの低圧冷媒に冷却水の熱を吸熱させるように、冷凍サイクルの作動が制御されている。冷凍サイクルの冷媒に吸熱された熱は、室外熱交換器にて外気に放熱される。そして、加熱側冷却水回路30では、全ての構成機器の作動が停止している。 The operation of the refrigeration cycle is controlled so that the chiller 22 absorbs the heat of the cooling water to the low-pressure refrigerant of the refrigeration cycle. The heat absorbed by the refrigerant of the refrigeration cycle is radiated to the outside air by the outdoor heat exchanger. And in the heating side cooling water circuit 30, the operation | movement of all the components has stopped.
 図19に示すように、この場合には、温度調整側冷却水回路5において、冷却水は、第2ウォータポンプ24、チラー22、バッテリ21を通過し、第2切替弁25において、バッテリ側ラジエータ23側と、第1接続流路41側に分岐する。バッテリ側ラジエータ23側へ流れた冷却水は、バッテリ側ラジエータ23を通過する際に、バッテリ21の急速充電で加えられた熱を、外気に対して放熱する。 As shown in FIG. 19, in this case, in the temperature adjustment side cooling water circuit 5, the cooling water passes through the second water pump 24, the chiller 22 and the battery 21, and in the second switching valve 25, the battery side radiator It branches to the 23 side and the 1st connection channel 41 side. The cooling water that has flowed to the battery side radiator 23 dissipates the heat added by the rapid charging of the battery 21 to the outside air when passing through the battery side radiator 23.
 一方、第1接続流路41側に流れた冷却水は、機器側冷却水回路10側に流入して、機器側ラジエータ13→第1ウォータポンプ14→第2接続流路42と流れ、第2ウォータポンプ24の吸込口に到達する。従って、当該冷却水は、機器側ラジエータ13を通過する際に、バッテリ21の急速充電で加えられた熱を、外気に対して放熱する。 On the other hand, the cooling water which has flowed to the first connection flow channel 41 flows into the device-side cooling water circuit 10 and flows from the device-side radiator 13 → the first water pump 14 → the second connection flow channel 42 The suction port of the water pump 24 is reached. Therefore, the said cooling water thermally radiates the heat added by rapid charge of the battery 21 with external air, when passing the apparatus side radiator 13. As shown in FIG.
 つまり、図19に示す場合、車両用熱管理システム1は、機器側ラジエータ13、バッテリ側ラジエータ23における外気への放熱と、チラー22における吸熱作用を利用して、急速充電に伴って発熱したバッテリ21を冷却することができる。 That is, in the case shown in FIG. 19, the vehicle thermal management system 1 generates heat due to rapid charging by utilizing the heat dissipation to the outside air in the device side radiator 13 and the battery side radiator 23 and the heat absorption action in the chiller 22. 21 can be cooled.
 又、上述した実施形態のステップS40では、電気自動車の走行時におけるバッテリ冷却制御が行われる。このステップS40では、バッテリ水温センサ61のバッテリ水温TWや外気温センサ62による外気温Tamに応じて、機器側冷却水回路10やバッテリ側冷却水回路20における冷却水の流れが切り替えられ、電気自動車の走行に際して生じた熱を放熱させている。 In step S40 of the above-described embodiment, battery cooling control is performed when the electric vehicle is traveling. In this step S40, the flow of the cooling water in the device-side cooling water circuit 10 or the battery-side cooling water circuit 20 is switched according to the battery water temperature TW of the battery water temperature sensor 61 and the outside air temperature Tam by the outside air temperature sensor 62. The heat generated during traveling is dissipated.
 このステップS40における制御内容を、図20に示す具体例を挙げて説明する。図20は、外気温Tamが基準外気温KTamよりも低く、バッテリ水温TWが水温上限値TWu以上である場合の冷却水流れを示す構成図である。 The control contents in step S40 will be described with reference to a specific example shown in FIG. FIG. 20 is a configuration diagram showing the flow of the cooling water when the outside air temperature Tam is lower than the reference outside air temperature KTam and the battery water temperature TW is equal to or higher than the water temperature upper limit TWu.
