WO2019134685A1 - 示波器数据处理方法、装置及示波器 - Google Patents

示波器数据处理方法、装置及示波器 Download PDF

Info

Publication number
WO2019134685A1
WO2019134685A1 PCT/CN2019/070478 CN2019070478W WO2019134685A1 WO 2019134685 A1 WO2019134685 A1 WO 2019134685A1 CN 2019070478 W CN2019070478 W CN 2019070478W WO 2019134685 A1 WO2019134685 A1 WO 2019134685A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
measured data
module
storage space
oscilloscope
Prior art date
Application number
PCT/CN2019/070478
Other languages
English (en)
French (fr)
Inventor
杨亮亮
周先冲
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2019134685A1 publication Critical patent/WO2019134685A1/zh
Priority to US16/920,824 priority Critical patent/US20200348342A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/029Software therefor

Definitions

  • the present application relates to the field of oscilloscope technology, and in particular, to an oscilloscope data processing method, device, and oscilloscope
  • the oscilloscope is a basic test and measurement device in the electronics industry. It can transform the invisible electrical signals into visible images, so that people can study the changes of various electrical phenomena. Using an oscilloscope, you can observe waveforms of various signal amplitudes over time. You can also use an oscilloscope to measure different parameters of an electrical signal, such as voltage, current, frequency, phase, and amplitude.
  • the traditional oscilloscope will display the collected data directly or after processing, and will not save the collected data. Since the acquired data is not saved, the waveform data cannot be played back. Moreover, the processing of the data is not processed by the module, and thus the output of multiple modes cannot be realized, so that the user cannot observe the waveforms of the multiple modes at the same time.
  • the main object of the present invention is to provide an oscilloscope data processing method, device and oscilloscope, which can save the collected data, so that the user can call up relevant data for observation, analysis and comparison according to needs, and can achieve multiple modes. Output effect.
  • an embodiment of the present invention provides an oscilloscope data processing method, where the method includes:
  • the processing result information is output.
  • the saving the measured data in the storage space includes:
  • the measured data is stored in a page by screen.
  • the reading the measured data request is generated based on reading the current data instruction or based on the playback instruction.
  • the transmitting the read data request to the at least one function module so that the at least one function module reads the measured content from the storage space according to the reading the measured data request, respectively.
  • Data and processing the measured data including:
  • the storage space reads the measured data in the page indicated by the playback instruction, and processes the measured data in the page indicated by the playback instruction.
  • the output processing result information includes:
  • the processing result information is converted into an image and displayed on the interface.
  • the displaying on the interface comprises:
  • a single window display is performed on the interface, and the image displayed by the single window is an image converted according to processing result information returned by all the function modules in the at least one function module.
  • the method further includes:
  • the sampling frequency of the collected measured data is determined according to the baud rate of the device under test.
  • the device under test is an electronic component of a car.
  • the storage space is a storage space of an oscilloscope.
  • the storage space includes a storage space of an oscilloscope and a storage space of a terminal device connected to an output end of the oscilloscope;
  • the saving the measured data in the storage space includes:
  • the measured data is saved in a storage space of the terminal device.
  • the terminal device is any one of the following: a personal computer, a tablet, a smart phone.
  • an embodiment of the present invention provides an oscilloscope data processing apparatus, where the apparatus includes:
  • a data acquisition module for collecting measured data
  • a data saving module configured to save the measured data in a storage space
  • a request sending module configured to send a request for reading the measured data
  • At least one function module configured to receive the read data request, and read the measured data from the storage space according to the read test data request, and process the measured data ;
  • a processing result information receiving module configured to respectively receive processing result information returned by the at least one function module after processing the measured data
  • the processing result information output module is configured to output the processing result information.
  • the data saving module is specifically configured to:
  • the measured data is stored in a page by screen.
  • the reading the measured data request is generated based on reading the current data instruction or based on the playback instruction.
  • the at least one functional module is specifically configured to:
  • the processing result information output module includes:
  • An image display module is configured to convert the processing result information into an image and display the interface.
  • the image display module includes:
  • a multi-window display module configured to convert the processing result information into an image, and perform multi-window display on the interface, wherein one of the multi-window displays an image according to one of the at least one functional module
  • the returned processed result information is converted into an image
  • a single window display module configured to convert the processing result information into an image, and perform single window display on the interface, where the image displayed by the single window is a processing result returned according to all functional modules in the at least one functional module The image obtained by the information conversion.
