WO2019137004A1 - 显示面板的驱动方法及装置 - Google Patents

显示面板的驱动方法及装置 Download PDF

Info

Publication number
WO2019137004A1
WO2019137004A1 PCT/CN2018/100771 CN2018100771W WO2019137004A1 WO 2019137004 A1 WO2019137004 A1 WO 2019137004A1 CN 2018100771 W CN2018100771 W CN 2018100771W WO 2019137004 A1 WO2019137004 A1 WO 2019137004A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
driving voltage
groups
display panel
Prior art date
Application number
PCT/CN2018/100771
Other languages
English (en)
French (fr)
Inventor
康志聪
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/771,694 priority Critical patent/US11158231B2/en
Publication of WO2019137004A1 publication Critical patent/WO2019137004A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment

Definitions

  • the present application relates to the field of display technologies, and in particular, to a driving method and apparatus for a display panel.
  • the large-size LCD panel of the example usually adopts negative VA (Vertical Alignment) liquid crystal or IPS (In-Plane Switching) liquid crystal technology, and VA type liquid crystal technology has higher production than IPS liquid crystal technology.
  • VA Very Alignment
  • IPS In-Plane Switching
  • the brightness of each sub-pixel is saturated (ie, the curve tends to be flat) in the side view angle, and the brightness is rapidly saturated, especially at medium and low driving voltages, and the contrast is lowered, so that when viewing images under a mixed viewing angle, There will be a significant washout phenomenon (ie, the picture is white, and the brightness cannot vary linearly with the drive voltage).
  • the example solution usually increases the gamma value.
  • the brightness contrast of the medium and low driving voltages in the side angle of view is improved, the brightness is driven at the positive viewing angle.
  • the contrast of the voltage change and the brightness contrast of the high drive voltage at the side angle of view still reduce the overall display of the display panel.
  • a driving method of a display panel comprising:
  • the gamma values of each group of the sub-pixel groups are respectively adjusted according to the difference curve.
  • a driving device for a display panel comprising:
  • a pixel dividing module configured to divide the same color sub-pixel on the display panel into a plurality of groups of sub-pixel groups
  • a difference curve acquisition module configured to obtain a difference curve between a curve in which the luminance changes with the driving voltage in a positive viewing angle of each color sub-pixel and a curve in which the luminance changes with a driving voltage in a side viewing angle;
  • the gamma value adjustment module is configured to adjust, for each color sub-pixel, a gamma value of each group of the sub-pixel groups according to the difference curve.
  • a driving method of a display panel comprising:
  • driving voltage intervals For each color sub-pixel, different driving voltage intervals are set according to the difference curve, and a set gamma value corresponding to each driving voltage interval is set, and the maximum number of driving voltages distributed in the sub-pixel group is obtained.
  • the adjusted gamma values of each of the sets of sub-pixel groups are filtered.
  • the same color sub-pixel on the display panel is divided into a plurality of sets of sub-pixel groups, and a curve of brightness with driving voltage change from a positive viewing angle of each color sub-pixel and brightness along a side viewing angle are obtained.
  • the difference curve between the curves of the driving voltage changes, for each color sub-pixel, the gamma values of each group of the sub-pixel groups are respectively adjusted according to the difference curve. Therefore, the driving method and device of the above display panel are equivalent to dividing the display panel into a plurality of blocks (ie, sub-pixel groups), and separately adjusting the gamma values for each block, respectively, due to the driving voltage involved in each block.
  • the range is small, and it is easy to realize the contrast between the brightness and the driving voltage under the positive viewing angle and the side viewing angle, so that the image quality of the front viewing angle and the side viewing angle can be balanced, and the display effect of the display panel is improved.
  • Figure 1 is a graph of luminance versus drive voltage for subpixels at 0 and 60 degrees;
  • FIG. 2 is a graph showing luminance as a function of driving voltage at a positive viewing angle and a side viewing angle after increasing a gamma value
  • FIG. 3 is a flowchart of a driving method of a display panel according to an embodiment
  • FIG. 4 is a schematic diagram of dividing a green sub-pixel on a display panel of an embodiment
  • FIG. 5 is a schematic diagram of a green sub-pixel group on the display panel of the embodiment shown in FIG. 4;
  • FIG. 6 is a graph showing a curve of luminance of different gamma values as a function of driving voltage in a positive viewing angle and a side viewing angle in one embodiment
  • FIG. 7 is a schematic diagram showing the difference between the positive viewing angle and the side viewing angle luminance of different gamma values as a function of driving voltage in the embodiment shown in FIG. 6;
  • step S300 is a flow chart of one embodiment of step S300 in the driving method of the display panel of the embodiment shown in FIG. 3;
  • FIG. 9 is a schematic diagram showing one of driving voltage intervals in the embodiment shown in FIG. 8;
  • Figure 10 is a flow chart showing one embodiment of a driving method of the display panel of the embodiment shown in Figure 3;
  • FIG. 11 is a schematic diagram of filtering related to step S400 in the driving method of the display panel of the embodiment shown in FIG. 10;
  • FIG. 12 is a block diagram of a driving device of a display panel according to another embodiment
  • Fig. 13 is a block diagram showing one embodiment of a gamma adjustment module in the driving device of the display panel of the embodiment shown in Fig. 12.
  • Figure 1 is a graph showing the brightness of an exemplary VA type liquid crystal display panel as a function of driving voltage.
  • the abscissa is the driving voltage
  • the ordinate is the brightness
  • the solid line is a curve of 0°
  • the broken line is a curve of 60°.
  • the example solution usually increases the gamma value.
  • the brightness contrast of the medium and low driving voltages in the side angle of view is improved, Sacrificing the contrast of the brightness with the driving voltage at the positive viewing angle and the brightness contrast of the high driving voltage at the side viewing angle, the overall display effect of the display panel is still reduced.
  • an embodiment provides a driving method of the display panel, which can be executed by the driving chip and used to drive the display panel to display the corresponding image.
  • the display panel may be a TN (Twisted Nematic), an OCB (Optically Compensated Birefringence), a VA (Vertical Alignment) type liquid crystal display panel, or a curved liquid crystal display panel, but Limited to this.
  • the driving method of the display panel includes the following contents, please refer to FIG. 3.
  • Step S100 dividing the same color sub-pixel on the display panel into a plurality of groups of sub-pixel groups.
  • the division into multiple sets of sub-pixels is equivalent to partitioning the display panel.
  • the display panel includes, for example, a red sub-pixel, a blue sub-pixel, and a green sub-pixel.
