JP2701826B2 - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JP2701826B2
JP2701826B2 JP8059037A JP5903796A JP2701826B2 JP 2701826 B2 JP2701826 B2 JP 2701826B2 JP 8059037 A JP8059037 A JP 8059037A JP 5903796 A JP5903796 A JP 5903796A JP 2701826 B2 JP2701826 B2 JP 2701826B2
Authority
JP
Japan
Prior art keywords
eccentric
spiral blade
bearing groove
crankshaft
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8059037A
Other languages
Japanese (ja)
Other versions
JPH08254190A (en
Inventor
清 沢井
道生 山村
修一 山本
宏 唐土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP8059037A priority Critical patent/JP2701826B2/en
Publication of JPH08254190A publication Critical patent/JPH08254190A/en
Application granted granted Critical
Publication of JP2701826B2 publication Critical patent/JP2701826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は空調用あるいは空気
圧縮用に用いられるスクロール圧縮機に関するものであ
る。 【0002】 【従来の技術】従来この種の圧縮機は、例えば第3図の
ような構造になっていた。 【0003】第3図に示す構造は、一定回転数で運転す
る圧縮機に適用され、旋回渦巻羽根2aと固定渦巻羽根
1aとを常に接触させながら動作させて、羽根の半径方
向隙間を縮小に保ち、圧縮室内での洩れを最小限にとど
め、圧縮効率を向上させるものであった。 【0004】すなわち、クランク軸8の上端面にその軸
心0をはずれて伸びる軸受嵌合穴10aが形成され、こ
の軸受嵌合穴10aには偏心軸受11が長手方向に滑動
可能に、かつ回転しない様に嵌合されている。そして、
偏心軸受11が軸受嵌合穴10aの外方の壁面に接触す
る前に、両羽根が接触する関係寸法になっている。ま
た、上記軸受嵌合穴10aの長手方向と、旋回渦巻羽根
部品2に働くガス圧縮力fgと遠心力fcとの合力Fが
なす角は、一定回転数かつ許容し得るガス圧縮負荷のも
とで、90°以下に設定されている。従って、通常の運
転状態では、旋回渦巻羽根部品2に働く合力Fが、軸受
嵌合穴10aの壁面におって偏心軸受嵌合穴10aの外
方へ移動させる。その結果、このような圧縮機では、常
に旋回渦巻羽根2aと固定渦巻羽根1aとが、いずれか
の点で接触しながら動作することになる。 【0005】 【発明が解決しようとする課題】しかしながら、このよ
うな構造のものでは、羽根の形状精度が少しでも悪い
と、旋回渦巻羽根2aと固定渦巻羽根1aとが接触する
点が連続的につながらず、常に偏心量が変動し、ときに
は羽根どうしが衝突する場合も生じて、振動、騒音が大
きいという問題があった。 【0006】また、既に述べた様に、この構成は一定回
転数で運転する圧縮機に適するもので、近年空調用圧縮
機として主流である可変速型圧縮機には適用できないと
いう問題があった。すなわち、ある特定の回転数で旋回
渦巻羽根22aと固定渦巻羽根1aとの接触力を適正な
値に設定すると、それより低速の回転数域では旋回渦巻
羽根部品2に働く遠心力fcが減小するので、それに伴
って羽根の接触力も低下し、旋回渦巻羽根2aが固定渦
巻羽根1a上で振動したり、場合によって羽根の半径方
向に大きな隙間ができ、圧縮中のガスが低圧側へ洩れて
運転ができなくなるという問題があった。 【0007】また、高速回転数域では、羽根どうしの接
触力過大になって羽根が摩耗するという問題があった。 【0008】 【課題を解決するための手段】上記課題を解決するため
に本発明は、クランク軸の旋回渦巻羽根部品側の一端に
溝の側面がクランク軸の軸線に平行な偏心駆動軸受溝を
形成し、この偏心駆動軸受溝の内側に、旋回渦巻羽根部
品の駆動軸が回転可能に嵌合した偏心軸受を滑動可能に
配設し、偏心駆動軸受溝内に弾性体を配設して、旋回渦
巻羽根部品の旋回運動の偏心量が最大となるように、偏
心軸受を偏心駆動軸受溝の外方の壁面に圧接する弾性体
を配設するとともに、偏心駆動軸受溝が旋回渦巻羽根部
品の偏心方向に対してなす角度と、下限の回転数で作動
時に旋回渦巻羽根部品に作用するガス圧縮力と遠心力と
の合力が偏心方向に対してなす角度との和が、90°を
超えるように設定してなる、クランク軸の一端に溝の側
面が前記クランク軸の軸線に平行な偏心駆動軸受溝を形
成し、その溝の内側に、旋回渦巻羽根部品の駆動軸が回
転可能に嵌合した偏心軸受を滑動可能に配設し、前記偏
心軸受が前記偏心駆動軸受溝の最も外方に位置した時に
両羽根の半径方向の最接近部分が接触しないように、前
記偏心駆動軸受溝および前記偏心軸受の寸法を設定する
とともに、前記偏心駆動軸受溝のクランク軸軸心側の空
間に弾性体を入れて、前記偏心軸受を前記偏心駆動軸受
溝の外方の壁面に押し付けるものである。 【0009】回転数が変化しても弾性体が常に偏心軸受
を偏心駆動軸受溝の外方の壁面に押し付けているので、
旋回渦巻羽根部品の偏心量が一定に保たれ、羽根の半径
方向の隙間が変化しないので、旋回渦巻羽根と固定渦巻
羽根の衝突による振動・騒音を解消することができると
ともに、摩耗を防止することができる。 【0010】さらに、少なくとも下限の回転数で作動時
に、旋回渦巻部品に作用するガス圧縮力と遠心力との合
力と、偏心駆動軸受溝とがなす角度が90°を超えるよ
うに設定しているので、すべての運転回転数において、
圧縮室に冷媒または油が吸い込まれて圧縮負荷が許容値
を超えた場合には、この圧縮負荷の偏心駆動軸受溝方向
の分力が弾性体の弾性力にすみやかに打ち勝って、偏心
量が減力する方向に偏心軸受を移動させるので、羽根の
半径方向の隙間が増加し、高圧の圧縮室から低圧の圧縮
室への洩れが増加して、液圧縮から圧縮機を保護するこ
とになる。 【0011】 【発明の実施の形態】上記課題を解決するために本発明
は、クランク軸の旋回渦巻羽根部品側の一端に溝の側面
がクランク軸の軸線に平行な偏心駆動軸受溝を形成し、
この偏心駆動軸受溝の内側に、旋回渦巻羽根部品の駆動
軸が回転可能に嵌合した偏心軸受を滑動可能に配設し、
偏心駆動軸受溝内に弾性体を配設して、旋回渦巻羽根部
品の旋回運動の偏心量が最大となるように、偏心軸受を
偏心駆動軸受溝の外方の壁面に圧接する弾性体を配設す
るとともに、偏心駆動軸受溝が旋回渦巻羽根部品の偏心
