WO2019119881A1 - 显示面板的驱动方法及驱动装置 - Google Patents

显示面板的驱动方法及驱动装置 Download PDF

Info

Publication number
WO2019119881A1
WO2019119881A1 PCT/CN2018/104550 CN2018104550W WO2019119881A1 WO 2019119881 A1 WO2019119881 A1 WO 2019119881A1 CN 2018104550 W CN2018104550 W CN 2018104550W WO 2019119881 A1 WO2019119881 A1 WO 2019119881A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
sub
voltage
pixel
pixels
Prior art date
Application number
PCT/CN2018/104550
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/954,849 priority Critical patent/US11295685B2/en
Publication of WO2019119881A1 publication Critical patent/WO2019119881A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours

Definitions

  • the present application relates to the field of display technologies, and in particular, to a driving method and a driving device for a display panel.
  • a common display panel driving method is to apply two different high and low driving voltage signals to each adjacent two pixel units, and at the same time, for each adjacent two sub-children
  • the pixels respectively apply driving voltages of opposite polarities.
  • the color shift problem can sometimes be improved, it also causes the positive and negative polarities of the high voltage of the same color sub-pixel in the same column to be mismatched, that is, the number of sub-pixels of the same color positive polarity high voltage in the same column and the negative electrode.
  • the number of sub-pixels of high voltage is inconsistent.
  • the present application provides a driving method of a display panel, comprising: driving a sub-pixel corresponding to a position in each adjacent two rows of pixel units with a driving voltage of opposite polarity, the opposite polarity voltage including a positive electrode a positive voltage and a negative voltage, a portion of the sub-pixels corresponding to the positions of the adjacent two rows of pixel units are applied with a positive polarity voltage, and another portion of the sub-pixels corresponding to the positions of the adjacent two rows of pixel units are applied.
  • a negative polarity voltage driving a plurality of sub-pixels in the same pixel unit with two driving voltages of opposite polarities; driving a plurality of sub-pixels in the same pixel unit with driving voltages of at least two voltage levels, according to each The driving voltage of the voltage level distinguishes the plurality of sub-pixels.
  • the pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel arranged in sequence; and the two driving voltages of opposite polarities are used for the same
  • Driving the plurality of sub-pixels in the pixel unit includes: driving the first sub-pixel and the fourth sub-pixel in the same pixel unit by using a driving voltage of a first polarity; using a driving voltage of the second polarity to the same pixel
  • the second sub-pixel and the third sub-pixel in the cell are driven; wherein the first polarity and the second polarity are opposite to each other.
  • the driving of the plurality of sub-pixels in the same pixel unit by using two driving voltages of opposite polarities comprises: using a driving voltage of opposite polarity to each of the same pixel unit
  • the two adjacent sub-pixels are driven, and the driving voltages of opposite polarities include a first positive driving voltage and a first negative driving voltage, and the positive driving voltage is applied to one of the two sub-pixels,
  • the negative polarity driving voltage is the other of the two sub-pixels.
  • the pixel unit includes four sub-pixels; and the driving voltages of the at least two voltage levels are used to drive the plurality of sub-pixels in the same pixel unit, including: driving voltage pairs using the first voltage level Driving two sub-pixels of the pixel unit; driving the other two sub-pixels of the pixel unit with a driving voltage of a second voltage level, a value of the driving voltage of the first voltage level, and the second The values of the driving voltages of the voltage levels are different.
  • the driving method further includes driving the same sub-pixel with a driving voltage of opposite polarity during each adjacent two frame display time, and displaying the adjacent two frames includes the first One display time and second display time. Applying a driving voltage of a third polarity to the same sub-pixel during the first display time, and applying a driving voltage of a fourth polarity to the same sub-pixel during the second display time Driving, and the driving voltage of the third polarity and the driving voltage of the fourth polarity are different in polarity.
  • the present application further provides a driving device for a display panel, comprising: a first driving module configured to drive a sub-pixel corresponding to a position in each adjacent two rows of pixel units with a driving voltage of opposite polarity; a driving module configured to drive a plurality of sub-pixels in the same pixel unit by using two driving voltages with opposite polarities; and a third driving module configured to use driving voltages of at least two voltage levels in the same pixel unit A plurality of sub-pixels are driven.
  • the pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel, which are sequentially arranged, the first sub-pixel, the second sub-pixel, The third sub-pixel and the fourth sub-pixel have the same size;
  • the second driving module includes: a first driving unit configured to use a driving voltage of a first polarity to a first one of the same pixel unit Driving the pixel and the fourth sub-pixel; the second driving unit is configured to drive the second sub-pixel and the third sub-pixel in the same pixel unit by using a driving voltage of the second polarity; wherein the first polarity And the second polarity are opposite to each other.
  • the second driving module includes: a third driving unit configured to drive each adjacent two sub-pixels in the same pixel unit with a driving voltage of opposite polarity, and the pole
  • the opposite driving voltage includes a driving voltage of the third polarity and a driving voltage of the fourth polarity, and the driving voltage of the third polarity and the driving voltage of the fourth polarity are different in polarity.
  • the third driving unit applies a driving voltage of a third polarity to the adjacent two sub-pixels in the same pixel unit during a first driving time, and the third driving unit is in a second driving time.
  • a driving voltage of a fourth polarity is applied to be driven by the adjacent two sub-pixels in the same pixel unit.
  • the pixel unit includes four sub-pixels;
  • the third driving module includes: a fourth driving unit configured to perform driving of two sub-pixels in the pixel unit with a driving voltage of a first voltage level Driving; a fifth driving unit configured to drive the other two sub-pixels of the pixel unit with a driving voltage of a second voltage level.
  • the value of the driving voltage of the first voltage level is greater than or less than the value of the driving voltage of the second voltage level.
  • the present application also discloses another driving method of the display panel, comprising: driving sub-pixels corresponding to positions in each adjacent two rows of pixel units with driving voltages of opposite polarities, the opposite polarity voltages The positive polarity voltage and the negative polarity voltage are included, and a portion of the sub-pixels corresponding to the positions of the adjacent two rows of pixel units are applied with the positive polarity voltage, and the sub-pixels corresponding to the positions of the adjacent two rows of pixel units are further Applying the negative polarity voltage to a portion; driving the plurality of sub-pixels in the same pixel unit with two driving voltages of opposite polarities, including: using opposite driving voltages of opposite polarity in the same pixel unit Driving each adjacent two sub-pixels, the opposite polarity driving voltage includes a first positive polarity driving voltage and a first negative polarity driving voltage, and applying the first positive polarity driving voltage to the two sub-pixels One of the first negative polarity driving voltages applied to the other of the two sub
  • the present application also discloses another driving device for a display panel, comprising: a first driving module configured to drive sub-pixels corresponding to positions in each adjacent two rows of pixel units with driving voltages of opposite polarities; a second driving module, configured to drive a plurality of sub-pixels in the same pixel unit by using two driving voltages with opposite polarities; and a grouping module configured to divide the sub-pixels in the display panel into a first voltage level a sub-pixel and a second voltage level sub-pixel, the first voltage level sub-pixel and the second voltage level sub-pixel are interspersed in the display panel; and the third driving module is configured to drive with a first voltage level The voltage drives the first voltage level sub-pixel, and the second voltage level sub-pixel is driven with a driving voltage of a second voltage level.
  • the present application also provides a display device including a display panel; and the driving device according to any of the above.
  • the driving method and the driving device of the display panel described above are such that the number of sub-pixels to which the positive polarity high voltage level driving voltage is applied in the same color and the number of sub-pixels to which the negative polarity high voltage level driving voltage is applied are equal to each other, so that V com The voltage is protected from parasitic capacitance, ensuring the correctness of the image signal and avoiding color shift or image quality abnormalities.
  • FIG. 1 is a schematic flow chart of a driving method of a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of driving voltages of a plurality of pixel units in a display panel according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of driving voltages of sub-pixels in a plurality of pixel units of a display panel according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of driving voltages of sub-pixels in a plurality of pixel units of a display panel according to another embodiment of the present application.
  • FIG. 5 is a schematic flow chart of a driving method of a display panel according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a driving device of a display panel according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first driving module in a driving apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second driving module in a driving apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a driving device of a display panel according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • a driving method of a display panel comprising: driving a sub-pixel corresponding to a position in each adjacent two rows of pixel units with a driving voltage of opposite polarity, the voltages of opposite polarities including The positive polarity voltage and the negative polarity voltage, a positive polarity voltage is applied to a portion of the sub-pixels corresponding to the positions of the adjacent two rows of pixel units, and the other portion of the sub-pixels corresponding to the positions of the adjacent two rows of pixel units Applying a negative polarity voltage; driving a plurality of sub-pixels in the same pixel unit with two driving voltages of opposite polarities, comprising: driving each adjacent two of the same pixel unit with a driving voltage of opposite polarity Driving the sub-pixels, the driving voltages of opposite polarities include a first positive driving voltage and a first negative driving voltage, applying the positive driving voltage to one of the two sub-pixels, applying the negative electrode a driving voltage to the other of the two sub-pixel
  • a driving method of a display panel comprising: driving a sub-pixel corresponding to a position in each adjacent two rows of pixel units with a driving voltage of opposite polarity, the voltages of opposite polarities including a positive polarity voltage and a negative polarity voltage, the positive polarity voltage is applied to a portion of the sub-pixels corresponding to the positions of the adjacent two rows of pixel units, and the other of the sub-pixels corresponding to the positions of the adjacent two rows of pixel units Partially applying the negative polarity voltage; driving the plurality of sub-pixels in the same pixel unit with two driving voltages of opposite polarities, comprising: using a driving voltage of opposite polarity for each of the same pixel unit The two adjacent sub-pixels are driven, and the driving voltages of opposite polarities include a first positive driving voltage and a first negative driving voltage, and the first positive driving voltage is applied to the two sub-pixels One, applying the first negative polarity driving voltage to the other of
  • a driving device for a display panel includes: a first driving module configured to drive sub-pixels corresponding to positions in each adjacent two rows of pixel units by using driving voltages of opposite polarities; a driving module configured to drive a plurality of sub-pixels in the same pixel unit by using two driving voltages with opposite polarities; and a third driving module configured to use driving voltages of at least two voltage levels in the same pixel unit Multiple sub-pixels are driven.
  • a driving device for a display panel includes: a first driving module configured to drive sub-pixels corresponding to positions in each adjacent two rows of pixel units by using driving voltages of opposite polarities; a driving module configured to drive a plurality of sub-pixels in the same pixel unit by using two driving voltages with opposite polarities; and a grouping module configured to divide the sub-pixels in the display panel into the first voltage level a pixel and a second voltage level sub-pixel, the first voltage level sub-pixel and the second voltage level sub-pixel are interspersed in the display panel; and the third driving module is configured to adopt a driving voltage of a first voltage level The first voltage level sub-pixel is driven, and the second voltage level sub-pixel is driven with a driving voltage of a second voltage level.
  • a display device includes a display panel and a drive device as described above.
  • the display panel has a plurality of pixel units distributed in a matrix, each of the pixel units includes a plurality of sub-pixels.
  • each pixel unit includes at least a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • Each pixel unit may also include a white sub-pixel.
  • FIG. 1 is a schematic flowchart diagram of a driving method of a display panel according to an embodiment of the present application, and the driving method should be set as a display panel.
  • the driving method 10 includes the following steps:
