WO2019138453A1 - Active gas generation device and film formation processing device - Google Patents

Active gas generation device and film formation processing device Download PDF

Info

Publication number
WO2019138453A1
WO2019138453A1 PCT/JP2018/000230 JP2018000230W WO2019138453A1 WO 2019138453 A1 WO2019138453 A1 WO 2019138453A1 JP 2018000230 W JP2018000230 W JP 2018000230W WO 2019138453 A1 WO2019138453 A1 WO 2019138453A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electrode
active
active gas
holes
Prior art date
Application number
PCT/JP2018/000230
Other languages
French (fr)
Japanese (ja)
Inventor
真一 西村
謙資 渡辺
廉 有田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2019565098A priority Critical patent/JP6719856B2/en
Priority to PCT/JP2018/000230 priority patent/WO2019138453A1/en
Priority to TW107118295A priority patent/TWI675123B/en
Publication of WO2019138453A1 publication Critical patent/WO2019138453A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to an active gas generator for generating an active gas obtained by activating a source gas supplied to a discharge space.
  • a disk formed by parallelly arranging a high voltage side electrode structure having a disk-like high voltage dielectric electrode and a ground side electrode structure having a ground dielectric electrode as one of conventional active gas generating devices There is a configuration that uses an electrode group component in the shape of a loop.
  • the source gas that has entered the inside from the outer peripheral portion of the electrode group configuration portion passes through the discharge space (discharge field) to become an active gas (a gas containing radicals), and the obtained active gas is grounded at the lower side. It spouts out from the gas spout hole provided only one in the dielectric electrode.
  • the residence time of the gas in the discharge space be constant for all source gases. The reason is that if the residence time of the source gas in the discharge space is not constant, the flow rate and concentration of the active gas will differ, so the active gas is supplied to the target (substrate to be processed) such as a wafer and the film is made to the target When forming a film, the film formation result of the film may not be constant.
  • a disk-like electrode structure or a cylindrical electrode structure is used to make the residence time of the source gas in the discharge space constant.
  • FIG. 11 is an explanatory view schematically showing a basic configuration of a conventional active gas generator using a disk-like electrode structure.
  • the figure (a) is a figure which shows the outline seen from diagonally downward from the upper part, and the figure (b) is a sectional view showing section structure.
  • FIG. 12 is an explanatory view showing the gas injection hole 9 shown in FIG. 11 and the periphery thereof in an enlarged manner. Note that FIGS. 11 and 12 appropriately show an XYZ orthogonal coordinate system.
  • an electrode group constituting portion consisting of a high voltage side electrode constituting portion 1X and a ground side electrode constituting portion 2X provided below the high voltage side electrode constituting portion 1X has a basic constitution.
  • the high voltage side electrode constituting portion 1X is constituted by a dielectric electrode 11X and a metal electrode 10X which is provided on the upper surface of the dielectric electrode 11X and has a space in the center and which has a flat shape in a plan view.
  • the ground-side electrode configuration portion 2X is provided on the lower surface of the dielectric electrode 21X and the lower surface of the dielectric electrode 21X, and is configured of a toroidal metal electrode 20X having a space at the center.
  • one gas injection hole 9 is provided at the center of the central portion of the dielectric electrode 21X (the area where the metal electrodes 20X and 10X do not overlap in plan view).
  • An alternating voltage is applied to the high voltage side electrode forming portion 1X and the ground side electrode forming portion 2X by a high frequency power supply (not shown).
  • a region where the metal electrodes 10X and 20X overlap in plan view is defined as a discharge space DSX (discharge field) in the dielectric space where the dielectric electrodes 11X and 21X face each other by application of an AC voltage from a high frequency power source.
  • DSX discharge field
  • the discharge space DSX is formed between the high voltage side electrode forming portion 1X and the ground side electrode forming portion 2X by the application of the alternating voltage, and the source gas 6 is formed along the gas flow 8 in the discharge space DSX.
  • an active gas 7 such as nitrogen atomized radically and eject the active gas 7 from the gas injection holes 9 provided at the center of the dielectric electrode 21 X to the lower side (-Z direction). it can.
  • a branch mechanism such as a shower plate is connected to the gas jet hole 9 below the ground side electrode configuration portion 2X, and a branch for jetting an active gas from a plurality of branch jet holes provided in the lower portion of this branch mechanism.
  • An active gas generator with a mechanism is conceivable.
  • the active gas can be ejected directly to the target (the substrate to be treated) without using the branching mechanism, as compared with the above-described active gas generation apparatus with branching mechanism. Also, the active gas can be supplied at a high concentration to the target even when using a material that can shorten the transport distance of the active gas, and can attenuate the active gas when the active gas branches in the branching mechanism. It has the advantage of being able to
  • FIG. 13 is an explanatory view schematically showing a basic configuration of a conventional active gas generator using a cylindrical electrode structure.
  • the figure (a) is a figure which shows side structure
  • the figure (b) is a figure which shows surface structure. Note that FIG. 13 appropriately shows an XYZ orthogonal coordinate system.
  • a high voltage side electrode configuration unit 1Y and a ground side electrode configuration unit 2Y provided inside the high voltage side electrode configuration unit 1Y are basically configured.
  • the ground-side electrode configuration unit 2Y is provided at the center of a circle on the XZ plane of the high-voltage-side electrode configuration unit 1Y, and the outer periphery of the bar-like metal electrode 20Y and metal electrode 20Y having a circular cross-section on the XZ plane It is comprised by the dielectric material electrode 21Y formed and covered.
  • the high voltage side electrode configuration portion 1Y is configured of a hollow cylindrical dielectric electrode 11Y having a space inside and having a circular cross-sectional structure and a metal electrode 10Y formed so as to cover the outer periphery of the dielectric electrode 11Y. Ru.
  • a discharge space DSY is provided in the hollow region provided between the dielectric electrode 11Y and the dielectric electrode 21Y. Further, an alternating voltage is applied to the high voltage side electrode forming portion 1Y and the ground side electrode forming portion 2Y by a high frequency power supply (not shown).
  • the space between the inner peripheral region of metal electrode 10Y and the outer peripheral region of metal electrode 20Y is a discharge space DSY in the dielectric space where dielectric electrodes 11Y and 21Y are opposed by the application of an alternating voltage from a high frequency power supply.
  • discharge space DSY is formed between high voltage side electrode forming portion 1Y and ground side electrode forming portion 2Y by application of alternating voltage, and from one end, the height direction of the cylinder in discharge space DSY
  • an active gas 7 such as radicalized nitrogen atom can be obtained, and the active gas 7 can be ejected from the other end to the outside.
  • the flow of gas 8 in the discharge space can be made constant regardless of the supply direction.
  • Patent Document 2 discloses an atmospheric pressure plasma processing apparatus that generates an active gas by using atmospheric pressure plasma to perform film formation and the like.
  • the conventional gas generator shown in FIGS. 11 and 12 can supply the active gas 7 with a constant gas residence time in the discharge space DSX, film formation is performed because the gas injection hole 9 is one.
  • the range that can be done is not wide.
  • the distance between the gas injection holes 9, 9 between the pair of adjacently arranged active gas generators is at least Since the distance is relatively long for the diameter (radius ⁇ 2) of the electrode group constituting portion, there is a problem that the film formed on the target becomes a waved film, and uniform film formation can not be performed.
  • An object of the present invention is to provide a structure of an active gas generator.
  • An active gas generation apparatus is an active gas generation apparatus that generates an active gas obtained by activating a source gas supplied to a discharge space, comprising: a first electrode component and a first electrode component Between the first and second electrode components by applying an AC voltage to the first and second electrode components, and applying the AC voltage to the first and second electrode components.
  • the discharge space is formed, and the first electrode configuration includes a first dielectric electrode and a first metal electrode formed on the top surface of the first dielectric electrode;
  • the second electrode component has a second dielectric electrode and a second metal electrode formed on the lower surface of the second dielectric electrode, and the application of the alternating voltage causes the first and second electrode components to be formed.
  • Each of the gas ejection holes has at least two gas supply holes adjacent to each other in plan view among the plurality of gas supply holes, and the corresponding one of the plurality of gas ejection holes from each of the at least two gas supply holes.
  • Moth At least two distances lead to ejection hole is a second arrangement relationship having the same distance all, characterized in that it is arranged to satisfy.
  • the plurality of gas supply holes and the plurality of gas injection holes satisfy both the first and second disposition relationships, and the active gas is externally output from the plurality of gas injection holes.
  • the active gas generation apparatus supplies active gas from a plurality of gas injection holes with uniform concentration and flow rate to targets with large formation area to be supplied with active gas. It is possible to perform a film forming process to form a uniform film on the target.
  • FIG. 2 is an explanatory view schematically showing a configuration of an active gas generator of Embodiment 1.
  • FIG. 2 is an explanatory view schematically showing a planar structure of the active gas generator of Embodiment 1.
  • FIG. 2 is an explanatory view schematically showing details of a configuration of an active gas generator of Embodiment 1.
  • FIG. 2 is an explanatory view showing the details of the planar structure of the active gas generator of Embodiment 1.
  • FIG. 2 is an explanatory view showing details of an electrode structure of an active gas generator of Embodiment 1.
  • FIG. 2 is an explanatory view schematically showing a cross-sectional structure in a film formation processing apparatus realized by using the active gas generation apparatus of the first embodiment.
  • FIG. 8 is an explanatory view schematically showing a planar structure of an active gas generation device of a second embodiment.
  • FIG. 10 is an explanatory view showing the details of the planar structure of the active gas generator of Embodiment 2.
  • FIG. 13 is an explanatory view schematically showing a planar structure of an active gas generator of Embodiment 3.
  • FIG. 13 is an explanatory drawing showing the details of the planar structure of the active gas generator of Embodiment 3.
  • FIG. 14 is an explanatory view schematically showing an improved configuration of a conventional active gas generating device adopting the disk-like electrode structure shown in FIGS.
  • a basic configuration is an electrode group configuration portion including a high voltage side electrode configuration portion 1Z and a ground side electrode configuration portion 2Z provided below the high voltage side electrode configuration portion 1Z.
  • the metal electrodes of the high voltage side electrode constituting portion 1Z and the ground side electrode constituting portion 2Z are not shown, and the structure of the dielectric electrode is shown as a representative.
  • the improved configuration is characterized in that a plurality of gas injection holes 9 are provided in (the dielectric electrode of) the ground side electrode configuration portion 2Z.
  • the active gas ejected from the plurality of gas ejection holes may be abbreviated as “the plurality of active gases”.
  • the high voltage side electrode configuration portion 1Z is provided with a plurality of gas supply holes corresponding to the plurality of gas injection holes 9, A modified and improved arrangement for supplying 6 is conceivable.
  • the source gas supplied from the plurality of gas supply holes may be abbreviated as “the plurality of source gases”.
  • the passage time for each of the source gases supplied from the plurality of gas supply holes to pass through the discharge space formed between the high voltage side electrode forming portion 1Z and the ground side electrode forming portion 2Z is Due to the influence of the arrangement of gas supply holes and gas injection holes, the possibility of non-uniformity is very high.
  • the improved configuration shown in FIG. 14 and the above-described modified improved configuration have the problem that the plurality of active gases 7 can not be supplied to the target with uniform concentration and flow rate.
  • FIG. 1 is an explanatory view schematically showing the structure of an active gas generator according to Embodiment 1 in which a disk-like electrode structure is adopted.
  • FIG. 2 is an explanatory view schematically showing a planar structure of the active gas generator of the first embodiment.
  • FIG. 3 is an explanatory view schematically showing details of the configuration of the active gas generator of the first embodiment.
  • FIG. 4 is an explanatory view showing the details of the planar structure of the active gas generator of the first embodiment.
  • FIG. 5 is an explanatory view showing the details of the electrode structure of the active gas generator of the first embodiment. 5 corresponds to, for example, a cross section taken along the line BB in FIG.
  • FIG. 1 to FIG. 3 the metal electrodes of the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 are not shown, and the structure of the dielectric electrode is shown as a representative. Further, FIGS. 1 to 5 respectively show an XYZ orthogonal coordinate system.
  • the active gas generation device includes a high voltage side electrode forming unit 1 which is a first electrode forming unit, and a ground side provided below the high voltage side electrode forming unit 1.
  • An electrode group configuration unit 100 (see FIG. 6) including the electrode configuration unit 2 (second electrode configuration unit) is a basic configuration.
  • the high voltage side electrode constituting portion 1 includes a dielectric electrode 11 which is a first dielectric electrode, and a disk-like metal electrode 10 in plan view which is provided on the upper surface of the dielectric electrode 11 and has a plurality of gaps 18 discretely.
  • the metal electrode 10 is a first metal electrode (see FIGS. 4 and 5).
  • the ground-side electrode configuration portion 2 is provided on the lower surface of the dielectric electrode 21 which is the second dielectric electrode and the dielectric electrode 21, and is a flat surface having a plurality of gaps 28 separately like the metal electrode 10. It is comprised by the visual disk shaped metal electrode 20 (refer FIG. 4, FIG. 5), and the metal electrode 20 turns into a 2nd metal electrode.
  • the plurality of gaps 18 in the metal electrode 10 and the plurality of gaps 28 in the metal electrode 20 are provided so as to completely match in plan view.
  • a plurality of gas supply holes 19 are provided discretely in a region where metal electrodes 10 and 20 do not overlap in plan view, and in dielectric electrode 21, metal electrodes 20 and 10 in plan view.
  • a plurality of gas supply holes 29 are provided discretely in a region where the two do not overlap.
  • the plurality of gas supply holes 19 are provided to guide the source gas 6 to a discharge space DS described later, and the plurality of gas injection holes 29 are provided to eject the active gas 7 to the outside.
  • the plurality of gas supply holes 19 are arranged at equal intervals along the X direction and the Y direction, and the plurality of gas ejection holes 29 are also arranged at equal intervals along the X direction and the Y direction.
  • the gas supply holes 19 and the plurality of gas injection holes 29 are disposed without overlapping each other in plan view, and are alternately arranged at equal intervals along the X direction and the Y direction. Further, the gas supply holes 19 are always positioned at the outermost positions in the X and Y directions.
  • the plurality of gaps 18 in the metal electrode 10 correspond to the gas supply holes 19 or the gas injection holes 29 in plan view respectively, and the plurality of gaps 28 in the metal electrode 20 are respectively the gas supply holes 19 or gas It is provided so as to be in plan view with the ejection hole 29.
  • Each of the plurality of gas supply holes 19 has a first circular hole diameter (diameter) in plan view, and each of the plurality of gas ejection holes 29 has a second circular hole diameter in plan view, and the first hole diameter The second hole diameter is set to be the same.
  • the plurality of gas supply holes 19 and the plurality of gas injection holes 29 satisfy the following first and second positional relationships.
  • the plurality of gas supply holes 19 and the plurality of gas injection holes 29 are arranged without overlapping each other in plan view, and are formed of the plurality of gas supply holes 19 and plurality of gas injection holes 29 in plan view.
  • a discharge space DS is provided in a region where none of them is formed.
  • Each of the plurality of gas injection holes 29 has four (at least two) gas supply holes 19 adjacent to each other in plan view among the plurality of gas supply holes 19 and four adjacent gas
  • the four distances from each of the supply holes 19 to the corresponding gas injection hole 29 among the plurality of gas injection holes 29 are all the same distance D1 (see FIG. 2).
  • An alternating voltage is applied to the high voltage side electrode forming unit 1 and the ground side electrode forming unit 2 by a high frequency power supply (not shown).
  • a region where the metal electrodes 10 and 20 overlap in plan view is a discharge space DS in the dielectric space where the dielectric electrodes 11 and 21 face each other. It is defined as (discharge site).
  • side spacers 30 are provided along the circumferential direction at the outer peripheral portions of the high voltage side electrode configuration 1 (dielectric electrode 11) and the ground side electrode configuration 2 (dielectric electrode 21).
  • the side surface spacer 30 is formed to form a side surface of a cylinder having the high voltage side electrode forming portion 1 as the upper surface and the ground side electrode forming portion 2 as the bottom surface.
  • the side spacer 30 is shown below the actual formation position (in the ⁇ Z direction) in order to make the ground side electrode configuration part 2 visually recognizable.
  • each internal spacer 33 is circular in plan view. It has a third diameter smaller than the first and second hole diameters of the gas injection holes 29.
  • the side surface spacer 30 can reliably prevent the gas flowing in from the circumferential side which is the outer peripheral portion of the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 by the side surface spacer 30.
  • a plurality of discharge spaces DS are discretely formed between the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2.
  • the active gas generator of the first embodiment when the source gas 6 is supplied from the plurality of gas supply holes 19, the plurality of source gases 6 flows in the plurality of discharge spaces DS by the application of the alternating voltage. When it passes along, the active gas 7 such as nitrogen atom radicalized in each discharge space DS is obtained. Then, the active gas 7 can be ejected from the plurality of gas ejection holes 29 provided in the dielectric electrode 21 to the lower side ( ⁇ Z direction).
  • FIG. 6 is an explanatory view schematically showing a cross-sectional structure in a film formation processing apparatus realized by using the active gas generation apparatus of the first embodiment. 6 schematically shows between the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 of the cross section AA of FIG. Further, in FIG. 6, the metal electrode 10 and the metal electrode 20 in the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 are not shown, and the structure of the dielectric electrode is representatively shown. I am trying.
  • the film formation processing chamber 63 places and accommodates the wafer 64 which is the target substrate to be processed on the bottom surface, and functions as a substrate accommodation unit for accommodating the wafer 64 in the treatment space SP33.
  • An electrode group constituting unit 100 including the high voltage side electrode constituting unit 1 and the ground side electrode constituting unit 2 is a main part of the active gas generating device of the first embodiment, and is disposed above the film forming processing chamber 63.
  • the electrode group configuration unit 100 obtains the plurality of active gases 7 from the plurality of source gases 6 using the discharge phenomenon in each of the plurality of discharge spaces DS, and the ground-side electrode configuration unit 2 (dielectric electrode 21 of)
  • the active gas 7 is ejected from the plurality of gas injection holes 29 discretely formed toward the wafer 64 disposed in the processing space SP 33 of the film forming processing chamber 63.
  • the film formation processing chamber 63 in the film formation processing apparatus shown in FIG. 6 is arranged to directly receive the active gas 7 ejected from the plurality of gas injection holes 29 of the active gas generation apparatus of the first embodiment. It is characterized by being
  • the film formation processing apparatus shown in FIG. 6 is disposed below the ground side electrode forming section 2 of the electrode group forming section 100 in the active gas generation apparatus of the first embodiment, and the wafer 64 (processing target substrate) inside And a film formation processing chamber 63 for performing film formation with a plurality of active gases 7.
  • the wafer 64 in the processing space SP 33 of the film forming process chamber 63 can directly receive the active gas 7 ejected from the plurality of gas injection holes 29.
  • a film forming process for forming a film on the surface of the wafer 64 can be performed using the plurality of active gases 7 directly received from the active gas generator (electrode group configuration unit 100) of the first embodiment.