  • the red sub-pixels on the display panel can be divided into multiple sets of red sub-pixel groups
  • the green sub-pixels on the display panel are divided into multiple sets of green sub-pixel groups
  • the blue sub-pixels on the display panel are divided into multiple Group blue sub-pixel groups.
  • the sub-pixels of the display panel are divided into a plurality of sets of sub-pixel groups, which facilitates the process of independently performing signal processing for each group of sub-pixel groups, and can effectively process the characteristics of the local sub-pixel brightness.
  • the more the number of sub-pixel groups in the display panel the higher the accuracy of signal processing, so that the quality of the displayed picture is better.
  • the number of divisions of the sub-pixel group can be adjusted according to actual conditions, so that the range of use of the method can be expanded.
  • Step S200 Obtain a difference curve between a curve in which the luminance changes with the driving voltage in a positive viewing angle of each color sub-pixel and a curve in which the luminance changes with a driving voltage in a side viewing angle.
  • Figure 9 provides a difference curve for an embodiment.
  • the abscissa is the driving voltage
  • the ordinate is the difference between the luminance normalized value at the side angle of view and the luminance normalized value at the positive viewing angle.
  • step S300 for each color sub-pixel, the gamma values of each group of sub-pixel groups are respectively adjusted according to the difference curve.
  • the gamma value represents a nonlinear relationship between brightness and driving voltage.
  • the gamma values of each group of green sub-pixel groups are respectively adjusted according to the difference curve corresponding to the green sub-pixels
  • the gamma values of each group of red sub-pixel groups are respectively adjusted according to the difference curve corresponding to the red sub-pixels, according to the blue
  • the difference curve corresponding to the color sub-pixels adjusts the gamma values of each group of blue sub-pixel groups.
  • the abscissa is the driving voltage and the ordinate is the normalized brightness value.
  • the gamma value is gamma 1
  • the curves of the brightness with the driving voltage under the positive viewing angle and the side viewing angle are respectively the curve gamma located below, the curved gamma 1 located above, and the brightness changes of the positive viewing angle and the side viewing angle.
  • Figure 7 It can be seen that as the driving voltage becomes larger, the brightness at the side viewing angle is rapidly saturated with the driving voltage, especially the brightness corresponding to the low and medium driving voltages is rapidly saturated, which may result in poor image quality contrast between the low and medium driving voltages.
  • the curves of the luminance with the driving voltage in the positive viewing angle and the side viewing angle are respectively the curved gamma located below in FIG. 6 . 3.
  • the curve gamma 3 which is thickened above, the difference in brightness between the front view and the side view is as shown in Fig. 7. It can be seen that as the driving voltage becomes larger, the phenomenon that the brightness is rapidly saturated with the driving voltage is reduced at the side viewing angle, and the brightness change corresponding to the low and medium driving voltages approaches a linear trend, improving the image quality contrast effect of the low and medium driving voltages.
  • the curves of the luminance as a function of the driving voltage in the positive viewing angle and the side viewing angle are respectively the curved gamma 2 located below in FIG.
  • the curve gamma 2, which is located above, is thickened, and the difference in brightness between the front view and the side view is as shown in FIG. It can be seen that as the driving voltage becomes larger, the phenomenon that the brightness is rapidly saturated with the driving voltage at the side viewing angle is aggravated, further reducing the image quality contrast of the low and medium driving voltages.
  • the gamma value is adjusted to a different value, and the observation effects of the positive viewing angle and the side viewing angle can be simultaneously changed.
  • the gamma value can be increased in order to reduce the fast saturation phenomenon of the low-level driving voltage corresponding to the brightness in the side viewing angle, and the number of driving voltages involved in the display panel is large.
  • the image quality corresponding to all driving voltage intervals is balanced, which not only reduces the contrast of the driving voltage corresponding to the positive viewing angle, but also sacrifices the image quality of the positive viewing angle, and reduces the contrast of the high driving voltage corresponding to the brightness variation under the side viewing angle.
  • the manner in which the gamma value is uniformly adjusted on the display panel is difficult to obtain a suitable gamma value to balance the image quality of the positive viewing angle and the side viewing angle due to the large number of driving voltages involved. Therefore, in order to overcome the above problem, in the present embodiment, the respective gamma values are individually adjusted for each group of sub-pixel groups, so that the actual image quality of each sub-pixel group itself can be flexibly adjusted to be compatible with each sub-pixel group. The gamma value, therefore, the trend of the brightness of each sub-pixel group as a function of the driving voltage is not the same.
  • one of the methods for adjusting the gamma value is, for example, if the driving voltage of the sub-pixel group is mainly distributed in the middle and low driving voltage intervals, the gamma value can be appropriately increased to improve the medium-low driving voltage in the side viewing angle. Corresponding to the contrast of the brightness, and at the same time controlling the upper limit of the gamma value, to ensure the resolution of the medium and low driving voltage corresponding to the brightness under the positive viewing angle.
  • the difference curve can reflect the difference in brightness between the positive viewing angle and the side viewing angle, and the smaller the difference between the positive viewing angle and the side viewing angle, the better the display effect, so the gamma value can be adjusted according to the difference curve, which can be The difference between the viewing angle and the side viewing angle in different driving voltage intervals, the gamma value is adjusted accordingly, thereby facilitating reducing the difference in brightness between the positive viewing angle and the side viewing angle.
  • step S300 may specifically be: for each color sub-pixel, respectively adjusting the gamma values of each group of sub-pixel groups according to the difference curve, so that the gamma value of the entire display panel side view and the positive view corresponding curve is between 2.2 and 2.2.
  • the difference is less than the set value (ie close to 2.2).
  • the gamma value is 2.2, it conforms to the linear relationship of the human eye to the brightness, and the display effect is better.
  • the display panel is divided into a plurality of blocks (ie, sub-pixel groups), and the gamma values are separately adjusted for each block, respectively, because each block is within each block.
