WO2019137003A1 - 显示面板的驱动方法及装置 - Google Patents
显示面板的驱动方法及装置 Download PDFInfo
- Publication number
- WO2019137003A1 WO2019137003A1 PCT/CN2018/100761 CN2018100761W WO2019137003A1 WO 2019137003 A1 WO2019137003 A1 WO 2019137003A1 CN 2018100761 W CN2018100761 W CN 2018100761W WO 2019137003 A1 WO2019137003 A1 WO 2019137003A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sub
- pixel
- driving voltage
- value
- gamma
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3607—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0452—Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0271—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
- G09G2320/0276—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/028—Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/066—Adjustment of display parameters for control of contrast
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0673—Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/068—Adjustment of display parameters for control of viewing angle adjustment
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/16—Calculation or use of calculated indices related to luminance levels in display data
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2003—Display of colours
Definitions
- the present application relates to the field of display technologies, and in particular, to a driving method and apparatus for a display panel.
- the large-size LCD panel of the example usually adopts negative VA (Vertical Alignment) liquid crystal or IPS (In-Plane Switching) liquid crystal technology, and VA type liquid crystal technology has higher production than IPS liquid crystal technology.
- VA Very Alignment
- IPS In-Plane Switching
- the brightness of each sub-pixel is saturated (ie, the curve tends to be flat) in the side view angle, and the brightness is rapidly saturated, especially at medium and low driving voltages, and the contrast is lowered, so that when viewing images under a mixed viewing angle, There will be a significant washout phenomenon (ie, the picture is white, and the brightness cannot vary linearly with the drive voltage).
- the example solution usually increases the gamma value.
- the brightness contrast of the medium and low driving voltages in the side angle of view is improved, the brightness is driven at the positive viewing angle.
- the contrast of the voltage change and the brightness contrast of the high drive voltage at the side angle of view still reduce the overall display of the display panel.
- a driving method of a display panel comprising:
- Sub-pixels of the display panel are divided into a plurality of sub-pixel groups, and each of the sub-pixel groups includes the same number of color sub-pixels;
- the adjusted gamma value is adjusted again according to the color characteristics of the sub-pixel group.
- a driving device for a display panel comprising:
- a pixel dividing module configured to divide a sub-pixel of the display panel into a plurality of sub-pixel groups, and each of the sub-pixel groups includes the same number of color sub-pixels;
- a first adjustment module configured to adjust, for each of the sub-pixel groups, a gamma value of a curve of brightness of each color sub-pixel as a function of a driving voltage
- the second adjustment module is configured to adjust the adjusted gamma value again according to the color characteristics of the sub-pixel group for each of the sub-pixel groups.
- a driving method of a display panel comprising:
- Sub-pixels of the display panel are divided into a plurality of sub-pixel groups, and each of the sub-pixel groups includes the same number of color sub-pixels;
- a difference curve between a curve in which the luminance changes with the driving voltage in the positive viewing angle of each color sub-pixel and a curve in which the luminance changes with the driving voltage in the side viewing angle is obtained, and the setting is different according to the difference curve.
- the adjusted gamma value is adjusted again according to the color characteristics of the sub-pixel group.
- the display panel is divided into a plurality of sub-pixel groups, and for each of the sub-pixel groups, the gamma value of the curve of the luminance of each color sub-pixel as a function of the driving voltage is separately adjusted. Therefore, the driving method and device of the above display panel are equivalent to dividing the display panel into a plurality of blocks (ie, sub-pixel groups), and separately adjusting the gamma values for each block, respectively, due to the driving voltage involved in each block.
- the range is small, and it is easy to realize the contrast between the brightness and the driving voltage under the positive viewing angle and the side viewing angle, so that the image quality of the positive viewing angle and the side viewing angle can be balanced, and the adjusted gamma is adjusted according to the color characteristics of the sub-pixel group. Since the value is adjusted again, the gamma value of each color sub-pixel can be adaptively corrected by taking into account the color distribution of the entire sub-pixel group, thereby improving the display effect of the display panel.
- Figure 1 is a graph of luminance versus drive voltage for subpixels at 0 and 60 degrees;
- FIG. 2 is a graph showing luminance as a function of driving voltage at a positive viewing angle and a side viewing angle after increasing a gamma value
- FIG. 3 is a flowchart of a driving method of a display panel according to an embodiment
- FIG. 4 is a schematic diagram of dividing a green sub-pixel on a display panel of an embodiment
- FIG. 5 is a schematic diagram of a green sub-pixel group on the display panel of the embodiment shown in FIG. 4;
- FIG. 6 is a graph showing a curve of luminance of different gamma values as a function of driving voltage in a positive viewing angle and a side viewing angle in one embodiment
- FIG. 7 is a schematic diagram showing the difference between the positive viewing angle and the side viewing angle luminance of different gamma values as a function of driving voltage in the embodiment shown in FIG. 6;
- step S200 is a flow chart of one embodiment of step S200 in the driving method of the display panel of the embodiment shown in FIG. 3;
- Figure 9 is a flow chart of one of the embodiments of step S220 of the embodiment shown in Figure 8;
- FIG. 10 is a schematic diagram showing one of driving voltage intervals in the embodiment shown in FIG. 9;
- FIG. 11 is a flowchart of one embodiment of step S300 of the driving method of the display panel of the embodiment shown in FIG. 3;
- FIG. 12 is a schematic diagram of a CIE LCH color space system according to an embodiment
- FIG. 13 is a flow chart of one embodiment of a driving method of a display panel of the embodiment shown in FIG. 3;
- FIG. 14 is a schematic diagram of filtering related to step S400 in the driving method of the display panel of the embodiment shown in FIG. 13; FIG.
- 15 is a block diagram of a driving device of a display panel provided by another embodiment.
- Figure 1 is a graph showing the brightness of an exemplary VA type liquid crystal display panel as a function of driving voltage.
- the abscissa is the driving voltage
- the ordinate is the brightness
- the solid line is a curve of 0°
- the broken line is a curve of 60°.
- the example solution usually increases the gamma value.
- the brightness contrast of the medium and low driving voltages in the side angle of view is improved, Sacrificing the contrast of the brightness with the driving voltage at the positive viewing angle and the brightness contrast of the high driving voltage at the side viewing angle, the overall display effect of the display panel is still reduced.
- One embodiment provides a driving method of the display panel, which can be executed by the driving chip and used to drive the display panel to display the corresponding image.
- the display panel may be a TN (Twisted Nematic), an OCB (Optically Compensated Birefringence), a VA (Vertical Alignment) type liquid crystal display panel, or a curved liquid crystal display panel, but Limited to this.
- the driving method of the display panel includes the following contents, please refer to FIG. 3.
- step S100 the sub-pixels of the display panel are divided into a plurality of sub-pixel groups, and each sub-pixel group includes the same number of color sub-pixels.
- the sub-pixel of the display panel is divided into a plurality of sub-pixel groups, which is equivalent to partitioning the display panel.
- the display panel includes, for example, a red sub-pixel, a blue sub-pixel, and a green sub-pixel.
- the red sub-pixel on the display panel is divided into a plurality of red sub-pixel groups
- the green sub-pixel on the display panel is divided into a plurality of green sub-pixel groups
- the blue sub-pixels on the display panel are divided into multiple a blue sub-pixel group
- each sub-pixel group includes a red sub-pixel group, a green sub-pixel group, and a blue sub-pixel group, wherein the red sub-pixel group, the green sub-pixel, and the blue sub-pixel each include The number of sub-pixels is the same.
- the sub-pixels of the display panel are divided into a plurality of sub-pixel groups, which facilitates the process of independently performing signal processing for each group of sub-pixel groups, and can effectively handle the characteristics of local sub-pixel luminance.
- the more the number of sub-pixel groups in the display panel the higher the accuracy of signal processing, so that the quality of the displayed picture is better.
- the number of divisions of the sub-pixel group can be adjusted according to actual conditions, so that the range of use of the method can be expanded.
- step S200 for each sub-pixel group, the gamma value of the curve of the brightness of each color sub-pixel as a function of the driving voltage is separately adjusted.
- the gamma value of the curve of the luminance of the red sub-pixel, the green sub-pixel, and the blue sub-pixel as a function of the driving voltage is adjusted.
- the gamma value represents a nonlinear relationship between luminance and driving voltage.
- the brightness varies with the driving voltage, and the following is an example.
