WO2019137101A1 - 扩压器和风机 - Google Patents

扩压器和风机 Download PDF

Info

Publication number
WO2019137101A1
WO2019137101A1 PCT/CN2018/116864 CN2018116864W WO2019137101A1 WO 2019137101 A1 WO2019137101 A1 WO 2019137101A1 CN 2018116864 W CN2018116864 W CN 2018116864W WO 2019137101 A1 WO2019137101 A1 WO 2019137101A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
annular
blade
trailing edge
line
Prior art date
Application number
PCT/CN2018/116864
Other languages
English (en)
French (fr)
Inventor
冯国平
蒋婷婷
刘亚琼
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2019137101A1 publication Critical patent/WO2019137101A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes

Definitions

  • the invention relates to the field of wind turbines, in particular to a diffuser and a fan.
  • the vacuum cleaner fan is mainly composed of a moving impeller and a diffuser.
  • the design level of the two directly determines the working performance of the fan.
  • 50% or more of the work done by the impeller on the fluid enters the diffuser in the form of kinetic energy.
  • the function is to convert the kinetic energy of the fluid into static pressure, and it can control the flow angle of the outlet flow of the fluid, which has an important influence on the connection or heat dissipation of the driving device.
  • Due to the volume limitation of the diffuser the working process entrance and exit The airflow impact loss is large, and the pressure expansion capability is limited by the volume limitation.
  • Another object of the present invention is to provide a fan.
  • an embodiment of the first aspect of the present invention provides a diffuser comprising: an annular base, the upper surface of the annular base being configured as an annular surface, the outer surface of the annular surface being located lower than the annular surface
  • the outlet, the diffuser vanes respectively have a vane leading edge disposed at the fluid inlet and a vane trailing edge disposed at the fluid outlet, wherein the vane leading edge and/or the vane trailing edge are spatially inclined relative to the axis of the annular base.
  • the annular base comprises a base portion and a support cylinder segment portion disposed under the base portion.
  • the base portion is configured to cooperate with the assembly of the impeller, and the rotation of the impeller converts the axial fluid into a radial fluid, and the diffusing effect is achieved by the diffuser.
  • the diffuser vane may be a planar blade or a curved blade.
  • the inverted trapezoidal diffuser vanes may be such that the outer edge expands from bottom to top and/or the inner edge expands from bottom to top.
  • the toroidal surface When the annular surface is a toroidal surface, the toroidal surface has a central axis, and the direction of the central axis is taken as the height direction, the side of the annular surface on which the diffusing vane is disposed is upper, and the side on which the supporting tubular section is disposed is below.
  • the direction of the central axis is taken as the height direction
  • the side of the annular surface on which the diffusing vane is disposed is upper
  • the side on which the supporting tubular section is disposed is below.
  • the diffuser in the above embodiment provided by the present invention may further have the following additional technical features:
  • the annular surface is formed to rotate circumferentially along the axis; the end point of the trailing edge of the trailing edge of the blade forms an end line connection with the upper end end of the trailing edge of the blade, and the projection line of the end point line on the associated axial section There is a first angle with the axis, the first angle is greater than or equal to 0° and less than or equal to 60°.
  • the angle between the projection of the end line connecting the end point of the trailing edge of the blade and the end point of the upper end on the opposite axial section and the axis defines the distance between the lower end end and the upper end point.
  • the shape of the trailing edge of the diffuser vane can be a straight line, an arc, a spline, a plane or a curved surface.
  • the plurality of diffuser vanes are evenly spaced on the annular surface in a circumferential direction; the first angle is greater than 0° to configure the trailing edge of the vane to be away from the lower end end to the end end The direction of the axis extends.
  • the plurality of diffuser vanes are uniformly distributed in the circumferential direction, and the trailing edge of the vane has an outer edge trend from the bottom to the top, thereby achieving the effect of improving the diversion effect and improving the pressure expansion capability.
  • the lower end end and the upper end end may be connected by a straight line, an arc connection, or a curved line.
  • the line connecting the leading edge of the blade with the axis on the horizontal plane is determined to be a radial direction; the diffusing blade gradually deviates from the radial direction from the leading edge of the blade to the trailing edge of the blade.
  • the diffuser vanes gradually deviate from the radial direction from the leading edge of the vane to the trailing edge of the vane, and may deviate in a clockwise direction or in a counterclockwise direction.
  • a first line is formed between a lower end end of the trailing edge of the blade and a lower end end of the leading edge of the blade
  • a second line is formed between the upper end end of the trailing edge of the blade and the upper end end of the leading edge of the blade.
  • the first line and the second line are mapped on the horizontal plane to form a second angle, and the second angle is greater than 0 degrees and less than or equal to 15 degrees.
  • a side opposite to the counterclockwise direction is used as the front side
  • a side wall opposite to the instantaneous needle direction is used as the rear side, by defining between the first connecting line and the second connecting line.
  • the angle is such that the front and/or the back are inclined from the bottom to the top, and after the fluid enters the fluid passage, the diffusing effect can be achieved in a plurality of directions, thereby obtaining a larger fluid outlet diffusing capacity, thereby improving the diffuser. Diffusion performance.
  • the annular surface comprises at least one of an annular bevel and an annular curved surface; or at least one of the annular bevel and the annular curved surface is further configured to form an annular surface in a radial splicing configuration with the annular plane.
  • the annular surface has various configurations, including an annular inclined surface, a circular curved surface, a circular inclined surface combined with a circular curved surface, a circular inclined surface combined with an annular plane, a circular curved surface combined with an annular plane, and a circular inclined surface, a circular curved surface and a ring shape.
  • the combination between the planes requires that the horizontal plane where the outer edge of the annular surface is located is lower than the horizontal plane where the inner edge of the annular surface is located, so as to improve the flow guiding effect.
  • the annular surface is a convex curved surface; the convex curved surface forms a convex curve on any axial section, and a tangent between any point on the convex curved line and the axis has a third angle, The third angle gradually decreases in a direction away from the axis.