  • the plurality of gas supply holes 19 and the plurality of gas injection holes 29 satisfy the first and second positional relationships, and the activation gas 7 is externally output from the plurality of gas injection holes 29. You can spout.
  • each of the wafers 64 which are large targets receiving the plurality of active gases 7 can be obtained.
  • a plurality of active gases 7 of uniform flow rate and concentration can be ejected, and as a result, a film forming process can be performed to form a uniform film on the surface of the wafer 64.
  • the number of gas supply holes 19 adjacent to each of the plurality of gas injection holes 29 is “4”.
  • target gas ejection hole 29 Focusing on any one gas ejection hole 29 among the plurality of gas ejection holes 29 (hereinafter abbreviated as “target gas ejection hole 29”), four gas supply holes adjacent to the target gas ejection hole 29 in plan view 19 are present, and all four distances from the adjacent four gas supply holes 19 to the target gas injection hole 29 become the same distance D1 (see FIG. 2).
  • the horizontal distance (X direction or Y direction) of the four raw material gases 6 supplied from the four gas supply holes 19 adjacent to the target gas injection hole 29 is It has a constant-condition discharge space passing effect in which it passes through the discharge space DS at a distance D1 and is jetted outside (downward) from the target gas jet hole 29 as one active gas 7.
  • the target gas injection holes 29 have the above-mentioned constant-condition discharge space passage effect for each of the source gases 6 supplied from the four gas supply holes 19.
  • the plurality of internal spacers 33 are disposed at positions where the X direction and the Y direction of the plurality of gas supply holes 19 and the plurality of gas injection holes 29 do not coincide. Does not affect the above-mentioned constant-condition discharge space passage effect.
  • the active gas generation device satisfies the first and second arrangement relationships, and the plurality of gas injection holes 29 all have the above-described constant-condition discharge effect passing effect, so that a plurality of raw materials are produced.
  • the gas 6 passes through the discharge space DS under the same conditions (the same distance and the same time)
  • a plurality of active gases 7 having the same concentration and concentration are obtained, and the plurality of active gases 7 The gas is jetted from the gas jet holes 29.
  • the active gas generating apparatus performs the film forming process for forming a uniform film on the surface of the wafer 64 having a wide area similar to the bottom surface of the film forming process chamber 63. It has the effect of being able to
  • a film formation processing chamber 63 can be added immediately below the active gas generation device of the first embodiment to constitute a film formation processing device. That is, the active gas generation device itself has the discharge space DS for generating dielectric barrier discharge, and the plurality of gas injection holes 29 provided in the dielectric electrode 21 of the ground side electrode configuration part 2 directly connected to the discharge space DS. Also serves as a gas ejection nozzle function for ejecting the plurality of active gases 7 to the lower film formation processing chamber 63.
  • the active gas generation device of the first embodiment has the gas injection nozzle function in the film formation processing apparatus shown in FIG. 6, the active gas 7 generated in the plurality of gas injection holes 29 is very short. Even if it is the active gas 7 that can be supplied to the target (substrate to be processed) wafer 64 in a short time of less than a second and the life generated by the discharge is very short, the attenuation is minimized, The film formation rate at the time of film formation on the wafer 64 can be improved.
  • FIG. 7 is an explanatory view schematically showing a planar structure of the active gas generator of the second embodiment.
  • FIG. 8 is an explanatory view showing the details of the planar structure of the active gas generator of the second embodiment.
  • the metal electrodes of the high voltage side electrode constituting portion 1B and the ground side electrode constituting portion 2B are not shown, and the structure of the dielectric electrode is shown as a representative. 7 and 8 show an XYZ orthogonal coordinate system, respectively.
  • a high voltage side electrode configuration portion 1B which is a first electrode configuration portion
  • a ground side electrode configuration portion 2B provided below the high voltage side electrode configuration portion 1B (a second electrode configuration portion And the electrode group constituent part which consists of.
  • the high voltage side electrode constituting portion 1B is provided on the top surface of the dielectric electrode 11B which is a first dielectric electrode and the dielectric electrode 11B, and has a disc-like metal electrode 10B in plan view having a plurality of discrete spaces. And the metal electrode 10B is the first metal electrode.
  • the ground-side electrode configuration portion 2B is provided on the lower surface of the dielectric electrode 21B, which is the second dielectric electrode, and the lower surface of the dielectric electrode 21B, and has a plurality of gaps separated as in the metal electrode 10B. It is comprised by the disk shaped metal electrode 20B, and the metal electrode 20 turns into a 2nd metal electrode.
  • the plurality of gaps in the metal electrode 10B and the plurality of gaps in the metal electrode 20B are provided so as to completely match in plan view.
  • a plurality of gas supply holes 19B are provided discretely in a region where metal electrodes 10B and 20B do not overlap in plan view, and in dielectric electrode 21B, metal electrodes 20B and 10B in plan view.
  • a plurality of gas injection holes 29B are provided discretely in a region where the two do not overlap.
  • the plurality of gas supply holes 19B are provided to guide the source gas 6 to the discharge space DS, and the plurality of gas injection holes 29B are provided to eject the plurality of active gases 7 to the outside.
  • the plurality of gas supply holes 19B are disposed at equal intervals along the X direction and the Y direction, and the plurality of gas ejection holes 29B are also disposed at equal intervals along the X direction and the Y direction.
  • the gas supply holes 19B and the plurality of gas injection holes 29B are disposed without overlapping with each other in plan view.
  • the gas supply holes 19B are always positioned at the outermost positions in the X and Y directions.
  • the plurality of gaps in the metal electrode 10B correspond to the gas supply holes 19B or the gas injection holes 29B in plan view, and the plurality of gaps in the metal electrode 20B. Are provided in plan view in agreement with the gas supply holes 19B or the gas injection holes 29B, respectively.
  • Each of the plurality of gas supply holes 19B has a first circular hole diameter in plan view
  • each of the plurality of gas injection holes 29B has a second circular hole diameter in plan view, and has a first hole diameter and a second hole diameter.
  • the pore size is set identical.
  • the plurality of gas supply holes 19B and the plurality of gas injection holes 29B satisfy the following first and second positional relationships, as in the first embodiment.
  • the plurality of gas supply holes 19B and the plurality of gas injection holes 29B are arranged without overlapping with each other in plan view, and the plurality of gas supply holes 19B and the plurality of gas injection holes 29B in plan view A discharge space DS is provided in a region where none of them is formed.
  • Each of the plurality of gas injection holes 29B has three (at least two) gas supply holes 19B adjacent to each other in plan view among the plurality of gas supply holes 19B, and three adjacent gas All three distances from the supply holes 19B to the corresponding gas injection holes 29B among the plurality of gas injection holes 29B are the same distance D2 (see FIG. 7).
  • the three adjacent gas supply holes 19B are arranged in an equilateral triangle so as to have an interval of 120 ° around the corresponding gas ejection holes 29B.
  • An alternating voltage is applied to the high voltage side electrode forming portion 1B and the ground side electrode forming portion 2B by a high frequency power supply (not shown).
  • each internal spacer 33B is circular in plan view. It has a third diameter smaller than the first and second hole diameters of the gas injection holes 29B.
  • deposition processing apparatus can be configured by disposing the deposition processing chamber 63 downward, having the side surface spacer 30, etc. Basically, it is the same as the active gas generator of the first embodiment shown in FIGS. 1 to 6, and therefore the description is appropriately omitted.
  • the active gas generator when the plurality of source gases 6 are supplied from the plurality of gas supply holes 19B, the active gas generator according to the second embodiment applies the AC voltage to the plurality of source gases.
  • the active gas 7 such as nitrogen atom which is radicalized in each discharge space. Then, the active gas 7 can be ejected from the plurality of gas ejection holes 29B provided in the dielectric electrode 21B downward (in the -Z direction).
  • the plurality of gas supply holes 19B and the plurality of gas injection holes 29B satisfy the first and second positional relationships, and the activation gas 7 is externally output from the plurality of gas injection holes 29. You can spout.
  • the active gas generation device has a uniform flow rate for each target such as a large area wafer 64 (see FIG. 6) receiving the plurality of active gases 7. And a plurality of active gases 7 having a concentration can be supplied, and as a result, a film forming process can be performed to form a uniform film on the surface of the target.
  • the number of gas supply holes 19B adjacent to one gas injection hole 29B is “3”.
  • the active gas generation device of the second embodiment has a gas jet nozzle function as in the first embodiment, the active gas 7 jetted from the plurality of gas jet holes 29B has a very short millisecond or less. Even if the active gas 7 which can be supplied to the target such as the wafer 64 in a short time and has a very short life of the discharge-generated active gas 7, the attenuation is minimized to form the film at the target portion. The deposition rate can be improved.
  • FIG. 9 is an explanatory view schematically showing a planar structure of the active gas generator of the third embodiment.
  • FIG. 10 is an explanatory view showing the details of the planar structure of the active gas generator of the third embodiment.
  • the metal electrodes of the high voltage side electrode constituting portion 1C and the ground side electrode constituting portion 2C are not shown, and the structure of the dielectric electrode is shown as a representative. Further, an XYZ orthogonal coordinate system is shown in FIGS. 9 and 10, respectively.
  • a high voltage side electrode configuration portion 1C which is a first electrode configuration portion
  • a ground side electrode configuration portion 2C provided below the high voltage side electrode configuration portion 1C (a second electrode configuration portion
  • the electrode group constituent part which consists of.
  • the high voltage side electrode constituting portion 1C includes a dielectric electrode 11C which is a first dielectric electrode, and a disk-like metal electrode 10C which is provided on the upper surface of the dielectric electrode 11C and has a plurality of discrete spaces.
  • the metal electrode 10C is the first metal electrode.
  • the ground-side electrode configuration portion 2C is provided on the lower surface of the dielectric electrode 21C, which is the second dielectric electrode, and on the lower surface of the dielectric electrode 21C, and has a plurality of gaps separated as in the metal electrode 10C. It is comprised by the disk shaped metal electrode 20C, and the metal electrode 20C becomes a 2nd metal electrode.
  • the plurality of gaps in the metal electrode 10C and the plurality of gaps in the metal electrode 20C are provided so as to completely match in plan view.
  • a plurality of gas supply holes 19C are provided discretely in a region where metal electrodes 10C and 20C do not overlap in plan view, and in dielectric electrode 21C, metal electrodes 20C and 10B in plan view
  • a plurality of gas injection holes 29C are provided discretely in a region where the two do not overlap.
  • the plurality of gas supply holes 19C are provided to guide the plurality of source gases 6 to the discharge space DS, and the plurality of gas injection holes 29C are provided to eject the plurality of active gases 7 to the outside.
  • the plurality of gas supply holes 19C are arranged at equal intervals along the X direction and the Y direction, and the plurality of gas ejection holes 29C are also arranged at equal intervals along the X direction and the Y direction.
  • the gas supply holes 19C and the plurality of gas injection holes 29C are arranged without overlapping with each other in plan view, and are alternately arranged at equal intervals along the X direction and the Y direction. Further, the gas supply holes 19C are always positioned at the outermost positions in the X direction and the Y direction.
  • the plurality of gaps in the metal electrode 10C respectively coincide in plan view with the gas supply holes 19C or the gas injection holes 29C, and a plurality of gaps in the metal electrode 20C. Are respectively provided in plan view in agreement with the gas supply holes 19C or the gas injection holes 29C.
  • the plurality of gas supply holes 19C each have a first circular hole diameter in plan view
  • the plurality of gas injection holes 29C each have a second circular hole diameter in plan view, and the second hole diameter is larger than the first hole diameter. It is characterized in that the hole diameter is set small.
  • the plurality of gas supply holes 19C and the plurality of gas injection holes 29C satisfy the following first and second positional relationships.
  • the plurality of gas supply holes 19C and the plurality of gas injection holes 29C are arranged without overlapping with each other in plan view, and the plurality of gas supply holes 19C and the plurality of gas injection holes 29C in plan view A discharge space DS is provided in a region where none of them is formed.
  • Each of the plurality of gas injection holes 29C has four (at least two) gas supply holes 19C adjacent to each other in plan view among the plurality of gas supply holes 19C, and four adjacent gas
  • the four distances from each of the supply holes 19C to the corresponding gas injection hole 29C among the plurality of gas injection holes 29C are all the same distance D3 (see FIG. 9).
  • An alternating voltage is applied to the high voltage side electrode forming unit 1C and the ground side electrode forming unit 2C by a high frequency power supply (not shown).
  • each internal spacer 33C is circular in plan view. It has a third diameter smaller than the first hole diameter and about the same as the second hole diameter of the gas injection holes 29B.
  • the cross-sectional structure of the active gas generator, the film formation processing chamber 63 can be disposed downward as shown in FIG. 6, and the side wall spacer 30 can be configured.
  • the other configuration including the possessing and the like is basically the same as that of the active gas generator of the embodiment 1 shown in FIGS. 1 to 6, and hence the description is appropriately omitted.
  • the active gas generation device of the third embodiment as in the first embodiment, when the source gas 6 is supplied from the plurality of gas supply holes 19C, the plurality of source gases 6 are supplied by the application of alternating voltage. When passing through a plurality of discharge spaces, an active gas 7 such as nitrogen atom radicalized in each discharge space is obtained. Then, the active gas 7 can be jetted from the plurality of gas jetting holes 29C provided in the dielectric electrode 21C to the outside in the lower direction ( ⁇ Z direction).
  • the plurality of gas supply holes 19C and the plurality of gas injection holes 29C satisfy the first and second positional relationships, and the activation gas 7 is externally output from the plurality of gas injection holes 29. You can spout.
  • the active gas generation device has a uniform flow rate for each target such as a large area wafer 64 (see FIG. 6) receiving the plurality of active gases 7. And a plurality of active gases 7 can be supplied, and as a result, a film forming process can be performed to form a uniform film on the surface of the target.
  • the number of gas supply holes 19C adjacent to one gas injection hole 29C is “4”.
  • the active gas generation device of the third embodiment has a gas jet nozzle function as in the first embodiment, the active gas 7 generated by the plurality of gas jet holes 29C is very short and has a short millisecond or less. Even if the active gas 7 which can be supplied to the target such as the wafer 64 in time and has a very short life of the discharge, the attenuation is minimized and the deposition on the target is completed. The film speed can be improved.
  • the second hole diameter of the gas injection holes 29C is made smaller than the first hole diameter of the gas supply holes 19C, and the first and second hole diameters are set to different values. doing.
  • the pressure of the gas supply portion of the source gas 6 and the pressure of the gas ejection portion (the film forming processing chamber 63 etc.) of the active gas 7 are not made dependent.
  • the pressure of the discharge space formed between the high voltage side electrode forming portion 1C and the ground side electrode forming portion 2C can be set to a desired value.
  • the pressure of the gas supply unit is PA
  • the pressure of the discharge space is PB
  • the pressure of the gas injection unit is PC
  • the hole diameter RD of the gas supply hole 19C is RE
  • the hole diameter of the gas injection hole 29C is RE
  • PA ⁇ PC the pressure of the gas injection unit
  • the hole diameter RD of the gas supply hole 19C falls within the pressure between the pressure PA and the pressure PC.
  • the relationship between the hole diameter RD and RE may be set as follows. That is, when it is desired to bring the pressure PB closer to the pressure PA side when PA> PC, this can be realized by increasing the hole diameter RD or decreasing the hole diameter RE.
  • the pressure PB when it is desired to bring the pressure PB close to the PC side, it can be realized by reducing the hole diameter RD or increasing the hole diameter RE. Also in the case of PA ⁇ PC, the pressure PB can be changed by similarly changing the pore sizes RD and RE.
  • the gas contact region which is a region in contact with the active gas, of the high voltage side electrode configuration portion 1 and the ground side electrode configuration portion 2 is formed using quartz or alumina as a component material. Is desirable.
  • the first aspect is a state in which there is little chemical reaction with the gas contact area in contact with the active gas 7; That is, the active gas 7 can be ejected from the plurality of gas supply holes 19 to an external film forming chamber or the like in a state where the deactivation of the active gas 7 is suppressed.
  • the generation of corrosive substances as a by-product accompanying the chemical reaction with the active gas of the active gas generator can be reduced, and as a result, the active gas 7 ejected to the outside can be reduced.
  • the clean active gas 7 which does not contain contamination can be supplied to the outside of the film formation processing chamber 63 or the like, and the effect of improving the film formation quality is produced.
  • the active gas generator for example, a gas containing at least one of nitrogen, oxygen, fluorine, a rare gas and hydrogen is considered.
  • the raw material gases 6 are supplied from the plurality of gas injection holes 29 and become the active gas 7 when passing through the discharge space DS inside, and are made into the plurality of active gases 7 and the plurality of gas injection holes provided in the dielectric electrode 21 From 29 on the outside, for example, it is ejected to the processing space SP 33 (see FIG. 6) of the film forming processing chamber 63. Therefore, film formation processing can be performed on the target wafer 64 by using the reactive gas 7 having high reactivity in the film formation processing chamber 63.
  • the active gas 7 having a higher concentration can be generated from the source gas 6 containing at least one of nitrogen, oxygen, fluorine, a rare gas and hydrogen.
  • the second embodiment not only the film formation of the insulating film for forming the nitride film or oxide film on the target object such as the wafer 64, but also the surface treatment of the target object as resist stripping, etching and cleaning gas. Also available.
  • the second aspect can be used for various film forming processes other than the etching process and the cleaning process of the insulating film by supplying hydrogen gas as the active gas to the surface of the wafer 64.
  • the precursor gas may be employed as the source gas 6 to be supplied in the active gas generating apparatus according to the first to third embodiments.
  • the source gas 6 as a precursor gas (precursor gas)
  • a precursor gas precursor gas
  • the precursor gas that is required for the film and that is the deposition material for film formation can also be supplied to the target to form a film.
  • gas supply holes 19 (19C) adjacent to one gas ejection hole 29 (29C) in a plan view one in the second embodiment.
  • three gas supply holes 19B adjacent to each other in plan view with respect to the gas injection holes 29B are shown, two or more gas supply holes adjacent in plan view to one gas injection hole are two or more. It suffices to satisfy the first and second arrangement relationships.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The purpose of the present invention is to provide a structure of an active gas generation device which is capable of supplying a plurality of active gases at the same flow rate and with the same concentration to a target object having a relatively large surface area. In addition, in the present invention, a plurality of gas supply holes (19) provided in a high-voltage side electrode constituting part (1) and a plurality of gas spraying holes (29) provided in a ground-side electrode constituting part (2) satisfy a first arrangement relationship in which the plurality of gas supply holes (19) and the plurality of gas spraying holes (29) are arranged so as not to overlap each other when viewed in a plan view, and a discharge space D is provided in a region in which neither the plurality of gas supply holes (19) nor the plurality of gas spraying holes (29) are formed, and a second arrangement relationship in which each of the plurality of gas spraying holes (19) has four gas supply holes (19) adjacent to each other when viewed in a plan view, among the plurality of gas supply holes (19), and the respective distances of the four adjacent gas supply holes (19) from the corresponding gas spraying hole (29) are the same distance (D1).