方向に対してなす角度と、下限の回転数で作動時に旋回
渦巻羽根部品に作用するガス圧縮力と遠心力との合力が
偏心方向に対してなす角度との和が、90°を超えるよ
うに設定してなる、クランク軸の一端に溝の側面が前記
クランク軸の軸線に平行な偏心駆動軸受溝を形成し、そ
の溝の内側に、旋回渦巻羽根部品の駆動軸が回転可能に
嵌合した偏心軸受を滑動可能に配設し、前記偏心軸受が
前記偏心駆動軸受溝の最も外方に位置した時に両羽根の
半径方向の最接近部分が接触しないように、前記偏心駆
動軸受溝および前記偏心軸受の寸法を設定するととも
に、前記偏心駆動軸受溝のクランク軸軸心側の空間に弾
性体を入れて、前記偏心軸受を前記偏心駆動軸受溝の外
方の壁面に押し付けるものである。 【0012】回転数が変化しても弾性体が常に偏心軸受
を偏心駆動軸受溝の外方の壁面に押し付けているので、
旋回渦巻羽根部品の偏心量が一定に保たれ、羽根の半径
方向の隙間が変化しないので、旋回渦巻羽根と固定渦巻
羽根の衝突による振動・騒音を解消することができると
ともに、摩耗を防止することができる。 【0013】さらに、旋回渦巻部品に作用するガス圧縮
力と遠心力との合力と、偏心駆動軸受溝とがなす角度9
0°を超えるように設定しているので、すべての運転回
転数において、圧縮室に冷媒または油が吸い込まれて圧
縮負荷が許容値を超えた場合には、この圧縮負荷が偏心
量が減力する方向に偏心軸受を移動させるので羽根の半
径方向の隙間が増加し、高圧の圧縮室から低圧の圧縮室
への洩れが増加して、液圧縮から圧縮機を保護すること
になる。 【0014】 【実施例】以下、本発明の一実施例を添付図面に基つい
て説明する。 【0015】第1図、第2図は、本発明に係わるスクロ
ール圧縮機を、例えば、空調用冷媒圧縮機として構成し
たものである。 【0016】同図において、1は固定渦巻羽根部品、1
aは固定渦巻羽根、1bは固定渦巻羽根の壁体であり、
2は旋回渦巻羽根部品、2aは旋回渦巻羽根、2bは旋
回渦巻羽根の壁体である。前記固定渦巻羽根1aと旋回
渦巻羽根2aはインボリュート曲線あるいはそれに近い
曲線より構成されたもので、互いに噛み合って圧縮室3
を形成する。4は前記旋回渦巻羽根部品2の駆動軸で、
本実施例では前記旋回渦巻部品2の壁体2bの背面中央
から突出している。5は旋回渦巻羽根2aの壁体2bを
支承するスラスト軸受、6は固定渦巻羽根部品1とボル
ト等で固定された軸受部品、7は旋回渦巻羽根部品2と
軸受部品6とに係合して旋回渦巻部品2の自転を防止す
る自転拘束部品、8は旋回渦巻羽根部品2を駆動するク
ランク軸でこのクランク軸8内には軸心部に長手方向の
油穴9が形成されている。8aはクランク軸の第1主
軸、8bはクランク軸の第2主軸、6aは軸受部品6の
上方にあって前記第1主軸8aを支承する第1軸受、6
bは軸受部品6の下方に位置し、前記第2主軸8bを支
承する第2軸受である。10は第1主軸8aの施固渦巻
羽根部品2側の端面に、溝の側面がクランク軸8の軸線
に平行で、また溝の中心線がクランク軸8の軸線を通る
ように形成した偏心駆動軸受溝である。11は旋回渦巻
羽根部品2の駆動軸4と回転可能に嵌合した偏心軸受
で、偏心軸受11は偏心駆動軸受溝10内でその長手方
向には滑動可能に、かつ回転しないように偏心駆動軸受
溝10に嵌合している。12は偏心駆動軸受溝10内の
クランク軸8の軸心側に入れられ、偏心軸受11を偏心
駆動軸受溝10の外方の壁面に押し付けるコイルバネで
ある。そして、偏心軸受11が偏心駆動軸受溝10の外
方の壁面に押し付けられた状態において、固定渦巻羽根
1aと旋回渦巻羽根2aの半径方向の最近接部には徽小
な隙間が存在するように、偏心駆動軸受溝10の長手方
向寸法およぴ偏心軸受11の寸法が設定してある。13
はクランク軸8を回転駆動する電動機、13aはクラン
ク軸8と一体になった電動機13のロータ、13bは電
動機13のステータである。14は圧縮全体を密封する
密閉容器、15はクランク軸8の一端に結合され、クラ
ンク軸8と共に回転するオイルポンプで、オイルポンプ
15の軸は密閉容器14の下部に結合されて、回転止め
されている。16は冷凍機油、17は密閉容器に結合し
た吸入管である。18は固定渦巻羽根部品の生体1bの
中心部に設けた吐出穴、19は吐出穴をおおうように設
けた吐出弁、20は弁押え、21は吐出室、22は吐出
管である。 【0017】また第2図において、 はクランク軸8の
軸心Oから旋回渦巻羽根の駆動軸4の中心Oまでの偏心
量、今クランク軸8の回転方向を矢印Aの方向とする
と、fgは施固渦巻羽根部品2に働く遠心力、fgは施
固渦巻羽根部品2に働くガス圧縮力であり、Fはfcと
fgの合力である。また、旋回渦巻羽根部品2の偏心方
向と偏心駆動軸受溝10の長手方向となす角をαとし、
偏心方向と前記合力Fとのなす角をβとする。 【0018】このように構成された圧縮機において、電
動機13のステータ13bに通電すると、ロータ13a
はトルクを発生してクランク軸8とともに回転する。ク
ランク軸8が回転すると、偏心駆動軸受溝10、偏心軸
受11を介して旋回渦巻羽根の駆動軸4にトルクが伝達
され、旋回渦巻羽根部品2は、スラスト軸受5の上を、
自転拘束部品7によって姿勢を保たれながら、クランク
軸8の軸心Oのまわりを旋回運動し、圧縮作用を行な
う。 【0019】これに伴い気体は、吸入管17より吸い込
まれ、一旦密閉容器14内に入り、軸受部品6の開口部
を経て、圧縮室3に取り込まれる(矢印は気体の流れを
示す)。圧縮室3内で圧縮されて高圧・高温になった気
体は、吐出穴18より吐出室21へ吐き出され、この後
吐出管22より外部へ送り出される。 【0020】このように通常の運転が行なわれるが、本
実施例では、少なくとも下限の回転数で作動時に、ガス
圧縮力fgと遠心力fcとの合力Fと、偏心駆動軸受溝
10の長手方向とのなす角(α+β)が90°以上に設
定してある。従って、合力Fは旋回渦巻羽根部品2の偏
心量を減小せしめる方向に偏心軸受11を滑動させよう
とするが、偏心軸受11を定められた位置、すなわち偏
心駆動軸受溝10の外方の壁面に圧接させるために最低
限必要な力を出すようにコイルバネ12の拝し付け力を
設定している。従って、広い回転数域で偏心量が−定に
保たれるので、両羽根は接触することなく半径方向隙間
も−定に保たれる。 【0021】よって広い回転数域で振動・騒音が小さ
く、羽根の摩耗もなく、圧縮効率も高いものとなる。 【0022】また、このような構成をとれば、低速で運
転する圧縮機においても、偏心駆動軸受溝10と偏心方
向とのなす角αを大きく設定することができる。する
と、低速だけでなく高速時においても、圧縮室3に冷媒
液または油等が吸い込まれて圧縮負荷が許容値を超えた
場合には、圧縮負荷fgが大きなるに伴って、偏心駆動
軸受溝10の長手方向と合力Fとがなす角(α+β)が
90°を大きく超えるので、この時合力Fの分力F=|
Fcos(α+β)|がコイルバネ12の押し付け力に打
ち勝って、偏心軸受11を偏心駆動軸受溝10の長手方
向に浴って滑動させ偏心量とが減小する。すると、羽根
の半径方向隙間が拡大し、高圧の圧縮室3から低圧の圧