  • the range of driving voltage involved is small, and it is easy to realize the contrast between the brightness and the driving voltage under the positive viewing angle and the side viewing angle, so that the image quality of the front viewing angle and the side viewing angle can be balanced, and the display effect of the display panel is improved.
  • step S300 includes the following content, please refer to FIG. 8.
  • Step S310 setting different driving voltage intervals according to the difference curve, and setting a set gamma value corresponding to each driving voltage interval.
  • the driving voltage interval is, for example, [n2, n3] in FIG.
  • the number of driving voltage intervals is greater than a set threshold.
  • the set gamma value corresponding to each driving voltage interval may be set according to the actual brightness condition of the driving voltage interval, for example, if the driving voltage interval is between the inner viewing angle and the positive viewing angle If the difference is large, the gamma value is set to a larger value; if the difference in luminance between the inner side view and the positive view is smaller in the driving voltage interval, the gamma value is set to a smaller value.
  • Step S320 Acquire a driving voltage interval in which the number of driving voltages distributed in the sub-pixel group is the largest, and set a set gamma value corresponding to the found driving voltage interval as a gamma value corresponding to the sub-pixel group.
  • Each of the sub-pixels in the sub-pixel group corresponds to one driving voltage, and thus the sub-pixel group includes a plurality of driving voltages.
  • the driving voltage interval in which the number of driving voltages distributed in the sub-pixel group is the largest is acquired, in other words, the main distribution interval of the driving voltage of the sub-pixel group is found. For example, if the driving voltage in the sub-pixel group accounts for more than X% in one of the driving voltage intervals (where X% is, for example, between 60% and 100%), the driving voltage interval is considered to be The main distribution interval of the driving voltage of the sub-pixel group.
  • the set gamma value corresponding to the found driving voltage interval is set as the gamma value corresponding to the sub-pixel group, in other words, the sub-pixel group adjusts the gamma value according to the driving voltage of the main distribution. For example, if the driving voltage main distribution interval of the sub-pixel group is [n2, n3], the set gamma value corresponding to [n2, n3] is taken as the adjusted gamma value of the sub-pixel group.
  • the purpose of optimizing the gamma value is to make the curve of the side view and the positive view close to the curve of the gamma value setting target value (for example, 2.2), the more the number of divisions of the driving voltage interval, the side view and the positive The closer the curve of the viewing angle is to the curve whose gamma value is the set target value (for example, 2.2).
  • the driving method of the display panel described above further includes the following after step S300. Please refer to FIG. 10 .
  • Step S400 for each color sub-pixel, the adjusted gamma value of each group of sub-pixel groups is filtered.
  • the adjusted gamma values of the sub-pixel groups of each group also have corresponding differences, and therefore, the brightness of each group of sub-pixel groups changes with the driving voltage. It will not be the same.
  • the difference in brightness between adjacent sub-pixel groups produces a visually unsmooth transition boundary phenomenon at adjacent locations between the two sets of sub-pixel groups.
  • further filtering is performed to eliminate the phenomenon that the transition is not smooth.
  • each group of sub-pixel groups can be filtered using a spatial low-pass filter function.
  • g(x, y) w1*f(x-1, y-1)+w2 *f(x-1,y)+w3*f(x-1,y+1)+w4*f(x,y-1)+w5*f(x,y)+w6*f(x,y +1)+w7*f(x+1,y-1)+w8*f(x+1,y)+w9*f(x+1,y+1).
  • f(x, y) represents the gamma value before the unfiltered sub-pixel group in the middle.
  • g(x, y) represents the filtered gamma value of the sub-pixel set in the middle.
  • f(x-1, y-1), f(x-1, y), ...f(x+1, y+1) represent gamma of each sub-pixel group surrounding the sub-pixel group in the middle value.
  • W1, w2, ... w9 represent the weights at various locations in the spatial low pass filter function. This spatial low-pass filter function can effectively alleviate the transitional smoothness caused by the difference of gamma values between sub-pixel groups.
  • FIG. 3, FIG. 8 and FIG. 10 are schematic flowcharts of the method according to the embodiment of the present application. It should be understood that although the steps in the flowcharts of FIGS. 3, 8, and 10 are sequentially displayed in accordance with the indication of the arrows, these steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and may be performed in other sequences. Moreover, at least some of the steps in FIG. 3, FIG. 8 and FIG. 10 may include a plurality of sub-steps or phases, which are not necessarily performed at the same time, but may be executed at different times. The order of execution is not necessarily performed sequentially, but may be performed alternately or alternately with at least a portion of other steps or sub-steps or stages of other steps.
  • Another embodiment provides a driving device for a display panel. Referring to FIG. 12, the method includes:
  • a pixel dividing module 110 configured to divide the same color sub-pixel on the display panel into a plurality of groups of sub-pixel groups
  • a difference curve obtaining module 120 configured to obtain a difference curve between a curve of brightness variation with driving voltage in a positive viewing angle of each color sub-pixel and a curve of brightness variation with driving voltage in a side viewing angle;
  • the gamma value adjustment module 130 is configured to adjust, for each color sub-pixel, a gamma value of each group of the sub-pixel groups according to the difference curve.
  • the gamma value adjustment module 130 includes:
  • the voltage interval setting unit 131 is configured to set different driving voltage intervals according to the difference curve, and set a set gamma value corresponding to each driving voltage interval;
  • the gamma value setting unit 132 is configured to acquire the driving voltage interval in which the number of driving voltages distributed in the sub-pixel group is the largest, and set the found gamma value corresponding to the driving voltage interval to be the sub-pixel value The gamma value corresponding to the pixel group.
  • the number of drive voltage intervals is greater than a set threshold.
  • FIG. 12 further includes:
  • the filtering module 140 is configured to filter the adjusted gamma values of each group of the sub-pixel groups for each color sub-pixel.
  • the driving device of the display panel provided by the present embodiment corresponds to the driving method of the display panel provided by the above embodiment, and details are not described herein again.
  • the driving device of the display panel provided by the present embodiment can be applied to the display device.
  • the display device is, for example, an LCD (Liquid Crystal Display) display device, an OLED (Organic Light-Emitting Diode) display device, a QLED (Quantum Dot Light Emitting Diodes) display device, a curved display device, or other display device.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • QLED Quadantum Dot Light Emitting Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板的驱动方法,包括:将显示面板上同一颜色子像素划分为多组子像素组(S100);获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线(S200);及对于每一种颜色子像素,根据差异曲线分别调整各组子像素组的伽马值(S300)。