  • the convex curved surface is projected on any axial section to form a convex curve, and the angle between the tangent of any point on the convex curve and the axis, The gradual decrease in the direction away from the axis, that is, the downward inclination from the proximal end to the distal end, so that the pressure can be diffused in the direction of the fluid flow in the height direction, correspondingly reducing the airflow loss.
  • the convex curve is formed by at least one tangential arc structure, and at least one tangential arc is rotated 360° around the axis to construct a convex curved surface.
  • the convex curve is formed by an arc structure of at least one tangent arc, and the arc rotates around the axis to form a convex curved surface with a smooth surface, thereby realizing the premise of diffusing and diversion. Improves the structural performance of the ring base.
  • the number of diffusing vanes is greater than or equal to 12 and less than or equal to 35.
  • the number of diffuser vanes may be greater than or equal to 16 and less than or equal to 21.
  • An embodiment of the second aspect of the present invention provides a fan comprising: an impeller; the diffuser according to the embodiment of the first aspect of the present invention, disposed on an outer circumference of the impeller, wherein the circumferential airflow passes through the impeller to form a diameter To the airflow, the radial airflow passes through the diffuser and is converted to pressure energy.
  • the diffuser is arranged on the outer circumference of the impeller, and when the fan is in operation, the airflow enters the impeller in the axial direction of the impeller, and after flowing through the impeller, the flow direction changes from the axial direction to the radial direction, and along the diameter Flowing outward into the diffuser, in the diffuser, by setting the offset diffuser vanes, again changing the flow direction of the air flow, and decelerating the air flow due to the increased cross-sectional area of the passage for the flow of air
  • This deceleration converts kinetic energy into pressure energy, which in turn achieves deceleration and expansion.
  • the improved diffuser can provide greater pressure expansion. And a more adequate diversion effect, which in turn has a smaller inlet and outlet impact loss and a larger outlet expansion capacity.
  • An embodiment of the third aspect of the invention provides a vacuum cleaner comprising the fan of the embodiment of the second aspect of the invention.
  • An embodiment of the fourth aspect of the invention provides a smoking machine comprising the fan of the embodiment of the second aspect of the invention.
  • Figure 1 is a perspective view showing the structure of a diffuser according to an embodiment of the present invention.
  • Figure 2 is a plan view showing the planar structure of a diffuser according to an embodiment of the present invention.
  • Figure 3 is a schematic side view showing the diffuser of Figure 2;
  • Figure 4 is a partial structural view showing a portion A in Figure 3;
  • Figure 5 is a partial structural view showing a diffuser according to another embodiment of the present invention.
  • Figure 6 is a partial structural view showing a diffuser according to still another embodiment of the present invention.
  • Fig. 7 shows a partial structural schematic view of a diffuser according to still another embodiment of the present invention.
  • a diffuser in accordance with some embodiments of the present invention is described below with reference to FIGS. 1 through 7.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a diffuser 10 includes: an annular base 102 having an upper surface configured as an annular surface 1022; a plurality of diffuser vanes 104, circumferentially spaced Distributed on the upper surface, adjacent two diffuser vanes 104 form a fluid inlet at the outer edge of the annular surface 1022, and adjacent two diffuser vanes 104 form a fluid outlet at the inner edge of the annular surface 1022, diffusing
  • the vanes 104 each have a vane leading edge 1042 disposed at the fluid inlet and a vane trailing edge 1044 disposed at the fluid outlet, wherein the vane leading edge 1042 and/or the vane trailing edge 1044 are spatially inclined relative to the axis of the annular base 102 Settings.
  • the outer edges of the diffuser vanes 104 are inclined. The impact loss at the fluid outlet and/or the fluid inlet can be reduced, and the effect of increasing the pressure expansion capability is also achieved.
  • the annular base 102 includes a base portion and a support cylinder segment portion disposed under the base portion.
  • the base portion is configured to cooperate with the assembly of the impeller, and the rotation of the impeller converts the axial fluid into a radial fluid, and the diffuser is achieved by the diffuser 10.
  • the diffuser vanes 104 may be planar blades or curved blades.
  • the inverted trapezoidal diffuser vanes 104 may have the outer edge expanded from bottom to top and/or the inner edge expanded from bottom to top.
  • the annular surface 1022 is a toroidal surface
  • the annular surface has a central axis with the direction of the central axis as the height direction, and the annular surface 1022 is provided with the side of the diffuser vane 104 as the upper side, and the side supporting the cylindrical section is provided.
  • the following additional features are described on the basis of this direction.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the outer edge of the annular surface 1022 is located at a lower level than the inner surface of the annular surface 1022.
  • the fluid can enter the fluid passage formed by the diffuser vanes 104 and can be diffused obliquely downward along the annular surface 1022 on the lower side. Therefore, it is beneficial to increase the pressure-expansion capacity and the diversion function.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the annular surface 1022 is circumferentially rotated along the axis parallel line 106; an end point is formed between the lower end end of the blade trailing edge 1044 and the upper end end of the blade trailing edge 1044.
  • the connection line 1024 has a first angle ⁇ between the projection line on the associated axis section and the axis parallel line 106, and the first angle ⁇ is greater than or equal to 0° and less than or equal to 60°. .
  • the lower end point is defined by the angle between the projection of the end line 1024 between the lower end end and the upper end end of the blade trailing edge 1044 on the opposite axial section and the axis parallel line 106.
  • the outer direction has an outer edge trend in the lower direction, which can improve the diversion effect and improve the pressure expansion capability.
  • the shape of the trailing edge of the diffuser vane 104 may be a straight line, an arc, a spline, a plane or a curved surface.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the shape of the trailing edge of the diffuser vane 104 may be an arc.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the first angle ⁇ is 12°.
  • the plurality of diffuser vanes 104 are evenly spaced on the annular surface 1022 in a circumferential direction; the first angle ⁇ is greater than 0° to configure the trailing edge 1044 of the blade to be upward from the lower end The end ends extend in a direction away from the parallel line 106 of the axis.