縮室3へと洩れ量が増加して、負荷が軽減され、液圧縮
から圧縮機が保護される。 【0023】また、異物が圧縮室3に取り込まれた場合
にも、偏心量εが減小して、羽根の半径方向隙間が拡大
し、異物が吐出穴18より排出されるまですみやかな運
転を続けることができる。 【0024】また第2図に示すように、偏心軸受11の
軸受穴を偏心軸受11の滑動面の一方に偏って穿孔する
ことによって、偏心方向と偏心駆動軸受溝10の長手方
向とのなす角を設定しているので、偏心駆動軸受溝10
はクランク軸8の軸心Oを通るように設置すればよく、
偏心駆動軸受溝10の加工を容易に行なうことができ
る。 【0025】 【発明の効果】以上詳述した通り、本発明は、旋回渦巻
羽根部品の駆動軸と嵌合する偏心軸受を、クランク軸に
設けた偏心駆動軸受溝に嵌合し、偏心量が減小し得る方
向に滑動可能とし、羽根が半径方向には接触しない関係
寸法としながら、偏心駆動軸受溝内に弾性体を入れて偏
心軸受を常に偏心駆動軸受溝の外方の壁面に圧接する構
成としたものであるから、偏心量の設定を容易に行なう
ことができるとともに広い回転数域で羽根の半径方向の
隙間を−定に保つことができるので、低振動・低騒音で
かつ効率の高い圧縮機が実現できる。 【0026】さらに、少なくとも下限の回転数で作動時
に、旋回渦巻羽根部品に作用するガス圧縮力と遠心力と
の合力と、偏心駆動軸受溝とがなす角度を90°を超え
るように設定したものであるから、すべての運転回転数
において、液圧縮等の異常負荷から機構部をすみやかに
保護して、信頼性の高い圧縮機が提供できる。 【0027】また、旋回渦巻羽根部品の駆動軸が回転可
能に嵌合する軸受穴を、偏心軸受の滑動面の一方に偏っ
て穿孔することによって偏心駆動軸受溝の角度設定を容
易に行なうことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll compressor used for air conditioning or air compression. 2. Description of the Related Art Conventionally, this type of compressor has a structure as shown in FIG. 3, for example. [0003] The structure shown in Fig. 3 is applied to a compressor that operates at a constant rotation speed, and is operated while constantly bringing the swirling spiral blade 2a and the fixed spiral blade 1a into contact to reduce the radial gap between the blades. In this case, leakage was minimized in the compression chamber to improve compression efficiency. That is, a bearing fitting hole 10a is formed in the upper end surface of the crankshaft 8 to extend off its axis 0, and the eccentric bearing 11 is slidable in the longitudinal direction and rotatable in the bearing fitting hole 10a. Not fitted. And
Before the eccentric bearing 11 comes into contact with the outer wall surface of the bearing fitting hole 10a, the dimensions are such that both blades come into contact with each other. The angle between the longitudinal direction of the bearing fitting hole 10a and the resultant force F of the gas compressing force fg and the centrifugal force fc acting on the swirling spiral blade part 2 is determined under a constant rotation speed and an allowable gas compressing load. Is set to 90 ° or less. Therefore, in a normal operation state, the resultant force F acting on the swirling spiral blade part 2 moves outside the eccentric bearing fitting hole 10a on the wall surface of the bearing fitting hole 10a. As a result, in such a compressor, the swirling spiral blade 2a and the fixed spiral blade 1a always operate while contacting at any point. [0005] However, in such a structure, if the shape accuracy of the blade is slightly poor, the contact point between the swirling spiral blade 2a and the fixed spiral blade 1a is continuously increased. There is a problem that the eccentricity always fluctuates, sometimes the blades collide with each other, and vibration and noise are large. Further, as described above, this configuration is suitable for a compressor operating at a constant rotation speed, and has a problem that it cannot be applied to a variable speed compressor which has recently become the mainstream as an air conditioning compressor. . That is, when the contact force between the swirling