Description

显示面板的驱动方法及装置
相关申请的交叉引用
本申请要求于2018年1月10日提交中国专利局、申请号为2018100229396、申请名称为“显示面板的驱动方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示面板的驱动方法及装置。
背景技术
范例的大尺寸液晶显示面板通常采用负型VA(Vertical Alignment,垂直配向)液晶或IPS(In-Plane Switching,面内转换)液晶技术,VA型液晶技术相较于IPS液晶技术存在较高的生产效率及低制造成本的优势,但光学性质上相较于IPS液晶技术存在较明显的光学性质缺陷,尤其是在大尺寸面板在商业应用方面需要较大的视角呈现的情况下。
范例VA型液晶示面板在侧视角下各子像素亮度饱和(即曲线趋向平坦)的趋势快速增加,尤其是在中、低驱动电压下,亮度快速饱和,对比度下降,使得混合视角下观看图像时会呈现明显的washout现象(即画面偏白,亮度不能随着驱动电压呈线性变化)。为了解决上述问题,范例的解决方法通常会增大伽马值,然而增大伽马值后,虽然会改善侧视角下中、低驱动电压的亮度对比度,但是也会牺牲正视角下亮度随驱动电压变化的对比度及侧视角下高驱动电压的亮度对比度,仍然会降低显示面板的整体显示效果。
发明内容
基于此,有必要针对范例增大伽马值的方式仍然会降低显示面板的整体显示效果的问题,提供一种显示面板的驱动方法及装置。
一种显示面板的驱动方法,包括:
将所述显示面板上同一颜色子像素划分为多组子像素组;
获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及
对于每一种颜色子像素,根据所述差异曲线分别调整各组所述子像素组的伽马值。
一种显示面板的驱动装置,包括:
像素划分模块,设置为将所述显示面板上同一颜色子像素划分为多组子像素组;
差异曲线获取模块,设置为获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及
伽马值调整模块,设置为对于每一种颜色子像素,根据所述差异曲线分别调整各组所述子像素组的伽马值。
一种显示面板的驱动方法,包括:
将所述显示面板上同一颜色子像素划分为多组子像素组;
获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;
对于每一种颜色子像素,根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值,获取所述子像素组中分布的驱动电压数量最多的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组对应的伽马值;及
对于每一种颜色子像素,将各组所述子像素组的调整后的伽马值进行滤波。
上述显示面板的驱动方法及装置中,将显示面板上同一颜色子像素划分为多组子像素组,并且获取每一种颜色子像素正视角下亮度随驱动电压变化 的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线,对于每一种颜色子像素,根据差异曲线分别调整各组所述子像素组的伽马值。因此,上述显示面板的驱动方法及装置相当于将显示面板分为多个区块(即子像素组),再分别对各区块单独调整伽马值,由于每一个区块内涉及的驱动电压的范围较小,易于实现同时优化正视角和侧视角下亮度随驱动电压变化的对比度,从而可以兼顾正视角和侧视角的画质,提高了显示面板的显示效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为子像素在0度角和60度角下亮度随驱动电压变化的曲线图;
图2为范例增大伽马值后在正视角和侧视角下亮度随驱动电压变化的曲线图;
图3为一实施方式提供的显示面板的驱动方法的流程图;
图4为一个实施例的显示面板上绿色子像素的划分示意图;
图5为图4所示实施例的显示面板上绿色子像素组的示意图;
图6为一个实施例中正视角和侧视角下不同伽马值的亮度随驱动电压变化的曲线示意图;
图7为图6所示实施例中不同伽马值的正视角和侧视角亮度随驱动电压变化的差异示意图;
图8为图3所示实施方式的显示面板的驱动方法中步骤S300的其中一个实施例的流程图;
图9为图8所示实施例中驱动电压区间的其中一种划分示意图;
图10为图3所示实施方式的显示面板的驱动方法的其中一种实施例的流 程图;
图11为图10所示实施例的显示面板的驱动方法中步骤S400涉及的滤波相关示意图;
图12为另一实施方式提供的显示面板的驱动装置的框图;
图13为图12所示实施方式的显示面板的驱动装置中伽马值调整模块的其中一个实施例的框图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
图1示出了范例VA型液晶示面板亮度随驱动电压变化的曲线。其中,横坐标为驱动电压,纵坐标为亮度,实线为0°的曲线,虚线为60°的曲线。由图1可以看出,侧视角60°下各子像素亮度饱和(即曲线趋向平坦)的趋势快速增加,尤其是在中、低驱动电压下,亮度快速饱和,对比度下降,使得混合视角下观看图像时会呈现明显的washout现象(即画面偏白,亮度不能随着驱动电压呈线性变化)。为了克服上述washout现象,范例的解决方法通常会增大伽马值,然而增大伽马值后,如图2所示,虽然会改善侧视角下中、低驱动电压的亮度对比度,但是也会牺牲正视角下亮度随驱动电压变化的对比度及侧视角下高驱动电压的亮度对比度,仍然会降低显示面板的整体显示效果。