  • the plurality of diffuser vanes 104 are circumferentially uniform, and the trailing edge 1044 of the vane has an outer edge trend from the bottom to the top, thereby achieving the effect of improving the diversion effect and improving the pressure expansion capability.
  • the lower end end and the upper end end may be connected by a straight line, an arc connection, or a curved line.
  • the line connecting the blade leading edge 1042 and the axis parallel line 106 on the horizontal plane is determined to be a radial direction; the diffusing blade 104 is from the blade leading edge 1042.
  • the trailing edge 1044 to the blade gradually deviates from the radial direction.
  • the diffuser vanes 104 by defining the diffuser vanes 104 to gradually deviate from the radial direction from the leading edge 1042 of the vane to the trailing edge 1044 of the vane, i.e., gradually deviating from the radial direction from the inside to the outside, it is advantageous to improve the aerodynamic characteristics of the flow passage and reduce Flow loss of small airflow.
  • the diffuser vanes 104 gradually deviate from the radial direction from the leading edge 1042 of the vane to the trailing edge 1044 of the vane, and may be offset in a clockwise direction or in a counterclockwise direction.
  • a first line is formed between the lower end end of the blade trailing edge 1044 and the lower end end of the blade leading edge 1042, and the upper end end of the blade trailing edge 1044 and the blade front end
  • a second line is formed between the upper end points of the edge 1042.
  • the first line and the second line are mapped on the horizontal plane to form a second angle ⁇ , and the second angle ⁇ is greater than 0 degrees and less than or equal to 15 degrees.
  • the side opposite to the counterclockwise direction is taken as the front side
  • the side wall which is relatively in the direction of the instantaneous needle is taken as the rear side, by defining between the first line and the second line.
  • the angle between the front and/or the back is inclined from bottom to top, and after the fluid enters the fluid passage, the diffusing effect can be achieved in multiple directions, thereby obtaining a larger fluid outlet diffusing capacity, thereby improving the diffuser. 10's diffusing performance.
  • the annular surface 1022 includes at least one of an annular bevel and an annular curved surface; at least one of the annular bevel and the annular curved surface can also be radially spliced with the annular planar to form an annular surface 1022 .
  • the annular surface 1022 has various configurations including an annular bevel, an annular curved surface, a circular bevel combined with a toroidal surface, a circular bevel combined with an annular plane, a toroidal surface combined with an annular plane, and a circular bevel, a toroidal surface and
  • the combination of the annular planes requires that the horizontal plane where the outer edge of the annular surface 1022 is located is lower than the horizontal plane of the inner edge of the annular surface 1022 to improve the flow guiding effect.
  • annular face is an annular bevel 1022A.
  • the annular surface is formed by splicing the annular curved surface 1022B and the annular flat surface 1022C in the radial direction.
  • the annular surface 1022 is a convex curved surface; the convex curved surface forms a convex curve on an arbitrary axial section, and a tangent of any point on the convex curved line.
  • the third angle between the tangent to any point on the convex curve and the parallel line 106 of the axis is ⁇ 2
  • the third angle between the tangent to any point on the convex curve and the parallel line 106 of the axis is For ⁇ 1, ⁇ 2> ⁇ 1.
  • the convex curved surface is projected to form a convex curve on any axial section, and a tangent to any point on the convex curve and a parallel line 106 with the axis
  • the angle is gradually decreased in a direction away from the parallel line 106 of the axis, that is, gradually inclined downward from the proximal end to the distal end, so that the pressure can be diffused in the direction of the fluid flow in the height direction, correspondingly reducing the airflow loss.
  • the convex curve is formed by at least one tangential arc configuration, and at least one tangential arc is rotated 360° about the axis parallel line 106 to construct a convex arc surface.
  • the circular arc rotates around the parallel line 106 to form a convex curved surface with smooth surface, thereby realizing the diffusing diversion.
  • the structural performance of the annular base 102 is improved.
  • the number of diffuser vanes 104 is greater than or equal to 12 and less than or equal to 35.
  • the number of diffuser vanes 104 may be greater than or equal to 16 and less than or equal to 21.
  • the upper surface of the annular base 102 is an annular inclined surface 1022A, and the annular inclined surface 1022A is circumferentially evenly provided with 19 inverted trapezoidal diffusing blades 104, as shown in FIG.
  • the end point line 1024 of the blade trailing edge 1044 of the diffuser vane is an oblique straight line and expands from bottom to top.
  • a fan according to an embodiment of the present invention includes: an impeller; the diffuser according to the embodiment of the first aspect of the present invention, disposed on an outer circumference of the impeller, wherein the circumferential airflow passes through the impeller to form a radial airflow, radial The airflow is converted to pressure energy after passing through the diffuser.
  • the diffuser is disposed on the outer circumference of the impeller.
  • the airflow enters the impeller in the axial direction of the impeller, and after flowing through the impeller, the flow direction changes from the axial direction to the radial direction, and along the diameter.
  • Flowing outward into the diffuser, in the diffuser by setting the offset diffuser vanes, again changing the flow direction of the air flow, and decelerating the air flow due to the increased cross-sectional area of the passage for the flow of air
  • This deceleration converts kinetic energy into pressure energy, which in turn achieves deceleration and expansion.
  • the improved diffuser can provide greater pressure expansion. And a more adequate diversion effect, which in turn has a smaller inlet and outlet impact loss and a larger outlet expansion capacity.
  • a vacuum cleaner according to an embodiment of the present invention includes the fan described in the above embodiment of the present invention.
  • the working efficiency and the energy efficiency level of the cleaner can be improved.
  • a smoking machine according to an embodiment of the present invention includes the fan described in the above embodiment of the present invention.
  • the terms “first”, “second”, and “third” are used for the purpose of description only, and are not to be construed as indicating or implying relative importance; the term “plurality” means two or two. Above, unless otherwise explicitly defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly. For example, “connecting” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种扩压器(10)和风机,其中,扩压器(10)包括:环形底座(102),环形底座(102)的上表面被构造为环形面(1022);多个扩压叶片(104),周向间隔分布于上表面上,相邻的两个扩压叶片(104)在环形面(1022)的外沿处形成流体入口,相邻的两个扩压叶片(104)在环形面(1022)的内沿处形成流体出口,扩压叶片(104)分别具有设置于流体入口处的叶片前缘(1042),以及设置于流体出口处的叶片后缘(1044),其中,叶片前缘(1042)和/或叶片后缘(1044)相对于环形底座(102)的轴线呈空间倾斜设置。通过使用该扩压器(10),有利于提升扩压能力与导流作用,并能够减小流体出口和/或流体入口处的冲击损失,同样实现了提高扩压能力的效果。