spiral blade 22a and the fixed spiral blade 1a is set to an appropriate value at a certain specific rotational speed, the centrifugal force fc acting on the swirling spiral blade component 2 is reduced in a lower rotational speed range. As a result, the contact force of the blades also decreases, and the swirling spiral blades 2a vibrate on the fixed spiral blades 1a, and in some cases, a large gap is formed in the radial direction of the blades, so that the gas under compression leaks to the low pressure side. There was a problem that driving became impossible. [0007] In the high-speed range, there is another problem that the contact force between the blades becomes excessive and the blades are worn. [0008] In order to solve the above-mentioned problems, the present invention provides an eccentric drive bearing groove in which the side surface of the groove is parallel to the axis of the crankshaft at one end of the crankshaft on the side of the swirling blade. Formed, an eccentric bearing in which the drive shaft of the swirling spiral blade part is rotatably fitted is slidably disposed inside the eccentric drive bearing groove, and an elastic body is disposed in the eccentric drive bearing groove. In order to maximize the amount of eccentricity of swirling motion of the swirling spiral blade part, an elastic body which presses the eccentric bearing against the outer wall surface of the eccentric drive bearing groove is arranged, and the eccentric drive bearing groove is formed of the swirling spiral blade part. The sum of the angle formed with respect to the eccentric direction and the angle formed with the eccentric direction by the resultant force of the gas compression force and the centrifugal force acting on the swirling swirl vane component at the time of operation at the lower rotation speed exceeds 90 °. The side of the groove at one end of the crankshaft An eccentric drive bearing groove parallel to the axis of the crankshaft is formed, and an eccentric bearing into which the drive shaft of the swirling spiral blade component is rotatably fitted is slidably disposed inside the groove, and the eccentric bearing is provided with the eccentric bearing. The dimensions of the eccentric drive bearing groove and the eccentric bearing are set so that the radially closest portions of the two blades do not come into contact when located at the outermost position of the eccentric drive bearing groove. The eccentric bearing is pressed against the outer wall surface of the eccentric drive bearing groove by inserting an elastic body into the space on the crankshaft axis side. Since the elastic body always presses the eccentric bearing against the outer wall surface of the eccentric drive bearing groove even if the rotational speed changes,
Since the amount of eccentricity of the swirling spiral blade component is kept constant and the radial gap of the blade does not change, vibration and noise caused by collision between the swirling spiral blade and the fixed spiral blade can be eliminated, and wear is prevented. Can be. Further, when operating at least at the lower limit rotational speed.