  • Step S101 driving sub-pixels corresponding to positions in each adjacent two rows of pixel units are driven by driving voltages of opposite polarities.
  • the display panel 20 has a plurality of pixel units distributed in a matrix, each of the pixel units includes a plurality of sub-pixels, for example, each of the pixel units includes a plurality of sub-pixels having different colors, for example, each Each of the pixel units includes three sub-pixels of an R (red) sub-pixel, a G (green) sub-pixel, and a B (blue) sub-pixel.
  • each pixel unit includes four seed pixels of an R sub-pixel, a G sub-pixel, a B sub-pixel, and a W (white) sub-pixel, respectively.
  • a driving voltage is applied to each sub-pixel in the display panel such that the driving voltages of the sub-pixels corresponding to the positions in the adjacent two rows of pixel units are opposite in polarity.
  • each pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth arranged in a certain order.
  • Sub-pixels, in two adjacent rows of pixel units two first sub-pixels located in the same column are sub-pixels corresponding to positions; two second sub-pixels located in the same column are sub-pixels corresponding to positions; The two third sub-pixels of the same column are sub-pixels corresponding to the positions; the two fourth sub-pixels located in the same column are sub-pixels corresponding to the positions.
  • the above-mentioned certain order may be an order from left to right, a sequence from right to left, a sequence from top to bottom, or a sequence from bottom to top.
  • Step S102 driving a plurality of sub-pixels in the same pixel unit with two driving voltages of opposite polarities.
  • a positive driving voltage is applied to one of the sub-pixels, and a negative driving voltage is applied to the other two sub-pixels; or a negative electrode is applied to one of the sub-pixels.
  • the driving voltage of the polarity applies a positive driving voltage to the other two sub-pixels.
  • a positive driving voltage is applied to two of the sub-pixels, and a negative driving voltage is applied to the other two sub-pixels.
  • a driving voltage of opposite polarity is applied to each of the two adjacent sub-pixels; or, a driving voltage of the first polarity is applied to the two sub-pixels in the middle, and a second polarity is applied to the two sub-pixels of the edge. Drive voltage.
  • the pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel
  • the step S102 specifically includes: using a driving voltage of a first polarity in the same pixel unit Driving the first sub-pixel and the fourth sub-pixel; driving the second sub-pixel and the third sub-pixel in the same pixel unit with a driving voltage of the second polarity; wherein the first polarity and the first The two polarities are opposite to each other. For example, when the first polarity is positive polarity, the second polarity is negative polarity; when the first polarity is negative polarity, the second polarity is positive polarity.
  • the number of sub-pixels of the same color positive polarity and the number of negative polarity sub-pixels in each pixel unit are the same, which can ensure that the number of high-voltage positive polarity sub-pixels and the number of high-voltage negative polarity sub-pixels in each column of the entire display panel are the same, thereby ensuring the same.
  • the correctness of the image signal avoids the phenomenon of color shift or image quality.
  • the positive polarity refers to a driving voltage greater than a preset common electrode voltage V com of the display panel, that is, a voltage difference between the driving voltage and the V com voltage is greater than zero; and a negative polarity refers to a driving voltage less than a V com voltage. That is, the voltage difference between the driving voltage and the V com voltage is less than zero.
  • Step S103 driving a plurality of sub-pixels in the same pixel unit with driving voltages of at least two voltage levels.
  • the at least two voltage levels comprise a first voltage level and a second voltage level
  • the first voltage level may be greater than or less than the second voltage level.
  • the first voltage level is a high voltage level and the second voltage level is a low voltage level; or the first voltage level is a low voltage level and the second voltage level is a high voltage level.
  • each adjacent two sub-pixels in the same pixel unit are driven by driving voltages of the first voltage level and the second voltage level, respectively, so that driving voltages of each adjacent two sub-pixels in the same pixel unit are used.
  • the level is different.
  • each pixel unit includes four sub-pixels, and the adjacent two sub-pixels are respectively used as a group, and the driving voltages of the first voltage level and the second voltage level are respectively used for each adjacent two of the same pixel unit.
  • the group of sub-pixels are driven such that the driving voltage levels of the two sets of sub-pixels in the same pixel unit are different.
  • each adjacent two sub-pixels in the display panel are driven by driving voltages of the first voltage level and the second voltage level, respectively, so that the driving voltage level of each adjacent two sub-pixels in the display panel is high or low. different.
  • each pixel unit includes three or four sub-pixels, and the adjacent two sub-pixels are respectively used as a group, and the driving voltages of the first voltage level and the second voltage level are respectively used for each adjacent one in the display panel.
  • the two sets of sub-pixels are driven such that the driving voltage levels of the two sets of sub-pixels in the display panel are different.
  • the driving method of the display panel further includes: dividing each sub-pixel in the display panel into a high voltage sub-pixel and a low-voltage sub-pixel, and driving the high-voltage sub-pixel with a driving voltage of a high voltage level, and adopting a low The voltage level drive voltage drives the low voltage sub-pixels.
  • each high voltage sub-pixel is interposed with a low voltage sub-pixel, that is, regardless of the row direction or the column direction, adjacent to the high voltage sub-pixel are low voltage sub-pixels, adjacent to the low voltage sub-pixels a high voltage sub-pixel; or, every two high voltage sub-pixels are interspersed with two low voltage sub-pixels; or, in the first direction, every two high-voltage sub-pixels are interspersed with two low-voltage sub-pixels, In the second direction, each of the high voltage sub-pixels is interspersed with a low voltage sub-pixel, wherein the second direction is perpendicular to the first direction, and the first direction refers to a direction in which the plurality of sub-pixels in the pixel unit are arranged.
  • the high voltage level means that, for the driven sub-pixel, the input driving voltage is higher than the preset voltage value corresponding to the gray level of the sub-pixel.
  • the low voltage level means that for the driven sub-pixel, the input driving voltage is lower than the preset voltage value corresponding to the gray level of the sub-pixel.
  • the first driving voltage level corresponding to the first pixel unit is a high voltage level
  • the second driving voltage level corresponding to the second pixel unit is a low voltage level.
  • the gray level of any sub-pixel is recorded as K, corresponding to a preset voltage value V k (0 ⁇ k ⁇ 255, k is an integer)
  • the pixel value of the input voltage of the first pixel of each sub-unit is higher than the drive voltage V k
  • the second pixel unit Each sub-pixel in the input voltage value is lower than the driving voltage of V k .
  • the gray-scale luminance curve of the pixel unit in the side viewing angle is made close to the gray-scale luminance curve in the positive viewing angle, thereby improving the color shift problem under the side viewing angle.
  • the rows and columns of the embodiment of the present application represent two alignment directions perpendicular to each other, for example, the row indicates the vertical direction, and the column indicates the horizontal direction; for example, the row indicates the horizontal direction and the column indicates the vertical direction. That is, the "row” in the embodiment of the present application may be a “column” as understood by those skilled in the art, and the “column” in the embodiment of the present application may also be a “row” as understood by those skilled in the art.
  • step S101, step S102, and step S103 can be performed simultaneously. That is, a driving voltage is applied to each sub-pixel in the display panel such that the driving voltages of the sub-pixels corresponding to the positions in the adjacent two rows of pixel units are opposite in polarity, and driving of the plurality of sub-pixels in the same pixel unit
  • the voltage polarities are not exactly the same, and the driving voltage levels of the plurality of sub-pixels in the same pixel unit are not completely the same. In this way, not only the voltage level of the driving voltage of each adjacent two pixel units is different, but also the color shift problem under the side viewing angle can be improved, and the driving voltage is positive in the same color pixel of each row of the display panel.
  • the number of sub-pixels of the high voltage level is the same as the number of sub-pixels whose driving voltage is the negative high voltage level, so that the V com voltage is protected from parasitic capacitance, thereby ensuring the correctness of the image signal and avoiding color shift or painting.
  • the phenomenon of abnormal quality is the same as the number of sub-pixels whose driving voltage is the negative high voltage level, so that the V com voltage is protected from parasitic capacitance, thereby ensuring the correctness of the image signal and avoiding color shift or painting.
  • the driving method of the display panel before the driving voltage is applied to the sub-pixels of the display panel, the driving method of the display panel further includes: acquiring externally input image data, and determining grayscale data of each sub-pixel of the display panel according to the image data.
  • step S104 according to the grayscale data of each sub-pixel and the voltage level corresponding to each sub-pixel, a driving voltage value corresponding to each sub-pixel is generated, and the corresponding driving voltage value is respectively used for the sub-pixel and the first pixel in the first pixel unit.
  • the sub-pixels in the two-pixel unit are driven.
  • each pixel unit includes a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel, R represents a red sub-pixel, G represents a green sub-pixel, B represents a blue sub-pixel, and W represents a white sub-pixel.
  • Pixel. H represents the first driving voltage level
  • L represents the second driving voltage level.
  • each pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel, which are sequentially arranged, which are an R sub-pixel, a G sub-pixel, a B sub-pixel, and a W. Subpixel. Taking the adjacent j-th row pixel unit and the j+1th row pixel unit as an example, the two first sub-pixels R(i, j) and R(i, j in the i-th column of the two rows of pixel units are taken as an example.
  • a plurality of sub-pixels in the same pixel unit are driven by using two driving voltages of opposite polarities.
  • the first sub-pixel R(i, j) and the first of the frames are displayed within a display time of a certain frame.
  • the fourth sub-pixel W1(i,j) applies a positive driving voltage, and applies a negative driving voltage to the second sub-pixel G(i,j) and the third sub-pixel B(i,j) to make the same pixel
  • the driving voltages of the plurality of sub-pixels of the cell are not completely the same.
  • step S103 a plurality of sub-pixels in the same pixel unit are driven by driving voltages of at least two voltage levels. For example, when each pixel unit includes four sub-pixels, step S103 includes: driving two sub-pixels in the pixel unit with a driving voltage of a first voltage level; using a driving voltage of a second voltage level on the pixel The other two subpixels in the cell are driven.
  • the sub-pixel adjacent to the R sub-pixel of the j-th row and the i-th column includes the R of the j-th row and the i+1th column.
  • the sub-pixel and the G sub-pixel of the j-th row and the ith column apply a driving voltage of H level to the R sub-pixels of the j-th row and the ith column, and the R sub-pixel and the j-th row of the j-th row and the i+1th column
  • the G sub-pixel of the i-th column applies an L-level driving voltage such that the driving voltage levels of each adjacent two sub-pixels are different.
  • the number of sub-pixels to which a positive polarity high voltage level (H+) driving voltage is applied and the negative polarity high voltage level (H- can be applied to the same color sub-pixel in each row of pixels of the liquid crystal panel.
  • the number of sub-pixels of the driving voltage is equal.
  • each column in FIG. 3 has two R sub-pixels representing a positive high voltage level (H+) and two R sub-pixels representing a negative high voltage level (H-). .
  • the same number of positive and negative sub-pixels on the high voltage level can protect the V com voltage from parasitic capacitance, thus ensuring the correctness of the image signal and avoiding color shift or image quality abnormality.
  • the driving method further includes driving sub-pixels of the same row with driving voltages of the same polarity.
  • the R sub-pixels of the jth row are all applied with a positive driving voltage
  • the G sub-pixels of the jth row are applied with a negative driving voltage
  • the B sub-pixels of the jth row are all given a negative polarity.
  • the driving voltage, the W sub-pixels of the jth row are all applied with a positive driving voltage.
  • the driving voltages of the sub-pixels of the same row have the same polarity, the difference between the plurality of voltage signals output by the same data line is maintained within a small range, thereby preventing the data driving chip from being heated or the voltage signal is distorted, thereby improving the sub-pixels.
  • the display quality of the pixel since the driving voltages of the sub-pixels of the same row have the same polarity, the difference between the plurality of voltage signals output by the same data line is maintained within a small range, thereby preventing the data driving chip from being heated or the voltage signal is distorted, thereby improving the sub-pixels.
  • the display quality of the pixel since the driving voltages of the sub-pixels of the same row have the same polarity, the difference between the plurality of voltage signals output by the same data line is maintained within a small range, thereby preventing the data driving chip from being heated or the voltage signal is distorted, thereby improving the sub-pixels.
  • the display quality of the pixel since the driving voltages of the sub-