 この図20に示す例では、機器側冷却水回路10側においては、第1ウォータポンプ14は、冷却水を吐出口から送出している。第1切替弁15は、モータジェネレータ12側と機器側ラジエータ13側とを連通し、第2接続流路42側を閉塞するように制御される。 In the example shown in FIG. 20, on the side of the device-side cooling water circuit 10, the first water pump 14 delivers the cooling water from the discharge port. The first switching valve 15 communicates the motor generator 12 side with the device-side radiator 13 side, and is controlled to close the second connection flow path 42 side.
 そして、バッテリ側冷却水回路20では、第2ウォータポンプ24は、冷却水を吐出口から送出している。第2切替弁25は、バッテリ21側、バッテリ側ラジエータ23側を連通し、第1接続流路41側を閉塞するように制御される。 And in the battery side cooling water circuit 20, the 2nd water pump 24 is sending out the cooling water from the discharge port. The second switching valve 25 communicates the battery 21 side and the battery side radiator 23 side, and is controlled to close the first connection flow path 41 side.
 尚、チラー22が冷凍サイクルの低圧冷媒に冷却水の熱を吸熱させるように、冷凍サイクルの作動が制御されている。冷凍サイクルの冷媒に吸熱された熱は、室外熱交換器にて外気に放熱される。そして、加熱側冷却水回路30では、全ての構成機器の作動が停止している。 The operation of the refrigeration cycle is controlled so that the chiller 22 absorbs the heat of the cooling water to the low-pressure refrigerant of the refrigeration cycle. The heat absorbed by the refrigerant of the refrigeration cycle is radiated to the outside air by the outdoor heat exchanger. And in the heating side cooling water circuit 30, the operation | movement of all the components has stopped.
 図20に示すように、この場合には、機器側冷却水回路10では、冷却水は、走行に伴い発熱するインバータ11、モータジェネレータ12を通過した後、機器側ラジエータ13を通過する。この為、機器側冷却水回路10では、インバータ11等の発熱機器に生じた熱は、冷却水を介して、機器側ラジエータ13から外気へ放熱される。 As shown in FIG. 20, in this case, in the device-side cooling water circuit 10, the cooling water passes through the inverter 11, which generates heat as it travels, and the motor generator 12, and then passes through the device-side radiator 13. Therefore, in the device-side cooling water circuit 10, the heat generated in the heat-generating device such as the inverter 11 is dissipated from the device-side radiator 13 to the outside air through the cooling water.
 そして、バッテリ側冷却水回路20においては、バッテリ21で生じた熱で温められた冷却水は、バッテリ側ラジエータ23における外気への放熱と、チラー22における吸熱作用によって冷却される。 Then, in the battery side cooling water circuit 20, the cooling water warmed by the heat generated by the battery 21 is cooled by the heat radiation to the outside air in the battery side radiator 23 and the heat absorbing action in the chiller 22.
 つまり、図20に示す場合、車両用熱管理システム1は、電気自動車の走行に際して発熱するインバータ11、モータジェネレータ12等の発熱機器やバッテリ21を、機器側ラジエータ13及びバッテリ側ラジエータ23における外気への放熱と、チラー22における吸熱作用を利用して、冷却することができる。 That is, in the case shown in FIG. 20, the vehicle thermal management system 1 converts the heat generating device such as the inverter 11 and the motor generator 12 and the battery 21 which generate heat when traveling the electric vehicle to the outside air in the device side radiator 13 and the battery side radiator 23 It can be cooled by utilizing the heat radiation of the heat sink and the heat absorption effect of the chiller 22.
 そして、上述した実施形態においては、本開示に係る熱管理システムを、電気自動車における車両用熱管理システム1としていたが、これに限定されるものではない。ハイブリッド車両に適用することも可能である。 And in embodiment mentioned above, although the thermal management system concerning this indication was made into the thermal management system 1 for vehicles in an electric vehicle, it is not limited to this. Application to hybrid vehicles is also possible.
 又、本開示に係る熱管理システムは、機器側熱媒体回路、バッテリ側熱媒体回路、加熱側熱媒体回路を有する構成であれば、種々の装置に適用することができ、車両用に限定されるものではない。各熱媒体回路における熱媒体についても、上述した実施形態における冷却水に限定されるものではなく、種々の熱媒体を利用することができる。 Further, the thermal management system according to the present disclosure can be applied to various devices as long as it has a device side heat medium circuit, a battery side heat medium circuit, and a heating side heat medium circuit, and is limited to vehicles. It is not a thing. The heat medium in each heat medium circuit is not limited to the cooling water in the above-described embodiment, and various heat mediums can be used.