In addition, since the angle formed by the resultant force of the gas compression force and the centrifugal force acting on the swirling spiral part and the eccentric drive bearing groove is set to exceed 90 °, at all operating rotational speeds,
When refrigerant or oil is sucked into the compression chamber and the compression load exceeds the allowable value, the component of the compression load in the direction of the eccentric drive bearing groove quickly overcomes the elastic force of the elastic body, and the amount of eccentricity decreases. Moving the eccentric bearing in the direction of force increases the radial clearance of the blades, increasing leakage from the high-pressure compression chamber to the low-pressure compression chamber, thereby protecting the compressor from liquid compression. According to the present invention, an eccentric drive bearing groove is formed at one end of a crankshaft on the side of a swirling spiral blade, the side surface of the groove being parallel to the axis of the crankshaft. ,
An eccentric bearing in which the drive shaft of the swirling spiral blade part is rotatably fitted is slidably disposed inside the eccentric drive bearing groove,
An elastic body is disposed in the eccentric drive bearing groove, and an elastic body that presses the eccentric bearing against the outer wall surface of the eccentric drive bearing groove so that the amount of eccentricity of the swirling motion of the swirling spiral blade component is maximized. In addition, the eccentric drive bearing groove makes an angle with the eccentric direction of the swirling spiral blade part, and the resultant force of the gas compression force and centrifugal force acting on the swirling spiral blade part during operation at the lower rotation speed is eccentric. The sum of the angle and the angle formed with the crankshaft is set so as to exceed 90 °, and the side surface of the groove forms an eccentric drive bearing groove parallel to the axis of the crankshaft at one end of the crankshaft. An eccentric bearing in which the drive shaft of the swirling spiral blade part is rotatably fitted is slidably disposed, and when the eccentric bearing is located at the outermost position of the eccentric drive bearing groove, the two blades are closest to each other in the radial direction. The eccentric drive bearing groove and front Sets the size of the eccentric bearing, the eccentric put an elastic body in the space of the crankshaft axis side of the driving shaft receiving groove, in which pressing the eccentric bearing on the wall surface of the outside of the eccentric drive bearing groove. Since the elastic body always presses the eccentric bearing against the outer wall surface of the eccentric drive bearing groove even if the rotational speed changes,
Since the amount of eccentricity of the swirling spiral blade component is kept constant and the radial gap of the blade does not change, vibration and noise caused by collision between the swirling spiral blade and the fixed spiral blade can be eliminated, and wear is prevented. Can be. Further, the angle 9 formed by the resultant force of the gas compression force and the centrifugal force acting on the swirling spiral part and the eccentric drive bearing groove.
Since it is set so as to exceed 0 °, at all operating speeds, if refrigerant or oil is sucked into the compression chamber and the compression load exceeds the allowable value, this compression load reduces the eccentricity. As the eccentric bearing is moved in the direction in which the eccentric bearing moves, the radial clearance of the blades increases, and the leakage from the high-pressure compression chamber to the low-pressure compression chamber increases, thereby protecting the compressor from liquid compression. An embodiment of the present invention will be described below with reference to the accompanying drawings. FIGS. 1 and 2 show a scroll compressor according to the present invention configured as, for example, an air-conditioning refrigerant compressor. In FIG. 1, reference numeral 1 denotes a fixed spiral blade part;
a is a fixed spiral blade, 1b is a wall of the fixed spiral blade,
Reference numeral 2 denotes a swirling spiral blade part, 2a denotes a swirling spiral blade, and 2b denotes a wall of the swirling spiral blade. The fixed spiral blade 1a and the swirling spiral blade 2a are configured by an involute curve or a curve close to the involute curve.