Description

活性ガス生成装置及び成膜処理装置Active gas generating apparatus and film forming apparatus
 この発明は、放電空間に供給された原料ガスを活性化して得られる活性ガスを生成する活性ガス生成装置に関する。 The present invention relates to an active gas generator for generating an active gas obtained by activating a source gas supplied to a discharge space.
 従来の活性ガス生成装置の一つとして、各々が円盤状の高圧誘電体電極を有する高電圧側電極構成部と接地誘電体電極を有する接地側電極構成部とを平行に設置してなる、円盤状の電極群構成部を用いる構成がある。この構成では、電極群構成部の外周部から内部へと侵入した原料ガスが放電空間(放電場)を通過して活性ガス(ラジカルを含んだガス)となり、得られた活性ガスを下方の接地誘電体電極に1つだけ設けられたガス噴出孔から外部に噴き出している。 A disk formed by parallelly arranging a high voltage side electrode structure having a disk-like high voltage dielectric electrode and a ground side electrode structure having a ground dielectric electrode as one of conventional active gas generating devices There is a configuration that uses an electrode group component in the shape of a loop. In this configuration, the source gas that has entered the inside from the outer peripheral portion of the electrode group configuration portion passes through the discharge space (discharge field) to become an active gas (a gas containing radicals), and the obtained active gas is grounded at the lower side. It spouts out from the gas spout hole provided only one in the dielectric electrode.
 接地誘電体電極に設けるガス噴出孔が一つの場合、電極構成部の外周部から供給されるすべての原料ガスが同時間で放電空間を通りエネルギーを受けることが可能と考えられるが、ガス噴出孔を複数個にした場合、電極形状を工夫するなどの対策が必要になる。 In the case where there is only one gas injection hole provided in the grounded dielectric electrode, it is considered possible that all the raw material gases supplied from the outer peripheral part of the electrode configuration can receive energy through the discharge space in the same time. If there are a plurality of electrodes, it is necessary to take measures such as devising the electrode shape.
 誘電体バリア放電(無声放電または沿面放電)を用いて原料ガスにエネルギーを与え活性ガスを生成する場合、ガスの放電空間での滞在時間は原料ガス全てが一定なことが望ましい。その理由は、原料ガスの放電空間における滞在時間が一定でない場合、活性ガスの流量、濃度に差が出るため、ウェハ等の目標物(処理対象基板)に活性ガスを供給して目標物に膜を成膜する際、膜の成膜結果が一定にならない可能性があるからである。 In the case where energy is supplied to the source gas using dielectric barrier discharge (silent discharge or creeping discharge) to generate an active gas, it is desirable that the residence time of the gas in the discharge space be constant for all source gases. The reason is that if the residence time of the source gas in the discharge space is not constant, the flow rate and concentration of the active gas will differ, so the active gas is supplied to the target (substrate to be processed) such as a wafer and the film is made to the target When forming a film, the film formation result of the film may not be constant.
 そこで、現在、ガス噴出孔が1個の場合などは円盤状の電極構造や円筒型の電極構造を使用し、原料ガスの放電空間における滞在時間を一定にしている。 Therefore, currently, when the number of the gas injection holes is one or the like, a disk-like electrode structure or a cylindrical electrode structure is used to make the residence time of the source gas in the discharge space constant.
 図11は円盤状の電極構造を採用した従来の活性ガス生成装置の基本構成を模式的に示す説明図である。同図(a) が上部から斜め下方に視た概略を示す図、同図(b) が断面構造を示す断面図である。図12は図11で示したガス噴出孔9及びその周辺を拡大して示す説明図である。なお、図11及び図12に適宜XYZ直交座標系を示している。 FIG. 11 is an explanatory view schematically showing a basic configuration of a conventional active gas generator using a disk-like electrode structure. The figure (a) is a figure which shows the outline seen from diagonally downward from the upper part, and the figure (b) is a sectional view showing section structure. FIG. 12 is an explanatory view showing the gas injection hole 9 shown in FIG. 11 and the periphery thereof in an enlarged manner. Note that FIGS. 11 and 12 appropriately show an XYZ orthogonal coordinate system.
 これらの図に示すように、高電圧側電極構成部1Xと、高電圧側電極構成部1Xの下方に設けられる接地側電極構成部2Xとからなる電極群構成部を基本構成としている。高電圧側電極構成部1Xは、誘電体電極11Xと、誘電体電極11Xの上面上に設けられ中央に空間を有する平面視ドーナツ状の金属電極10Xとにより構成される。接地側電極構成部2Xは、誘電体電極21Xと誘電体電極21Xの下面上に設けられ、中央に空間を有する平面視ドーナツ状の金属電極20Xとにより構成される。 As shown in these figures, an electrode group constituting portion consisting of a high voltage side electrode constituting portion 1X and a ground side electrode constituting portion 2X provided below the high voltage side electrode constituting portion 1X has a basic constitution. The high voltage side electrode constituting portion 1X is constituted by a dielectric electrode 11X and a metal electrode 10X which is provided on the upper surface of the dielectric electrode 11X and has a space in the center and which has a flat shape in a plan view. The ground-side electrode configuration portion 2X is provided on the lower surface of the dielectric electrode 21X and the lower surface of the dielectric electrode 21X, and is configured of a toroidal metal electrode 20X having a space at the center.
 そして、誘電体電極21Xの中央部(平面視して金属電極20X及び10Xが重複しない領域)の中心に一つのガス噴出孔9が設けられる。なお、高電圧側電極構成部1X及び接地側電極構成部2Xには図示しない高周波電源によって交流電圧が印加される。 Then, one gas injection hole 9 is provided at the center of the central portion of the dielectric electrode 21X (the area where the metal electrodes 20X and 10X do not overlap in plan view). An alternating voltage is applied to the high voltage side electrode forming portion 1X and the ground side electrode forming portion 2X by a high frequency power supply (not shown).
 さらに、高周波電源からの交流電圧の印加により誘電体電極11X及び21Xが対向する誘電体空間内において、金属電極10X及び20Xが平面視重複する領域が放電空間DSX(放電場)として規定される。 Furthermore, a region where the metal electrodes 10X and 20X overlap in plan view is defined as a discharge space DSX (discharge field) in the dielectric space where the dielectric electrodes 11X and 21X face each other by application of an AC voltage from a high frequency power source.
 このような構成において、交流電圧の印加により、高電圧側電極構成部1X及び接地側電極構成部2X間に放電空間DSXが形成され、この放電空間DSXにおけるガスの流れ8に沿って原料ガス6を供給すると、ラジカル化した窒素原子等の活性ガス7を得て、誘電体電極21Xの中心に設けられたガス噴出孔9から下方(-Z方向)の外部に活性ガス7を噴出することができる。 In such a configuration, the discharge space DSX is formed between the high voltage side electrode forming portion 1X and the ground side electrode forming portion 2X by the application of the alternating voltage, and the source gas 6 is formed along the gas flow 8 in the discharge space DSX. To supply an active gas 7 such as nitrogen atomized radically and eject the active gas 7 from the gas injection holes 9 provided at the center of the dielectric electrode 21 X to the lower side (-Z direction). it can.
 したがって、円盤状の電極構造を採用した従来の活性ガス生成装置は、図12に示すように、放電空間におけるガスの流れ8はその供給方向に関係無く一定にすることができる。 Therefore, as shown in FIG. 12, in the conventional active gas generator employing the disk-like electrode structure, the flow of gas 8 in the discharge space can be made constant regardless of the supply direction.
 また、接地側電極構成部2Xの下方において、ガス噴出孔9にシャワープレート等の分岐機構を接続して、この分岐機構の下部に設けられた、複数の分岐噴出孔から活性ガスを噴出する分岐機構付活性ガス生成装置が考えられる。 Further, a branch mechanism such as a shower plate is connected to the gas jet hole 9 below the ground side electrode configuration portion 2X, and a branch for jetting an active gas from a plurality of branch jet holes provided in the lower portion of this branch mechanism. An active gas generator with a mechanism is conceivable.
 図11及び図12で示した構成は、上述した分岐機構付活性ガス生成装置に比べ、分岐機構を介することなく、直に活性ガスを目標物(処理対象基板)に対し噴出することができるため、活性ガスの搬送距離を短くすることができ、さらに、活性ガスが分岐機構内で分岐する際に活性ガスが減衰するような材料を用いた場合においても高濃度の活性ガスを目標物に供給できる優位性を有している。 In the configurations shown in FIGS. 11 and 12, the active gas can be ejected directly to the target (the substrate to be treated) without using the branching mechanism, as compared with the above-described active gas generation apparatus with branching mechanism. Also, the active gas can be supplied at a high concentration to the target even when using a material that can shorten the transport distance of the active gas, and can attenuate the active gas when the active gas branches in the branching mechanism. It has the advantage of being able to
 図13は円筒の電極構造を採用した従来の活性ガス生成装置の基本構成を模式的に示す説明図である。同図(a) が側面構造を示す図であり、同図(b) が表面構造を示す図である。なお、図13に適宜XYZ直交座標系を示している。 FIG. 13 is an explanatory view schematically showing a basic configuration of a conventional active gas generator using a cylindrical electrode structure. The figure (a) is a figure which shows side structure, and the figure (b) is a figure which shows surface structure. Note that FIG. 13 appropriately shows an XYZ orthogonal coordinate system.
 これらの図に示すように、高電圧側電極構成部1Yと、高電圧側電極構成部1Yの内部に設けられる接地側電極構成部2Yとを基本構成としている。 As shown in these figures, a high voltage side electrode configuration unit 1Y and a ground side electrode configuration unit 2Y provided inside the high voltage side electrode configuration unit 1Y are basically configured.
 接地側電極構成部2Yは、高電圧側電極構成部1YのXZ平面上における円の中心に設けられた、XZ平面上の断面構造が円となる棒状の金属電極20Yと金属電極20Yの外周を覆って形成される誘電体電極21Yとにより構成される。高電圧側電極構成部1Yは、内部に空間を有し断面構造が円となる中空の円筒状の誘電体電極11Yと誘電体電極11Yの外周を覆って形成される金属電極10Yとにより構成される。 The ground-side electrode configuration unit 2Y is provided at the center of a circle on the XZ plane of the high-voltage-side electrode configuration unit 1Y, and the outer periphery of the bar-like metal electrode 20Y and metal electrode 20Y having a circular cross-section on the XZ plane It is comprised by the dielectric material electrode 21Y formed and covered. The high voltage side electrode configuration portion 1Y is configured of a hollow cylindrical dielectric electrode 11Y having a space inside and having a circular cross-sectional structure and a metal electrode 10Y formed so as to cover the outer periphery of the dielectric electrode 11Y. Ru.
 そして、誘電体電極11Yと誘電体電極21Yとの間に設けられる中空領域に放電空間DSYが設けられる。また、高電圧側電極構成部1Y及び接地側電極構成部2Yには図示しない高周波電源によって交流電圧が印加される。 A discharge space DSY is provided in the hollow region provided between the dielectric electrode 11Y and the dielectric electrode 21Y. Further, an alternating voltage is applied to the high voltage side electrode forming portion 1Y and the ground side electrode forming portion 2Y by a high frequency power supply (not shown).
 そして、高周波電源からの交流電圧の印加により誘電体電極11Y及び21Yが対向する誘電体空間内において、金属電極10Yの内周領域と及び金属電極20Yの外周領域との間の空間が放電空間DSYとして規定される。 The space between the inner peripheral region of metal electrode 10Y and the outer peripheral region of metal electrode 20Y is a discharge space DSY in the dielectric space where dielectric electrodes 11Y and 21Y are opposed by the application of an alternating voltage from a high frequency power supply. Defined as
 このような構成において、交流電圧の印加により、高電圧側電極構成部1Y及び接地側電極構成部2Y間に放電空間DSYが形成され、一方の端部から、放電空間DSYにおける円筒の高さ方向(Y方向)に沿ったガスの流れ8を有する原料ガス6を供給すると、ラジカル化した窒素原子等の活性ガス7を得て、他方の端部から外部に活性ガス7を噴出することができる。 In such a configuration, discharge space DSY is formed between high voltage side electrode forming portion 1Y and ground side electrode forming portion 2Y by application of alternating voltage, and from one end, the height direction of the cylinder in discharge space DSY By supplying the source gas 6 having the gas flow 8 along the (Y direction), an active gas 7 such as radicalized nitrogen atom can be obtained, and the active gas 7 can be ejected from the other end to the outside. .
 したがって、円筒の電極構造を採用した従来の活性ガス生成装置は、図13に示すように、放電空間におけるガスの流れ8はその供給方向に関係無く一定にすることができる。 Therefore, as shown in FIG. 13, according to the conventional active gas generator adopting a cylindrical electrode structure, the flow of gas 8 in the discharge space can be made constant regardless of the supply direction.
 なお、図11及び図12で示した円盤状の電極構造を採用した活性ガス生成装置として、例えば特許文献1で開示されたプラズマ処理装置がある。また、上述した方式と異なる活性ガス生成装置として、大気圧プラズマを用いて活性ガスを生成して成膜等を行う大気圧プラズマ処理装置が例えば特許文献2に開示されている。 In addition, as an active gas production | generation apparatus which employ | adopted the disk shaped electrode structure shown in FIG.11 and FIG.12, there exists a plasma processing apparatus disclosed by patent document 1, for example. Further, as an active gas generation apparatus different from the above-described system, for example, Patent Document 2 discloses an atmospheric pressure plasma processing apparatus that generates an active gas by using atmospheric pressure plasma to perform film formation and the like.
特開2011-154973号公報JP 2011-154973 A 特開2015-5780号公報JP, 2015-5780, A
 しかしながら、図11及び図12で示した従来のガス生成装置は、放電空間DSXでのガスの滞在時間を一定にして活性ガス7を供給できるが、ガス噴出孔9は一つであるため成膜できる範囲は広くない。 However, although the conventional gas generator shown in FIGS. 11 and 12 can supply the active gas 7 with a constant gas residence time in the discharge space DSX, film formation is performed because the gas injection hole 9 is one. The range that can be done is not wide.
 また、上記の構造のガス生成装置を複数個用いて成膜範囲の大面積化に対応させた場合、隣接配置された一対の活性ガス生成装置間におけるガス噴出孔9,9間の距離が少なくとも電極群構成部の直径(半径×2)分の比較的長い距離となるため、目標物に成膜される膜が波を打った膜となり均一な成膜ができないという問題点があった。 When a plurality of gas generators having the above-described structure are used to cope with an increase in area of the film formation range, the distance between the gas injection holes 9, 9 between the pair of adjacently arranged active gas generators is at least Since the distance is relatively long for the diameter (radius × 2) of the electrode group constituting portion, there is a problem that the film formed on the target becomes a waved film, and uniform film formation can not be performed.
 このように、特許文献1で開示された活性ガス生成装置等、誘電体バリア放電を利用する活性ガス生成装置を薄膜成膜に応用する場合、成膜される膜の均一性の観点から成膜対象となる広い面積を有する目標物(処理対象基板)に対応することができなかった。 Thus, when applying an active gas generator using dielectric barrier discharge, such as the active gas generator disclosed in Patent Document 1, to thin film deposition, deposition is performed from the viewpoint of film uniformity. It could not correspond to the target (substrate to be processed) having a large area to be targeted.
 このため、広い面積を有する目標物(処理対象基板)に対応させる場合、同じプラズマを使用し、目標物の直近でプラズマを発生し、ガスにエネルギーを与え活性ガスを生成して薄膜を成膜するプラズマ方式が採用されるが一般的であった。このようなプラズマ方式を採用したのが、特許文献2で開示されたプラズマCVD・ALD装置である。 Therefore, when corresponding to a target having a large area (substrate to be processed), the same plasma is used, the plasma is generated in the immediate vicinity of the target, energy is given to the gas, the active gas is generated, and the thin film is formed. It is common to adopt a plasma system that The plasma CVD / ALD apparatus disclosed in Patent Document 2 adopts such a plasma method.
 しかしながら、特許文献2で開示されたプラズマCVD・ALD装置では供給中のガスにプラズマのエネルギーを与え高反応性のガスに変換し供給しているため、プラズマ発生源と目標物の被処理面とを近接配置する必要があり、目標物であるウェハ等の処理面が近接配置されることになる結果、目標物自体がプラズマの影響でダメージを受けてしまうという問題点があった。 However, in the plasma CVD / ALD apparatus disclosed in Patent Document 2, the energy of the plasma is given to the gas being supplied to convert it into a highly reactive gas and the gas is supplied. It is necessary to position the processing surface close to each other, and as a result, the processing surface of the target wafer such as that is to be arranged close, there is a problem that the target itself is damaged by the influence of plasma.
 本発明では、上記のような問題点を解決し、活性ガス供給対象となる大きな面積を有する目標物に対し、各々が同じ流量及び濃度の複数のガス噴出孔から活性ガスを供給することができる活性ガス生成装置の構造を提供することを目的とする。 In the present invention, the above problems can be solved and the active gas can be supplied from a plurality of gas injection holes each having the same flow rate and concentration to a target having a large area to be supplied with the active gas. An object of the present invention is to provide a structure of an active gas generator.
 この発明における活性ガス生成装置は、放電空間に供給された原料ガスを活性化して得られる活性ガスを生成する活性ガス生成装置であって、第1の電極構成部と前記第1の電極構成部の下方に設けられる第2の電極構成部とを備え、前記第1及び第2の電極構成部に交流電圧が印加され、前記交流電圧の印加により、前記第1及び第2の電極構成部間に前記放電空間が形成され、前記第1の電極構成部は、第1の誘電体電極と前記第1の誘電体電極の上面上に形成される第1の金属電極とを有し、前記第2の電極構成部は、第2の誘電体電極と前記第2の誘電体電極の下面上に形成される第2の金属電極とを有し、前記交流電圧の印加により前記第1及び第2の誘電体電極が対向する誘電体空間内において、前記第1及び第2の金属電極が平面視重複する領域を前記放電空間として含み、前記第1の誘電体電極は、前記原料ガスを前記放電空間に導くための複数のガス供給孔を有し、前記第2の誘電体電極は、前記活性ガスを外部に噴出するための複数のガス噴出孔を有し、前記複数のガス供給孔及び前記複数のガス噴出孔は、前記複数のガス供給孔及び前記複数のガス噴出孔が平面視して互いに重複することなく配置され、平面視して前記複数のガス供給孔及び前記複数のガス噴出孔のいずれもが形成されない領域に前記放電空間が設けられる第1の配置関係と、前記複数のガス噴出孔それぞれは、前記複数のガス供給孔のうち平面視して隣接する少なくとも2つのガス供給孔を有し、前記少なくとも2つのガス供給孔それぞれから、前記複数のガス噴出孔のうち対応するガス噴出孔に至る少なくとも2つの距離は全て同一距離となる第2の配置関係とを、満足するように配置されることを特徴とする。 An active gas generation apparatus according to the present invention is an active gas generation apparatus that generates an active gas obtained by activating a source gas supplied to a discharge space, comprising: a first electrode component and a first electrode component Between the first and second electrode components by applying an AC voltage to the first and second electrode components, and applying the AC voltage to the first and second electrode components. The discharge space is formed, and the first electrode configuration includes a first dielectric electrode and a first metal electrode formed on the top surface of the first dielectric electrode; The second electrode component has a second dielectric electrode and a second metal electrode formed on the lower surface of the second dielectric electrode, and the application of the alternating voltage causes the first and second electrode components to be formed. The first and second metal electrodes in the dielectric space where the dielectric A region overlapping in plan view is included as the discharge space, the first dielectric electrode has a plurality of gas supply holes for guiding the source gas to the discharge space, and the second dielectric electrode is The plurality of gas injection holes for injecting the active gas to the outside, and the plurality of gas supply holes and the plurality of gas injection holes are a plan view of the plurality of gas supply holes and the plurality of gas injection holes. And the first arrangement relationship in which the discharge space is provided in a region where none of the plurality of gas supply holes and the plurality of gas injection holes are formed in plan view and are not formed. Each of the gas ejection holes has at least two gas supply holes adjacent to each other in plan view among the plurality of gas supply holes, and the corresponding one of the plurality of gas ejection holes from each of the at least two gas supply holes. Moth At least two distances lead to ejection hole is a second arrangement relationship having the same distance all, characterized in that it is arranged to satisfy.
 請求項1記載の本願発明における活性ガス生成装置において、複数のガス供給孔及び複数のガス噴出孔は上記第1及び第2の配置関係を共に満足し、複数のガス噴出孔から活性ガスを外部に噴出することができる。 In the active gas generating apparatus of the present invention according to the present invention, the plurality of gas supply holes and the plurality of gas injection holes satisfy both the first and second disposition relationships, and the active gas is externally output from the plurality of gas injection holes. Can spout.