- FIG. 6 is a graph showing a curve in which the luminance of different gamma values in a positive sub-pixel and a side viewing angle varies with a driving voltage, wherein the abscissa is the driving voltage and the ordinate is the normalized luminance value.
- the gamma value is gamma 1
- the curves of the brightness with the driving voltage under the positive viewing angle and the side viewing angle are respectively the curve gamma located below, the curved gamma 1 located above, and the brightness changes of the positive viewing angle and the side viewing angle.
- the difference is shown in Figure 7. It can be seen that as the driving voltage becomes larger, the brightness at the side viewing angle is rapidly saturated with the driving voltage, especially the brightness corresponding to the low and medium driving voltages is rapidly saturated, which may result in poor image quality contrast between the low and medium driving voltages.
- the curves of the luminance with the driving voltage in the positive viewing angle and the side viewing angle are respectively the curved gamma located below in FIG. 6 . 3.
- the curve gamma 3 which is thickened above, the difference in brightness between the front view and the side view is as shown in Fig. 7. It can be seen that as the driving voltage becomes larger, the phenomenon that the brightness is rapidly saturated with the driving voltage is reduced at the side viewing angle, and the brightness change corresponding to the low and medium driving voltages approaches a linear trend, improving the image quality contrast effect of the low and medium driving voltages.
- the curves of the luminance as a function of the driving voltage in the positive viewing angle and the side viewing angle are respectively the curved gamma 2 located below in FIG.
- the curve gamma 2, which is located above, is thickened, and the difference in brightness between the front view and the side view is as shown in FIG. It can be seen that as the driving voltage becomes larger, the phenomenon that the brightness is rapidly saturated with the driving voltage at the side viewing angle is aggravated, further reducing the image quality contrast of the low and medium driving voltages.
- the gamma value is adjusted to a different value, and the observation effects of the positive viewing angle and the side viewing angle can be simultaneously changed.
- the gamma value can be increased in order to reduce the fast saturation phenomenon of the low-level driving voltage corresponding to the brightness in the side viewing angle, and the number of driving voltages involved in the display panel is large.
- the image quality corresponding to all driving voltage intervals is balanced, which not only reduces the contrast of the driving voltage corresponding to the positive viewing angle, but also sacrifices the image quality of the positive viewing angle, and reduces the contrast of the high driving voltage corresponding to the brightness variation under the side viewing angle.
- the manner in which the gamma value is uniformly adjusted on the display panel is difficult to obtain a suitable gamma value to balance the image quality of the positive viewing angle and the side viewing angle due to the large number of driving voltages involved.
- the respective gamma values are individually adjusted for each sub-pixel group, so that the gamma suitable for each sub-pixel group can be flexibly adjusted according to the actual image quality of each sub-pixel group itself.
- the value, that is, the trend of the brightness of each sub-pixel group as a function of the driving voltage is not the same.
- one of the methods for adjusting the gamma value is, for example, for any color sub-pixel, if the driving voltages of all the color sub-pixels of the sub-pixel group are mainly distributed in the middle and low driving voltage intervals, the mode may be appropriately increased.
- the gamma value of the color sub-pixel is used to improve the contrast of the brightness corresponding to the low-low driving voltage at the side viewing angle, and at the same time, the upper limit value of the gamma value of the color sub-pixel is controlled to ensure the medium-low driving voltage corresponding to the positive viewing angle.
- the resolution of the brightness is, for example, for any color sub-pixel, if the driving voltages of all the color sub-pixels of the sub-pixel group are mainly distributed in the middle and low driving voltage intervals, the mode may be appropriately increased.
- the gamma value of the color sub-pixel is used to improve the contrast of the brightness corresponding to the low-low driving voltage at the side viewing angle, and at the same time, the upper limit value of
- the step S200 may specifically be: for each sub-pixel group, respectively adjusting the gamma value of the curve of the brightness of each color sub-pixel as a function of the driving voltage, so that the entire display panel side view and the positive view correspond to the color sub-pixel curves.
- the difference between the gamma value and 2.2 is less than 2.2 (ie close to 2.2).
- the gamma value is 2.2, it conforms to the linear relationship of the human eye to the brightness, and the display effect is better.
- step S300 for each sub-pixel group, the adjusted gamma value is adjusted again according to the color characteristics of the sub-pixel group.
- the color characteristics are, for example, saturation or hue.
- the color characteristics of different sub-pixel groups of the display panel may be different. Since the step S200 is separately adjusted for the gamma value corresponding to each color sub-pixel in each sub-pixel group, the color-shift phenomenon caused by the RGB luminance ratio unevenness is likely to occur, so that the sub-pixel group as a whole is combined in this step.
- the color characteristic compensates for the adjusted gamma value of each of the color sub-pixels again, for example, increasing the gamma value of the red sub-pixel or decreasing the gamma value of the green sub-pixel, thereby reducing the ratio of the RGB luminance Color shift caused by unevenness.
- the driving method of the display panel provided by the embodiment is equivalent to dividing the display panel into a plurality of blocks (ie, sub-pixel groups), and separately adjusting the gamma values for each block, because each area is The range of driving voltages involved in the block is small, and it is easy to realize the contrast between the brightness and the driving voltage under the positive viewing angle and the side viewing angle, so that the image quality of the positive viewing angle and the side viewing angle can be balanced, and also, depending on the color of the sub-pixel group. Since the characteristic adjusts the adjusted gamma value again, the gamma value of each color sub-pixel can be adaptively corrected by taking into account the color distribution of the entire sub-pixel group, thereby improving the display effect of the display panel.
- the step of separately adjusting the gamma value of the curve of the brightness of each color sub-pixel as a function of the driving voltage in the above step S200 includes the following, please refer to FIG. 8.
- Step S210 Obtain a difference curve between a curve in which the luminance changes with the driving voltage in the positive viewing angle of each color sub-pixel and a curve in which the luminance changes with the driving voltage in the side viewing angle.
- Figure 10 provides a variation curve for one of the color sub-pixels of an embodiment.
- the abscissa is the driving voltage
- the ordinate is the difference between the luminance normalized value at the side angle of view and the luminance normalized value at the positive viewing angle.
- Step S220 adjusting the gamma value of the corresponding color sub-pixel in the sub-pixel group according to the difference curve.
- the gamma value of the green sub-pixel is adjusted according to the difference curve corresponding to the green sub-pixel
- the gamma value of the red sub-pixel is adjusted according to the difference curve corresponding to the red sub-pixel, according to the blue sub-
- the difference curve of the pixel is used to adjust the gamma value of the blue sub-pixel, respectively.
- the difference curve can reflect the difference in brightness between the positive viewing angle and the side viewing angle, and the smaller the difference between the positive viewing angle and the side viewing angle, the better the display effect, so the gamma value can be adjusted according to the difference curve, and the positive viewing angle can be The gamma value is adjusted correspondingly in the difference of the side viewing angles in different driving voltage intervals, thereby facilitating the effect of reducing the brightness difference between the positive viewing angle and the side viewing angle.
- step S220 includes the following content, please refer to FIG. 9.
- step S221 different driving voltage intervals are set according to the difference curve, and the set gamma values corresponding to the respective driving voltage intervals are set.
- the driving voltage interval is, for example, [n2, n3] in FIG.
- the number of driving voltage intervals is greater than a set value.
- the set gamma value corresponding to each driving voltage interval may be set according to the actual brightness condition of the driving voltage interval, for example, if the driving voltage interval is between the inner viewing angle and the positive viewing angle If the difference is large, the gamma value is set to a larger value; if the difference in luminance between the inner side view and the positive view is smaller in the driving voltage interval, the gamma value is set to a smaller value.
- Step S222 finding a driving voltage interval in which the driving voltage distribution quantity is greater than a set threshold, and setting a set gamma value corresponding to the found driving voltage interval as a gamma value of a corresponding color sub-pixel in the sub-pixel group.
- Each of the sub-pixels in the sub-pixel group corresponds to one driving voltage, and thus the sub-pixel group includes a plurality of driving voltages.
- a driving voltage interval in which the number of driving voltage distributions is greater than a set threshold is found, for example, a driving voltage interval in which the number of driving voltage distributions is the largest is found to find a main distribution interval of driving voltages of the respective color sub-pixels in the sub-pixel group. For example, if the driving voltage of the red sub-pixel in the sub-pixel group accounts for more than X% in one of the driving voltage intervals (where X% is, for example, between 60% and 100%), the driving voltage is considered as The interval is a main distribution interval of the driving voltage of the red sub-pixels in the sub-pixel group.