 又、上述した実施形態においては、発熱機器として、インバータ11、モータジェネレータ12を挙げていたが、これに限定されるものではない。本開示における発熱機器は、作動に伴い発熱する機器であれば、種々の機器を採用することができる。例えば、バッテリ21を充電する為のチャージャ等を本開示における発熱機器とすることも可能である。 Moreover, in the embodiment mentioned above, although the inverter 11 and the motor generator 12 were mentioned as a heat-generation apparatus, it is not limited to this. As the heat generating device in the present disclosure, various devices can be adopted as long as the device generates heat with operation. For example, a charger or the like for charging the battery 21 may be used as the heat generating device in the present disclosure.
 そして、上述した実施形態においては、本開示に係る第1切替部、第2切替部、第3切替部として、電磁式三方弁からなる第1切替弁15、第2切替弁25、第3切替弁35を用いていたが、この態様に限定されるものではない。例えば、一つの切替部を、複数(例えば、3つ)の開閉弁によって構成しても良い。 And in embodiment mentioned above, the 1st switching valve 15, the 2nd switching valve 25, and the 3rd switching which consist of an electromagnetic three-way valve as the 1st switching part concerning this indication, the 2nd switching part, and the 3rd switching part. Although the valve 35 was used, it is not limited to this aspect. For example, one switching unit may be configured by a plurality of (for example, three) on-off valves.
 又、第2実施形態における流量制限部42aは、いわゆる固定絞りによって構成されていたが、本開示に係る流量制限部を他の構成にて実現することも可能である。例えば、流量制限部として、流路面積を変更可能な可変絞りや開閉弁によって構成しても良い。 Moreover, although the flow restriction part 42a in 2nd Embodiment was comprised by what is called a fixed throttle, it is also possible to implement | achieve the flow restriction part which concerns on this indication by another structure. For example, the flow rate limiting unit may be configured by a variable throttle or an on-off valve capable of changing the flow passage area.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more than or less than the above, are also included in the category and the scope of the present disclosure. It is a thing.

Claims (8)

  1.  作動に伴い発熱する発熱機器(11、12)、前記発熱機器を流通する熱媒体と外気を熱交換させる機器側熱交換器(13)及び、制御部(60)の制御に従って前記熱媒体を送出する機器側熱媒体ポンプ(14)を介して、前記熱媒体が循環可能に構成された機器側熱媒体回路(10)と、
     バッテリ(21)、前記バッテリを流通する熱媒体と外気とを熱交換させるバッテリ側熱交換器(23)、前記熱媒体の有する熱を冷凍サイクルの低圧冷媒に吸熱させるチラー(22)及び、前記制御部の制御に従って前記熱媒体を送出するバッテリ側熱媒体ポンプ(24)を介して、前記熱媒体が循環可能に構成されたバッテリ側熱媒体回路(20)と、
     前記機器側熱媒体回路と前記バッテリ側熱媒体回路とを接続する第1接続流路(41)と、
     前記第1接続流路と異なる位置にて、前記機器側熱媒体回路と前記バッテリ側熱媒体回路とを接続する第2接続流路(42)と、
     前記バッテリ側熱媒体回路を流れる前記熱媒体を、前記バッテリ側熱交換器を迂回させるバイパス流路(45)と、を有する温度調整側熱媒体回路(5)と、
     前記冷凍サイクルの高圧冷媒と熱媒体とを熱交換させる冷媒熱媒体熱交換器(33)、前記熱媒体を加熱する加熱装置(32)、前記熱媒体と加熱対象流体との熱交換により前記加熱対象流体を加熱するヒータコア(31)及び、前記制御部の制御に従って前記熱媒体を送出する加熱側熱媒体ポンプ(34)を介して、前記熱媒体を循環可能に構成された加熱側熱媒体回路(30)と、
     前記温度調整側熱媒体回路と前記加熱側熱媒体回路とを接続する第3接続流路(43)と、
     前記第3接続流路と異なる位置にて、前記温度調整側熱媒体回路と前記加熱側熱媒体回路とを接続する第4接続流路(44)と、
     前記制御部の制御に従って、前記機器側熱媒体回路に対する前記熱媒体の流出入の有無を切り替える第1切替部(15)と、
     前記制御部の制御に従って、前記バッテリ側熱媒体回路に対する前記熱媒体の流出入の有無を切り替える第2切替部(25)と、
     前記制御部の制御に従って、前記加熱側熱媒体回路に対する前記熱媒体の流出入の有無を切り替える第3切替部(35)と、を有する熱管理システム。
    The heat medium is delivered according to the control of the control unit (60), the heat generating device (11, 12) generating heat with operation, the device side heat exchanger (13) for heat exchange between the heat medium circulating the heat generating device and the outside air An apparatus-side heat medium circuit (10) configured such that the heat medium can be circulated via the apparatus-side heat medium pump (14);