 このため、請求項1記載の本願発明の活性ガス生成装置は、活性ガス供給対象となる大きな形成面積の目標物に対し、各々が均一な濃度及び流量で複数のガス噴出孔から活性ガスを供給することができ、目標物に対し均一な膜を形成する成膜処理を行うことができる。 For this reason, the active gas generation apparatus according to the present invention of claim 1 supplies active gas from a plurality of gas injection holes with uniform concentration and flow rate to targets with large formation area to be supplied with active gas. It is possible to perform a film forming process to form a uniform film on the target.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態1の活性ガス生成装置の構成を模式的に示した説明図である。FIG. 2 is an explanatory view schematically showing a configuration of an active gas generator of Embodiment 1. 実施の形態1の活性ガス生成装置の平面構造を模式的に示した説明図である。FIG. 2 is an explanatory view schematically showing a planar structure of the active gas generator of Embodiment 1. 実施の形態1の活性ガス生成装置の構成の詳細を模式的に示した説明図である。FIG. 2 is an explanatory view schematically showing details of a configuration of an active gas generator of Embodiment 1. 実施の形態1の活性ガス生成装置の平面構造の詳細を示した説明図である。FIG. 2 is an explanatory view showing the details of the planar structure of the active gas generator of Embodiment 1. 実施の形態1の活性ガス生成装置の電極構造の詳細を示した説明図である。FIG. 2 is an explanatory view showing details of an electrode structure of an active gas generator of Embodiment 1. 実施の形態1の活性ガス生成装置を用いて実現される成膜処理装置における断面構造を模式的に示す説明図である。FIG. 2 is an explanatory view schematically showing a cross-sectional structure in a film formation processing apparatus realized by using the active gas generation apparatus of the first embodiment. 実施の形態2の活性ガス生成装置の平面構造を模式的に示した説明図である。FIG. 8 is an explanatory view schematically showing a planar structure of an active gas generation device of a second embodiment. 実施の形態2の活性ガス生成装置の平面構造の詳細を示した説明図である。FIG. 10 is an explanatory view showing the details of the planar structure of the active gas generator of Embodiment 2. 実施の形態3の活性ガス生成装置の平面構造を模式的に示した説明図である。FIG. 13 is an explanatory view schematically showing a planar structure of an active gas generator of Embodiment 3. 実施の形態3の活性ガス生成装置の平面構造の詳細を示した説明図である。FIG. 13 is an explanatory drawing showing the details of the planar structure of the active gas generator of Embodiment 3. 円盤状の電極構造を採用した従来の活性ガス生成装置の基本構成を模式的に示す説明図である。It is explanatory drawing which shows typically the basic composition of the conventional active gas production | generation apparatus which employ | adopted the disk shaped electrode structure. 図11で示したガス噴出孔及びその周辺を拡大して示す説明図である。It is explanatory drawing which expands and shows the gas ejection port shown in FIG. 11, and its periphery. 円筒の電極構造を採用した従来の活性ガス生成装置の基本構成を模式的に示す説明図である。It is explanatory drawing which shows typically the basic composition of the conventional active gas production | generation apparatus which employ | adopted the cylindrical electrode structure. 図11及び図12で示した従来の活性ガス生成装置の改良構成を模式的に示す説明図である。It is explanatory drawing which shows typically the improvement structure of the conventional active gas production | generation apparatus shown in FIG.11 and FIG.12.
 <前提技術>
 図14は、図11及び図12で示した円盤状の電極構造を採用した従来の活性ガス生成装置の改良構成を模式的に示す説明図である。
Prerequisite technology
FIG. 14 is an explanatory view schematically showing an improved configuration of a conventional active gas generating device adopting the disk-like electrode structure shown in FIGS.
 同図に示すように、高電圧側電極構成部1Zと、高電圧側電極構成部1Zの下方に設けられる接地側電極構成部2Zとからなる電極群構成部を基本構成としている。なお、図14では、高電圧側電極構成部1Z及び接地側電極構成部2Zそれぞれの金属電極の図示を省略しており、誘電体電極の構造を代表させて示している。 As shown in the figure, a basic configuration is an electrode group configuration portion including a high voltage side electrode configuration portion 1Z and a ground side electrode configuration portion 2Z provided below the high voltage side electrode configuration portion 1Z. In FIG. 14, the metal electrodes of the high voltage side electrode constituting portion 1Z and the ground side electrode constituting portion 2Z are not shown, and the structure of the dielectric electrode is shown as a representative.
 改良構成では、接地側電極構成部2Z(の誘電体電極)に複数のガス噴出孔9を設けたことを特徴としている。 The improved configuration is characterized in that a plurality of gas injection holes 9 are provided in (the dielectric electrode of) the ground side electrode configuration portion 2Z.
 改良構成のように、大きな形成面積の目標物(処理対象基板)に対応させるべく、高電圧側電極構成部1Zに複数のガス噴出孔9を設けた場合、ガスの流れ8で示すように、電極群構成部の円周部より原料ガス6を供給する場合、複数のガス噴出孔9のうち、円周に近いガス噴出孔9と中心に近いガス噴出孔9との間で原料ガス6のガス噴出孔9に至るまでの供給距離に明確な差が生じる。 When a plurality of gas injection holes 9 are provided in the high voltage side electrode configuration portion 1Z so as to correspond to a target (a processing target substrate) having a large formation area as in the improved configuration, as shown by a gas flow 8, In the case where the source gas 6 is supplied from the circumferential portion of the electrode assembly, the source gas 6 is provided between the gas outlet 9 near the circumference and the gas outlet 9 near the center among the plurality of gas outlets 9. There is a clear difference in the supply distance up to the gas injection holes 9.
 その結果、高電圧側電極構成部1Z及び接地側電極構成部2間における放電空間における原料ガス6の滞在期間にも明確な差が生じるため、複数のガス噴出孔9からそれぞれ噴出される活性ガス7は流量及び濃度が均一にならない。以下、「複数のガス噴出孔からそれぞれ噴出される活性ガス」を「複数の活性ガス」と略記する場合がある。 As a result, a clear difference also occurs in the staying period of the source gas 6 in the discharge space between the high voltage side electrode forming portion 1Z and the ground side electrode forming portion 2, so that active gases jetted from the plurality of gas jet holes 9 respectively. 7 is not uniform in flow rate and concentration. Hereinafter, “the active gas ejected from the plurality of gas ejection holes” may be abbreviated as “the plurality of active gases”.
 また、複数の活性ガス7の流量の一定化を図るべく、高電圧側電極構成部1Zに、複数のガス噴出孔9に対応する複数のガス供給孔を設け、複数のガス供給孔から原料ガス6を供給する変形改良構成が考えられる。以下、「複数のガス供給孔から供給される原料ガス」を「複数の原料ガス」と略記する場合がある。 Further, in order to make the flow rate of the plurality of active gases 7 constant, the high voltage side electrode configuration portion 1Z is provided with a plurality of gas supply holes corresponding to the plurality of gas injection holes 9, A modified and improved arrangement for supplying 6 is conceivable. Hereinafter, “the source gas supplied from the plurality of gas supply holes” may be abbreviated as “the plurality of source gases”.
 しかしながら、変形改良構成においても、複数のガス供給孔から供給される原料ガスそれぞれが、高電圧側電極構成部1Z及び接地側電極構成部2Z間に形成される放電空間を通過する通過時間は、複数のガス供給孔及び複数のガス噴出孔の配置の影響を受けるため、不均一になる可能性が非常に高い。 However, also in the modification and improvement configuration, the passage time for each of the source gases supplied from the plurality of gas supply holes to pass through the discharge space formed between the high voltage side electrode forming portion 1Z and the ground side electrode forming portion 2Z is Due to the influence of the arrangement of gas supply holes and gas injection holes, the possibility of non-uniformity is very high.
 このため、変形改良構成は、複数のガス噴出孔から各々が均一な濃度で活性ガスを噴出させることが難しいという課題を解決することは極めて困難である。 For this reason, it is extremely difficult to solve the problem that it is difficult for the deformation improving configuration to eject the active gas with uniform concentration from each of the plurality of gas injection holes.
 このように、図14で示す改良構成及び上述した変形改良構成は、均一な濃度及び流量で複数の活性ガス7を目標物に供給することができないという課題を有している。 As described above, the improved configuration shown in FIG. 14 and the above-described modified improved configuration have the problem that the plurality of active gases 7 can not be supplied to the target with uniform concentration and flow rate.
 どこで、この課題の解決を図ったのが、以下で述べる実施の形態1~実施の形態3の活性ガス生成装置である。 It is the active gas generator according to the first to third embodiments described below where the problem is to be solved.
 <実施の形態1>
 図1は、円盤状の電極構造を採用した実施の形態1の活性ガス生成装置の構成を模式的に示した説明図である。図2は実施の形態1の活性ガス生成装置の平面構造を模式的に示した説明図である。図3は実施の形態1の活性ガス生成装置の構成の詳細を模式的に示した説明図である。図4は実施の形態1の活性ガス生成装置の平面構造の詳細を示した説明図である。図5は実施の形態1の活性ガス生成装置の電極構造の詳細を示した説明図である。なお、図5は例えば図4のB-B断面に相当する。
Embodiment 1
FIG. 1 is an explanatory view schematically showing the structure of an active gas generator according to Embodiment 1 in which a disk-like electrode structure is adopted. FIG. 2 is an explanatory view schematically showing a planar structure of the active gas generator of the first embodiment. FIG. 3 is an explanatory view schematically showing details of the configuration of the active gas generator of the first embodiment. FIG. 4 is an explanatory view showing the details of the planar structure of the active gas generator of the first embodiment. FIG. 5 is an explanatory view showing the details of the electrode structure of the active gas generator of the first embodiment. 5 corresponds to, for example, a cross section taken along the line BB in FIG.
 なお、図1~図3では、高電圧側電極構成部1及び接地側電極構成部2それぞれの金属電極の図示を省略しており、誘電体電極の構造を代表させて示している。また、図1~図5にそれぞれXYZ直交座標系を示している。 In FIG. 1 to FIG. 3, the metal electrodes of the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 are not shown, and the structure of the dielectric electrode is shown as a representative. Further, FIGS. 1 to 5 respectively show an XYZ orthogonal coordinate system.
 これらの図に示すように、実施の形態1の活性ガス生成装置は、第1の電極構成部である高電圧側電極構成部1と、高電圧側電極構成部1の下方に設けられる接地側電極構成部2(第2の電極構成部)とからなる電極群構成部100(図6参照)を基本構成としている。 As shown in these figures, the active gas generation device according to the first embodiment includes a high voltage side electrode forming unit 1 which is a first electrode forming unit, and a ground side provided below the high voltage side electrode forming unit 1. An electrode group configuration unit 100 (see FIG. 6) including the electrode configuration unit 2 (second electrode configuration unit) is a basic configuration.
 高電圧側電極構成部1は、第1の誘電体電極である誘電体電極11と、誘電体電極11の上面上に設けられ複数の隙間18を離散して有する平面視円盤状の金属電極10(図4,図5参照)とにより構成され、金属電極10が第1の金属電極となる。 The high voltage side electrode constituting portion 1 includes a dielectric electrode 11 which is a first dielectric electrode, and a disk-like metal electrode 10 in plan view which is provided on the upper surface of the dielectric electrode 11 and has a plurality of gaps 18 discretely. The metal electrode 10 is a first metal electrode (see FIGS. 4 and 5).
 接地側電極構成部2は、第2の誘電体電極である誘電体電極21と、誘電体電極21の下面上に設けられ、金属電極10と同様に、複数の隙間28を離散して有する平面視円盤状の金属電極20(図4,図5参照)とにより構成され、金属電極20が第2の金属電極となる。 The ground-side electrode configuration portion 2 is provided on the lower surface of the dielectric electrode 21 which is the second dielectric electrode and the dielectric electrode 21, and is a flat surface having a plurality of gaps 28 separately like the metal electrode 10. It is comprised by the visual disk shaped metal electrode 20 (refer FIG. 4, FIG. 5), and the metal electrode 20 turns into a 2nd metal electrode.
 金属電極10における複数の隙間18及び金属電極20における複数の隙間28は、平面視して完全一致するように設けられる。 The plurality of gaps 18 in the metal electrode 10 and the plurality of gaps 28 in the metal electrode 20 are provided so as to completely match in plan view.
 そして、誘電体電極11において、平面視して金属電極10及び20が重複しない領域に離散して複数のガス供給孔19が設けられ、誘電体電極21において、平面視して金属電極20及び10が重複しない領域に離散して複数のガス供給孔29が設けられる。複数のガス供給孔19は原料ガス6を後述する放電空間DSに導くために設けられ、複数のガス噴出孔29は活性ガス7を外部に噴出するために設けられる。 In dielectric electrode 11, a plurality of gas supply holes 19 are provided discretely in a region where metal electrodes 10 and 20 do not overlap in plan view, and in dielectric electrode 21, metal electrodes 20 and 10 in plan view. A plurality of gas supply holes 29 are provided discretely in a region where the two do not overlap. The plurality of gas supply holes 19 are provided to guide the source gas 6 to a discharge space DS described later, and the plurality of gas injection holes 29 are provided to eject the active gas 7 to the outside.
 図2に示すように、複数のガス供給孔19はX方向及びY方向に沿って等間隔で配置され、複数のガス噴出孔29もX方向及びY方向に沿って等間隔に配置され、複数のガス供給孔19及び複数のガス噴出孔29は平面視して互いに重複することなく配置され、X方向及びY方向に沿って交互に等間隔に配置される。さらに、X方向及びY方向における最外には必ずガス供給孔19が位置するように配置される。 As shown in FIG. 2, the plurality of gas supply holes 19 are arranged at equal intervals along the X direction and the Y direction, and the plurality of gas ejection holes 29 are also arranged at equal intervals along the X direction and the Y direction. The gas supply holes 19 and the plurality of gas injection holes 29 are disposed without overlapping each other in plan view, and are alternately arranged at equal intervals along the X direction and the Y direction. Further, the gas supply holes 19 are always positioned at the outermost positions in the X and Y directions.
 そして、図5に示すように、金属電極10における複数の隙間18はそれぞれガス供給孔19あるいはガス噴出孔29と平面視一致し、金属電極20における複数の隙間28はそれぞれガス供給孔19あるいはガス噴出孔29と平面視一致するように設けられる。 Then, as shown in FIG. 5, the plurality of gaps 18 in the metal electrode 10 correspond to the gas supply holes 19 or the gas injection holes 29 in plan view respectively, and the plurality of gaps 28 in the metal electrode 20 are respectively the gas supply holes 19 or gas It is provided so as to be in plan view with the ejection hole 29.
 複数のガス供給孔19はそれぞれ平面視円状の第1の孔径(直径)を有し、複数のガス噴出孔29はそれぞれ平面視円状の第2の孔径を有し、第1の孔径と第2の孔径は同一に設定されている。 Each of the plurality of gas supply holes 19 has a first circular hole diameter (diameter) in plan view, and each of the plurality of gas ejection holes 29 has a second circular hole diameter in plan view, and the first hole diameter The second hole diameter is set to be the same.
 加えて、複数のガス供給孔19及び複数のガス噴出孔29は、以下の第1及び第2の配置関係を満足している。 In addition, the plurality of gas supply holes 19 and the plurality of gas injection holes 29 satisfy the following first and second positional relationships.
 第1の配置関係:複数のガス供給孔19及び複数のガス噴出孔29が平面視して互いに重複することなく配置され、平面視して複数のガス供給孔19及び複数のガス噴出孔29のいずれもが形成されない領域に放電空間DSが設けられる。 First arrangement relation: The plurality of gas supply holes 19 and the plurality of gas injection holes 29 are arranged without overlapping each other in plan view, and are formed of the plurality of gas supply holes 19 and plurality of gas injection holes 29 in plan view. A discharge space DS is provided in a region where none of them is formed.
 第2の配置関係:複数のガス噴出孔29それぞれは、複数のガス供給孔19のうち平面視して隣接する4つ(少なくとも2つ)のガス供給孔19を有し、隣接する4つのガス供給孔19それぞれから、複数のガス噴出孔29のうち対応するガス噴出孔29に至る4つの距離は全て同一距離D1となる(図2参照)。 Second arrangement relation: Each of the plurality of gas injection holes 29 has four (at least two) gas supply holes 19 adjacent to each other in plan view among the plurality of gas supply holes 19 and four adjacent gas The four distances from each of the supply holes 19 to the corresponding gas injection hole 29 among the plurality of gas injection holes 29 are all the same distance D1 (see FIG. 2).
 なお、高電圧側電極構成部1及び接地側電極構成部2には図示しない高周波電源によって交流電圧が印加される。 An alternating voltage is applied to the high voltage side electrode forming unit 1 and the ground side electrode forming unit 2 by a high frequency power supply (not shown).
 さらに、図5に示すように、高周波電源から交流電圧が印加されると、誘電体電極11及び21が対向する誘電体空間内において、金属電極10及び20が平面視重複する領域が放電空間DS(放電場)として規定される。 Furthermore, as shown in FIG. 5, when an alternating voltage is applied from the high frequency power source, a region where the metal electrodes 10 and 20 overlap in plan view is a discharge space DS in the dielectric space where the dielectric electrodes 11 and 21 face each other. It is defined as (discharge site).
 なお、図3に示すように、高電圧側電極構成部1(誘電体電極11)及び接地側電極構成部2(誘電体電極21)の外周部において円周方向に沿って側面スペーサ30が設けられ、側面スペーサ30が高電圧側電極構成部1を上面、接地側電極構成部2を底面とした円筒の側面を形成するように形成される。なお、図3では接地側電極構成部2を視覚認識可能にすべく、側面スペーサ30を実際の形成位置をよりも下方(-Z方向)に図示している。 As shown in FIG. 3, side spacers 30 are provided along the circumferential direction at the outer peripheral portions of the high voltage side electrode configuration 1 (dielectric electrode 11) and the ground side electrode configuration 2 (dielectric electrode 21). The side surface spacer 30 is formed to form a side surface of a cylinder having the high voltage side electrode forming portion 1 as the upper surface and the ground side electrode forming portion 2 as the bottom surface. In FIG. 3, the side spacer 30 is shown below the actual formation position (in the −Z direction) in order to make the ground side electrode configuration part 2 visually recognizable.
 さらに、図4に示すように、高電圧側電極構成部1(誘電体電極11)及び接地側電極構成部2(誘電体電極21)間において、離散的に複数の内部スペーサ33を設けても良い。複数の内部スペーサ33は複数のガス供給孔19及び複数のガス噴出孔29のX方向及びY方向が一致しない位置に配置され、各内部スペーサ33は平面視円状であり、ガス供給孔19及びガス噴出孔29の第1及び第2の孔径より小さい第3の直径を有している。 Furthermore, as shown in FIG. 4, even if a plurality of internal spacers 33 are discretely provided between the high voltage side electrode configuration 1 (dielectric electrode 11) and the ground side electrode configuration 2 (dielectric electrode 21). good. The plurality of internal spacers 33 are disposed at positions where the X direction and the Y direction of the plurality of gas supply holes 19 and the plurality of gas injection holes 29 do not coincide, and each internal spacer 33 is circular in plan view. It has a third diameter smaller than the first and second hole diameters of the gas injection holes 29.
 上述した側面スペーサ30及び複数の内部スペーサ33を設けることにより、高電圧側電極構成部1及び接地側電極構成部2間の放電空間DSにおけるギャップ長を規定することができる。 By providing the side surface spacer 30 and the plurality of internal spacers 33 described above, it is possible to define the gap length in the discharge space DS between the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2.
 さらに、側面スペーサ30によって、高電圧側電極構成部1及び接地側電極構成部2の外周部である円周側から流入するガスを側面スペーサ30によって確実に防ぐことができる。 Further, the side surface spacer 30 can reliably prevent the gas flowing in from the circumferential side which is the outer peripheral portion of the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 by the side surface spacer 30.
 このような構成において、図5に示すように、高電圧側電極構成部1及び接地側電極構成部2間に複数の放電空間DSが離散的に形成されている。 In such a configuration, as shown in FIG. 5, a plurality of discharge spaces DS are discretely formed between the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2.
 実施の形態1の活性ガス生成装置は、複数のガス供給孔19から原料ガス6が供給されると、交流電圧の印加により、複数の原料ガス6は複数の放電空間DSそれぞれにおけるガスの流れ8に沿って通過する際、各放電空間DSにてラジカル化した窒素原子等の活性ガス7が得られる。そして、誘電体電極21に設けられた複数のガス噴出孔29から下方(-Z方向)の外部に活性ガス7を噴出することができる。 In the active gas generator of the first embodiment, when the source gas 6 is supplied from the plurality of gas supply holes 19, the plurality of source gases 6 flows in the plurality of discharge spaces DS by the application of the alternating voltage. When it passes along, the active gas 7 such as nitrogen atom radicalized in each discharge space DS is obtained. Then, the active gas 7 can be ejected from the plurality of gas ejection holes 29 provided in the dielectric electrode 21 to the lower side (−Z direction).
 図6は実施の形態1の活性ガス生成装置を用いて実現される成膜処理装置における断面構造を模式的に示す説明図である。なお、図6は、図4のA-A断面の高電圧側電極構成部1,接地側電極構成部2間を模式的に図示している。また、図6において、高電圧側電極構成部1及び接地側電極構成部2における金属電極10及び金属電極20の図示を省略し、誘電体電極の構造を代表させて示す等、適宜簡略化を図っている。 FIG. 6 is an explanatory view schematically showing a cross-sectional structure in a film formation processing apparatus realized by using the active gas generation apparatus of the first embodiment. 6 schematically shows between the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 of the cross section AA of FIG. Further, in FIG. 6, the metal electrode 10 and the metal electrode 20 in the high voltage side electrode forming portion 1 and the ground side electrode forming portion 2 are not shown, and the structure of the dielectric electrode is representatively shown. I am trying.
 これらの図を参照して、成膜処理装置の全体構成を説明する。成膜処理チャンバ63は目標物となる処理対象基板であるウェハ64を底面上に載置して収容しており、ウェハ64を処理空間SP33内に収容する基板収容部として機能している。 The entire configuration of the film formation processing apparatus will be described with reference to these drawings. The film formation processing chamber 63 places and accommodates the wafer 64 which is the target substrate to be processed on the bottom surface, and functions as a substrate accommodation unit for accommodating the wafer 64 in the treatment space SP33.
 高電圧側電極構成部1及び接地側電極構成部2からなる電極群構成部100は実施の形態1の活性ガス生成装置の主要部であり、成膜処理チャンバ63の上部に配置されている。 An electrode group constituting unit 100 including the high voltage side electrode constituting unit 1 and the ground side electrode constituting unit 2 is a main part of the active gas generating device of the first embodiment, and is disposed above the film forming processing chamber 63.