- the set gamma value corresponding to the found driving voltage interval is set as the gamma value of the corresponding color sub-pixel in the sub-pixel group, in other words, each color sub-pixel in the sub-pixel group adjusts the gamma value according to the main distributed driving voltage. For example, if the main distribution interval of the driving voltage of the red sub-pixel in the sub-pixel group is [n2, n3], the set gamma value corresponding to [n2, n3] is used as the adjusted red sub-pixel in the sub-pixel group. Gamma value.
- the purpose of optimizing the gamma value is to make the curve of the side view and the positive view close to the curve of the gamma value setting target value (for example, 2.2), the more the number of divisions of the driving voltage interval, the side view and the positive The closer the curve of the viewing angle is to the curve whose gamma value is the set target value (for example, 2.2).
- each sub-pixel group includes the same number of first sub-pixels, second sub-pixels, and third sub-pixels.
- the first sub-pixel, the second sub-pixel, and the third sub-pixel may be respectively a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
- the step of adjusting the adjusted gamma value again according to the color characteristics of the sub-pixel group in the above step S300 includes the following, please refer to FIG.
- Step S310 respectively calculating a first average driving signal of the first sub-pixel, a second average driving signal of the second sub-pixel, and a third average driving signal of the third sub-pixel.
- the first average driving signal refers to a value obtained by adding and averaging driving signals of all the first sub-pixels in one sub-pixel group.
- the second average driving signal refers to a value obtained by adding and averaging driving signals of all the second sub-pixels in one sub-pixel group.
- the third average drive signal refers to a value obtained by adding and averaging drive signals of all third sub-pixels in one sub-pixel group.
- the first average driving signal Rn′, the second average driving signal Gn′, and the third The average drive signal Bn' is:
- Rn' Average(Rn_1,1, Rn_1,2, . . . Rn_2, 1, Rn_2, 2........., Rn_i, j);
- Gn' Average(Gn_1,1, Gn_1,2,...Gn_2,1, Gn_2,2...,Gn_i,j);
- Bn' Average (Bn_1, 1, Bn_1, 2, ... Bn_2, 1, Bn_2, 2..., Bn_i, j).
- Rn_1, 1, ..., Rn_i, j represent red sub-pixels.
- Gn_1, 1, ..., Gn_i, j represents a green sub-pixel.
- Bn_1, 1, ..., Bn_i, j represents a blue sub-pixel.
- Step S320 calculating parameter values of the sub-pixel group in the color space system according to the first average driving signal, the second average driving signal, and the third average driving signal.
- the color space system is, for example, the CIE LCH color space system.
- the CIE LCH color space system uses L to indicate a luminance value or a brightness value, C to indicate a saturation value or a purity value, and H to indicate a hue or hue angle value.
- the range of C is expressed as 0 to 100, with 100 representing the most vivid color.
- 0 to 360° represents the color representation of different hue. Definition 0° is red, 90° is yellow, 180° is green, and 270° is blue.
- L, C, and H of each sub-pixel group can be calculated based on the average driving signals of the various color sub-pixels calculated in step S310.
- H f3 (Rn', Gn', Bn')
- C f2 (Rn', Gn', Bn').
- step S330 the adjusted gamma values of the respective color sub-pixels are respectively adjusted correspondingly according to the parameter values.
- the gamma value of each color sub-pixel can be adjusted correspondingly according to different values of the parameter values, for example, the adjusted gamma value of each color sub-pixel is further increased or decreased.
- the parameter values include a saturation value and a hue value.
- the above step S330 is: determining that the saturation value is between the first saturation threshold and the second saturation threshold, respectively, after adjusting the color sub-pixels respectively.
- the gamma value is adjusted accordingly.
- the saturation value is between the first saturation threshold and the second saturation threshold
- the color shift phenomenon is the most serious corresponding to the display panel side viewing angle.
- the adjusted gamma value of each color sub-pixel is adjusted again only when the display panel side view role is most severe, to avoid wasting resources.
- the first saturation threshold and the second saturation threshold depend on the characteristics of the display panel itself.
- the determining the saturation value is between the first saturation threshold and the second saturation threshold, respectively performing the corresponding adjustment on the adjusted gamma value of each color sub-pixel: determining that the saturation value is between
- the first saturation threshold and the second saturation threshold when the hue values are in different sections, the adjusted gamma values of the respective color sub-pixels are adjusted again in different manners.
- the hue values are in different intervals, representing different colors.
- the gamma values of the sub-pixel groups of different colors are adjusted again, which can reduce the visible flicker caused by the frequent gamma compensation of each block, and can also reduce the transitional smoothness caused by the difference of gamma values between the blocks.
- the interval in which the hue value is located includes, for example, the first region: 0° ⁇ H ⁇ 45° and 315° ⁇ H ⁇ 360°; the second region is:45° ⁇ H ⁇ 135°; the third region is : 135 ° ⁇ H ⁇ 205 °; the fourth zone is: 205 ° ⁇ H ⁇ 245 °; the fifth zone is: 245 ° ⁇ H ⁇ 295 °; the sixth zone is: 295 ° ⁇ H ⁇ 315 °.
- the gamma values of the respective color sub-pixels can be adjusted to different degrees.
- the driving method of the above display panel further includes the following after step S300, please refer to FIG.
- step S400 the adjusted gamma values of the respective sub-pixel groups are filtered.
- each sub-pixel group Since there is a difference in the main distribution intervals of the driving voltages between the sub-pixel groups, there is a corresponding difference between the adjusted gamma values of the different sub-pixel groups, and therefore, each sub-pixel group The brightness will not change the same as the driving voltage.
- the difference in brightness between adjacent sub-pixel groups produces a visually unsmooth transition boundary phenomenon at a position adjacent between the two sub-pixel groups.
- further filtering is performed to eliminate the phenomenon that the transition is not smooth.
- each sub-pixel group can be filtered using a spatial low-pass filter function.
- g(x, y) w1*f(x-1, y-1)+w2 *f(x-1,y)+w3*f(x-1,y+1)+w4*f(x,y-1)+w5*f(x,y)+w6*f(x,y +1)+w7*f(x+1,y-1)+w8*f(x+1,y)+w9*f(x+1,y+1).
- f(x, y) represents the gamma value before the unfiltered green sub-pixel group in the middle.
- g(x, y) represents the filtered gamma value of the green sub-pixel group in the middle.
- f(x-1, y-1), f(x-1, y), ...f(x+1, y+1) represent each green sub-pixel group surrounding the green sub-pixel group in the middle Gamma value.
- W1, w2, ... w9 represent the weights at various locations in the spatial low pass filter function. This spatial low-pass filter function can effectively alleviate the transitional smoothness caused by the difference of gamma values between sub-pixel groups.
- FIG. 3, FIG. 8, FIG. 9, FIG. 11, and FIG. 13 are schematic flowcharts of the method according to the embodiment of the present application. It should be understood that although the steps in the flowcharts of FIGS. 3, 8, 9, 11, and 13 are sequentially displayed in accordance with the indication of the arrows, these steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and may be performed in other sequences. Moreover, at least some of the steps in FIG. 3, FIG. 8, FIG. 9, FIG. 11, and FIG.
- 13 may include a plurality of sub-steps or stages, which are not necessarily performed at the same time, but may be Executions are performed at different times, and the order of execution thereof is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of the sub-steps or stages of other steps or other steps.
- Another embodiment provides a driving device for a display panel. Referring to FIG. 15, the method includes:
- a pixel dividing module 110 configured to divide a sub-pixel of the display panel into a plurality of sub-pixel groups, and each of the sub-pixel groups includes the same number of color sub-pixels;
- a first adjustment module 120 configured to adjust, for each of the sub-pixel groups, a gamma value of a curve of brightness of each color sub-pixel as a function of a driving voltage
- the second adjustment module 130 is configured to, for each of the sub-pixel groups, adjust the adjusted gamma value again according to the color characteristics of the sub-pixel group.
- the first adjustment module 120 includes:
- a curve obtaining unit configured to obtain a difference curve between a curve of brightness variation with driving voltage in a positive viewing angle of each color sub-pixel and a curve of brightness variation with driving voltage in a side viewing angle
- a gamma value adjustment unit configured to adjust a gamma value of a corresponding color sub-pixel in the sub-pixel group according to the difference curve.