Description

扩压器和风机
本申请要求于2018年01月15日提交中国专利局、申请号为201810036757.4、发明名称为“扩压器、风机、吸尘器和抽烟机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及风机领域,具体而言,涉及一种扩压器和一种风机。
背景技术
吸尘器风机主要由动叶轮和扩压器组成,二者的设计水平直接决定了风机的工作性能,通常叶轮对流体所做的功的50%或以上以动能的形式进入扩压器,扩压器的作用是最大的将流体的动能转化成静压,且其可以控制流体的出口气流流动角,这对驱动装置的连接或散热有很重要的影响,由于扩压器的体积限制,工作过程出入口气流冲击损失大,扩压能力受体积限制等缺陷。
发明内容
为了解决上述技术问题至少之一,本发明的一个目的在于提供一种扩压器,该扩压器不仅具有扩压的功能同时还具有导流的效果。
本发明的另一个目的在于提供一种风机。
本发明的再一个目的在于提供一种吸尘器。
本发明的又一个目的在于提供一种抽烟机。
为了实现上述目的,本发明第一方面的实施例提出了一种扩压器,包括:环形底座,环形底座的上表面被构造为环形面,环形面的外沿所在的水平面低于环形面的内沿所在的水平面;多个扩压叶片,周向间隔分布于上表面上,相邻的两个扩压叶片在外沿处形成流体入口,相邻的两个扩压叶片在内沿处形成流体出口,扩压叶片分别具有设置于流体入口处的叶片前缘,以及设置于流体 出口处的叶片后缘,其中,叶片前缘和/或叶片后缘相对于环形底座的轴线呈空间倾斜设置。
在该技术方案中,通过在环形底座的环形上表面上周向设置多个扩压叶片,与现有技术中扩压叶片不同的是,一方面,通过将环形面的外沿设置为低于环形面的内沿,流体进入由扩压叶片形成的流体通道后,在下侧能够沿环形面向斜下方扩散,从而有利于提升扩压能力与导流作用,另一方面,通过将扩压叶片的外缘倾斜设置,能够减小流体出口和/或流体入口处冲击损失,同样实现了提高扩压能力的效果。
环形底座包括底座部以及设置于底座部下方的支撑筒段部,底座部用于配合组装叶轮,叶轮旋转将轴向的流体转换为径向流体,通过扩压器后实现扩压效果。
其中,扩压叶片,可以为平面状叶片,也可以为曲面状叶片。
以靠近环形面的中心为内,远离环形面的中心为外,倒梯形的扩压叶片可以是外侧边缘由下至上向外扩张,和/或内侧边缘由下至上向内扩张。
在环形面为圆环面时,圆环面具有中心轴,以中心轴的方向作为高度方向,环形面设置有扩压叶片的一侧为上,设置有支撑筒段部的一侧为下,下述附加特征在该方向基础上进行描述。
另外,本发明提供的上述实施例中的扩压器还可以具有如下附加技术特征:
在上述技术方案中,优选地,环形面沿轴线周向旋转形成;叶片后缘的下端端点与叶片后缘的上端端点之间形成端点连线,端点连线在所属的轴截面上的投影线与轴线之间具有第一夹角,第一夹角大于或等于0°,并小于或等于60°。
在该技术方案中,通过限定叶片后缘的下端端点与上端端点之间的端点连线在相对的轴截面上的投影与轴线之间的夹角大小,限定了下端端点与上端端点之间的相对位置关系,在第一夹角等于0°时,端点连线与轴线之间成空间平行,在第一夹角大于0°时,叶片后缘从下方向上方具有外沿趋势,进而能够提升导流效果以及提高扩压能力。
扩压叶片后缘形状可以为直线、圆弧、样条曲线、平面或曲面等。
在上述任一技术方案中,优选地,多个扩压叶片沿周向间隔均布于环形面上;第一夹角大于0°,以将叶片后缘构造为从下端端点向上端端点向远离轴线的方向延伸。
在该技术方案中,多个扩压叶片周向均布,并且叶片后缘从下方向上方具有外沿趋势,进而实现提升导流效果以及提高扩压能力的效果。
其中,下端端点与上端端点之间可以通过直线连接,弧线连接,或曲线连接。
在上述任一技术方案中,优选地,将叶片前缘与轴线在水平面上的连线确定为径向;扩压叶片从叶片前缘至叶片后缘逐渐偏离径向。
在该技术方案中,通过将扩压叶片限定为从叶片前缘至叶片后缘逐渐偏离径向,即从内之外逐渐偏离径向,有利于改善流道的气动特性,并减小气流的流动损失。
其中,扩压叶片从叶片前缘至叶片后缘逐渐偏离径向,可以沿顺时针方向偏离,也可以沿逆时针方向偏离。
在上述任一技术方案中,优选地,叶片后缘的下端端点与叶片前缘的下端端点之间形成第一连线,叶片后缘的上端端点与叶片前缘的上端端点之间形成第二连线,第一连线与第二连线在水平面上映射形成第二夹角,第二夹角大于0度,并小于或等于15°。
在该技术方案中,针对每个扩压叶片,将相对处于逆时针方向的侧面作为前面,将相对处于瞬时针方向的侧壁作为后面,通过限定第一连线与第二连线之间的夹角,使前面和/或后面从下至上向后倾斜设置,流体进入流体通道后,能够在多个方向实现扩压效果,进而得到较大的流体出口扩压能力,从而提升扩压器的扩压性能。
在上述任一技术方案中,优选地,环形面包括环形斜面与环形曲面中的至少一种;或环形斜面与环形曲面中的至少一种还能够与环形平面沿径向拼接构造形成环形面。