To form 4 is a drive shaft of the swirling spiral blade part 2,
In this embodiment, the swirling spiral part 2 protrudes from the center of the back surface of the wall 2b. Numeral 5 is a thrust bearing for supporting the wall 2b of the swirling spiral blade 2a, 6 is a bearing component fixed to the fixed spiral blade component 1 and bolts, and 7 is engaged with the swirling spiral blade component 2 and the bearing component 6. A rotation restricting member 8 for preventing the rotation of the swirling spiral part 2 is a crankshaft for driving the swirling spiral blade part 2, and a longitudinal oil hole 9 is formed in the crankshaft 8 in the axial center portion. 8a is a first main shaft of the crankshaft, 8b is a second main shaft of the crankshaft, 6a is a first bearing above the bearing component 6 and supporting the first main shaft 8a, 6a
b denotes a second bearing located below the bearing component 6 and supporting the second main shaft 8b. An eccentric drive 10 is formed on the end face of the first main shaft 8a on the side of the fixed swirl vane component 2 so that the side surface of the groove is parallel to the axis of the crankshaft 8 and the center line of the groove passes through the axis of the crankshaft 8. It is a bearing groove. Reference numeral 11 denotes an eccentric bearing rotatably fitted to the drive shaft 4 of the swirling spiral blade part 2. The eccentric bearing 11 is slidable in the eccentric drive bearing groove 10 in its longitudinal direction and is prevented from rotating. It is fitted in the groove 10. Reference numeral 12 denotes a coil spring which is inserted into the eccentric drive bearing groove 10 on the side of the axis of the crankshaft 8 and presses the eccentric bearing 11 against an outer wall surface of the eccentric drive bearing groove 10. Then, in a state where the eccentric bearing 11 is pressed against the outer wall surface of the eccentric drive bearing groove 10, a small gap exists between the fixed spiral blade 1a and the swirling spiral blade 2a in the radially closest portion. The longitudinal dimension of the eccentric drive bearing groove 10 and the dimension of the eccentric bearing 11 are set. 13
Denotes a motor for rotating the crankshaft 8, 13 a denotes a rotor of the motor 13 integrated with the crankshaft 8, and 13 b denotes a stator of the motor 13. Reference numeral 14 denotes a closed container for sealing the whole compression, 15 denotes an oil pump connected to one end of the crankshaft 8 and rotates together with the crankshaft 8, and a shaft of the oil pump 15 is connected to a lower portion of the closed container 14 to prevent rotation. ing. 16 is a refrigerating machine oil, and 17 is a suction pipe connected to a closed container. Reference numeral 18 denotes a discharge hole provided in the center of the living body 1b of the fixed spiral blade part, reference numeral 19 denotes a discharge valve provided so as to cover the discharge hole, reference numeral 20 denotes a valve presser, reference numeral 21 denotes a discharge chamber, and reference numeral 22 denotes a discharge pipe. In FIG. 2, eccentricity from the axis O of the crankshaft 8 to the center O of the drive shaft 4 of the swirling spiral blade. If the rotation direction of the crankshaft 8 is now in the direction of arrow A, fg is The centrifugal force acting on the hardened spiral blade component 2, fg is the gas compressive force acting on the hardened spiral blade component 2, and F is the combined force of fc and fg. An angle between the eccentric direction of the swirling spiral blade part 2 and the longitudinal direction of the eccentric drive bearing groove 10 is α,
The angle between the eccentric direction and the resultant force F is β. In the compressor constructed as described above, when the stator 13b of the electric motor 13 is energized, the rotor 13a
Generates torque and rotates with the crankshaft 8. When the crankshaft 8 rotates, torque is transmitted to the drive shaft 4 of the swirl spiral blade via the eccentric drive bearing groove 10 and the eccentric bearing 11, and the swirl spiral blade part 2
While the posture is maintained by the rotation restricting component 7, the rotation motion is performed around the axis O of the crankshaft 8 to perform the compression action. Along with this, the gas is sucked through the suction pipe 17, once enters the sealed container 14, and is taken into the compression chamber 3 through the opening of the bearing component 6 (arrows indicate the flow of the gas). The gas, which has been compressed in the compression chamber 3 and has become high pressure and high temperature, is discharged from the discharge hole 18 to the discharge chamber 21, and then sent out from the discharge pipe 22 to the outside. As described above, the normal operation is performed. In this embodiment, at least at the time of operation at the lower limit of the rotational speed, the resultant force F of the gas compression force fg and the centrifugal force fc and the longitudinal direction of the eccentric drive bearing groove 10 (Α + β) is set to 90 ° or more. Therefore, the resultant force F tends to slide the eccentric bearing 11 in a direction to reduce