- the gamma value adjustment unit comprises:
- the interval setting subunit is configured to set different driving voltage intervals according to the difference curve, and set a set gamma value corresponding to each driving voltage interval;
- a gamma value setting sub-unit configured to obtain the driving voltage interval that the driving voltage distribution quantity is greater than a set threshold, and set the found gamma value corresponding to the driving voltage interval to be corresponding in the sub-pixel group The gamma of the color subpixel.
- each of the sub-pixel groups includes the same number of first sub-pixels, second sub-pixels, and third sub-pixels; and the second adjustment module 130 includes:
- An average driving signal calculation unit configured to separately calculate a first average driving signal of the first sub-pixel, a second average driving signal of the second sub-pixel, and a third average driving signal of the third sub-pixel;
- a parameter value obtaining unit configured to calculate a parameter value of the sub-pixel group in the color space system according to the first average driving signal, the second average driving signal, and the third average driving signal;
- the adjusting unit is further configured to adjust the adjusted gamma value of each color sub-pixel separately according to the parameter value.
- the parameter values include a saturation value and a hue value.
- the re-adjusting unit is configured to determine that the adjusted gamma value of each color sub-pixel is performed again when the saturation value is between the first saturation threshold and the second saturation threshold. Adjust accordingly.
- the re-adjustment unit is configured to determine that the saturation value is between the first saturation threshold and the second saturation threshold, and in a case where the hue values are in different intervals, respectively The adjusted gamma values for each color sub-pixel are adjusted again in different ways.
- the driving device of the display panel further includes:
- the filtering module 140 is configured to filter the adjusted gamma values of each of the sub-pixel groups.
- the driving device of the display panel provided by the present embodiment corresponds to the driving method of the display panel provided by the above embodiment, and details are not described herein again.
- the driving device of the display panel provided by the present embodiment can be applied to a display device.
- the display device is, for example, an LCD (Liquid Crystal Display) display device, an OLED (Organic Light-Emitting Diode) display device, a QLED (Quantum Dot Light Emitting Diodes) display device, a curved display device, or other display device.
- LCD Liquid Crystal Display
- OLED Organic Light-Emitting Diode
- QLED Quadantum Dot Light Emitting Diodes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
Abstract
一种显示面板的驱动方法,包括:将显示面板的子像素划分为多个子像素组,且各子像素组中包括相同数量的各颜色子像素;对于每一个子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值;对于每一个子像素组,根据子像素组的颜色特性对调整后的伽马值再次进行调整。
Description
相关申请的交叉引用
本申请要求于2018年1月10日提交中国专利局、申请号为2018100224689、申请名称为“显示面板的驱动方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,特别是涉及一种显示面板的驱动方法及装置。
范例的大尺寸液晶显示面板通常采用负型VA(Vertical Alignment,垂直配向)液晶或IPS(In-Plane Switching,面内转换)液晶技术,VA型液晶技术相较于IPS液晶技术存在较高的生产效率及低制造成本的优势,但光学性质上相较于IPS液晶技术存在较明显的光学性质缺陷,尤其是在大尺寸面板在商业应用方面需要较大的视角呈现的情况下。
范例VA型液晶示面板在侧视角下各子像素亮度饱和(即曲线趋向平坦)的趋势快速增加,尤其是在中、低驱动电压下,亮度快速饱和,对比度下降,使得混合视角下观看图像时会呈现明显的washout现象(即画面偏白,亮度不能随着驱动电压呈线性变化)。为了解决上述问题,范例的解决方法通常会增大伽马值,然而增大伽马值后,虽然会改善侧视角下中、低驱动电压的亮度对比度,但是也会牺牲正视角下亮度随驱动电压变化的对比度及侧视角下高驱动电压的亮度对比度,仍然会降低显示面板的整体显示效果。
发明内容
基于此,有必要针对范例增大伽马值的方式仍然会降低显示面板的整体显示效果的问题,提供一种显示面板的驱动方法及装置。
一种显示面板的驱动方法,包括:
将所述显示面板的子像素划分为多个子像素组,且各所述子像素组中包括相同数量的各颜色子像素;
对于每一个所述子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值;及
对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整。
一种显示面板的驱动装置,包括:
像素划分模块,设置为将所述显示面板的子像素划分为多个子像素组,且各所述子像素组中包括相同数量的各颜色子像素;
第一调整模块,设置为对于每一个所述子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值;及
第二调整模块,设置为对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整。
一种显示面板的驱动方法,包括:
将所述显示面板的子像素划分为多个子像素组,且各所述子像素组中包括相同数量的各颜色子像素;
对于每一个所述子像素组,获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线,根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值,获取驱动电压分布数量大于设定阈值的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组中相应颜色子像素的伽马值;及
对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整。