  • the apparatus further includes:
  • a baud rate acquisition module configured to receive an operation of setting a baud rate of the device under test, and acquiring a baud rate of the device under test according to the operation of setting a baud rate of the device under test;
  • the sampling frequency determining module is configured to determine a sampling frequency of the collected measured data according to a baud rate of the device under test.
  • the device under test is an electronic component of a car.
  • the storage space is a storage space of an oscilloscope.
  • the storage space includes a storage space of an oscilloscope and a storage space of a terminal device connected to an output end of the oscilloscope;
  • the data saving module is specifically configured to:
  • the measured data is saved in a storage space of the terminal device.
  • the terminal device is any one of the following: a personal computer, a tablet, a smart phone.
  • an oscilloscope including:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform an oscilloscope data processing method as described above.
  • an embodiment of the present invention provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program When the instructions are executed by the oscilloscope, the oscilloscope is caused to perform the oscilloscope data processing method as described above.
  • an embodiment of the present invention provides a non-transitory computer readable storage medium storing computer executable instructions for causing an oscilloscope to perform the above Oscilloscope data processing method.
  • the beneficial effects of the embodiments of the present invention are: compared with the prior art, the embodiment of the present invention saves the measured data in a storage space, so as to view, analyze, compare, or play back related data from the storage space as needed. Wait. Moreover, the data is read and processed from the storage space by the at least one function module, respectively, to perform module processing on the measured data, thereby achieving the effect of outputting multiple modes.
  • FIG. 1 is a schematic diagram of an application environment of an oscilloscope data processing method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a specific implementation principle of oscilloscope data processing according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of an oscilloscope data processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of an oscilloscope data processing method according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a corresponding relationship between each functional module and a window in the at least one functional module when the multi-window display is provided in the embodiment of the present invention
  • FIG. 6 is a schematic diagram of an oscilloscope data processing apparatus according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an oscilloscope data processing apparatus according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an oscilloscope hardware according to an embodiment of the present invention.
  • the embodiment of the invention provides an oscilloscope data processing method, device and oscilloscope.
  • the oscilloscope data processing method, device and oscilloscope save the collected data, so that the user can call up relevant data for observation, analysis and comparison according to needs. And can achieve a variety of mode output.
  • the following is an example of the application environment of the above method.
  • FIG. 1 is a schematic diagram of an application environment of an oscilloscope data processing method according to an embodiment of the present invention.
  • the application scenario includes: the device under test 10 and the oscilloscope 20 and the terminal device 30.
  • the oscilloscope 20 is connected to the device under test 10 and the terminal device 30, respectively.
  • the oscilloscope 20 collects the measured data generated by the device under test 10, and stores and processes the measured data (storing the measured data in a storage space, and dividing the measured data into The module processes) and transmits the processed data to the terminal device 30.
  • FIG. 2 is a schematic diagram of a specific implementation principle of data processing of an oscilloscope according to an embodiment of the present invention. Among them, including:
  • the oscilloscope 20 interacts with the device under test 10 to acquire the measured data generated by the device under test 10 .
  • the oscilloscope 20 saves the measured data in a storage space.
  • the storage space may be a storage space of the oscilloscope 20, and may be a storage space of the terminal device 30. Since the storage space of the oscilloscope 20 is generally limited, the storable data is limited, and the amount of data that the terminal device 30 can store relative to the oscilloscope 20 is larger. Therefore, when the data amount of the measured data is greater than the pre- When the data amount threshold is set, the measured data can be saved in the storage space of the terminal device 30. Saving the measured data in the storage space of the terminal device 30, so that the size of the saved data is limited only by the memory of the terminal device 30, and is not affected by the memory of the oscilloscope 20, thereby effectively solving a large amount of data. Save the problem.
  • the oscilloscope 20 sends a read data request to the at least one function module, so that the at least one function module reads the measured data from the storage space according to the read test data request, And processing the measured data.
  • Each of the at least one function module can read the measured data from the storage space according to the read test data request, and perform processing separately.
  • the at least one functional module may include, but is not limited to, a spectrum module, a mathematical operation module, a decoding module, and the like.
  • the spectrum module, the mathematical operation module, and the decoding module may respectively read the measured data from the storage space, and separately perform processing, and the spectrum module processes the measured data.
  • the mathematical operation module may perform mathematical operations (such as addition, subtraction, multiplication, and division) on the measured data to display and subtract the measured data on the interface. Multiplying and dividing the processed image; the decoding module may perform decoding processing on the measured data to display a decoding result after the decoded data is decoded by the interface.
