WO2019138502A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2019138502A1
WO2019138502A1 PCT/JP2018/000491 JP2018000491W WO2019138502A1 WO 2019138502 A1 WO2019138502 A1 WO 2019138502A1 JP 2018000491 W JP2018000491 W JP 2018000491W WO 2019138502 A1 WO2019138502 A1 WO 2019138502A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compression mechanism
scroll compressor
unit
compression
Prior art date
Application number
PCT/JP2018/000491
Other languages
French (fr)
Japanese (ja)
Inventor
太樹 飯塚
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/000491 priority Critical patent/WO2019138502A1/en
Publication of WO2019138502A1 publication Critical patent/WO2019138502A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Definitions

  • the present invention relates to a scroll compressor.
  • compression torque is generated by a pressure difference (hereinafter referred to as “input / output pressure difference”) between the suction pressure and the discharge pressure of the compression mechanism when transitioning from an operating state to a stopped state.
  • input / output pressure difference a pressure difference between the suction pressure and the discharge pressure of the compression mechanism when transitioning from an operating state to a stopped state.
  • the mechanism rotates in the reverse direction and an abnormal sound is generated.
  • a structure is widely used to prevent reverse rotation of the compression mechanism at the time of stop by providing a check valve on the suction side or discharge side of the compression mechanism. Used.
  • the scroll compressor having such a structure inhibits the flowability of the flow path of the working fluid, resulting in a decrease in compression performance, There is a problem that the number of parts increases and the cost rises.
  • Patent Document 1 and Patent Document 2 do not provide a check valve or the like for preventing reverse rotation of the compression mechanism portion, and a brake that prevents reverse rotation of the compression mechanism portion when stopped by electrical means.
  • a controller is described.
  • Patent Document 1 and Patent Document 2 Under the high pressure condition where the input / output pressure difference is large, the load torque in the reverse rotation direction applied to the compression mechanism at the time of stop is rotated depending on the control timing. It has been difficult to prevent the reverse rotation of the compression mechanism because the braking torque in the stopping direction is exceeded (exceeded). Therefore, the prior art described in Patent Document 1 and Patent Document 2 can be used only for a compressor having a relatively small load torque at the time of stop, and is used for a compressor having a relatively large load torque at the time of stop I could not. That is, the prior art described in Patent Document 1 and Patent Document 2 may not be able to prevent reverse rotation of the compression mechanism portion at the time of stopping.
  • the present invention has been made to solve the above-described problems, and has as its main object to provide a scroll compressor that reliably prevents reverse rotation of the compression mechanism portion at the time of stop.
  • the present invention is a scroll compressor, comprising: a compression mechanism portion forming a plurality of compression chambers by a orbiting scroll and a fixed scroll; an inner space of the compression chamber and a suction side space outside Control to switch the opening and closing of the bypass port, and control for performing brake control to prevent reverse rotation of the compression mechanism section due to the input / output pressure difference after starting the stop processing of the compression mechanism section And a unit.
  • a scroll compressor comprising: a compression mechanism portion forming a plurality of compression chambers by a orbiting scroll and a fixed scroll; an inner space of the compression chamber and a suction side space outside Control to switch the opening and closing of the bypass port, and control for performing brake control to prevent reverse rotation of the compression mechanism section due to the input / output pressure difference after starting the stop processing of the compression mechanism section And a unit.
  • this embodiment will be described in detail with reference to the drawings.
  • the drawings are only schematically shown to the extent that the present invention can be sufficiently understood. Therefore, the present invention is not limited to the illustrated example.
  • symbol is attached
  • FIG. 1 is a longitudinal sectional view showing the configuration of the scroll compressor S according to the present embodiment.
  • the scroll compressor S is described as a vertical apparatus.
  • the scroll compressor S can be used for air conditioners, and refrigeration cycle devices such as refrigerators and freezers in general.
  • the scroll compressor S uses, for example, an R32 refrigerant as a working fluid.
  • the scroll compressor S includes a controller 30 that controls the overall operation, and an open / close switching device 40 that controls the operation of a displacement control valve 45 described later.
  • the scroll compressor S is disposed in the hermetic container 1 referred to as a “chamber”, a motor unit 2 disposed inside the hermetic container 1, and inside the hermetic container 1, and is driven by the motor unit 2 And a crankshaft 6 for transmitting the rotational power of the motor unit 2 to the compression mechanism unit 3.
  • the closed container 1 comprises a cylindrical cylinder chamber 1a, a lid chamber 1b welded to the upper portion of the cylinder chamber 1a, and a bottom chamber 1c welded to the lower portion of the cylinder chamber 1a.
  • a sealed chamber internal space 54 is formed inside the sealed container 1.
  • the chamber internal space 54 is in communication with the discharge port 5 provided in the compression mechanism section 3.
  • Pd discharge pressure
  • the chamber internal space 54 may be referred to as “discharge pressure space”.
  • the scroll compressor S is a so-called high pressure chamber type compressor in which the chamber internal space (discharge pressure space) 54 has a high pressure atmosphere.
  • a suction pipe 7 is fixed by welding or brazing on the upper surface of the lid chamber 1b.
  • the suction pipe 7 is attached to the lid chamber 1 b so as to communicate with the suction chamber 4 provided in the compression mechanism section 3.
  • discharge pipe 8 is fixed by welding or brazing on the side surface of the cylinder chamber 1a.
  • the discharge pipe 8 is attached to the cylinder chamber 1 a so as to communicate with the chamber internal space (discharge pressure space) 54.
  • the scroll compressor S discharges the working fluid discharged from the discharge port 5 into the chamber internal space 54 to the outside of the scroll compressor S via the discharge pipe 8.
  • Oil lubricating oil
  • An oil reservoir 9 is thus formed at the bottom of the closed container 1.
  • the motor unit 2 includes a stator 2a and a rotor 2b.
  • the stator 2a is fixed to the closed container 1 by shrink fitting, welding or the like.
  • the rotor 2b is rotatably disposed inside the stator 2a.
  • a crankshaft 6 is fixed to the rotor 2b.
  • the crankshaft 6 is supported by a main bearing 13 a provided on a frame 13 whose upper side is described later, and the lower side is supported by a lower bearing 10.
  • a pin portion 6c which is an eccentric portion is provided.
  • the crankshaft 6 is provided with an oil supply vertical hole 6a and an oil supply horizontal hole 6b for supplying the oil of the oil storage portion 9 to a turning bearing portion 11c described later.
  • the compression mechanism unit 3 includes an orbiting scroll 11, a fixed scroll 12, a frame 13, an Oldham ring 14, and a displacement control valve 45.
  • the orbiting scroll 11 has an orbiting scroll wrap 11a, an orbiting end plate 11b, and an orbiting bearing portion 11c.
  • the orbiting scroll wrap 11a is a spiral wrap formed so as to stand on the orbiting end plate 11b.
  • the orbiting bearing portion 11 c is a bearing portion into which the pin portion 6 c which is an eccentric portion of the crankshaft 6 is inserted.
  • the fixed scroll 12 has a fixed scroll wrap 12a and a fixed end plate 12b.
  • the fixed scroll wrap 12a is a spiral wrap formed to stand on the fixed end plate 12b.
  • a suction chamber 4 is provided at an outer peripheral portion of the fixed scroll wrap 12a. Further, in the vicinity of the outer peripheral portion of the fixed scroll wrap 12a, a bypass port 41 for communicating the internal space of the compression chamber 51 with the external suction side space is provided. Moreover, the discharge port 5 is provided in the center part of fixed scroll wrap 12a.
  • the suction chamber 4 is a space before the compression chamber 51 is formed, and is divided into an internal space of the compression chamber 51 and an external suction side space by the compression chamber 51 being formed.
  • the orbiting scroll 11 is disposed to face the fixed scroll 12 so as to be pivotable.
  • the compression mechanism portion 3 communicates with the suction chamber 4 between the orbiting scroll wrap 11a and the fixed scroll wrap 12a by orbiting the orbiting scroll 11 in a state where the orbiting scroll wrap 11a and the fixed scroll wrap 12a are engaged. To form a compression chamber 51.
  • the outer peripheral side of the frame 13 is fixed to the inner wall surface of the closed container 1 by welding.
  • the frame 13 includes a main bearing 13 a that rotatably supports the main shaft of the crankshaft 6.
  • the fixed scroll 12 is fastened and fixed to the frame 13 by bolts.
  • a back pressure chamber 53 is formed between the orbiting scroll 11 and the frame 13.
  • the back pressure chamber 53 adds back pressure Pb (not shown) in the direction from the orbiting scroll 11 side to the fixed scroll 12 side to the working fluid.
  • the compression mechanism portion 3 presses the orbiting scroll 11 to the fixed scroll 12 side with the working fluid to which the back pressure Pb (not shown) is added so that the orbiting scroll 11 does not separate from the stationary scroll 12.
  • the back pressure Pb (not shown) is set to a pressure substantially intermediate between the discharge pressure Pd (see FIG. 3) and the suction pressure Ps (see FIG. 3).
  • the Oldham ring 14 is disposed between the orbiting scroll 11 and the frame 13.
  • the Oldham ring 14 is a rotation restricting member for causing the fixed scroll 12 to perform a turning motion without rotating the turning scroll 11.
  • the Oldham ring 14 is provided with a key portion (not shown). The key portion is inserted into a swing oldham groove (not shown) formed in the swing scroll 11 and a frame oldham groove (not shown) formed in the frame 13. Thereby, the Oldham ring 14 regulates rotation of the orbiting scroll 11.
  • the controller 30 controls the operation of the motor unit 2 and controls the operation of the open / close switching device 40.
  • the displacement control valve 45 is a mechanism that switches the opening and closing of the bypass port 41.
  • the open / close switching device 40 opens and closes the displacement control valve 45 in accordance with the control of the controller 30.
  • the open / close switching device 40 temporarily communicates the internal space of the compression chamber 51 with the external suction side space via the bypass port 41, thereby allowing the input / output of the compression mechanism 3.
  • Reduce the pressure difference (the pressure difference between the suction pressure and the discharge pressure).
  • control for opening the displacement control valve 45 is referred to as “capacity control”.
  • the scroll compressor S includes a coil spring 46 as an elastic body that biases the displacement control valve 45 in the opening direction.
  • the coil spring 46 biases the displacement control valve 45 in the direction to open, when the stopping process of the compression mechanism 3 is started, the displacement control valve 45 can be automatically opened.
  • the scroll compressor S according to the present embodiment has a structure in which the check valve for preventing reverse rotation of the compression mechanism 3 is removed from the suction side (part Ar shown in FIG. 2) and the discharge side of the compression mechanism 3. It has become. Since the scroll compressor S according to the present embodiment can simplify the structure on the suction side and the discharge side of the compression mechanism portion 3, the number of parts can be reduced compared to a conventional general scroll compressor. Thus, the manufacturing cost can be reduced.
  • FIG. 2 is a flowchart showing the operation of the scroll compressor S.
  • the operation of the scroll compressor S is mainly performed by the controller 30.
  • the scroll compressor S opens the bypass port 41 at the time of stop processing of the compression mechanism portion 3 to reduce an input / output pressure difference of the compression mechanism portion 3 and then applies a brake torque to the motor portion 2 to By stopping 2, the brake control is performed to prevent reverse rotation of the compression mechanism 3.
  • the controller 30 of the scroll compressor S performs normal operation control when receiving an operation start instruction from a host system (not shown) constituting the refrigeration cycle system (step S110). As a result, the operation of the scroll compressor S shifts from the stop state to the operating state.
  • the controller 30 of the scroll compressor S repeatedly determines whether or not there is a stop instruction transmitted from the upper apparatus (not shown) during operation (step S120). If it is determined in step S120 that a stop instruction has not been issued (in the case of "No"), the process returns to step S110, while if it is determined that a stop instruction has been issued (in the case of "Yes") The process proceeds to step S130.
  • step S130 If it is determined in step S120 that a stop instruction has been issued (in the case of “Yes”), the controller 30 of the scroll compressor S starts operation stop control (step S130).
  • the operation stop control for example, opens the bypass port 41 to reduce the input / output pressure difference of the compression mechanism unit 3, the control to apply the brake torque to the motor unit 2 to stop the motor unit 2 It is assumed that the
  • the controller 30 of the scroll compressor S transmits, to the open / close switching device 40, an instruction to open the displacement control valve 45.
  • the on-off switching device 40 performs the opening control of the displacement control valve 45 (step S140).
  • the scroll compressor S reduces the input / output pressure difference of the compression mechanism unit 3.
  • step S140 the controller 30 of the scroll compressor S starts brake control to apply a brake torque to the motor unit 2 (step S150), and ends the brake control when the motor unit 2 is stopped (step S160). Thereby, scroll compressor S stops operation.
  • FIG. 3 is a cross-sectional view showing the configuration of the orbiting scroll 11 and the fixed scroll 12.
  • FIG. 3 shows the configurations of the orbiting scroll 11 and the fixed scroll 12 as viewed from below.
  • a discharge port 5 is provided at the center of the fixed scroll wrap 12a.
  • the suction chamber 4 is provided in the outer peripheral part of fixed scroll wrap 12a.
  • the scroll compressor S rotates the orbiting scroll 11 in a state in which the orbiting scroll wrap 11a and the fixed scroll wrap 12a are engaged with each other, whereby a plurality of compression chambers 51 are provided between the orbiting scroll wrap 11a and the fixed scroll wrap 12a.