  • the driving method further includes: driving the same sub-pixel with a driving voltage of opposite polarity in each adjacent two frame display time; that is, for each sub-pixel, adjacent to each other During the two frames of display time, driving voltages of different polarities are respectively applied to achieve the effect of AC driving.
  • the adjacent two frame display times include a first display time and a second display time, during which the driving voltage of the third polarity is applied to be driven by the same sub-pixel, During the second display time, a driving voltage of a fourth polarity is applied to be driven by the same sub-pixel, and a driving voltage of the third polarity and a driving voltage of the fourth polarity are the same but the polarity Different.
  • a driving voltage as shown in FIG. 3 is applied to some sub-pixels in the display panel, and in the display time of the m+1th frame picture, the sub-pixel is applied as shown in the figure.
  • FIG. 5 is a schematic flowchart of a driving method of a display panel according to another embodiment of the present application.
  • the driving method 50 includes the following steps:
  • Sub-pixels in the display panel are divided into first voltage level sub-pixels and second voltage level sub-pixels.
  • the first voltage level sub-pixel and the second voltage level sub-pixel are interspersed in the display panel.
  • step S502 and the step S503 refer to the implementation manners of the step S101 and the step S102 in the embodiment shown in FIG. 1 to FIG. 4, and details are not described herein again.
  • S504 driving the first voltage level sub-pixel by using a driving voltage of a first voltage level, and driving the second voltage level sub-pixel by using a driving voltage of a second voltage level.
  • step S502, step S503, and step S504 can be performed simultaneously.
  • a driving voltage is applied to each sub-pixel in the display panel, so that each adjacent two rows of pixels
  • the driving voltages of the sub-pixels corresponding to the positions in the cells are opposite in polarity, and the plurality of sub-pixels in the same pixel unit are applied with two driving voltages of opposite polarities, and the driving voltage level of the first voltage-level sub-pixels is A voltage level, the driving voltage level of the second first voltage level sub-pixel is a second voltage level.
  • the first voltage level and the second voltage level are respectively a high voltage level and a low voltage level.
  • each sub-pixel in the display panel is divided into a high voltage sub-pixel and a low voltage sub-pixel, and a high voltage sub-pixel is driven by a driving voltage of a high voltage level, and a low voltage level driving voltage is applied to the low voltage sub-pixel.
  • the pixels are driven.
  • each high voltage sub-pixel is interposed with a low voltage sub-pixel, that is, regardless of the row direction or the column direction, adjacent to the high voltage sub-pixel are low voltage sub-pixels, adjacent to the low voltage sub-pixels a high voltage sub-pixel; or, every two high voltage sub-pixels are interspersed with two low voltage sub-pixels; or, in the first direction, every two high-voltage sub-pixels are interspersed with two low-voltage sub-pixels, In the second direction, each of the high voltage sub-pixels is interspersed with a low voltage sub-pixel, wherein the second direction is perpendicular to the first direction, and the first direction refers to a direction in which the plurality of sub-pixels in the pixel unit are arranged.
  • the gray-scale luminance curve of the pixel unit in the side viewing angle is close to the gray-scale luminance curve in the positive viewing angle, thereby improving the color shifting problem under the side viewing angle, that is, the high-voltage sub-pixel is viewed from the positive viewing angle or the side viewing angle.
  • the pictures displayed in the low-voltage sub-pixels can all be viewed in the same level.
  • the sub-pixels are obtained according to the image data of each sub-pixel, the corresponding driving voltage polarity, and the voltage level.
  • the driving voltage of the pixel is applied to each sub-pixel through a data line.
  • the embodiment of the present application further provides a driving device 60 for a display panel.
  • the display panel has a plurality of pixel units distributed in a matrix, each pixel unit includes a plurality of sub-pixels, for example, each pixel unit includes an R sub-pixel, a G sub-pixel, and a B sub-pixel, and each pixel unit includes R. Sub-pixel, G sub-pixel, B sub-pixel, and W sub-pixel.
  • the driving device 60 includes a first driving module 610, a second driving module 620, and a third driving module 630, wherein the first driving module 610 is configured to adopt a driving voltage of opposite polarity to each adjacent one.
  • the sub-pixels corresponding to the positions of the two rows of pixel units are driven;
  • the second driving module 620 is configured to drive the plurality of sub-pixels in the same pixel unit by using two driving voltages with opposite polarities;
  • the third driving module 630 is configured A plurality of sub-pixels in the same pixel unit are driven for driving voltages of at least two voltage levels.
  • the driving voltage is the same color sub-pixel in each row of pixels of the display panel.
  • the number of sub-pixels that are positive-voltage high-voltage levels is the same as the number of sub-pixels whose driving voltage is negative polarity high-voltage level, so that the V com voltage is protected from parasitic capacitance, thereby ensuring the correctness of the image signal and avoiding color shift. Or the phenomenon of abnormal image quality.
  • the pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel arranged in sequence; as shown in FIG. 7, the second driving module 620 includes a first driving unit 621 and a second driving unit 622, wherein the first driving unit 621 is configured to drive the first sub-pixel and the fourth sub-pixel in the same pixel unit by using a driving voltage of a first polarity; the second driving unit The 622 is configured to drive the second sub-pixel and the third sub-pixel in the same pixel unit by using a driving voltage of the second polarity; wherein the first polarity and the second polarity are opposite to each other.
  • the number of positive sub-pixels and the number of negative sub-pixels in each pixel unit are the same, which can ensure that the number of high-voltage positive sub-pixels and the high-voltage negative sub-pixels of the same color sub-pixel in each column of the entire display panel are the same. Thereby ensuring the correctness of the image signal and avoiding the phenomenon of color shift or image quality abnormality.
  • the second driving module 620 includes a third driving unit configured to drive two adjacent sub-pixels in the same pixel unit with driving voltages of opposite polarities. More specifically, the driving voltages of opposite polarities include a driving voltage of the third polarity and a driving voltage of the fourth polarity, and the driving voltage of the third polarity and the driving voltage polarity of the fourth polarity are different.
  • the third driving unit applies a driving voltage of a third polarity to drive two adjacent sub-pixels in the same pixel unit during the first driving time, and the third driving unit applies a driving voltage of the fourth polarity in the second driving time. The two adjacent sub-pixels in the same pixel unit are driven.
  • the pixel unit includes an even number of sub-pixels, for example, when the pixel unit includes an R sub-pixel, a G sub-pixel, a B sub-pixel, and a W sub-pixel, the number of positive sub-pixels and the number of negative sub-pixels in each pixel unit
  • the number of high-voltage positive sub-pixels and the number of high-voltage negative sub-pixels of the same color sub-pixel in each column of the entire display panel are the same, thereby ensuring the correctness of the image signal and avoiding the phenomenon of color shift or image quality abnormality.
  • the pixel unit includes four sub-pixels;
  • the third driving module 630 includes: a fourth driving unit 631 configured to adopt a driving voltage of a first voltage level to Two sub-pixels in the pixel unit are driven;
  • the fifth driving unit 632 is configured to drive the other two sub-pixels in the pixel unit with a driving voltage of a second voltage level.
  • the driving device 60 further includes a fourth driving module configured to drive sub-pixels of the same row with driving voltages of the same polarity.
  • a fourth driving module configured to drive sub-pixels of the same row with driving voltages of the same polarity.
  • the driving device 60 further includes a fifth driving module configured to drive the same sub-pixel with a driving voltage of opposite polarity during each adjacent two frame display time. In this way, each sub-pixel can be AC-driven to protect the liquid crystal material and the electrode, thereby prolonging the life of the display panel.
  • FIG. 9 is a schematic structural diagram of a driving device for a display panel according to another embodiment of the present application.
  • the driving device 90 includes a grouping module 910 , a first driving module 920 , a second driving module 930 , and a third driving module 940 . .
  • the grouping module 910 is configured to divide the sub-pixels in the display panel into first voltage level sub-pixels and second voltage level sub-pixels, where the first voltage level sub-pixel and the second voltage level sub-pixel are The display panel is interposed; the first driving module 920 is configured to drive sub-pixels corresponding to positions in each adjacent two rows of pixel units with driving voltages of opposite polarities; and the second driving module 930 is configured to adopt a pole The opposite driving voltages drive the plurality of sub-pixels in the same pixel unit; the third driving module 940 is configured to drive the first voltage level sub-pixel with a driving voltage of a first voltage level, and Driving the second voltage level sub-pixel with a driving voltage of a second voltage level.
  • first driving module 920 and the second driving module 930 For the specific implementation manners of the first driving module 920 and the second driving module 930, reference may be made to the implementation manners of the first driving module 610 and the second driving module 620 in the embodiment shown in FIG. 6 to FIG. 8 , and details are not described herein again.
  • the first voltage level sub-pixel and the second voltage level sub-pixel are interspersed in the display panel.
  • the first voltage level and the second voltage level are respectively a high voltage level and a low voltage level.
  • each sub-pixel in the display panel is divided into a high voltage sub-pixel and a low voltage sub-pixel, and the high voltage sub-pixel is driven by a driving voltage of a high voltage level, and the low voltage sub-pixel is driven by a driving voltage of a low voltage level. drive.
  • each high voltage sub-pixel is interposed with a low voltage sub-pixel, that is, regardless of the row direction or the column direction, adjacent to the high voltage sub-pixel are low voltage sub-pixels, and adjacent to the low voltage sub-pixels a high voltage sub-pixel; or, every two high-voltage sub-pixels are interspersed with two low-voltage sub-pixels; or, in the first direction, every two high-voltage sub-pixels are interspersed with two low-voltage sub-pixels, In the two directions, each of the high voltage sub-pixels is interspersed with a low voltage sub-pixel, wherein the second direction is perpendicular to the first direction, and the first direction refers to a direction in which the plurality of sub-pixels in the pixel unit are arranged.
  • the gray-scale luminance curve of the pixel unit in the side viewing angle is made close to the gray-scale luminance curve in the positive viewing angle, thereby improving the color shift problem under the side viewing angle.
  • the "row” and “column” of the embodiment of the present application indicate two arrangement directions perpendicular to each other, for example, “row” means vertical, “column” means horizontal; for example, “row” means horizontal, and “column” means Portrait. That is, the “row” in the embodiment of the present application may be a “column” as understood by those of ordinary skill in the art. The “column” in the embodiment of the present application may also be a “row” as understood by those skilled in the art. .
  • a further embodiment of the present invention is a driving device for a display panel, which uses the driving method of the display panel according to any of the above embodiments; for example, a driving device for a display panel, which adopts any of the above embodiments.
  • the driving method of the display panel is implemented.
  • the driving device of the display panel has the functional module corresponding to the driving method of the display panel according to any of the above embodiments.
  • the driving method and the driving device of the display panel proposed by the present application may be, for example, a liquid crystal display panel, an OLED (Organic Light-Emitting Diode) display panel, and a QLED (Quantum Dot).
  • Light Emitting Diodes display panels, curved display panels or flexible display panels.
  • a liquid crystal display panel can be a TN (Twisted Nematic) liquid crystal display panel, IPS (In-Plane). Switching, plane conversion) LCD panel, PLS (Plane To Line Switching, LCD switching panel, or MVA (Multi-domain Vertical Alignment) LCD panel.
  • the above display panel can be driven by a logic board of a full HD display panel. That is, the driving method and the driving device of the above display panel can be implemented by using a logic board of a full HD display panel.
  • the present application also discloses a display device.
  • the display device 100 includes a display panel 110 and a driving device 120.
  • the driving device 120 adopts the driving device 60 of the display panel or the driving device 90 of the display panel according to any of the above embodiments.
  • the driving device 120 is configured to apply a driving voltage to each sub-pixel in the display panel 20 to drive the display panel to display a preset screen.
  • the display device is a liquid crystal display device, an OLED display device or a QLED display device, a curved display device, a flexible display device, or the like.
  • the liquid crystal display device can be a TN liquid crystal display, an IPS liquid crystal display, a PLS liquid crystal display, or an MVA liquid crystal display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板的驱动方法及驱动装置,包括:采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动(S101);采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动(S102);采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动(S103)。

Description

显示面板的驱动方法及驱动装置 技术领域
本申请涉及显示技术领域,特别是涉及一种显示面板的驱动方法及驱动装置。
背景技术
目前常见的显示面板,由于液晶分子的偏转角或者由于OLED(Organic Light-Emitting Diode,有机发光二极管)器件的发光稳定性等原因,通常存在一定程度的色偏问题。
为了改善色偏问题,常见的一种显示面板的驱动方法是对每相邻的两个像素单元分别施加高、低两种不同的驱动电压信号,并且在同一时刻,对每相邻的两个子像素分别施加极性相反的驱动电压。采用这种方式,虽然有时能改善色偏问题,但也会导致同一列同一颜色子像素的高电压的正负极性不匹配,即同一列中同一颜色正极性高电压的子像素数量与负极性高电压的子像素的数量不一致。这样,由于寄生电容的影响,当同一列同一颜色正极性高电压的子像素数量多于负极性高电压的子像素数量时,共电极电压V com的等效电压相较于原V com有所提高,导致正极性高电压的子像素实际充电电荷减少、亮度降低,相反地使得负极性高电压子像素实际充电电荷增加、亮度增加,进而影响显示颜色及画质,产生画质输出异常的问题。
技术问题
基于此,有必要针对提供一种显示面板的驱动方法及驱动装置,能够使得V com电压免受干扰,保证图像信号的正确性,提升画面显示质量。
技术解决方案
本申请提供了一种显示面板的驱动方法,其包括:采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动,所述极性相反的电压包括正极性电压和负极性电压,相邻的两行像素单元中位置相对应的子像素的一部份施加正极性电压,相邻的两行像素单元中位置相对应的子像素的另一部份施加负极性电压;采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动,根据每个所述电压等级的驱动电压区分所述多个子像素。
在其中一个实施例中,所述像素单元包括依序排列的第一子像素、第二子像素、第三子像素和第四子像素;所述采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,包括:采用第一极性的驱动电压对同一像素单元中的第一子像素和第四子像素进行驱动;采用第二极性的驱动电压对同一像素单元中的第二子像素和第三子像素进行驱动;其中,所述第一极性和所述第二极性互为相反极性。
在其中一个实施例中,所述采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,包括:采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动,所述极性相反的驱动电压包括第一正极性驱动电压和第一负极性驱动电压,施加所述正极性驱动电压于所述两个子像素中的其中一个,施加所述负极性驱动电压于所述两个子像素中的另一个。
在其中一个实施例中,所述像素单元包括四个子像素;所述采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动,包括:采用第一电压等级的驱动电压对所述像素单元中的两个子像素进行驱动;采用第二电压等级的驱动电压对所述像素单元中的另两个子像素进行驱动,所述第一电压等级的驱动电压的数值和所述第二电压等级的驱动电压的数值相异。
在其中一个实施例中,所述驱动方法还包括:在每相邻的两帧显示时间内,采用极性相反的驱动电压对同一所述子像素进行驱动,相邻的两帧显示时间包括第一显示时间和第二显示时间。于所述第一显示时间内,施加第三极性的驱动电压于同一所述子像素进行驱动,于所述第二显示时间内,施加第四极性的驱动电压于同一所述子像素进行驱动,且所述第三极性的驱动电压和所述第四极性的驱动电压极性相异。
本申请还提供一种显示面板的驱动装置,其包括:第一驱动模块,设置为采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动;第二驱动模块,设置为采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;第三驱动模块,设置为采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动。
在其中一个实施例中,所述像素单元包括依序排列的第一子像素、第二子像素、第三子像素和第四子像素,所述第一子像素、所述第二子像素、所述第三子像素和所述第四子像素具有相同的尺寸;所述第二驱动模块包括:第一驱动单元,设置为采用第一极性的驱动电压对同一像素单元中的第一子像素和第四子像素进行驱动;第二驱动单元,设置为采用第二极性的驱动电压对同一像素单元中的第二子像素和第三子像素进行驱动;其中,所述第一极性和所述第二极性互为相反极性。
在其中一个实施例中,所述第二驱动模块包括:第三驱动单元,设置为采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动,而所述极性相反的驱动电压包括第三极性的驱动电压和第四极性的驱动电压,且所述第三极性的驱动电压和所述第四极性的驱动电压极性相异。所述第三驱动单元于第一驱动时间内施加第三极性的驱动电压于同一所述像素单元中相邻的所述两个子像素进行驱动,所述第三驱动单元于第二驱动时间内施加第四极性的驱动电压于同一所述像素单元中相邻的所述两个子像素进行驱动。
在其中一个实施例中,所述像素单元包括四个子像素;所述第三驱动模块包括:第四驱动单元,设置为采用第一电压等级的驱动电压对所述像素单元中的两个子像素进行驱动;第五驱动单元,设置为采用第二电压等级的驱动电压对所述像素单元中的另两个子像素进行驱动。所述第一电压等级的驱动电压的数值大于或小于所述第二电压等级的驱动电压的数值。
本申请还公开了另一种显示面板的驱动方法,其包括:采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动,所述极性相反的电压包括正极性电压和负极性电压,相邻的两行像素单元中位置相对应的子像素的一部份施加所述正极性电压,相邻的两行像素单元中位置相对应的子像素的另一部份施加所述负极性电压;采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,其包括:采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动,所述极性相反的驱动电压包括第一正极性驱动电压和第一负极性驱动电压,施加所述第一正极性驱动电压于所述两个子像素中的其中一个,施加所述第一负极性驱动电压于所述两个子像素中的另一个;将所述显示面板中的子像素划分为第一电压等级子像素和第二电压等级子像素,所述第一电压等级子像素和所述第二电压等级子像素在所述显示面板中穿插设置;采用第一电压等级的驱动电压对所述第一电压等级子像素进行驱动,采用第二电压等级的驱动电压对所述第二电压等级子像素进行驱动,且所述第一电压等级的驱动电压与所述第二电压等级的驱动电压相异。
本申请还公开了另一种显示面板的驱动装置,其包括:第一驱动模块,设置为采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动;第二驱动模块,设置为采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;分组模块,设置为将所述显示面板中的子像素划分为第一电压等级子像素和第二电压等级子像素,所述第一电压等级子像素和所述第二电压等级子像素在所述显示面板中穿插设置;第三驱动模块,设置为采用第一电压等级的驱动电压对所述第一电压等级子像素进行驱动,以及,采用第二电压等级的驱动电压对所述第二电压等级子像素进行驱动。
本申请还提供一种显示装置,其包括显示面板;及如上任一项所述驱动装置。
有益效果
上述显示面板的驱动方法及驱动装置,能够使得每一列同一颜色被施加正极性高电压等级驱动电压的子像素的数量和被施加负极性高电压等级驱动电压的子像素的数量相等,使得V com电压免受寄生电容的影响,从而确保图像信号的正确性,避免发生色偏或画质异常的现象。
附图说明
图1为本申请一个实施例的显示面板的驱动方法的流程示意图。
图2为本申请一个实施例的显示面板中的多个像素单元的驱动电压示意图。
图3为本申请一个实施例的显示面板的多个像素单元中的子像素的驱动电压示意图。
图4为本申请另一个实施例的显示面板的多个像素单元中的子像素的驱动电压示意图。
图5为本申请另一个实施例的显示面板的驱动方法的流程示意图。
图6为本申请一个实施例的显示面板的驱动装置的结构示意图。
图7为本申请一个实施例的驱动装置中的第一驱动模块的结构示意图。
图8为本申请一个实施例的驱动装置中的第二驱动模块的结构示意图。
图9为本申请另一个实施例的显示面板的驱动装置的结构示意图。
图10为本申请一个实施例的显示装置的结构示意图。
本申请的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
例如,一种显示面板的驱动方法,所述驱动方法包括:采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动,所述极性相反的电压包括正极性电压和负极性电压,相邻的两行像素单元中位置相对应的子像素的一部份施加正极性电压,相邻的两行像素单元中位置相对应的子像素的另一部份施加负极性电压;采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,其包括:采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动,所述极性相反的驱动电压包括第一正极性驱动电压和第一负极性驱动电压,施加所述正极性驱动电压于所述两个子像素中的其中一个,施加所述负极性驱动电压于所述两个子像素中的另一个;采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动,根据每个所述电压等级的驱动电压区分所述多个子像素。
例如,一种显示面板的驱动方法,所述驱动方法包括:采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动,所述极性相反的电压包括正极性电压和负极性电压,相邻的两行像素单元中位置相对应的子像素的一部份施加所述正极性电压,相邻的两行像素单元中位置相对应的子像素的另一部份施加所述负极性电压;采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,其包括:采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动,所述极性相反的驱动电压包括第一正极性驱动电压和第一负极性驱动电压,施加所述第一正极性驱动电压于所述两个子像素中的其中一个,施加所述第一负极性驱动电压于所述两个子像素中的另一个;将所述显示面板中的子像素划分为第一电压等级子像素和第二电压等级子像素,所述第一电压等级子像素和所述第二电压等级子像素在所述显示面板中穿插设置;采用第一电压等级的驱动电压对所述第一电压等级子像素进行驱动,采用第二电压等级的驱动电压对所述第二电压等级子像素进行驱动,且第一电压等级的驱动电压的数值和第二电压等级的驱动电压的数值相异。
例如,一种显示面板的驱动装置,所述驱动装置包括:第一驱动模块,设置为采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动;第二驱动模块,设置为采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;第三驱动模块,设置为采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动。
例如,一种显示面板的驱动装置,所述驱动装置包括:第一驱动模块,设置为采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动;第二驱动模块,设置为采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;分组模块,设置为将所述显示面板中的子像素划分为第一电压等级子像素和第二电压等级子像素,所述第一电压等级子像素和所述第二电压等级子像素在所述显示面板中穿插设置;第三驱动模块,设置为采用第一电压等级的驱动电压对所述第一电压等级子像素进行驱动,以及,采用第二电压等级的驱动电压对所述第二电压等级子像素进行驱动。
例如,一种显示装置,包括显示面板及如上任一所述的驱动装置。
其中,所述显示面板具有呈矩阵分布的多个像素单元,每一所述像素单元包括多个子像素,例如,每一像素单元至少包括红色子像素、绿色子像素和蓝色子像素,可选地,每一像素单元还可包括白色子像素。
为进一步理解上述显示面板的驱动方法及驱动装置。下面结合附图进行说明。
请一并参阅图1至图2,其中图1为本申请一实施例的显示面板的驱动方法的流程示意图,所述驱动方法应设置为显示面板。如图1所示,所述驱动方法10包括以下步骤:
步骤S101,采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动。
其中,如图2所示,显示面板20具有呈矩阵分布的多个像素单元,每一所述像素单元包括多个子像素,例如,每个像素单元包括颜色不同的多个子像素,又如,每个像素单元分别包括R(红色)子像素、G(绿色)子像素及B(蓝色)子像素这三种子像素。或者,每个像素单元分别包括R子像素、G子像素、B子像素和W(白色)子像素这四种子像素。
作为一种实施方式,对显示面板中的各子像素分别施加驱动电压,使得每相邻的两行像素单元中位置相对应的子像素的驱动电压极性相反。
其中,位置相对应指的是在一行像素单元中的相对位置或排列顺序一致,例如,每一像素单元包括按照一定顺序排列的第一子像素、第二子像素、第三子像素和第四子像素,则在相邻两行像素单元中,位于同一列的两个第一子像素为位置相对应的子像素;位于同一列的两个第二子像素为位置相对应的子像素;位于同一列的两个第三子像素为位置相对应的子像素;位于同一列的两个第四子像素为位置相对应的子像素。其中,上述一定顺序,可选的为从左到右的顺序、从右到左的顺序、从上到下的顺序或者从下到上的顺序。
步骤S102,采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动。
作为一种实施方式,若每个像素单元中包括3个子像素,则对其中一个子像素施加正极性的驱动电压,对另外两个子像素施加负极性的驱动电压;或者对其中一个子像素施加负极性的驱动电压,对另外两个子像素施加正极性的驱动电压。
作为一种实施方式,若每个像素单元中包括4个子像素,则对其中两个子像素施加正极性的驱动电压,对另外两个子像素施加负极性的驱动电压。可选地,对每相邻的两个子像素分别施加极性相反的驱动电压;或者,对中间的两个子像素施加第一极性的驱动电压,对边缘的两个子像素施加第二极性的驱动电压。例如,所述像素单元包括依序排列的第一子像素、第二子像素、第三子像素和第四子像素,步骤S102具体包括:采用第一极性的驱动电压对同一像素单元中的第一子像素和第四子像素进行驱动;采用第二极性的驱动电压对同一像素单元中的第二子像素和第三子像素进行驱动;其中,所述第一极性和所述第二极性互为相反极性。例如,当第一极性为正极性时,第二极性为负极性;当第一极性为负极性时,第二极性为正极性。这样,每个像素单元中同一颜色正极性的子像素数量和负极性的子像素数量相同,能够保证整个显示面板中每一列的高电压正极性子像素数量和高电压负极性子像素数量相同,从而确保图像信号的正确性,避免发生色偏或画质异常的现象。
本申请实施例中,正极性指的是驱动电压大于显示面板预设的共电极电压V com,即驱动电压与V com电压的压差大于零;负极性指的是驱动电压小于V com电压,即驱动电压与V com电压的压差小于零。
步骤S103,采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动。
其中,所述至少两种电压等级包括第一电压等级和第二电压等级,第一电压等级可大于或小于第二电压等级。例如,第一电压等级为高电压等级,第二电压等级为低电压等级;或者,第一电压等级为低电压等级,第二电压等级为高电压等级。
作为一种实施方式,分别采用第一电压等级和第二电压等级的驱动电压对同一像素单元中每相邻的两个子像素进行驱动,使得同一像素单元中每相邻的两个子像素的驱动电压等级高低不同。
作为一种实施方式,每个像素单元包括四个子像素,以相邻的2个子像素为一组,分别采用第一电压等级和第二电压等级的驱动电压对同一像素单元中每相邻的两组子像素进行驱动,使得同一像素单元中的两组子像素的驱动电压等级高低不同。
作为一种实施方式,分别采用第一电压等级和第二电压等级的驱动电压对显示面板中每相邻的两个子像素进行驱动,使得显示面板中每相邻的两个子像素的驱动电压等级高低不同。
作为一种实施方式,每个像素单元包括三个或四个子像素,以相邻的2个子像素为一组,分别采用第一电压等级和第二电压等级的驱动电压对显示面板中每相邻的两组子像素进行驱动,使得显示面板中的两组子像素的驱动电压等级高低不同。
具体地,所述显示面板的驱动方法还包括:将显示面板中的各子像素划分为高电压子像素和低电压子像素,采用高电压等级的驱动电压对高电压子像素进行驱动,采用低电压等级的驱动电压对低电压子像素进行驱动。其中,每个高电压子像素与一低电压子像素穿插设置,即,无论行向或列向,与高电压子像素相邻的均为低电压子像素,与低电压子像素相邻的均为高电压子像素;或者,每两个高电压子像素与两个低电压子像素穿插设置;或者,在第一方向上每两个高电压子像素与两个低电压子像素穿插设置,在第二方向上,每个高电压子像素与一个低电压子像素穿插设置,其中第二方向与第一方向相垂直,第一方向指的是像素单元中多个子像素排列的方向。
其中,高电压等级是指,对于所驱动的子像素,输入的驱动电压高于所述子像素的灰阶对应的预设电压值。类似地,低电压等级是指,对于所驱动的子像素,输入的驱动电压低于所述子像素的灰阶对应的预设电压值。例如,在正常驱动一个子像素时,若要显示0~255的灰阶,则对应需要输入V 0~V 255的驱动电压。本实施例中,以第一像素单元对应的第一驱动电压等级为高电压等级,第二像素单元对应的第二驱动电压等级为低电压等级为例,若任一个子像素的灰阶记为K,对应的预设电压值为V k(0≤k≤255,k为整数),则对第一像素单元中的每个子像素输入电压值高于V k的驱动电压,对第二像素单元中的每个子像素输入电压值低于V k的驱动电压。
由于高电压子像素与低电压子像素在显示面板中穿插设置,这样,使得每相邻两个子像素的驱动电压的电压等级高低不同,或者使得每隔若干个子像素驱动电压的电压等级发生变化,使得像素单元在侧视角下的灰阶亮度曲线接近于正视角下的灰阶亮度曲线,从而改善侧视角下的色偏问题。
其中,本申请实施例的行和列表示相互垂直的两种排列方向,例如,行表示纵向,列表示横向;又如,行表示横向,列表示纵向。即,本申请实施例中的“行”,可以是本领域技术人员所理解的“列”,本申请实施例中的“列”,也可以是本领域技术人员所理解的“行”。
实际应用中,步骤S101、步骤S102和步骤S103可同时进行。即,对显示面板中的各子像素施加驱动电压,使得每相邻的两行像素单元中位置相对应的子像素的驱动电压极性相反,并且同一所述像素单元中的多个子像素的驱动电压极性不完全相同,并且同一像素单元中多个子像素的驱动电压等级不完全相同。这样,不仅使得每相邻两个像素单元的驱动电压的电压等级高低不同,能够改善侧视角下的色偏问题,而且使得在显示面板的每一列(row)同一颜色像素中,驱动电压为正极性高电压等级的子像素的数量与驱动电压为负极性高电压等级的子像素的数量相同,使得V com电压免受寄生电容的影响,从而确保图像信号的正确性,避免发生色偏或画质异常的现象。
在一个实施例中,在对显示面板的子像素施加驱动电压之前,上述显示面板的驱动方法还包括:获取外部输入的图像数据,根据所述图像数据确定显示面板的每个子像素的灰阶数据;在步骤S104,根据每个子像素的灰阶数据和每个子像素对应的电压等级,生成每个子像素对应的驱动电压值,采用对应的驱动电压值分别对第一像素单元中的子像素和第二像素单元中的子像素进行驱动。
请一并参阅图2及图3,其中P表示像素单元,(i,j)表示第i列第j行,(i,j+1)表示第i列第j+1行,(i+1,j)表示第i+1列第j行,以此类推;反之亦可。以每一像素单元分别包括红色子像素、绿色子像素、蓝色子像素和白色子像素为例,R代表红色子像素素,G代表绿色子像素,B代表蓝色子像素,W代表白色子像素。H表示第一驱动电压等级,L表示第二驱动电压等级。
根据步骤S101,采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动。如图3所示,每一像素单元包括依序排列的第一子像素、第二子像素、第三子像素和第四子像素,分别为R子像素、G子像素、B子像素和W子像素。以相邻的第j行像素单元和第j+1行像素单元为例,对这两行像素单元中位于第i列的两个第一子像素R(i,j)和R(i,j+1)施加极性相反的驱动电压;对这两行像素单元中位于第i列的两个第二子像素G(i,j)和G(i,j+1)施加极性相反的驱动电压;对这两行像素单元中位于第i+1列的两个第一子像素R(i+1,j)和R(i+1,j+1)施加极性相反的驱动电压;以此类推,使每相邻两行像素单元中位置相对应的两个子像素的驱动电压极性相反。
根据步骤S102,采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动。如图3所示,以第j行第i列的像素单元P1(i,j)为例,在某一帧画面的显示时间内,对其中的第一子像素R(i,j)和第四子像素W1(i,j)施加正极性的驱动电压,对其中的第二子像素G(i,j)和第三子像素B(i,j)施加负极性的驱动电压,使同一像素单元的多个子像素的驱动电压不完全相同。
根据步骤S103,采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动。例如,当每个像素单元包括四个子像素时,步骤S103包括:采用第一电压等级的驱动电压对所述像素单元中的两个子像素进行驱动;采用第二电压等级的驱动电压对所述像素单元中的另两个子像素进行驱动。
其中,以每相邻两个子像素的驱动电压等级不同为例,如图3所示,与第j行第i列的R子像素相邻的子像素包括第j行第i+1列的R子像素和第j行第i列的G子像素,则对第j行第i列的R子像素施加H等级的驱动电压,对第j行第i+1列的R子像素和第j行第i列的G子像素施加L等级的驱动电压,使得每相邻两个子像素的驱动电压等级不同。
采用上述驱动方法,能够使得液晶面板的每一列(row)像素中同一颜色子像素,被施加正极性高电压等级(H+)驱动电压的子像素的数量和被施加负极性高电压等级(H-)驱动电压的子像素的数量相等,例如图3中的每一列,代表正极性高电压等级(H+)的R子像素和代表负极性高电压等级(H-)的R子像素各有2个。高电压等级正负极性的子像素数量相同能够使得V com电压免受寄生电容的影响,从而确保图像信号的正确性,避免发生色偏或画质异常的现象。
在一个实施例中,上述驱动方法还包括:采用极性相同的驱动电压对同一行的子像素进行驱动。如图3所示,第j行的R子像素均被施加正极性的驱动电压,第j行的G子像素均被施加负极性的驱动电压,第j行的B子像素均被施加负极性的驱动电压,第j行的W子像素均被施加正极性的驱动电压。这样,由于同一行的子像素的驱动电压极性相同,使同一数据线输出的多个电压信号之差维持在较小的范围内,从而可以避免数据驱动芯片发热或电压信号失真,提升各子像素的显示质量。
其中,若上述显示面板为液晶面板,考虑到直流电场驱动液晶像素容易导致液晶材料发生化学反应并加速电极老化,缩短液晶面板的寿命,因此为了保护液晶材料及电极,延长显示面板的寿命,对显示面板中的每个子像素进行交流驱动。在一个实施例中,上述驱动方法还包括:在每相邻的两帧显示时间内,采用极性相反的驱动电压对同一所述子像素进行驱动;即,对于同一个子像素,在每相邻的两帧显示时间内,分别施加不同极性的驱动电压以达到交流驱动的效果。更明确地说,相邻的两帧显示时间包括第一显示时间和第二显示时间,于所述第一显示时间内,施加第三极性的驱动电压于同一所述子像素进行驱动,于所述第二显示时间内,施加第四极性的驱动电压于同一所述子像素进行驱动,且所述第三极性的驱动电压和所述第四极性的驱动电压数值相同但极性相异。例如,在第m帧画面的显示时间内,对显示面板中的一些子像素施加如图3所示的驱动电压,而在第m+1帧画面的显示时间内,对上述子像素施加如图4所示的驱动电压,看出同一像素于第m帧画面的显示时间和第m+1帧画面的显示时间的极性相异。可见,在每相邻的两帧显示时间内,同一子像素的驱动电压极性发生变化,并且驱动电压等级保持不变。这样,能够实现对每个子像素进行交流驱动,保护液晶材料及电极,延长液晶显示面板的寿命。
请参阅图5,其为本申请另一个实施例的显示面板的驱动方法的流程示意图,所述驱动方法50包括如下步骤:
S501,将所述显示面板中的子像素划分为第一电压等级子像素和第二电压等级子像素。
其中,所述第一电压等级子像素和所述第二电压等级子像素在所述显示面板中穿插设置。
S502,采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动。
S503,采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动。
其中,步骤S502和步骤S503的具体实现方式可参考图1至4所示实施例中步骤S101和步骤S102的实施方式,此处不再赘述。
S504,采用第一电压等级的驱动电压对所述第一电压等级子像素进行驱动,以及,采用第二电压等级的驱动电压对所述第二电压等级子像素进行驱动。
作为一种实施方式,步骤S502、步骤S503和步骤S504可同时进行,例如,在同一帧画面的显示时间内,对显示面板中的各子像素分别施加驱动电压,使得每相邻的两行像素单元中位置相对应的子像素的驱动电压极性相反,并且同一所述像素单元中的多个子像素被施加极性相反的两种驱动电压,并且第一电压等级子像素的驱动电压等级为第一电压等级,第二第一电压等级子像素的驱动电压等级为第二电压等级。
作为一种实施方式,第一电压等级和第二电压等级分别为高电压等级和低电压等级。则具体地,将显示面板中的各子像素划分为高电压子像素和低电压子像素,采用高电压等级的驱动电压对高电压子像素进行驱动,采用低电压等级的驱动电压对低电压子像素进行驱动。其中,每个高电压子像素与一低电压子像素穿插设置,即,无论行向或列向,与高电压子像素相邻的均为低电压子像素,与低电压子像素相邻的均为高电压子像素;或者,每两个高电压子像素与两个低电压子像素穿插设置;或者,在第一方向上每两个高电压子像素与两个低电压子像素穿插设置,在第二方向上,每个高电压子像素与一个低电压子像素穿插设置,其中第二方向与第一方向相垂直,第一方向指的是像素单元中多个子像素排列的方向。
由于高电压子像素与低电压子像素在显示面板中穿插设置,这样,使得每相邻两个子像素的驱动电压的电压等级高低不同,或者使得每隔若干个子像素驱动电压的电压等级发生变化,使得像素单元在侧视角下的灰阶亮度曲线接近于正视角下的灰阶亮度曲线,从而改善侧视角下的色偏问题,亦即,不论从正视角或侧视角观看由高电压子像素与低电压子像素显示的画面,皆能观看到相同色阶的画面。
作为一种实施方式,在驱动显示面板时,对于每个子像素,确定其驱动电压的电压等级和极性后,根据各子像素的图像数据、对应的驱动电压极性和电压等级,得到各子像素的驱动电压,通过数据线将所述驱动电压施加至各子像素。
本申请实施例还提供了一种显示面板的驱动装置60。其中所述显示面板具有呈矩阵分布的多个像素单元,每个像素单元包括多个子像素,例如每个像素单元包括R子像素、G子像素和B子像素,又如每个像素单元包括R子像素、G子像素、B子像素和W子像素。
如图6所示,所述驱动装置60包括第一驱动模块610、第二驱动模块620及第三驱动模块630,其中第一驱动模块610设置为采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动;第二驱动模块620设置为采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;第三驱动模块630设置为采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动。这样,不仅使得每相邻两个像素单元的驱动电压的电压等级高低不同,能够改善侧视角下的色偏问题,而且使得在显示面板的每一列(row)像素中同一颜色子像素,驱动电压为正极性高电压等级的子像素的数量与驱动电压为负极性高电压等级的子像素的数量相同,使得V com电压免受寄生电容的影响,从而确保图像信号的正确性,避免发生色偏或画质异常的现象。
在其中一个实施例中,所述像素单元包括依序排列的第一子像素、第二子像素、第三子像素和第四子像素;如图7所示,所述第二驱动模块620包括第一驱动单元621和第二驱动单元622,其中第一驱动单元621设置为采用第一极性的驱动电压对同一像素单元中的第一子像素和第四子像素进行驱动;第二驱动单元622设置为采用第二极性的驱动电压对同一像素单元中的第二子像素和第三子像素进行驱动;其中,所述第一极性和所述第二极性互为相反极性。这样,每个像素单元中正极性的子像素数量和负极性的子像素数量相同,能够保证整个显示面板中每一列的同一颜色子像素高电压正极性子像素数量和高电压负极性子像素数量相同,从而确保图像信号的正确性,避免发生色偏或画质异常的现象。
在其中一个实施例中,所述第二驱动模块620包括第三驱动单元,设置为采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动。更明确地说,极性相反的驱动电压包括第三极性的驱动电压和第四极性的驱动电压,且第三极性的驱动电压和第四极性的驱动电压极性相异。第三驱动单元于第一驱动时间内施加第三极性的驱动电压于同一像素单元中相邻的两个子像素进行驱动,第三驱动单元于第二驱动时间内施加第四极性的驱动电压于同一像素单元中相邻的两个子像素进行驱动。
这样,当像素单元包括偶数个子像素时,例如当像素单元包括R子像素、G子像素、B子像素和W子像素,每个像素单元中正极性的子像素数量和负极性的子像素数量相同,能够保证整个显示面板中每一列的同一颜色子像素高电压正极性子像素数量和高电压负极性子像素数量相同,从而确保图像信号的正确性,避免发生色偏或画质异常的现象。在其中一个实施例中,如图8所示,所述像素单元包括四个子像素;所述第三驱动模块630包括:第四驱动单元631,设置为采用第一电压等级的驱动电压对所述像素单元中的两个子像素进行驱动;第五驱动单元632,设置为采用第二电压等级的驱动电压对所述像素单元中的另两个子像素进行驱动。
在其中一个实施例中,所述驱动装置60还包括第四驱动模块,设置为采用极性相同的驱动电压对同一行的子像素进行驱动。这样,由于同一行的子像素的驱动电压极性相同,使同一数据线输出的多个电压信号之差维持在较小范围内,从而可避免数据驱动芯片发热或电压信号失真,提升各子像素的显示质量。
在其中一个实施例中,所述驱动装置60还包括第五驱动模块,设置为在每相邻的两帧显示时间内,采用极性相反的驱动电压对同一所述子像素驱动。这样能对各子像素进行交流驱动,从而保护液晶材料及电极,延长显示面板的寿命。
请参阅图9,其为本申请另一个实施例的显示面板的驱动装置的结构示意图,所述驱动装置90包括分组模块910、第一驱动模块920、第二驱动模块930及第三驱动模块940。
其中,分组模块910设置为将所述显示面板中的子像素划分为第一电压等级子像素和第二电压等级子像素,所述第一电压等级子像素和所述第二电压等级子像素在所述显示面板中穿插设置;第一驱动模块920设置为采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动;第二驱动模块930设置为采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;第三驱动模块940,设置为采用第一电压等级的驱动电压对所述第一电压等级子像素进行驱动,以及,采用第二电压等级的驱动电压对所述第二电压等级子像素进行驱动。
其中,第一驱动模块920和第二驱动模块930的具体实施方式可参考图6至8所示实施例中第一驱动模块610和第二驱动模块620的实现方式,此处不再赘述。
本实施例中,第一电压等级子像素和第二电压等级子像素在所述显示面板中穿插设置。
例如,第一电压等级和第二电压等级分别为高电压等级和低电压等级。则具体将显示面板中的各子像素划分为高电压子像素和低电压子像素,采用高电压等级的驱动电压对高电压子像素进行驱动,采用低电压等级的驱动电压对低电压子像素进行驱动。其中,每个高电压子像素与一低电压子像素穿插设置,即无论行向或列向,与高电压子像素相邻的均为低电压子像素,与低电压子像素相邻的均为高电压子像素;或者,每两个高电压子像素与两个低电压子像素穿插设置;或者,在第一方向上每两个高电压子像素与两个低电压子像素穿插设置,在第二方向上,每个高电压子像素与一个低电压子像素穿插设置,其中第二方向与第一方向相垂直,第一方向指的是像素单元中多个子像素排列的方向。
由于高电压子像素与低电压子像素在显示面板中穿插设置,这样,使得每相邻两个子像素的驱动电压的电压等级高低不同,或者使得每隔若干个子像素驱动电压的电压等级发生变化,使得像素单元在侧视角下的灰阶亮度曲线接近于正视角下的灰阶亮度曲线,从而改善侧视角下的色偏问题。
其中,本申请实施例的“行”和“列”表示相互垂直的两种排列方向,例如,“行”表示纵向,“列”表示横向;又如,“行”表示横向,“列”表示纵向。即,本申请实施例中的“行”,可以是本领域普通技术人员所理解的“列”,本申请实施例中的“列”,也可以是本领域技术普通人员所理解的“行”。
本申请又一实施例是,一种显示面板的驱动装置,其采用上述任一实施例所述的显示面板的驱动方法;例如,一种显示面板的驱动装置,其采用上述任一实施例所述显示面板的驱动方法实现;又如,一种显示面板的驱动装置,其具有上述任一实施例所述显示面板的驱动方法所对应的功能模块。
本申请提出的显示面板的驱动方法和驱动装置,可以例如应设置为液晶显示面板、OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示面板、曲面显示面板或柔性显示面板等。又如,以液晶显示显示面板为例,可以为TN(Twisted Nematic,扭曲向列)液晶显示面板、IPS(In-Plane Switching,平面转换)液晶显示面板、PLS(Plane to Line Switching,平面间切换)液晶显示面板、或MVA(Multi-domain Vertical Alignment,多畴垂直配向)液晶显示面板等。其中,上述显示面板可采用全高清显示面板的逻辑板驱动。即,上述显示面板的驱动方法和驱动装置可采用全高清显示面板的逻辑板实现。
本申请还公开了一种显示装置,如图10所示,所述显示装置100包括显示面板110及驱动装置120。其中,驱动装置120采用上述任一实施例所述的显示面板的驱动装置60或显示面板的驱动装置90。驱动装置120设置为对所述显示面板20中的各子像素施加驱动电压,以驱动所述显示面板显示预设的画面。
例如,所述显示装置为液晶显示装置、OLED显示装置或QLED显示装置、曲面显示装置、柔性显示装置等。又如,以液晶显示显示装置为例,可以为TN液晶显示器、IPS液晶显示器、PLS液晶显示器、或MVA液晶显示器等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种显示面板的驱动方法,所述驱动方法包括:
    采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动,所述极性相反的电压包括正极性电压和负极性电压,相邻的两行像素单元中位置相对应的子像素的一部份施加所述正极性电压,相邻的两行像素单元中位置相对应的子像素的另一部份施加所述负极性电压;
    采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,其包括:
    采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动,所述极性相反的驱动电压包括第一正极性驱动电压和第一负极性驱动电压,施加所述第一正极性驱动电压于所述两个子像素中的其中一个,施加所述第一负极性驱动电压于所述两个子像素中的另一个;
    采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动,根据每个所述电压等级的驱动电压区分所述多个子像素。
  2. 根据权利要求1所述的驱动方法,其中,
    所述像素单元包括依序排列的第一子像素、第二子像素、第三子像素和第四子像素;
    所述采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,包括:
    采用第一极性的驱动电压对同一像素单元中的第一子像素和第四子像素进行驱动;
    采用第二极性的驱动电压对同一像素单元的第二子像素和第三子像素进行驱动;
    其中,所述第一极性和所述第二极性互为相反极性。
  3. 根据权利要求1所述的驱动方法,其中,所述像素单元包括四个子像素;
    所述采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动,包括:
    采用第一电压等级的驱动电压对所述像素单元中的两个子像素进行驱动;
    采用第二电压等级的驱动电压对所述像素单元中的另两个子像素进行驱动。
  4. 根据权利要求3所述的驱动方法,其中,所述第一电压等级的驱动电压的数值和所述第二电压等级的驱动电压的数值相异。
  5. 根据权利要求1所述的驱动方法,其中,所述驱动方法还包括:
    在每相邻的两帧显示时间内,采用极性相反的驱动电压对同一所述子像素进行驱动。
  6. 根据权利要求5所述的驱动方法,其中,所述两帧显示时间包括第一显示时间和第二显示时间。
  7. 根据权利要求6所述的驱动方法,其中,于所述第一显示时间内,施加第三极性的驱动电压于同一所述子像素进行驱动,于所述第二显示时间内,施加第四极性的驱动电压于同一所述子像素进行驱动,且所述第三极性的驱动电压和所述第四极性的驱动电压极性相异。
  8. 一种显示面板的驱动装置,其中,所述驱动装置包括:
    第一驱动模块,设置为采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动;
    第二驱动模块,设置为采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动;
    第三驱动模块,设置为采用至少两种电压等级的驱动电压对同一像素单元中的多个子像素进行驱动。
  9. 根据权利要求8所述的驱动装置,其中:
    所述像素单元包括依序排列的第一子像素、第二子像素、第三子像素和第四子像素;
    所述第二驱动模块包括:
    第一驱动单元,设置为采用第一极性的驱动电压对同一像素单元中的第一子像素和第四子像素进行驱动;
    第二驱动单元,设置为采用第二极性的驱动电压对同一像素单元中的第二子像素和第三子像素进行驱动;
    其中,所述第一极性和所述第二极性互为相反极性。
  10. 根据权利要求9所述的驱动装置,其中,所述第一子像素、所述第二子像素、所述第三子像素和所述第四子像素具有相同的尺寸。
  11. 根据权利要求8所述的驱动装置,其中,所述第二驱动模块包括:
    第三驱动单元,设置为采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动。
  12. 根据权利要求11所述的驱动装置,其中,所述极性相反的驱动电压包括第三极性的驱动电压和第四极性的驱动电压,且所述第三极性的驱动电压和所述第四极性的驱动电压极性相异。
  13. 根据权利要求12所述的驱动装置,其中,所述第三驱动单元于第一驱动时间内施加所述第三极性的驱动电压于同一所述像素单元中相邻的所述两个子像素进行驱动,所述第三驱动单元于第二驱动时间内施加所述第四极性的驱动电压于同一所述像素单元中相邻的所述两个子像素进行驱动。
  14. 根据权利要求8所述的驱动装置,其中,所述像素单元包括四个子像素;
    所述第三驱动模块包括:
    第四驱动单元,设置为采用第一电压等级的驱动电压对所述像素单元中的两个子像素进行驱动;
    第五驱动单元,设置为采用第二电压等级的驱动电压对所述像素单元中的另两个子像素进行驱动。
  15. 根据权利要求14所述的驱动装置,其中,所述第一电压等级的驱动电压的数值大于所述第二电压等级的驱动电压的数值。
  16. 根据权利要求14所述的驱动装置,其中,所述第一电压等级的驱动电压的数值小于所述第二电压等级的驱动电压的数值。
  17. 一种显示面板的驱动方法,包括:
    采用极性相反的驱动电压对每相邻的两行像素单元中位置相对应的子像素进行驱动,所述极性相反的电压包括正极性电压和负极性电压,相邻的两行像素单元中位置相对应的子像素的一部份施加所述正极性电压,相邻的两行像素单元中位置相对应的子像素的另一部份施加所述负极性电压;
    采用极性相反的两种驱动电压对同一所述像素单元中的多个子像素进行驱动,其包括:
    采用极性相反的驱动电压对同一所述像素单元中每相邻的两个子像素进行驱动,所述极性相反的驱动电压包括第一正极性驱动电压和第一负极性驱动电压,施加所述第一正极性驱动电压于所述两个子像素中的其中一个,施加所述第一负极性驱动电压于所述两个子像素中的另一个;
    将所述显示面板中的子像素划分为第一电压等级子像素和第二电压等级子像素,所述第一电压等级子像素和所述第二电压等级子像素在所述显示面板中穿插设置;
    采用第一电压等级的驱动电压对所述第一电压等级子像素进行驱动;
    采用第二电压等级的驱动电压对所述第二电压等级子像素进行驱动,且所述第一电压等级的驱动电压的数值与所述第二电压等级的驱动电压的数值相异。
PCT/CN2018/104550 2017-12-18 2018-09-07 显示面板的驱动方法及驱动装置 WO2019119881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/954,849 US11295685B2 (en) 2017-12-18 2018-09-07 Driving method and device for display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711368980.0 2017-12-18
CN201711368980.0A CN108109596B (zh) 2017-12-18 2017-12-18 显示面板的驱动方法及驱动装置

Publications (1)

Publication Number Publication Date
WO2019119881A1 true WO2019119881A1 (zh) 2019-06-27

Family

ID=62211093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104550 WO2019119881A1 (zh) 2017-12-18 2018-09-07 显示面板的驱动方法及驱动装置

Country Status (3)

Country Link
US (1) US11295685B2 (zh)
CN (1) CN108109596B (zh)
WO (1) WO2019119881A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109596B (zh) 2017-12-18 2019-12-17 惠科股份有限公司 显示面板的驱动方法及驱动装置
CN108922490B (zh) * 2018-09-07 2021-05-25 惠科股份有限公司 显示面板的驱动方法及显示装置
CN109215598B (zh) * 2018-10-16 2020-08-11 深圳市华星光电技术有限公司 显示面板及其驱动方法
CN109613767B (zh) * 2018-12-21 2021-02-26 惠科股份有限公司 显示面板与显示装置
JP7463895B2 (ja) * 2020-07-29 2024-04-09 セイコーエプソン株式会社 集積回路装置、電子機器及び移動体
CN112086077A (zh) * 2020-09-17 2020-12-15 Tcl华星光电技术有限公司 一种阵列基板及显示面板
CN112530344A (zh) * 2020-12-01 2021-03-19 Tcl华星光电技术有限公司 显示面板及其驱动方法
TWI823078B (zh) * 2021-04-22 2023-11-21 大陸商集創北方(珠海)科技有限公司 可減少熱能生成之源極驅動晶片及利用其之液晶顯示器和資訊處理裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088559A1 (en) * 2006-10-16 2008-04-17 Ming-Sheng Lai Method for driving display panel
CN101211029A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示装置驱动方法
CN105304010A (zh) * 2015-10-26 2016-02-03 友达光电股份有限公司 显示面板
CN106782404A (zh) * 2017-02-03 2017-05-31 深圳市华星光电技术有限公司 像素驱动架构及液晶显示面板
CN108109596A (zh) * 2017-12-18 2018-06-01 惠科股份有限公司 显示面板的驱动方法及驱动装置
CN108109587A (zh) * 2017-12-18 2018-06-01 惠科股份有限公司 显示面板的驱动方法及驱动装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216649A (zh) * 2008-01-10 2008-07-09 京东方科技集团股份有限公司 液晶显示装置阵列基板及驱动方法
KR101852936B1 (ko) * 2011-08-31 2018-04-30 삼성디스플레이 주식회사 표시장치
EP2669882B1 (en) * 2012-05-31 2019-10-09 Samsung Display Co., Ltd. Display device and driving method thereof
CN102842299B (zh) * 2012-09-13 2015-04-08 京东方科技集团股份有限公司 一种液晶显示装置的驱动方法、驱动装置及液晶显示装置
KR102037688B1 (ko) * 2013-02-18 2019-10-30 삼성디스플레이 주식회사 표시 장치
CN104678668A (zh) * 2015-02-09 2015-06-03 深超光电(深圳)有限公司 薄膜晶体管阵列基板及液晶显示面板
KR102523421B1 (ko) * 2016-03-03 2023-04-20 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN106652951B (zh) * 2016-12-28 2019-08-02 深圳市华星光电技术有限公司 阵列基板及液晶显示器
CN107301853A (zh) * 2017-08-24 2017-10-27 惠科股份有限公司 显示面板的驱动方法、显示面板的驱动装置和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088559A1 (en) * 2006-10-16 2008-04-17 Ming-Sheng Lai Method for driving display panel
CN101211029A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示装置驱动方法
CN105304010A (zh) * 2015-10-26 2016-02-03 友达光电股份有限公司 显示面板
CN106782404A (zh) * 2017-02-03 2017-05-31 深圳市华星光电技术有限公司 像素驱动架构及液晶显示面板
CN108109596A (zh) * 2017-12-18 2018-06-01 惠科股份有限公司 显示面板的驱动方法及驱动装置
CN108109587A (zh) * 2017-12-18 2018-06-01 惠科股份有限公司 显示面板的驱动方法及驱动装置

Also Published As

Publication number Publication date
CN108109596A (zh) 2018-06-01
US11295685B2 (en) 2022-04-05
CN108109596B (zh) 2019-12-17
US20210090515A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2019119881A1 (zh) 显示面板的驱动方法及驱动装置
WO2019119810A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
TWI637378B (zh) 液晶顯示器
JP6899625B2 (ja) 表示装置
KR102279353B1 (ko) 표시패널
WO2019119812A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
US8723194B2 (en) Array substrate and pixel unit of display panel
US20170053608A1 (en) Array substrate, display panel and display apparatus containing the same, and method for driving the same
WO2019119813A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
US20080074369A1 (en) Display device for liquid crystal display panel using rgbw color filter and display method thereof
KR101992103B1 (ko) 액정표시장치 및 그 구동방법
US20160351137A1 (en) Display device
WO2019127671A1 (zh) 获取液晶显示器的过驱动查找表的方法
WO2019119557A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
CN107978287A (zh) 显示面板的驱动方法及显示装置
WO2019119811A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
WO2019119564A1 (zh) 显示面板的驱动方法及显示装置
US20190189069A1 (en) Driving method and driving apparatus of display panel, and display apparatus
CN104575432A (zh) 一种显示面板的驱动方法、显示面板及显示装置
TWI570687B (zh) 驅動顯示面板之方法及顯示面板
CN108109595B (zh) 显示面板的驱动方法及驱动装置
CN108109587B (zh) 显示面板的驱动方法及驱动装置
CN109949761B (zh) 一种像素矩阵驱动方法及显示装置
WO2019119558A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
KR102244985B1 (ko) 표시패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890690

Country of ref document: EP

Kind code of ref document: A1