the amount of eccentricity of the swirling spiral blade part 2, but the eccentric bearing 11 is located at a predetermined position, that is, the outer wall surface of the eccentric drive bearing groove 10. The adhering force of the coil spring 12 is set so as to exert a minimum necessary force for bringing the coil spring into pressure contact. Therefore, the amount of eccentricity is kept constant in a wide rotation speed range, so that the two blades do not come into contact with each other and the gap in the radial direction is kept constant. Therefore, vibration and noise are small in a wide rotational speed range, the blades are not worn, and the compression efficiency is high. With such a configuration, the angle α between the eccentric drive bearing groove 10 and the eccentric direction can be set large even in a compressor operating at a low speed. Then, not only at a low speed but also at a high speed, when the refrigerant liquid or oil is sucked into the compression chamber 3 and the compression load exceeds an allowable value, the eccentric drive bearing groove is increased as the compression load fg increases. Since the angle (α + β) between the longitudinal direction of No. 10 and the resultant force F greatly exceeds 90 °, at this time, the component force F of the resultant force F = |
Fcos (α + β) | overcomes the pressing force of the coil spring 12, causing the eccentric bearing 11 to slide in the longitudinal direction of the eccentric drive bearing groove 10 and to slide, thereby reducing the amount of eccentricity. As a result, the radial gap between the blades increases, and the amount of leakage from the high-pressure compression chamber 3 to the low-pressure compression chamber 3 increases, the load is reduced, and the compressor is protected from liquid compression. Further, even when foreign matter is taken into the compression chamber 3, the eccentricity ε is reduced, the radial gap of the blade is enlarged, and a prompt operation is performed until the foreign matter is discharged from the discharge hole 18. You can continue. As shown in FIG. 2, the bearing hole of the eccentric bearing 11 is bored in one of the sliding surfaces of the eccentric bearing 11 so that the angle between the eccentric direction and the longitudinal direction of the eccentric drive bearing groove 10 is formed. Eccentric drive bearing groove 10
May be installed so as to pass through the axis O of the crankshaft 8,
The machining of the eccentric drive bearing groove 10 can be easily performed. As described in detail above, according to the present invention, the eccentric bearing fitted to the drive shaft of the swirling spiral blade part is fitted to the eccentric drive bearing groove provided on the crankshaft, and the eccentric amount is reduced. An eccentric bearing is inserted into the eccentric drive bearing groove, and the eccentric bearing is always pressed against the outer wall surface of the eccentric drive bearing groove, while being slidable in the direction in which the eccentric drive bearing groove can be slid in a direction in which the blade can not contact in the radial direction. With this configuration, the amount of eccentricity can be easily set, and the radial gap of the blade can be kept constant at a wide rotation speed range. A high compressor can be realized. Further, when operating at least at the lower limit of the number of revolutions
In addition, since the angle formed between the resultant force of the gas compression force and the centrifugal force acting on the swirling spiral blade component and the eccentric drive bearing groove is set to be larger than 90 °, the liquid at all the operating rotational speeds is set. A highly reliable compressor can be provided by quickly protecting the mechanism from an abnormal load such as compression. Further, the angle of the eccentric drive bearing groove can be easily set by piercing the bearing hole in which the drive shaft of the swirling spiral blade part is rotatably fitted to one of the sliding surfaces of the eccentric bearing. it can.

【図面の簡単な説明】 【図1】本発明に係るスクロール圧縮機の縦断面図 【図2】同スクロール圧縮機の要部横断面図 【図3】(a)は従来のスクロール圧縮機の要部横断面図 (b)は同要部横断面図 【符号の説明】 1 固定渦巻羽根部品 2 旋回渦巻羽根部品 3 圧縮室 4 駆動軸 5 スラスト軸受 6 軸受部品 7 自転拘束部品 8 クランク軸 10 偏心駆動軸受溝 11 偏心軸受 12 コイルバネ 13 電動機 14 密閉容器 15 オイルポンプ[Brief description of the drawings] FIG. 1 is a longitudinal sectional view of a scroll compressor according to the present invention. FIG. 2 is a cross-sectional view of a main part of the scroll compressor. FIG. 3A is a cross-sectional view of a main part of a conventional scroll compressor. (b) is a cross-sectional view of the relevant part. [Explanation of symbols] 1 Fixed spiral blade parts 2 Swirling swirl blade parts 3 compression chamber 4 Drive shaft 5 Thrust bearing 6 Bearing parts 7 Rotation restraint parts 8 crankshaft 10 Eccentric drive bearing groove 11 Eccentric bearing 12 Coil spring 13 Electric motor 14 Closed container 15 Oil pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 唐土 宏 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−282186(JP,A) 特開 昭59−120794(JP,A) 実開 昭58−109586(JP,U) 特公 昭57−49721(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiroshi Karado               Matsushita, 1006 Kadoma, Kazuma, Osaka               Kiki Sangyo Co., Ltd.                (56) References JP-A-62-282186 (JP, A)                 JP-A-59-120794 (JP, A)                 58-109586 (JP, U)                 JP-B-57-49721 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.壁体の一方の面に渦巻状の羽根をそれぞれ設けると