上述显示面板的驱动方法及装置中,将显示面板划分为多个子像素组,并且对于每一个子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值。因此,上述显示面板的驱动方法及装置相当于将显示面板分为多个区块(即子像素组),再分别对各区块单独调整伽马值,由于每一个区块内涉及的驱动电压的范围较小,易于实现同时优化正视角和侧视角下亮度随驱动电压变化的对比度,从而可以兼顾正视角和侧视角的画质,另外,由于根据子像素组的颜色特性对调整后的伽马值再次进行调整,因此还可以兼顾子像素组整体的颜色分布情况来对各颜色子像素的伽马值进行相适应修正,从而提高了显示面板的显示效果。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为子像素在0度角和60度角下亮度随驱动电压变化的曲线图;
图2为范例增大伽马值后在正视角和侧视角下亮度随驱动电压变化的曲线图;
图3为一实施方式提供的显示面板的驱动方法的流程图;
图4为一个实施例的显示面板上绿色子像素的划分示意图;
图5为图4所示实施例的显示面板上绿色子像素组的示意图;
图6为一个实施例中正视角和侧视角下不同伽马值的亮度随驱动电压变化的曲线示意图;
图7为图6所示实施例中不同伽马值的正视角和侧视角亮度随驱动电压变化的差异示意图;
图8为图3所示实施方式的显示面板的驱动方法中步骤S200的其中一个实施例的流程图;
图9为图8所示实施例的步骤S220的其中一个实施例的流程图;
图10为图9所示实施例中驱动电压区间的其中一种划分示意图;
图11为图3所示实施方式的显示面板的驱动方法的步骤S300的其中一种实施例的流程图;
图12为一实施例的CIE LCH颜色空间系统示意图;
图13为图3所示实施方式的显示面板的驱动方法的其中一种实施例的流程图;
图14为图13所示实施例的显示面板的驱动方法中步骤S400涉及的滤波相关示意图;
图15为另一实施方式提供的显示面板的驱动装置的框图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
图1示出了范例VA型液晶示面板亮度随驱动电压变化的曲线。其中,横坐标为驱动电压,纵坐标为亮度,实线为0°的曲线,虚线为60°的曲线。由图1可以看出,侧视角60°下各子像素亮度饱和(即曲线趋向平坦)的趋势快速增加,尤其是在中、低驱动电压下,亮度快速饱和,对比度下降,使得混合视角下观看图像时会呈现明显的washout现象(即画面偏白,亮度不能随着驱动电压呈线性变化)。为了克服上述washout现象,范例的解决方法通常会增大伽马值,然而增大伽马值后,如图2所示,虽然会改善侧视角下中、低驱动电压的亮度对比度,但是也会牺牲正视角下亮度随驱动电压变化的对比度及侧视角下高驱动电压的亮度对比度,仍然会降低显示面板的整体显示效果。
为了解决增大伽马值的方式仍然会降低显示面板的整体显示效果的问 题,一实施方式提供了一种显示面板的驱动方法,可以由驱动芯片来执行,并用于驱动显示面板显示相应图像。其中,显示面板可以为TN(Twisted Nematic,扭曲向列)、OCB(Optically Compensated Birefringence,光学补偿弯曲排列)、VA(Vertical Alignment,垂直配向)型液晶显示面板或曲面型液晶显示面板,但并不限于此。该显示面板的驱动方法包括以下内容,请参考图3。
步骤S100,将显示面板的子像素划分为多个子像素组,且各子像素组中包括相同数量的各颜色子像素。
其中,将显示面板的子像素划分为多个子像素组,相当于对显示面板进行分区。显示面板例如包括红色子像素、蓝色子像素及绿色子像素。该步骤换言之,将显示面板上的红色子像素分为多个红色子像素组,将显示面板上的绿色子像素划分为多个绿色子像素组,将显示面板上的蓝色子像素划分为多个蓝色子像素组,并且每一个子像素组包括一个红色子像素组、一个绿色子像素组及一个蓝色子像素组,其中,红色子像素组、绿色子像素、蓝色子像素各自包含的子像素的个数相同。
接下来以绿色子像素为例进行说明,请参考图4。将显示面板上的所有绿色子像素共分为M个绿色子像素组(G1,G2,……,GM)。请参考图5,在任一个绿色子像素组Gn(n=1、2、……,或M)中,包括多个绿色子像素(即Gn_1,1,Gn_1,2,…Gn_i,j)。
因此,本实施方式中将显示面板的子像素划分为多个子像素组,便于对每一组子像素组独立进行信号处理的过程,可以有效处理局部子像素亮度的特性。另外,显示面板中子像素组的个数越多,信号处理的精度越高,从而使得显示的画面质量越好。子像素组的划分个数可以根据实际情况进行调整,从而可以扩大该方法的使用范围。
步骤S200,对于每一个子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值。
该步骤换言之,在每一个子像素组中,分别调整红色子像素、绿色子像 素、蓝色子像素的亮度随驱动电压变化的曲线的伽马值。
其中,伽马值代表亮度与驱动电压的非线性关系。当伽马值不同时,亮度随驱动电压变化的情况也不同,接下来举例说明。
图6示出了其中一种颜色子像素正视角和侧视角下不同伽马值的亮度随驱动电压变化的曲线示意图,其中,横坐标为驱动电压,纵坐标为归一化的亮度值。当伽马值为伽马1时,正视角和侧视角下亮度随驱动电压变化的曲线分别为位于下方的曲线伽马1、位于上方加粗的曲线伽马1,正视角与侧视角亮度变化差异如图7所示。由此可见,随着驱动电压变大,侧视角下亮度随驱动电压快速饱和,尤其是低、中驱动电压对应的亮度快速饱和,从而会造成低、中驱动电压的画质对比性不佳。
如果将伽马1增大,从而将伽马值由伽马1调整为伽马3,这时,正视角和侧视角下亮度随驱动电压变化的曲线分别为图6中位于下方的曲线伽马3、位于上方加粗的曲线伽马3,正视角与侧视角亮度变化差异如附图7所示。由此可见,随着驱动电压变大,侧视角下亮度随驱动电压快速饱和的现象减轻,低、中驱动电压对应的亮度变化接近线性趋势,提高了低、中驱动电压的画质对比性效果,但是,会牺牲正视角下低驱动电压对应亮度变化的线性趋势,使得驱动电压之间的间的分辨率下降,同时,也降低了侧视角下高驱动电压对应的亮度之间的分辨率。
如果将伽马1减小,从而将伽马值由伽马1调整为伽马2后,正视角和侧视角下亮度随驱动电压变化的曲线分别为图6中位于下方的曲线伽马2、位于上方加粗的曲线伽马2,正视角与侧视角亮度变化差异如附图7所示。由此可见,随着驱动电压变大,侧视角下亮度随驱动电压快速饱和的现象加重,进一步降低了低、中驱动电压的画质对比性。
根据上述内容可以得出,调节伽马值为不同的值,可以同时改变正视角和侧视角的观察效果。但是,如果对显示面板统一调整伽马值,为了减轻侧视角下中低驱动电压对应亮度的快速饱和现象,可以增大伽马值,而由于显示面板共涉及的驱动电压的数量较多,无法同时权衡所有驱动电压区间对应 的画质,既会降低正视角下驱动电压对应亮度的对比度,即牺牲了正视角的画质,又会降低侧视角下高驱动电压对应亮度变化的对比度。故,对显示面板统一调整伽马值的方式,由于涉及的驱动电压数量较多,很难得到一个合适的伽马值来同时平衡正视角和侧视角的画质。为了克服上述问题,本实施方式中对各子像素组单独调整各自对应的伽马值,从而可以根据每一个子像素组自身的实际画质内容灵活调整为与各子像素组相适应的伽马值,即最终各子像素组亮度随驱动电压变化的趋势并不相同。由于每一个子像素组涉及到的驱动电压的个数较少,因此,容易同时兼顾到正视角和侧视角的画质,从而可以使得正视角下和侧视角下亮度随驱动电压变化的趋势都接近于线性变化规律。
其中,对伽马值调整的其中一种方式例如为:对于任一种颜色子像素,如果子像素组所有该颜色子像素的驱动电压主要分布在中、低驱动电压区间,则可以适当增大该颜色子像素的伽马值,以提高侧视角下中低驱动电压对应亮度的对比度,同时又要控制该颜色子像素的伽马值的上限值,以保证正视角下中低驱动电压对应亮度的分辨率。
具体地,步骤S200具体可以为:对于每一个子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值,使得整个显示面板侧视角和正视角对应各颜色子像素曲线的伽马值与2.2之间的差值均小于2.2(即接近于2.2)。其中,当伽马值为2.2时,符合人眼对于亮度的线性变化关系,显示效果较佳。
步骤S300,对于每一个子像素组,根据子像素组的颜色特性对调整后的伽马值再次进行调整。
其中,颜色特性例如为饱和度或色相。显示面板不同子像素组的颜色特性可能存在不同的情况。由于步骤S200是分别针对每一个子像素组内的各颜色子像素对应的伽马值进行调整,很可能会出现RGB亮度比例不均造成的色偏现象,因此该步骤中结合子像素组整体的颜色特性对上述各颜色子像素的调整后的伽马值再次进行补偿修正,例如:增大红色子像素的伽马值或减小 绿色子像素的伽马值,从而可以减小因RGB亮度比例不均而造成的色偏现象。
综上所述,本实施方式提供的上述显示面板的驱动方法,相当于将显示面板分为多个区块(即子像素组),再分别对各区块单独调整伽马值,由于每一个区块内涉及的驱动电压的范围较小,易于实现同时优化正视角和侧视角下亮度随驱动电压变化的对比度,从而可以兼顾正视角和侧视角的画质,另外,由于根据子像素组的颜色特性对调整后的伽马值再次进行调整,因此还可以兼顾子像素组整体的颜色分布情况来对各颜色子像素的伽马值进行相适应修正,从而提高了显示面板的显示效果。
在其中一个实施例中,上述步骤S200中的分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值的步骤包括以下内容,请参考图8。
步骤S210,获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线。
图10提供了一种实施例的其中一种颜色子像素的差异曲线。在该差异曲线中,横坐标为驱动电压,纵坐标为侧视角下的亮度归一化值减去正视角下的亮度归一化值得到的差值。另外,对于每一种颜色子像素来说,都有一条相应的差异曲线。
步骤S220,根据差异曲线调整子像素组中相应颜色子像素的伽马值。
换言之,在每一个子像素组中,根据绿色子像素对应的差异曲线来调整绿色子像素的伽马值,根据红色子像素对应的差异曲线来调整红色子像素的伽马值,根据蓝色子像素对应的差异曲线来分别调整蓝色子像素的伽马值。
由于差异曲线可以反映出正视角和侧视角之间亮度的差异,且正视角和侧视角之间的差异越小,显示效果越佳,因此根据差异曲线来调整伽马值,可以针对正视角与侧视角在不同驱动电压区间的差异情况,对伽马值进行相应调整,从而便于实现减小正视角和侧视角之间亮度差异的效果。
具体地,上述步骤S220包括以下内容,请参考图9。
步骤S221,根据差异曲线设置不同的驱动电压区间,并设置各驱动电压 区间对应的设定伽马值。
其中,驱动电压区间例如为图10中的[n2,n3]。具体地,驱动电压区间的数量大于设定数值。各驱动电压区间对应的设定伽马值,即与各驱动电压区间相适应的伽马值,可以根据驱动电压区间的实际亮度情况设置,例如:如果驱动电压区间内侧视角与正视角之间亮度的差异较大,则设定伽马值为较大的值;如果驱动电压区间内侧视角与正视角之间亮度的差异较小,则设定伽马值为较小的值。