  • the reading the measured data request is generated based on reading the current data instruction or based on the playback instruction. Transmitting the read data request to the at least one function module when the read test data request is generated based on the read current data instruction, so that the at least one function module respectively reads the measured data according to the Requesting to read the measured data from the storage space in real time, and processing the measured data to observe various waveforms in real time; when the read measured data request is generated based on the playback instruction, Transmitting a read data request to the at least one function module, so that the at least one function module respectively reads the measured data in the page indicated by the playback instruction from the storage space according to the reading the measured data request And processing the measured data in the page indicated by the playback instruction, so that the user can call up the relevant data for observation, analysis and comparison, that is, playback.
  • the playback instruction indicates the measured data of the fifth page, and the read data of the fifth page is read from the storage space according to the read test data request, and the measured data of the fifth page is
  • the at least one function module Transmitting the test data request to the at least one function module, so that the at least one function module reads the measured data from the storage space according to the read test data request, respectively, and The measured data is processed, and the measured data can be processed in a sub-module to realize output and playback of multiple modes. Moreover, when there are a plurality of functional modules, the measured data can be synchronized.
  • the oscilloscope 20 receives processing result information returned by the at least one function module after processing the measured data, and outputs the processing result information.
  • Each of the at least one functional module processes the measured data and returns processing result information, that is, each functional module returns a processing result information to implement output in multiple modes. In turn, the user can simultaneously observe waveforms in multiple modes.
  • the outputting the processing result information by the oscilloscope 20 may include: transmitting the processing result information to the terminal device 30.
  • the terminal device 30 receives the processing result information, and converts the processing result information into an image, and displays the image on the interface.
  • the displaying on the interface may include: performing multi-window display on the interface, where an image displayed by one of the multi-windows is converted according to processing result information returned by one of the at least one functional module And/or performing a single window display on the interface, the image displayed by the single window being an image converted according to processing result information returned by all functional modules in the at least one functional module.
  • the at least one functional module may include, but is not limited to, a spectrum module, a mathematical operation module, a decoding module, and the like.
  • the multi-window display is performed on the interface, since the at least one functional module includes three functional modules, correspondingly, the multi-window is three windows.
  • the spectrogram converted according to the processing result information returned by the spectrum module is displayed in one window of the multi-window; the mathematical operation image converted according to the processing result information returned by the mathematical operation module (addition, subtraction, multiplication, multiplication and division)
  • the processed image is displayed in another window in the multi-window;
  • the decoded result converted according to the processing result information returned by the decoding module is displayed in another window in the multi-window.
  • three windows are simultaneously displayed on the same interface. When a single window is displayed on the interface, the images converted according to the processing result information returned by the three function modules are displayed in the same window.
  • the decoding result obtained by converting the processing result information returned by the code module is displayed on the same window. The user can select a multi-window viewing image or a single window to view the image as needed.
  • the terminal device 30 can also receive image scaling instructions to effect scaling of the image.
  • the terminal device 30 provides a frame selection tool, by which the image of the framed corresponding time period is zoomed and displayed, and when the image of the time segment is displayed densely, the image can be passed.
  • the zoom instruction is used to enlarge the image of the time period for observation; when the image display of the time period is relatively loose, the image of the time period can be reduced by the image zooming instruction, thereby adjusting the image to be suitable
  • the terminal device 30 can receive an image drag instruction to drag the image, so that the user can observe images of different time periods as needed.
  • the device under test 10 may be various types of electronic components, such as electronic components of automobiles.
  • the terminal device 30 may be a personal computer (PC), a tablet, a smart phone, or the like.
  • the functions of the oscilloscope 20 and the terminal device 30 described above may be integrated into the same device, that is, the device may implement all the functions of the oscilloscope 20 and the terminal device 30 described above.
  • the measured data is saved in a storage space, so that related data is called from the storage space as needed to observe, analyze, compare, and the like.
  • the data is read and processed from the storage space by the at least one function module, respectively, to perform module processing on the measured data, thereby achieving the effect of outputting multiple modes.
  • multi-window display or single window display can be performed according to user needs.
  • FIG. 3 is a schematic flowchart diagram of an oscilloscope data processing method according to an embodiment of the present invention.
  • An oscilloscope data processing method provided by one embodiment of the present invention is applied to an oscilloscope, and the method can be performed by the oscilloscope 20 in FIG.
  • the method includes:
  • the oscilloscope can collect measured data from the device under test according to a sampling frequency.
  • the sampling frequency may be a default sampling frequency of the oscilloscope system, or may be a sampling frequency set by a user.
  • the device to be tested is an electronic component of an automobile or the like.
  • the oscilloscope After collecting the measured data, the oscilloscope can save the measured data in the storage space.