  • the scroll compressor S has a structure in which the nth compression chamber 51 n from the discharge port 5 communicates with the suction chamber 4. In the example shown in FIG. 3, three compression chambers 51 are formed, and the third compression chamber 51 from the discharge port 5 communicates with the suction chamber 4.
  • the discharge pressure Pd is applied to the inside of the discharge port 5. Further, a suction pressure Ps lower than the discharge pressure Pd is applied to the inside of the suction chamber 4. Further, pressures P1, P2, and P3 are applied to the insides of the first to third compression chambers 51 from the discharge port 5, respectively.
  • the pressures P1, P2, and P3 are respectively intermediate pressures that are higher than the suction pressure Ps and lower than the discharge pressure Pd.
  • pressures P1, P2, P3 may be referred to as “intermediate pressures P1, P2, P3", respectively.
  • FIG. 4 is a schematic view showing a relationship between a base circle 61 described later and an involute curve 60 described later.
  • FIG. 5 is a schematic view showing a relationship between a tangent 62 of a base circle 61 described later and an involute curve 60 described later. 4 and 5 show the shapes of the curves forming the inner wall surface of the scroll wrap viewed from above (that is, viewed in the direction opposite to that of FIG. 3).
  • the curve forming the scroll wrap often employs an involute curve 60.
  • the involute curve 60 is a curve drawn by the end of the yarn when the yarn wound around the circle is unwound, and is also referred to as a circle dissection line.
  • a straight line connecting the center of the base circle 61 and the start point of the yarn and the center of the base circle 61 The angle (internal angle) between the base circle 61 and the straight line connecting the contact points 63 (described later) is called the extension angle (or involute extension angle) ⁇ .
  • the contact point 63 is a point at which the base circle 61 and the tangent line 62 of the base circle 61 are in contact with each other.
  • the tangent 62 of the base circle 61 is a straight line arranged to form a part of the line 162 shown in FIG. 7.
  • the distance ⁇ 1 from the contact point 63 with the base circle 61 to the first intersection point 64 with the involute curve 60 on the tangent line 62 of the base circle 61 shown in FIG. 4 can be obtained by the following equation (1).
  • each code represents the following.
  • ⁇ 1 is the distance (unit: m (meters)) from the contact point 63 with the base circle 61 to the first intersection point 64 with the involute curve 60 on the tangent line 62 of the base circle 61.
  • m (meter) of a unit may be converted by cm (centimeter) (following, the same).
  • a is the radius of the base circle 61 (unit: m).
  • ⁇ p1 is a dilation angle.
  • each code represents the following.
  • ⁇ 2 is the distance (unit: m) from the first intersection point 64 with the involute curve 60 to the second intersection point 65 on the tangent 62 of the base circle 61.
  • a is the radius of the base circle 61 (unit: m).
  • the scroll wrap is formed along the involute curve 60 which satisfies the above-mentioned equation (1) and equation (2).
  • FIG. 6 is a schematic view showing the positional relationship between the orbiting scroll wrap 11a and the fixed scroll wrap 12a.
  • FIG. 7 is a schematic view showing the relationship between a working surface 67 described later and a virtual surface 69 described later.
  • FIG. 8 is a schematic view showing the length of a virtual surface 69 described later around the discharge port 5.
  • FIG. 9 is a schematic view showing a relationship between an adjacent surface 68 described later and a partial virtual surface 69m described later.
  • the action surface 67 is a surface on which the suction pressure Ps acts (is applied).
  • the virtual surface 69 is a virtual surface on which all the pressure acts.
  • the adjacent surface 68 is an outer wall surface of the orbiting scroll wrap 11a facing the mth (first in the example shown in FIG. 9) compression chamber 51m from the discharge port 5.
  • the pressure (intermediate pressure) inside the compression chamber 51 acts (applies) on the adjacent surface 68 (see FIG. 9).
  • the partial virtual surface 69m is a surface virtually formed along a line connecting the end points of the adjacent surfaces 68.
  • the virtual surface 69 (see FIGS. 7 to 9) will be described as a cross section virtually formed in the height direction of the orbiting scroll wrap 11a along the line 162 shown in FIG.
  • the line 162 (see FIG. 7) is disposed such that the central portion thereof passes through the center of the base circle 61, and from one of the intersections of the line 162 and the base circle 61, one side portion and the other side portion It is arranged to extend in parallel in the opposite direction.
  • the line 162 (see FIG. 7) abuts the end of one side portion at the contact position between the outer wall surface of the outermost peripheral portion of the orbiting scroll wrap 11a and the inner wall surface of the fixed scroll wrap 12a.
  • FIG. 6 shows the positional relationship between the orbiting scroll wrap 11a and the fixed scroll wrap 12a engaged at a certain rotation angle.
  • the outer wall surface of the outermost periphery of the orbiting scroll wrap 11a and the inner wall surface of the outermost periphery of the fixed scroll wrap 12a are in contact with each other at a position near the suction chamber 4 (see FIG. 3).
  • FIG. 7 shows the action surface 67 on which the suction pressure Ps acts in the orbiting scroll wrap 11a in the positional relationship shown in FIG.
  • the action surface 67 is an inner wall surface of a portion communicating with the suction chamber 4 in the orbiting scroll wrap 11 a in the positional relationship shown in FIGS. 6 and 7.
  • the suction pressure Ps is generated by the working fluid flowing into the compression chamber 51 from the suction chamber 4.
  • the suction pressure Ps acts on the action surface 67 (see FIG. 7) in the reverse rotation direction of the orbiting scroll 11. That is, the suction pressure Ps acts on the orbiting scroll 11 in the reverse rotation direction.
  • Load T Ps of the suction pressure Ps acting on the reverse rotation direction with respect to such orbiting scroll 11, load and suction pressure Ps of the suction pressure Ps acts on the working surface 67 is equal to the load applied to the virtual surface 69 Therefore, it is obtained by the following equation (3).
  • each code represents the following.
  • T Ps is a load (unit: N (newton)) of the suction pressure Ps acting on the orbiting scroll 11 in the reverse rotation direction.
  • Ps is suction pressure (unit: N / m 2 ).
  • L 1 is the length (unit: m) of the virtual surface 69.
  • h is the height (unit: m) of the orbiting scroll wrap 11a.
  • the dimension of the virtual surface 69 is as shown in FIG. Therefore, assuming that the number of compression chambers 51 is "n" and the thickness of the orbiting scroll wrap 11a is "t”, from the dimensions of the virtual surface 69 around the discharge port 5 shown in FIG.
  • the length L 1 of the virtual surface 69 is obtained by the following equation (4).
  • the partial virtual surface 69d shown in FIG. 8 will be described later.
  • each symbol represents the following.
  • L 1 is the length (unit: m) of the virtual surface 69.
  • a is the radius of the base circle 61 (unit: m).
  • ⁇ p1 is a dilation angle.
  • t is the thickness (unit: m) of the orbiting scroll wrap 11a.
  • ⁇ 2 is the distance (unit: m) from the first intersection point 64 with the involute curve 60 to the second intersection point 65 on the tangent 62 of the base circle 61.
  • n is the number of compression chambers 51.
  • the load of the pressure (intermediate pressure) inside each compression chamber 51 acting on the orbiting scroll 11 will be examined.
  • the intermediate pressure of the mth (for example, the first) compression chamber 51m from the discharge port 5 acts on the adjacent surface 68 of the orbiting scroll wrap 11a facing the compression chamber 51m.
  • Partial virtual plane 69m is one that is virtually derived as a surface for receiving a load the T m of the intermediate pressure acting on the adjacent surfaces 68.
  • the partial virtual surface 69m is virtually along a line connecting the end points of the adjacent surface 68 of the orbiting scroll wrap 11a facing the m-th (first example in the example shown in FIG. 9) compression chamber 51m from the discharge port 5. It is a cross section formed in the height direction of orbiting scroll wrap 11a.
  • the intermediate pressure in the mth (for example, the first) compression chamber 51m from the discharge port 5 acts on the partial virtual surface 69m in the forward rotational direction. Then, in the m-th compression chamber 51m from the discharge port 5, load the T m of the intermediate pressure acting on the forward rotational direction with respect to the orbiting scroll 11 is determined by the following equation (5).
  • each code represents the following.
  • T m is a load (unit: N) of an intermediate pressure that acts on the orbiting scroll 11 in the forward rotational direction in the m-th compression chamber 51 m from the discharge port 5.
  • P m is an intermediate pressure (unit: N / m 2 ) of the m-th compression chamber 51 m from the discharge port 5.
  • a is the radius of the base circle 61 (unit: m).
  • h is the height (unit: m) of the orbiting scroll wrap 11a.
  • each code represents the following.
  • T n is a sum of intermediate pressure loads (unit: N) acting on the orbiting scroll 11 in the forward rotational direction in the first to n-th compression chambers 51 from the discharge port 5.
  • a is the radius of the base circle 61 (unit: m).
  • h is the height (unit: m) of the orbiting scroll wrap 11a.
  • i is the order from the discharge port 5 of an arbitrary compression chamber 51.
  • n is the number of compression chambers 51.
  • Pi is an intermediate pressure (unit: N / m 2 ) of any compression chamber 51.
  • the discharge pressure Pd acts on the wall surface of the orbiting scroll wrap 11 a facing the ejection port 5 in the forward rotation direction of the orbiting scroll 11.
  • the partial virtual surface 69d shown in FIG. 8 is virtually derived as a surface that receives the load T pd of the discharge pressure Pd acting on the wall surface of the orbiting scroll wrap 11a. That is, the discharge pressure Pd acts on the partial virtual surface 69d (see FIG. 8) in the forward rotational direction.
  • the load Tpd of the discharge pressure Pd that acts on the orbiting scroll 11 in the forward rotational direction is obtained by the following equation (7).
  • each code represents the following.
  • T pd is a load (unit: N) of the discharge pressure Pd that acts on the orbiting scroll 11 in the forward rotational direction.
  • Pd is a discharge pressure (unit: N / m 2 ).
  • a is the radius of the base circle 61 (unit: m).
  • ⁇ p1 is a dilation angle.
  • t is the thickness (unit: m) of the orbiting scroll wrap 11a.
  • h is the height (unit: m) of the orbiting scroll wrap 11a.
  • each code represents the following.
  • T is the sum of loads (unit: N) acting on the orbiting scroll 11.
  • T Ps is a load (unit: N) of the suction pressure Ps acting on the orbiting scroll 11 in the reverse rotational direction.
  • T n is a sum of intermediate pressure loads (unit: N) acting on the orbiting scroll 11 in the forward rotational direction in the first to n-th compression chambers 51 from the discharge port 5.
  • T pd is a load (unit: N) of the discharge pressure Pd that acts on the orbiting scroll 11 in the forward rotational direction.
  • a is the radius of the base circle 61 (unit: m).
  • h is the height of the scroll wrap (unit: m).
  • Pd is a discharge pressure (unit: N / m 2 ).
  • Ps is suction pressure (unit: N / m 2 ).
  • ⁇ p1 is a dilation angle.
  • t is the thickness (unit: m) of the orbiting scroll wrap 11a.
  • i is the order from the discharge port 5 of an arbitrary compression chamber 51.
  • n is the number of compression chambers 51.
  • Pi is an intermediate pressure (unit: N / m 2 ) of any compression chamber 51.
  • the scroll compressor S performs the capacity control to open the capacity control valve 45 (see FIG. 1), whereby the nth compression chamber 51n from the discharge port 5 is in communication with the suction chamber 4 side. Therefore, in the scroll compressor S, the sum T ON of the load acting on the orbiting scroll 11 when the displacement control for opening the displacement control valve 45 (see FIG. 1) is performed is the number N (n ⁇ 1) Considering up to the second compression chamber 51 (n-1), the following equation (9) is obtained.
  • the scroll compressor S closes the displacement control valve 45 (see FIG. 1), whereby the nth compression chamber 51n from the discharge port 5 does not communicate with the suction chamber 4 side. Therefore, in the scroll compressor S, the sum T OFF of the load acting on the orbiting scroll 11 when the displacement control valve 45 (see FIG. 1) is closed is from the discharge port 5 to the nth compression chamber 51n When considered, it is obtained by the following equation (10).
  • T ON is the sum of loads (unit: N) acting on the orbiting scroll 11 when the displacement control is performed to open the displacement control valve 45 (see FIG. 1).
  • T OFF is the sum of loads (unit: N) acting on the orbiting scroll 11 when the displacement control is performed to close the displacement control valve 45 (see FIG. 1).
  • a is the radius of the base circle 61 (unit: m).
  • h is the height of the scroll wrap (unit: m).
  • Pd is a discharge pressure (unit: N / m 2 ).
  • Ps is suction pressure (unit: N / m 2 ).
  • ⁇ p1 is a dilation angle.
  • t is the thickness (unit: m) of the orbiting scroll wrap 11a.
  • i is the order from the discharge port 5 of an arbitrary compression chamber 51.
  • n is the number of compression chambers 51.
  • Pi is an intermediate pressure (unit: N / m 2 ) of any compression chamber 51.
  • ⁇ T is a load that is relieved by performing displacement control to open the displacement control valve 45 (see FIG. 1).
  • a is the radius of the base circle 61 (unit: m).
  • h is the height of the scroll wrap (unit: m).