在该技术方案中,环形面具有多种构造形式,包括环形斜面,环形曲面,环形斜面与环形曲面组合,环形斜面与环形平面组合,环形曲面与环形平面组合,以及环形斜面、环形曲面与环形平面之间的组合,前提都需要满足环形面 的外沿所在的水平面低于环形面的内沿所在的水平面,以实现导流效果的提升。
在上述任一技术方案中,优选地,环形面为凸形弧面;凸形弧面在任意轴截面上形成凸形曲线,凸形曲线上任一点的切线与轴线之间具有第三夹角,第三夹角沿远离轴线的方向逐渐减小。
在该技术方案中,通过将环形面构造为凸形弧面,凸形弧面在任意轴向截面上投影形成凸形曲线,凸形曲线上任意点的切线与与轴线之间的夹角,沿远离轴线的方向逐渐减小,即从近轴端向远轴端逐渐向下倾斜,从而能够在高度方向沿流体流动方向实现扩压,对应降低气流损失。
在上述任一技术方案中,优选地,凸形曲线由至少一条相切圆弧构造形成,至少一条相切圆弧绕轴线旋转360°,以构造出凸形弧面。
在该技术方案中,通过将凸形曲线设置为由至少一条相切圆弧的圆弧构造形成,圆弧绕轴线旋转形成表面光滑的凸形弧面,进而在实现扩压导流的前提下,提升了环形底座的构造性能。
在上述任一技术方案中,优选地,扩压叶片的数量大于或等于12个,并小于或等于35个。
进一步优选地,扩压叶片的数量可以大于或等于16个,并小于或等于21个。
本发明第二方面的实施例提出了一种风机,包括:叶轮;如本发明第一方面的实施例所述的扩压器,设置于叶轮的外周,其中,周向气流经过叶轮后形成径向气流,径向气流经过扩压器后转变为压力能。
在该技术方案中,扩压器设在叶轮的外周,风机在工作时,气流沿叶轮的轴向进入叶轮后,并通过流经叶轮后,流动方向由轴向变为径向,并沿径向向外流动进入扩压器,在扩压器中,通过设置偏移的扩压叶片,再一次使气流改变流动方向,并且由于用于流通气流的通道的断面面积增大,从而使气流减速,这种减速作用将动能转换成压力能,进而实现减速扩压,通过分别对环形底座的环形面以及扩压叶片的结构进行改进,使改进后的扩压器能够提供更大的扩压能力,以及更充分的导流作用,进而具有较小的出入口冲击损失及较大的出口扩压能力。
本发明第三方面的实施例提出了一种吸尘器,包括本发明第二方面的实施例所述的风机。
在该技术方案中,通过设置上述风机,可以提升吸尘器的工作效率以及能效等级。
本发明第四方面的实施例提出了一种抽烟机,包括本发明第二方面的实施例所述的风机。
在该技术方案中,通过设置上述风机,可以提升抽烟机的工作效率以及能效等级。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本发明的一个实施例的扩压器的立体结构示意图;
图2示出了根据本发明的一个实施例的扩压器的平面结构示意图;
图3示出了图2中的扩压器的侧向结构示意图;
图4示出了图3中A处的局部结构示意图;
图5示出了根据本发明的另一个实施例的扩压器的局部结构示意图;
图6示出了根据本发明的再一个实施例的扩压器的局部结构示意图;
图7示出了根据本发明的又一个实施例的扩压器的局部结构示意图。
其中,图1至图7中附图标记与部件名称之间的对应关系为:
10扩压器,102环形底座,1222环形面,104扩压叶片,1042叶片前缘,1044叶片后缘,106轴线平行线,1222A环形斜面,1024端点连线,1222B环形曲面,1222C环形平面。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情 况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7描述根据本发明一些实施例的扩压器。
实施例一:
如图1与图2所示,根据本发明一些实施例的扩压器10,包括:环形底座102,环形底座102的上表面被构造为环形面1022;多个扩压叶片104,周向间隔分布于上表面上,相邻的两个扩压叶片104在环形面1022的外沿处形成流体入口,相邻的两个扩压叶片104在环形面1022的内沿处形成流体出口,扩压叶片104分别具有设置于流体入口处的叶片前缘1042,以及设置于流体出口处的叶片后缘1044,其中,叶片前缘1042和/或叶片后缘1044相对于环形底座102的轴线呈空间倾斜设置。
在该实施例中,通过在环形底座102的环形上表面上周向设置多个扩压叶片104,与现有技术中扩压叶片104不同的是,通过将扩压叶片104的外缘倾斜设置,能够减小流体出口和/或流体入口处冲击损失,同样实现了提高扩压能力的效果。
环形底座102包括底座部以及设置于底座部下方的支撑筒段部,底座部用于配合组装叶轮,叶轮旋转将轴向的流体转换为径向流体,通过扩压器10后实现扩压效果。
其中,扩压叶片104,可以为平面状叶片,也可以为曲面状叶片。
以靠近环形面1022的中心为内,远离环形面1022的中心为外,倒梯形的扩压叶片104可以是外侧边缘由下至上向外扩张,和/或内侧边缘由下至上向内扩张。
在环形面1022为圆环面时,圆环面具有中心轴,以中心轴的方向作为高度方向,环形面1022设置有扩压叶片104的一侧为上,设置有支撑筒段部的一侧为下,下述附加特征在该方向基础上进行描述。
实施例二:
在上述实施例中,优选地,环形面1022的外沿所在的水平面低于环形面 1022的内沿所在的水平面
在该实施例中,通过将环形面1022的外沿设置为低于环形面1022的内沿,流体进入由扩压叶片104形成的流体通道后,在下侧能够沿环形面1022向斜下方扩散,从而有利于提升扩压能力与导流作用,另一方面,
实施例三:
如图1与图5所示,在上述实施例中,优选地,环形面1022沿轴线平行线106周向旋转形成;叶片后缘1044的下端端点与叶片后缘1044的上端端点之间形成端点连线1024,端点连线1024在所属的轴截面上的投影线与轴线平行线106之间具有第一夹角α,第一夹角α大于或等于或等于0°,并小于或等于60°。
在该实施例中,通过限定叶片后缘1044的下端端点与上端端点之间的端点连线1024在相对的轴截面上的投影与轴线平行线106之间的夹角大小,限定了下端端点与上端端点之间的相对位置关系,在第一夹角α等于0°时,端点连线与轴线平行线106之间成空间平行,在第一夹角α大于0°时,叶片后缘1044从下方向上方具有外沿趋势,进而能够提升导流效果以及提高扩压能力。
扩压叶片104后缘形状可以为直线、圆弧、样条曲线、平面或曲面等。
实施例四:
如图5所示,扩压叶片104后缘形状可以为圆弧。
实施例五:
如图5所示,优选地,第一夹角α为12°。
在上述任一实施例中,优选地,多个扩压叶片104沿周向间隔均布于环形面1022上;第一夹角α大于0°,以将叶片后缘1044构造为从下端端点向上端端点向远离轴线平行线106的方向延伸。
在该实施例中,多个扩压叶片104周向均布,并且叶片后缘1044从下方向上方具有外沿趋势,进而实现提升导流效果以及提高扩压能力的效果。
其中,下端端点与上端端点之间可以通过直线连接,弧线连接,或曲线连接。
如图1与图2所示,在上述任一实施例中,优选地,将叶片前缘1042与 轴线平行线106在水平面上的连线确定为径向;扩压叶片104从叶片前缘1042至叶片后缘1044逐渐偏离径向。
在该实施例中,通过将扩压叶片104限定为从叶片前缘1042至叶片后缘1044逐渐偏离径向,即从内之外逐渐偏离径向,有利于改善流道的气动特性,并减小气流的流动损失。
其中,扩压叶片104从叶片前缘1042至叶片后缘1044逐渐偏离径向,可以沿顺时针方向偏离,也可以沿逆时针方向偏离。
如图2所示,在上述任一实施例中,优选地,叶片后缘1044的下端端点与叶片前缘1042的下端端点之间形成第一连线,叶片后缘1044的上端端点与叶片前缘1042的上端端点之间形成第二连线,第一连线与第二连线在水平面上映射形成第二夹角β,第二夹角β大于0度,并小于或等于15°。
在该实施例中,针对每个扩压叶片104,将相对处于逆时针方向的侧面作为前面,将相对处于瞬时针方向的侧壁作为后面,通过限定第一连线与第二连线之间的夹角,使前面和/或后面从下至上向后倾斜设置,流体进入流体通道后,能够在多个方向实现扩压效果,进而得到较大的流体出口扩压能力,从而提升扩压器10的扩压性能。
在上述任一实施例中,优选地,环形面1022包括环形斜面与环形曲面中的至少一种;环形斜面与环形曲面中的至少一种还能够与环形平面沿径向拼接构造形成环形面1022。
在该实施例中,环形面1022具有多种构造形式,包括环形斜面,环形曲面,环形斜面与环形曲面组合,环形斜面与环形平面组合,环形曲面与环形平面组合,以及环形斜面、环形曲面与环形平面之间的组合,前提都需要满足环形面1022的外沿所在的水平面低于环形面1022的内沿所在的水平面,以实现导流效果的提升。
实施例六:
如图6所示,环形面为环形斜面1022A。
实施例七:
如图7所示,环形面为环形曲面1022B与环形平面1022C沿径向拼接形成。
实施例八:
如图3与图4所示,在上述任一实施例中,优选地,环形面1022为凸形弧面;凸形弧面在任意轴截面上形成凸形曲线,凸形曲线上任一点的切线与轴线平行线106之间具有第三夹角γ,第三夹角γ沿远离轴线平行线106的方向逐渐减小。
如图4所示,靠近凸形曲线上任一点的切线与轴线平行线106之间的第三夹角为γ2,远离凸形曲线上任一点的切线与轴线平行线106之间的第三夹角为γ1,则有γ2>γ1。
在该实施例中,通过将环形面1022构造为凸形弧面,凸形弧面在任意轴向截面上投影形成凸形曲线,凸形曲线上任意点的切线与与轴线平行线106之间的夹角,沿远离轴线平行线106的方向逐渐减小,即从近轴端向远轴端逐渐向下倾斜,从而能够在高度方向沿流体流动方向实现扩压,对应降低气流损失。
在上述任一实施例中,优选地,凸形曲线由至少一条相切圆弧构造形成,至少一条相切圆弧绕轴线平行线106旋转360°,以构造出凸形弧面。
在该实施例中,通过将凸形曲线设置为由至少一条相切圆弧的圆弧构造形成,圆弧绕轴线平行线106旋转形成表面光滑的凸形弧面,进而在实现扩压导流的前提下,提升了环形底座102的构造性能。
在上述任一实施例中,优选地,扩压叶片104的数量大于或等于12个,并小于或等于35个。
实施例九:
进一步优选地,扩压叶片104的数量可以大于或等于16个,并小于或等于21个。