  • the storage space includes a storage space of the oscilloscope and a storage space of a terminal device connected to an output end of the oscilloscope, and the measured data may be saved in a storage space of the oscilloscope.
  • the measured data may be saved in a storage space of a terminal device connected to an output end of the oscilloscope. Since the storage space of the oscilloscope is generally limited, the storable data is limited. Therefore, when the data volume of the measured data is greater than a preset data amount threshold, the measured data may be saved in a storage space of another device. Inside, to solve the problem that the oscilloscope can not save a lot of data.
  • the storage space is a storage space of the oscilloscope, and when the amount of data of the measured data is small, the storage space of the oscilloscope can implement the measured data. storage.
  • Each of the at least one function module may read the measured data from the storage space according to the read test data request, and perform processing separately.
  • the at least one functional module may include, but is not limited to, a spectrum module, a mathematical operation module, a decoding module, and the like.
  • the spectrum module, the mathematical operation module, and the decoding module may respectively read the measured data from the storage space and perform processing respectively, and the spectrum module processes the measured data.
  • the mathematical operation module may perform mathematical operations (such as addition, subtraction, multiplication, and division) on the measured data to display and subtract the measured data on the interface. Multiplying and dividing the processed image; the decoding module may perform decoding processing on the measured data to display a decoding result after the decoded data is decoded by the interface.
  • the at least one function module Transmitting the test data request to the at least one function module, so that the at least one function module reads the measured data from the storage space according to the read test data request, respectively, and The measured data is processed, and the measured data can be processed in a sub-module to realize output and playback of multiple modes. Moreover, when there are a plurality of functional modules, the measured data can be synchronized.
  • Each of the at least one functional module processes the measured data and returns processing result information, that is, each functional module returns a processing result information to implement output in multiple modes.
  • each functional module returns a processing result information to implement output in multiple modes.
  • the user can simultaneously observe waveforms in multiple modes.
  • the outputting the processing result information by the oscilloscope may include: directly displaying the processing result information on the oscilloscope; or converting the processing result information into an image, displaying the image in an image manner; or Send to an external terminal device, display on the terminal device, and the like.
  • the terminal device is any one of the following: a personal computer, a tablet, and a smart phone.
  • the measured data is saved in the storage space, so that related data is called from the storage space for observation, analysis, comparison, playback, and the like as needed.
  • the data is read and processed from the storage space by the at least one function module, respectively, to perform module processing on the measured data, thereby achieving the effect of outputting multiple modes.
  • FIG. 4 is a schematic flowchart diagram of an oscilloscope data processing method according to another embodiment of the present invention.
  • An oscilloscope data processing method provided by another embodiment of the present invention is applied to an oscilloscope, and the method can be performed by the oscilloscope 20 in FIG.
  • the method includes:
  • the oscilloscope can collect measured data from the device under test according to a sampling frequency.
  • the device to be tested is an electronic component of an automobile or the like.
  • the oscilloscope can save the measured data in the storage space.
  • the storage space includes a storage space of the oscilloscope and a storage space of a terminal device connected to an output end of the oscilloscope, and the measured data may be saved in a storage space of the oscilloscope.
  • the measured data may be saved in a storage space of a terminal device connected to an output end of the oscilloscope. Since the storage space of the oscilloscope is generally limited, the storable data is limited. Therefore, when the data volume of the measured data is greater than a preset data amount threshold, the measured data may be saved in a storage space of another device.
  • the measured data is stored in the storage space of the terminal device. That is, the saving the measured data in the storage space may include: saving the measured data when the data amount of the measured data is greater than a preset data amount threshold of the storage space of the oscilloscope.
  • the storage space of the terminal device is any one of the following: a personal computer, a tablet, and a smart phone.
  • the storage space is a storage space of the oscilloscope, and when the amount of data of the measured data is small, the storage space of the oscilloscope can implement the measured data. storage.
  • the measured data may be stored in a page.
  • the saving the measured data in the storage space comprises: storing the measured data in a page by page.
  • the screen in which the measured data is stored in a page by screen refers to a display area in the oscilloscope for displaying the measured data.
  • the display area can be customized by the user, such as defining 2/3, 1/3, etc. of the oscilloscope's screen as the display area, or defining the entire screen of the oscilloscope as the display area.
  • the step of saving the measured data by screen is specifically: pre-acquiring the resolution of the display area, and then calculating the amount of data displayed when the screen is full according to the resolution, and then according to the amount of data to be filled according to the full screen, Pagination is performed to facilitate the at least one function module to quickly read the measured data.
  • Each of the at least one function module may read the measured data from the storage space according to the read test data request, and perform processing separately.