  • Pn is an intermediate pressure (unit: N / m 2 ) of the n-th compression chamber 51 n from the discharge port 5.
  • Ps is suction pressure (unit: N / m 2 ).
  • the scroll compressor S includes the compression mechanism unit 3 forming a plurality of compression chambers 51 by the orbiting scroll 11 and the fixed scroll 12, and the internal space of the compression chamber 51.
  • Input / output pressure difference (the suction pressure and the discharge pressure after the start of the stop process of the compression mechanism section 3)
  • the bypass port 41 for communicating the suction side space with the outside and the opening and closing of the bypass port 41.
  • Control unit (controller 30) that performs brake control to prevent reverse rotation of the compression mechanism unit 3 due to (pressure difference).
  • the scroll compressor S according to the present embodiment performs the brake control after the start of the stop process of the compression mechanism unit 3.
  • the scroll compressor S according to the present embodiment rotates the load torque in the reverse rotational direction acting (applied) to the compression mechanism 3 at the time of stop under the condition that the input / output pressure difference is large (high pressure condition). It is possible to prevent the reverse rotation of the compression mechanism 3 by avoiding the brake torque in the stopping direction to be exceeded (exceeding). Therefore, the scroll compressor S according to the present embodiment can reliably prevent reverse rotation of the compression mechanism 3 at the time of stop.
  • control unit controls the bypass port 41 after starting the stop process of the compression mechanism unit 3 and then performs brake control. It is configured to start.
  • the scroll compressor S according to the present embodiment causes the working fluid in the compression chamber 51 to be partially bypassed to the suction side by opening the bypass port 41 after the start of the stopping process of the compression mechanism unit 3, thereby turning The gas load acting on the scroll 11 is reduced. That is, in the scroll compressor S according to the present embodiment, when the compression mechanism 3 is stopped, the load torque in the reverse rotation direction of the compression mechanism 3 generated by the input / output pressure difference by, for example, ⁇ T of the equation (11) described above. Reduce Thus, the scroll compressor S maintains the relationship of “load torque ⁇ brake torque” even under a large input-output pressure difference condition (high pressure condition). Thereafter, the scroll compressor S according to the present embodiment starts brake control.
  • the scroll compressor S according to the present embodiment does not provide a check valve or the like for preventing the reverse rotation of the compression mechanism portion 3 and performs compression when the compression mechanism portion 3 is stopped by electrical means. Reverse rotation of the mechanism unit 3 can be prevented. Therefore, the scroll compressor S according to the present embodiment can reliably prevent reverse rotation of the compression mechanism 3 at the time of stop.
  • the scroll compressor S includes an elastic body (coil spring 46) that biases the displacement control valve 45 in the opening direction. Since the scroll compressor S urges the elastic body (coil spring 46) in the direction to open the displacement control valve 45, when the stopping process of the compression mechanism 3 is started, the displacement control valve 45 is automatically opened. be able to.
  • the scroll compressor S according to the present embodiment since the elastic body (coil spring 46) urges the displacement control valve 45 in the opening direction, when the stopping process of the compression mechanism 3 is started, the displacement control valve 45 It can be opened automatically.
  • the scroll compressor S according to the present embodiment can reliably reduce the gas load acting on the orbiting scroll 11.
  • the scroll compressor S according to the present embodiment can reliably prevent reverse rotation of the compression mechanism 3 at the time of stop.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)

Abstract

This scroll compressor (S) is provided with: a compression mechanism portion (3) comprising a plurality of compression chambers (51) formed by an orbiting scroll (11) and a fixed scroll (12); a bypass port (41) providing communication between inner spaces of the compression chambers and an external suction-side space; a capacity control valve (45) for switching the opening and closing of the bypass port; and a control unit (30) which performs, after the start of a compression mechanism portion stopping process, a brake control for preventing reverse rotation of the compression mechanism portion due to an input-output pressure difference.

Description

スクロール圧縮機Scroll compressor
 本発明は、スクロール圧縮機に関する。 The present invention relates to a scroll compressor.
 従来、スクロール圧縮機では、運転状態から停止状態に移行する際に、圧縮機構部の吸込圧と吐出圧との圧力差(以下、「入出力圧力差」と称する)で生じる負荷トルクにより、圧縮機構部が逆回転して、異常音が発生する場合があった。 Conventionally, in a scroll compressor, compression torque is generated by a pressure difference (hereinafter referred to as “input / output pressure difference”) between the suction pressure and the discharge pressure of the compression mechanism when transitioning from an operating state to a stopped state. In some cases, the mechanism rotates in the reverse direction and an abnormal sound is generated.
 そこで、スクロール圧縮機では、異常音の発生を抑制するために、圧縮機構部の吸込側又は吐出側に逆止弁を設けることにより、停止時の圧縮機構部の逆回転を防止する構造が広く用いられる。 Therefore, in the scroll compressor, in order to suppress the generation of abnormal noise, a structure is widely used to prevent reverse rotation of the compression mechanism at the time of stop by providing a check valve on the suction side or discharge side of the compression mechanism. Used.
 しかしながら、このような構造のスクロール圧縮機は、圧縮機構部の吸込側又は吐出側に逆止弁を設けることにより、作動流体の流路の流動性が阻害されて、圧縮性能が低下したり、部品数が増えて、コストが上昇したりする、という問題があった。 However, by providing a check valve on the suction side or the discharge side of the compression mechanism portion, the scroll compressor having such a structure inhibits the flowability of the flow path of the working fluid, resulting in a decrease in compression performance, There is a problem that the number of parts increases and the cost rises.
 そこで、スクロール圧縮機に関連して、逆止弁を用いずに、圧縮機構部に接続された電動機部の制御により、停止時の圧縮機構部の逆回転を防止する技術が提案されている。 Therefore, in relation to the scroll compressor, there has been proposed a technique for preventing reverse rotation of the compression mechanism at the time of stop by controlling the motor unit connected to the compression mechanism without using the check valve.
 例えば、特許文献1と特許文献2には、圧縮機構部の逆回転を防止するための逆止弁等を設けることなく、電気的な手段で停止時の圧縮機構部の逆回転を防止するブレーキ制御装置が記載されている。 For example, Patent Document 1 and Patent Document 2 do not provide a check valve or the like for preventing reverse rotation of the compression mechanism portion, and a brake that prevents reverse rotation of the compression mechanism portion when stopped by electrical means. A controller is described.
特開2000-287485号公報Japanese Patent Laid-Open No. 2000-287485 特開平11-46494号公報JP-A-11-46494
 しかしながら、特許文献1と特許文献2に記載された従来技術は、以下に説明するように、停止時の圧縮機構部の逆回転を確実に防止することが望まれていた。 However, in the conventional techniques described in Patent Document 1 and Patent Document 2, it is desired to reliably prevent reverse rotation of the compression mechanism portion at the time of stop, as described below.
 例えば、特許文献1と特許文献2に記載された従来技術は、入出力圧力差が大きい高圧条件下において、制御のタイミングによっては、停止時の圧縮機構部に加わる逆回転方向の負荷トルクが回転停止方向のブレーキトルクを超過して(上回って)、圧縮機構部の逆回転を防止することが困難になっていた。そのため、特許文献1と特許文献2に記載された従来技術は、停止時の負荷トルクが比較的小さな圧縮機にしか用いることができず、停止時の負荷トルクが比較的大型な圧縮機に用いることができなかった。つまり、特許文献1と特許文献2に記載された従来技術は、停止時の圧縮機構部の逆回転を防止することができない場合があった。 For example, according to the prior art described in Patent Document 1 and Patent Document 2, under the high pressure condition where the input / output pressure difference is large, the load torque in the reverse rotation direction applied to the compression mechanism at the time of stop is rotated depending on the control timing. It has been difficult to prevent the reverse rotation of the compression mechanism because the braking torque in the stopping direction is exceeded (exceeded). Therefore, the prior art described in Patent Document 1 and Patent Document 2 can be used only for a compressor having a relatively small load torque at the time of stop, and is used for a compressor having a relatively large load torque at the time of stop I could not. That is, the prior art described in Patent Document 1 and Patent Document 2 may not be able to prevent reverse rotation of the compression mechanism portion at the time of stopping.
 本発明は、前記した課題を解決するためになされたものであり、停止時の圧縮機構部の逆回転を確実に防止するスクロール圧縮機を提供することを主な目的とする。 The present invention has been made to solve the above-described problems, and has as its main object to provide a scroll compressor that reliably prevents reverse rotation of the compression mechanism portion at the time of stop.
 前記目的を達成するため、本発明は、スクロール圧縮機であって、旋回スクロールと固定スクロールとにより複数の圧縮室を形成する圧縮機構部と、前記圧縮室の内部空間と外部の吸込側空間とを連通させるバイパスポートと、前記バイパスポートの開閉を切り替える容量制御弁と、前記圧縮機構部の停止処理の開始後に、入出力圧力差による前記圧縮機構部の逆回転を防止するブレーキ制御を行う制御部と、を備える構成とする。
 その他の手段は、後記する。
In order to achieve the above object, the present invention is a scroll compressor, comprising: a compression mechanism portion forming a plurality of compression chambers by a orbiting scroll and a fixed scroll; an inner space of the compression chamber and a suction side space outside Control to switch the opening and closing of the bypass port, and control for performing brake control to prevent reverse rotation of the compression mechanism section due to the input / output pressure difference after starting the stop processing of the compression mechanism section And a unit.
Other means will be described later.
 本発明によれば、圧縮機構部の停止時に、停止時の圧縮機構部の逆回転を確実に防止することができる。 According to the present invention, when the compression mechanism is stopped, reverse rotation of the compression mechanism at the time of stop can be reliably prevented.
実施形態に係るスクロール圧縮機の構成を示す縦断面図である。It is a longitudinal section showing the composition of the scroll compressor concerning an embodiment. 実施形態に係るスクロール圧縮機の動作を示すフローチャートである。It is a flow chart which shows operation of a scroll compressor concerning an embodiment. 旋回スクロールと固定スクロールの構成を示す横断面図である。It is a cross-sectional view which shows the structure of a turning scroll and a fixed scroll. 基礎円とインボリュート曲線との関係を示す模式図である。It is a schematic diagram which shows the relationship between a base circle and an involute curve. 基礎円の接線とインボリュート曲線との関係を示す模式図である。It is a schematic diagram which shows the relationship between the tangent of a base circle, and an involute curve. 旋回スクロールラップと固定スクロールラップとの位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of turning scroll wrap and fixed scroll wrap. 吸込圧の作用面と全ての圧力が作用する仮想面との関係を示す模式図である。It is a schematic diagram which shows the relationship between the action surface of suction pressure, and the imaginary surface on which all the pressure acts. 吐出口周辺の仮想面の長さを示す模式図である。It is a schematic diagram which shows the length of the virtual surface of a discharge opening periphery. 圧縮室の隣接面と中間圧の作用面との関係を示す模式図である。It is a schematic diagram which shows the relationship between the adjacent surface of a compression chamber, and the action surface of intermediate pressure.
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, embodiments of the present invention (hereinafter, referred to as “this embodiment”) will be described in detail with reference to the drawings. The drawings are only schematically shown to the extent that the present invention can be sufficiently understood. Therefore, the present invention is not limited to the illustrated example. Moreover, in each figure, about the component common in common, and the same component, the same code | symbol is attached | subjected and those duplicate description is abbreviate | omitted.
 [実施形態]
 <スクロール圧縮機の構成>
  (スクロール圧縮機の全体構成)
 以下、図1を参照して、本実施形態に係るスクロール圧縮機Sの構成について説明する。図1は、本実施形態に係るスクロール圧縮機Sの構成を示す縦断面図である。本実施形態では、スクロール圧縮機Sが縦型の装置であるものとして説明する。スクロール圧縮機Sは、空気調和機や、冷蔵庫、冷凍庫等の冷凍サイクル装置全般に用いることができる。スクロール圧縮機Sは、例えばR32冷媒等を作動流体として使用する。
[Embodiment]
<Configuration of scroll compressor>
(Overall configuration of scroll compressor)
The configuration of the scroll compressor S according to the present embodiment will be described below with reference to FIG. FIG. 1 is a longitudinal sectional view showing the configuration of the scroll compressor S according to the present embodiment. In the present embodiment, the scroll compressor S is described as a vertical apparatus. The scroll compressor S can be used for air conditioners, and refrigeration cycle devices such as refrigerators and freezers in general. The scroll compressor S uses, for example, an R32 refrigerant as a working fluid.
 図1に示すように、本実施形態に係るスクロール圧縮機Sは、全体の動作を制御するコントローラ30と、後記する容量制御弁45の動作を制御する開閉切替装置40と、を備えている。また、スクロール圧縮機Sは、「チャンバ」と称される密閉容器1と、密閉容器1の内部に配置された電動機部2と、密閉容器1の内部に配置され、かつ、電動機部2によって駆動される圧縮機構部3と、電動機部2の回転動力を圧縮機構部3に伝達するクランクシャフト6と、を備えている。 As shown in FIG. 1, the scroll compressor S according to the present embodiment includes a controller 30 that controls the overall operation, and an open / close switching device 40 that controls the operation of a displacement control valve 45 described later. In addition, the scroll compressor S is disposed in the hermetic container 1 referred to as a “chamber”, a motor unit 2 disposed inside the hermetic container 1, and inside the hermetic container 1, and is driven by the motor unit 2 And a crankshaft 6 for transmitting the rotational power of the motor unit 2 to the compression mechanism unit 3.