 そして、電極群構成部100は、複数の原料ガス6から複数の放電空間DSそれぞれにおける放電現象を利用して複数の活性ガス7を得て、接地側電極構成部2(の誘電体電極21)に離散的に形成された複数のガス噴出孔29から活性ガス7を、成膜処理チャンバ63の処理空間SP33内に配置されたウェハ64に向けて噴出する。 Then, the electrode group configuration unit 100 obtains the plurality of active gases 7 from the plurality of source gases 6 using the discharge phenomenon in each of the plurality of discharge spaces DS, and the ground-side electrode configuration unit 2 (dielectric electrode 21 of) The active gas 7 is ejected from the plurality of gas injection holes 29 discretely formed toward the wafer 64 disposed in the processing space SP 33 of the film forming processing chamber 63.
 このように、図6で示した成膜処理装置における成膜処理チャンバ63は、実施の形態1の活性ガス生成装置の複数のガス噴出孔29から噴出される活性ガス7を直接受けるように配置されることを特徴としている。 As described above, the film formation processing chamber 63 in the film formation processing apparatus shown in FIG. 6 is arranged to directly receive the active gas 7 ejected from the plurality of gas injection holes 29 of the active gas generation apparatus of the first embodiment. It is characterized by being
 すなわち、図6で示した成膜処理装置は、実施の形態1の活性ガス生成装置における電極群構成部100の接地側電極構成部2の下方に配置され、内部のウェハ64(処理対象基板)に複数の活性ガス7による成膜処理を行う成膜処理チャンバ63とを備えている。 That is, the film formation processing apparatus shown in FIG. 6 is disposed below the ground side electrode forming section 2 of the electrode group forming section 100 in the active gas generation apparatus of the first embodiment, and the wafer 64 (processing target substrate) inside And a film formation processing chamber 63 for performing film formation with a plurality of active gases 7.
 このため、成膜処理チャンバ63の処理空間SP33内のウェハ64は、複数のガス噴出孔29から噴出される活性ガス7を直接受けることができるため、成膜処理チャンバ63はウェハ64に対し、実施の形態1の活性ガス生成装置(電極群構成部100)から直接受ける複数の活性ガス7を用いて、ウェハ64の表面上に膜を形成する成膜処理を実行することができる。 Therefore, the wafer 64 in the processing space SP 33 of the film forming process chamber 63 can directly receive the active gas 7 ejected from the plurality of gas injection holes 29. A film forming process for forming a film on the surface of the wafer 64 can be performed using the plurality of active gases 7 directly received from the active gas generator (electrode group configuration unit 100) of the first embodiment.
 実施の形態1の活性ガス生成装置において複数のガス供給孔19及び複数のガス噴出孔29は上記第1及び第2の配置関係を満足して複数のガス噴出孔29から活性ガス7を外部に噴出することができる。 In the active gas generator according to the first embodiment, the plurality of gas supply holes 19 and the plurality of gas injection holes 29 satisfy the first and second positional relationships, and the activation gas 7 is externally output from the plurality of gas injection holes 29. You can spout.
 このため、例えば、実施の形態1の活性ガス生成装置を用いて図6で示す成膜処理装置を構成することにより、複数の活性ガス7を受ける大きな目標物であるウェハ64に対し、各々が均一な流量及び濃度の複数の活性ガス7を噴出することができ、その結果、ウェハ64の表面上に均一な膜を形成する成膜処理を実行することができる。この際、実施の形態1では、複数のガス噴出孔29全てにおいて、各ガス噴出孔29に隣接するガス供給孔19の数は“4”となる。以下、この点を詳述する。 Therefore, for example, by configuring the film formation processing apparatus shown in FIG. 6 using the active gas generation apparatus of the first embodiment, each of the wafers 64 which are large targets receiving the plurality of active gases 7 can be obtained. A plurality of active gases 7 of uniform flow rate and concentration can be ejected, and as a result, a film forming process can be performed to form a uniform film on the surface of the wafer 64. At this time, in the first embodiment, the number of gas supply holes 19 adjacent to each of the plurality of gas injection holes 29 is “4”. Hereinafter, this point will be described in detail.
 複数のガス噴出孔29のうち任意な一のガス噴出孔29に着目(以下、「着目ガス噴出孔29」と略記)すると、平面視して着目ガス噴出孔29に隣接する4つのガス供給孔19が存在し、隣接する4つのガス供給孔19それぞれから着目ガス噴出孔29に至る4つの距離は全て同一距離D1となる(図2参照)。 Focusing on any one gas ejection hole 29 among the plurality of gas ejection holes 29 (hereinafter abbreviated as “target gas ejection hole 29”), four gas supply holes adjacent to the target gas ejection hole 29 in plan view 19 are present, and all four distances from the adjacent four gas supply holes 19 to the target gas injection hole 29 become the same distance D1 (see FIG. 2).
 したがって、図2,図4及び図5に示すように、着目ガス噴出孔29に隣接する4つのガス供給孔19から供給される4つの原料ガス6は、水平距離(X方向またはY方向)が距離D1となる放電空間DSを通過して、1つの活性ガス7として着目ガス噴出孔29から外部(下方)に噴出されるという、一定条件放電空間通過効果を有している。このように、着目ガス噴出孔29は4つのガス供給孔19から供給される原料ガス6それぞれに対して上記一定条件放電空間通過効果を有している。 Therefore, as shown in FIG. 2, FIG. 4 and FIG. 5, the horizontal distance (X direction or Y direction) of the four raw material gases 6 supplied from the four gas supply holes 19 adjacent to the target gas injection hole 29 is It has a constant-condition discharge space passing effect in which it passes through the discharge space DS at a distance D1 and is jetted outside (downward) from the target gas jet hole 29 as one active gas 7. As described above, the target gas injection holes 29 have the above-mentioned constant-condition discharge space passage effect for each of the source gases 6 supplied from the four gas supply holes 19.
 なお、複数の内部スペーサ33は、前述したように、複数のガス供給孔19及び複数のガス噴出孔29のX方向及びY方向が一致しない位置に配置されるため、複数の内部スペーサ33の存在が上記一定条件放電空間通過効果に影響を与えることはない。 As described above, the plurality of internal spacers 33 are disposed at positions where the X direction and the Y direction of the plurality of gas supply holes 19 and the plurality of gas injection holes 29 do not coincide. Does not affect the above-mentioned constant-condition discharge space passage effect.
 実施の形態1の活性ガス生成装置は上記第1及び第2の配置関係を満足することにより、複数のガス噴出孔29は全て上記一定条件放電効果通過効果を有しているため、複数の原料ガス6は放電空間DSを同条件(同一距離、同一時間)で通過された結果、各々の濃度及び濃度が同一となる複数の活性ガス7が得られ、これらの複数の活性ガス7が複数のガス噴出孔29から噴出される。 The active gas generation device according to the first embodiment satisfies the first and second arrangement relationships, and the plurality of gas injection holes 29 all have the above-described constant-condition discharge effect passing effect, so that a plurality of raw materials are produced. As a result of passing the gas 6 through the discharge space DS under the same conditions (the same distance and the same time), a plurality of active gases 7 having the same concentration and concentration are obtained, and the plurality of active gases 7 The gas is jetted from the gas jet holes 29.
 したがって、上述したように、実施の形態1の活性ガス生成装置は、成膜処理チャンバ63の底面と同程度の広い面積を有するウェハ64の表面上に均一な膜を形成する成膜処理を行うことができる効果を奏する。 Therefore, as described above, the active gas generating apparatus according to the first embodiment performs the film forming process for forming a uniform film on the surface of the wafer 64 having a wide area similar to the bottom surface of the film forming process chamber 63. It has the effect of being able to
 さらに、実施の形態1の活性ガス生成装置の直下に、図6に示すように成膜処理チャンバ63を追加して成膜処理装置を構成することができる。すなわち、活性ガス生成装置自身が誘電体バリア放電を発生させる放電空間DSを有し、放電空間DSに直結している接地側電極構成部2の誘電体電極21に設けられる複数のガス噴出孔29は、下方の成膜処理チャンバ63に複数の活性ガス7を噴出するためのガス噴出用ノズル機能を兼ねている。 Furthermore, as shown in FIG. 6, a film formation processing chamber 63 can be added immediately below the active gas generation device of the first embodiment to constitute a film formation processing device. That is, the active gas generation device itself has the discharge space DS for generating dielectric barrier discharge, and the plurality of gas injection holes 29 provided in the dielectric electrode 21 of the ground side electrode configuration part 2 directly connected to the discharge space DS. Also serves as a gas ejection nozzle function for ejecting the plurality of active gases 7 to the lower film formation processing chamber 63.
 このように、実施の形態1の活性ガス生成装置は、図6で示す成膜処理装置におけるガス噴出用ノズル機能を備えるため、複数のガス噴出孔29で生成した活性ガス7を非常に短いミリ秒以下の短時間で、目標物(処理対象基板)であるウェハ64に供給することができ、放電で生成した寿命が非常に短い活性ガス7であっても、減衰を最小限に抑えて、ウェハ64への成膜時の成膜速度の向上を図ることができる。 As described above, since the active gas generation device of the first embodiment has the gas injection nozzle function in the film formation processing apparatus shown in FIG. 6, the active gas 7 generated in the plurality of gas injection holes 29 is very short. Even if it is the active gas 7 that can be supplied to the target (substrate to be processed) wafer 64 in a short time of less than a second and the life generated by the discharge is very short, the attenuation is minimized, The film formation rate at the time of film formation on the wafer 64 can be improved.
 <実施の形態2>
 図7は実施の形態2の活性ガス生成装置の平面構造を模式的に示した説明図である。図8は実施の形態2の活性ガス生成装置の平面構造の詳細を示した説明図である。なお、図7では、高電圧側電極構成部1B及び接地側電極構成部2Bそれぞれの金属電極の図示を省略しており、誘電体電極の構造を代表させて示している。また、図7及び図8にそれぞれXYZ直交座標系を示している。
Second Embodiment
FIG. 7 is an explanatory view schematically showing a planar structure of the active gas generator of the second embodiment. FIG. 8 is an explanatory view showing the details of the planar structure of the active gas generator of the second embodiment. In FIG. 7, the metal electrodes of the high voltage side electrode constituting portion 1B and the ground side electrode constituting portion 2B are not shown, and the structure of the dielectric electrode is shown as a representative. 7 and 8 show an XYZ orthogonal coordinate system, respectively.
 これらの図に示すように、第1の電極構成部である高電圧側電極構成部1Bと、高電圧側電極構成部1Bの下方に設けられる接地側電極構成部2B(第2の電極構成部)とからなる電極群構成部を基本構成としている。 As shown in these figures, a high voltage side electrode configuration portion 1B which is a first electrode configuration portion, and a ground side electrode configuration portion 2B provided below the high voltage side electrode configuration portion 1B (a second electrode configuration portion And the electrode group constituent part which consists of.
 高電圧側電極構成部1Bは、第1の誘電体電極である誘電体電極11Bと、誘電体電極11Bの上面上に設けられ、複数の隙間を離散して有する平面視円盤状の金属電極10Bとにより構成され、金属電極10Bが第1の金属電極となる。 The high voltage side electrode constituting portion 1B is provided on the top surface of the dielectric electrode 11B which is a first dielectric electrode and the dielectric electrode 11B, and has a disc-like metal electrode 10B in plan view having a plurality of discrete spaces. And the metal electrode 10B is the first metal electrode.
 接地側電極構成部2Bは、第2の誘電体電極である誘電体電極21Bと、誘電体電極21Bの下面上に設けられ、金属電極10Bと同様に、複数の隙間を離散して有する平面視円盤状の金属電極20Bとにより構成され、金属電極20が第2の金属電極となる。 The ground-side electrode configuration portion 2B is provided on the lower surface of the dielectric electrode 21B, which is the second dielectric electrode, and the lower surface of the dielectric electrode 21B, and has a plurality of gaps separated as in the metal electrode 10B. It is comprised by the disk shaped metal electrode 20B, and the metal electrode 20 turns into a 2nd metal electrode.
 金属電極10Bにおける複数の隙間及び金属電極20Bにおける複数の隙間は、実施の形態1と同様、平面視して完全一致するように設けられる。 As in the first embodiment, the plurality of gaps in the metal electrode 10B and the plurality of gaps in the metal electrode 20B are provided so as to completely match in plan view.
 そして、誘電体電極11Bにおいて、平面視して金属電極10B及び20Bが重複しない領域に離散して複数のガス供給孔19Bが設けられ、誘電体電極21Bにおいて、平面視して金属電極20B及び10Bが重複しない領域に離散して複数のガス噴出孔29Bが設けられる。複数のガス供給孔19Bは原料ガス6を放電空間DSに導くために設けられ、複数のガス噴出孔29Bは複数の活性ガス7を外部に噴出するために設けられる。 In dielectric electrode 11B, a plurality of gas supply holes 19B are provided discretely in a region where metal electrodes 10B and 20B do not overlap in plan view, and in dielectric electrode 21B, metal electrodes 20B and 10B in plan view. A plurality of gas injection holes 29B are provided discretely in a region where the two do not overlap. The plurality of gas supply holes 19B are provided to guide the source gas 6 to the discharge space DS, and the plurality of gas injection holes 29B are provided to eject the plurality of active gases 7 to the outside.
 図7に示すように、複数のガス供給孔19BはX方向及びY方向に沿って等間隔で配置され、複数のガス噴出孔29BもX方向及びY方向に沿って等間隔に配置され、複数のガス供給孔19B及び複数のガス噴出孔29Bは平面視して互いに重複することなく配置され。X方向及びY方向における最外には必ずガス供給孔19Bが位置するように配置される。 As shown in FIG. 7, the plurality of gas supply holes 19B are disposed at equal intervals along the X direction and the Y direction, and the plurality of gas ejection holes 29B are also disposed at equal intervals along the X direction and the Y direction. The gas supply holes 19B and the plurality of gas injection holes 29B are disposed without overlapping with each other in plan view. The gas supply holes 19B are always positioned at the outermost positions in the X and Y directions.
 さらに、図7及び図8では図示しないが、実施の形態1と同様、金属電極10Bにおける複数の隙間はそれぞれガス供給孔19Bあるいはガス噴出孔29Bと平面視一致し、金属電極20Bにおける複数の隙間はそれぞれガス供給孔19Bあるいはガス噴出孔29Bと平面視一致するように設けられる。 Furthermore, although not shown in FIGS. 7 and 8, as in the first embodiment, the plurality of gaps in the metal electrode 10B correspond to the gas supply holes 19B or the gas injection holes 29B in plan view, and the plurality of gaps in the metal electrode 20B. Are provided in plan view in agreement with the gas supply holes 19B or the gas injection holes 29B, respectively.
 複数のガス供給孔19Bはそれぞれ平面視円状の第1の孔径を有し、複数のガス噴出孔29Bはそれぞれ平面視円状の第2の孔径を有し、第1の孔径と第2の孔径は同一に設定されている。 Each of the plurality of gas supply holes 19B has a first circular hole diameter in plan view, and each of the plurality of gas injection holes 29B has a second circular hole diameter in plan view, and has a first hole diameter and a second hole diameter. The pore size is set identical.
 加えて、複数のガス供給孔19B及び複数のガス噴出孔29Bは、実施の形態1と同様、以下の第1及び第2の配置関係を満足している。 In addition, the plurality of gas supply holes 19B and the plurality of gas injection holes 29B satisfy the following first and second positional relationships, as in the first embodiment.
 第1の配置関係:複数のガス供給孔19B及び複数のガス噴出孔29Bが平面視して互いに重複することなく配置され、平面視して複数のガス供給孔19B及び複数のガス噴出孔29Bのいずれもが形成されない領域に放電空間DSが設けられる。 First arrangement relation: the plurality of gas supply holes 19B and the plurality of gas injection holes 29B are arranged without overlapping with each other in plan view, and the plurality of gas supply holes 19B and the plurality of gas injection holes 29B in plan view A discharge space DS is provided in a region where none of them is formed.
 第2の配置関係:複数のガス噴出孔29Bそれぞれは、複数のガス供給孔19Bのうち平面視して隣接する3つ(少なくとも2つ)のガス供給孔19Bを有し、隣接する3つのガス供給孔19Bそれぞれから、複数のガス噴出孔29Bのうち対応するガス噴出孔29Bに至る3つの距離は全て同一距離D2となる(図7参照)。 Second arrangement relation: Each of the plurality of gas injection holes 29B has three (at least two) gas supply holes 19B adjacent to each other in plan view among the plurality of gas supply holes 19B, and three adjacent gas All three distances from the supply holes 19B to the corresponding gas injection holes 29B among the plurality of gas injection holes 29B are the same distance D2 (see FIG. 7).
 なお、隣接する3つのガス供給孔19Bは、対応するガス噴出孔29Bを中心として、120゜間隔になるよう正三角形状に配置される。 The three adjacent gas supply holes 19B are arranged in an equilateral triangle so as to have an interval of 120 ° around the corresponding gas ejection holes 29B.
 なお、高電圧側電極構成部1B及び接地側電極構成部2Bには図示しない高周波電源によって交流電圧が印加される。 An alternating voltage is applied to the high voltage side electrode forming portion 1B and the ground side electrode forming portion 2B by a high frequency power supply (not shown).
 また、図8に示すように、高電圧側電極構成部1B(誘電体電極11B)及び接地側電極構成部2B(誘電体電極21B)間において、離散的に複数の内部スペーサ33Bを設けても良い。複数の内部スペーサ33Bは複数のガス供給孔19B及び複数のガス噴出孔29BのX方向及びY方向が一致しない位置に設けられ、各内部スペーサ33Bは平面視円状であり、ガス供給孔19B及びガス噴出孔29Bの第1及び第2の孔径より小さい第3の直径を有している。 Further, as shown in FIG. 8, even if the plurality of internal spacers 33B are discretely provided between the high voltage side electrode configuration 1B (dielectric electrode 11B) and the ground side electrode configuration 2B (dielectric electrode 21B). good. The plurality of internal spacers 33B are provided at positions where the X direction and the Y direction of the plurality of gas supply holes 19B and the plurality of gas injection holes 29B do not coincide, and each internal spacer 33B is circular in plan view. It has a third diameter smaller than the first and second hole diameters of the gas injection holes 29B.
 なお、図7及び図8で示していないが、図6のように成膜処理チャンバ63を下方に配置して成膜処理装置が構成できること、側面スペーサ30を有すること等を含む他の構成は、基本的に図1~図6で示した実施の形態1の活性ガス生成装置と同様であるため、説明を適宜省略している。 Although not shown in FIG. 7 and FIG. 8, as shown in FIG. 6, other configurations including the deposition processing apparatus can be configured by disposing the deposition processing chamber 63 downward, having the side surface spacer 30, etc. Basically, it is the same as the active gas generator of the first embodiment shown in FIGS. 1 to 6, and therefore the description is appropriately omitted.
 このような構成において、実施の形態2の活性ガス生成装置は、実施の形態1と同様、複数のガス供給孔19Bから複数の原料ガス6を供給すると、交流電圧の印加により、複数の原料ガス6が複数の放電空間を通過する際、各放電空間にてラジカル化した窒素原子等の活性ガス7を得ることができる。そして、誘電体電極21Bに設けられた複数のガス噴出孔29Bから下方(-Z方向)の外部に向けて活性ガス7を噴出することができる。 In such a configuration, as in the first embodiment, when the plurality of source gases 6 are supplied from the plurality of gas supply holes 19B, the active gas generator according to the second embodiment applies the AC voltage to the plurality of source gases. When 6 passes through a plurality of discharge spaces, it is possible to obtain an active gas 7 such as nitrogen atom which is radicalized in each discharge space. Then, the active gas 7 can be ejected from the plurality of gas ejection holes 29B provided in the dielectric electrode 21B downward (in the -Z direction).
 実施の形態2の活性ガス生成装置において複数のガス供給孔19B及び複数のガス噴出孔29Bは上記第1及び第2の配置関係を満足して複数のガス噴出孔29から活性ガス7を外部に噴出することができる。 In the active gas generator according to the second embodiment, the plurality of gas supply holes 19B and the plurality of gas injection holes 29B satisfy the first and second positional relationships, and the activation gas 7 is externally output from the plurality of gas injection holes 29. You can spout.
 このため、実施の形態2の活性ガス生成装置は、実施の形態1と同様、複数の活性ガス7を受ける大きな面積のウェハ64(図6参照)等の目標物に対し、各々が均一な流量及び濃度の複数の活性ガス7を供給することができ、その結果、目標物の表面上に均一な膜を成膜する成膜処理を行うことができる。この際、実施の形態2では、一のガス噴出孔29Bに隣接するガス供給孔19Bの数は“3”である。 Therefore, as in the first embodiment, the active gas generation device according to the second embodiment has a uniform flow rate for each target such as a large area wafer 64 (see FIG. 6) receiving the plurality of active gases 7. And a plurality of active gases 7 having a concentration can be supplied, and as a result, a film forming process can be performed to form a uniform film on the surface of the target. At this time, in the second embodiment, the number of gas supply holes 19B adjacent to one gas injection hole 29B is “3”.
 さらに、実施の形態2の活性ガス生成装置は、実施の形態1と同様、ガス噴出用ノズル機能を備えるため、複数のガス噴出孔29Bから噴出される活性ガス7を非常に短いミリ秒以下の短時間で、ウェハ64等の目標物に供給することができ、放電で生成した寿命の非常に短い活性ガス7であっても、減衰を最小限に抑えて、目標部への成膜時の成膜速度の向上を図ることができる。 Furthermore, since the active gas generation device of the second embodiment has a gas jet nozzle function as in the first embodiment, the active gas 7 jetted from the plurality of gas jet holes 29B has a very short millisecond or less. Even if the active gas 7 which can be supplied to the target such as the wafer 64 in a short time and has a very short life of the discharge-generated active gas 7, the attenuation is minimized to form the film at the target portion. The deposition rate can be improved.
 <実施の形態3>
 図9は実施の形態3の活性ガス生成装置の平面構造を模式的に示した説明図である。図10は実施の形態3の活性ガス生成装置の平面構造の詳細を示した説明図である。なお、図9では、高電圧側電極構成部1C及び接地側電極構成部2Cそれぞれの金属電極の図示を省略しており、誘電体電極の構造を代表させて示している。また、図9及び図10にそれぞれXYZ直交座標系を示している。
Embodiment 3