步骤S222,找到驱动电压分布数量大于设定阈值的驱动电压区间,并将找到的驱动电压区间对应的设定伽马值设为子像素组中相应颜色子像素的伽马值。
其中,子像素组中的各子像素都对应一个驱动电压,因此子像素组包括多个驱动电压。找到驱动电压分布数量大于设定阈值的驱动电压区间,例如找到驱动电压分布数量最多的驱动电压区间,以找到子像素组中各颜色子像素的驱动电压的主要分布区间。例如:如果子像素组中红色子像素的驱动电压在其中一个驱动电压区间内所占的比例高于X%(其中,X%例如介于60%至100%之间),则认为该驱动电压区间为该子像素组内红色子像素的驱动电压的主要分布区间。将找到的驱动电压区间对应的设定伽马值设为子像素组中相应颜色子像素的伽马值,换言之,子像素组内各颜色子像素根据主要分布的驱动电压来调整伽马值。例如,如果子像素组内红色子像素的驱动电压主要分布区间为[n2,n3],则将[n2,n3]对应的设定伽马值作为该子像素组内红色子像素的调整后的伽马值。
另外,如果对伽马值优化的目的在于使侧视角和正视角的曲线接近伽马值为设定目标值(例如2.2)的曲线,那么驱动电压区间的划分数量越多,就能使得侧视角和正视角的曲线越接近伽马值为设定目标值(例如2.2)的曲线。
在其中一个实施例中,各子像素组中包括相同数量的第一子像素、第二子像素、第三子像素。其中,第一子像素、第二子像素、第三子像素分别可以为:红色子像素、绿色子像素、蓝色子像素。并且,上述步骤S300中的根 据所述子像素组的颜色特性对所述调整后的伽马值再次进行调整的步骤包括以下内容,请参考图11。
步骤S310,分别计算第一子像素的第一平均驱动信号、第二子像素的第二平均驱动信号、第三子像素的第三平均驱动信号。
其中,第一平均驱动信号是指将一个子像素组内所有第一子像素的驱动信号相加然后求平均得到的值。第二平均驱动信号是指将一个子像素组内所有第二子像素的驱动信号相加然后求平均得到的值。第三平均驱动信号是指将一个子像素组内所有第三子像素的驱动信号相加然后求平均得到的值。
以第一子像素、第二子像素、第三子像素分别为红色子像素、绿色子像素、蓝色子像素为例,第一平均驱动信号Rn'、第二平均驱动信号Gn'、第三平均驱动信号Bn'分别为:
Rn'=Average(Rn_1,1、Rn_1,2、…..Rn_2,1、Rn_2,2………、Rn_i,j);
Gn'=Average(Gn_1,1、Gn_1,2、…..Gn_2,1、Gn_2,2……、Gn_i,j);
Bn'=Average(Bn_1,1、Bn_1,2、…..Bn_2,1、Bn_2,2………、Bn_i,j)。
其中,Rn_1,1、……、Rn_i,j代表红色子像素。Gn_1,1、……、Gn_i,j代表绿色子像素。Bn_1,1、……、Bn_i,j代表蓝色子像素。
步骤S320,依据第一平均驱动信号、第二平均驱动信号及第三平均驱动信号计算子像素组在颜色空间系统的参数值。
颜色空间系统例如为CIE LCH颜色空间系统。CIE LCH颜色空间系统如图12所示,采用L表示亮度值或明度值、C表示饱和度值或纯度值、H表示色相或色调角度值。C的范围表示为0到100,100代表色彩最为鲜艳。用0~360°代表不同色相的颜色呈现。定义0°为红色,90°为黄色,180°为绿色,270°为蓝色。具体地,L=f1(R、G、B),C=f2(R、G、B),H=f3(R、G、B),上述函数关系根据CIE规范即可获知。因此,根据步骤S310计算出的各种颜色子像素的平均驱动信号,即可计算出每一个子像素组的L、C、H。例如:H=f3(Rn'、Gn'、Bn'),C=f2(Rn'、Gn'、Bn')。
步骤S330,根据参数值分别对各颜色子像素的调整后的伽马值再次进行 相应调整。
其中,可以根据参数值的不同取值来相应再次调整各颜色子像素的伽马值,例如对各颜色子像素的已经调整后的伽马值再次做加大或减小处理。具体地,参数值包括饱和度值和色相值。
进一步地,在参数值包括饱和度值和色相值的前提下,上述步骤S330为:判断饱和度值介于第一饱和度阈值和第二饱和度阈值时,分别对各颜色子像素的调整后的伽马值再次进行相应调整。
具体地,当饱和度值介于第一饱和度阈值和第二饱和度阈值时,对应显示面板侧视角下色偏现象最严重的情况。换言之,只有在显示面板侧视角色偏现象最严重的情况下才对各颜色子像素的调整后的伽马值再次进行调整,以避免浪费资源。其中,第一饱和度阈值和第二饱和度阈值取决于显示面板自身的特性。
进一步地,上述判断饱和度值介于第一饱和度阈值和第二饱和度阈值时,分别对各颜色子像素的调整后的伽马值再次进行相应调整的步骤为:判断饱和度值介于第一饱和度阈值和第二饱和度阈值时,在色相值处于不同的区间的情况下,分别对各颜色子像素的调整后的伽马值以不同的方式再次进行调整。
其中,色相值处于不同的区间,代表不同的颜色。对不同颜色的子像素组的伽马值再次进行相适应调整,可以减少各区块频繁的伽马补偿可能造成的肉眼可见闪烁,亦可减轻各区块间伽马值差异造成的过渡不平滑现象。
具体地,色相值所处的区间例如包括:第一区为:0°<H≤45°和315°<H≤360°;第二区为:45°<H≤135°;第三区为:135°<H≤205°;第四区为:205°<H≤245°;第五区为:245°<H≤295°;第六区为:295°<H≤315°。当色相值处于上述不同的区间时,分别可以对各颜色子像素的伽马值进行不同程度地调整。
在其中一个实施例中,上述显示面板的驱动方法在步骤S300之后,还包括以下内容,请参考图13。
步骤S400,将各子像素组的调整后的伽马值进行滤波。
对于任一颜色子像素来说,由于各子像素组之间的驱动电压主要分布区间存在差异,使得不同子像素组的调整后的伽马值之间也存在相应差异,因此,各子像素组的亮度随驱动电压变化的趋势就不会相同。相邻子像素组之间亮度的差异,会在两个子像素组之间相邻的位置处产生肉眼可视的过渡不平滑的边界现象。为了解决或减轻上述问题,本实施例在对显示面板上的各子像素组的伽马值进行调整后,还进一步进行滤波以消除过渡不平滑的现象。
具体地,可以对各子像素组的伽马值利用空间低通滤波函数进行滤波。例如,请参考图13,以绿色子像素为例,每一个方框代表一组绿色子像素组。将显示面板上的所有绿色子像素分割成9*7=63组子像素组。以位于中间的一组子像素组为例,对该子像素组的伽马值进行滤波时,采取以下公式:g(x,y)=w1*f(x-1,y-1)+w2*f(x-1,y)+w3*f(x-1,y+1)+w4*f(x,y-1)+w5*f(x,y)+w6*f(x,y+1)+w7*f(x+1,y-1)+w8*f(x+1,y)+w9*f(x+1,y+1)。
其中,f(x,y)代表处于中间的绿色子像素组未滤波前的伽马值。g(x,y)代表处于中间的绿色子像素组滤波后的伽马值。f(x-1,y-1)、f(x-1,y)、……f(x+1,y+1)代表围绕在处于中间的绿色子像素组周围的各绿色子像素组的伽马值。w1、w2、……w9代表空间低通滤波函数中各位置处的权重。此空间低通滤波函能够有效减轻因各子像素组之间伽马值差异而造成的过渡不平滑现象。
需要说明的是,图3、图8、图9、图11及图13为本申请实施例的方法的流程示意图。应该理解的是,虽然图3、图8、图9、图11及图13的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图3、图8、图9、图11及图13中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤 或者阶段的至少一部分轮流或者交替地执行。
另一实施方式提供了一种显示面板的驱动装置,请参考图15,包括:
像素划分模块110,用于将所述显示面板的子像素划分为多个子像素组,且各所述子像素组中包括相同数量的各颜色子像素;
第一调整模块120,用于对于每一个所述子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值;及
第二调整模块130,用于对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整。
在其中一个实施例中,第一调整模块120包括:
曲线获取单元,用于获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及
伽马值调整单元,用于根据所述差异曲线调整所述子像素组中相应颜色子像素的伽马值。
在其中一个实施例中,所述伽马值调整单元包括:
区间设置子单元,用于根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值;及
伽马值设置子单元,用于获取驱动电压分布数量大于设定阈值的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组中相应颜色子像素的伽马值。
在其中一个实施例中,各所述子像素组中包括相同数量的第一子像素、第二子像素、第三子像素;并且,第二调整模块130包括:
平均驱动信号计算单元,用于分别计算第一子像素的第一平均驱动信号、第二子像素的第二平均驱动信号、第三子像素的第三平均驱动信号;
参数值获取单元,用于依据所述第一平均驱动信号、所述第二平均驱动信号及所述第三平均驱动信号计算所述子像素组在颜色空间系统的参数值;及
再次调整单元,用于根据所述参数值分别对各颜色子像素的调整后的伽 马值再次进行相应调整。
在其中一个实施例中,所述参数值包括饱和度值和色相值。
在其中一个实施例中,所述再次调整单元用于判断所述饱和度值介于第一饱和度阈值和第二饱和度阈值时,分别对各颜色子像素的调整后的伽马值再次进行相应调整。
在其中一个实施例中,所述再次调整单元用于判断所述饱和度值介于第一饱和度阈值和第二饱和度阈值时,在所述色相值处于不同的区间的情况下,分别对各颜色子像素的调整后的伽马值以不同的方式再次进行调整。
在其中一个实施例中,请继续参考图15,所述显示面板的驱动装置还包括:
滤波模块140,用于将各所述子像素组的调整后的伽马值进行滤波。
需要说明的是,本实施方式提供的显示面板的驱动装置与上述实施方式提供的显示面板的驱动方法对应,这里就不再赘述。
需要说明的是,本实施方式提供的显示面板的驱动装置可以应用于显示装置。其中,显示装置例如为LCD(Liquid Crystal Display)显示装置、OLED(Organic Light-Emitting Diode)显示装置、QLED(Quantum Dot Light Emitting Diodes)显示装置、曲面显示装置或其他显示装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (20)