 密閉容器1は、円筒状の筒チャンバ1aと、筒チャンバ1aの上部に溶接される蓋チャンバ1bと、筒チャンバ1aの下部に溶接される底チャンバ1cとで構成されている。密閉容器1の内部には、密閉されたチャンバ内空間54が形成されている。チャンバ内空間54は、圧縮機構部3に設けられた吐出口5と連通している。スクロール圧縮機Sが稼働すると、吐出口5からチャンバ内空間54に作動流体が吐き出される。これにより、比較的高圧な吐出圧Pd(図3参照)がチャンバ内空間54内に加わる。以下、チャンバ内空間54を「吐出圧空間」という場合がある。このスクロール圧縮機Sは、チャンバ内空間(吐出圧空間)54が高圧雰囲気となる、いわゆる高圧チャンバタイプの圧縮機である。 The closed container 1 comprises a cylindrical cylinder chamber 1a, a lid chamber 1b welded to the upper portion of the cylinder chamber 1a, and a bottom chamber 1c welded to the lower portion of the cylinder chamber 1a. A sealed chamber internal space 54 is formed inside the sealed container 1. The chamber internal space 54 is in communication with the discharge port 5 provided in the compression mechanism section 3. When the scroll compressor S operates, the working fluid is discharged from the discharge port 5 into the chamber space 54. As a result, a relatively high discharge pressure Pd (see FIG. 3) is applied to the space 54 in the chamber. Hereinafter, the chamber internal space 54 may be referred to as “discharge pressure space”. The scroll compressor S is a so-called high pressure chamber type compressor in which the chamber internal space (discharge pressure space) 54 has a high pressure atmosphere.
 蓋チャンバ1bの上面には、吸込パイプ7が溶接又はロウ付けされて固定配置されている。吸込パイプ7は、圧縮機構部3に設けられた吸込室4に連通するように、蓋チャンバ1bに取り付けられている。 A suction pipe 7 is fixed by welding or brazing on the upper surface of the lid chamber 1b. The suction pipe 7 is attached to the lid chamber 1 b so as to communicate with the suction chamber 4 provided in the compression mechanism section 3.
 また、筒チャンバ1aの側面には、吐出パイプ8が溶接又はロウ付けされて固定配置されている。吐出パイプ8は、チャンバ内空間(吐出圧空間)54と連通するように、筒チャンバ1aに取り付けられている。スクロール圧縮機Sは、吐出口5からチャンバ内空間54に吐き出された作動流体を、吐出パイプ8を介してスクロール圧縮機Sの外部に放出する。 Further, the discharge pipe 8 is fixed by welding or brazing on the side surface of the cylinder chamber 1a. The discharge pipe 8 is attached to the cylinder chamber 1 a so as to communicate with the chamber internal space (discharge pressure space) 54. The scroll compressor S discharges the working fluid discharged from the discharge port 5 into the chamber internal space 54 to the outside of the scroll compressor S via the discharge pipe 8.
 密閉容器1の内部には、スクロール圧縮機Sを組み立てる際の適当な段階で油(潤滑油)が封入されている。これにより密閉容器1の底部には、貯油部9が形成されている。 Oil (lubricating oil) is enclosed in the inside of the closed container 1 at an appropriate stage when assembling the scroll compressor S. An oil reservoir 9 is thus formed at the bottom of the closed container 1.
 電動機部2は、固定子2aと、回転子2bと、を備えている。固定子2aは、焼き嵌めや溶接等により密閉容器1に固定されている。回転子2bは、固定子2aの内側に回転可能に配置されている。その回転子2bには、クランクシャフト6が固定されている。 The motor unit 2 includes a stator 2a and a rotor 2b. The stator 2a is fixed to the closed container 1 by shrink fitting, welding or the like. The rotor 2b is rotatably disposed inside the stator 2a. A crankshaft 6 is fixed to the rotor 2b.
 クランクシャフト6は、上側が後記するフレーム13に設けられた主軸受13aに支持されており、下側が下軸受10に支持されている。クランクシャフト6の上部には、偏心部であるピン部6cが設けられている。電動機部2を駆動させてクランクシャフト6を回転させると、ピン部6cは、クランクシャフト6の主軸に対して偏心回転運動を行う。クランクシャフト6には、貯油部9の油を後記する旋回軸受部11cに供給するための給油縦穴6a及び給油横穴6bが設けられている。 The crankshaft 6 is supported by a main bearing 13 a provided on a frame 13 whose upper side is described later, and the lower side is supported by a lower bearing 10. At an upper portion of the crankshaft 6, a pin portion 6c which is an eccentric portion is provided. When the motor unit 2 is driven to rotate the crankshaft 6, the pin unit 6 c performs eccentric rotational movement with respect to the main shaft of the crankshaft 6. The crankshaft 6 is provided with an oil supply vertical hole 6a and an oil supply horizontal hole 6b for supplying the oil of the oil storage portion 9 to a turning bearing portion 11c described later.
 圧縮機構部3は、旋回スクロール11と、固定スクロール12と、フレーム13と、オルダムリング14と、容量制御弁45と、を備えている。 The compression mechanism unit 3 includes an orbiting scroll 11, a fixed scroll 12, a frame 13, an Oldham ring 14, and a displacement control valve 45.
 旋回スクロール11は、旋回スクロールラップ11aと、旋回端板11bと、旋回軸受部11cと、を有している。旋回スクロールラップ11aは、旋回端板11bに立設するように形成された渦巻き状のラップである。旋回軸受部11cは、クランクシャフト6の偏心部であるピン部6cが挿入される軸受部である。 The orbiting scroll 11 has an orbiting scroll wrap 11a, an orbiting end plate 11b, and an orbiting bearing portion 11c. The orbiting scroll wrap 11a is a spiral wrap formed so as to stand on the orbiting end plate 11b. The orbiting bearing portion 11 c is a bearing portion into which the pin portion 6 c which is an eccentric portion of the crankshaft 6 is inserted.
 固定スクロール12は、固定スクロールラップ12aと、固定端板12bと、を有している。固定スクロールラップ12aは、固定端板12bに立設するように形成された渦巻き状のラップである。固定スクロールラップ12aの外周部には、吸込室4が設けられている。また、固定スクロールラップ12aの外周部の近傍には、圧縮室51の内部空間と外部の吸込側空間とを連通させるバイパスポート41が設けられている。また、固定スクロールラップ12aの中央部には、吐出口5が設けられている。吸込室4は、圧縮室51が形成される前の空間であり、圧縮室51が形成されることにより圧縮室51の内部空間と外部の吸込側空間とに分断される。スクロール圧縮機Sが稼働すると、吐出圧Pd(図3参照)よりも低圧な吸込圧Ps(図3参照)が吸込室4内に加わる。 The fixed scroll 12 has a fixed scroll wrap 12a and a fixed end plate 12b. The fixed scroll wrap 12a is a spiral wrap formed to stand on the fixed end plate 12b. A suction chamber 4 is provided at an outer peripheral portion of the fixed scroll wrap 12a. Further, in the vicinity of the outer peripheral portion of the fixed scroll wrap 12a, a bypass port 41 for communicating the internal space of the compression chamber 51 with the external suction side space is provided. Moreover, the discharge port 5 is provided in the center part of fixed scroll wrap 12a. The suction chamber 4 is a space before the compression chamber 51 is formed, and is divided into an internal space of the compression chamber 51 and an external suction side space by the compression chamber 51 being formed. When the scroll compressor S operates, the suction pressure Ps (see FIG. 3), which is lower than the discharge pressure Pd (see FIG. 3), is applied to the inside of the suction chamber 4.
 旋回スクロール11は、固定スクロール12と相対向して旋回自在に配置されている。圧縮機構部3は、旋回スクロールラップ11aと固定スクロールラップ12aとを噛み合わせた状態で旋回スクロール11を旋回させることにより、旋回スクロールラップ11aと固定スクロールラップ12aとの間に、吸込室4と連通する圧縮室51を形成する。 The orbiting scroll 11 is disposed to face the fixed scroll 12 so as to be pivotable. The compression mechanism portion 3 communicates with the suction chamber 4 between the orbiting scroll wrap 11a and the fixed scroll wrap 12a by orbiting the orbiting scroll 11 in a state where the orbiting scroll wrap 11a and the fixed scroll wrap 12a are engaged. To form a compression chamber 51.
 フレーム13は、その外周側が溶接によって密閉容器1の内壁面に固定されている。フレーム13は、クランクシャフト6の主軸を回転自在に支持する主軸受13aを備えている。固定スクロール12は、ボルトによりフレーム13と締結され固定されている。また、旋回スクロール11とフレーム13との間には、背圧室53が形成されている。背圧室53は、旋回スクロール11側から固定スクロール12側に向かう方向の背圧Pb(図示せず)を作動流体に加える。これにより、圧縮機構部3は、旋回スクロール11が固定スクロール12から離れないように、背圧Pb(図示せず)を加えた作動流体で旋回スクロール11を固定スクロール12側に押圧している。背圧Pb(図示せず)は、吐出圧Pd(図3参照)と吸込圧Ps(図3参照)とのほぼ中間の圧力に設定されている。 The outer peripheral side of the frame 13 is fixed to the inner wall surface of the closed container 1 by welding. The frame 13 includes a main bearing 13 a that rotatably supports the main shaft of the crankshaft 6. The fixed scroll 12 is fastened and fixed to the frame 13 by bolts. Further, a back pressure chamber 53 is formed between the orbiting scroll 11 and the frame 13. The back pressure chamber 53 adds back pressure Pb (not shown) in the direction from the orbiting scroll 11 side to the fixed scroll 12 side to the working fluid. Thereby, the compression mechanism portion 3 presses the orbiting scroll 11 to the fixed scroll 12 side with the working fluid to which the back pressure Pb (not shown) is added so that the orbiting scroll 11 does not separate from the stationary scroll 12. The back pressure Pb (not shown) is set to a pressure substantially intermediate between the discharge pressure Pd (see FIG. 3) and the suction pressure Ps (see FIG. 3).
 オルダムリング14は、旋回スクロール11とフレーム13との間に配置されている。オルダムリング14は、固定スクロール12に対して旋回スクロール11を自転させずに旋回運動を行わせるための自転規制部材である。オルダムリング14は、図示せぬキー部を備えている。キー部は、旋回スクロール11に形成された旋回オルダム溝(図示せず)と、フレーム13に形成されたフレームオルダム溝(図示せず)とに挿入されている。これにより、オルダムリング14は、旋回スクロール11の自転を規制している。 The Oldham ring 14 is disposed between the orbiting scroll 11 and the frame 13. The Oldham ring 14 is a rotation restricting member for causing the fixed scroll 12 to perform a turning motion without rotating the turning scroll 11. The Oldham ring 14 is provided with a key portion (not shown). The key portion is inserted into a swing oldham groove (not shown) formed in the swing scroll 11 and a frame oldham groove (not shown) formed in the frame 13. Thereby, the Oldham ring 14 regulates rotation of the orbiting scroll 11.
 コントローラ30は、電動機部2の動作を制御したり、開閉切替装置40の動作を制御したりする。 The controller 30 controls the operation of the motor unit 2 and controls the operation of the open / close switching device 40.
 容量制御弁45は、バイパスポート41の開閉を切り替える機構である。開閉切替装置40は、コントローラ30の制御に応じて、容量制御弁45を開閉する。開閉切替装置40は、容量制御弁45を開放することにより、バイパスポート41を介して圧縮室51の内部空間と外部の吸込側空間とを一時的に連通させて、圧縮機構部3の入出力圧力差(吸込圧と吐出圧との圧力差)を低減させる。以下、容量制御弁45を開放させる制御を「容量制御」と称する。 The displacement control valve 45 is a mechanism that switches the opening and closing of the bypass port 41. The open / close switching device 40 opens and closes the displacement control valve 45 in accordance with the control of the controller 30. By opening and closing the displacement control valve 45, the open / close switching device 40 temporarily communicates the internal space of the compression chamber 51 with the external suction side space via the bypass port 41, thereby allowing the input / output of the compression mechanism 3. Reduce the pressure difference (the pressure difference between the suction pressure and the discharge pressure). Hereinafter, control for opening the displacement control valve 45 is referred to as “capacity control”.
 スクロール圧縮機Sは、容量制御弁45を開く方向に付勢する弾性体としてのコイルばね46を備えている。スクロール圧縮機Sは、コイルばね46が容量制御弁45を開く方向に付勢しているため、圧縮機構部3の停止処理を開始すると、容量制御弁45を自動的に開放させることができる。 The scroll compressor S includes a coil spring 46 as an elastic body that biases the displacement control valve 45 in the opening direction. In the scroll compressor S, since the coil spring 46 biases the displacement control valve 45 in the direction to open, when the stopping process of the compression mechanism 3 is started, the displacement control valve 45 can be automatically opened.