FIG. 9 is an explanatory view schematically showing a planar structure of the active gas generator of the third embodiment. FIG. 10 is an explanatory view showing the details of the planar structure of the active gas generator of the third embodiment. In FIG. 9, the metal electrodes of the high voltage side electrode constituting portion 1C and the ground side electrode constituting portion 2C are not shown, and the structure of the dielectric electrode is shown as a representative. Further, an XYZ orthogonal coordinate system is shown in FIGS. 9 and 10, respectively.
 これらの図に示すように、第1の電極構成部である高電圧側電極構成部1Cと、高電圧側電極構成部1Cの下方に設けられる接地側電極構成部2C(第2の電極構成部)とからなる電極群構成部を基本構成としている。 As shown in these figures, a high voltage side electrode configuration portion 1C which is a first electrode configuration portion, and a ground side electrode configuration portion 2C provided below the high voltage side electrode configuration portion 1C (a second electrode configuration portion And the electrode group constituent part which consists of.
 高電圧側電極構成部1Cは、第1の誘電体電極である誘電体電極11Cと、誘電体電極11Cの上面上に設けられ複数の隙間を離散して有する平面視円盤状の金属電極10Cとにより構成され、金属電極10Cが第1の金属電極となる。 The high voltage side electrode constituting portion 1C includes a dielectric electrode 11C which is a first dielectric electrode, and a disk-like metal electrode 10C which is provided on the upper surface of the dielectric electrode 11C and has a plurality of discrete spaces. The metal electrode 10C is the first metal electrode.
 接地側電極構成部2Cは、第2の誘電体電極である誘電体電極21Cと、誘電体電極21Cの下面上に設けられ、金属電極10Cと同様に、複数の隙間を離散して有する平面視円盤状の金属電極20Cとにより構成され、金属電極20Cが第2の金属電極となる。 The ground-side electrode configuration portion 2C is provided on the lower surface of the dielectric electrode 21C, which is the second dielectric electrode, and on the lower surface of the dielectric electrode 21C, and has a plurality of gaps separated as in the metal electrode 10C. It is comprised by the disk shaped metal electrode 20C, and the metal electrode 20C becomes a 2nd metal electrode.
 金属電極10Cにおける複数の隙間及び金属電極20Cにおける複数の隙間は、実施の形態1と同様、平面視して完全一致するように設けられる。 As in the first embodiment, the plurality of gaps in the metal electrode 10C and the plurality of gaps in the metal electrode 20C are provided so as to completely match in plan view.
 そして、誘電体電極11Cにおいて、平面視して金属電極10C及び20Cが重複しない領域に離散して複数のガス供給孔19Cが設けられ、誘電体電極21Cにおいて、平面視して金属電極20C及び10Bが重複しない領域に離散して複数のガス噴出孔29Cが設けられる。複数のガス供給孔19Cは複数の原料ガス6を放電空間DSに導くために設けられ、複数のガス噴出孔29Cは複数の活性ガス7を外部に噴出するために設けられる。 In dielectric electrode 11C, a plurality of gas supply holes 19C are provided discretely in a region where metal electrodes 10C and 20C do not overlap in plan view, and in dielectric electrode 21C, metal electrodes 20C and 10B in plan view A plurality of gas injection holes 29C are provided discretely in a region where the two do not overlap. The plurality of gas supply holes 19C are provided to guide the plurality of source gases 6 to the discharge space DS, and the plurality of gas injection holes 29C are provided to eject the plurality of active gases 7 to the outside.
 図9に示すように、複数のガス供給孔19CはX方向及びY方向に沿って等間隔で配置され、複数のガス噴出孔29CもX方向及びY方向に沿って等間隔に配置され、複数のガス供給孔19C及び複数のガス噴出孔29Cは平面視して互いに重複することなく配置され、X方向及びY方向に沿って交互に等間隔に配置される。さらに、X方向及びY方向における最外には必ずガス供給孔19Cが位置するように配置される。 As shown in FIG. 9, the plurality of gas supply holes 19C are arranged at equal intervals along the X direction and the Y direction, and the plurality of gas ejection holes 29C are also arranged at equal intervals along the X direction and the Y direction. The gas supply holes 19C and the plurality of gas injection holes 29C are arranged without overlapping with each other in plan view, and are alternately arranged at equal intervals along the X direction and the Y direction. Further, the gas supply holes 19C are always positioned at the outermost positions in the X direction and the Y direction.
 さらに、図9及び図10では図示しないが、実施の形態1と同様、金属電極10Cにおける複数の隙間はそれぞれガス供給孔19Cあるいはガス噴出孔29Cと平面視一致し、金属電極20Cにおける複数の隙間はそれぞれガス供給孔19Cあるいはガス噴出孔29Cと平面視一致するように設けられる。 Furthermore, although not shown in FIGS. 9 and 10, as in the first embodiment, the plurality of gaps in the metal electrode 10C respectively coincide in plan view with the gas supply holes 19C or the gas injection holes 29C, and a plurality of gaps in the metal electrode 20C. Are respectively provided in plan view in agreement with the gas supply holes 19C or the gas injection holes 29C.
 複数のガス供給孔19Cはそれぞれ平面視円状の第1の孔径を有し、複数のガス噴出孔29Cはそれぞれ平面視円状の第2の孔径を有し、第1の孔径より第2の孔径が小さく設定されていることを特徴とする。 The plurality of gas supply holes 19C each have a first circular hole diameter in plan view, and the plurality of gas injection holes 29C each have a second circular hole diameter in plan view, and the second hole diameter is larger than the first hole diameter. It is characterized in that the hole diameter is set small.
 加えて、複数のガス供給孔19C及び複数のガス噴出孔29Cは、以下の第1及び第2の配置関係を満足している。 In addition, the plurality of gas supply holes 19C and the plurality of gas injection holes 29C satisfy the following first and second positional relationships.
 第1の配置関係:複数のガス供給孔19C及び複数のガス噴出孔29Cが平面視して互いに重複することなく配置され、平面視して複数のガス供給孔19C及び複数のガス噴出孔29Cのいずれもが形成されない領域に放電空間DSが設けられる。 First arrangement relation: the plurality of gas supply holes 19C and the plurality of gas injection holes 29C are arranged without overlapping with each other in plan view, and the plurality of gas supply holes 19C and the plurality of gas injection holes 29C in plan view A discharge space DS is provided in a region where none of them is formed.
 第2の配置関係:複数のガス噴出孔29Cそれぞれは、複数のガス供給孔19Cのうち平面視して隣接する4つ(少なくとも2つ)のガス供給孔19Cを有し、隣接する4つのガス供給孔19Cそれぞれから、複数のガス噴出孔29Cのうち対応するガス噴出孔29Cに至る4つの距離は全て同一距離D3となる(図9参照)。 Second arrangement relation: Each of the plurality of gas injection holes 29C has four (at least two) gas supply holes 19C adjacent to each other in plan view among the plurality of gas supply holes 19C, and four adjacent gas The four distances from each of the supply holes 19C to the corresponding gas injection hole 29C among the plurality of gas injection holes 29C are all the same distance D3 (see FIG. 9).
 なお、高電圧側電極構成部1C及び接地側電極構成部2Cには図示しない高周波電源によって交流電圧が印加される。 An alternating voltage is applied to the high voltage side electrode forming unit 1C and the ground side electrode forming unit 2C by a high frequency power supply (not shown).
 また、図10に示すように、高電圧側電極構成部1C(誘電体電極11C)及び接地側電極構成部2C(誘電体電極21C)間において、離散的に複数の内部スペーサ33Cを設けても良い。複数の内部スペーサ33Bは複数のガス供給孔19B及び複数のガス噴出孔29BのX方向及びY方向が一致しない位置に設けられ、各内部スペーサ33Cは平面視円状であり、ガス供給孔19Cの第1の孔径より小さく、ガス噴出孔29Bの第2の孔径と同程度の第3の直径を有している。 Further, as shown in FIG. 10, even if a plurality of internal spacers 33C are provided discretely between the high voltage side electrode configuration 1C (dielectric electrode 11C) and the ground side electrode configuration 2C (dielectric electrode 21C). good. The plurality of internal spacers 33B are provided at positions where the X direction and the Y direction of the plurality of gas supply holes 19B and the plurality of gas ejection holes 29B do not coincide, and each internal spacer 33C is circular in plan view. It has a third diameter smaller than the first hole diameter and about the same as the second hole diameter of the gas injection holes 29B.
 なお、図9及び図10で示していないが、活性ガス生成装置の断面構造、図6のように成膜処理チャンバ63を下方に配置して成膜処理装置が構成できること、及び側面スペーサ30を有すること等を含む他の構成は、基本的に図1~図6で示した実施の形態1の活性ガス生成装置と同様であるため、説明を適宜省略している。 Although not shown in FIGS. 9 and 10, the cross-sectional structure of the active gas generator, the film formation processing chamber 63 can be disposed downward as shown in FIG. 6, and the side wall spacer 30 can be configured. The other configuration including the possessing and the like is basically the same as that of the active gas generator of the embodiment 1 shown in FIGS. 1 to 6, and hence the description is appropriately omitted.
 このような構成において、実施の形態3の活性ガス生成装置は、実施の形態1と同様、複数のガス供給孔19Cから原料ガス6を供給すると、交流電圧の印加により、複数の原料ガス6が複数の放電空間を通過すると、各放電空間にてラジカル化した窒素原子等の活性ガス7を得る。そして、誘電体電極21Cに設けられた複数のガス噴出孔29Cから下方(-Z方向)の外部に向けて活性ガス7を噴出することができる。 In such a configuration, in the active gas generation device of the third embodiment, as in the first embodiment, when the source gas 6 is supplied from the plurality of gas supply holes 19C, the plurality of source gases 6 are supplied by the application of alternating voltage. When passing through a plurality of discharge spaces, an active gas 7 such as nitrogen atom radicalized in each discharge space is obtained. Then, the active gas 7 can be jetted from the plurality of gas jetting holes 29C provided in the dielectric electrode 21C to the outside in the lower direction (−Z direction).
 実施の形態3の活性ガス生成装置において複数のガス供給孔19C及び複数のガス噴出孔29Cは上記第1及び第2の配置関係を満足して複数のガス噴出孔29から活性ガス7を外部に噴出することができる。 In the active gas generator according to the third embodiment, the plurality of gas supply holes 19C and the plurality of gas injection holes 29C satisfy the first and second positional relationships, and the activation gas 7 is externally output from the plurality of gas injection holes 29. You can spout.
 このため、実施の形態3の活性ガス生成装置は、実施の形態1と同様、複数の活性ガス7を受ける大きな面積のウェハ64(図6参照)等の目標物に対し、各々が均一な流量及び濃度の複数の活性ガス7を供給することができ、その結果、目標物の表面上に均一な膜を形成する成膜処理を行うことができる。この際、実施の形態3では、一のガス噴出孔29Cに隣接するガス供給孔19Cの数は“4”である。 Therefore, as in the first embodiment, the active gas generation device according to the third embodiment has a uniform flow rate for each target such as a large area wafer 64 (see FIG. 6) receiving the plurality of active gases 7. And a plurality of active gases 7 can be supplied, and as a result, a film forming process can be performed to form a uniform film on the surface of the target. At this time, in the third embodiment, the number of gas supply holes 19C adjacent to one gas injection hole 29C is “4”.
 さらに、実施の形態3の活性ガス生成装置は、実施の形態1と同様、ガス噴出用ノズル機能を備えるため、複数のガス噴出孔29Cで生成した活性ガス7を非常に短いミリ秒以下の短時間で、ウェハ64等の目標物に供給することができ、放電で生成した寿命の非常に短い活性ガス7であっても、減衰を最小限に抑えて、目標物への成膜時の成膜速度の向上を図ることができる。 Furthermore, since the active gas generation device of the third embodiment has a gas jet nozzle function as in the first embodiment, the active gas 7 generated by the plurality of gas jet holes 29C is very short and has a short millisecond or less. Even if the active gas 7 which can be supplied to the target such as the wafer 64 in time and has a very short life of the discharge, the attenuation is minimized and the deposition on the target is completed. The film speed can be improved.
 加えて、実施の形態2の活性ガス生成装置は、ガス供給孔19Cの第1の孔径よりガス噴出孔29Cの第2の孔径を小さくして、第1及び第2の孔径を異なる値に設定している。 In addition, in the active gas generator of the second embodiment, the second hole diameter of the gas injection holes 29C is made smaller than the first hole diameter of the gas supply holes 19C, and the first and second hole diameters are set to different values. doing.
 このため、上記第1及び第2の孔径を適宜調整することにより、原料ガス6のガス供給部の圧力、活性ガス7のガス噴出部(成膜処理チャンバ63等)の圧力に依存させることなく、高電圧側電極構成部1C及び接地側電極構成部2C間に形成される放電空間の圧力を所望の値に設定することができる。 Therefore, by appropriately adjusting the first and second hole diameters, the pressure of the gas supply portion of the source gas 6 and the pressure of the gas ejection portion (the film forming processing chamber 63 etc.) of the active gas 7 are not made dependent. The pressure of the discharge space formed between the high voltage side electrode forming portion 1C and the ground side electrode forming portion 2C can be set to a desired value.
 ガス供給部の圧力をPA、放電空間の圧力をPB、ガス噴出部の圧力をPC、ガス供給孔19Cの孔径RD、ガス噴出孔29Cの孔径をREとすると、PA<PC、PA>PCどちらの場合も圧力PBは圧力PAと圧力PCとの間の圧力に収まる。そして、放電の状態などの関係で圧力PBを変えたい場合は孔径RD,REの関係を以下のように設定すれば良い。すなわち、PA>PCの時に圧力PBを圧力PA側に近づけたい時は孔径RDを大きくするか、孔径REを小さくすることで実現できる。一方、圧力PBをPC側に近づけたい時は孔径RDを小さくするか、孔径REを大きくすることで実現できる。PA<PCの場合も孔径RD,REを同様に変えることで圧力PBの圧力を変えることができる。 Assuming that the pressure of the gas supply unit is PA, the pressure of the discharge space is PB, the pressure of the gas injection unit is PC, the hole diameter RD of the gas supply hole 19C, and the hole diameter of the gas injection hole 29C is RE, either PA <PC or PA> PC Also in the case, the pressure PB falls within the pressure between the pressure PA and the pressure PC. When it is desired to change the pressure PB in relation to the state of discharge, etc., the relationship between the hole diameter RD and RE may be set as follows. That is, when it is desired to bring the pressure PB closer to the pressure PA side when PA> PC, this can be realized by increasing the hole diameter RD or decreasing the hole diameter RE. On the other hand, when it is desired to bring the pressure PB close to the PC side, it can be realized by reducing the hole diameter RD or increasing the hole diameter RE. Also in the case of PA <PC, the pressure PB can be changed by similarly changing the pore sizes RD and RE.
 <他の態様>
 以下、実施の形態1~実施の形態3の活性ガス生成装置における他の態様を説明する。なお、以下に述べる第1~第3の態様は実施の形態1~実施の形態3全てで共通するため、説明の都合上、実施の形態1の活性ガス生成装置を代表して説明する。
<Other aspects>
Hereinafter, other aspects of the active gas generator according to Embodiments 1 to 3 will be described. The first to third aspects described below are common to all of the first to third embodiments, and therefore, for convenience of explanation, the active gas generation device of the first embodiment will be representatively described.
 (第1の態様(実施の形態1~実施の形態3で共通))
 実施の形態1の活性ガス生成装置において、高電圧側電極構成部1及び接地側電極構成部2のうち、活性ガスと接触する領域であるガス接触領域を石英、あるいはアルミナを構成材料として形成することが望ましい。
(First Embodiment (Common to Embodiments 1 to 3))
In the active gas generation device of the first embodiment, the gas contact region, which is a region in contact with the active gas, of the high voltage side electrode configuration portion 1 and the ground side electrode configuration portion 2 is formed using quartz or alumina as a component material. Is desirable.
 上記構成材料で形成した面は、活性ガスに対して化学的に安定な物質であるため、第1の態様は、活性ガス7と接触するガス接触領域との間で、化学反応が少ない状態、すなわち、活性ガス7の失活を抑制した状態で、活性ガス7を複数のガス供給孔19から外部の成膜処理チャンバ等に噴出することができる。 Since the surface formed of the above-mentioned constituent materials is a substance chemically stable to the active gas, the first aspect is a state in which there is little chemical reaction with the gas contact area in contact with the active gas 7; That is, the active gas 7 can be ejected from the plurality of gas supply holes 19 to an external film forming chamber or the like in a state where the deactivation of the active gas 7 is suppressed.
 加えて、第1の態様は、活性ガス生成装置の活性ガスとの化学反応に伴う副生成物としての腐食物質の生成も少なくすることができ、その結果として、外部に噴出する活性ガス7にコンタミネーションを含まない、クリーンな活性ガス7を成膜処理チャンバ63等の外部に供給することができ、成膜品質を高める効果が生じる。 In addition, according to the first aspect, the generation of corrosive substances as a by-product accompanying the chemical reaction with the active gas of the active gas generator can be reduced, and as a result, the active gas 7 ejected to the outside can be reduced. The clean active gas 7 which does not contain contamination can be supplied to the outside of the film formation processing chamber 63 or the like, and the effect of improving the film formation quality is produced.
 (第2の態様(実施の形態1~実施の形態3で共通))
 実施の形態1~実施の形態3の活性ガス生成装置において、原料ガス6として例えば窒素、酸素、弗素、希ガス及び水素のうち少なくとも一つを含むガスが考えられる。これら原料ガス6が複数のガス噴出孔29から供給され、内部の放電空間DSを通過する際に活性ガス7となり、複数の活性ガス7として、誘電体電極21に設けられた複数のガス噴出孔29から外部、例えは、成膜処理チャンバ63の処理空間SP33(図6参照)へと噴出される。したがって、成膜処理チャンバ63内において、反応性の高い活性ガス7を利用することにより目標物であるウェハ64に対し成膜処理を行うことができる。
(Second aspect (common to Embodiments 1 to 3))
In the active gas generator according to the first to third embodiments, as the source gas 6, for example, a gas containing at least one of nitrogen, oxygen, fluorine, a rare gas and hydrogen is considered. The raw material gases 6 are supplied from the plurality of gas injection holes 29 and become the active gas 7 when passing through the discharge space DS inside, and are made into the plurality of active gases 7 and the plurality of gas injection holes provided in the dielectric electrode 21 From 29 on the outside, for example, it is ejected to the processing space SP 33 (see FIG. 6) of the film forming processing chamber 63. Therefore, film formation processing can be performed on the target wafer 64 by using the reactive gas 7 having high reactivity in the film formation processing chamber 63.
 このように、第2の態様は、窒素、酸素、弗素、希ガス及び水素のうち少なくとも一つを含む原料ガス6から、より高濃度の活性ガス7を生成することができる。 Thus, according to the second aspect, the active gas 7 having a higher concentration can be generated from the source gas 6 containing at least one of nitrogen, oxygen, fluorine, a rare gas and hydrogen.
 さらに、第2の態様は、活性ガス7をウェハ64等の目標物への窒化膜や酸化膜の絶縁膜形成の成膜だけでなく、レジスト剥離やエッチング、洗浄ガスとして目標物の表面処理にも利用できる。 Furthermore, in the second embodiment, not only the film formation of the insulating film for forming the nitride film or oxide film on the target object such as the wafer 64, but also the surface treatment of the target object as resist stripping, etching and cleaning gas. Also available.
 加えて、第2の態様は、活性ガスとして水素ガスをウェハ64の表面に供給することで、絶縁膜のエッチング処理や洗浄処理以外の多様な成膜処理に利用できる。 In addition, the second aspect can be used for various film forming processes other than the etching process and the cleaning process of the insulating film by supplying hydrogen gas as the active gas to the surface of the wafer 64.
 (第3の態様(実施の形態1~実施の形態3で共通))
 実施の形態1~実施の形態3の活性ガス生成装置において、供給される原料ガス6として、前駆体ガス(プリカーサガス)を採用しても良い。
(Third aspect (common to Embodiments 1 to 3))
The precursor gas (precursor gas) may be employed as the source gas 6 to be supplied in the active gas generating apparatus according to the first to third embodiments.
 原料ガス6を、前駆体ガス(プリカーサガス)とすることにより、反応性ガスとしての高アスペクト比なウェハ64等の目標物に対する表面処理用のガスの利用だけでなく、目標物上での成膜に必要な、成膜用の堆積素材となる前駆体ガスについても、目標物に供給して成膜することができる。 By using the source gas 6 as a precursor gas (precursor gas), it is possible not only to use a surface treatment gas for a target such as a high aspect ratio wafer 64 as a reactive gas but also to form on the target The precursor gas that is required for the film and that is the deposition material for film formation can also be supplied to the target to form a film.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is an exemplification in all aspects, and the present invention is not limited thereto. It is understood that countless variations not illustrated are conceivable without departing from the scope of the present invention.
 例えば、実施の形態1及び実施の形態3では、1つのガス噴出孔29(29C)に対し平面視して隣接するガス供給孔19(19C)が4つの場合、実施の形態2では、1つのガス噴出孔29Bに対し平面視して隣接するガス供給孔19Bが3つの場合を示したが、1つのガス噴出孔に対し平面視して隣接するガス供給孔が2つ以上であり、上記第1及び第2の配置関係を満足すれば良い。 For example, in the first embodiment and the third embodiment, in the case where there are four gas supply holes 19 (19C) adjacent to one gas ejection hole 29 (29C) in a plan view, one in the second embodiment. Although three gas supply holes 19B adjacent to each other in plan view with respect to the gas injection holes 29B are shown, two or more gas supply holes adjacent in plan view to one gas injection hole are two or more. It suffices to satisfy the first and second arrangement relationships.
 1,1B,1C 高電圧側電極構成部
 2,2B,2C 接地側電極構成部
 10,10B,10C,20,20B,20C 金属電極
 11,11B,11C,21,21B,21C 誘電体電極
 19,19B,19C ガス供給孔
 29,29B,29C ガス噴出孔
 63 成膜処理チャンバ
 64 ウェハ
1, 1 B, 1 C High voltage side electrode configuration 2, 2 B, 2 C Ground side electrode configuration 10, 10 B, 10 C, 20, 20 B, 20 C Metal electrode 11, 11 B, 11 C, 21, 21 B, 21 C Dielectric electrode 19, 19B, 19C Gas supply holes 29, 29B, 29C Gas ejection holes 63 Deposition processing chamber 64 Wafer