    A battery (21), a battery side heat exchanger (23) for heat exchange between a heat medium flowing through the battery and the outside air, a chiller (22) for absorbing heat of the heat medium to a low pressure refrigerant of a refrigeration cycle, A battery-side heat medium circuit (20) configured to be capable of circulating the heat medium via a battery-side heat medium pump (24) that delivers the heat medium according to the control of the control unit;
    A first connection channel (41) connecting the device-side heat medium circuit and the battery-side heat medium circuit;
    A second connection channel (42) connecting the device-side heat medium circuit and the battery-side heat medium circuit at a position different from the first connection channel;
    A temperature control side heat medium circuit (5) having a bypass flow path (45) for diverting the heat medium flowing through the battery side heat medium circuit to the battery side heat exchanger;
    The refrigerant heat medium heat exchanger (33) which exchanges heat between the high pressure refrigerant and the heat medium of the refrigeration cycle, a heating device (32) which heats the heat medium, the heating by heat exchange between the heat medium and the fluid to be heated A heating side heat medium circuit configured to be able to circulate the heat medium via a heater core (31) for heating the target fluid and a heating side heat medium pump (34) for delivering the heat medium according to the control of the control unit (30),
    A third connection channel (43) connecting the temperature adjustment side heat medium circuit and the heating side heat medium circuit;
    A fourth connection channel (44) connecting the temperature adjustment side heat medium circuit and the heating side heat medium circuit at a position different from the third connection channel;
    A first switching unit (15) that switches the presence or absence of the flow of the heat medium with respect to the device-side heat medium circuit according to the control of the control unit;
    A second switching unit (25) that switches the presence or absence of the heat medium to the battery side heat medium circuit according to the control of the control unit;
    And a third switching unit (35) configured to switch the presence or absence of inflow and outflow of the heat medium to and from the heat side heat medium circuit according to the control of the control unit.
  2.  前記第3接続流路の一端部は、前記第2接続流路に接続され、前記第3接続流路の他端部は、前記加熱側熱媒体回路の前記ヒータコアにおける流出入口の一方に接続されており、
     前記第4接続流路の一端部は、前記第2接続流路において、前記第3接続流路との接続位置よりも前記バッテリ側熱媒体回路の側、又は、前記バッテリ側熱媒体回路の前記バッテリ側熱交換器(23)の出口から前記バッテリ側熱媒体ポンプの吸入口の間の何れかの位置に接続され、前記第4接続流路の他端部は、前記加熱側熱媒体回路の前記ヒータコアにおける流出入口の他方に接続されている請求項1に記載の熱管理システム。
    One end of the third connection flow channel is connected to the second connection flow channel, and the other end of the third connection flow channel is connected to one of the outlet and inlet of the heater core of the heating side heat medium circuit. Yes,
    In the second connection channel, one end of the fourth connection channel is closer to the battery-side heat medium circuit than the connection position with the third connection channel, or the battery-side heat medium circuit It is connected to any position between the outlet of the battery side heat exchanger (23) and the suction port of the battery side heat medium pump, and the other end of the fourth connection flow path is the one of the heating side heat medium circuit. The thermal management system according to claim 1, wherein the thermal management system is connected to the other of the inlet and outlet in the heater core.