 なお、前記した特許文献1と特許文献2に記載された従来技術以前の旧来の一般的なスクロール圧縮機では、圧縮機構部3の吸込側(例えば、図2に示す部位Ar)又は吐出側に、圧縮機構部3の逆回転を防止するための逆止弁が設けられていた。しかしながら、本実施形態に係るスクロール圧縮機Sでは、圧縮機構部3の吸込側(図2に示す部位Ar)にも、また吐出側にも、圧縮機構部3の逆回転を防止するための逆止弁が設けられていない。つまり、本実施形態に係るスクロール圧縮機Sは、圧縮機構部3の吸込側(図2に示す部位Ar)及び吐出側から圧縮機構部3の逆回転防止用の逆止弁を削除した構造になっている。このような本実施形態に係るスクロール圧縮機Sは、圧縮機構部3の吸込側及び吐出側の構造を簡素化することができるため、旧来の一般的なスクロール圧縮機よりも部品点数を低減して、製造コストを低減することができる。 In addition, in the conventional general scroll compressor before the prior art described in the above-mentioned patent documents 1 and patent documents 2, it is on the suction side (for example, part Ar shown in Drawing 2) or discharge side of compression mechanism part 3 The non-return valve for preventing the reverse rotation of the compression mechanism part 3 was provided. However, in the scroll compressor S according to the present embodiment, reverse rotation of the compression mechanism 3 is prevented on the suction side (the portion Ar shown in FIG. 2) of the compression mechanism 3 and also on the discharge side. There is no stop valve. That is, the scroll compressor S according to the present embodiment has a structure in which the check valve for preventing reverse rotation of the compression mechanism 3 is removed from the suction side (part Ar shown in FIG. 2) and the discharge side of the compression mechanism 3. It has become. Since the scroll compressor S according to the present embodiment can simplify the structure on the suction side and the discharge side of the compression mechanism portion 3, the number of parts can be reduced compared to a conventional general scroll compressor. Thus, the manufacturing cost can be reduced.
 <スクロール圧縮機の動作>
 以下、図2を参照して、本実施形態に係るスクロール圧縮機Sの動作について説明する。図2は、スクロール圧縮機Sの動作を示すフローチャートである。スクロール圧縮機Sの動作は、主にコントローラ30によって実行される。
<Operation of scroll compressor>
The operation of the scroll compressor S according to the present embodiment will be described below with reference to FIG. FIG. 2 is a flowchart showing the operation of the scroll compressor S. The operation of the scroll compressor S is mainly performed by the controller 30.
 スクロール圧縮機Sは、圧縮機構部3の停止処理時に、バイパスポート41を開放して、圧縮機構部3の入出力圧力差を低減させてから、電動機部2にブレーキトルクをかけて、電動機部2を停止させることにより、圧縮機構部3の逆回転を防止するブレーキ制御を行う構成になっている。 The scroll compressor S opens the bypass port 41 at the time of stop processing of the compression mechanism portion 3 to reduce an input / output pressure difference of the compression mechanism portion 3 and then applies a brake torque to the motor portion 2 to By stopping 2, the brake control is performed to prevent reverse rotation of the compression mechanism 3.
 図2に示すように、スクロール圧縮機Sのコントローラ30は、停止状態において、冷凍サイクルシステムを構成する図示せぬ上位装置から運転開始の指示を受信すると、通常運転制御を行う(ステップS110)。これにより、スクロール圧縮機Sの動作が停止状態から運転状態に移行する。 As shown in FIG. 2, in the stopped state, the controller 30 of the scroll compressor S performs normal operation control when receiving an operation start instruction from a host system (not shown) constituting the refrigeration cycle system (step S110). As a result, the operation of the scroll compressor S shifts from the stop state to the operating state.
 スクロール圧縮機Sのコントローラ30は、運転中に、図示せぬ上位装置から送信された停止指示があるか否かを繰り返し判定する(ステップS120)。ステップS120の判定で、停止指示がなかったと判定された場合(“No”の場合)に、処理はステップS110に戻り、一方、停止指示があったと判定された場合(“Yes”の場合)に、処理はステップS130に進む。 The controller 30 of the scroll compressor S repeatedly determines whether or not there is a stop instruction transmitted from the upper apparatus (not shown) during operation (step S120). If it is determined in step S120 that a stop instruction has not been issued (in the case of "No"), the process returns to step S110, while if it is determined that a stop instruction has been issued (in the case of "Yes") The process proceeds to step S130.
 ステップS120の判定で、停止指示があったと判定された場合(“Yes”の場合)に、スクロール圧縮機Sのコントローラ30は、運転停止制御を開始する(ステップS130)。ここでは、運転停止制御が、例えば、バイパスポート41を開放して、圧縮機構部3の入出力圧力差を低減させてから、電動機部2にブレーキトルクをかけて、電動機部2を停止させる制御であるものとして説明する。 If it is determined in step S120 that a stop instruction has been issued (in the case of “Yes”), the controller 30 of the scroll compressor S starts operation stop control (step S130). Here, after the operation stop control, for example, opens the bypass port 41 to reduce the input / output pressure difference of the compression mechanism unit 3, the control to apply the brake torque to the motor unit 2 to stop the motor unit 2 It is assumed that the
 運転停止制御が開始されると、スクロール圧縮機Sのコントローラ30は、開閉切替装置40に対して、容量制御弁45を開放させる指示を送信する。これに応答して、開閉切替装置40が、容量制御弁45の開放制御を行う(ステップS140)。これにより、スクロール圧縮機Sは、圧縮機構部3の入出力圧力差を低減させる。 When the operation stop control is started, the controller 30 of the scroll compressor S transmits, to the open / close switching device 40, an instruction to open the displacement control valve 45. In response to this, the on-off switching device 40 performs the opening control of the displacement control valve 45 (step S140). Thus, the scroll compressor S reduces the input / output pressure difference of the compression mechanism unit 3.
 ステップS140の後、スクロール圧縮機Sのコントローラ30は、電動機部2にブレーキトルクをかけるブレーキ制御を開始し(ステップS150)、電動機部2が停止すると、ブレーキ制御を終了する(ステップS160)。これにより、スクロール圧縮機Sは、運転を停止する。 After step S140, the controller 30 of the scroll compressor S starts brake control to apply a brake torque to the motor unit 2 (step S150), and ends the brake control when the motor unit 2 is stopped (step S160). Thereby, scroll compressor S stops operation.
 <旋回スクロールと固定スクロールの構成>
 以下、図3を参照して、旋回スクロール11と固定スクロール12の構成について、説明する。図3は、旋回スクロール11と固定スクロール12の構成を示す横断面図である。図3は、下側から見た旋回スクロール11と固定スクロール12の構成を示している。
<Configuration of orbiting scroll and fixed scroll>
The configurations of the orbiting scroll 11 and the fixed scroll 12 will be described below with reference to FIG. FIG. 3 is a cross-sectional view showing the configuration of the orbiting scroll 11 and the fixed scroll 12. FIG. 3 shows the configurations of the orbiting scroll 11 and the fixed scroll 12 as viewed from below.
 図3に示すように、固定スクロールラップ12aの中央部には、吐出口5が設けられている。また、固定スクロールラップ12aの外周部には、吸込室4が設けられている。スクロール圧縮機Sは、旋回スクロールラップ11aと固定スクロールラップ12aとを噛み合わせた状態で旋回スクロール11を旋回させることにより、旋回スクロールラップ11aと固定スクロールラップ12aとの間に、複数の圧縮室51を形成する。そのスクロール圧縮機Sは、吐出口5から第n番目の圧縮室51nが吸込室4と連通する構造になっている。図3に示す例では、3個の圧縮室51が形成されており、吐出口5から第3番目の圧縮室51が吸込室4と連通している。 As shown in FIG. 3, a discharge port 5 is provided at the center of the fixed scroll wrap 12a. Moreover, the suction chamber 4 is provided in the outer peripheral part of fixed scroll wrap 12a. The scroll compressor S rotates the orbiting scroll 11 in a state in which the orbiting scroll wrap 11a and the fixed scroll wrap 12a are engaged with each other, whereby a plurality of compression chambers 51 are provided between the orbiting scroll wrap 11a and the fixed scroll wrap 12a. Form The scroll compressor S has a structure in which the nth compression chamber 51 n from the discharge port 5 communicates with the suction chamber 4. In the example shown in FIG. 3, three compression chambers 51 are formed, and the third compression chamber 51 from the discharge port 5 communicates with the suction chamber 4.
 吐出口5の内部には、吐出圧Pdが加わっている。また、吸込室4の内部には、吐出圧Pdよりも低圧な吸込圧Psが加わっている。また、吐出口5から第1番目から第3番目までの圧縮室51の内部には、それぞれ、圧力P1,P2,P3が加わっている。圧力P1,P2,P3は、それぞれ、吸込圧Psよりも高圧でかつ吐出圧Pdよりも低圧な中間圧になっている。以下、「圧力P1,P2,P3」をそれぞれ「中間圧P1,P2,P3」と称する場合がある。 The discharge pressure Pd is applied to the inside of the discharge port 5. Further, a suction pressure Ps lower than the discharge pressure Pd is applied to the inside of the suction chamber 4. Further, pressures P1, P2, and P3 are applied to the insides of the first to third compression chambers 51 from the discharge port 5, respectively. The pressures P1, P2, and P3 are respectively intermediate pressures that are higher than the suction pressure Ps and lower than the discharge pressure Pd. Hereinafter, "pressures P1, P2, P3" may be referred to as "intermediate pressures P1, P2, P3", respectively.
 <スクロールラップの形成曲線>
 以下、図4と図5を参照して、旋回スクロール11と固定スクロール12のスクロールラップを形成する曲線について、説明する。図4は、後記する基礎円61と後記するインボリュート曲線60との関係を示す模式図である。図5は、後記する基礎円61の接線62と後記するインボリュート曲線60との関係を示す模式図である。図4と図5は、上から見た(つまり、図3とは逆方向から見た)スクロールラップの内壁面を形成する曲線の形状を示している。
<Formation curve of scroll wrap>
Hereinafter, curves forming the scroll wraps of the orbiting scroll 11 and the fixed scroll 12 will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic view showing a relationship between a base circle 61 described later and an involute curve 60 described later. FIG. 5 is a schematic view showing a relationship between a tangent 62 of a base circle 61 described later and an involute curve 60 described later. 4 and 5 show the shapes of the curves forming the inner wall surface of the scroll wrap viewed from above (that is, viewed in the direction opposite to that of FIG. 3).
 図4に示すように、一般的に、スクロールラップを形成する曲線は、インボリュート曲線60を採用されることが多い。インボリュート曲線60は、円に巻きつけた糸を解くときに糸の端が描く曲線を言い、円の伸開線とも言う。 As shown in FIG. 4, generally, the curve forming the scroll wrap often employs an involute curve 60. The involute curve 60 is a curve drawn by the end of the yarn when the yarn wound around the circle is unwound, and is also referred to as a circle dissection line.
 また、糸が巻きついた円を基礎円61と言い、糸が完全に巻きついた状態を0度としたとき、基礎円61の中心と糸の始点とを結ぶ直線と基礎円61の中心と基礎円61の後記する接点63とを結ぶ直線とがなす角度(内角)を伸開角(又は、インボリュート伸開角)λと言う。接点63は、基礎円61と基礎円61の接線62とが接する点である。基礎円61の接線62は、図7に示す線162の一部を構成するように配置された直線である。 In addition, when a circle in which the yarn is wound is referred to as a base circle 61 and a state in which the yarn is completely wound is 0 degree, a straight line connecting the center of the base circle 61 and the start point of the yarn and the center of the base circle 61 The angle (internal angle) between the base circle 61 and the straight line connecting the contact points 63 (described later) is called the extension angle (or involute extension angle) λ. The contact point 63 is a point at which the base circle 61 and the tangent line 62 of the base circle 61 are in contact with each other. The tangent 62 of the base circle 61 is a straight line arranged to form a part of the line 162 shown in FIG. 7.
 図4に示す基礎円61の接線62上において、基礎円61との接点63からインボリュート曲線60との第1番目の交点64までの距離ε1は、以下の式(1)で求まる。
Figure JPOXMLDOC01-appb-M000001
The distance ε1 from the contact point 63 with the base circle 61 to the first intersection point 64 with the involute curve 60 on the tangent line 62 of the base circle 61 shown in FIG. 4 can be obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 ここで、式(1)において、各符号は、以下を表している。
 ε1は、基礎円61の接線62上において、基礎円61との接点63からインボリュート曲線60との第1番目の交点64までの距離(単位:m(メートル))である。なお、単位のm(メートル)は、cm(センチメートル)で換算されたものであってもよい(以下、同様)。
 aは、基礎円61の半径(単位:m)である。
 λp1は、伸開角である。
Here, in Formula (1), each code represents the following.
ε 1 is the distance (unit: m (meters)) from the contact point 63 with the base circle 61 to the first intersection point 64 with the involute curve 60 on the tangent line 62 of the base circle 61. In addition, m (meter) of a unit may be converted by cm (centimeter) (following, the same).
a is the radius of the base circle 61 (unit: m).
λ p1 is a dilation angle.
 また、図5に示す基礎円61の接線62上において、インボリュート曲線60との第1番目の交点64から第2番目の交点65までの距離ε2は、基礎円61の円周の長さに等しいため、以下の式(2)で求まる。
Figure JPOXMLDOC01-appb-M000002
Furthermore, on the tangent line 62 of the base circle 61 shown in FIG. 5, the distance ε 2 from the first intersection point 64 with the involute curve 60 to the second intersection point 65 is equal to the length of the circumference of the base circle 61 Therefore, it is obtained by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 ここで、式(2)において、各符号は、以下を表している。
 ε2は、基礎円61の接線62上において、インボリュート曲線60との第1番目の交点64から第2番目の交点65までの距離(単位:m)である。
 aは、基礎円61の半径(単位:m)である。
Here, in Formula (2), each code represents the following.