为了解决增大伽马值的方式仍然会降低显示面板的整体显示效果的问题,一实施方式提供了一种显示面板的驱动方法,可以由驱动芯片来执行,并用于驱动显示面板显示相应图像。其中,显示面板可以为TN(Twisted Nematic,扭曲向列)、OCB(Optically Compensated Birefringence,光学补偿弯曲排列)、VA(Vertical Alignment,垂直配向)型液晶显示面板或曲面型液晶 显示面板,但并不限于此。该显示面板的驱动方法包括以下内容,请参考图3。
步骤S100,将显示面板上同一颜色子像素划分为多组子像素组。
其中,划分为多组子像素相当于对显示面板进行分区。显示面板例如包括红色子像素、蓝色子像素及绿色子像素。具体地,可以将显示面板上的红色子像素分为多组红色子像素组,将显示面板上的绿色子像素划分为多组绿色子像素组,将显示面板上的蓝色子像素划分为多组蓝色子像素组。
接下来以绿色子像素为例进行说明,请参考图4。将显示面板上的所有绿色子像素共分为M个绿色子像素组(G1,G2,……,GM)。请参考图5,在任一个绿色子像素组Gn(n=1、2、……,或M)中,包括多个绿色子像素(即Gn_1,1,Gn_1,2,…Gn_i,j)。
因此,本实施方式中将显示面板的子像素划分为多组子像素组,便于对每一组子像素组独立进行信号处理的过程,可以有效处理局部子像素亮度的特性。另外,显示面板中子像素组的个数越多,信号处理的精度越高,从而使得显示的画面质量越好。子像素组的划分个数可以根据实际情况进行调整,从而可以扩大该方法的使用范围。
步骤S200,获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线。
图9提供了一种实施例的差异曲线。在该差异曲线中,横坐标为驱动电压,纵坐标为侧视角下的亮度归一化值减去正视角下的亮度归一化值得到的差值。另外,对于每一种颜色子像素,都有一条相应的差异曲线。
步骤S300,对于每一种颜色子像素,根据差异曲线分别调整各组子像素组的伽马值。
其中,伽马值,代表亮度与驱动电压的非线性关系。该步骤中,根据绿色子像素对应的差异曲线来分别调整各组绿色子像素组的伽马值,根据红色子像素对应的差异曲线来分别调整各组红色子像素组的伽马值,根据蓝色子像素对应的差异曲线来分别调整各组蓝色子像素组的伽马值。当伽马值不同 时,亮度随驱动电压变化的情况也不同,接下来举例说明。
请参考图6,其中,横坐标为驱动电压,纵坐标为归一化的亮度值。当伽马值为伽马1时,正视角和侧视角下亮度随驱动电压变化的曲线分别为位于下方的曲线伽马1、位于上方加粗的曲线伽马1,正视角与侧视角亮度变化差异如图7所示。由此可见,随着驱动电压变大,侧视角下亮度随驱动电压快速饱和,尤其是低、中驱动电压对应的亮度快速饱和,从而会造成低、中驱动电压的画质对比性不佳。
如果将伽马1增大,从而将伽马值由伽马1调整为伽马3,这时,正视角和侧视角下亮度随驱动电压变化的曲线分别为图6中位于下方的曲线伽马3、位于上方加粗的曲线伽马3,正视角与侧视角亮度变化差异如附图7所示。由此可见,随着驱动电压变大,侧视角下亮度随驱动电压快速饱和的现象减轻,低、中驱动电压对应的亮度变化接近线性趋势,提高了低、中驱动电压的画质对比性效果,但是,会牺牲正视角下低驱动电压对应亮度变化的线性趋势,使得驱动电压之间的间的分辨率下降,同时,也降低了侧视角下高驱动电压对应的亮度之间的分辨率。
如果将伽马1减小,从而将伽马值由伽马1调整为伽马2后,正视角和侧视角下亮度随驱动电压变化的曲线分别为图6中位于下方的曲线伽马2、位于上方加粗的曲线伽马2,正视角与侧视角亮度变化差异如附图7所示。由此可见,随着驱动电压变大,侧视角下亮度随驱动电压快速饱和的现象加重,进一步降低了低、中驱动电压的画质对比性。
根据上述内容可以得出,调节伽马值为不同的值,可以同时改变正视角和侧视角的观察效果。但是,如果对显示面板统一调整伽马值,为了减轻侧视角下中低驱动电压对应亮度的快速饱和现象,可以增大伽马值,而由于显示面板共涉及的驱动电压的数量较多,无法同时权衡所有驱动电压区间对应的画质,既会降低正视角下驱动电压对应亮度的对比度,即牺牲了正视角的画质,又会降低侧视角下高驱动电压对应亮度变化的对比度。故,对显示面板统一调整伽马值的方式,由于涉及的驱动电压数量较多,很难得到一个合 适的伽马值来同时平衡正视角和侧视角的画质。因此,为了克服上述问题,本实施方式中对各组子像素组单独调整各自对应的伽马值,从而可以根据每一个子像素组自身的实际画质内容灵活调整为与各子像素组相适应的伽马值,因此最终各子像素组亮度随驱动电压变化的趋势并不相同。由于每一个子像素组涉及到的驱动电压的个数较少,因此,容易同时兼顾到正视角和侧视角的画质,从而可以使得正视角下和侧视角下亮度随驱动电压变化的趋势都接近于线性变化规律。
其中,对伽马值调整的其中一种方式例如为:如果子像素组的驱动电压主要分布在中、低驱动电压区间,则可以适当增大伽马值,以提高侧视角下中低驱动电压对应亮度的对比度,同时又要控制伽马值的上限值,以保证正视角下中低驱动电压对应亮度的分辨率。
此外,由于差异曲线可以反映出正视角和侧视角之间亮度的差异,且正视角和侧视角之间的差异越小,显示效果越佳,因此根据差异曲线来调整伽马值,可以针对正视角与侧视角在不同驱动电压区间的差异情况,对伽马值进行相应调整,从而便于减小正视角和侧视角之间亮度的差异。
具体地,步骤S300具体可以为:对于每一种颜色子像素,根据差异曲线分别调整各组子像素组的伽马值,使得整个显示面板侧视角和正视角对应曲线的伽马值与2.2之间的差值均小于设定值(即接近于2.2)。其中,当伽马值为2.2时,符合人眼对于亮度的线性变化关系,显示效果较佳。
综上所述,本实施方式提供的上述显示面板的驱动方法,将显示面板分为多个区块(即子像素组),再分别对各区块单独调整伽马值,由于每一个区块内涉及的驱动电压的范围较小,易于实现同时优化正视角和侧视角下亮度随驱动电压变化的对比度,从而可以兼顾正视角和侧视角的画质,提高了显示面板的显示效果。
具体地,上述步骤S300包括以下内容,请参考图8。
步骤S310,根据差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值。
其中,驱动电压区间例如为图9中的[n2,n3]。具体地,驱动电压区间的数量大于设定阈值。各驱动电压区间对应的设定伽马值,即与各驱动电压区间相适应的伽马值,可以根据驱动电压区间的实际亮度情况设置,例如:如果驱动电压区间内侧视角与正视角之间亮度的差异较大,则设定伽马值为较大的值;如果驱动电压区间内侧视角与正视角之间亮度的差异较小,则设定伽马值为较小的值。
步骤S320,获取子像素组中分布的驱动电压数量最多的驱动电压区间,并将找到的驱动电压区间对应的设定伽马值设为子像素组对应的伽马值。
其中,子像素组中的各子像素都对应一个驱动电压,因此子像素组包括多个驱动电压。获取子像素组中分布的驱动电压数量最多的驱动电压区间,换言之,找到子像素组的驱动电压的主要分布区间。例如:如果子像素组内的驱动电压在其中一个驱动电压区间内所占的比例高于X%(其中,X%例如介于60%至100%之间),则认为该驱动电压区间为该子像素组的驱动电压的主要分布区间。将找到的驱动电压区间对应的设定伽马值设为子像素组对应的伽马值,换言之,子像素组根据主要分布的驱动电压来调整伽马值。例如,如果子像素组的驱动电压主要分布区间为[n2,n3],则将[n2,n3]对应的设定伽马值作为该子像素组的调整后的伽马值。
另外,如果对伽马值优化的目的在于使侧视角和正视角的曲线接近伽马值为设定目标值(例如2.2)的曲线,那么驱动电压区间的划分数量越多,就能使得侧视角和正视角的曲线越接近伽马值为设定目标值(例如2.2)的曲线。
在其中一个实施例中,上述显示面板的驱动方法在步骤S300之后,还包括以下内容,请参考图10。
步骤S400,对于每一种颜色子像素,将各组子像素组的调整后的伽马值进行滤波。
由于各组子像素组之间的驱动电压主要分布区间存在差异,使得各组子像素组的调整后的伽马值也存在相应差异,因此,各组子像素组的亮度随驱动电压变化的趋势就不会相同。相邻子像素组之间亮度的差异,会在两组子 像素组之间相邻的位置处产生肉眼可视的过渡不平滑的边界现象。为了解决或减轻上述问题,本实施例在对显示面板上的各组子像素组的伽马值进行调整后,还进一步进行滤波以消除过渡不平滑的现象。
具体地,可以对各组子像素组的伽马值利用空间低通滤波函数进行滤波。例如,请参考图11,以绿色子像素为例,每一个方框代表一组绿色子像素组。将显示面板上的所有绿色子像素分割成9*7=63组子像素组。以位于中间的一组子像素组为例,对该子像素组的伽马值进行滤波时,采取以下公式:g(x,y)=w1*f(x-1,y-1)+w2*f(x-1,y)+w3*f(x-1,y+1)+w4*f(x,y-1)+w5*f(x,y)+w6*f(x,y+1)+w7*f(x+1,y-1)+w8*f(x+1,y)+w9*f(x+1,y+1)。
其中,f(x,y)代表处于中间的子像素组未滤波前的伽马值。g(x,y)代表处于中间的子像素组滤波后的伽马值。f(x-1,y-1)、f(x-1,y)、……f(x+1,y+1)代表围绕在处于中间的子像素组周围的各子像素组的伽马值。w1、w2、……w9代表空间低通滤波函数中各位置处的权重。此空间低通滤波函能够有效减轻因各子像素组之间伽马值差异而造成的过渡不平滑现象。
需要说明的是,图3、图8及图10为本申请实施例的方法的流程示意图。应该理解的是,虽然图3、图8及图10的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图3、图8及图10中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
另一实施方式提供了一种显示面板的驱动装置,请参考图12,包括:
像素划分模块110,用于将所述显示面板上同一颜色子像素划分为多组子像素组;
差异曲线获取模块120,用于获取每一种颜色子像素正视角下亮度随驱 动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及
伽马值调整模块130,用于对于每一种颜色子像素,根据所述差异曲线分别调整各组所述子像素组的伽马值。
在其中一个实施例中,请参考图13,所述伽马值调整模块130包括:
电压区间设置单元131,用于根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值;及
伽马值设置单元132,用于获取所述子像素组中分布的驱动电压数量最多的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组对应的伽马值。
在其中一个实施例中,所述驱动电压区间的数量大于设定阈值。
在其中一个实施例中,请继续参考图12,还包括:
滤波模块140,用于对于每一种颜色子像素,将各组所述子像素组的调整后的伽马值进行滤波。
需要说明的是,本实施方式提供的显示面板的驱动装置与上述实施方式提供的显示面板的驱动方法对应,这里就不再赘述。
需要说明的是,本实施方式提供的显示面板的驱动装置可以应用于显示装置中。其中,显示装置例如为LCD(Liquid Crystal Display)显示装置、OLED(Organic Light-Emitting Diode)显示装置、QLED(Quantum Dot Light Emitting Diodes)显示装置、曲面显示装置或其他显示装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围 应以所附权利要求为准。

Claims (20)

  1. 一种显示面板的驱动方法,包括:
    将所述显示面板上同一颜色子像素划分为多组子像素组;
    获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及
    对于每一种颜色子像素,根据所述差异曲线分别调整各组所述子像素组的伽马值。
  2. 根据权利要求1所述的方法,其中,显示面板包括红色子像素、蓝色子像素及绿色子像素,所述将所述显示面板上同一颜色子像素划分为多组子像素组的步骤包括:
    将显示面板上的红色子像素分为多组红色子像素组;
    将显示面板上的绿色子像素划分为多组绿色子像素组;及
    将显示面板上的蓝色子像素划分为多组蓝色子像素组。
  3. 根据权利要求2所述的方法,其中,所述根据所述差异曲线分别调整各组所述子像素组的伽马值的步骤包括:
    根据绿色子像素对应的差异曲线来分别调整各组绿色子像素组的伽马值;
    根据红色子像素对应的差异曲线来分别调整各组红色子像素组的伽马值;及
    根据蓝色子像素对应的差异曲线来分别调整各组蓝色子像素组的伽马值。
  4. 根据权利要求1所述的方法,其中,对于所述差异曲线,其横坐标为驱动电压,纵坐标为侧视角下的亮度归一化值减去正视角下的亮度归一化值得到的差值。
  5. 根据权利要求1所述的方法,其中,所述根据所述差异曲线分别调整各组所述子像素组的伽马值的步骤包括:
    根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对 应的设定伽马值;及
    获取所述子像素组中分布的驱动电压数量最多的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组对应的伽马值。
  6. 根据权利要求5所述的方法,其中,所述驱动电压区间的数量大于设定阈值。
  7. 根据权利要求5所述的方法,其中,所述设定伽马值根据所述驱动电压区间的亮度设置。
  8. 根据权利要求5所述的方法,其中,所述获取所述子像素组中分布的驱动电压数量最多的所述驱动电压区间的步骤包括:
    若所述子像素组内的驱动电压在其中一个驱动电压区间内所占的比例高于预设值,则确定所述驱动电压区间为所述子像素组中分布的驱动电压数量最多的驱动电压区间。
  9. 根据权利要求1所述的方法,其中,在所述对于每一种颜色子像素,根据所述差异曲线分别调整各组所述子像素组的伽马值的步骤之后,所述方法还包括:
    对于每一种颜色子像素,将各组所述子像素组的调整后的伽马值进行滤波。
  10. 根据权利要求9所述的方法,其中,对于每一种颜色子像素,将各组所述子像素组的调整后的伽马值利用空间低通滤波函数进行滤波。
  11. 根据权利要求10所述的方法,其中,所述空间低通滤波函数的表达式为:
    g(x,y)=w1*f(x-1,y-1)+w2*f(x-1,y)+w3*f(x-1,y+1)+w4*f(x,y-1)+w5*f(x,y)+w6*f(x,y+1)+w7*f(x+1,y-1)+w8*f(x+1,y)+w9*f(x+1,y+1);
    其中,f(x,y)代表设定子像素组未滤波前的伽马值;g(x,y)代表所述设定子像素组滤波后的伽马值;f(x-1,y-1)、f(x-1,y)、……f(x+1,y+1)代表围绕在所述设定子像素组周围的各子像素组的伽马值;w1、w2、……w9 代表空间低通滤波函数中各位置处的权重。
  12. 一种显示面板的驱动装置,包括:
    像素划分模块,设置为将所述显示面板上同一颜色子像素划分为多组子像素组;
    差异曲线获取模块,设置为获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及伽马值调整模块,设置为对于每一种颜色子像素,根据所述差异曲线分别调整各组所述子像素组的伽马值。
  13. 根据权利要求12所述的驱动装置,其中,所述显示面板包括红色子像素、蓝色子像素及绿色子像素,所述像素划分模块还设置为:
    将显示面板上的红色子像素分为多组红色子像素组;
    将显示面板上的绿色子像素划分为多组绿色子像素组;及
    将显示面板上的蓝色子像素划分为多组蓝色子像素组。
  14. 根据权利要求13所述的驱动装置,其中,所述伽马值调整模块还设置为:
    根据绿色子像素对应的差异曲线来分别调整各组绿色子像素组的伽马值;
    根据红色子像素对应的差异曲线来分别调整各组红色子像素组的伽马值;及
    根据蓝色子像素对应的差异曲线来分别调整各组蓝色子像素组的伽马值。
  15. 根据权利要求12所述的驱动装置,其中,对于所述差异曲线,其横坐标为驱动电压,纵坐标为侧视角下的亮度归一化值减去正视角下的亮度归一化值得到的差值。
  16. 根据权利要求12所述的驱动装置,其中,所述伽马值调整模块包括:
    电压区间设置单元,设置为根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值;及
    伽马值设置单元,设置为获取所述子像素组中分布的驱动电压数量最多的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组对应的伽马值。
  17. 根据权利要求16所述的驱动装置,其中,所述驱动电压区间的数量大于设定阈值。
  18. 根据权利要求16所述的驱动装置,其中,所述设定伽马值根据所述驱动电压区间的亮度设置。
  19. 根据权利要求12所述的驱动装置,其中,还包括:
    滤波模块,设置为对于每一种颜色子像素,将各组所述子像素组的调整后的伽马值进行滤波。
  20. 一种显示面板的驱动方法,其中,包括:
    将所述显示面板上同一颜色子像素划分为多组子像素组;
    获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;
    对于每一种颜色子像素,根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值,获取所述子像素组中分布的驱动电压数量最多的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组对应的伽马值;及
    对于每一种颜色子像素,将各组所述子像素组的调整后的伽马值进行滤波。
PCT/CN2018/100771 2018-01-10 2018-08-16 显示面板的驱动方法及装置 WO2019137004A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/771,694 US11158231B2 (en) 2018-01-10 2018-08-16 Driving method for display panel, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810022939.6 2018-01-10
CN201810022939.6A CN108335678B (zh) 2018-01-10 2018-01-10 显示面板的驱动方法及装置

Publications (1)

Publication Number Publication Date
WO2019137004A1 true WO2019137004A1 (zh) 2019-07-18

Family

ID=62924129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100771 WO2019137004A1 (zh) 2018-01-10 2018-08-16 显示面板的驱动方法及装置

Country Status (3)

Country Link
US (1) US11158231B2 (zh)
CN (1) CN108335678B (zh)
WO (1) WO2019137004A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335678B (zh) * 2018-01-10 2019-09-17 惠科股份有限公司 显示面板的驱动方法及装置
CN109147689B (zh) * 2018-08-21 2020-12-25 惠州市华星光电技术有限公司 液晶显示器及其伽马曲线的调整方法
CN109064962A (zh) * 2018-08-31 2018-12-21 重庆惠科金渝光电科技有限公司 一种显示面板及其图像控制装置和方法
US11011095B2 (en) 2018-08-31 2021-05-18 Chongqing Hkc Optoelectronics Technology Co., Ltd. Display panel, and image control device and method thereof
CN109637470B (zh) * 2018-12-11 2020-06-23 惠科股份有限公司 一种显示面板的驱动方法和显示面板
CN112083597B (zh) * 2019-06-12 2023-09-01 群创光电股份有限公司 显示器及其显示面板与制作方法
CN114927092B (zh) * 2022-05-30 2023-11-28 卡莱特云科技股份有限公司 一种led显示屏视角差异的修正方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075364A1 (zh) * 2011-11-24 2013-05-30 深圳市华星光电技术有限公司 彩色平面显示面板及相应的彩色平面显示装置
CN106683627A (zh) * 2016-12-20 2017-05-17 惠科股份有限公司 液晶显示器件及其驱动方法
CN106782371A (zh) * 2016-12-20 2017-05-31 惠科股份有限公司 液晶显示器件及其液晶显示面板的驱动方法
CN106842724A (zh) * 2016-12-20 2017-06-13 惠科股份有限公司 液晶显示器件及其驱动方法
CN108320716A (zh) * 2018-01-10 2018-07-24 惠科股份有限公司 显示面板的驱动方法及装置
CN108335678A (zh) * 2018-01-10 2018-07-27 惠科股份有限公司 显示面板的驱动方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI272573B (en) * 2004-03-12 2007-02-01 Chi Mei Optoelectronics Corp Liquid crystal display and the driving method thereof
US8305316B2 (en) * 2005-10-31 2012-11-06 Sharp Kabushiki Kaisha Color liquid crystal display device and gamma correction method for the same
CN103106884B (zh) * 2013-02-05 2015-11-25 深圳市华星光电技术有限公司 一种改善液晶屏的视角肤色色偏的方法及系统
US9024980B2 (en) * 2013-03-14 2015-05-05 Au Optronics Corporation Method and apparatus for converting RGB data signals to RGBW data signals in an OLED display
CN104900203B (zh) * 2015-06-11 2017-05-17 深圳市华星光电技术有限公司 液晶面板及其驱动方法
CN105185353B (zh) * 2015-10-16 2018-05-18 青岛海信电器股份有限公司 液晶显示亮度控制方法和装置以及液晶显示设备
CN105388649B (zh) * 2015-12-28 2018-09-28 深圳市华星光电技术有限公司 Lcd屏幕的视角色偏的补偿方法
TWI578303B (zh) * 2016-05-12 2017-04-11 友達光電股份有限公司 顯示面板及顯示面板的驅動方法
CN108231015B (zh) * 2017-12-21 2019-12-31 惠科股份有限公司 显示装置的驱动方法、驱动装置及显示装置
CN107967902B (zh) * 2017-12-21 2020-03-31 惠科股份有限公司 显示装置的驱动方法、驱动装置及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075364A1 (zh) * 2011-11-24 2013-05-30 深圳市华星光电技术有限公司 彩色平面显示面板及相应的彩色平面显示装置
CN106683627A (zh) * 2016-12-20 2017-05-17 惠科股份有限公司 液晶显示器件及其驱动方法
CN106782371A (zh) * 2016-12-20 2017-05-31 惠科股份有限公司 液晶显示器件及其液晶显示面板的驱动方法
CN106842724A (zh) * 2016-12-20 2017-06-13 惠科股份有限公司 液晶显示器件及其驱动方法
CN108320716A (zh) * 2018-01-10 2018-07-24 惠科股份有限公司 显示面板的驱动方法及装置
CN108335678A (zh) * 2018-01-10 2018-07-27 惠科股份有限公司 显示面板的驱动方法及装置

Also Published As

Publication number Publication date
CN108335678B (zh) 2019-09-17
US11158231B2 (en) 2021-10-26
CN108335678A (zh) 2018-07-27
US20210074199A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019137003A1 (zh) 显示面板的驱动方法及装置
WO2019137004A1 (zh) 显示面板的驱动方法及装置
RU2660628C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
WO2018113615A1 (zh) 液晶显示器件及其驱动方法
WO2018113688A1 (zh) 液晶显示器件及其液晶显示面板的驱动方法
TWI578303B (zh) 顯示面板及顯示面板的驅動方法
WO2018113188A1 (zh) 显示装置及其驱动方法
RU2654349C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
WO2018214322A1 (zh) 像素驱动方法及显示装置
CN108053796B (zh) 显示面板的驱动方法及显示装置
WO2018120435A1 (zh) 液晶显示器件及其驱动方法
US11295679B2 (en) Method and apparatus for compensating view chromatic aberration of display device and display device
KR102008073B1 (ko) 액정 패널 및 액정 패널의 픽셀 유닛 설정 방법
WO2018205396A1 (zh) 显示面板的驱动方法及显示装置
TWI588814B (zh) 像素驅動方法
WO2019119881A1 (zh) 显示面板的驱动方法及驱动装置
TW201608704A (zh) 低色偏之顯示面板
US9659520B2 (en) Gamma correction method based on a gamma curve obtained from single or multiple primary-color frames
US11100837B2 (en) Method for driving display panel, and driver for display device
US9891494B2 (en) Pixel unit and driving method thereof, driving module, display panel and display device
US11138942B2 (en) Driving method of display module, driving system thereof, and driving device
WO2020135089A1 (zh) 显示器及其显示面板的驱动装置、方法
CN108962155A (zh) 亮度调整方法以及显示器
US11455962B2 (en) Driving method and system of display assembly, and display device
US11238829B2 (en) Luminnance-versus-drive signal curve based method for driving display panel, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899474

Country of ref document: EP

Kind code of ref document: A1