  3.  前記第1切替部は、前記第1接続流路と前記第2接続流路の何れか一方と前記機器側熱媒体回路の接続位置に配置され、
     前記第2切替部は、前記第1接続流路と前記第2接続流路の何れか一方と前記バッテリ側熱媒体回路の接続位置に配置され、
     前記第3切替部は、前記第3接続流路と前記第4接続流路の何れか一方と前記加熱側熱媒体回路との接続位置に配置されている請求項1又は2に記載の熱管理システム。
    The first switching unit is disposed at a connection position between any one of the first connection channel and the second connection channel and the device-side heat medium circuit.
    The second switching unit is disposed at a connection position of any one of the first connection flow channel and the second connection flow channel and the battery side heat medium circuit.
    3. The heat management according to claim 1, wherein the third switching unit is disposed at a connection position between any one of the third connection passage and the fourth connection passage and the heating side heat medium circuit. system.
  4.  前記機器側熱媒体ポンプ(14)は、前記機器側熱媒体回路の熱媒体流路のうち、当該機器側熱媒体回路に対する前記第1接続流路の接続位置と、当該機器側熱媒体回路に対する前記第2接続流路の接続位置の間で、且つ、前記発熱機器が配置された熱媒体流路に対して配置されており、前記発熱機器を介して他の熱媒体回路へ向かうように前記熱媒体を送出し、
     前記バッテリ側熱媒体ポンプ(24)は、前記バッテリ側熱媒体回路の熱媒体流路のうち、当該バッテリ側熱媒体回路に対する前記第1接続流路の接続位置と、当該バッテリ側熱媒体回路に対する前記第2接続流路に対する接続位置の間で、且つ、前記バッテリ及び前記チラーが配置された熱媒体流路に対して配置されており、前記バッテリ及び前記チラーを介して他の熱媒体回路へ向かうように前記熱媒体を送出し、
     前記加熱側熱媒体ポンプ(34)は、前記加熱側熱媒体回路の熱媒体流路にて、前記冷媒熱媒体熱交換器、前記加熱装置、前記ヒータコアを通過するように前記熱媒体を送出する請求項1ないし3の何れか1つに記載の熱管理システム。
    The device-side heat medium pump (14) is a heat medium flow path of the device-side heat medium circuit, the connection position of the first connection flow path to the device-side heat medium circuit, and the device-side heat medium circuit The heat transfer device is disposed between the connection positions of the second connection flow passage and with respect to the heat medium flow passage in which the heat generation device is disposed, and the heat transfer device is directed to another heat medium circuit via the heat generation device. Send out the heat medium,
    The battery-side heat medium pump (24) includes a connection position of the first connection flow path to the battery-side heat medium circuit in the heat medium flow path of the battery-side heat medium circuit, and a connection position to the battery-side heat medium circuit. Between the connection position to the second connection flow path, and to the heat medium flow path in which the battery and the chiller are disposed, to the other heat medium circuit via the battery and the chiller Sending out the heat medium to be directed;
    The heating side heat medium pump (34) delivers the heat medium so as to pass through the refrigerant heat medium heat exchanger, the heating device, and the heater core in the heat medium flow path of the heating side heat medium circuit. The thermal management system according to any one of claims 1 to 3.
  5.  前記バイパス流路は、前記温度調整側熱媒体回路において、前記第1接続流路と前記第2接続流路を接続しており、
     前記第2接続流路には、当該第2接続流路における前記熱媒体の流量を制限可能に構成された流量制限部(42a)が配置されており、
     当該流量制限部は、前記第2接続流路に対する前記第3接続流路と前記第4接続流路の接続位置のうち前記バッテリ側熱媒体回路の側にあたる接続位置と、前記第2接続流路と前記バイパス流路との接続位置との間に配置されている請求項1ないし4の何れか1つに記載の熱管理システム。
    The bypass flow path connects the first connection flow path and the second connection flow path in the temperature adjustment side heat medium circuit.
    The second connection flow path is provided with a flow rate limiting portion (42a) configured to be capable of limiting the flow rate of the heat medium in the second connection flow path,
    The flow rate limiting unit is a connection position corresponding to the battery side heat medium circuit side among connection positions of the third connection flow path and the fourth connection flow path with respect to the second connection flow path, and the second connection flow path The thermal management system according to any one of claims 1 to 4, wherein the thermal management system is disposed between the and a connection position of the bypass flow channel.