ε 2 is the distance (unit: m) from the first intersection point 64 with the involute curve 60 to the second intersection point 65 on the tangent 62 of the base circle 61.
a is the radius of the base circle 61 (unit: m).
 スクロールラップは、前記した式(1)と式(2)を満たすインボリュート曲線60に沿って形成されている。 The scroll wrap is formed along the involute curve 60 which satisfies the above-mentioned equation (1) and equation (2).
 <停止時の圧縮機構部の入出力圧力差により旋回スクロールに生じる荷重>
 以下、図6乃至図9を参照して、停止時の圧縮機構部3の入出力圧力差(吸込圧と吐出圧との圧力差)により旋回スクロール11に生じる荷重について、説明する。図6は、旋回スクロールラップ11aと固定スクロールラップ12aとの位置関係を示す模式図である。図7は、後記する作用面67と後記する仮想面69との関係を示す模式図である。図8は、吐出口5周辺の後記する仮想面69の長さを示す模式図である。図9は、後記する隣接面68と後記する部分仮想面69mとの関係を示す模式図である。
<The load generated on the orbiting scroll due to the input / output pressure difference of the compression mechanism at the time of stop>
The load generated on the orbiting scroll 11 by the input / output pressure difference (the pressure difference between the suction pressure and the discharge pressure) of the compression mechanism 3 at the time of stop will be described below with reference to FIGS. 6 to 9. FIG. 6 is a schematic view showing the positional relationship between the orbiting scroll wrap 11a and the fixed scroll wrap 12a. FIG. 7 is a schematic view showing the relationship between a working surface 67 described later and a virtual surface 69 described later. FIG. 8 is a schematic view showing the length of a virtual surface 69 described later around the discharge port 5. FIG. 9 is a schematic view showing a relationship between an adjacent surface 68 described later and a partial virtual surface 69m described later.
 作用面67(図7参照)は、吸込圧Psが作用する(加わる)面である。
 仮想面69(図7乃至図9参照)は、全ての圧力が作用する(加わる)仮想的な面である。
 隣接面68(図9参照)は、吐出口5から第m番目(図9に示す例では、1番目)の圧縮室51mに臨む旋回スクロールラップ11aの外壁面である。隣接面68(図9参照)には、圧縮室51の内部の圧力(中間圧)が作用する(加わる)。
 部分仮想面69m(図9参照)は、隣接面68の端点同士を結ぶ線に沿って仮想的に形成された面である。
The action surface 67 (see FIG. 7) is a surface on which the suction pressure Ps acts (is applied).
The virtual surface 69 (see FIGS. 7 to 9) is a virtual surface on which all the pressure acts.
The adjacent surface 68 (see FIG. 9) is an outer wall surface of the orbiting scroll wrap 11a facing the mth (first in the example shown in FIG. 9) compression chamber 51m from the discharge port 5. The pressure (intermediate pressure) inside the compression chamber 51 acts (applies) on the adjacent surface 68 (see FIG. 9).
The partial virtual surface 69m (see FIG. 9) is a surface virtually formed along a line connecting the end points of the adjacent surfaces 68.
 ここでは、仮想面69(図7乃至図9参照)が図7に示す線162に沿って仮想的に旋回スクロールラップ11aの高さ方向に形成された断面であるものとして説明する。線162(図7参照)は、その中心部分が基礎円61の中心を通るように配置されるとともに、線162と基礎円61との2箇所の交点から一方側部分と他方側部分とが互いに逆方向に並行に延びるように配置される。また、線162(図7参照)は、一方側部分の端部が旋回スクロールラップ11aの最外周部分の外壁面と固定スクロールラップ12aの内壁面との当接位置に突き当たるとともに、他方側部分の端部が旋回スクロールラップ11aの最外周部分の内壁面に突き当たるように、配置される。図4及び図5に示す基礎円61の接線62は、線162の他方側部分を構成している。仮想面69(図7乃至図9参照)は、その線162に沿って仮想的に形成される。 Here, the virtual surface 69 (see FIGS. 7 to 9) will be described as a cross section virtually formed in the height direction of the orbiting scroll wrap 11a along the line 162 shown in FIG. The line 162 (see FIG. 7) is disposed such that the central portion thereof passes through the center of the base circle 61, and from one of the intersections of the line 162 and the base circle 61, one side portion and the other side portion It is arranged to extend in parallel in the opposite direction. The line 162 (see FIG. 7) abuts the end of one side portion at the contact position between the outer wall surface of the outermost peripheral portion of the orbiting scroll wrap 11a and the inner wall surface of the fixed scroll wrap 12a. It arrange | positions so that an edge part may abut on the inner wall face of the outermost peripheral part of revolution scroll wrap 11a. The tangent 62 of the base circle 61 shown in FIGS. 4 and 5 constitutes the other side of the line 162. A virtual surface 69 (see FIGS. 7-9) is virtually formed along the line 162.
 図6は、ある回転角で噛み合った旋回スクロールラップ11aと固定スクロールラップ12aとの位置関係を示している。図6に示す例では、旋回スクロールラップ11aの最外周部分の外壁面と固定スクロールラップ12aの最外周部分の内壁面とが吸込室4(図3参照)の近傍の位置で当接している。図7は、図6に示す位置関係の旋回スクロールラップ11aにおいて、吸込圧Psが作用する作用面67を示している。作用面67は、図6及び図7に示す位置関係の旋回スクロールラップ11aにおいて、吸込室4に連通する部位の内壁面である。 FIG. 6 shows the positional relationship between the orbiting scroll wrap 11a and the fixed scroll wrap 12a engaged at a certain rotation angle. In the example shown in FIG. 6, the outer wall surface of the outermost periphery of the orbiting scroll wrap 11a and the inner wall surface of the outermost periphery of the fixed scroll wrap 12a are in contact with each other at a position near the suction chamber 4 (see FIG. 3). FIG. 7 shows the action surface 67 on which the suction pressure Ps acts in the orbiting scroll wrap 11a in the positional relationship shown in FIG. The action surface 67 is an inner wall surface of a portion communicating with the suction chamber 4 in the orbiting scroll wrap 11 a in the positional relationship shown in FIGS. 6 and 7.
 ここで、まず、旋回スクロール11に作用する吸込圧Psの荷重について検討する。
 吸込圧Psは、吸込室4から圧縮室51に流入する作動流体によって生じる。吸込圧Psは、作用面67(図7参照)に対して旋回スクロール11の逆回転方向に作用する。つまり、吸込圧Psは、旋回スクロール11に対して逆回転方向に作用する。このような旋回スクロール11に対して逆回転方向に作用する吸込圧Psの荷重TPsは、吸込圧Psが作用面67に作用する荷重と吸込圧Psが仮想面69に作用する荷重とが等しいため、以下の式(3)で求まる。
Figure JPOXMLDOC01-appb-M000003
Here, first, the load of the suction pressure Ps acting on the orbiting scroll 11 will be examined.
The suction pressure Ps is generated by the working fluid flowing into the compression chamber 51 from the suction chamber 4. The suction pressure Ps acts on the action surface 67 (see FIG. 7) in the reverse rotation direction of the orbiting scroll 11. That is, the suction pressure Ps acts on the orbiting scroll 11 in the reverse rotation direction. Load T Ps of the suction pressure Ps acting on the reverse rotation direction with respect to such orbiting scroll 11, load and suction pressure Ps of the suction pressure Ps acts on the working surface 67 is equal to the load applied to the virtual surface 69 Therefore, it is obtained by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 ここで、式(3)において、各符号は、以下を表している。
 TPsは、旋回スクロール11に対して逆回転方向に作用する吸込圧Psの荷重(単位:N(ニュートン))である。
 Psは、吸込圧(単位:N/m)である。
 Lは、仮想面69の長さ(単位:m)である。
 hは、旋回スクロールラップ11aの高さ(単位:m)である。
Here, in Formula (3), each code represents the following.
T Ps is a load (unit: N (newton)) of the suction pressure Ps acting on the orbiting scroll 11 in the reverse rotation direction.
Ps is suction pressure (unit: N / m 2 ).
L 1 is the length (unit: m) of the virtual surface 69.
h is the height (unit: m) of the orbiting scroll wrap 11a.
 なお、吐出口5周辺では、仮想面69の寸法は、図8に示すような長さになっている。そのため、圧縮室51の数を「n」とし、旋回スクロールラップ11aの厚さを「t」とすると、図8に示す吐出口5周辺の仮想面69の寸法と前記した式(2)とから、仮想面69の長さLは、以下の式(4)で求まる。なお、図8に示す部分仮想面69dについては、後記する。
Figure JPOXMLDOC01-appb-M000004
In the vicinity of the discharge port 5, the dimension of the virtual surface 69 is as shown in FIG. Therefore, assuming that the number of compression chambers 51 is "n" and the thickness of the orbiting scroll wrap 11a is "t", from the dimensions of the virtual surface 69 around the discharge port 5 shown in FIG. The length L 1 of the virtual surface 69 is obtained by the following equation (4). The partial virtual surface 69d shown in FIG. 8 will be described later.
Figure JPOXMLDOC01-appb-M000004
 ここで、式(4)において、各符号は、以下を表している。
 Lは、仮想面69の長さ(単位:m)である。
 aは、基礎円61の半径(単位:m)である。
 λp1は、伸開角である。
 tは、旋回スクロールラップ11aの厚さ(単位:m)である。
 ε2は、基礎円61の接線62上において、インボリュート曲線60との第1番目の交点64から第2番目の交点65までの距離(単位:m)である。
 nは、圧縮室51の数である。
Here, in the equation (4), each symbol represents the following.
L 1 is the length (unit: m) of the virtual surface 69.
a is the radius of the base circle 61 (unit: m).
λ p1 is a dilation angle.
t is the thickness (unit: m) of the orbiting scroll wrap 11a.
ε 2 is the distance (unit: m) from the first intersection point 64 with the involute curve 60 to the second intersection point 65 on the tangent 62 of the base circle 61.
n is the number of compression chambers 51.
 次に、旋回スクロール11に作用する各圧縮室51の内部の圧力(中間圧)の荷重について検討する。
 図9に示すように、吐出口5から第m番目(例えば、1番目)の圧縮室51mの中間圧は、圧縮室51mに臨む旋回スクロールラップ11aの隣接面68に作用する。部分仮想面69mは、その隣接面68に作用する中間圧の荷重Tを受ける面として仮想的に導出されたものである。部分仮想面69mは、吐出口5から第m番目(図9に示す例では、1番目)の圧縮室51mに臨む旋回スクロールラップ11aの隣接面68の端点同士を結ぶ線に沿って仮想的に旋回スクロールラップ11aの高さ方向に形成された断面である。
Next, the load of the pressure (intermediate pressure) inside each compression chamber 51 acting on the orbiting scroll 11 will be examined.
As shown in FIG. 9, the intermediate pressure of the mth (for example, the first) compression chamber 51m from the discharge port 5 acts on the adjacent surface 68 of the orbiting scroll wrap 11a facing the compression chamber 51m. Partial virtual plane 69m is one that is virtually derived as a surface for receiving a load the T m of the intermediate pressure acting on the adjacent surfaces 68. The partial virtual surface 69m is virtually along a line connecting the end points of the adjacent surface 68 of the orbiting scroll wrap 11a facing the m-th (first example in the example shown in FIG. 9) compression chamber 51m from the discharge port 5. It is a cross section formed in the height direction of orbiting scroll wrap 11a.
 吐出口5から第m番目(例えば、1番目)の圧縮室51mにおける中間圧は、部分仮想面69mに対して順回転方向に作用する。そして、吐出口5から第m番目の圧縮室51mにおいて、旋回スクロール11に対して順回転方向に作用する中間圧の荷重Tは、以下の式(5)で求まる。
Figure JPOXMLDOC01-appb-M000005
The intermediate pressure in the mth (for example, the first) compression chamber 51m from the discharge port 5 acts on the partial virtual surface 69m in the forward rotational direction. Then, in the m-th compression chamber 51m from the discharge port 5, load the T m of the intermediate pressure acting on the forward rotational direction with respect to the orbiting scroll 11 is determined by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 ここで、式(5)において、各符号は、以下を表している。
 Tは、吐出口5から第m番目の圧縮室51mにおいて、旋回スクロール11に対して順回転方向に作用する中間圧の荷重(単位:N)である。
 Pは、吐出口5から第m番目の圧縮室51mの中間圧(単位:N/m)である。
 aは、基礎円61の半径(単位:m)である。
 hは、旋回スクロールラップ11aの高さ(単位:m)である。
Here, in Formula (5), each code represents the following.
T m is a load (unit: N) of an intermediate pressure that acts on the orbiting scroll 11 in the forward rotational direction in the m-th compression chamber 51 m from the discharge port 5.
P m is an intermediate pressure (unit: N / m 2 ) of the m-th compression chamber 51 m from the discharge port 5.
a is the radius of the base circle 61 (unit: m).
h is the height (unit: m) of the orbiting scroll wrap 11a.