实施例十:
如图1与图2所示,根据本发明的实施例的扩压器,环形底座102的上表面为环形斜面1022A,环形斜面1022A周向均布有19个倒梯形扩压叶片104,如图3与图4所示,扩压叶片的叶片后缘1044的端点连线1024为斜向直线,并且从下至上向外扩展。
根据本发明的实施例的风机,包括:叶轮;如本发明第一方面的实施例所 述的扩压器,设置于叶轮的外周,其中,周向气流经过叶轮后形成径向气流,径向气流经过扩压器后转变为压力能。
在该实施例中,扩压器设在叶轮的外周,风机在工作时,气流沿叶轮的轴向进入叶轮后,并通过流经叶轮后,流动方向由轴向变为径向,并沿径向向外流动进入扩压器,在扩压器中,通过设置偏移的扩压叶片,再一次使气流改变流动方向,并且由于用于流通气流的通道的断面面积增大,从而使气流减速,这种减速作用将动能转换成压力能,进而实现减速扩压,通过分别对环形底座的环形面以及扩压叶片的结构进行改进,使改进后的扩压器能够提供更大的扩压能力,以及更充分的导流作用,进而具有较小的出入口冲击损失及较大的出口扩压能力。
根据本发明的实施例的吸尘器,包括本发明上述的实施例中所述的风机。
在该实施例中,通过设置上述风机,可以提升吸尘器的工作效率以及能效等级。
根据本发明的实施例的抽烟机,包括本发明上述的实施例中所述的风机。
在该实施例中,通过设置上述风机,可以提升抽烟机的工作效率以及能效等级。
在本发明中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述 不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种扩压器,其特征在于,包括:
    环形底座,所述环形底座的上表面被构造为环形面;
    多个扩压叶片,周向间隔分布于所述上表面上,相邻的两个所述扩压叶片在所述环形面的外沿处形成流体出口,相邻的两个所述扩压叶片在所述环形面的内沿处形成流体入口,所述扩压叶片分别具有设置于所述流体入口处的叶片前缘,以及设置于所述流体出口处的叶片后缘,
    其中,所述叶片前缘和/或所述叶片后缘相对于所述环形底座的轴线呈空间倾斜设置。
  2. 根据权利要求1所述的扩压器,其特征在于,
    所述环形面的外沿所在的水平面低于所述环形面的内沿所在的水平面。
  3. 根据权利要求2所述的扩压器,其特征在于,
    所述叶片后缘的下端端点与所述叶片后缘的上端端点之间形成端点连线,所述端点连线在所属的轴截面上的投影线与所述轴线之间具有第一夹角,所述第一夹角大于或等于0°,并小于或等于60°。
  4. 根据权利要求3所述的扩压器,其特征在于,
    所述多个扩压叶片沿所述周向间隔均布于所述环形面上;
    所述第一夹角大于0°,以将所述叶片后缘构造为从所述下端端点向所述上端端点向远离所述轴线的方向延伸。
  5. 根据权利要求3所述的扩压器,其特征在于,
    将所述叶片前缘与所述轴线在水平面上的连线确定为径向;
    所述扩压叶片从所述叶片前缘至所述叶片后缘逐渐偏离所述径向。
  6. 根据权利要求5所述的扩压器,其特征在于,
    所述叶片后缘的下端端点与所述叶片前缘的下端端点之间形成第一连线,所述叶片后缘的上端端点与所述叶片前缘的上端端点之间形成第二连线,所述第一连线与所述第二连线在水平面上映射形成第二夹角,所述第二夹角大于0度,并小于或等于15°。
  7. 根据权利要求1至6中任一项所述的扩压器,其特征在于,
    所述环形面包括环形斜面与环形曲面中的至少一种;或
    所述环形斜面与所述环形曲面中的至少一种还能够与环形平面沿径向拼接构造形成所述环形面。
  8. 根据权利要求7所述的扩压器,其特征在于,
    所述环形面为凸形弧面;
    所述凸形弧面在任意轴截面上形成凸形曲线,所述凸形曲线上任一点的切线与所述轴线之间具有第三夹角,所述第三夹角沿远离所述轴线的方向逐渐减小。
  9. 根据权利要求8所述的扩压器,其特征在于,
    所述凸形曲线由至少一条相切圆弧构造形成,所述至少一条相切圆弧绕所述轴线旋转360°,以构造出所述凸形弧面。
  10. 根据权利要求1至6中任一项所述的扩压器,其特征在于,
    所述扩压叶片的数量大于或等于12个,并小于或等于35个。
  11. 一种风机,其特征在于,包括:
    叶轮;
    如权利要求1至10中任一项所述的扩压器,设置于所述叶轮的外周,
    其中,周向气流经过所述叶轮后形成径向气流,径向气流经过所述扩压器后转变为压力能。
PCT/CN2018/116864 2018-01-15 2018-11-22 扩压器和风机 WO2019137101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810036757.4 2018-01-15
CN201810036757.4A CN108105158B (zh) 2018-01-15 2018-01-15 扩压器、风机、吸尘器和抽烟机