  6.  作動に伴い発熱する発熱機器(11、12)を介して熱媒体が循環可能に構成された機器側熱媒体回路(10)と、
     バッテリ(21)を介して前記熱媒体が循環可能に構成されたバッテリ側熱媒体回路(20)と、
     熱媒体を加熱する加熱装置(32)及び、前記熱媒体と加熱対象流体との熱交換により前記加熱対象流体を加熱するヒータコア(31)を介して、前記熱媒体を循環可能に構成された加熱側熱媒体回路(30)と、
     前記機器側熱媒体回路、前記バッテリ側熱媒体回路、及び前記加熱側熱媒体回路に関して、相互に前記熱媒体の流出入可能に接続する回路接続部(40)と、
     前記回路接続部における前記熱媒体の流れを切り替える流路切替部(50)と、
     前記流路切替部の作動を制御する制御部(60)と、を有し、
     前記制御部は、前記機器側熱媒体回路、前記バッテリ側熱媒体回路、及び前記加熱側熱媒体回路の何れか一方の前記熱媒体が他方に対して流出入可能に接続された熱媒体接続状態に切り替えるように前記流路切替部の作動を制御する熱管理システム。
    A device-side heat medium circuit (10) configured to be capable of circulating a heat medium via the heat-generating devices (11, 12) that generate heat with operation
    A battery-side heat medium circuit (20) configured to allow the heat medium to circulate through a battery (21);
    Heating configured to be able to circulate the heat medium via a heating device (32) for heating the heat medium and a heater core (31) for heating the fluid to be heated by heat exchange between the heat medium and the fluid to be heated Side heat medium circuit (30),
    A circuit connection unit (40) for connecting the heat medium to the equipment side heat medium circuit, the battery side heat medium circuit, and the heating side heat medium circuit so that the heat medium can flow in and out;
    A flow path switching unit (50) that switches the flow of the heat medium in the circuit connection portion;
    A control unit (60) that controls the operation of the flow path switching unit;
    The control unit is a heat medium connection state in which any one of the heat medium of the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit is connected to the other in an inflow / outflow manner. Thermal management system which controls operation of said channel change part so that it switches to.
  7.  前記制御部は、前記機器側熱媒体回路、前記バッテリ側熱媒体回路、及び前記加熱側熱媒体回路のうち少なくとも1つにて熱媒体が独立して循環する循環状態に切り替えるように前記流路切替部の作動を制御する請求項6に記載の熱管理システム。 The control unit is configured to switch to a circulation state in which the heat medium circulates independently in at least one of the device-side heat medium circuit, the battery-side heat medium circuit, and the heating-side heat medium circuit. The thermal management system according to claim 6, which controls the operation of the switching unit.
  8.  前記バッテリ側熱媒体回路は、前記熱媒体の有する熱を冷凍サイクルの低圧冷媒に吸熱させるチラー(22)を有し、
     前記加熱側熱媒体回路は、前記冷凍サイクルの高圧冷媒と前記熱媒体とを熱交換させる冷媒熱媒体熱交換器(33)を有し、
     前記流路切替部により、前記バッテリ側熱媒体回路の側と前記加熱側熱媒体回路において、前記熱媒体が夫々独立して循環する循環状態に切り替えられている場合、前記バッテリ側熱媒体回路を循環する熱媒体の熱を前記チラーにて吸熱させ、前記冷凍サイクルを介して、前記冷媒熱媒体熱交換器にて、前記加熱側熱媒体回路の熱媒体に放熱させる請求項6又は7に記載の熱管理システム。
    The battery side heat medium circuit has a chiller (22) for absorbing the heat of the heat medium to the low pressure refrigerant of the refrigeration cycle,
    The heating side heat medium circuit has a refrigerant heat medium heat exchanger (33) for exchanging heat between the high pressure refrigerant of the refrigeration cycle and the heat medium;
    When the heat medium is switched to a circulation state in which the heat medium circulates independently in the battery side heat medium circuit side and the heating side heat medium circuit by the flow path switching unit, the battery side heat medium circuit is selected. The heat storage medium according to claim 6 or 7, wherein the heat of the circulating heat medium is absorbed by the chiller, and the refrigerant heat medium heat exchanger dissipates heat to the heat medium of the heating side heat medium circuit through the refrigeration cycle. Thermal management system.
PCT/JP2018/044453 2018-01-09 2018-12-04 Heat management system WO2019138731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018006797.1T DE112018006797T5 (en) 2018-01-09 2018-12-04 Heat management system
CN201880085599.XA CN111556821A (en) 2018-01-09 2018-12-04 Thermal management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-001394 2018-01-09
JP2018001394A JP7024413B2 (en) 2018-01-09 2018-01-09 Thermal management system

Publications (1)

Publication Number Publication Date
WO2019138731A1 true WO2019138731A1 (en) 2019-07-18

Family

ID=67219639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044453 WO2019138731A1 (en) 2018-01-09 2018-12-04 Heat management system

Country Status (4)

Country Link
JP (1) JP7024413B2 (en)
CN (1) CN111556821A (en)
DE (1) DE112018006797T5 (en)
WO (1) WO2019138731A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113400887A (en) * 2020-03-17 2021-09-17 丰田自动车株式会社 Thermal management device
CN113547896A (en) * 2020-09-30 2021-10-26 株式会社电装 Vehicle-mounted air conditioning system with battery heating function
FR3112719A1 (en) * 2020-07-27 2022-01-28 Valeo Systemes Thermiques Thermal management device for the batteries of an electric or hybrid motor vehicle
WO2022057936A1 (en) * 2020-09-21 2022-03-24 比亚迪股份有限公司 Vehicle thermal management system and electric vehicle
US11465519B2 (en) * 2018-06-27 2022-10-11 Abb Schweiz Ag Electric vehicle charge equipment
US11524672B2 (en) 2018-09-26 2022-12-13 Elephant Racing, LLC Control techniques for controlling electric hybrid retrofitted vehicles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096608B (en) 2019-06-27 2023-10-10 株式会社可乐丽 Methacrylic resin composition, molded article thereof, and method for producing film
KR102703179B1 (en) * 2019-09-02 2024-09-04 현대자동차 주식회사 Heat pump system for vehicle
KR102299297B1 (en) * 2020-02-12 2021-09-09 현대위아(주) Integrated thermal management system and multi-way valve for vehicle
JP7404936B2 (en) * 2020-03-03 2023-12-26 株式会社デンソー thermal management system
JP7201633B2 (en) 2020-03-19 2023-01-10 トヨタ自動車株式会社 Thermal management system for electric vehicles
JP7193495B2 (en) 2020-03-31 2022-12-20 トヨタ自動車株式会社 Thermal management system for vehicles
JP7332523B2 (en) 2020-04-01 2023-08-23 トヨタ自動車株式会社 Thermal management device
KR102420001B1 (en) * 2020-06-19 2022-07-12 현대위아 주식회사 Integrated thermal management system for vehicle
KR102420002B1 (en) * 2020-06-19 2022-07-12 현대위아 주식회사 Integrated thermal management system for vehicle
JP7203794B2 (en) * 2020-09-25 2023-01-13 本田技研工業株式会社 Vehicle circuit temperature regulation system
JP6946535B1 (en) * 2020-10-08 2021-10-06 マレリ株式会社 Temperature control system
CN116457982A (en) * 2020-11-20 2023-07-18 尼得科株式会社 Temperature adjusting device
KR102691339B1 (en) * 2021-05-06 2024-08-05 한온시스템 주식회사 Dual coolant heater
WO2023067919A1 (en) * 2021-10-21 2023-04-27 日産自動車株式会社 Vehicle
DE102021214728A1 (en) 2021-12-20 2023-06-22 Mahle International Gmbh cooling system
CN114473769B (en) * 2022-01-17 2022-11-18 合肥工业大学 Automatic device for separating attachments on surfaces of positive and negative pole pieces of waste power lithium batteries
FR3140798A1 (en) * 2022-10-12 2024-04-19 Valeo Systemes Thermiques THERMAL MANAGEMENT SYSTEM FOR HYBRID OR ELECTRIC VEHICLE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277317A (en) * 1988-09-14 1990-03-16 Sanden Corp Heating device for automobile
JP2013119259A (en) * 2011-12-06 2013-06-17 Toyota Industries Corp On-board battery temperature regulator
JP2014020280A (en) * 2012-07-18 2014-02-03 Denso Corp Heat managing system for vehicle
JP2014043181A (en) * 2012-08-28 2014-03-13 Denso Corp Vehicle thermal management system
JP2014213664A (en) * 2013-04-24 2014-11-17 株式会社デンソー Vehicle air conditioner