 そして、吐出口5から第1~n番目の各圧縮室51において、旋回スクロール11に対して順回転方向に作用する中間圧の荷重の総和Tは、以下の式(6)で求まる。
Figure JPOXMLDOC01-appb-M000006
Then, in each of the first to n-th compression chambers 51 from the discharge port 5, the sum T n of the loads of the intermediate pressure acting on the orbiting scroll 11 in the forward rotational direction is obtained by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
 ここで、式(6)において、各符号は、以下を表している。
 Tは、吐出口5から第1~n番目の各圧縮室51において、旋回スクロール11に対して順回転方向に作用する中間圧の荷重(単位:N)の総和である。
 aは、基礎円61の半径(単位:m)である。
 hは、旋回スクロールラップ11aの高さ(単位:m)である。
 iは、任意の圧縮室51の吐出口5からの順番である。
 nは、圧縮室51の数である。
 Piは、任意の圧縮室51の中間圧(単位:N/m)である。
Here, in Formula (6), each code represents the following.
T n is a sum of intermediate pressure loads (unit: N) acting on the orbiting scroll 11 in the forward rotational direction in the first to n-th compression chambers 51 from the discharge port 5.
a is the radius of the base circle 61 (unit: m).
h is the height (unit: m) of the orbiting scroll wrap 11a.
i is the order from the discharge port 5 of an arbitrary compression chamber 51.
n is the number of compression chambers 51.
Pi is an intermediate pressure (unit: N / m 2 ) of any compression chamber 51.
 次に、旋回スクロール11に作用する吐出圧Pdの荷重について検討する。
 吐出圧Pdは、吐出口5に臨む旋回スクロールラップ11aの壁面に対して、旋回スクロール11の順回転方向に作用する。図8に示す部分仮想面69dは、その旋回スクロールラップ11aの壁面に作用する吐出圧Pdの荷重Tpdを受ける面として仮想的に導出されたものである。つまり、吐出圧Pdは、部分仮想面69d(図8参照)に対して順回転方向に作用する。このような旋回スクロール11に対して順回転方向に作用する吐出圧Pdの荷重Tpdは、以下の式(7)で求まる。
Figure JPOXMLDOC01-appb-M000007
Next, the load of the discharge pressure Pd acting on the orbiting scroll 11 will be examined.
The discharge pressure Pd acts on the wall surface of the orbiting scroll wrap 11 a facing the ejection port 5 in the forward rotation direction of the orbiting scroll 11. The partial virtual surface 69d shown in FIG. 8 is virtually derived as a surface that receives the load T pd of the discharge pressure Pd acting on the wall surface of the orbiting scroll wrap 11a. That is, the discharge pressure Pd acts on the partial virtual surface 69d (see FIG. 8) in the forward rotational direction. The load Tpd of the discharge pressure Pd that acts on the orbiting scroll 11 in the forward rotational direction is obtained by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 ここで、式(7)において、各符号は、以下を表している。
 Tpdは、旋回スクロール11に対して順回転方向に作用する吐出圧Pdの荷重(単位:N)である。
 Pdは、吐出圧(単位:N/m)である。
 aは、基礎円61の半径(単位:m)である。
 λp1は、伸開角である。
 tは、旋回スクロールラップ11aの厚さ(単位:m)である。
 hは、旋回スクロールラップ11aの高さ(単位:m)である。
Here, in Formula (7), each code represents the following.
T pd is a load (unit: N) of the discharge pressure Pd that acts on the orbiting scroll 11 in the forward rotational direction.
Pd is a discharge pressure (unit: N / m 2 ).
a is the radius of the base circle 61 (unit: m).
λ p1 is a dilation angle.
t is the thickness (unit: m) of the orbiting scroll wrap 11a.
h is the height (unit: m) of the orbiting scroll wrap 11a.
 ここで、旋回スクロール11に対して逆回転方向を負の値の方向とし、旋回スクロール11に対して順回転方向を正の値の方向とすると、旋回スクロール11に対して作用する荷重の総和Tは、式(3)と式(6)と式(7)とから、以下の式(8)で求まる。
Figure JPOXMLDOC01-appb-M000008
Here, assuming that the reverse rotation direction is a direction of a negative value with respect to the orbiting scroll 11 and the forward rotation direction is a direction of a positive value with respect to the orbiting scroll 11, the sum T of loads acting on the orbiting scroll 11 Is obtained from the equation (3), the equation (6) and the equation (7) by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
 ここで、式(8)において、各符号は、以下を表している。
 Tは、旋回スクロール11に対して作用する荷重(単位:N)の総和である。
 TPsは、旋回スクロール11に対して逆回転方向に作用する吸込圧Psの荷重(単位:N)である。
 Tは、吐出口5から第1~n番目の各圧縮室51において、旋回スクロール11に対して順回転方向に作用する中間圧の荷重(単位:N)の総和である。
 Tpdは、旋回スクロール11に対して順回転方向に作用する吐出圧Pdの荷重(単位:N)である。
 aは、基礎円61の半径(単位:m)である。
 hは、スクロールラップの高さ(単位:m)である。
 Pdは、吐出圧(単位:N/m)である。
 Psは、吸込圧(単位:N/m)である。
 λp1は、伸開角である。
 tは、旋回スクロールラップ11aの厚さ(単位:m)である。
 iは、任意の圧縮室51の吐出口5からの順番である。
 nは、圧縮室51の数である。
 Piは、任意の圧縮室51の中間圧(単位:N/m)である。
Here, in Formula (8), each code represents the following.
T is the sum of loads (unit: N) acting on the orbiting scroll 11.
T Ps is a load (unit: N) of the suction pressure Ps acting on the orbiting scroll 11 in the reverse rotational direction.
T n is a sum of intermediate pressure loads (unit: N) acting on the orbiting scroll 11 in the forward rotational direction in the first to n-th compression chambers 51 from the discharge port 5.
T pd is a load (unit: N) of the discharge pressure Pd that acts on the orbiting scroll 11 in the forward rotational direction.
a is the radius of the base circle 61 (unit: m).
h is the height of the scroll wrap (unit: m).
Pd is a discharge pressure (unit: N / m 2 ).
Ps is suction pressure (unit: N / m 2 ).
λ p1 is a dilation angle.
t is the thickness (unit: m) of the orbiting scroll wrap 11a.
i is the order from the discharge port 5 of an arbitrary compression chamber 51.
n is the number of compression chambers 51.
Pi is an intermediate pressure (unit: N / m 2 ) of any compression chamber 51.
 スクロール圧縮機Sは、容量制御弁45(図1参照)を開放させる容量制御を行うことで、吐出口5から第n番目の圧縮室51nが吸込室4側と連通した状態になる。そのため、スクロール圧縮機Sでは、容量制御弁45(図1参照)を開放させる容量制御を行った際に旋回スクロール11に対して作用する荷重の総和TONは、吐出口5から第(n-1)番目の圧縮室51(n-1)まで考慮すると、以下の式(9)で求まる。
Figure JPOXMLDOC01-appb-M000009
The scroll compressor S performs the capacity control to open the capacity control valve 45 (see FIG. 1), whereby the nth compression chamber 51n from the discharge port 5 is in communication with the suction chamber 4 side. Therefore, in the scroll compressor S, the sum T ON of the load acting on the orbiting scroll 11 when the displacement control for opening the displacement control valve 45 (see FIG. 1) is performed is the number N (n − 1) Considering up to the second compression chamber 51 (n-1), the following equation (9) is obtained.
Figure JPOXMLDOC01-appb-M000009
 また、スクロール圧縮機Sは、容量制御弁45(図1参照)を閉鎖させることで、吐出口5から第n番目の圧縮室51nが吸込室4側と連通しない状態になる。そのため、スクロール圧縮機Sでは、容量制御弁45(図1参照)を閉鎖させた際に旋回スクロール11に対して作用する荷重の総和TOFFは、吐出口5から第n番目の圧縮室51nまで考慮すると、以下の式(10)で求まる。
Figure JPOXMLDOC01-appb-M000010
In addition, the scroll compressor S closes the displacement control valve 45 (see FIG. 1), whereby the nth compression chamber 51n from the discharge port 5 does not communicate with the suction chamber 4 side. Therefore, in the scroll compressor S, the sum T OFF of the load acting on the orbiting scroll 11 when the displacement control valve 45 (see FIG. 1) is closed is from the discharge port 5 to the nth compression chamber 51n When considered, it is obtained by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
 ここで、式(9)と式(10)において、各符号は、以下を表している。
 TONは、容量制御弁45(図1参照)を開放させる容量制御を行った際に旋回スクロール11に対して作用する荷重(単位:N)の総和である。
 TOFFは、容量制御弁45(図1参照)を閉鎖させる容量制御を行った際に旋回スクロール11に対して作用する荷重(単位:N)の総和である。
 aは、基礎円61の半径(単位:m)である。
 hは、スクロールラップの高さ(単位:m)である。
 Pdは、吐出圧(単位:N/m)である。
 Psは、吸込圧(単位:N/m)である。
 λp1は、伸開角である。
 tは、旋回スクロールラップ11aの厚さ(単位:m)である。
 iは、任意の圧縮室51の吐出口5からの順番である。
 nは、圧縮室51の数である。
 Piは、任意の圧縮室51の中間圧(単位:N/m)である。
Here, in Formula (9) and Formula (10), each code represents the following.
T ON is the sum of loads (unit: N) acting on the orbiting scroll 11 when the displacement control is performed to open the displacement control valve 45 (see FIG. 1).
T OFF is the sum of loads (unit: N) acting on the orbiting scroll 11 when the displacement control is performed to close the displacement control valve 45 (see FIG. 1).
a is the radius of the base circle 61 (unit: m).
h is the height of the scroll wrap (unit: m).
Pd is a discharge pressure (unit: N / m 2 ).
Ps is suction pressure (unit: N / m 2 ).
λ p1 is a dilation angle.
t is the thickness (unit: m) of the orbiting scroll wrap 11a.
i is the order from the discharge port 5 of an arbitrary compression chamber 51.
n is the number of compression chambers 51.
Pi is an intermediate pressure (unit: N / m 2 ) of any compression chamber 51.
 よって、容量制御弁45(図1参照)を開放させる容量制御を行うことにより緩和される荷重ΔTは、式(9)と式(10)とから、以下の式(11)で求まる。
Figure JPOXMLDOC01-appb-M000011
Therefore, the load ΔT relieved by performing the displacement control to open the displacement control valve 45 (see FIG. 1) can be obtained by the following equation (11) from the equations (9) and (10).
Figure JPOXMLDOC01-appb-M000011
 ここで、式(10)において、各符号は、以下を表している。
 ΔTは、容量制御弁45(図1参照)を開放させる容量制御を行うことにより緩和される荷重である。
 aは、基礎円61の半径(単位:m)である。
 hは、スクロールラップの高さ(単位:m)である。
 Pnは、吐出口5から第n番目の圧縮室51nの中間圧(単位:N/m)である。
 Psは、吸込圧(単位:N/m)である。
Here, in the equation (10), each symbol represents the following.
ΔT is a load that is relieved by performing displacement control to open the displacement control valve 45 (see FIG. 1).
a is the radius of the base circle 61 (unit: m).
h is the height of the scroll wrap (unit: m).
Pn is an intermediate pressure (unit: N / m 2 ) of the n-th compression chamber 51 n from the discharge port 5.
Ps is suction pressure (unit: N / m 2 ).
 なお、これらの式は、非対称なスクロールラップを用いた場合に適応する式であり、対称なスクロールラップを用いる場合には適用されない。 Note that these equations are equations that are applied when using asymmetric scroll wraps, and are not applied when using symmetric scroll wraps.
 <スクロール圧縮機の主な特徴>
 (1)図1に示すように、本実施形態に係るスクロール圧縮機Sは、旋回スクロール11と固定スクロール12とにより複数の圧縮室51を形成する圧縮機構部3と、圧縮室51の内部空間と外部の吸込側空間とを連通させるバイパスポート41と、バイパスポート41の開閉を切り替える容量制御弁45と、圧縮機構部3の停止処理の開始後に、入出力圧力差(吸込圧と吐出圧との圧力差)による圧縮機構部3の逆回転を防止するブレーキ制御を行う制御部(コントローラ30)と、を備えている。
<Main Features of Scroll Compressor>
(1) As shown in FIG. 1, the scroll compressor S according to this embodiment includes the compression mechanism unit 3 forming a plurality of compression chambers 51 by the orbiting scroll 11 and the fixed scroll 12, and the internal space of the compression chamber 51. Input / output pressure difference (the suction pressure and the discharge pressure after the start of the stop process of the compression mechanism section 3), the bypass port 41 for communicating the suction side space with the outside and the opening and closing of the bypass port 41. Control unit (controller 30) that performs brake control to prevent reverse rotation of the compression mechanism unit 3 due to (pressure difference).
 本実施形態に係るスクロール圧縮機Sは、圧縮機構部3の停止処理の開始後に、ブレーキ制御を行う。このような本実施形態に係るスクロール圧縮機Sは、入出力圧力差が大きい条件下(高圧条件下)において、停止時の圧縮機構部3に作用する(加わる)逆回転方向の負荷トルクが回転停止方向のブレーキトルクを超過する(上回る)ことを回避して、圧縮機構部3の逆回転を防止することができる。したがって、本実施形態に係るスクロール圧縮機Sは、停止時の圧縮機構部3の逆回転を確実に防止することができる。 The scroll compressor S according to the present embodiment performs the brake control after the start of the stop process of the compression mechanism unit 3. The scroll compressor S according to the present embodiment rotates the load torque in the reverse rotational direction acting (applied) to the compression mechanism 3 at the time of stop under the condition that the input / output pressure difference is large (high pressure condition). It is possible to prevent the reverse rotation of the compression mechanism 3 by avoiding the brake torque in the stopping direction to be exceeded (exceeding). Therefore, the scroll compressor S according to the present embodiment can reliably prevent reverse rotation of the compression mechanism 3 at the time of stop.