Claims (8)

  1.  放電空間(DS)に供給された原料ガス(6)を活性化して得られる活性ガス(7)を生成する活性ガス生成装置であって、
     第1の電極構成部(1,1B,1C)と
     前記第1の電極構成部の下方に設けられる第2の電極構成部(2,2B,2C)とを備え、前記第1及び第2の電極構成部に交流電圧が印加され、前記交流電圧の印加により、前記第1及び第2の電極構成部間に前記放電空間が形成され、
     前記第1の電極構成部は、第1の誘電体電極(11,11B,11C)と前記第1の誘電体電極の上面上に形成される第1の金属電極(10,10B,10C)とを有し、前記第2の電極構成部は、第2の誘電体電極(21,21B,21C)と前記第2の誘電体電極の下面上に形成される第2の金属電極(11,11B,11C)とを有し、前記交流電圧の印加により前記第1及び第2の誘電体電極が対向する誘電体空間内において、前記第1及び第2の金属電極が平面視重複する領域を前記放電空間として含み、
     前記第1の誘電体電極は、前記原料ガスを前記放電空間に導くための複数のガス供給孔(19,19B,19C)を有し、
     前記第2の誘電体電極は、前記活性ガスを外部に噴出するための複数のガス噴出孔(19,29B,29C)を有し、
     前記複数のガス供給孔及び前記複数のガス噴出孔は、
     前記複数のガス供給孔及び前記複数のガス噴出孔が平面視して互いに重複することなく配置され、平面視して前記複数のガス供給孔及び前記複数のガス噴出孔のいずれもが形成されない領域に前記放電空間が設けられる第1の配置関係と、
     前記複数のガス噴出孔それぞれは、前記複数のガス供給孔のうち平面視して隣接する少なくとも2つのガス供給孔を有し、前記少なくとも2つのガス供給孔それぞれから、前記複数のガス噴出孔のうち対応するガス噴出孔に至る少なくとも2つの距離は全て同一距離(D1,D2,D3)となる第2の配置関係とを、満足するように配置されることを特徴とする、
    活性ガス生成装置。
    An active gas generator for generating an active gas (7) obtained by activating a source gas (6) supplied to a discharge space (DS), comprising:
    A first electrode component (1, 1B, 1C) and a second electrode component (2, 2B, 2C) provided below the first electrode component; An alternating voltage is applied to the electrode component, and the discharge space is formed between the first and second electrode components by the application of the alternating voltage.
    The first electrode component includes a first dielectric electrode (11, 11B, 11C) and a first metal electrode (10, 10B, 10C) formed on the upper surface of the first dielectric electrode. And the second electrode component is formed of a second dielectric electrode (21, 21B, 21C) and a second metal electrode (11, 11B) formed on the lower surface of the second dielectric electrode. 11C), and in the dielectric space where the first and second dielectric electrodes face each other by the application of the alternating voltage, a region where the first and second metal electrodes overlap in plan view is As a discharge space,
    The first dielectric electrode has a plurality of gas supply holes (19, 19B, 19C) for introducing the source gas into the discharge space,
    The second dielectric electrode has a plurality of gas injection holes (19, 29B, 29C) for injecting the active gas to the outside,
    The plurality of gas supply holes and the plurality of gas injection holes are
    A region where the plurality of gas supply holes and the plurality of gas injection holes are arranged without overlapping with each other in plan view, and none of the plurality of gas supply holes and the plurality of gas injection holes are formed in plan view A first arrangement relationship in which the discharge space is provided;
    Each of the plurality of gas injection holes has at least two gas supply holes adjacent to each other in plan view among the plurality of gas supply holes, and each of the plurality of gas injection holes is provided from each of the at least two gas supply holes. Wherein at least two of the distances to the corresponding gas injection holes are all arranged to satisfy a second arrangement relation in which all the distances are the same (D1, D2, D3),
    Active gas generator.
  2.  請求項1記載の活性ガス生成装置であって、
     前記複数のガス供給孔はそれぞれ第1の孔径を有し、
     前記複数のガス噴出孔はそれぞれ第2の孔径を有し、
     前記第1の孔径と前記第2の孔径とが異なることを特徴とする、
    活性ガス生成装置。
    The active gas generator according to claim 1, wherein
    Each of the plurality of gas supply holes has a first hole diameter,
    Each of the plurality of gas injection holes has a second hole diameter,
    The first hole diameter and the second hole diameter are different;
    Active gas generator.
  3.  請求項1記載の活性ガス生成装置であって、
     前記第1及び第2の電極構成部のうち、活性ガスと接触する領域であるガス接触領域を石英、またはアルミナを構成材料として形成したことを特徴とする、
    活性ガス生成装置。
    The active gas generator according to claim 1, wherein
    Among the first and second electrode components, the gas contact region, which is a region in contact with an active gas, is formed of quartz or alumina as a component material.
    Active gas generator.
  4.  請求項1記載の活性ガス生成装置であって、
     前記原料ガスは、窒素、酸素、弗素、希ガス及び水素のうち少なくとも一つを含むガスである、
    活性ガス生成装置。
    The active gas generator according to claim 1, wherein
    The source gas is a gas containing at least one of nitrogen, oxygen, fluorine, a rare gas and hydrogen.
    Active gas generator.
  5.  請求項1記載の活性ガス生成装置であって、
     前記原料ガスは、前駆体ガスである、
    活性ガス生成装置。
    The active gas generator according to claim 1, wherein
    The source gas is a precursor gas,
    Active gas generator.
  6.  請求項1記載の活性ガス生成装置であって、
     前記少なくとも2つのガス供給孔は、4つのガス供給孔である、
    活性ガス生成装置。
    The active gas generator according to claim 1, wherein
    The at least two gas supply holes are four gas supply holes,
    Active gas generator.
  7.  請求項1記載の活性ガス生成装置であって、
     前記少なくとも2つのガス供給孔は、3つのガス供給孔である、
    活性ガス生成装置。
    The active gas generator according to claim 1, wherein
    The at least two gas supply holes are three gas supply holes,
    Active gas generator.
  8.  請求項1から請求項7のうち、いずれか1項に記載の活性ガス生成装置と、
     前記第2の電極構成部の下方に配置され、内部の処理対象基板(64)に対し活性ガスによる成膜処理を行う成膜処理チャンバ(63)とを備え、
     前記成膜処理チャンバは、前記活性ガス生成装置の前記複数のガス噴出孔から噴出される前記活性ガスを直接受けるように配置されることを特徴とする、
    成膜処理装置。
    The active gas generation device according to any one of claims 1 to 7;
    And a film formation processing chamber (63) disposed under the second electrode configuration unit and performing film formation processing with an active gas on the processing target substrate (64) in the inside;
    The film formation processing chamber is disposed to directly receive the active gas ejected from the plurality of gas injection holes of the active gas generation device.
    Deposition processing equipment.
PCT/JP2018/000230 2018-01-10 2018-01-10 Active gas generation device and film formation processing device WO2019138453A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019565098A JP6719856B2 (en) 2018-01-10 2018-01-10 Active gas generation device and film formation processing device
PCT/JP2018/000230 WO2019138453A1 (en) 2018-01-10 2018-01-10 Active gas generation device and film formation processing device
TW107118295A TWI675123B (en) 2018-01-10 2018-05-29 Activated gas generation apparatus and film-formation treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000230 WO2019138453A1 (en) 2018-01-10 2018-01-10 Active gas generation device and film formation processing device

Publications (1)

Publication Number Publication Date
WO2019138453A1 true WO2019138453A1 (en) 2019-07-18

Family

ID=67219446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000230 WO2019138453A1 (en) 2018-01-10 2018-01-10 Active gas generation device and film formation processing device

Country Status (3)

Country Link
JP (1) JP6719856B2 (en)
TW (1) TWI675123B (en)
WO (1) WO2019138453A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059904A1 (en) * 2020-09-17 2022-03-24 주식회사 엘지화학 Sparger and reactor comprising same
EP3886540A4 (en) * 2019-11-27 2022-07-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation device
JP7220973B1 (en) * 2021-12-08 2023-02-13 東芝三菱電機産業システム株式会社 Active gas generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118044338A (en) 2022-09-14 2024-05-14 东芝三菱电机产业系统株式会社 Active gas generating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535041A (en) * 2001-07-02 2004-11-18 プラズマゾル・コーポレイション Novel electrode for atmospheric pressure plasma irradiation device and method of using the same
JP2007141582A (en) * 2005-11-16 2007-06-07 Uinzu:Kk Discharge plasma treatment device
JP2011154973A (en) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp Plasma treatment device and plasma treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008123142A1 (en) * 2007-03-27 2010-07-15 積水化学工業株式会社 Plasma processing equipment
JP2009199740A (en) * 2008-02-19 2009-09-03 Sekisui Chem Co Ltd Plasma treatment device
KR101913978B1 (en) * 2014-07-25 2018-10-31 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Radical gas generation system
JP6224266B2 (en) * 2014-10-29 2017-11-01 東芝三菱電機産業システム株式会社 Discharge generator and its power supply
US11007497B2 (en) * 2014-10-29 2021-05-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gas jetting apparatus
CN108292603B (en) * 2016-01-06 2022-06-28 东芝三菱电机产业系统株式会社 Gas supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535041A (en) * 2001-07-02 2004-11-18 プラズマゾル・コーポレイション Novel electrode for atmospheric pressure plasma irradiation device and method of using the same
JP2007141582A (en) * 2005-11-16 2007-06-07 Uinzu:Kk Discharge plasma treatment device
JP2011154973A (en) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp Plasma treatment device and plasma treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886540A4 (en) * 2019-11-27 2022-07-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation device
WO2022059904A1 (en) * 2020-09-17 2022-03-24 주식회사 엘지화학 Sparger and reactor comprising same
US12017209B2 (en) 2020-09-17 2024-06-25 Lg Chem, Ltd. Sparger and reactor comprising the same
JP7220973B1 (en) * 2021-12-08 2023-02-13 東芝三菱電機産業システム株式会社 Active gas generator

Also Published As

Publication number Publication date
JPWO2019138453A1 (en) 2020-04-02
TWI675123B (en) 2019-10-21
TW201930644A (en) 2019-08-01
JP6719856B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2019138453A1 (en) Active gas generation device and film formation processing device
JP4430003B2 (en) High density plasma chemical vapor deposition system
TWI463522B (en) An antenna, a battery window, a plasma processing device, and a plasma processing method
KR101515896B1 (en) Gas shower device having gas curtain and apparatus for depositing film using the same
KR20130067600A (en) Atomic layer deposition apparatus providing direct palsma
JPH03219082A (en) Blowoff-type surface treating device
KR20080105617A (en) Chemical vapor deposition apparatus and plasma enhanced chemical vapor deposition apparatus
KR20070048492A (en) Substrate processing apparatus
KR20170058418A (en) Electrical discharge generator and power supply device therefor
WO2018003002A1 (en) Active gas-generating device and film formation apparatus
KR101388222B1 (en) Atomic layer deposition apparatus for generating uniform plasma
KR20110093251A (en) Substrate treating apparatus
US9174249B2 (en) Ultrasonic cleaning method and apparatus therefore
TWI727316B (en) Substrate processing apparatus
TW201820390A (en) Device for distributing gas and apparatus for processing substrate
KR101151250B1 (en) Apparatus and method for plasma processing
JP2010218801A (en) Atmospheric-pressure plasma generator
KR20100071604A (en) Apparatus for high density plasma chemical vapor deposition with nozzle capable of controlling spray angle
KR100914398B1 (en) Appartus of plasma processing for substrate
TWI715002B (en) Two piece electrode assembly with gap for plasma control
KR20100049322A (en) Atmospheric pressure plasma generating device
JP5645157B2 (en) Plasma device
US20200139412A1 (en) Plasma generating device and plasma cleaning device
RU219545U1 (en) Device for surface modification of materials by means of atmospheric pressure plasma
KR20100121984A (en) Gas supply structure for substrate treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900529

Country of ref document: EP

Kind code of ref document: A1