Publications (1)

Publication Number Publication Date
WO2019137101A1 true WO2019137101A1 (zh) 2019-07-18

Family

ID=62218662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116864 WO2019137101A1 (zh) 2018-01-15 2018-11-22 扩压器和风机

Country Status (2)

Country Link
CN (1) CN108105158B (zh)
WO (1) WO2019137101A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108105158B (zh) * 2018-01-15 2021-02-02 广东威灵电机制造有限公司 扩压器、风机、吸尘器和抽烟机
CN109737069B (zh) * 2019-01-31 2023-10-20 浙江理工大学 用于研究多级离心泵导叶时序效应的可调节实验装置
CN113464497A (zh) * 2021-06-24 2021-10-01 珠海格力电器股份有限公司 扩压器、压缩机和空气循环机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861826A (en) * 1972-08-14 1975-01-21 Caterpillar Tractor Co Cascade diffuser having thin, straight vanes
JPH07259796A (ja) * 1994-03-18 1995-10-09 Hitachi Ltd 遠心圧縮機
CN101263305A (zh) * 2005-08-09 2008-09-10 普莱克斯技术有限公司 倾斜离心压缩机翼片扩压器
EP2169237A2 (en) * 2008-09-26 2010-03-31 Pratt & Whitney Canada Corp. Diffuser with enhanced surge margin
CN101868630A (zh) * 2007-09-24 2010-10-20 普莱克斯技术有限公司 离心压缩机的翼型扩压器
CN102803740A (zh) * 2010-02-05 2012-11-28 卡梅伦国际有限公司 离心式压缩机扩压器小叶片
CN105874213A (zh) * 2014-02-25 2016-08-17 三菱重工业株式会社 离心压缩机以及扩压器制造方法
CN108105158A (zh) * 2018-01-15 2018-06-01 广东威灵电机制造有限公司 扩压器、风机、吸尘器和抽烟机
CN207762016U (zh) * 2018-01-15 2018-08-24 广东威灵电机制造有限公司 扩压器、风机、吸尘器和抽烟机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861826A (en) * 1972-08-14 1975-01-21 Caterpillar Tractor Co Cascade diffuser having thin, straight vanes
JPH07259796A (ja) * 1994-03-18 1995-10-09 Hitachi Ltd 遠心圧縮機
CN101263305A (zh) * 2005-08-09 2008-09-10 普莱克斯技术有限公司 倾斜离心压缩机翼片扩压器
CN101868630A (zh) * 2007-09-24 2010-10-20 普莱克斯技术有限公司 离心压缩机的翼型扩压器
EP2169237A2 (en) * 2008-09-26 2010-03-31 Pratt & Whitney Canada Corp. Diffuser with enhanced surge margin
CN102803740A (zh) * 2010-02-05 2012-11-28 卡梅伦国际有限公司 离心式压缩机扩压器小叶片
CN105874213A (zh) * 2014-02-25 2016-08-17 三菱重工业株式会社 离心压缩机以及扩压器制造方法
CN108105158A (zh) * 2018-01-15 2018-06-01 广东威灵电机制造有限公司 扩压器、风机、吸尘器和抽烟机
CN207762016U (zh) * 2018-01-15 2018-08-24 广东威灵电机制造有限公司 扩压器、风机、吸尘器和抽烟机

Also Published As

Publication number Publication date
CN108105158A (zh) 2018-06-01
CN108105158B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2019137101A1 (zh) 扩压器和风机
US5257906A (en) Exhaust system for a turbomachine
JPH01302045A (ja) 空気調和機
JP2004027979A (ja) 遠心式送風機
WO2010037254A1 (zh) 文丘里管效应的风力机转子
WO2017133370A1 (zh) 一种风机叶轮及采用该叶轮的风机
JPH10122188A (ja) 遠心送風機
US3069072A (en) Impeller blading for centrifugal compressors
JP6513952B2 (ja) 電動送風機
JP2009287427A (ja) 遠心送風機
WO2020233471A1 (zh) 离心风机和干衣机
WO2023202327A1 (zh) 组合式扇叶结构及出风装置
US20230135727A1 (en) Impeller, multi-blade air-sending device, and air-conditioning apparatus
TWI414681B (zh) 軸流式風扇之扇輪
JPH0539930A (ja) 空気調和装置
CN207762016U (zh) 扩压器、风机、吸尘器和抽烟机
JPH05149297A (ja) 遠心フアン
WO2019011315A1 (zh) 离心叶轮和具有其的离心风机、吸尘器
CN213981262U (zh) 组合式风扇
CN211501080U (zh) 一种进风门结构和干燥风机
CN209818372U (zh) 一种高效静音的负压式轴流风机
CN208380968U (zh) 轴流风轮、空调室外机及空调器
JP2023515702A (ja) 送風機及びヘアードライヤー
WO2019242406A1 (zh) 空调室外机
US20210010483A1 (en) Propeller fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18899133

Country of ref document: EP

Kind code of ref document: A1