ともにそれぞれの羽根を互いに組み合わせた固定渦巻羽
根部品及び旋回渦巻羽根部品と、前記旋回渦巻羽根部品
を偏心駆動するクランク軸と前記クランク軸を支承する
軸受部品と、前記旋回渦巻羽根部品の自転を拘束する拘
束部品とを含み成るスクロール圧縮機構であって、前記
クランク軸の前記旋回渦巻羽根部品側の一端に溝の側面
が前記クランク軸の軸線に平行な偏心駆動軸受溝を形成
し、この偏心駆動軸受溝の内側に、前記旋回渦巻羽根部
品の駆動軸が回転可能に嵌合した偏心軸受を滑動可能に
配設し、前記偏心駆動軸受溝内に弾性体を配設して、前
記旋回渦巻羽根部品の旋回運動の偏心量が最大となるよ
うに、前記偏心軸受を前記偏心駆動軸受溝の外方の壁面
に圧接する弾性体を配設し、前記偏心駆動軸受溝が前記
旋回渦巻羽根部品の偏心方向に対してなす角度と、少な
くとも下限の回転数で作動時に前記旋回渦巻羽根部品に
作用するガス圧縮力と遠心力との合力が前記偏心方向に
対してなす角度との和が、90°を超えるように設定す
るとともに、前記ガス圧縮力と遠心力との合力が前記偏
心駆動軸受溝にそって偏心量を小さくする方向に作用す
る分力より、前記弾性体の弾性力を大きく設定してなる
スクロール圧縮機。
(57) [Claims] A fixed spiral blade component and a swirling spiral blade component in which spiral blades are provided on one surface of the wall body and the respective blades are combined with each other, a crankshaft for eccentrically driving the rotating spiral blade component and the crankshaft are supported. A scroll compression mechanism comprising: a bearing component to be rotated; and a restraining component for restraining the rotation of the orbiting spiral blade component, wherein a side surface of a groove is formed at one end of the crankshaft on the side of the orbiting spiral blade component so that an axial line of the crankshaft is formed. An eccentric drive bearing groove is formed in parallel with the eccentric drive bearing groove, and an eccentric bearing in which a drive shaft of the swirling spiral blade component is rotatably fitted is slidably disposed inside the eccentric drive bearing groove. by disposing the elastic body within the as the amount of eccentricity of the orbiting motion of the orbiting wrap element component is maximized, distribution an elastic body for pressing the eccentric bearing on the wall surface of the outside of the eccentric drive bearing groove And, the angle of the eccentric drive bearing groove with respect to the eccentric direction of the orbiting wrap element parts, small
At least when operating at the minimum rotation speed,
The resultant force of the gas compressing force and the centrifugal force acting in the eccentric direction
The sum of the angle and the angle made must be greater than 90 °.
And the resultant force of the gas compression force and the centrifugal force is
Acts in the direction of reducing the amount of eccentricity along the center drive bearing groove
A scroll compressor wherein the elastic force of the elastic body is set to be larger than the component force .
JP8059037A 1996-03-15 1996-03-15 Scroll compressor Expired - Lifetime JP2701826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8059037A JP2701826B2 (en) 1996-03-15 1996-03-15 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8059037A JP2701826B2 (en) 1996-03-15 1996-03-15 Scroll compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61126058A Division JP2730625B2 (en) 1986-05-30 1986-05-30 Scroll compressor

Publications (2)

Publication Number Publication Date
JPH08254190A JPH08254190A (en) 1996-10-01
JP2701826B2 true JP2701826B2 (en) 1998-01-21

Family

ID=13101711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8059037A Expired - Lifetime JP2701826B2 (en) 1996-03-15 1996-03-15 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2701826B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314899C (en) * 2002-05-28 2007-05-09 Lg电子株式会社 Swirl compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576452A (en) * 1980-06-13 1982-01-13 Sanyo Electric Co Ltd Cassette tape recorder
JPS59120794A (en) * 1982-12-27 1984-07-12 Mitsubishi Electric Corp Scroll compressor

Also Published As

Publication number Publication date
JPH08254190A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
JP2730625B2 (en) Scroll compressor
KR100330456B1 (en) Scroll Machine with Reduced Reverse Noise
US5681155A (en) Scroll type compressor having an elastic body in the driven crank mechanism
JP2002089463A (en) Scroll type compressor
WO2003076808A1 (en) Scroll type fluid machine
JP2002106483A (en) Scroll type compressor and sealing method therefor
JPH02176179A (en) Compressor
KR0153006B1 (en) Scroll type fluid displacement apparatus
EP0643224B1 (en) Scroll type compressor
JP2000249086A (en) Scroll type compressor
KR100458799B1 (en) Scrolling element with thrust face
JPH05248371A (en) Scroll fluid machine and scroll compressor
WO1991017360A1 (en) Scroll compressor
JP2701826B2 (en) Scroll compressor
US4413959A (en) Scroll machine with flex member pivoted swing link
US6203300B1 (en) Scroll compressor with structure for preventing reverse rotation
JP2663934B2 (en) Scroll compressor
JP3114300B2 (en) Scroll compressor
JP3252495B2 (en) Scroll compressor
JP2002227781A (en) Scroll type compressor and back pressure adjusting method
JPH08270577A (en) Scroll compressor
JP2002180978A (en) Scroll type compressor and gas compression method
JP2956294B2 (en) Scroll compressor
JP2000009065A (en) Scroll type compressor
JP3212399B2 (en) Scroll compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term