JP2015140093A (en) * 2014-01-29 2015-08-03 株式会社デンソー Vehicular heat management system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576259B (en) * 2011-07-26 2017-04-01 睿能創意公司 Thermal management of components in electric motor drive vehicles
JP6060797B2 (en) * 2012-05-24 2017-01-18 株式会社デンソー Thermal management system for vehicles
JP2015186989A (en) * 2014-03-12 2015-10-29 カルソニックカンセイ株式会社 On-vehicle temperature control device, vehicle air conditioner, and battery temperature control device
JP6398764B2 (en) * 2015-02-06 2018-10-03 株式会社デンソー Thermal management system for vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277317A (en) * 1988-09-14 1990-03-16 Sanden Corp Heating device for automobile
JP2013119259A (en) * 2011-12-06 2013-06-17 Toyota Industries Corp On-board battery temperature regulator
JP2014020280A (en) * 2012-07-18 2014-02-03 Denso Corp Heat managing system for vehicle
JP2014043181A (en) * 2012-08-28 2014-03-13 Denso Corp Vehicle thermal management system
JP2014213664A (en) * 2013-04-24 2014-11-17 株式会社デンソー Vehicle air conditioner
JP2015140093A (en) * 2014-01-29 2015-08-03 株式会社デンソー Vehicular heat management system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465519B2 (en) * 2018-06-27 2022-10-11 Abb Schweiz Ag Electric vehicle charge equipment
US11524672B2 (en) 2018-09-26 2022-12-13 Elephant Racing, LLC Control techniques for controlling electric hybrid retrofitted vehicles
CN113400887A (en) * 2020-03-17 2021-09-17 丰田自动车株式会社 Thermal management device
FR3112719A1 (en) * 2020-07-27 2022-01-28 Valeo Systemes Thermiques Thermal management device for the batteries of an electric or hybrid motor vehicle
WO2022057936A1 (en) * 2020-09-21 2022-03-24 比亚迪股份有限公司 Vehicle thermal management system and electric vehicle
CN113547896A (en) * 2020-09-30 2021-10-26 株式会社电装 Vehicle-mounted air conditioning system with battery heating function

Also Published As

Publication number Publication date
JP7024413B2 (en) 2022-02-24
CN111556821A (en) 2020-08-18
JP2019119369A (en) 2019-07-22
DE112018006797T5 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2019138731A1 (en) Heat management system
CN111907289B (en) Vehicle-mounted temperature adjusting device
JP6596774B2 (en) Vehicle with electric motor
JP5644648B2 (en) Battery temperature control device
JP5860361B2 (en) Thermal management system for electric vehicles
JP6108322B2 (en) Air conditioner for vehicles
CN111231657A (en) Vehicle thermal management system, control method thereof and vehicle
JP6838518B2 (en) Refrigeration cycle equipment
CN114312205B (en) Thermal management system, control method of thermal management system and electric automobile
WO2015011918A1 (en) Vehicle air conditioner
WO2016059791A1 (en) Air conditioning device for vehicle
CN111231770A (en) Vehicle thermal management system and vehicle
CN111231656B (en) Vehicle thermal management system and vehicle
JP2014037179A (en) Thermal management system for electric vehicle
CN110949087A (en) Vehicle and heat pump system and method of vehicle
CN116547159A (en) Temperature control device for vehicle
CN115366605A (en) Vehicle-mounted temperature regulating system
JP2020199871A (en) Vehicular heat control system
WO2020184146A1 (en) Vehicle air conditioner
CN113580882B (en) Thermal management system and vehicle
KR20230076417A (en) Integrated thermal management system for electric vehicles
JP2018122653A (en) Air conditioner for electrically-driven vehicle
JP7097345B2 (en) Vehicle air conditioner
WO2023248714A1 (en) Vehicle air-conditioning device
WO2024009577A1 (en) System for adjusting temperature of battery, and vehicular system for managing heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899382

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18899382

Country of ref document: EP

Kind code of ref document: A1