- 一种显示面板的驱动方法,包括:将所述显示面板的子像素划分为多个子像素组,且各所述子像素组中包括相同数量的各颜色子像素;对于每一个所述子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值;及对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整。
- 根据权利要求1所述的方法,其中,所述分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值的步骤包括:获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及根据所述差异曲线调整所述子像素组中相应颜色子像素的伽马值。
- 根据权利要求2所述的方法,其中,所述根据所述差异曲线调整所述子像素组中相应颜色子像素的伽马值的步骤包括:根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值;及获取驱动电压分布数量大于设定阈值的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组中相应颜色子像素的伽马值。
- 根据权利要求1所述的方法,其中,各所述子像素组中包括相同数量的第一子像素、第二子像素、第三子像素;并且,所述根据所述子像素组的颜色特性对调整后的伽马值再次进行调整的步骤包括:分别计算第一子像素的第一平均驱动信号、第二子像素的第二平均驱动信号、第三子像素的第三平均驱动信号;依据所述第一平均驱动信号、所述第二平均驱动信号及所述第三平均驱动信号计算所述子像素组在颜色空间系统的参数值;及根据所述参数值分别对各颜色子像素的调整后的伽马值再次进行相应调整。
- 根据权利要求4所述的方法,其中,所述参数值包括饱和度值和色相值。
- 根据权利要求5所述的方法,其中,所述根据所述参数值分别对各颜色子像素的调整后的伽马值再次进行相应调整的步骤为:判断所述饱和度值介于第一饱和度阈值和第二饱和度阈值时,分别对各颜色子像素的调整后的伽马值再次进行相应调整。
- 根据权利要求6所述的方法,其中,所述判断所述饱和度值介于第一饱和度阈值和第二饱和度阈值时,分别对各颜色子像素的调整后的伽马值再次进行相应调整的步骤为:判断所述饱和度值介于第一饱和度阈值和第二饱和度阈值时,在所述色相值处于不同的区间的情况下,分别对各颜色子像素的调整后的伽马值以不同的方式再次进行调整。
- 根据权利要求7所述的方法,其中,所述色相值所处的区间包括第一区、第二区、第三区、第四区、第五区及第六区;所述第一区为0°<H≤45°和315°<H≤360°;所述第二区为45°<H≤135°;所述第三区为135°<H≤205°;所述第四区为205°<H≤245°;所述第五区为245°<H≤295°;所述第六区为295°<H≤315°;其中,所述H为色相值。
- 根据权利要求1所述的方法,其中,在所述对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整的步骤之后,所述方法还包括:将各子像素组的调整后的伽马值进行滤波。
- 根据权利要求1所述的方法,其中,在所述对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整的步骤之后,所述方法还包括:将各所述子像素组的调整后的伽马值利用空间低通滤波函数进行滤波;所述空间低通滤波函数的表达式为:g(x,y)=w1*f(x-1,y-1)+w2*f(x-1,y)+w3*f(x-1,y+1)+w4*f(x,y-1)+w5*f(x,y)+w6*f(x,y+1)+w7*f(x+1,y-1)+w8*f(x+1,y)+w9*f(x+1,y+1);其中,f(x,y)代表设定子像素组未滤波前的伽马值;g(x,y)代表所述设定子像素组滤波后的伽马值;f(x-1,y-1)、f(x-1,y)、……f(x+1,y+1)代表围绕在所述设定子像素组周围的各子像素组的伽马值;w1、w2、……w9代表空间低通滤波函数中各位置处的权重。
- 一种显示面板的驱动装置,包括:像素划分模块,设置为将所述显示面板的子像素划分为多个子像素组,且各所述子像素组中包括相同数量的各颜色子像素;第一调整模块,设置为对于每一个所述子像素组,分别调整各颜色子像素的亮度随驱动电压变化的曲线的伽马值;及第二调整模块,设置为对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整。
- 根据权利要求11所述的驱动装置,其中,所述第一调整模块包括:曲线获取单元,设置为获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线;及伽马值调整单元,设置为根据所述差异曲线调整所述子像素组中相应颜色子像素的伽马值。
- 根据权利要求12所述的驱动装置,其中,所述伽马值调整单元包括:区间设置子单元,设置为根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值;及伽马值设置子单元,设置为获取驱动电压分布数量大于设定阈值的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组中相应颜色子像素的伽马值。
- 根据权利要求11所述的驱动装置,其中,各所述子像素组中包括相 同数量的第一子像素、第二子像素、第三子像素;并且,第二调整模块包括:平均驱动信号计算单元,设置为分别计算第一子像素的第一平均驱动信号、第二子像素的第二平均驱动信号、第三子像素的第三平均驱动信号;参数值获取单元,设置为依据所述第一平均驱动信号、所述第二平均驱动信号及所述第三平均驱动信号计算所述子像素组在颜色空间系统的参数值;及再次调整单元,设置为根据所述参数值分别对各颜色子像素的调整后的伽马值再次进行相应调整。
- 根据权利要求14所述的驱动装置,其中,所述参数值包括饱和度值和色相值。
- 根据权利要求15所述的驱动装置,其中,所述再次调整单元设置为判断所述饱和度值介于第一饱和度阈值和第二饱和度阈值时,分别对各颜色子像素的调整后的伽马值再次进行相应调整。
- 根据权利要求16所述的驱动装置,其中,所述再次调整单元设置为判断所述饱和度值介于第一饱和度阈值和第二饱和度阈值时,在所述色相值处于不同的区间的情况下,分别对各颜色子像素的调整后的伽马值以不同的方式再次进行调整。
- 根据权利要求17所述的驱动装置,其中,所述色相值所处的区间包括第一区、第二区、第三区、第四区、第五区及第六区;所述第一区为0°<H≤45°和315°<H≤360°;所述第二区为45°<H≤135°;所述第三区为135°<H≤205°;所述第四区为205°<H≤245°;所述第五区为245°<H≤295°;所述第六区为295°<H≤315°;其中,所述H为色相值。
- 根据权利要求11所述的驱动装置,其中,所述显示面板的驱动装置还包括:滤波模块,设置为将各所述子像素组的调整后的伽马值进行滤波。
- 一种显示面板的驱动方法,包括:将所述显示面板的子像素划分为多个子像素组,且各所述子像素组中包括相同数量的各颜色子像素;对于每一个所述子像素组,获取每一种颜色子像素正视角下亮度随驱动电压变化的曲线与侧视角下亮度随驱动电压变化的曲线之间的差异曲线,根据所述差异曲线设置不同的驱动电压区间,并设置各驱动电压区间对应的设定伽马值,获取驱动电压分布数量大于设定阈值的所述驱动电压区间,并将找到的所述驱动电压区间对应的设定伽马值设为所述子像素组中相应颜色子像素的伽马值;及对于每一个所述子像素组,根据所述子像素组的颜色特性对调整后的伽马值再次进行调整。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/769,183 US11308845B2 (en) | 2018-01-10 | 2018-08-16 | Display panel drive method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810022468.9A CN108320716B (zh) | 2018-01-10 | 2018-01-10 | 显示面板的驱动方法及装置 |
CN201810022468.9 | 2018-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019137003A1 true WO2019137003A1 (zh) | 2019-07-18 |
Family
ID=62893275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/100761 WO2019137003A1 (zh) | 2018-01-10 | 2018-08-16 | 显示面板的驱动方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11308845B2 (zh) |
CN (1) | CN108320716B (zh) |
WO (1) | WO2019137003A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108335678B (zh) | 2018-01-10 | 2019-09-17 | 惠科股份有限公司 | 显示面板的驱动方法及装置 |
CN108320716B (zh) * | 2018-01-10 | 2019-09-17 | 惠科股份有限公司 | 显示面板的驱动方法及装置 |
CN109144200B (zh) * | 2018-08-02 | 2021-06-04 | Tcl华星光电技术有限公司 | 画面显示方法、计算机存储介质及显示装置 |
CN109064962A (zh) * | 2018-08-31 | 2018-12-21 | 重庆惠科金渝光电科技有限公司 | 一种显示面板及其图像控制装置和方法 |
US11011095B2 (en) | 2018-08-31 | 2021-05-18 | Chongqing Hkc Optoelectronics Technology Co., Ltd. | Display panel, and image control device and method thereof |
CN109192174B (zh) * | 2018-11-05 | 2020-05-05 | 惠科股份有限公司 | 一种显示面板的驱动方法、驱动装置及显示装置 |
CN109509456B (zh) | 2018-12-26 | 2020-09-11 | 惠科股份有限公司 | 显示器及其显示面板的驱动装置、方法 |
CN109448660B (zh) * | 2018-12-29 | 2022-03-01 | 成都中电熊猫显示科技有限公司 | 改善显示视角色偏的方法、设备及存储介质 |
CN109559701A (zh) * | 2018-12-29 | 2019-04-02 | 惠科股份有限公司 | 显示面板及其调整方法 |
CN109599060B (zh) * | 2019-01-11 | 2020-12-18 | 京东方科技集团股份有限公司 | 像素补偿方法、像素补偿系统及显示装置 |
CN112992036B (zh) * | 2021-02-26 | 2022-05-31 | 北海惠科光电技术有限公司 | 一种显示面板的驱动方法、装置及显示设备 |
CN114267292B (zh) * | 2021-12-29 | 2023-08-11 | 武汉天马微电子有限公司 | 显示驱动方法、显示驱动器以及显示装置 |
CN114822360B (zh) * | 2022-05-09 | 2024-10-15 | 武汉华星光电半导体显示技术有限公司 | 显示面板画面调节方法、装置、电子设备及存储介质 |
CN116741069B (zh) * | 2023-08-11 | 2023-10-27 | 宜宾本色精密工业有限公司 | 一种曲面液晶显示优化方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102411914A (zh) * | 2011-11-24 | 2012-04-11 | 深圳市华星光电技术有限公司 | 彩色平面显示面板及相应的彩色平面显示装置 |
CN104952410A (zh) * | 2015-07-14 | 2015-09-30 | 深圳市华星光电技术有限公司 | 液晶面板的显示改善方法及其设备 |
CN106157918A (zh) * | 2016-06-02 | 2016-11-23 | 友达光电股份有限公司 | 驱动显示面板的方法及显示面板 |
CN106448609A (zh) * | 2015-12-15 | 2017-02-22 | 友达光电股份有限公司 | 液晶显示器、驱动方法及其系统 |
CN108320716A (zh) * | 2018-01-10 | 2018-07-24 | 惠科股份有限公司 | 显示面板的驱动方法及装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8305316B2 (en) * | 2005-10-31 | 2012-11-06 | Sharp Kabushiki Kaisha | Color liquid crystal display device and gamma correction method for the same |
US8847864B2 (en) | 2011-11-24 | 2014-09-30 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Color flat display panel and corresponding color flat display device having gamma reference voltages for red, green and blue colors |
CN103106884B (zh) * | 2013-02-05 | 2015-11-25 | 深圳市华星光电技术有限公司 | 一种改善液晶屏的视角肤色色偏的方法及系统 |
US9024980B2 (en) * | 2013-03-14 | 2015-05-05 | Au Optronics Corporation | Method and apparatus for converting RGB data signals to RGBW data signals in an OLED display |
KR102287803B1 (ko) * | 2014-08-11 | 2021-08-11 | 삼성디스플레이 주식회사 | 표시 장치 |
CN105388649B (zh) * | 2015-12-28 | 2018-09-28 | 深圳市华星光电技术有限公司 | Lcd屏幕的视角色偏的补偿方法 |
CN106205555A (zh) * | 2016-08-30 | 2016-12-07 | 武汉华星光电技术有限公司 | 显示装置及其亮度调整方法 |
-
2018
- 2018-01-10 CN CN201810022468.9A patent/CN108320716B/zh active Active
- 2018-08-16 WO PCT/CN2018/100761 patent/WO2019137003A1/zh active Application Filing
- 2018-08-16 US US16/769,183 patent/US11308845B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102411914A (zh) * | 2011-11-24 | 2012-04-11 | 深圳市华星光电技术有限公司 | 彩色平面显示面板及相应的彩色平面显示装置 |
CN104952410A (zh) * | 2015-07-14 | 2015-09-30 | 深圳市华星光电技术有限公司 | 液晶面板的显示改善方法及其设备 |
CN106448609A (zh) * | 2015-12-15 | 2017-02-22 | 友达光电股份有限公司 | 液晶显示器、驱动方法及其系统 |
CN106157918A (zh) * | 2016-06-02 | 2016-11-23 | 友达光电股份有限公司 | 驱动显示面板的方法及显示面板 |
CN108320716A (zh) * | 2018-01-10 | 2018-07-24 | 惠科股份有限公司 | 显示面板的驱动方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210217345A1 (en) | 2021-07-15 |
CN108320716B (zh) | 2019-09-17 |
CN108320716A (zh) | 2018-07-24 |
US11308845B2 (en) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019137003A1 (zh) | 显示面板的驱动方法及装置 | |
US10580369B2 (en) | Display apparatus and method for driving the same | |
WO2019137004A1 (zh) | 显示面板的驱动方法及装置 | |
US10546543B2 (en) | Liquid crystal display device and method for driving the same | |
WO2018113611A1 (zh) | 液晶显示器件 | |
WO2018113248A1 (zh) | 显示装置及其显示面板的驱动方法 | |
WO2018214322A1 (zh) | 像素驱动方法及显示装置 | |
CN108053796B (zh) | 显示面板的驱动方法及显示装置 | |
WO2018113188A1 (zh) | 显示装置及其驱动方法 | |
WO2018205395A1 (zh) | 显示面板像素驱动方法及显示装置 | |
TW201740363A (zh) | 顯示面板及顯示面板的驅動方法 | |
US11295679B2 (en) | Method and apparatus for compensating view chromatic aberration of display device and display device | |
US11475854B2 (en) | Driving method of display module, driving system thereof, and display device | |
TW201807693A (zh) | 像素驅動方法 | |
CN106652950A (zh) | 显示器视角色差补偿方法、装置及液晶显示器 | |
TW201608704A (zh) | 低色偏之顯示面板 | |
US9659520B2 (en) | Gamma correction method based on a gamma curve obtained from single or multiple primary-color frames | |
WO2020207169A1 (zh) | 显示面板的驱动方法、驱动系统和显示装置 | |
US11100837B2 (en) | Method for driving display panel, and driver for display device | |
CN109637472B (zh) | 一种显示面板的驱动方法、驱动系统和显示装置 | |
US20210027731A1 (en) | Display panel driving method, driving system and display device | |
US11238829B2 (en) | Luminnance-versus-drive signal curve based method for driving display panel, and display device | |
US11455962B2 (en) | Driving method and system of display assembly, and display device | |
TW201505018A (zh) | 畫素結構 | |
CN109637471B (zh) | 一种显示面板的驱动方法、驱动系统和显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18900238 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.10.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18900238 Country of ref document: EP Kind code of ref document: A1 |