 (2)図2に示すように、本実施形態に係るスクロール圧縮機Sでは、制御部(コントローラ30)は、圧縮機構部3の停止処理の開始後に、バイパスポート41を開いてからブレーキ制御を開始する構成になっている。 (2) As shown in FIG. 2, in the scroll compressor S according to this embodiment, the control unit (controller 30) opens the bypass port 41 after starting the stop process of the compression mechanism unit 3 and then performs brake control. It is configured to start.
 本実施形態に係るスクロール圧縮機Sは、圧縮機構部3の停止処理の開始後に、バイパスポート41を開くことにより、圧縮室51内の作動流体を部分的に吸込側へとバイパスさせて、旋回スクロール11に作用するガス荷重を軽減する。つまり、本実施形態に係るスクロール圧縮機Sは、圧縮機構部3の停止時に、例えば前記した式(11)のΔT分だけ、入出力圧力差により生じる圧縮機構部3の逆回転方向の負荷トルクを低減させる。これにより、スクロール圧縮機Sは、入出力圧力差が大きい条件下(高圧条件下)であっても、「負荷トルク<ブレーキトルク」の関係を維持する。その後に、本実施形態に係るスクロール圧縮機Sは、ブレーキ制御を開始する。このような本実施形態に係るスクロール圧縮機Sは、圧縮機構部3の逆回転を防止するための逆止弁等を設けることなく、電気的な手段により、圧縮機構部3の停止時に、圧縮機構部3の逆回転を防止することができる。したがって、本実施形態に係るスクロール圧縮機Sは、停止時の圧縮機構部3の逆回転を確実に防止することができる。 The scroll compressor S according to the present embodiment causes the working fluid in the compression chamber 51 to be partially bypassed to the suction side by opening the bypass port 41 after the start of the stopping process of the compression mechanism unit 3, thereby turning The gas load acting on the scroll 11 is reduced. That is, in the scroll compressor S according to the present embodiment, when the compression mechanism 3 is stopped, the load torque in the reverse rotation direction of the compression mechanism 3 generated by the input / output pressure difference by, for example, ΔT of the equation (11) described above. Reduce Thus, the scroll compressor S maintains the relationship of “load torque <brake torque” even under a large input-output pressure difference condition (high pressure condition). Thereafter, the scroll compressor S according to the present embodiment starts brake control. The scroll compressor S according to the present embodiment does not provide a check valve or the like for preventing the reverse rotation of the compression mechanism portion 3 and performs compression when the compression mechanism portion 3 is stopped by electrical means. Reverse rotation of the mechanism unit 3 can be prevented. Therefore, the scroll compressor S according to the present embodiment can reliably prevent reverse rotation of the compression mechanism 3 at the time of stop.
 (3)図1に示すように、本実施形態に係るスクロール圧縮機Sは、容量制御弁45を開く方向に付勢する弾性体(コイルばね46)を備えている。スクロール圧縮機Sは、弾性体(コイルばね46)が容量制御弁45を開く方向に付勢しているため、圧縮機構部3の停止処理を開始すると、容量制御弁45を自動的に開放させることができる。 (3) As shown in FIG. 1, the scroll compressor S according to the present embodiment includes an elastic body (coil spring 46) that biases the displacement control valve 45 in the opening direction. Since the scroll compressor S urges the elastic body (coil spring 46) in the direction to open the displacement control valve 45, when the stopping process of the compression mechanism 3 is started, the displacement control valve 45 is automatically opened. be able to.
 本実施形態に係るスクロール圧縮機Sは、弾性体(コイルばね46)が容量制御弁45を開く方向に付勢しているため、圧縮機構部3の停止処理を開始すると、容量制御弁45を自動的に開放させることができる。これにより、本実施形態に係るスクロール圧縮機Sは、旋回スクロール11に作用するガス荷重を確実に軽減することができる。その結果、本実施形態に係るスクロール圧縮機Sは、停止時の圧縮機構部3の逆回転を確実に防止することができる。 In the scroll compressor S according to the present embodiment, since the elastic body (coil spring 46) urges the displacement control valve 45 in the opening direction, when the stopping process of the compression mechanism 3 is started, the displacement control valve 45 It can be opened automatically. Thus, the scroll compressor S according to the present embodiment can reliably reduce the gas load acting on the orbiting scroll 11. As a result, the scroll compressor S according to the present embodiment can reliably prevent reverse rotation of the compression mechanism 3 at the time of stop.
 以上の通り、本実施形態に係るスクロール圧縮機Sによれば、停止時の圧縮機構部3の逆回転を確実に防止することができる。 As mentioned above, according to scroll compressor S concerning this embodiment, reverse rotation of compression mechanism part 3 at the time of stop can be prevented certainly.
 本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、実施形態の構成に他の構成を加えることも可能である。また、各構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment. In addition, it is possible to add, delete, and replace another configuration for part of each configuration.
 1  密閉容器
 1a  筒チャンバ
 1b  蓋チャンバ
 1c  底チャンバ
 2  電動機部
 2a  固定子
 2b  回転子
 3  圧縮機構部
 4  吸込室
 5  吐出口
 6  クランクシャフト
 6a  給油縦穴
 6b  給油横穴
 6c  ピン部
 7  吸込パイプ
 8  吐出パイプ
 9  貯油部
 10  下軸受
 11  旋回スクロール
 11a  旋回スクロールラップ
 11b  旋回端板
 11c  旋回軸受部
 12  固定スクロール
 12a  固定スクロールラップ
 12b  固定端板
 13  フレーム
 13a  主軸受
 14  オルダムリング
 30  コントローラ(制御部)
 40  開閉切替装置
 41  バイパスポート
 45  容量制御弁
 46  コイルばね(弾性体)
 51  圧縮室
 51m  吐出口5から第m番目の圧縮室
 51n  吐出口5から第n番目の圧縮室
 53  背圧室
 54  チャンバ内空間
 60  インボリュート曲線
 61  基礎円
 62  基礎円の接線(基礎円と接する直線)
 63  基礎円の接線と基礎円との接点
 64  基礎円の接線とインボリュート曲線との第1番目の交点
 65  基礎円の接線とインボリュート曲線との第2番目の交点
 67  吸込圧の作用面
 68  圧縮室の隣接面
 69  仮想面
 69m  部分仮想面(中間圧の作用面)
 Ar  逆止弁が削除された部位
 Ps  吸込圧
 Pd  吐出圧
 P1,P2,P3  中間圧
 S  スクロール圧縮機
DESCRIPTION OF SYMBOLS 1 airtight container 1a cylinder chamber 1b lid chamber 1c bottom chamber 2 motor part 2a stator 2b rotor 3 compression mechanism part 4 suction chamber 5 discharge port 6 crankshaft 6a oil supply vertical hole 6b oil supply horizontal hole 6c pin part 7 suction pipe 8 discharge pipe 9 Oil storage section 10 Lower bearing 11 Turning scroll 11a Turning scroll wrap 11b Turning end plate 11c Turning bearing unit 12 Fixed scroll 12a Fixed scroll wrap 12b Fixed end plate 13 Frame 13a Main bearing 14 Oldham ring 30 Controller (control unit)
40 switching device 41 bypass port 45 displacement control valve 46 coil spring (elastic body)
51 compression chamber 51 m discharge port 5 to m-th compression chamber 51 n discharge port 5 to n-th compression chamber 53 back pressure chamber 54 space in chamber 60 involute curve 61 base circle 62 tangent of base circle (straight line contacting base circle )
63 Base circle tangent point and base circle contact point 64 First intersection point of base circle tangent line and involute curve 65 Second intersection point of base circle tangent line and involute curve 67 Working surface of suction pressure 68 Compression chamber Adjacent surface 69 virtual surface 69 m partial virtual surface (intermediate pressure acting surface)
Ar Portion where check valve is removed Ps Suction pressure Pd Discharge pressure P1, P2, P3 Intermediate pressure S Scroll compressor

Claims (3)

  1.  旋回スクロールと固定スクロールとにより複数の圧縮室を形成する圧縮機構部と、
     前記圧縮室の内部空間と外部の吸込側空間とを連通させるバイパスポートと、
     前記バイパスポートの開閉を切り替える容量制御弁と、
     前記圧縮機構部の停止処理の開始後に、入出力圧力差による前記圧縮機構部の逆回転を防止するブレーキ制御を行う制御部と、を備える
    ことを特徴とするスクロール圧縮機。
    A compression mechanism unit that forms a plurality of compression chambers by the orbiting scroll and the fixed scroll;
    A bypass port communicating the internal space of the compression chamber with the external suction side space;
    A displacement control valve that switches the opening and closing of the bypass port;
    A control unit that performs brake control to prevent reverse rotation of the compression mechanism unit due to an input / output pressure difference after start of stop processing of the compression mechanism unit;
  2.  請求項1に記載のスクロール圧縮機において、
     前記制御部は、前記圧縮機構部の停止処理の開始後に、前記バイパスポートを開いてから前記ブレーキ制御を開始する
    ことを特徴とするスクロール圧縮機。
    In the scroll compressor according to claim 1,
    The scroll compressor characterized in that the control unit starts the brake control after opening the bypass port after the start of the stopping process of the compression mechanism unit.
  3.  請求項2に記載のスクロール圧縮機において、
     さらに、前記容量制御弁を開く方向に付勢する弾性体を備える
    ことを特徴とするスクロール圧縮機。
    In the scroll compressor according to claim 2,
    The scroll compressor further includes an elastic body that biases the capacity control valve in the opening direction.
PCT/JP2018/000491 2018-01-11 2018-01-11 Scroll compressor WO2019138502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000491 WO2019138502A1 (en) 2018-01-11 2018-01-11 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000491 WO2019138502A1 (en) 2018-01-11 2018-01-11 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2019138502A1 true WO2019138502A1 (en) 2019-07-18

Family

ID=67219431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000491 WO2019138502A1 (en) 2018-01-11 2018-01-11 Scroll compressor

Country Status (1)

Country Link
WO (1) WO2019138502A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726884Y1 (en) * 1969-03-01 1972-08-17
JPH02130285A (en) * 1988-11-08 1990-05-18 Diesel Kiki Co Ltd Air conditioner
JPH05223361A (en) * 1991-09-23 1993-08-31 Carrier Corp Compressor system with bypass for preventing reverse rotation
JPH09121590A (en) * 1995-09-14 1997-05-06 Copeland Corp Rotary compressor provided with counter-current braking mechanism
JP2000045970A (en) * 1998-07-13 2000-02-15 Carrier Corp Scroll compressor control method and control unit for preventing counter rotation when power supply is stopped at shutdown
JP2000287485A (en) * 1999-03-30 2000-10-13 Toshiba Corp Control device of compressor motor for air conditioner
JP2015081745A (en) * 2013-10-24 2015-04-27 カルソニックカンセイ株式会社 Electric compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726884Y1 (en) * 1969-03-01 1972-08-17
JPH02130285A (en) * 1988-11-08 1990-05-18 Diesel Kiki Co Ltd Air conditioner
JPH05223361A (en) * 1991-09-23 1993-08-31 Carrier Corp Compressor system with bypass for preventing reverse rotation
JPH09121590A (en) * 1995-09-14 1997-05-06 Copeland Corp Rotary compressor provided with counter-current braking mechanism
JP2000045970A (en) * 1998-07-13 2000-02-15 Carrier Corp Scroll compressor control method and control unit for preventing counter rotation when power supply is stopped at shutdown
JP2000287485A (en) * 1999-03-30 2000-10-13 Toshiba Corp Control device of compressor motor for air conditioner
JP2015081745A (en) * 2013-10-24 2015-04-27 カルソニックカンセイ株式会社 Electric compressor

Similar Documents

Publication Publication Date Title
EP2050965A2 (en) Compressor
WO2007066463A1 (en) Scroll compressor
WO2012117600A1 (en) Scroll compressor
JP4519489B2 (en) Scroll compressor
JP4638762B2 (en) Scroll compressor
WO2021010099A1 (en) Scroll compressor
WO2017159393A1 (en) Scroll compressor
WO2010035592A1 (en) Screw compressor
JP3764261B2 (en) Scroll compressor
WO2019138502A1 (en) Scroll compressor
JP5232450B2 (en) Scroll compressor
JP4604968B2 (en) Scroll compressor
JP2009174407A (en) Scroll compressor
JP2008157109A (en) Scroll compressor and refrigeration cycle
WO2021044954A1 (en) Scroll compressor
WO2019073605A1 (en) Scroll compressor
JP2009299653A (en) Scroll expander
JP2008115767A (en) Scroll compressor
JP2006266165A (en) Scroll compressor and refrigeration cycle device using same
WO2021024907A1 (en) Scroll compressor
KR20010064538A (en) Suction and discharge pressure separation structure for scroll compressor
JP3265779B2 (en) Scroll compressor
JP2008121482A (en) Scroll compressor
JP2558630B2 (en) Scroll type compressor
JP2008002338A (en) Hermetic compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP