WO2021044954A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2021044954A1
WO2021044954A1 PCT/JP2020/032543 JP2020032543W WO2021044954A1 WO 2021044954 A1 WO2021044954 A1 WO 2021044954A1 JP 2020032543 W JP2020032543 W JP 2020032543W WO 2021044954 A1 WO2021044954 A1 WO 2021044954A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
spring
pressure
swivel
pressure chamber
Prior art date
Application number
PCT/JP2020/032543
Other languages
French (fr)
Japanese (ja)
Inventor
二上 義幸
河野 博之
淳 作田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080051616.5A priority Critical patent/CN114144586B/en
Priority to JP2021543734A priority patent/JP7262013B2/en
Publication of WO2021044954A1 publication Critical patent/WO2021044954A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F04C18/0223Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Definitions

  • This disclosure relates to a scroll compressor.
  • Patent Document 1 discloses a low-pressure scroll compressor in a closed container. As shown in FIG. 12, this scroll compressor swivels and drives a compression element 5 composed of a fixed scroll 3 and a swivel scroll 4 and the swivel scroll 4 in a chamber 2 on the low pressure side partitioned by a partition plate 1.
  • the electric element 6 and the electric element 6 are arranged and configured.
  • the refrigerant compressed by the compression element 5 is discharged to the high-pressure side chamber 8 partitioned by the partition plate 1 via the discharge port 7 of the fixed scroll 3.
  • the present disclosure provides a scroll compressor with improved performance and reliability by pressing a swivel scroll against a fixed scroll in just proportion.
  • a low pressure space, a low pressure and high pressure intermediate pressure chamber, and a high pressure chamber are arranged on the back surface of the swivel scroll, and the swivel scroll is pressed against the fixed scroll by the pressure from each of these chambers. It is configured to be.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of the scroll compressor according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of a main part of the main part of the compression element of the scroll compressor.
  • FIG. 3 is a cross-sectional view of a main part of the partition plate portion of the scroll compressor.
  • FIG. 4 is a vertical cross-sectional view showing the configuration of the scroll compressor according to the second embodiment.
  • FIG. 5 is a vertical cross-sectional view showing the configuration of the scroll compressor according to the third embodiment.
  • FIG. 6 is a cross-sectional view of a main part of the main part of the compression element of the scroll compressor.
  • FIG. 7 is a bottom view of the fixed scroll of the scroll compressor.
  • FIG. 8 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member after the assembly of the scroll compressor according to the fourth embodiment.
  • FIG. 9 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembly of the scroll compressor.
  • FIG. 10 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the fifth embodiment.
  • FIG. 11 is an enlarged vertical sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the sixth embodiment.
  • FIG. 12 is a vertical cross-sectional view of a conventional scroll compressor.
  • the low-pressure scroll compressor in a closed container had a pressure in a compression chamber 9 between low pressure and high pressure on the back surface of the swivel scroll 4, as shown in Patent Document 1.
  • the swivel scroll 4 was configured so as not to separate from the fixed scroll 3.
  • an eccentric rotation axis for rotating the swivel scroll 4 is installed at the center of the back surface of the swivel scroll 4.
  • the scroll compressor since the scroll compressor has a low pressure inside the closed container, the central region on the back surface of the swirl scroll 4 is a low pressure region.
  • the present disclosure provides a scroll compressor that suppresses a decrease in efficiency and has improved performance and reliability.
  • the compressor 10 includes a cylindrical closed container 20 whose vertical direction is the longitudinal direction as an outer shell.
  • the vertical direction is the Z-axis direction in each figure.
  • the compressor 10 is a closed scroll compressor provided with a compression mechanism unit 30 for compressing the refrigerant and an electric motor 40 for driving the compression mechanism unit 30 inside the closed container 20.
  • a partition plate 50 for partitioning the inside of the closed container 20 into upper and lower parts is provided above the inside of the closed container 20.
  • the partition plate 50 divides the inside of the closed container 20 into a high-pressure space 60 and a low-pressure space 70.
  • the high-pressure space 60 is a space filled with the high-pressure refrigerant after being compressed by the compression mechanism unit 30.
  • the low-pressure space 70 is a space filled with the low-pressure refrigerant before being compressed by the compression mechanism unit 30.
  • the closed container 20 includes a refrigerant suction pipe 80 that communicates the outside of the closed container 20 with the low pressure space 70, and a refrigerant discharge pipe 90 that communicates the outside of the closed container 20 with the high pressure space 60.
  • a low-pressure refrigerant is introduced into the low-pressure space 70 from a refrigeration cycle circuit (not shown) provided outside the closed container 20 via a refrigerant suction pipe 80 into the compressor 10.
  • the high-pressure refrigerant compressed by the compression mechanism unit 30 is first introduced into the high-pressure space 60. After that, the refrigerant is discharged from the high-pressure space 60 to the refrigeration cycle circuit via the refrigerant discharge pipe 90.
  • an oil sump 100 in which lubricating oil is stored is formed.
  • the compressor 10 includes a compression mechanism unit 30 and an electric motor 40 in a low-pressure space 70.
  • the compression mechanism unit 30 is composed of at least a fixed scroll 110, a swivel scroll 120, a main bearing 130, and a rotation suppressing member (hereinafter referred to as an old dam ring) 140.
  • the fixed scroll 110 is arranged below the partition plate 50 so as to be adjacent to the partition plate 50.
  • the swivel scroll 120 is arranged below the fixed scroll 110 in mesh with the fixed scroll 110.
  • the fixed scroll 110 includes a disk-shaped fixed scroll end plate 111 and a spiral-shaped fixed spiral wrap 112 erected on the lower surface of the fixed scroll end plate 111.
  • the swivel scroll 120 includes a disc-shaped swirl scroll end plate 121, a spiral swirl swirl wrap 122 erected on the upper surface of the swirl scroll end plate 121, and a lower boss portion 123.
  • the lower boss portion 123 is a cylindrical protrusion formed substantially in the center of the lower surface of the swivel scroll end plate 121.
  • a compression chamber 150 is formed between the swirl scroll 120 and the fixed scroll 110.
  • the compression chamber 150 is formed on the inner wall surface side and the outer wall surface side of the swirl swirl wrap 122.
  • the main bearing 130 that supports the swivel scroll 120 is provided below the fixed scroll 110 and the swivel scroll 120.
  • the main bearing 130 includes a boss accommodating portion 131 provided at substantially the center of the upper surface, and a bearing portion 132 provided below the boss accommodating portion 131.
  • the boss accommodating portion 131 is a recess for accommodating the lower boss portion 123 of the swivel scroll 120.
  • the bearing portion 132 is a through hole whose upper end opens into the boss accommodating portion 131 and whose lower end opens into the low pressure space 70.
  • the main bearing 130 supports the swivel scroll 120 on the upper surface, and the bearing portion 132 pivotally supports the rotating shaft 160.
  • the rotating shaft 160 is an axis in which the vertical direction in FIG. 1 is the longitudinal direction.
  • One end side of the rotating shaft 160 is pivotally supported by the bearing portion 132, and the other end side is pivotally supported by the auxiliary bearing 170.
  • the auxiliary bearing 170 is a bearing provided below the low pressure space 70, preferably in the oil sump 100.
  • An eccentric shaft 161 eccentric with respect to the axis of the rotating shaft 160 is provided at the upper end of the rotating shaft 160.
  • the eccentric shaft 161 is slidably inserted into the lower boss portion 123 via the swing bush 180 and the swivel bearing 124.
  • the lower boss portion 123 is swiveled by the eccentric shaft 161.
  • An oil passage 162 through which lubricating oil passes is formed inside the rotating shaft 160.
  • the oil passage 162 is a through hole formed in the axial direction of the rotating shaft 160.
  • One end of the oil passage 162 is opened in the oil sump 100 as a suction port 163 provided at the lower end of the rotating shaft 160.
  • a paddle 190 for pumping lubricating oil from the suction port 163 to the oil passage 162 is provided above the suction port 163.
  • a first branch oil passage 164 is formed above the rotating shaft 160, and a second branch oil passage 165 is formed below the rotating shaft 160.
  • One end of the first branch oil passage 164 opens as the first oil supply port 166 at the bearing surface of the bearing portion 132, and the other end of the first branch oil passage 164 communicates with the oil passage 162.
  • one end of the second branch oil passage 165 is opened as a second oil supply port 167 on the bearing surface of the auxiliary bearing 170, and the other end of the second branch oil passage 165 communicates with the oil passage 162.
  • the upper end of the oil passage 162 opens inside the boss accommodating portion 131 as a third fuel filler port 168.
  • the rotating shaft 160 is connected to the electric motor 40.
  • the electric motor 40 is arranged between the main bearing 130 and the sub bearing 170.
  • the electric motor 40 includes a stator 41 fixed to the closed container 20 and a rotor 42 arranged inside the stator 41.
  • the rotating shaft 160 is fixed to the rotor 42.
  • the rotating shaft 160 includes a balance weight 200a provided above the rotor 42 and a balance weight 200b provided below the rotor 42.
  • the balance weight 200a and the balance weight 200b are arranged at positions shifted by 180 ° in the circumferential direction of the rotation shaft 160.
  • the rotating shaft 160 rotates in a balanced manner by the centrifugal force generated by the balance weight 200a and the balance weight 200b and the centrifugal force generated by the revolving motion of the swivel scroll 120.
  • the balance weight 200a and the balance weight 200b may be provided on the rotor 42.
  • the fixed scroll 110, the swivel scroll 120, and the old dam ring 140 are arranged between the partition plate 50 and the main bearing 130.
  • the partition plate 50 and the main bearing 130 are fixed to the closed container 20.
  • the fixed scroll 110 is fastened to the main bearing 130 with bolts or the like.
  • the swivel scroll 120 is provided so as to be movable in the axial direction between the fixed scroll 110 and the main bearing 130.
  • low-pressure spaces (low-pressure regions) 71 and 72 having low-pressure pressure are arranged at the central portion and the outermost peripheral portion on the back surface of the swivel scroll 120.
  • a high pressure chamber 221 having a high pressure and an intermediate pressure chamber 222 having an intermediate pressure are arranged between the low pressure space 71 in the central portion and the low pressure space 72 in the outermost peripheral portion.
  • the high pressure chamber 221 is arranged on the back surface of the swivel scroll 120, inside the intermediate pressure chamber 222, that is, on the central side.
  • a plurality of annular grooves 133 are formed on the surface supporting the swivel scroll 120 on the outside of the boss accommodating portion 131 of the main bearing 130.
  • a seal member 210 is inserted into the annular groove 133.
  • a pressure chamber 220 is formed between the seal members 210.
  • a pressure higher than that of the low pressure space (low pressure region) 71 and 72 is introduced into this space (pressure chamber 220).
  • the sealing member 210 is made of a resin material such as PTFE, which is generally considered to have good sealing properties.
  • the seal member 210 may be configured in an annular shape.
  • the pressure chamber 220 is further divided into a high pressure chamber 221 and an intermediate pressure chamber 222 by a sealing member 210.
  • a pressure equivalent to that of the discharged gas is introduced into the high pressure chamber 221.
  • the pressure of the gas in the middle of compression between the low pressure and the high pressure of the compression chamber 150 is introduced into the intermediate pressure chamber 222.
  • the area of the high pressure chamber 221 and the intermediate pressure chamber 222 with respect to the swivel scroll 120 and the pressure of the compression chamber 150 to be introduced into the intermediate pressure chamber 222 can be appropriately set. Therefore, even in the low-pressure compressor in the closed container, the swivel scroll 120 does not separate from the fixed scroll 110 and the swivel scroll 120 does not separate from the fixed scroll 110 under various operating conditions in which the compression pressure is different between the low pressure and the high pressure. It is possible to set the optimum pressing force that is not pressed too much.
  • the main bearing 130 is formed with a return path 134 in which one end opens in the boss accommodating portion 131 and the other end opens in the lower surface of the main bearing 130.
  • the old dam ring 140 is provided between the fixed scroll 110 and the swivel scroll 120.
  • the old dam ring 140 prevents the turning scroll 120 from rotating and makes a turning motion.
  • the swirl swirl wrap 122 is a wall having an involute curved cross section whose radius gradually expands from the center side to the outer peripheral side of the swirl scroll end plate 121.
  • the swirl swirl wrap 122 has a predetermined height (length in the vertical direction) and a predetermined wall thickness (length in the radial direction of the swirl swirl wrap 122).
  • a discharge counterbore 125 is formed in a compression chamber 150 communicating with the first discharge port 113, which will be described later, at a substantially central portion of the swivel scroll 120.
  • the swivel scroll end plate 121 is formed with a high pressure introduction path 126 that communicates the discharge counterbore 125 and the high pressure chamber 221.
  • a medium pressure port 127 is formed in a region where a refrigerant having an intermediate pressure during compression exists.
  • the intermediate pressure introduction path 128 communicates the intermediate pressure port 127 and the intermediate pressure chamber 222 (see FIG. 2).
  • a pair of key grooves are provided on the Oldam ring 140 side of the swivel scroll end plate 121.
  • the fixed spiral wrap 112 is a wall having an involute curved cross section whose radius gradually expands from the center side to the outer peripheral side of the fixed scroll end plate 111.
  • the fixed swirl wrap 112 has a predetermined height (vertical length) equal to that of the swirl swirl wrap 122 and a predetermined wall thickness (diametrical length of the fixed swirl wrap 112).
  • a first discharge port 113 is formed at a substantially central portion of the fixed scroll end plate 111. Further, a bypass port 114 is formed on the fixed scroll end plate 111. The bypass port 114 is located in the vicinity of the first discharge port 113 and in a region where the high-pressure refrigerant immediately before the completion of compression exists.
  • the bypass port 114 includes a bypass port that communicates with the compression chamber 150 formed on the outer wall surface side of the swirl swirl wrap 122, and a bypass port that communicates with the compression chamber 150 formed on the inner wall surface side of the swirl swirl wrap 122. Two sets are provided.
  • an outer peripheral step portion 115 having a step with respect to the tip of the fixed spiral wrap 112 is formed on the outer peripheral portion of the fixed scroll 110.
  • the outer peripheral step portion 115 is arranged at a position lower than the tip of the fixed spiral wrap 112 by the thickness of the old dam ring 140 or more.
  • An old dam ring 140 is arranged on the outer peripheral step portion 115.
  • a pair of key grooves are provided on the outer periphery of the fixed scroll 110.
  • a suction portion (not shown) for taking the refrigerant into the compression chamber 150 is formed on the peripheral wall of the fixed scroll 110.
  • an upper boss portion 119 is provided in the center on the upper surface (the surface on the partition plate 50 side) of the fixed scroll 110.
  • the upper boss portion 119 is a columnar protrusion protruding from the upper surface of the fixed scroll 110.
  • the first discharge port 113 and the bypass port 114 are opened on the upper surface of the upper boss portion 119.
  • a discharge space 110H is formed between the upper boss portion 119 and the partition plate 50 on the upper surface side of the upper boss portion 119.
  • the first discharge port 113 and the bypass port 114 communicate with the discharge space 110H.
  • bypass check valve 230 that allows the bypass port 114 to be opened and closed and a bypass check valve stop 240 that prevents excessive deformation of the bypass check valve 230 are provided.
  • a bypass check valve 230 that allows the bypass port 114 to be opened and closed and a bypass check valve stop 240 that prevents excessive deformation of the bypass check valve 230 are provided.
  • the Oldam ring 140 is arranged between the fixed scroll 110 and the swivel scroll 120. As described above, the old dam ring 140 is arranged on the outer peripheral step portion 115 of the fixed scroll 110.
  • the Oldam ring 140 includes a substantially annular ring portion, a pair of first keys projecting from the upper surface of the ring portion, and a pair of second keys projecting from the lower surface of the ring portion.
  • the first key is arranged on a parallel straight line that is not on a straight line.
  • the second key is arranged on a parallel straight line that is not on a straight line.
  • the straight line on which the first key is arranged and the straight line on which the second key is arranged are provided so as to be orthogonal to each other.
  • the first key engages the first keyway of the fixed scroll 110
  • the second key engages the second keyway of the swivel scroll 120 (not shown).
  • the turning scroll 120 can make a turning motion without rotating with respect to the fixed scroll 110.
  • FIG. 3 is a cross-sectional view of a main part of the partition plate portion of the scroll compressor according to the present embodiment.
  • a second discharge port 51 is provided at the center of the partition plate 50.
  • a discharge check valve 250 for opening and closing the second discharge port 51 and a discharge check valve stop 260 for preventing excessive deformation of the discharge check valve 250 are provided.
  • a discharge space 110H is formed between the partition plate 50 and the fixed scroll 110.
  • the discharge space 110H communicates with the compression chamber 150 by the first discharge port 113 and the bypass port 114.
  • the discharge space 110H communicates with the high pressure space 60 by the second discharge port 51.
  • the plate thickness of the discharge check valve 250 is thicker than the plate thickness of the bypass check valve 230. This makes it possible to prevent the discharge check valve 250 from opening before the bypass check valve 230.
  • the cross-sectional area of the second discharge port 51 is larger than the cross-sectional area of the first discharge port 113. As a result, the pressure loss of the refrigerant discharged from the compression chamber 150 can be reduced.
  • a taper may be formed on the inflow side of the second discharge port 51. Thereby, the pressure loss can be further reduced.
  • a recess 52 is provided around the second discharge port 51.
  • the upper boss portion 119 of the fixed scroll 110 is inserted into the recess 52 to form a discharge space 110H.
  • the boss seal member 270 seals between the discharge space 110H and the low pressure space 70.
  • the boss seal member 270 may be configured in an annular shape.
  • the intermediate pressure refrigerant during compression is introduced from the intermediate pressure port 127 shown in FIG. 2 through the intermediate pressure introduction path 128 into the intermediate pressure chamber 222 (see FIG. 2) provided on the back surface of the swivel scroll 120.
  • the compressed high-pressure refrigerant is introduced from the discharge counterbore 125 shown in FIG. 2 through the high-pressure introduction path 126 into the high-pressure chamber 221 (see FIG. 2) provided on the back surface of the swivel scroll 120.
  • the swivel scroll 120 is pressed against the fixed scroll 110 from the back surface of the swivel scroll 120 at an appropriately set pressure of the intermediate pressure chamber 222 and the pressure of the high pressure chamber 221. Therefore, as compared with the case where only the intermediate pressure chamber 222 is provided, the swivel scroll 120 does not separate from the fixed scroll 110 and the swivel scroll 120 becomes the fixed scroll 110 under various operating conditions in which the compression pressure is low pressure and high pressure. On the other hand, it is possible to set the optimum pressing force that is not pressed too much. Therefore, in the low-pressure compressor in a closed container, it is possible to prevent a decrease in efficiency and a decrease in reliability.
  • the opening on the intermediate pressure chamber 222 side of the intermediate pressure introduction path 128 is intermittently communicated with the intermediate pressure chamber 222 across the seal member 210 by the swivel scroll 120 rotating.
  • the compression chamber 150 whose pressure fluctuates due to the compression of the refrigerant and the intermediate pressure chamber 222 can be communicated intermittently. Therefore, the pressure pulsation of the intermediate pressure chamber 222 can be reduced, and the swivel scroll 120 can more reliably suppress the separation of the fixed scroll 110 to improve the efficiency of the compressor.
  • the old dam ring 140 is arranged between the fixed scroll 110 and the swivel scroll 120.
  • the intermediate pressure chamber 222 and the high pressure chamber 221 provided on the back surface of the swivel scroll 120 can be made wider than those of the conventional compressor in which the old dam ring 140 is arranged on the back side of the swivel scroll 120. Therefore, it is possible to secure the areas of the intermediate pressure chamber 222 and the high pressure chamber 221 necessary for properly pressing the swivel scroll 120 against the fixed scroll 110.
  • the swivel scroll 120 is suppressed from separating from the fixed scroll 110 under various operating conditions in which the low-pressure and high-pressure compression pressures are different, and the swivel scroll 120 is the fixed scroll 110. It is possible to set the optimum pressing force that is not pressed too much against the object. Therefore, it is possible to prevent a decrease in the efficiency and a decrease in the reliability of the compressor.
  • the old dam ring 140 is installed in the outer peripheral step portion 115 communicating with the low pressure space 70. Therefore, since the sliding portion of the old dam ring 140 is lubricated with the oil contained in the intake refrigerant, it is possible to prevent a decrease in reliability.
  • low-pressure spaces (low-pressure regions) 71 and 72 are arranged in the central portion and the outermost peripheral portion on the back surface of the swivel scroll 120.
  • a high pressure chamber 221 and an intermediate pressure chamber 222 are arranged between the low pressure spaces (low pressure regions) 71 and 72 on the back surface of the swivel scroll 120.
  • the high pressure chamber 221 is arranged inside (center side) of the intermediate pressure chamber 222.
  • the refrigerant is compressed from low pressure to high pressure as it goes from the outer circumference to the center. Therefore, the central portion of the swivel scroll 120 receives a force in a direction away from the fixed scroll 110 due to a pressure close to high pressure.
  • the high pressure chamber 221 is arranged closer to the center than the intermediate pressure chamber 222, so that the central portion of the swivel scroll 120 is stronger than the outer peripheral portion. It can be pressed against the fixed scroll 110.
  • the separation of the swivel scroll 120 with respect to the fixed scroll 110 can be suppressed more effectively, so that the pressure leakage can be reduced. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
  • the scroll compressor includes a partition plate 50 that divides the inside of the closed container 20 into a high-pressure space 60 and a low-pressure space 70, a fixed scroll 110 adjacent to the partition plate 50, and a fixed scroll 110. It has a swivel scroll 120 that is meshed to form a compression chamber 150, a rotation suppressing member 140 that prevents the swivel scroll 120 from rotating, and a main bearing 130 that supports the swivel scroll 120.
  • the fixed scroll 110, the swivel scroll 120, the rotation suppressing member 140, and the main bearing 130 are arranged in the low pressure space 70.
  • the fixed scroll 110 and the swivel scroll 120 are arranged between the partition plate 50 and the main bearing 130.
  • Low-pressure spaces (low-pressure regions) 71 and 72, low-pressure and high-pressure intermediate pressure chambers 222, and high-pressure chambers 221 are arranged on the back surface of the swirl scroll 120.
  • the intermediate pressure chamber 222 and the high pressure chamber 221 can introduce an appropriate pressure into an appropriate region on the back surface of the swirl scroll 120. Therefore, it is possible to suppress the swivel scroll 120 from separating from the fixed scroll 110 and reduce the pressure leakage. Further, since it is not necessary to mount a special component for expanding the area to which pressure is applied on the back surface of the swivel scroll, it is possible to prevent a decrease in efficiency and a decrease in reliability with a simple configuration.
  • the scroll compressor of the present embodiment has a configuration in which the central portion and the outermost peripheral portion on the back surface of the swivel scroll are low-pressure spaces (low-pressure regions) 71 and 72, and the high-pressure chamber 221 is arranged inside the intermediate pressure chamber 222. is there.
  • a large pressure can be applied to the central portion of the swivel scroll 120 to which a strong pressure is applied in the direction away from the fixed scroll 110. Therefore, the separation of the swivel scroll 120 with respect to the fixed scroll 110 can be effectively suppressed to reduce pressure leakage, and an appropriate pressing force can be applied to the swivel scroll 120, resulting in a decrease in efficiency and reliability. Can be prevented.
  • annular seal member 210 that separates the low-pressure space (low-pressure region) 71, 72, the intermediate pressure chamber 222, and the high-pressure chamber 221 is arranged on the back surface of the swirl scroll 120. ing.
  • the pressure communicating with the compression chamber 150 can be arbitrarily determined. Therefore, the swivel scroll 120 can be pressed against the fixed scroll 110 with the optimum pressure. Therefore, it is possible to suppress the turning scroll 120 from separating from the fixed scroll 110 and reduce the pressure leakage. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
  • the rotation suppressing member 140 is arranged between the swivel scroll 120 and the fixed scroll 110.
  • the high pressure chamber 221 and the intermediate pressure chamber 222 can be provided to the maximum in the area on the back surface of the swivel scroll 120. Therefore, the swivel scroll 120 can be properly pressed against the fixed scroll 110, the swivel scroll 120 can be suppressed from separating from the fixed scroll 110, and pressure leakage can be reduced. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
  • FIG. 4 is a vertical cross-sectional view of the scroll compressor according to the second embodiment.
  • the compressor 10 includes a cylindrical closed container 20 whose vertical direction is the longitudinal direction as an outer shell.
  • the vertical direction is the Z-axis direction in each figure.
  • the high voltage introduction path 129 is arranged inside the fixed scroll 110. Further, a high-voltage introduction path 126 is arranged inside the swivel scroll 120.
  • the swivel scroll 120 swivels, so that the high-pressure introduction path 126 and the high-pressure introduction path 129 are intermittently communicated with each other, and the discharge space 110H from which the high-pressure refrigerant is discharged from the fixed scroll 110 and the high-pressure chamber 221 are communicated with each other. Scroll.
  • the oil accumulated in the discharge space 110H can be supplied to the sliding portion between the swivel scroll 120 and the fixed scroll 110, the reliability of the sliding portion can be improved.
  • the discharge space 110H and the high pressure chamber 221 are communicated with each other.
  • a stable pressure can be applied to the high pressure chamber 221 with relatively little fluctuation, so that the swivel scroll 120 can be stably pressed against the fixed scroll 110. Therefore, it is possible to more reliably suppress the turning scroll 120 from separating from the fixed scroll 110, and it is possible to reduce pressure leakage. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
  • FIG. 5 is a vertical cross-sectional view of the scroll compressor according to the third embodiment. Further, FIG. 6 is a cross-sectional view of a main part of the main part of the compression element of the scroll compressor, and FIG. 7 is a bottom view of the fixed scroll.
  • the compressor 10 includes a cylindrical closed container 20 having a longitudinal direction in the vertical direction as an outer shell.
  • the vertical direction is the Z-axis direction in each figure.
  • the intermediate pressure chamber 222 and the high pressure chamber 221 are arranged inside the outermost peripheral portion 116 of the thrust sliding surface (the alternate long and short dash line in FIGS. 6 and 7) with the swivel scroll 120 in the fixed scroll 110.
  • the outermost peripheral portion 116 of the thrust sliding surface refers to the peripheral edge of the maximum range of the thrust sliding surface with the swivel scroll 120 in the fixed scroll 110.
  • the pressing force by the intermediate pressure chamber 222 and the high pressure chamber 221 is applied to the swivel scroll 120 inside the outermost peripheral portion 116 of the thrust sliding surface.
  • the swivel scroll 120 is at the pressure of the intermediate pressure chamber 222 and the high pressure chamber 221 provided inside the outermost peripheral portion 116 of the thrust sliding surface with the swivel scroll 120 of the fixed scroll 110. , Pressed against the fixed scroll 110. Therefore, it is possible to prevent the outer peripheral portion of the swivel scroll end plate 121 from being deformed by the pressure of the intermediate pressure chamber 222 and the high pressure chamber 221.
  • the scroll compressor according to the present embodiment has the configuration of the first embodiment or the second embodiment, and further, the intermediate pressure chamber 222 and the high pressure chamber 221 are formed from the outermost peripheral portion 116 of the thrust sliding surface of the swivel scroll and the fixed scroll. Is also placed inside.
  • FIG. 8 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member after the assembly of the scroll compressor according to the present embodiment. Since the basic configuration of the present embodiment is the same as that of the first to third embodiments, the description thereof will be omitted. Further, the same components as those already described are designated by the same reference numerals, and some description thereof will be omitted.
  • a plurality of annular seal members 210 are provided in a plurality of storage grooves 133 provided in the main bearing 130. It is sealed by being inserted. Specifically, a plurality of annular seal members 210a, 210b, 210c are inserted into the storage grooves 133a, 133b, 133c, respectively. Further, a plurality of spring members 211a, 211b, 211c are inserted between the plurality of annular seal members 210a, 210b, 210c and the bottom surfaces of the storage grooves 133a, 133b, 133c, respectively. In the present embodiment, the plurality of spring members 211a, 211b, 211c are configured so that the spring loads F at the time of assembly are substantially the same as each other.
  • the spring load F of each of the plurality of spring members 211 is within ⁇ 10% of the average of the spring loads of the plurality of spring members 211.
  • the plurality of annular seal members 210 are uniformly pressed against the swivel scroll 120 by the plurality of spring members 211. Therefore, it is possible to more reliably and effectively prevent a decrease in efficiency and a decrease in reliability.
  • the operation of the annular seal member 210 may become unstable immediately after the compressor is started or depending on the operating conditions.
  • the annular seal member 210 becomes unstable, the annular seal member 210 is not pressed against the back surface of the swivel scroll 120, and as a result, the intermediate pressure chamber 222 having a pressure lower than the pressure of the high pressure chamber 221 is subjected to the high pressure of the high pressure chamber 221. Excessive inflow of refrigerant and oil is possible. In such a case, the swivel scroll 120 is excessively pressed against the fixed scroll 110, which may reduce the efficiency of the compressor and reduce the reliability.
  • the plurality of annular seal members 210a, 210b, 210c are imprinted on the back surface of the swivel scroll 120 by the spring loads of the plurality of spring members 211a, 211b, 211c, respectively. .. Further, the plurality of spring members 211a, 211b, 211c are configured so that the spring loads F at the time of assembly are substantially the same as each other. Therefore, the back surface of the swivel scroll 120 is imprinted with the annular seal members 210a, 210b, 210c in a well-balanced manner. That is, the back surface of the swivel scroll 120 can be stably stamped without being affected by pressure fluctuations and the like. Therefore, it is possible to improve the efficiency from the time when the compressor is started, and to suppress the deterioration of performance and reliability due to the unstable behavior of the swivel scroll 120.
  • the spring constant ka of the spring member (first spring member) 211a, the spring constant kb of the spring member (second spring member) 211b, and the spring of the spring member (third spring member) 211c have a spring constant kc.
  • the constants are almost the same as each other.
  • each spring member 211 is within ⁇ 10% of the average of the spring constants of the spring member 211.
  • the spring load F of each spring member 211 can be set to within ⁇ 10% of the average of the spring loads F.
  • FIG. 9 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the present embodiment.
  • the spring constant ka of the spring member (first spring member) 211a, the spring constant kb of the spring member (second spring member) 211b, and the spring constant kc of the spring member (third spring member) 211c are almost the same. Further, in order to keep the amount of contraction x of the spring constant, the storage groove (first storage groove) 133a, the storage groove (second storage groove) 133b, and the storage groove (third storage groove) 133c arranged in the main bearing 130.
  • the depths of 133h are made constant, and the natural lengths 211h (natural lengths 211ah, 211bh, 211ch) of the plurality of spring members 211a, 211b, 211c are made constant.
  • the depths 133h (depths 133ah, 133bh, 133ch) of the storage grooves 133a, 133b, 133c of the main bearing 130 are constant, and the plurality of spring members 211a, 211b, 211c are natural.
  • the length 211h (natural length 211ah, 211bh, 211ch) is constant.
  • at least one of the depth 133h of each of the storage grooves 133a, 133b, 133c and the natural length 211h of the plurality of spring members 211a, 211b, 211c is changed, and each spring of the spring members 211a, 211b, 211c is changed.
  • the amount of shrinkage x may be constant.
  • the partition plate that divides the inside of the closed container into the high-pressure space and the low-pressure space, the fixed scroll adjacent to the partition plate, and the fixed scroll are meshed to form a compression chamber. It has a swivel scroll, a rotation suppressing member that prevents the swivel scroll from rotating, and a main bearing that supports the swivel scroll.
  • the fixed scroll, the swivel scroll, the rotation restraining member, and the main bearing are arranged in the low pressure space, and the fixed scroll and the swivel scroll are arranged between the partition plate and the main bearing.
  • a low-pressure space, a low-pressure and high-pressure intermediate pressure chamber, and a high-pressure chamber are arranged on the back surface of the swivel scroll. Further, a plurality of annular seal members for partitioning the low pressure space, the intermediate pressure chamber, and the high pressure chamber are arranged, and a plurality of spring members are arranged on the back surface of the annular seal member.
  • the spring member can be swiveled particularly immediately after the compressor is started.
  • a plurality of annular seal members can be pressed against the fixed scroll in a well-balanced manner on the back surface of the scroll, and the sealing property is improved. Therefore, the swivel scroll can be stably pressed against the fixed scroll, and the performance and reliability can be effectively improved.
  • spring constants of the plurality of spring members may be constant with each other.
  • the spring constant can be easily made constant depending on the spring thickness, spring width, number of folds, etc. of the leaf spring. It is possible to adjust. Then, if the amount of contraction of the springs of the plurality of spring members is made substantially the same as each other, the spring loads of the plurality of spring members can be easily made substantially the same.
  • FIG. 10 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the present embodiment.
  • the spring constants ka, kb, and kc of the plurality of spring members 211a, 211b, and 211c are different from each other. Further, the natural lengths 211h of the plurality of spring members 211a, 211b, 211c are substantially the same as each other.
  • the spring constants ka, kb, kc of the plurality of spring members 211a, 211b, 211c are different from each other, the natural lengths 211h of the plurality of spring members 211a, 211b, 211c are substantially the same as each other, and
  • the depths 133ah, 133bh, 133ch of the plurality of storage grooves 133a, 133b, 133c in the main bearing 130 By adjusting the depths 133ah, 133bh, 133ch of the plurality of storage grooves 133a, 133b, 133c in the main bearing 130, the shrinkage amount x of the plurality of spring members 211a, 211b, 211c can be adjusted. Therefore, the spring loads F of the plurality of spring members 211a, 211b, and 211c can be easily made substantially the same by adjusting the storage groove 133 of the main bearing 130 by processing.
  • the natural length 211h of the plurality of spring members 211a, 211b, 211c is preferably within ⁇ 30%. Since the storage groove depths 133ah, 133bh, and 133ch can be processed with high accuracy, the spring loads of the plurality of spring members 211a, 211b, and 211c can be adjusted by adjusting the storage groove depths 133ah, 133bh, and 133ch, respectively. Fs can be approximately the same as each other.
  • the scroll compressor of the present embodiment is configured such that the spring constants of the plurality of spring members are different from each other and the natural lengths of the plurality of spring members are substantially the same as each other.
  • the spring constants of the plurality of spring members are different, the natural lengths of the plurality of spring members are made the same, and the depths of the plurality of storage grooves in the main bearing are adjusted to cause the plurality of spring members to shrink.
  • the amount can be adjusted. Therefore, the spring loads of the plurality of spring members can be easily made substantially the same by processing the storage groove.
  • FIG. 11 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the present embodiment.
  • the spring constants ka, kb, and kc of the plurality of spring members 211a, 211b, and 211c are different from each other. Further, the depths 133h of the storage grooves 133a, 133b, 133c provided in the main bearing 130 are configured to be substantially the same as each other.
  • the depths 133h of the plurality of storage grooves 133a, 133b, and 133c provided in the main bearing 130 are substantially the same as each other.
  • the shrinkage amount x of the plurality of spring members 211a, 211b, 211c can be adjusted by adjusting the natural lengths 211ah, 211bh, 211ch of the plurality of spring members 211a, 211b, 211c, respectively. Therefore, the spring loads F of the plurality of spring members 211a, 211b, and 211c can be made substantially the same with each other easily and at low cost during processing.
  • the depth 133h (depth 133ah, 133bh, 133ch) of the storage grooves 133a, 133b, 133c provided in the main bearing 130 is preferably within ⁇ 5%.
  • the processing tolerance of the natural lengths 211h (natural lengths 211ah, 211bh, 211ch) of the spring members 211a, 211b, 211c can be increased, so that the springs can be easily processed, and the processing cost can be further reduced.
  • the scroll compressor of the present embodiment is configured so that the spring constants of the plurality of spring members are different from each other and the depths of the storage grooves provided in the main bearing are substantially the same as each other. There is.
  • the depths of the plurality of storage grooves provided in the main bearing are set to be the same, and the natural lengths of the plurality of spring members are adjusted.
  • the amount of contraction of the spring member can be adjusted. Therefore, the spring loads of the plurality of spring members can be made substantially the same with each other easily and at a lower cost during processing.
  • the scroll compressor according to the present disclosure can prevent a decrease in efficiency and a decrease in reliability by pressing a swivel scroll with an appropriate force against a fixed scroll even in a low-pressure compressor in a closed container. Therefore, it is useful for scroll compressors of refrigeration cycle devices used in electric appliances such as water heaters, hot water heaters, and air conditioners.
  • Compressor 20 Airtight container 30 Compressor mechanism 40 Electric motor 41 stator 42 rotor 50 partition plate 51 2nd discharge port 52 recess 60 high pressure space 70 low pressure space 71,72 low pressure space (low pressure region) 80 Refrigerant suction pipe 90 Refrigerant discharge pipe 100 Oil pool 110 Fixed scroll 110H Discharge space 111 Fixed scroll end plate 112 Fixed swirl wrap 113 First discharge port 114 Bypass port 115 Outer peripheral stepped part 116 Thrust sliding surface outermost outermost part 119 Upper boss part 120 Swivel scroll 121 Swivel scroll end plate 122 Swivel swirl wrap 123 Lower boss part 124 Swivel bearing 125 Discharge counterbore 126 High pressure introduction path 127 Medium pressure port 128 Intermediate pressure introduction path 129 High pressure introduction path 130 Main bearing 131 Boss accommodating part 132 Bearing part 133 Circular groove (storage groove) 133a annular groove (first storage groove) 133b annular groove (second storage groove) 133c annular groove (third storage groove) 133h depth 133ah

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

This scroll compressor: includes, on a rear surface of an orbiting scroll (120), a high pressure chamber (221), and an intermediate pressure chamber (222) into which pressure midway through compression is introduced; and is configured in such a way that an appropriate pressure is introduced to an appropriate region on the rear surface of the orbiting scroll (120). As a result, it is possible to reduce pressure leakage by suppressing separation of the orbiting scroll (120) from a fixed scroll (110), and to prevent a deterioration in efficiency and a deterioration in reliability.

Description

スクロール圧縮機Scroll compressor
 本開示は、スクロール圧縮機に関する。 This disclosure relates to a scroll compressor.
 特許文献1は、密閉容器内低圧型のスクロール圧縮機を開示する。このスクロール圧縮機は、図12に示すように、仕切板1で仕切られた低圧側の室2に、固定スクロール3及び旋回スクロール4で構成した圧縮要素5と、この旋回スクロール4を旋回駆動する電動要素6とが配置されて構成されている。圧縮要素5で圧縮された冷媒は、固定スクロール3の吐出ポート7を介して、仕切板1で仕切られた高圧側の室8に吐出される。このような密閉容器内低圧型のスクロール圧縮機では、旋回スクロール4の背面、すなわち低圧の室2側に、低圧と高圧の中間の圧力を有する圧縮室9の圧力が導入される。これにより、固定スクロール3から旋回スクロール4が離反しないように、旋回スクロール4が固定スクロール3に対して押し付けられている。 Patent Document 1 discloses a low-pressure scroll compressor in a closed container. As shown in FIG. 12, this scroll compressor swivels and drives a compression element 5 composed of a fixed scroll 3 and a swivel scroll 4 and the swivel scroll 4 in a chamber 2 on the low pressure side partitioned by a partition plate 1. The electric element 6 and the electric element 6 are arranged and configured. The refrigerant compressed by the compression element 5 is discharged to the high-pressure side chamber 8 partitioned by the partition plate 1 via the discharge port 7 of the fixed scroll 3. In such a low-pressure scroll compressor in a closed container, the pressure of the compression chamber 9 having a pressure intermediate between the low pressure and the high pressure is introduced into the back surface of the swirl scroll 4, that is, the low pressure chamber 2 side. As a result, the swivel scroll 4 is pressed against the fixed scroll 3 so that the swivel scroll 4 does not separate from the fixed scroll 3.
US2010/0028182公報US2010 / 0028182 Publication
 本開示は、固定スクロールに対する旋回スクロールの押し付けを過不足なく行うようにして、性能及び信頼性を向上させたスクロール圧縮機を提供する。 The present disclosure provides a scroll compressor with improved performance and reliability by pressing a swivel scroll against a fixed scroll in just proportion.
 本開示のスクロール圧縮機は、旋回スクロールの背面に、低圧空間と、低圧と高圧の中間圧室と、高圧室が配置され、これらの各室からの圧力によって旋回スクロールが固定スクロールに対して押し付けられるように構成されている。 In the scroll compressor of the present disclosure, a low pressure space, a low pressure and high pressure intermediate pressure chamber, and a high pressure chamber are arranged on the back surface of the swivel scroll, and the swivel scroll is pressed against the fixed scroll by the pressure from each of these chambers. It is configured to be.
図1は、本開示の実施の形態1にかかるスクロール圧縮機の構成を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing the configuration of the scroll compressor according to the first embodiment of the present disclosure. 図2は、同スクロール圧縮機の圧縮要素主要部の要部断面図である。FIG. 2 is a cross-sectional view of a main part of the main part of the compression element of the scroll compressor. 図3は、同スクロール圧縮機の仕切板部分の要部断面図である。FIG. 3 is a cross-sectional view of a main part of the partition plate portion of the scroll compressor. 図4は、実施形態2にかかるスクロール圧縮機の構成を示す縦断面図である。FIG. 4 is a vertical cross-sectional view showing the configuration of the scroll compressor according to the second embodiment. 図5は、実施の形態3にかかるスクロール圧縮機の構成を示す縦断面図である。FIG. 5 is a vertical cross-sectional view showing the configuration of the scroll compressor according to the third embodiment. 図6は、同スクロール圧縮機の圧縮要素主要部の要部断面図である。FIG. 6 is a cross-sectional view of a main part of the main part of the compression element of the scroll compressor. 図7は、同スクロール圧縮機の固定スクロールの下面図である。FIG. 7 is a bottom view of the fixed scroll of the scroll compressor. 図8は、実施の形態4にかかるスクロール圧縮機の組立後の環状シール部材付近の拡大縦断面図である。FIG. 8 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member after the assembly of the scroll compressor according to the fourth embodiment. 図9は、同スクロール圧縮機にかかる組立前の環状シール部材付近の拡大縦断面図である。FIG. 9 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembly of the scroll compressor. 図10は、実施の形態5にかかるスクロール圧縮機の組立前の環状シール部材付近の拡大縦断面図である。FIG. 10 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the fifth embodiment. 図11は、実施の形態6にかかるスクロール圧縮機の組立前の環状シール部材付近の拡大縦断面図である。FIG. 11 is an enlarged vertical sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the sixth embodiment. 図12は、従来のスクロール圧縮機の縦断面図である。FIG. 12 is a vertical cross-sectional view of a conventional scroll compressor.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、密閉容器内低圧型のスクロール圧縮機は、特許文献1に示すように、旋回スクロール4の背面に低圧と高圧の中間の圧縮室9の圧力が導入され、固定スクロール3から旋回スクロール4が離反しないように構成されていた。特許文献1に示す構成においては、旋回スクロール4の背面における中心部に、旋回スクロール4を旋回運動させるための偏心した回転軸が設置されている。ここで、当該スクロール圧縮機は密閉容器内が低圧であるため、旋回スクロール4の背面における中心部の領域は、低圧領域となる。一方、特許文献1に示す構成においては、旋回スクロール4の背面において、圧縮室9の圧力を導入する領域が形成し難い。従って、圧縮室9の圧力が低い場合、旋回スクロール4の背面に導入される圧力も低くなり、旋回スクロール4が固定スクロール3から離反してしまう。その結果、旋回スクロール4と固定スクロール3との間に隙間が形成され、圧力の漏れにより圧縮効率が低下するおそれがある。また、圧縮室9の圧力が高い場合は、旋回スクロール4の背面に導入される圧力も高くなる。その結果、旋回スクロール4は固定スクロール3から離反しないが、旋回スクロール4の固定スクロール3に対する押付け力が過大となり、性能の悪化又は信頼性の悪化を引き起こすおそれがある。
(Knowledge, etc. that was the basis of this disclosure)
At the time when the inventors came up with the present disclosure, the low-pressure scroll compressor in a closed container had a pressure in a compression chamber 9 between low pressure and high pressure on the back surface of the swivel scroll 4, as shown in Patent Document 1. Was introduced, and the swivel scroll 4 was configured so as not to separate from the fixed scroll 3. In the configuration shown in Patent Document 1, an eccentric rotation axis for rotating the swivel scroll 4 is installed at the center of the back surface of the swivel scroll 4. Here, since the scroll compressor has a low pressure inside the closed container, the central region on the back surface of the swirl scroll 4 is a low pressure region. On the other hand, in the configuration shown in Patent Document 1, it is difficult to form a region for introducing the pressure of the compression chamber 9 on the back surface of the swivel scroll 4. Therefore, when the pressure in the compression chamber 9 is low, the pressure introduced into the back surface of the swivel scroll 4 is also low, and the swivel scroll 4 is separated from the fixed scroll 3. As a result, a gap is formed between the swivel scroll 4 and the fixed scroll 3, and there is a risk that the compression efficiency will decrease due to pressure leakage. Further, when the pressure of the compression chamber 9 is high, the pressure introduced into the back surface of the swivel scroll 4 is also high. As a result, the swivel scroll 4 does not separate from the fixed scroll 3, but the pressing force of the swivel scroll 4 against the fixed scroll 3 becomes excessive, which may cause deterioration in performance or reliability.
 このように従来のスクロール圧縮機は、性能及び信頼性について改善の余地があることを発明者らは把握し、これを解決するために、本開示の主題を構成するに至った。 As described above, the inventors have grasped that there is room for improvement in the performance and reliability of the conventional scroll compressor, and in order to solve this, the subject of the present disclosure has been constructed.
 本開示は、効率の低下を抑制し、性能及び信頼性を向上させたスクロール圧縮機を提供する。 The present disclosure provides a scroll compressor that suppresses a decrease in efficiency and has improved performance and reliability.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted. This is to prevent the following explanation from becoming unnecessarily redundant and to facilitate the understanding of those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図1~図3を用いて、実施の形態1を説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 3.
 [1-1.構成]
 図1~図3において、圧縮機10は、上下方向が長手方向となる円筒状の密閉容器20を、外殻として備えている。なお、本実施の形態において、上下方向とは、各図におけるZ軸方向である。
[1-1. Constitution]
In FIGS. 1 to 3, the compressor 10 includes a cylindrical closed container 20 whose vertical direction is the longitudinal direction as an outer shell. In the present embodiment, the vertical direction is the Z-axis direction in each figure.
 圧縮機10は、密閉容器20の内部に、冷媒を圧縮するための圧縮機構部30と圧縮機構部30を駆動するための電動機40と、を備えた密閉型スクロール圧縮機である。 The compressor 10 is a closed scroll compressor provided with a compression mechanism unit 30 for compressing the refrigerant and an electric motor 40 for driving the compression mechanism unit 30 inside the closed container 20.
 密閉容器20の内部の上方には、密閉容器20の内部を上下に仕切る仕切板50が設けられている。仕切板50は、密閉容器20の内部を、高圧空間60と低圧空間70とに区画している。高圧空間60は、圧縮機構部30で圧縮された後の高圧の冷媒で満たされる空間である。低圧空間70は、圧縮機構部30で圧縮される前の低圧の冷媒で満たされる空間である。 Above the inside of the closed container 20, a partition plate 50 for partitioning the inside of the closed container 20 into upper and lower parts is provided. The partition plate 50 divides the inside of the closed container 20 into a high-pressure space 60 and a low-pressure space 70. The high-pressure space 60 is a space filled with the high-pressure refrigerant after being compressed by the compression mechanism unit 30. The low-pressure space 70 is a space filled with the low-pressure refrigerant before being compressed by the compression mechanism unit 30.
 密閉容器20は、密閉容器20の外部と低圧空間70とを連通させる冷媒吸込管80と、密閉容器20の外部と高圧空間60とを連通させる冷媒吐出管90とを備えている。圧縮機10には、冷媒吸込管80を介して、密閉容器20の外部に設けられた冷凍サイクル回路(図示せず)から低圧空間70に低圧の冷媒が導入される。圧縮機構部30で圧縮された高圧の冷媒は、まず、高圧空間60に導入される。その後、冷媒は、高圧空間60から冷媒吐出管90を介して、冷凍サイクル回路に吐出される。 The closed container 20 includes a refrigerant suction pipe 80 that communicates the outside of the closed container 20 with the low pressure space 70, and a refrigerant discharge pipe 90 that communicates the outside of the closed container 20 with the high pressure space 60. A low-pressure refrigerant is introduced into the low-pressure space 70 from a refrigeration cycle circuit (not shown) provided outside the closed container 20 via a refrigerant suction pipe 80 into the compressor 10. The high-pressure refrigerant compressed by the compression mechanism unit 30 is first introduced into the high-pressure space 60. After that, the refrigerant is discharged from the high-pressure space 60 to the refrigeration cycle circuit via the refrigerant discharge pipe 90.
 低圧空間70の底部には、潤滑油が貯留される油溜まり100が形成されている。 At the bottom of the low pressure space 70, an oil sump 100 in which lubricating oil is stored is formed.
 圧縮機10は、低圧空間70に、圧縮機構部30と電動機40と、を備えている。 The compressor 10 includes a compression mechanism unit 30 and an electric motor 40 in a low-pressure space 70.
 圧縮機構部30は、少なくとも、固定スクロール110、旋回スクロール120、主軸受130及び自転抑制部材(以下、オルダムリングと称す)140で構成されている。固定スクロール110は、仕切板50の下方に仕切板50と隣接して配置されている。旋回スクロール120は、固定スクロール110の下方に、固定スクロール110と噛み合わされて配置されている。 The compression mechanism unit 30 is composed of at least a fixed scroll 110, a swivel scroll 120, a main bearing 130, and a rotation suppressing member (hereinafter referred to as an old dam ring) 140. The fixed scroll 110 is arranged below the partition plate 50 so as to be adjacent to the partition plate 50. The swivel scroll 120 is arranged below the fixed scroll 110 in mesh with the fixed scroll 110.
 固定スクロール110は、円板状の固定スクロール端板111と、固定スクロール端板111の下面に立設された渦巻状の固定渦巻きラップ112とを備えている。 The fixed scroll 110 includes a disk-shaped fixed scroll end plate 111 and a spiral-shaped fixed spiral wrap 112 erected on the lower surface of the fixed scroll end plate 111.
 旋回スクロール120は、円板状の旋回スクロール端板121と、旋回スクロール端板121の上面に立設された渦巻状の旋回渦巻きラップ122と、下方ボス部123とを備えている。下方ボス部123は、旋回スクロール端板121の下面の略中央に形成された円筒状の突起である。 The swivel scroll 120 includes a disc-shaped swirl scroll end plate 121, a spiral swirl swirl wrap 122 erected on the upper surface of the swirl scroll end plate 121, and a lower boss portion 123. The lower boss portion 123 is a cylindrical protrusion formed substantially in the center of the lower surface of the swivel scroll end plate 121.
 旋回スクロール120の旋回渦巻きラップ122と固定スクロール110の固定渦巻きラップ112とが噛み合わされることで、旋回スクロール120と固定スクロール110との間に圧縮室150が形成される。圧縮室150は、旋回渦巻きラップ122の内壁面側及び外壁面側に形成される。 By engaging the swirl wrap 122 of the swirl scroll 120 and the fixed swirl wrap 112 of the fixed scroll 110, a compression chamber 150 is formed between the swirl scroll 120 and the fixed scroll 110. The compression chamber 150 is formed on the inner wall surface side and the outer wall surface side of the swirl swirl wrap 122.
 固定スクロール110及び旋回スクロール120の下方には、旋回スクロール120を支持する主軸受130が設けられている。主軸受130は、上面の略中央に設けられたボス収容部131と、ボス収容部131の下方に設けられた軸受部132とを備えている。ボス収容部131は、旋回スクロール120の下方ボス部123を収納するための凹部である。軸受部132は、上端がボス収容部131に開口し、且つ、下端が低圧空間70に開口する貫通孔である。 Below the fixed scroll 110 and the swivel scroll 120, a main bearing 130 that supports the swivel scroll 120 is provided. The main bearing 130 includes a boss accommodating portion 131 provided at substantially the center of the upper surface, and a bearing portion 132 provided below the boss accommodating portion 131. The boss accommodating portion 131 is a recess for accommodating the lower boss portion 123 of the swivel scroll 120. The bearing portion 132 is a through hole whose upper end opens into the boss accommodating portion 131 and whose lower end opens into the low pressure space 70.
 主軸受130は、上面で旋回スクロール120を支持するとともに、軸受部132で回転軸160を軸支する。 The main bearing 130 supports the swivel scroll 120 on the upper surface, and the bearing portion 132 pivotally supports the rotating shaft 160.
 回転軸160は、図1における上下方向が長手方向となる軸である。回転軸160の一端側は軸受部132により軸支され、他端側は副軸受170で軸支される。副軸受170は、低圧空間70の下方、望ましくは、油溜まり100内に設けられた軸受である。回転軸160の上端には、回転軸160の軸心に対して偏心した偏心軸161が設けられている。偏心軸161は、スイングブッシュ180及び旋回軸受124を介して、下方ボス部123に摺動自在に挿入されている。下方ボス部123は、偏心軸161によって、旋回駆動される。 The rotating shaft 160 is an axis in which the vertical direction in FIG. 1 is the longitudinal direction. One end side of the rotating shaft 160 is pivotally supported by the bearing portion 132, and the other end side is pivotally supported by the auxiliary bearing 170. The auxiliary bearing 170 is a bearing provided below the low pressure space 70, preferably in the oil sump 100. An eccentric shaft 161 eccentric with respect to the axis of the rotating shaft 160 is provided at the upper end of the rotating shaft 160. The eccentric shaft 161 is slidably inserted into the lower boss portion 123 via the swing bush 180 and the swivel bearing 124. The lower boss portion 123 is swiveled by the eccentric shaft 161.
 回転軸160の内部には、潤滑油が通過する油路162が形成されている。油路162は、回転軸160の軸方向に形成された貫通孔である。油路162の一端は、回転軸160の下端に設けられた吸込口163として、油溜まり100内に開口している。吸込口163の上部には、吸込口163から油路162に潤滑油を汲み上げるパドル190が設けられている。 An oil passage 162 through which lubricating oil passes is formed inside the rotating shaft 160. The oil passage 162 is a through hole formed in the axial direction of the rotating shaft 160. One end of the oil passage 162 is opened in the oil sump 100 as a suction port 163 provided at the lower end of the rotating shaft 160. A paddle 190 for pumping lubricating oil from the suction port 163 to the oil passage 162 is provided above the suction port 163.
 回転軸160の内部において、回転軸160の上部に第1分岐油路164、回転軸160の下部に第2分岐油路165が形成されている。第1分岐油路164の一端は第1給油口166として軸受部132の軸受面で開口し、第1分岐油路164の他端は油路162に連通する。また、第2分岐油路165の一端は第2給油口167として副軸受170の軸受面で開口し、第2分岐油路165の他端は油路162に連通する。 Inside the rotating shaft 160, a first branch oil passage 164 is formed above the rotating shaft 160, and a second branch oil passage 165 is formed below the rotating shaft 160. One end of the first branch oil passage 164 opens as the first oil supply port 166 at the bearing surface of the bearing portion 132, and the other end of the first branch oil passage 164 communicates with the oil passage 162. Further, one end of the second branch oil passage 165 is opened as a second oil supply port 167 on the bearing surface of the auxiliary bearing 170, and the other end of the second branch oil passage 165 communicates with the oil passage 162.
 油路162の上端は第3給油口168としてボス収容部131の内部に開口する。 The upper end of the oil passage 162 opens inside the boss accommodating portion 131 as a third fuel filler port 168.
 回転軸160は電動機40に連結されている。電動機40は、主軸受130と副軸受170の間に配置されている。電動機40は、密閉容器20に固定されたステータ41と、このステータ41の内側に配置されたロータ42とを備えている。 The rotating shaft 160 is connected to the electric motor 40. The electric motor 40 is arranged between the main bearing 130 and the sub bearing 170. The electric motor 40 includes a stator 41 fixed to the closed container 20 and a rotor 42 arranged inside the stator 41.
 回転軸160はロータ42に固定されている。回転軸160は、ロータ42の上方に設けられたバランスウェイト200aと、下方に設けられたバランスウェイト200bとを備えている。バランスウェイト200aとバランスウェイト200bとは、回転軸160の周方向に180°ずれた位置に配置されている。 The rotating shaft 160 is fixed to the rotor 42. The rotating shaft 160 includes a balance weight 200a provided above the rotor 42 and a balance weight 200b provided below the rotor 42. The balance weight 200a and the balance weight 200b are arranged at positions shifted by 180 ° in the circumferential direction of the rotation shaft 160.
 回転軸160は、バランスウェイト200a及びバランスウェイト200bによる遠心力と、旋回スクロール120の公転運動により発生する遠心力とで、バランスを取って回転する。なお、バランスウェイト200a及びバランスウェイト200bは、ロータ42に設けられていてもよい。 The rotating shaft 160 rotates in a balanced manner by the centrifugal force generated by the balance weight 200a and the balance weight 200b and the centrifugal force generated by the revolving motion of the swivel scroll 120. The balance weight 200a and the balance weight 200b may be provided on the rotor 42.
 固定スクロール110、旋回スクロール120及びオルダムリング140は、仕切板50と主軸受130との間に配置されている。 The fixed scroll 110, the swivel scroll 120, and the old dam ring 140 are arranged between the partition plate 50 and the main bearing 130.
 仕切板50及び主軸受130は密閉容器20に固定されている。固定スクロール110は、主軸受130にボルト等で締結されている。旋回スクロール120は、固定スクロール110と主軸受130との間を軸方向に移動自在に設けられている。 The partition plate 50 and the main bearing 130 are fixed to the closed container 20. The fixed scroll 110 is fastened to the main bearing 130 with bolts or the like. The swivel scroll 120 is provided so as to be movable in the axial direction between the fixed scroll 110 and the main bearing 130.
 本開示では、旋回スクロール120の背面における中心部と最外周部には、低圧の圧力を有する低圧空間(低圧領域)71,72が配置されている。中心部の低圧空間71と最外周部の低圧空間72との間に、高圧の圧力を有する高圧室221と、中間の圧力を有する中間圧室222が配置されている。高圧室221は、旋回スクロール120の背面において、中間圧室222よりも内側、すなわち中心部側に配置されている。 In the present disclosure, low-pressure spaces (low-pressure regions) 71 and 72 having low-pressure pressure are arranged at the central portion and the outermost peripheral portion on the back surface of the swivel scroll 120. A high pressure chamber 221 having a high pressure and an intermediate pressure chamber 222 having an intermediate pressure are arranged between the low pressure space 71 in the central portion and the low pressure space 72 in the outermost peripheral portion. The high pressure chamber 221 is arranged on the back surface of the swivel scroll 120, inside the intermediate pressure chamber 222, that is, on the central side.
 また、図2に示すように、主軸受130のボス収容部131の外側の、旋回スクロール120を支持する面には、複数の環状溝133が形成されている。環状溝133にはシール部材210が挿入されている。シール部材210が旋回スクロール120の背面に接することで、シール部材210の間に圧力室220が形成されている。この空間(圧力室220)には低圧空間(低圧領域)71,72よりも高い圧力が導入されている。シール部材210は、一般にシール性のよいとされるPTFE等の樹脂材料によって形成されている。なお、シール部材210は、環状に構成されていてもよい。 Further, as shown in FIG. 2, a plurality of annular grooves 133 are formed on the surface supporting the swivel scroll 120 on the outside of the boss accommodating portion 131 of the main bearing 130. A seal member 210 is inserted into the annular groove 133. When the seal member 210 is in contact with the back surface of the swivel scroll 120, a pressure chamber 220 is formed between the seal members 210. A pressure higher than that of the low pressure space (low pressure region) 71 and 72 is introduced into this space (pressure chamber 220). The sealing member 210 is made of a resin material such as PTFE, which is generally considered to have good sealing properties. The seal member 210 may be configured in an annular shape.
 本実施の形態では、圧力室220はさらに、シール部材210により、高圧室221と中間圧室222とに仕切られている。高圧室221には吐出ガスと同等の圧力が導入される。中間圧室222には、圧縮室150の低圧と高圧の間の圧縮途中のガスの圧力が導入される。 In the present embodiment, the pressure chamber 220 is further divided into a high pressure chamber 221 and an intermediate pressure chamber 222 by a sealing member 210. A pressure equivalent to that of the discharged gas is introduced into the high pressure chamber 221. The pressure of the gas in the middle of compression between the low pressure and the high pressure of the compression chamber 150 is introduced into the intermediate pressure chamber 222.
 この構成により、高圧室221及び中間圧室222の旋回スクロール120に対する面積、および、中間圧室222に導入する圧縮室150の圧力を適切に設定することができる。従って、密閉容器内低圧型圧縮機においても、圧縮圧力が低圧及び高圧の異なる種々の運転条件において、旋回スクロール120が固定スクロール110から離反せず、かつ、旋回スクロール120が固定スクロール110に対して押付けられすぎない、最適な押付力を設定することが可能となる。 With this configuration, the area of the high pressure chamber 221 and the intermediate pressure chamber 222 with respect to the swivel scroll 120 and the pressure of the compression chamber 150 to be introduced into the intermediate pressure chamber 222 can be appropriately set. Therefore, even in the low-pressure compressor in the closed container, the swivel scroll 120 does not separate from the fixed scroll 110 and the swivel scroll 120 does not separate from the fixed scroll 110 under various operating conditions in which the compression pressure is different between the low pressure and the high pressure. It is possible to set the optimum pressing force that is not pressed too much.
 主軸受130には、一端がボス収容部131に開口し、他端が主軸受130の下面で開口する返送経路134が形成されている。 The main bearing 130 is formed with a return path 134 in which one end opens in the boss accommodating portion 131 and the other end opens in the lower surface of the main bearing 130.
 オルダムリング140は、固定スクロール110と旋回スクロール120との間に設けられている。オルダムリング140は、旋回スクロール120の自転を防止し、旋回運動をする。 The old dam ring 140 is provided between the fixed scroll 110 and the swivel scroll 120. The old dam ring 140 prevents the turning scroll 120 from rotating and makes a turning motion.
 圧縮機10の詳細な構成について、図2を用い更に説明する。 The detailed configuration of the compressor 10 will be further described with reference to FIG.
 旋回渦巻きラップ122は、旋回スクロール端板121の中心側から外周側に向けて徐々に半径の拡大する、インボリュート曲線状の断面を備える壁である。旋回渦巻きラップ122は、所定の高さ(上下方向の長さ)と所定の壁厚(旋回渦巻きラップ122の径方向の長さ)とを有する。 The swirl swirl wrap 122 is a wall having an involute curved cross section whose radius gradually expands from the center side to the outer peripheral side of the swirl scroll end plate 121. The swirl swirl wrap 122 has a predetermined height (length in the vertical direction) and a predetermined wall thickness (length in the radial direction of the swirl swirl wrap 122).
 旋回スクロール120の略中心部には、後述の第1吐出ポート113へと連通する圧縮室150に吐出ザグリ125が形成されている。図2に示すように、旋回スクロール端板121には、吐出ザグリ125と高圧室221とを連通する高圧導入経路126が形成されている。 A discharge counterbore 125 is formed in a compression chamber 150 communicating with the first discharge port 113, which will be described later, at a substantially central portion of the swivel scroll 120. As shown in FIG. 2, the swivel scroll end plate 121 is formed with a high pressure introduction path 126 that communicates the discharge counterbore 125 and the high pressure chamber 221.
 また、旋回スクロール端板121には、圧縮途中の中間圧力の冷媒が存在する領域に中圧ポート127が形成されている。中間圧導入経路128は、中圧ポート127と中間圧室222とを連通する(図2参照)。 Further, in the swivel scroll end plate 121, a medium pressure port 127 is formed in a region where a refrigerant having an intermediate pressure during compression exists. The intermediate pressure introduction path 128 communicates the intermediate pressure port 127 and the intermediate pressure chamber 222 (see FIG. 2).
 旋回スクロール端板121におけるオルダムリング140側には、一対のキー溝が設けられている。 A pair of key grooves are provided on the Oldam ring 140 side of the swivel scroll end plate 121.
 固定渦巻きラップ112は、固定スクロール端板111の中心側から外周側に向けて徐々に半径の拡大する、インボリュート曲線状の断面を備える壁である。固定渦巻きラップ112は、旋回渦巻きラップ122と等しい所定の高さ(上下方向の長さ)と、所定の壁厚(固定渦巻きラップ112の径方向の長さ)とを有する。 The fixed spiral wrap 112 is a wall having an involute curved cross section whose radius gradually expands from the center side to the outer peripheral side of the fixed scroll end plate 111. The fixed swirl wrap 112 has a predetermined height (vertical length) equal to that of the swirl swirl wrap 122 and a predetermined wall thickness (diametrical length of the fixed swirl wrap 112).
 固定スクロール端板111の略中心部には、図3に示すように、第1吐出ポート113が形成されている。また、固定スクロール端板111には、バイパスポート114が形成されている。バイパスポート114は、第1吐出ポート113の近傍であって、圧縮完了直前の高圧圧力の冷媒が存在する領域に配置されている。バイパスポート114としては、旋回渦巻きラップ122の外壁面側に形成される圧縮室150と連通するバイパスポート、及び、旋回渦巻きラップ122の内壁面側に形成される圧縮室150と連通するバイパスポートの2セットが設けられている。 As shown in FIG. 3, a first discharge port 113 is formed at a substantially central portion of the fixed scroll end plate 111. Further, a bypass port 114 is formed on the fixed scroll end plate 111. The bypass port 114 is located in the vicinity of the first discharge port 113 and in a region where the high-pressure refrigerant immediately before the completion of compression exists. The bypass port 114 includes a bypass port that communicates with the compression chamber 150 formed on the outer wall surface side of the swirl swirl wrap 122, and a bypass port that communicates with the compression chamber 150 formed on the inner wall surface side of the swirl swirl wrap 122. Two sets are provided.
 固定スクロール110の外周部には、図1及び図2に示すように、固定渦巻きラップ112の先端に対して段差を有する外周段差部115が形成されている。外周段差部115は、固定渦巻きラップ112の先端からオルダムリング140の厚み分以上低くなる位置に配置されている。外周段差部115にオルダムリング140が配置されている。 As shown in FIGS. 1 and 2, an outer peripheral step portion 115 having a step with respect to the tip of the fixed spiral wrap 112 is formed on the outer peripheral portion of the fixed scroll 110. The outer peripheral step portion 115 is arranged at a position lower than the tip of the fixed spiral wrap 112 by the thickness of the old dam ring 140 or more. An old dam ring 140 is arranged on the outer peripheral step portion 115.
 固定スクロール110の外周部には、一対のキー溝が設けられている。 A pair of key grooves are provided on the outer periphery of the fixed scroll 110.
 固定スクロール110の周壁には、冷媒を圧縮室150に取り込むための吸入部(図示せず)が形成されている。 A suction portion (not shown) for taking the refrigerant into the compression chamber 150 is formed on the peripheral wall of the fixed scroll 110.
 図3に示すように、固定スクロール110の上面(仕切板50側の面)には、中央に上方ボス部119が設けられている。上方ボス部119は、固定スクロール110の上面から突出する円柱状の突起である。第1吐出ポート113及びバイパスポート114は、上方ボス部119の上面で開口する。上方ボス部119の上面側には、上方ボス部119と仕切板50との間に吐出空間110Hが形成される。第1吐出ポート113及びバイパスポート114は、吐出空間110Hと連通する。 As shown in FIG. 3, an upper boss portion 119 is provided in the center on the upper surface (the surface on the partition plate 50 side) of the fixed scroll 110. The upper boss portion 119 is a columnar protrusion protruding from the upper surface of the fixed scroll 110. The first discharge port 113 and the bypass port 114 are opened on the upper surface of the upper boss portion 119. A discharge space 110H is formed between the upper boss portion 119 and the partition plate 50 on the upper surface side of the upper boss portion 119. The first discharge port 113 and the bypass port 114 communicate with the discharge space 110H.
 上方ボス部119の上面には、バイパスポート114を開閉自在とするバイパス逆止弁230と、バイパス逆止弁230の過度な変形を防止するバイパス逆止弁ストップ240とが設けられている。バイパス逆止弁230にリードバルブを用いることで高さ方向の大きさをコンパクトにできる。 On the upper surface of the upper boss portion 119, a bypass check valve 230 that allows the bypass port 114 to be opened and closed and a bypass check valve stop 240 that prevents excessive deformation of the bypass check valve 230 are provided. By using a reed valve for the bypass check valve 230, the size in the height direction can be made compact.
 オルダムリング140は、固定スクロール110と旋回スクロール120との間に配置されている。既述のように、オルダムリング140は、固定スクロール110の外周段差部115に配置されている。 The Oldam ring 140 is arranged between the fixed scroll 110 and the swivel scroll 120. As described above, the old dam ring 140 is arranged on the outer peripheral step portion 115 of the fixed scroll 110.
 オルダムリング140は、略円環状のリング部と、リング部の上面から突出する一対の第1のキー及びリング部の下面から突出する一対の第2のキーとを備えている。第1のキーは、一直線上に無い平行な直線上に配置されている。第2のキーは、一直線上に無い平行な直線上に配置されている。第1のキーの配置されている直線と、第2のキーの配置されている直線とは、直交するように設けられている。 The Oldam ring 140 includes a substantially annular ring portion, a pair of first keys projecting from the upper surface of the ring portion, and a pair of second keys projecting from the lower surface of the ring portion. The first key is arranged on a parallel straight line that is not on a straight line. The second key is arranged on a parallel straight line that is not on a straight line. The straight line on which the first key is arranged and the straight line on which the second key is arranged are provided so as to be orthogonal to each other.
 第1のキーは、固定スクロール110の第1のキー溝と係合し、第2のキーは、旋回スクロール120の第2のキー溝と係合する(図示せず)。これによって、旋回スクロール120は、固定スクロール110に対して自転することなく旋回運動が可能となる。 The first key engages the first keyway of the fixed scroll 110, and the second key engages the second keyway of the swivel scroll 120 (not shown). As a result, the turning scroll 120 can make a turning motion without rotating with respect to the fixed scroll 110.
 図3は、本実施の形態にかかるスクロール圧縮機の仕切板部分の要部断面図である。 FIG. 3 is a cross-sectional view of a main part of the partition plate portion of the scroll compressor according to the present embodiment.
 仕切板50の中心部には、第2吐出ポート51が設けられている。仕切板50の上面には、第2吐出ポート51を開閉自在とする吐出逆止弁250と、吐出逆止弁250の過度な変形を防止する吐出逆止弁ストップ260とが設けられている。 A second discharge port 51 is provided at the center of the partition plate 50. On the upper surface of the partition plate 50, a discharge check valve 250 for opening and closing the second discharge port 51 and a discharge check valve stop 260 for preventing excessive deformation of the discharge check valve 250 are provided.
 仕切板50と固定スクロール110との間には、吐出空間110Hが形成される。吐出空間110Hは、第1吐出ポート113及びバイパスポート114によって圧縮室150と連通する。吐出空間110Hは、第2吐出ポート51によって高圧空間60と連通する。 A discharge space 110H is formed between the partition plate 50 and the fixed scroll 110. The discharge space 110H communicates with the compression chamber 150 by the first discharge port 113 and the bypass port 114. The discharge space 110H communicates with the high pressure space 60 by the second discharge port 51.
 吐出逆止弁250の板厚は、バイパス逆止弁230の板厚より厚い。これによって、吐出逆止弁250がバイパス逆止弁230より先に開くことを防止できる。 The plate thickness of the discharge check valve 250 is thicker than the plate thickness of the bypass check valve 230. This makes it possible to prevent the discharge check valve 250 from opening before the bypass check valve 230.
 第2吐出ポート51の断面積は、第1吐出ポート113の断面積よりも大きい。これによって、圧縮室150から吐出される冷媒の圧力損失を低減できる。 The cross-sectional area of the second discharge port 51 is larger than the cross-sectional area of the first discharge port 113. As a result, the pressure loss of the refrigerant discharged from the compression chamber 150 can be reduced.
 また、第2吐出ポート51の流入側にテーパが形成されていてもよい。これによって、より圧力損失を低減できる。 Further, a taper may be formed on the inflow side of the second discharge port 51. Thereby, the pressure loss can be further reduced.
 仕切板50の下面には、第2吐出ポート51の周りに凹部52が設けられている。固定スクロール110の上方ボス部119が凹部52に挿入されて、吐出空間110Hが形成されている。ボスシール部材270により、吐出空間110Hと低圧空間70との間がシールされている。ボスシール部材270は、環状に構成されていてもよい。 On the lower surface of the partition plate 50, a recess 52 is provided around the second discharge port 51. The upper boss portion 119 of the fixed scroll 110 is inserted into the recess 52 to form a discharge space 110H. The boss seal member 270 seals between the discharge space 110H and the low pressure space 70. The boss seal member 270 may be configured in an annular shape.
 [1-2.動作]
 以上のように構成された圧縮機10について、以下その動作、作用について説明する。電動機40の駆動により、ロータ42とともに回転軸160が回転する。回転軸160の回転に伴う偏心軸161の回転と、オルダムリング140とによって、旋回スクロール120は自転することなく回転軸160の中心軸を中心に旋回運動する。これにより、冷媒吸込管80から冷媒が低圧空間70へと導入される。低圧空間70に導入された冷媒は、電動機40を冷却するとともに、固定スクロール110の吸入部から圧縮室150へ吸入される。圧縮室150へ吸入された冷媒は、容積が縮小していくのに従って圧縮される。
[1-2. motion]
The operation and operation of the compressor 10 configured as described above will be described below. By driving the electric motor 40, the rotating shaft 160 rotates together with the rotor 42. Due to the rotation of the eccentric shaft 161 accompanying the rotation of the rotating shaft 160 and the old dam ring 140, the swivel scroll 120 swivels around the central axis of the rotating shaft 160 without rotating. As a result, the refrigerant is introduced from the refrigerant suction pipe 80 into the low pressure space 70. The refrigerant introduced into the low-pressure space 70 cools the electric motor 40 and is sucked into the compression chamber 150 from the suction portion of the fixed scroll 110. The refrigerant sucked into the compression chamber 150 is compressed as the volume is reduced.
 圧縮途中における中間圧力の冷媒は、図2に示す中圧ポート127から中間圧導入経路128を通って、旋回スクロール120の背面に設けられた中間圧室222(図2参照)に導入される。 The intermediate pressure refrigerant during compression is introduced from the intermediate pressure port 127 shown in FIG. 2 through the intermediate pressure introduction path 128 into the intermediate pressure chamber 222 (see FIG. 2) provided on the back surface of the swivel scroll 120.
 また、圧縮の終了した高圧の冷媒は、図2に示す吐出ザグリ125から高圧導入経路126を通って、旋回スクロール120の背面に設けられた高圧室221(図2参照)に導入される。 Further, the compressed high-pressure refrigerant is introduced from the discharge counterbore 125 shown in FIG. 2 through the high-pressure introduction path 126 into the high-pressure chamber 221 (see FIG. 2) provided on the back surface of the swivel scroll 120.
 従って、旋回スクロール120は、適切に設定された中間圧室222の圧力及び高圧室221の圧力で、旋回スクロール120の背面から固定スクロール110に押付けられる。よって、中間圧室222のみを設けた場合よりも、圧縮圧力が低圧及び高圧の異なる種々の運転条件において、旋回スクロール120が固定スクロール110から離反せず、かつ、旋回スクロール120が固定スクロール110に対して押付けられすぎない、最適な押付力を設定することが可能となる。従って、密閉容器内低圧型圧縮機において、効率の低下及び信頼性の低下を防ぐことができる。 Therefore, the swivel scroll 120 is pressed against the fixed scroll 110 from the back surface of the swivel scroll 120 at an appropriately set pressure of the intermediate pressure chamber 222 and the pressure of the high pressure chamber 221. Therefore, as compared with the case where only the intermediate pressure chamber 222 is provided, the swivel scroll 120 does not separate from the fixed scroll 110 and the swivel scroll 120 becomes the fixed scroll 110 under various operating conditions in which the compression pressure is low pressure and high pressure. On the other hand, it is possible to set the optimum pressing force that is not pressed too much. Therefore, in the low-pressure compressor in a closed container, it is possible to prevent a decrease in efficiency and a decrease in reliability.
 また、中間圧導入経路128の中間圧室222側の開口部は、旋回スクロール120が旋回運動することにより、シール部材210をまたいで、間欠的に中間圧室222に連通する。 Further, the opening on the intermediate pressure chamber 222 side of the intermediate pressure introduction path 128 is intermittently communicated with the intermediate pressure chamber 222 across the seal member 210 by the swivel scroll 120 rotating.
 これにより、冷媒の圧縮により圧力の変動する圧縮室150と、中間圧室222とを間欠的に連通させることができる。このため、中間圧室222の圧力脈動を低減することができ、旋回スクロール120が固定スクロール110の離反をより確実に抑制して圧縮機の効率の向上を図ることができる。 As a result, the compression chamber 150 whose pressure fluctuates due to the compression of the refrigerant and the intermediate pressure chamber 222 can be communicated intermittently. Therefore, the pressure pulsation of the intermediate pressure chamber 222 can be reduced, and the swivel scroll 120 can more reliably suppress the separation of the fixed scroll 110 to improve the efficiency of the compressor.
 また、本開示のスクロール圧縮機では、オルダムリング140が、固定スクロール110と旋回スクロール120との間に配置されている。これにより、オルダムリング140が旋回スクロール120の背面側に配置される従来の圧縮機に比べて、旋回スクロール120の背面に設けられた中間圧室222及び高圧室221を広くすることができる。よって、旋回スクロール120を固定スクロール110に対して適正に押し付けるために必要な中間圧室222及び高圧室221の面積を確保することができる。従って、密閉容器内低圧型圧縮機においても、低圧及び高圧の圧縮圧力の異なる種々の運転条件において、旋回スクロール120が固定スクロール110から離反するのを抑制し、かつ、旋回スクロール120が固定スクロール110に対して押付けられすぎない最適な押付力を設定することが可能となる。よって、圧縮機の効率の低下及び信頼性の低下を防ぐことができる。 Further, in the scroll compressor of the present disclosure, the old dam ring 140 is arranged between the fixed scroll 110 and the swivel scroll 120. As a result, the intermediate pressure chamber 222 and the high pressure chamber 221 provided on the back surface of the swivel scroll 120 can be made wider than those of the conventional compressor in which the old dam ring 140 is arranged on the back side of the swivel scroll 120. Therefore, it is possible to secure the areas of the intermediate pressure chamber 222 and the high pressure chamber 221 necessary for properly pressing the swivel scroll 120 against the fixed scroll 110. Therefore, even in the low-pressure compressor in the closed container, the swivel scroll 120 is suppressed from separating from the fixed scroll 110 under various operating conditions in which the low-pressure and high-pressure compression pressures are different, and the swivel scroll 120 is the fixed scroll 110. It is possible to set the optimum pressing force that is not pressed too much against the object. Therefore, it is possible to prevent a decrease in the efficiency and a decrease in the reliability of the compressor.
 オルダムリング140は、低圧空間70に連通している外周段差部115に設置されている。このため、オルダムリング140の摺動部は、吸入冷媒に含まれるオイルで潤滑されるため、信頼性の低下を防ぐことができる。 The old dam ring 140 is installed in the outer peripheral step portion 115 communicating with the low pressure space 70. Therefore, since the sliding portion of the old dam ring 140 is lubricated with the oil contained in the intake refrigerant, it is possible to prevent a decrease in reliability.
 また、本開示のスクロール圧縮機では、旋回スクロール120の背面における中心部及び最外周部には、低圧空間(低圧領域)71,72が配置されている。旋回スクロール120の背面における低圧空間(低圧領域)71,72の間には、高圧室221及び中間圧室222が配置されている。高圧室221は、中間圧室222よりも内側(中心部側)に配置されている。このような構成により、適正な押付力によって旋回スクロール120が固定スクロール110に対して押付けられる。 Further, in the scroll compressor of the present disclosure, low-pressure spaces (low-pressure regions) 71 and 72 are arranged in the central portion and the outermost peripheral portion on the back surface of the swivel scroll 120. A high pressure chamber 221 and an intermediate pressure chamber 222 are arranged between the low pressure spaces (low pressure regions) 71 and 72 on the back surface of the swivel scroll 120. The high pressure chamber 221 is arranged inside (center side) of the intermediate pressure chamber 222. With such a configuration, the swivel scroll 120 is pressed against the fixed scroll 110 by an appropriate pressing force.
 旋回スクロール120と固定スクロール110とで形成される圧縮室150において、外周から中心に向かうに伴って冷媒が低圧から高圧に圧縮される。このため、旋回スクロール120の中心部は、高圧に近い圧力によって固定スクロール110から離反する方向に力を受ける。しかしながら、本実施の形態の構成によれば、旋回スクロール120の背面において、高圧室221が中間圧室222より中心部側に配置されているため、旋回スクロール120の中心部分を外周部よりも強く固定スクロール110に押し付けることができる。よって、固定スクロール110に対する旋回スクロール120の離反をより効果的に抑制することができるため、圧力の漏れを低減できる。また、旋回スクロール120に対して適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。 In the compression chamber 150 formed by the swivel scroll 120 and the fixed scroll 110, the refrigerant is compressed from low pressure to high pressure as it goes from the outer circumference to the center. Therefore, the central portion of the swivel scroll 120 receives a force in a direction away from the fixed scroll 110 due to a pressure close to high pressure. However, according to the configuration of the present embodiment, on the back surface of the swivel scroll 120, the high pressure chamber 221 is arranged closer to the center than the intermediate pressure chamber 222, so that the central portion of the swivel scroll 120 is stronger than the outer peripheral portion. It can be pressed against the fixed scroll 110. Therefore, the separation of the swivel scroll 120 with respect to the fixed scroll 110 can be suppressed more effectively, so that the pressure leakage can be reduced. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
 [1-3.効果等]
 以上のように、本実施の形態におけるスクロール圧縮機は、密閉容器20内を高圧空間60と低圧空間70に区画する仕切板50と、仕切板50に隣接する固定スクロール110と、固定スクロール110と噛み合わされて圧縮室150を形成する旋回スクロール120と、旋回スクロール120の自転を防止する自転抑制部材140と、旋回スクロール120を支持する主軸受130と、を有する。固定スクロール110、旋回スクロール120、自転抑制部材140、及び主軸受130は、低圧空間70に配置されている。固定スクロール110及び旋回スクロール120は、仕切板50と主軸受130との間に配置されている。旋回スクロール120の背面に、低圧空間(低圧領域)71,72と、低圧と高圧の中間圧室222と、高圧室221が配置されている。
[1-3. Effect, etc.]
As described above, the scroll compressor according to the present embodiment includes a partition plate 50 that divides the inside of the closed container 20 into a high-pressure space 60 and a low-pressure space 70, a fixed scroll 110 adjacent to the partition plate 50, and a fixed scroll 110. It has a swivel scroll 120 that is meshed to form a compression chamber 150, a rotation suppressing member 140 that prevents the swivel scroll 120 from rotating, and a main bearing 130 that supports the swivel scroll 120. The fixed scroll 110, the swivel scroll 120, the rotation suppressing member 140, and the main bearing 130 are arranged in the low pressure space 70. The fixed scroll 110 and the swivel scroll 120 are arranged between the partition plate 50 and the main bearing 130. Low-pressure spaces (low-pressure regions) 71 and 72, low-pressure and high-pressure intermediate pressure chambers 222, and high-pressure chambers 221 are arranged on the back surface of the swirl scroll 120.
 これにより、密閉容器内が低圧であっても、旋回スクロール120の背面において、中間圧室222及び高圧室221によって適正な領域に適正な圧力を導入できる。従って、旋回スクロール120が固定スクロール110から離反するのを抑制して、圧力の漏れを低減できる。また、旋回スクロールの背面に、圧力を付与する領域を拡大するための特別な部品を装着しなくてもよいため、簡素な構成で、効率の低下及び信頼性の低下を防ぐことができる。 As a result, even if the pressure inside the closed container is low, the intermediate pressure chamber 222 and the high pressure chamber 221 can introduce an appropriate pressure into an appropriate region on the back surface of the swirl scroll 120. Therefore, it is possible to suppress the swivel scroll 120 from separating from the fixed scroll 110 and reduce the pressure leakage. Further, since it is not necessary to mount a special component for expanding the area to which pressure is applied on the back surface of the swivel scroll, it is possible to prevent a decrease in efficiency and a decrease in reliability with a simple configuration.
 なお、本実施の形態のスクロール圧縮機は、旋回スクロールの背面における中心部と最外周部を低圧空間(低圧領域)71,72とし、高圧室221を中間圧室222より内側に配置した構成である。これにより、固定スクロール110から離反する方向に強い圧力の印可される旋回スクロール120中心部へ、大きな圧力を印加することができる。従って、固定スクロール110に対する旋回スクロール120の離反を効果的に抑制して圧力の漏れを低減できるととともに、旋回スクロール120に対して適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。 The scroll compressor of the present embodiment has a configuration in which the central portion and the outermost peripheral portion on the back surface of the swivel scroll are low-pressure spaces (low-pressure regions) 71 and 72, and the high-pressure chamber 221 is arranged inside the intermediate pressure chamber 222. is there. As a result, a large pressure can be applied to the central portion of the swivel scroll 120 to which a strong pressure is applied in the direction away from the fixed scroll 110. Therefore, the separation of the swivel scroll 120 with respect to the fixed scroll 110 can be effectively suppressed to reduce pressure leakage, and an appropriate pressing force can be applied to the swivel scroll 120, resulting in a decrease in efficiency and reliability. Can be prevented.
 なお、本実施の形態のスクロール圧縮機においては、旋回スクロール120の背面に、低圧空間(低圧領域)71,72と中間圧室222と高圧室221とをそれぞれ仕切る環状のシール部材210が配置されている。これにより、低圧空間(低圧領域)71,72と中間圧室222と高圧室221とのそれぞれの間の圧力の漏れを低減することができる。従って、中間圧室222及び高圧室221に適正な圧力を安定して導入することができるため、旋回スクロール120が固定スクロール110から離反することを抑制でき、圧力の漏れを低減できる。また、旋回スクロール120に対して適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。そして、中間圧室222及び高圧室221から低圧空間(低圧領域)71,72に圧力が漏れるのを抑制することができるため、効率の低下を抑制することができる。 In the scroll compressor of the present embodiment, an annular seal member 210 that separates the low-pressure space (low-pressure region) 71, 72, the intermediate pressure chamber 222, and the high-pressure chamber 221 is arranged on the back surface of the swirl scroll 120. ing. As a result, it is possible to reduce pressure leakage between the low-pressure spaces (low-pressure regions) 71 and 72, the intermediate pressure chamber 222, and the high-pressure chamber 221. Therefore, since an appropriate pressure can be stably introduced into the intermediate pressure chamber 222 and the high pressure chamber 221, it is possible to prevent the swivel scroll 120 from separating from the fixed scroll 110, and it is possible to reduce pressure leakage. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability. Then, since it is possible to suppress the pressure from leaking from the intermediate pressure chamber 222 and the high pressure chamber 221 to the low pressure space (low pressure region) 71 and 72, it is possible to suppress a decrease in efficiency.
 なお、本実施の形態のスクロール圧縮機においては、圧縮室150と中間圧室222とを連通させているので、圧縮室150と連通する圧力を任意に決めることができる。従って、最適な圧力で旋回スクロール120を固定スクロール110に対して押付けることが可能となる。よって、旋回スクロール120が固定スクロール110から離反することを抑制して、圧力の漏れを低減できる。また、旋回スクロール120に対して適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。 In the scroll compressor of the present embodiment, since the compression chamber 150 and the intermediate pressure chamber 222 are communicated with each other, the pressure communicating with the compression chamber 150 can be arbitrarily determined. Therefore, the swivel scroll 120 can be pressed against the fixed scroll 110 with the optimum pressure. Therefore, it is possible to suppress the turning scroll 120 from separating from the fixed scroll 110 and reduce the pressure leakage. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
 なお、本実施の形態のスクロール圧縮機においては、旋回スクロール120と固定スクロール110との間に自転抑制部材140が配置されている。これにより、旋回スクロール120の背面の領域に、高圧室221及び中間圧室222を最大限に設けることができる。従って、旋回スクロール120を固定スクロール110に対して適正に押付けることが可能となり、旋回スクロール120が固定スクロール110から離反することを抑制して、圧力の漏れを低減できる。また、旋回スクロール120に対して適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。 In the scroll compressor of the present embodiment, the rotation suppressing member 140 is arranged between the swivel scroll 120 and the fixed scroll 110. Thereby, the high pressure chamber 221 and the intermediate pressure chamber 222 can be provided to the maximum in the area on the back surface of the swivel scroll 120. Therefore, the swivel scroll 120 can be properly pressed against the fixed scroll 110, the swivel scroll 120 can be suppressed from separating from the fixed scroll 110, and pressure leakage can be reduced. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
 (実施の形態2)
 図4は、実施の形態2にかかるスクロール圧縮機の縦断面図である。
(Embodiment 2)
FIG. 4 is a vertical cross-sectional view of the scroll compressor according to the second embodiment.
 [2-1.構成]
 圧縮機10は、図4に示すように、上下方向が長手方向となる円筒状の密閉容器20を、外殻として備えている。なお、本実施の形態において、上下方向とは、各図におけるZ軸方向である。
[2-1. Constitution]
As shown in FIG. 4, the compressor 10 includes a cylindrical closed container 20 whose vertical direction is the longitudinal direction as an outer shell. In the present embodiment, the vertical direction is the Z-axis direction in each figure.
 本実施の形態の基本的な構成は、実施の形態1と同一であるので説明を省略する。また、実施の形態1で説明した構成と同一構成には同一符号を付して説明を一部省略する。 Since the basic configuration of the present embodiment is the same as that of the first embodiment, the description thereof will be omitted. Further, the same configurations as those described in the first embodiment are designated by the same reference numerals, and some description thereof will be omitted.
 本実施の形態では、固定スクロール110の内部に高圧導入経路129が配置されている。また、旋回スクロール120の内部に高圧導入経路126が配置されている。 In the present embodiment, the high voltage introduction path 129 is arranged inside the fixed scroll 110. Further, a high-voltage introduction path 126 is arranged inside the swivel scroll 120.
 これにより、旋回スクロール120が旋回することで、高圧導入経路126と高圧導入経路129とが間欠的に連通し、固定スクロール110から高圧冷媒の吐出される吐出空間110Hと高圧室221とが連通される。 As a result, the swivel scroll 120 swivels, so that the high-pressure introduction path 126 and the high-pressure introduction path 129 are intermittently communicated with each other, and the discharge space 110H from which the high-pressure refrigerant is discharged from the fixed scroll 110 and the high-pressure chamber 221 are communicated with each other. Scroll.
 [2-2.動作]
 上記構成によれば、より安定した、脈動の少ない圧力を高圧室221に導入することができる。このため、旋回スクロール120を固定スクロール110に安定して押付けることが可能となり、旋回スクロール120が固定スクロール110から離反することを抑制して、圧力の漏れを低減できる。また、旋回スクロール120に適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。
[2-2. motion]
According to the above configuration, a more stable and less pulsating pressure can be introduced into the high pressure chamber 221. Therefore, the swivel scroll 120 can be stably pressed against the fixed scroll 110, the swivel scroll 120 can be suppressed from separating from the fixed scroll 110, and pressure leakage can be reduced. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
 また、吐出空間110Hに溜まったオイルを、旋回スクロール120と固定スクロール110との摺動部に供給することができるため、摺動部の信頼性を向上することができる。 Further, since the oil accumulated in the discharge space 110H can be supplied to the sliding portion between the swivel scroll 120 and the fixed scroll 110, the reliability of the sliding portion can be improved.
 [2-3.効果等]
 本実施の形態におけるスクロール圧縮機においては、吐出空間110Hと高圧室221とが連通される。これにより、比較的変動の少なく、安定した圧力を高圧室221に印可することができるため、旋回スクロール120を固定スクロール110に安定して押付けることが可能となる。よって、旋回スクロール120が固定スクロール110から離反するのをより確実に抑制でき、圧力の漏れを低減できる。また、旋回スクロール120に適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。
[2-3. Effect, etc.]
In the scroll compressor of the present embodiment, the discharge space 110H and the high pressure chamber 221 are communicated with each other. As a result, a stable pressure can be applied to the high pressure chamber 221 with relatively little fluctuation, so that the swivel scroll 120 can be stably pressed against the fixed scroll 110. Therefore, it is possible to more reliably suppress the turning scroll 120 from separating from the fixed scroll 110, and it is possible to reduce pressure leakage. Further, since an appropriate pressing force can be applied to the swivel scroll 120, it is possible to prevent a decrease in efficiency and a decrease in reliability.
 (実施の形態3)
 図5は、実施の形態3にかかるスクロール圧縮機の縦断面図である。また、図6は、同スクロール圧縮機の圧縮要素主要部の要部断面図、図7は、固定スクロールの下面図である。
(Embodiment 3)
FIG. 5 is a vertical cross-sectional view of the scroll compressor according to the third embodiment. Further, FIG. 6 is a cross-sectional view of a main part of the main part of the compression element of the scroll compressor, and FIG. 7 is a bottom view of the fixed scroll.
 [3-1.構成]
 圧縮機10は、図5及び図6に示すように、上下方向を長手方向とする円筒状の密閉容器20を、外殻として備えている。なお、本実施の形態において、上下方向とは、各図におけるZ軸方向である。
[3-1. Constitution]
As shown in FIGS. 5 and 6, the compressor 10 includes a cylindrical closed container 20 having a longitudinal direction in the vertical direction as an outer shell. In the present embodiment, the vertical direction is the Z-axis direction in each figure.
 本実施の形態の基本的な構成は、実施の形態1と同一であるので説明を省略する。また、実施の形態1で説明した構成と同一構成には同一符号を付して説明を一部省略する。 Since the basic configuration of the present embodiment is the same as that of the first embodiment, the description thereof will be omitted. Further, the same configurations as those described in the first embodiment are designated by the same reference numerals, and some description thereof will be omitted.
 本実施の形態では、中間圧室222及び高圧室221は、固定スクロール110における旋回スクロール120とのスラスト摺動面最外周部116(図6及び図7の一点鎖線)よりも内側に配置されている。ここで、スラスト摺動面最外周部116とは、固定スクロール110における旋回スクロール120とのスラスト摺動面の最大範囲の周縁のことを指す。 In the present embodiment, the intermediate pressure chamber 222 and the high pressure chamber 221 are arranged inside the outermost peripheral portion 116 of the thrust sliding surface (the alternate long and short dash line in FIGS. 6 and 7) with the swivel scroll 120 in the fixed scroll 110. There is. Here, the outermost peripheral portion 116 of the thrust sliding surface refers to the peripheral edge of the maximum range of the thrust sliding surface with the swivel scroll 120 in the fixed scroll 110.
 上述のように圧力室が配置されることによって、旋回スクロール120には、スラスト摺動面最外周部116よりも内側において、中間圧室222及び高圧室221による押圧力が印加される。 By arranging the pressure chamber as described above, the pressing force by the intermediate pressure chamber 222 and the high pressure chamber 221 is applied to the swivel scroll 120 inside the outermost peripheral portion 116 of the thrust sliding surface.
 [3-2.動作]
 本実施の形態のスクロール圧縮機において、旋回スクロール120は、固定スクロール110の旋回スクロール120とのスラスト摺動面最外周部116よりも内側に設けられた中間圧室222及び高圧室221の圧力で、固定スクロール110へ押付けられる。このため、旋回スクロール端板121の外周部が、中間圧室222及び高圧室221の圧力で変形することを抑制することができる。
[3-2. motion]
In the scroll compressor of the present embodiment, the swivel scroll 120 is at the pressure of the intermediate pressure chamber 222 and the high pressure chamber 221 provided inside the outermost peripheral portion 116 of the thrust sliding surface with the swivel scroll 120 of the fixed scroll 110. , Pressed against the fixed scroll 110. Therefore, it is possible to prevent the outer peripheral portion of the swivel scroll end plate 121 from being deformed by the pressure of the intermediate pressure chamber 222 and the high pressure chamber 221.
 [3-3.効果等]
 本実施の形態におけるスクロール圧縮機は、実施の形態1又は実施の形態2の構成について、さらに、中間圧室222及び高圧室221が、旋回スクロールと固定スクロールのスラスト摺動面最外周部116よりも内側に配置されたものである。
[3-3. Effect, etc.]
The scroll compressor according to the present embodiment has the configuration of the first embodiment or the second embodiment, and further, the intermediate pressure chamber 222 and the high pressure chamber 221 are formed from the outermost peripheral portion 116 of the thrust sliding surface of the swivel scroll and the fixed scroll. Is also placed inside.
 これにより、旋回スクロール端板121の外周部が、中間圧室222及び高圧室221の圧力で変形することを抑制することができる。このため、特に、固定スクロール110のスラスト摺動面最外周部116付近での局所的な摺動を抑制することが可能となり、効率の低下及び信頼性の低下を防ぐことができる。 As a result, it is possible to prevent the outer peripheral portion of the swivel scroll end plate 121 from being deformed by the pressure of the intermediate pressure chamber 222 and the high pressure chamber 221. Therefore, in particular, it is possible to suppress local sliding of the fixed scroll 110 in the vicinity of the outermost peripheral portion 116 of the thrust sliding surface, and it is possible to prevent a decrease in efficiency and a decrease in reliability.
 (実施の形態4)
 本実施の形態のスクロール圧縮機について、上記実施の形態1~3への追加の構成又は異なる構成を中心に説明する。本実施の形態においては、低圧空間(低圧領域)71,72と高圧室221と中間圧室222との間のシールが、以下に説明するように構成されている。これにより、性能の低下及び信頼性の低下をより確実かつ効果的に防止できるようにしている。
(Embodiment 4)
The scroll compressor of the present embodiment will be described focusing on an additional configuration or a different configuration to the above-described first to third embodiments. In the present embodiment, the seals between the low pressure space (low pressure region) 71, 72, the high pressure chamber 221 and the intermediate pressure chamber 222 are configured as described below. This makes it possible to more reliably and effectively prevent deterioration in performance and reliability.
 図8は、本実施の形態にかかるスクロール圧縮機の組立後の環状シール部材付近の拡大縦断面図である。本実施の形態の基本的な構成は、実施の形態1~3と同様であるので説明を省略する。また、既に説明した構成と同一構成には同一符号を付して説明を一部省略する。 FIG. 8 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member after the assembly of the scroll compressor according to the present embodiment. Since the basic configuration of the present embodiment is the same as that of the first to third embodiments, the description thereof will be omitted. Further, the same components as those already described are designated by the same reference numerals, and some description thereof will be omitted.
 図8に示すように、低圧空間(低圧領域)71,72と高圧室221と中間圧室222との間は、主軸受130に設けられた複数の格納溝133に複数の環状シール部材210が挿入されることでシールされる。具体的には、格納溝133a,133b,133cに複数の環状シール部材210a,210b,210cがそれぞれ挿入されている。また、複数の環状シール部材210a,210b,210cと、格納溝133a,133b,133cの底面との間には、複数のバネ部材211a,211b,211cがそれぞれ挿入されている。なお、本実施の形態においては、複数のバネ部材211a,211b,211cは、組立時のバネ荷重Fが互いにほぼ同じになるように構成されている。 As shown in FIG. 8, between the low pressure space (low pressure region) 71, 72, the high pressure chamber 221 and the intermediate pressure chamber 222, a plurality of annular seal members 210 are provided in a plurality of storage grooves 133 provided in the main bearing 130. It is sealed by being inserted. Specifically, a plurality of annular seal members 210a, 210b, 210c are inserted into the storage grooves 133a, 133b, 133c, respectively. Further, a plurality of spring members 211a, 211b, 211c are inserted between the plurality of annular seal members 210a, 210b, 210c and the bottom surfaces of the storage grooves 133a, 133b, 133c, respectively. In the present embodiment, the plurality of spring members 211a, 211b, 211c are configured so that the spring loads F at the time of assembly are substantially the same as each other.
 具体的には、複数のバネ部材211の各々のバネ荷重Fは、複数のバネ部材211のバネ荷重の平均に対して、±10%以内が望ましい。これにより、複数のバネ部材211によって複数の環状シール部材210が旋回スクロール120に均一に押し付けられる。従って、効率の低下や信頼性の低下をより確実かつ効果的に防止できる。 Specifically, it is desirable that the spring load F of each of the plurality of spring members 211 is within ± 10% of the average of the spring loads of the plurality of spring members 211. As a result, the plurality of annular seal members 210 are uniformly pressed against the swivel scroll 120 by the plurality of spring members 211. Therefore, it is possible to more reliably and effectively prevent a decrease in efficiency and a decrease in reliability.
 特に圧縮機の始動直後、あるいは運転条件によっては、環状シール部材210の動作が不安定になるおそれがある。環状シール部材210の動作が不安定になると、環状シール部材210が旋回スクロール120背面に押圧されず、その結果、高圧室221の圧力より低い圧力の中間圧室222に、高圧室221の高圧の冷媒およびオイルが過大に流入する可能性がある。そのような場合には、旋回スクロール120が固定スクロール110に過剰に押付けられ、圧縮機の効率を低下させるとともに、信頼性の低下を招くおそれがある。 In particular, the operation of the annular seal member 210 may become unstable immediately after the compressor is started or depending on the operating conditions. When the operation of the annular seal member 210 becomes unstable, the annular seal member 210 is not pressed against the back surface of the swivel scroll 120, and as a result, the intermediate pressure chamber 222 having a pressure lower than the pressure of the high pressure chamber 221 is subjected to the high pressure of the high pressure chamber 221. Excessive inflow of refrigerant and oil is possible. In such a case, the swivel scroll 120 is excessively pressed against the fixed scroll 110, which may reduce the efficiency of the compressor and reduce the reliability.
 しかしながら、本実施の形態の構成によれば、複数の環状シール部材210a,210b,210cは、それぞれ複数のバネ部材211a,211b,211cのバネ荷重によって、旋回スクロール120の背面に対して押印される。また、複数のバネ部材211a,211b,211cは、組立時のバネ荷重Fが互いにほぼ同じ大きさに構成されている。このため、旋回スクロール120の背面が環状シール部材210a,210b,210cによってバランスよく押印される。つまり、旋回スクロール120の背面を、圧力変動等に影響されることなく安定して押印することが可能となる。このため、圧縮機の起動時から、効率を向上させ、且つ、旋回スクロール120の不安定な挙動による性能の低下及び信頼性低下を抑制することができる。 However, according to the configuration of the present embodiment, the plurality of annular seal members 210a, 210b, 210c are imprinted on the back surface of the swivel scroll 120 by the spring loads of the plurality of spring members 211a, 211b, 211c, respectively. .. Further, the plurality of spring members 211a, 211b, 211c are configured so that the spring loads F at the time of assembly are substantially the same as each other. Therefore, the back surface of the swivel scroll 120 is imprinted with the annular seal members 210a, 210b, 210c in a well-balanced manner. That is, the back surface of the swivel scroll 120 can be stably stamped without being affected by pressure fluctuations and the like. Therefore, it is possible to improve the efficiency from the time when the compressor is started, and to suppress the deterioration of performance and reliability due to the unstable behavior of the swivel scroll 120.
 一般的に、バネ荷重Fは、バネ荷重F=バネ定数k×バネの縮み量xで表される。本実施の形態では、バネ部材(第1バネ部材)211aのバネ定数ka、バネ部材(第2バネ部材)211bのバネ定数kb、及びバネ部材(第3バネ部材)211cのバネ定数kcのバネ定数を、互いにほぼ同じにしている。 Generally, the spring load F is represented by the spring load F = spring constant k × spring contraction amount x. In the present embodiment, the spring constant ka of the spring member (first spring member) 211a, the spring constant kb of the spring member (second spring member) 211b, and the spring of the spring member (third spring member) 211c have a spring constant kc. The constants are almost the same as each other.
 具体的には、それぞれのバネ部材211のバネ定数は、バネ部材211のバネ定数の平均に対して、±10%以内にするのが望ましい。これにより、各バネ部材211のバネ荷重Fをバネ荷重Fの平均に対して±10%以内にすることができる。 Specifically, it is desirable that the spring constant of each spring member 211 is within ± 10% of the average of the spring constants of the spring member 211. As a result, the spring load F of each spring member 211 can be set to within ± 10% of the average of the spring loads F.
 図9は、本実施の形態にかかるスクロール圧縮機の組立前の環状シール部材付近の拡大縦断面図である。 FIG. 9 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the present embodiment.
 バネ部材(第1バネ部材)211aのバネ定数ka、バネ部材(第2バネ部材)211bのバネ定数kb、バネ部材(第3バネ部材)211cのバネ定数kcをほぼ同じにしている。さらに、バネの縮み量xを一定にするため、主軸受130に配置された格納溝(第1格納溝)133a、格納溝(第2格納溝)133b、及び格納溝(第3格納溝)133cのそれぞれの深さ133h(深さ133ch,133bh,133ah)を一定にするとともに、複数のバネ部材211a,211b,211cの自然長211h(自然長211ah,211bh,211ch)を一定にしている。 The spring constant ka of the spring member (first spring member) 211a, the spring constant kb of the spring member (second spring member) 211b, and the spring constant kc of the spring member (third spring member) 211c are almost the same. Further, in order to keep the amount of contraction x of the spring constant, the storage groove (first storage groove) 133a, the storage groove (second storage groove) 133b, and the storage groove (third storage groove) 133c arranged in the main bearing 130. The depths of 133h (depths 133ch, 133bh, 133ah) are made constant, and the natural lengths 211h (natural lengths 211ah, 211bh, 211ch) of the plurality of spring members 211a, 211b, 211c are made constant.
 この構成により、複数のバネ部材211a,211b,211cの外径が異なる構成において、例えば、複数のバネ部材211として板バネが用いられた場合、板バネのバネ厚み、バネ幅及び折り返しの数等で、容易にバネ定数ka,kb,kcを一定にすることが可能である。そして、バネの縮み量xをほぼ同じにすれば、複数のバネ部材の間で容易にバネ荷重をほぼ同じにすることができる。 With this configuration, in a configuration in which the outer diameters of the plurality of spring members 211a, 211b, 211c are different, for example, when a leaf spring is used as the plurality of spring members 211, the spring thickness, spring width, number of folds, etc. of the leaf spring, etc. Therefore, it is possible to easily make the spring constants ka, kb, and kc constant. Then, if the amount of contraction x of the spring is made substantially the same, the spring load can be easily made to be substantially the same among the plurality of spring members.
 なお、上記説明においては、主軸受130の格納溝133a,133b,133cのそれぞれの深さ133h(深さ133ah,133bh,133ch)を一定とし、且つ、複数のバネ部材211a,211b,211cの自然長211h(自然長211ah,211bh,211ch)を一定としている。しかしながら、格納溝133a,133b,133cのそれぞれの深さ133h、及び、複数のバネ部材211a,211b,211cの自然長211hの少なくともいずれかをそれぞれ変えて、バネ部材211a,211b,211cの各バネの縮み量xを一定としてもよいことは言うまでもない。 In the above description, the depths 133h (depths 133ah, 133bh, 133ch) of the storage grooves 133a, 133b, 133c of the main bearing 130 are constant, and the plurality of spring members 211a, 211b, 211c are natural. The length 211h (natural length 211ah, 211bh, 211ch) is constant. However, at least one of the depth 133h of each of the storage grooves 133a, 133b, 133c and the natural length 211h of the plurality of spring members 211a, 211b, 211c is changed, and each spring of the spring members 211a, 211b, 211c is changed. Needless to say, the amount of shrinkage x may be constant.
 以上のように、本実施の形態におけるスクロール圧縮機は、密閉容器内を高圧空間と低圧空間に区画する仕切板と、仕切板に隣接する固定スクロールと、固定スクロールと噛み合わされて圧縮室を形成する旋回スクロールと、旋回スクロールの自転を防止する自転抑制部材と、旋回スクロールを支持する主軸受とを有する。固定スクロール、旋回スクロール、自転抑制部材、及び主軸受は、低圧空間に配置され、固定スクロール及び旋回スクロールは、仕切板と主軸受との間に配置されている。旋回スクロールの背面に、低圧空間と、低圧と高圧の中間圧室と、高圧室とが配置されている。更に、低圧空間と中間圧室と高圧室とを仕切る複数の環状シール部材が配置され、且つ、環状シール部材の背面に複数のバネ部材が配置されている。 As described above, in the scroll compressor of the present embodiment, the partition plate that divides the inside of the closed container into the high-pressure space and the low-pressure space, the fixed scroll adjacent to the partition plate, and the fixed scroll are meshed to form a compression chamber. It has a swivel scroll, a rotation suppressing member that prevents the swivel scroll from rotating, and a main bearing that supports the swivel scroll. The fixed scroll, the swivel scroll, the rotation restraining member, and the main bearing are arranged in the low pressure space, and the fixed scroll and the swivel scroll are arranged between the partition plate and the main bearing. A low-pressure space, a low-pressure and high-pressure intermediate pressure chamber, and a high-pressure chamber are arranged on the back surface of the swivel scroll. Further, a plurality of annular seal members for partitioning the low pressure space, the intermediate pressure chamber, and the high pressure chamber are arranged, and a plurality of spring members are arranged on the back surface of the annular seal member.
 これにより、密閉容器内が低圧であっても、旋回スクロールの背面において適正な領域に適正な圧力を導入して、旋回スクロールが固定スクロールから離反するのを抑制することができる。従って、圧力の漏れを低減できるととともに、旋回スクロールに適正な押付力を印可できるため、効率の低下及び信頼性の低下を防ぐことができる。 As a result, even if the pressure inside the closed container is low, it is possible to introduce an appropriate pressure into an appropriate area on the back surface of the swivel scroll and prevent the swivel scroll from deviating from the fixed scroll. Therefore, it is possible to reduce pressure leakage and apply an appropriate pressing force to the swivel scroll, so that it is possible to prevent a decrease in efficiency and a decrease in reliability.
 また、複数の環状シール部材の背面に、複数のバネ部材が配置されているので、複数のバネ部材の間で各々のバネ荷重をほぼ同じにすることにより、特に圧縮機の始動直後に、旋回スクロールの背面において複数の環状シール部材をバランス良く固定スクロールに押付けることが可能となってシール性が向上する。従って、旋回スクロールを安定的に固定スクロールに押付けることができ、性能及び信頼性を効果的に向上させることができる。 Further, since a plurality of spring members are arranged on the back surface of the plurality of annular seal members, by making each spring load substantially the same among the plurality of spring members, the spring member can be swiveled particularly immediately after the compressor is started. A plurality of annular seal members can be pressed against the fixed scroll in a well-balanced manner on the back surface of the scroll, and the sealing property is improved. Therefore, the swivel scroll can be stably pressed against the fixed scroll, and the performance and reliability can be effectively improved.
 なお、複数のバネ部材のバネ定数は、互いに一定であってもよい。 Note that the spring constants of the plurality of spring members may be constant with each other.
 これにより、複数のバネ部材の外径が互いに異なる構成において、例えば複数のバネ部材として板バネが用いられる場合、板バネのバネ厚み、バネ幅及び折り返しの数等によって容易にバネ定数を一定に調整することが可能である。そして、複数のバネ部材のバネの縮み量を互いにほぼ同じにすれば、容易に複数のバネ部材のバネ荷重をほぼ同じにすることができる。 As a result, in a configuration in which the outer diameters of the plurality of spring members are different from each other, for example, when leaf springs are used as the plurality of spring members, the spring constant can be easily made constant depending on the spring thickness, spring width, number of folds, etc. of the leaf spring. It is possible to adjust. Then, if the amount of contraction of the springs of the plurality of spring members is made substantially the same as each other, the spring loads of the plurality of spring members can be easily made substantially the same.
 (実施の形態5)
 図10は、本実施の形態にかかるスクロール圧縮機の組立前の環状シール部材付近の拡大縦断面図である。
(Embodiment 5)
FIG. 10 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the present embodiment.
 本実施の形態の基本的な構成は、実施の形態1~4と同様であるので説明を省略する。また、既に説明した構成と同一構成には同一符号を付して説明を一部省略する。 Since the basic configuration of the present embodiment is the same as that of the first to fourth embodiments, the description thereof will be omitted. Further, the same components as those already described are designated by the same reference numerals, and some description thereof will be omitted.
 本実施の形態では、複数のバネ部材211a,211b,211cのバネ定数ka,kb,kcは互いに異なる。また、複数のバネ部材211a,211b,211cの自然長211hは互いにほぼ同じである。 In the present embodiment, the spring constants ka, kb, and kc of the plurality of spring members 211a, 211b, and 211c are different from each other. Further, the natural lengths 211h of the plurality of spring members 211a, 211b, 211c are substantially the same as each other.
 この構成によれば、複数のバネ部材211a,211b,211cのバネ定数ka,kb,kcが互いに異なっていても、複数のバネ部材211a,211b,211cの自然長211hを互いにほぼ同じとし、且つ、主軸受130における複数の格納溝133a,133b,133cの各々の深さ133ah,133bh,133chを調整することにより、複数のバネ部材211a,211b,211cの縮み量xを調整することができる。従って、主軸受130の格納溝133の加工による調整によって、容易に複数のバネ部材211a,211b,211cのバネ荷重Fを互いにほぼ同じにすることができる。 According to this configuration, even if the spring constants ka, kb, kc of the plurality of spring members 211a, 211b, 211c are different from each other, the natural lengths 211h of the plurality of spring members 211a, 211b, 211c are substantially the same as each other, and By adjusting the depths 133ah, 133bh, 133ch of the plurality of storage grooves 133a, 133b, 133c in the main bearing 130, the shrinkage amount x of the plurality of spring members 211a, 211b, 211c can be adjusted. Therefore, the spring loads F of the plurality of spring members 211a, 211b, and 211c can be easily made substantially the same by adjusting the storage groove 133 of the main bearing 130 by processing.
 複数のバネ部材211a,211b,211cの自然長211hは、具体的には、±30%以内が望ましい。格納溝の深さ133ah,133bh,133chは、精度良く加工することができるため、格納溝の深さ133ah,133bh,133chを各々調整することにより、複数のバネ部材211a,211b,211cのバネ荷重Fを互いにほぼ同じにすることができる。 Specifically, the natural length 211h of the plurality of spring members 211a, 211b, 211c is preferably within ± 30%. Since the storage groove depths 133ah, 133bh, and 133ch can be processed with high accuracy, the spring loads of the plurality of spring members 211a, 211b, and 211c can be adjusted by adjusting the storage groove depths 133ah, 133bh, and 133ch, respectively. Fs can be approximately the same as each other.
 以上のように、本実施の形態のスクロール圧縮機は、複数のバネ部材のバネ定数が互いに異なり、且つ、複数のバネ部材の自然長が互いにほぼ同じとなるように構成されている。 As described above, the scroll compressor of the present embodiment is configured such that the spring constants of the plurality of spring members are different from each other and the natural lengths of the plurality of spring members are substantially the same as each other.
 これにより、複数のバネ部材のバネ定数が異なっていても、複数のバネ部材の自然長を同じにして、主軸受における複数の格納溝の深さを調整することにより、複数のバネ部材の縮み量を調整することができる。従って、格納溝の加工によって容易に複数のバネ部材のバネ荷重を互いにほぼ同じにすることができる。 As a result, even if the spring constants of the plurality of spring members are different, the natural lengths of the plurality of spring members are made the same, and the depths of the plurality of storage grooves in the main bearing are adjusted to cause the plurality of spring members to shrink. The amount can be adjusted. Therefore, the spring loads of the plurality of spring members can be easily made substantially the same by processing the storage groove.
 (実施の形態6)
 図11は、本実施の形態にかかるスクロール圧縮機の組立前の環状シール部材付近の拡大縦断面図である。
(Embodiment 6)
FIG. 11 is an enlarged vertical cross-sectional view of the vicinity of the annular seal member before assembling the scroll compressor according to the present embodiment.
 本実施の形態の基本的な構成は、実施の形態1~4と同様であるので説明を省略する。また、既に説明した構成と同一構成には同一符号を付して説明を一部省略する。 Since the basic configuration of the present embodiment is the same as that of the first to fourth embodiments, the description thereof will be omitted. Further, the same components as those already described are designated by the same reference numerals, and some description thereof will be omitted.
 本実施の形態では、複数のバネ部材211a,211b,211cのバネ定数ka,kb,kcは互いに異なる。また、主軸受130に設けられた格納溝133a,133b,133cの深さ133hは互いにほぼ同じに構成されている。 In the present embodiment, the spring constants ka, kb, and kc of the plurality of spring members 211a, 211b, and 211c are different from each other. Further, the depths 133h of the storage grooves 133a, 133b, 133c provided in the main bearing 130 are configured to be substantially the same as each other.
 この構成によれば、複数のバネ部材のバネ定数ka,kb,kcが互いに異なっていても、主軸受130に設けられた複数の格納溝133a,133b,133cの深さ133hを互いにほぼ同じとし、且つ、複数のバネ部材211a,211b,211cの各々の自然長211ah,211bh,211chを調整することにより、複数のバネ部材211a、211b、211cの縮み量xを調整することができる。従って、容易に、かつ加工時のコストを安価に、複数のバネ部材211a,211b,211cのバネ荷重Fを互いにほぼ同じにすることができる。 According to this configuration, even if the spring constants ka, kb, and kc of the plurality of spring members are different from each other, the depths 133h of the plurality of storage grooves 133a, 133b, and 133c provided in the main bearing 130 are substantially the same as each other. Moreover, the shrinkage amount x of the plurality of spring members 211a, 211b, 211c can be adjusted by adjusting the natural lengths 211ah, 211bh, 211ch of the plurality of spring members 211a, 211b, 211c, respectively. Therefore, the spring loads F of the plurality of spring members 211a, 211b, and 211c can be made substantially the same with each other easily and at low cost during processing.
 主軸受130に設けられた格納溝133a,133b,133cの深さ133h(深さ133ah,133bh,133ch)は、具体的には、±5%以内が望ましい。これにより、バネ部材211a,211b,211cの自然長211h(自然長211ah,211bh,211ch)の加工公差を拡大できるため、バネの加工を容易にできるため、加工時のコストをより安価にできる。 Specifically, the depth 133h (depth 133ah, 133bh, 133ch) of the storage grooves 133a, 133b, 133c provided in the main bearing 130 is preferably within ± 5%. As a result, the processing tolerance of the natural lengths 211h (natural lengths 211ah, 211bh, 211ch) of the spring members 211a, 211b, 211c can be increased, so that the springs can be easily processed, and the processing cost can be further reduced.
 以上のように、本実施の形態のスクロール圧縮機は、複数のバネ部材のバネ定数が互いに異なり、且つ、主軸受に設けられた格納溝の深さが互いにほぼ同じになるように構成されている。 As described above, the scroll compressor of the present embodiment is configured so that the spring constants of the plurality of spring members are different from each other and the depths of the storage grooves provided in the main bearing are substantially the same as each other. There is.
 これにより、複数のバネ部材のバネ定数が互いに異なっていても、主軸受に設けられた複数の格納溝の深さを互いに同じとして、複数のバネ部材の自然長を調整することにより、複数のバネ部材の縮み量を調整することができる。従って、容易に、かつ加工時のコストをより安価に、複数のバネ部材のバネ荷重を互いにほぼ同じにすることができる。 As a result, even if the spring constants of the plurality of spring members are different from each other, the depths of the plurality of storage grooves provided in the main bearing are set to be the same, and the natural lengths of the plurality of spring members are adjusted. The amount of contraction of the spring member can be adjusted. Therefore, the spring loads of the plurality of spring members can be made substantially the same with each other easily and at a lower cost during processing.
 なお、上述の各実施の形態及び変形例は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加及び省略などを行うことができる。 Since the above-described embodiments and modifications are for exemplifying the techniques in the present disclosure, various changes, replacements, additions, omissions, etc. may be made within the scope of the claims or the equivalent thereof. it can.
 本開示にかかるスクロール圧縮機は、密閉容器内低圧型圧縮機においても、旋回スクロールを固定スクロールに対して適正な力で押し付けて、効率の低下及び信頼性の低下を防ぐことができる。従って、給湯機、温水暖房装置及び空気調和装置などの電気製品に利用される冷凍サイクル装置のスクロール圧縮機に有用である。 The scroll compressor according to the present disclosure can prevent a decrease in efficiency and a decrease in reliability by pressing a swivel scroll with an appropriate force against a fixed scroll even in a low-pressure compressor in a closed container. Therefore, it is useful for scroll compressors of refrigeration cycle devices used in electric appliances such as water heaters, hot water heaters, and air conditioners.
 10 圧縮機
 20 密閉容器
 30 圧縮機構部
 40 電動機
 41 ステータ
 42 ロータ
 50 仕切板
 51 第2吐出ポート
 52 凹部
 60 高圧空間
 70 低圧空間
 71,72 低圧空間(低圧領域)
 80 冷媒吸込管
 90 冷媒吐出管
 100 油溜まり
 110 固定スクロール
 110H 吐出空間
 111 固定スクロール端板
 112 固定渦巻きラップ
 113 第1吐出ポート
 114 バイパスポート
 115 外周段差部
 116 スラスト摺動面最外周部
 119 上方ボス部
 120 旋回スクロール
 121 旋回スクロール端板
 122 旋回渦巻きラップ
 123 下方ボス部
 124 旋回軸受
 125 吐出ザグリ
 126 高圧導入経路
 127 中圧ポート
 128 中間圧導入経路
 129 高圧導入経路
 130 主軸受
 131 ボス収容部
 132 軸受部
 133 環状溝(格納溝)
 133a 環状溝(第1格納溝)
 133b 環状溝(第2格納溝)
 133c 環状溝(第3格納溝)
 133h 深さ
 133ah 深さ(第1格納溝)
 133bh 深さ(第2格納溝)
 133ch 深さ(第3格納溝)
 134 返送経路
 140 オルダムリング(自転抑制部材)
 150 圧縮室
 160 回転軸
 161 偏心軸
 162 油路
 163 吸込口
 164 第1分岐油路
 165 第2分岐油路
 166 第1給油口
 167 第2給油口
 168 第3給油口
 170 副軸受
 180 スイングブッシュ
 190 パドル
 200a,200b バランスウェイト
 210 シール部材(環状シール部材)
 210a シール部材(第1シール部材)
 210b シール部材(第2シール部材)
 210c シール部材(第3シール部材)
 211 バネ部材
 211a バネ部材(第1バネ部材)
 211b バネ部材(第2バネ部材)
 211c バネ部材(第3バネ部材)
 211h 自然長
 211ah 自然長(第1バネ部材)
 211bh 自然長(第2バネ部材)
 211ch 自然長(第3バネ部材)
 220 圧力室
 221 高圧室
 222 中間圧室
 230 バイパス逆止弁
 240 バイパス逆止弁ストップ
 250 吐出逆止弁
 260 吐出逆止弁ストップ
 270 ボスシール部材
10 Compressor 20 Airtight container 30 Compressor mechanism 40 Electric motor 41 stator 42 rotor 50 partition plate 51 2nd discharge port 52 recess 60 high pressure space 70 low pressure space 71,72 low pressure space (low pressure region)
80 Refrigerant suction pipe 90 Refrigerant discharge pipe 100 Oil pool 110 Fixed scroll 110H Discharge space 111 Fixed scroll end plate 112 Fixed swirl wrap 113 First discharge port 114 Bypass port 115 Outer peripheral stepped part 116 Thrust sliding surface outermost outermost part 119 Upper boss part 120 Swivel scroll 121 Swivel scroll end plate 122 Swivel swirl wrap 123 Lower boss part 124 Swivel bearing 125 Discharge counterbore 126 High pressure introduction path 127 Medium pressure port 128 Intermediate pressure introduction path 129 High pressure introduction path 130 Main bearing 131 Boss accommodating part 132 Bearing part 133 Circular groove (storage groove)
133a annular groove (first storage groove)
133b annular groove (second storage groove)
133c annular groove (third storage groove)
133h depth 133ah depth (first storage groove)
133bh depth (second storage groove)
133ch depth (third storage groove)
134 Return route 140 Oldam ring (rotation suppression member)
150 Compression chamber 160 Rotating shaft 161 Eccentric shaft 162 Oil passage 163 Suction port 164 1st branch oil passage 165 2nd branch oil passage 166 1st oil supply port 167 2nd oil supply port 168 3rd oil supply port 170 Sub bearing 180 Swing bush 190 Paddle 200a, 200b Balance weight 210 Seal member (annular seal member)
210a Seal member (first seal member)
210b Seal member (second seal member)
210c Seal member (3rd seal member)
211 Spring member 211a Spring member (first spring member)
211b Spring member (second spring member)
211c spring member (third spring member)
211h Natural length 211ah Natural length (1st spring member)
211bh Natural length (second spring member)
211ch natural length (3rd spring member)
220 Pressure chamber 221 High pressure chamber 222 Intermediate pressure chamber 230 Bypass check valve 240 Bypass check valve stop 250 Discharge check valve 260 Discharge check valve stop 270 Boss seal member

Claims (13)

  1.  密閉容器と、
     前記密閉容器内を高圧空間と低圧空間とに区画する仕切板と、
     前記仕切板に隣接して配置された固定スクロールと、
     前記固定スクロールと噛み合わされて複数の圧縮室を形成する旋回スクロールと、
     前記旋回スクロールの自転を防止する自転抑制部材と、
     前記旋回スクロールを支持する主軸受と、
    を有するスクロール圧縮機であって、
     前記固定スクロール、前記旋回スクロール、前記自転抑制部材、及び前記主軸受は、前記低圧空間に配置され、
     前記固定スクロール及び前記旋回スクロールは、前記仕切板と前記主軸受との間に配置され、
     前記旋回スクロールの背面に各々配置され、
      前記旋回スクロールの前記背面に前記低圧空間の低圧を付与する低圧領域と、
      前記旋回スクロールの前記背面に圧縮終了後の高圧を付与する高圧室と、
      前記旋回スクロールの前記背面に前記低圧と前記高圧との間の圧力を付与する中間圧室と、
    を有する、
    スクロール圧縮機。
    With a closed container
    A partition plate that divides the inside of the closed container into a high-pressure space and a low-pressure space,
    A fixed scroll placed adjacent to the partition plate and
    A swivel scroll that meshes with the fixed scroll to form a plurality of compression chambers,
    A rotation suppressing member that prevents the rotation of the turning scroll and
    The main bearing that supports the swivel scroll and
    Is a scroll compressor with
    The fixed scroll, the swivel scroll, the rotation suppressing member, and the main bearing are arranged in the low pressure space.
    The fixed scroll and the swivel scroll are arranged between the partition plate and the main bearing.
    Each is placed on the back of the swivel scroll.
    A low-pressure region that applies low pressure in the low-pressure space to the back surface of the swivel scroll,
    A high-pressure chamber that applies high pressure after compression to the back surface of the swivel scroll, and
    An intermediate pressure chamber that applies a pressure between the low pressure and the high pressure on the back surface of the swivel scroll.
    Have,
    Scroll compressor.
  2.  前記低圧領域は二つの低圧領域からなり、
     前記二つの低圧領域のうちの一つは、前記旋回スクロールの前記背面における中心部に配置され、
     前記二つの低圧領域のうちの他の一つは、前記旋回スクロールの前記背面における最外周部に配置され、
     前記中間圧室は、前記旋回スクロールの前記背面において前記二つの低圧領域の間に配置され、
     前記高圧室は、前記旋回スクロールの前記背面において、前記中間圧室と、前記中心部に配置された前記低圧領域との間に配置された、
    請求項1記載のスクロール圧縮機。
    The low pressure region consists of two low pressure regions.
    One of the two low pressure regions is located at the center of the swivel scroll on the back surface.
    The other one of the two low pressure regions is located on the outermost circumference of the swivel scroll on the back surface.
    The intermediate pressure chamber is located between the two low pressure regions on the back surface of the swivel scroll.
    The high pressure chamber is arranged on the back surface of the swivel scroll between the intermediate pressure chamber and the low pressure region arranged in the central portion.
    The scroll compressor according to claim 1.
  3.  前記旋回スクロールの前記背面における前記中心部に配置された前記低圧領域と、前記高圧室とを仕切る第1シール部材と、
     前記高圧室と前記中間圧室とを仕切る第2シール部材と、
     前記中間圧室と、前記旋回スクロールの前記背面における前記最外周部に配置された前記低圧領域とを仕切る第3シール部材と、
    を有する、
    請求項2に記載のスクロール圧縮機。
    A first seal member that separates the low-pressure region and the high-pressure chamber arranged at the center of the back surface of the swivel scroll.
    A second seal member that separates the high pressure chamber and the intermediate pressure chamber,
    A third seal member that separates the intermediate pressure chamber from the low pressure region arranged on the outermost peripheral portion on the back surface of the swivel scroll.
    Have,
    The scroll compressor according to claim 2.
  4.  前記複数の圧縮室のうちの前記旋回スクロールの中心部の圧縮室と、前記高圧室とが連通された、
    請求項1~3のいずれか1項に記載のスクロール圧縮機。
    The compression chamber at the center of the swivel scroll among the plurality of compression chambers and the high-pressure chamber are communicated with each other.
    The scroll compressor according to any one of claims 1 to 3.
  5.  前記固定スクロールから作動媒体の吐出される吐出空間と前記高圧室とが間欠的に連通される、
    請求項1~3のいずれか1項に記載のスクロール圧縮機。
    The discharge space from which the working medium is discharged from the fixed scroll and the high-pressure chamber are intermittently communicated with each other.
    The scroll compressor according to any one of claims 1 to 3.
  6.  前記複数の圧縮室のうちの前記旋回スクロールの中間部の圧縮室と、前記中間圧室とが連通された、
    請求項1~5のいずれか1項に記載のスクロール圧縮機。
    The compression chamber in the middle portion of the swivel scroll among the plurality of compression chambers and the intermediate pressure chamber are communicated with each other.
    The scroll compressor according to any one of claims 1 to 5.
  7.  前記自転抑制部材は、前記旋回スクロールと前記固定スクロールとの間に配置された、
    請求項1~6のいずれか1項に記載のスクロール圧縮機。
    The rotation suppressing member is arranged between the turning scroll and the fixed scroll.
    The scroll compressor according to any one of claims 1 to 6.
  8.  前記中間圧室及び前記高圧室は、前記旋回スクロールの前記背面において、前記旋回スクロールと前記固定スクロールとのスラスト摺動面の最外周部よりも内側に配置された、
    請求項1~7記載のスクロール圧縮機。
    The intermediate pressure chamber and the high pressure chamber are arranged inside the outermost peripheral portion of the thrust sliding surface between the swivel scroll and the fixed scroll on the back surface of the swivel scroll.
    The scroll compressor according to claims 1 to 7.
  9.  前記主軸受に、環状の第1格納溝、環状の第2格納溝及び環状の第3格納溝が形成されており、
     前記第1シール部材は、環状に構成され、且つ、前記第1格納溝に格納され、
     前記第2シール部材は、環状に構成され、且つ、前記第2格納溝に格納され、
      前記第3シール部材は、環状に構成され、且つ、前記第3格納溝に格納され、
     前記第1シール部材の背面に第1バネ部材が配置され、
     前記第2シール部材の背面に第2バネ部材が配置され、
     前記第3シール部材の背面に第3バネ部材が配置された、
    請求項3に記載のスクロール圧縮機。
    An annular first storage groove, an annular second storage groove, and an annular third storage groove are formed in the main bearing.
    The first seal member is formed in an annular shape and is stored in the first storage groove.
    The second seal member is formed in an annular shape and is stored in the second storage groove.
    The third seal member is formed in an annular shape and is stored in the third storage groove.
    The first spring member is arranged on the back surface of the first seal member, and the first spring member is arranged.
    A second spring member is arranged on the back surface of the second seal member, and the second spring member is arranged.
    A third spring member is arranged on the back surface of the third seal member.
    The scroll compressor according to claim 3.
  10.  組立時における、前記第1バネ部材のバネ荷重と前記第2バネ部材のバネ荷重と前記第3バネ部材のバネ荷重とが同じである、
    請求項9に記載のスクロール圧縮機。
    At the time of assembly, the spring load of the first spring member, the spring load of the second spring member, and the spring load of the third spring member are the same.
    The scroll compressor according to claim 9.
  11.  前記第1バネ部材のバネ定数と前記第2バネ部材のバネ定数と前記第3バネ部材のバネ定数とが同じである、
    請求項9又は請求項10に記載のスクロール圧縮機。
    The spring constant of the first spring member, the spring constant of the second spring member, and the spring constant of the third spring member are the same.
    The scroll compressor according to claim 9 or 10.
  12.  前記第1バネ部材のバネ定数と前記第2バネ部材のバネ定数と前記第3バネ部材のバネ定数とが互いに異なり、且つ、前記第1バネ部材の自然長と前記第2バネ部材の自然長と前記第3バネ部材の自然長とが同じである、
    請求項9又は請求項10に記載のスクロール圧縮機。
    The spring constant of the first spring member, the spring constant of the second spring member, and the spring constant of the third spring member are different from each other, and the natural length of the first spring member and the natural length of the second spring member. And the natural length of the third spring member are the same.
    The scroll compressor according to claim 9 or 10.
  13.  前記第1バネ部材のバネ定数と前記第2バネ部材のバネ定数と前記第3バネ部材のバネ定数とが互いに異なり、且つ、前記第1格納溝の深さと前記第2格納溝の深さと前記第3格納溝の深さとが同じである、
    請求項9又は請求項10に記載のスクロール圧縮機。
    The spring constant of the first spring member, the spring constant of the second spring member, and the spring constant of the third spring member are different from each other, and the depth of the first storage groove, the depth of the second storage groove, and the above. The depth of the third storage groove is the same,
    The scroll compressor according to claim 9 or 10.
PCT/JP2020/032543 2019-09-05 2020-08-28 Scroll compressor WO2021044954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080051616.5A CN114144586B (en) 2019-09-05 2020-08-28 Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP2021543734A JP7262013B2 (en) 2019-09-05 2020-08-28 scroll compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-161637 2019-09-05
JP2019161634 2019-09-05
JP2019161637 2019-09-05
JP2019-161634 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021044954A1 true WO2021044954A1 (en) 2021-03-11

Family

ID=74852483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032543 WO2021044954A1 (en) 2019-09-05 2020-08-28 Scroll compressor

Country Status (3)

Country Link
JP (1) JP7262013B2 (en)
CN (1) CN114144586B (en)
WO (1) WO2021044954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215750A (en) * 2021-11-24 2022-03-22 苏州为山之环境技术有限公司 Axial sealing mechanism and scroll compressor comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149270A (en) * 1991-11-29 1993-06-15 Toshiba Corp Scroll type compressor
JPH0921389A (en) * 1996-08-19 1997-01-21 Hitachi Ltd Scroll compressor
JP2001090680A (en) * 1999-09-27 2001-04-03 Toyota Autom Loom Works Ltd Seal structure for scroll type compressor
JP2005140016A (en) * 2003-11-06 2005-06-02 Denso Corp Scroll compressor
JP2005147101A (en) * 2003-11-20 2005-06-09 Mitsubishi Electric Corp Scroll compressor and refrigerating air conditioner
JP2006161818A (en) * 2006-02-07 2006-06-22 Mitsubishi Electric Corp Scroll compressor
JP2018035748A (en) * 2016-08-31 2018-03-08 ダイキン工業株式会社 Scroll compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113655A (en) * 1997-06-20 1999-01-19 Fujitsu General Ltd Scroll compressor
JP3893487B2 (en) * 1997-10-01 2007-03-14 三菱電機株式会社 Scroll compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149270A (en) * 1991-11-29 1993-06-15 Toshiba Corp Scroll type compressor
JPH0921389A (en) * 1996-08-19 1997-01-21 Hitachi Ltd Scroll compressor
JP2001090680A (en) * 1999-09-27 2001-04-03 Toyota Autom Loom Works Ltd Seal structure for scroll type compressor
JP2005140016A (en) * 2003-11-06 2005-06-02 Denso Corp Scroll compressor
JP2005147101A (en) * 2003-11-20 2005-06-09 Mitsubishi Electric Corp Scroll compressor and refrigerating air conditioner
JP2006161818A (en) * 2006-02-07 2006-06-22 Mitsubishi Electric Corp Scroll compressor
JP2018035748A (en) * 2016-08-31 2018-03-08 ダイキン工業株式会社 Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215750A (en) * 2021-11-24 2022-03-22 苏州为山之环境技术有限公司 Axial sealing mechanism and scroll compressor comprising same
CN114215750B (en) * 2021-11-24 2024-01-23 苏州为山之环境技术有限公司 Axial sealing mechanism and scroll compressor comprising same

Also Published As

Publication number Publication date
JP7262013B2 (en) 2023-04-21
JPWO2021044954A1 (en) 2021-03-11
CN114144586A (en) 2022-03-04
CN114144586B (en) 2023-09-22

Similar Documents

Publication Publication Date Title
JP4310960B2 (en) Scroll type fluid machinery
CN112088250B (en) Scroll compressor having a discharge port
JP6395059B2 (en) Scroll compressor
JP4471034B2 (en) Scroll compressor
US11293442B2 (en) Scroll compressor having discharge cover providing a space to guide a discharge flow from a discharge port to a discharge passgae formed by a plurality of discharge holes
JP6555543B2 (en) Scroll compressor
JP5691352B2 (en) Scroll compressor
WO2021044954A1 (en) Scroll compressor
JP6757898B2 (en) Scroll compressor
JP4930022B2 (en) Fluid machinery
JP4604968B2 (en) Scroll compressor
JP2006046188A (en) Scroll fluid machine
WO2021024907A1 (en) Scroll compressor
JP6788781B2 (en) Scroll compressor
US10247188B2 (en) Scroll compressor
JP7262010B2 (en) scroll compressor
JP6913842B2 (en) Scroll compressor
JP7486149B2 (en) Scroll Compressor
JP7488993B2 (en) Scroll Compressor
US12000394B2 (en) Scroll compressor
JP6843307B1 (en) Rotary compressor
JP6767640B2 (en) Scroll compressor
WO2018021058A1 (en) Scroll compressor
JP2024027011A (en) scroll fluid machine
JPH04166690A (en) Scroll type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860894

Country of ref document: EP

Kind code of ref document: A1