  • the at least one functional module may include, but is not limited to, a spectrum module, a measurement module, a mathematical operation module, an analog module, a decoding module, and the like.
  • the spectrum module, the measurement module, the mathematical operation module, the analog module, and the decoding module may respectively read the measured data from the storage space and perform processing separately.
  • the spectrum module processes the measured data to display a frequency domain image, that is, a frequency spectrum image on the interface; the measurement module does not perform conversion processing on the measured data, so as to directly display the interface on the interface.
  • the mathematical operation module may perform mathematical operations (such as addition, subtraction, multiplication, and division) on the measured data to display an image obtained by adding, subtracting, multiplying, and dividing the measured data on the interface;
  • the module converts the measured data into an analog signal to display the analog signal directly on the interface;
  • the decoding module may decode the measured data to display the measured content on the interface The decoded result of the data after decoding.
  • the reading the measured data request is generated based on reading the current data instruction or based on the playback instruction. Transmitting the read test data request to the at least one function module, so that the at least one function module respectively reads the measured data from the storage space according to the read test data request, and Processing the measured data, including: when the reading the measured data request is generated based on the reading current data instruction, sending a read test data request to the at least one function module, so that the at least one function module respectively Reading the measured data from the storage space in real time according to the reading the measured data request, and processing the measured data to observe various waveforms in real time; when the reading the measured data request Transmitting a read data request to at least one function module when the playback instruction is generated, so that the at least one function module respectively reads the playback instruction from the storage space according to the read test data request.
  • the measured data in the indicated page, and the measured data in the page indicated by the playback instruction is processed, so that the user can call up the relevant data for observation, Analysis and comparison, that is,
  • the at least one function module Transmitting the test data request to the at least one function module, so that the at least one function module reads the measured data from the storage space according to the read test data request, respectively, and The measured data is processed, and the measured data can be processed in a sub-module to realize output and playback of multiple modes. Moreover, when there are a plurality of functional modules, the measured data can be synchronized.
  • Each of the at least one functional module processes the measured data and returns processing result information, that is, each functional module returns a processing result information to implement output in multiple modes.
  • each functional module returns a processing result information to implement output in multiple modes.
  • the user can simultaneously observe waveforms in multiple modes.
  • the outputting the processing result information by the oscilloscope may include: converting the processing result information into an image, and performing display on the interface.
  • the displaying on the interface includes: performing multi-window display on the interface, wherein the image displayed by one of the multi-windows is converted according to processing result information returned by one of the at least one functional module The obtained image; and/or, a single window display on the interface, the image displayed by the single window being an image converted according to processing result information returned by all the function modules in the at least one function module.
  • the corresponding relationship between each of the at least one functional module and the window is as described in FIG. 5, and the at least one functional module may include: a spectrum module, a measurement module, a mathematical operation module, and a simulation.
  • the multi-window is five windows.
  • the spectrogram converted according to the processing result information returned by the spectrum module is displayed in the window 1 in the multi-window; the measured result converted according to the processing result information returned by the measuring module (directly obtained measured data) a window 2 displayed in the multi-window; a mathematical operation image (an image subjected to addition, subtraction, multiplication and division processing) converted according to the processing result information returned by the mathematical operation module is displayed in the window 3 in the multi-window;
  • An analog signal image an image obtained by converting the measured data into an analog signal converted according to processing result information returned by the simulation module is displayed in a window 4 in the multi-window; and returned according to the decoding module
  • the decoded result obtained by the processing result information conversion is displayed in the window 5 in the multi-window.
  • the at least one functional module may include, but is not limited to, the above five functional modules.
  • the at least one functional module may further include a digital module or the like, and the number of the windows. One-to-one correspondence with the number of the functional modules.
  • the spectrogram converted according to the processing result information returned by the spectrum module, the measurement result converted according to the processing result information returned by the measurement module, and the mathematical operation converted according to the processing result information returned by the mathematical operation module The image, the analog signal image converted based on the processing result information returned by the analog module, and the decoded result converted based on the processing result information returned by the decoding module are displayed on the same window. Moreover, the user can select a multi-window viewing image or a single window viewing image as needed.
  • the baud rate refers to the amount of data generated per second by the device under test.
  • the baud rate can be customized according to the needs of the user.
  • the baud rate of the device under test can be obtained by receiving an operation of setting a baud rate of the device under test.
  • the sampling frequency refers to the amount of data collected by the oscilloscope per second. Since the amount of data generated per second by the device under test may be inconsistent or even very different from the amount of data collected by the oscilloscope per second, when the two are inconsistent or greatly different, the data collected by the oscilloscope may exist. There are many invalid duplicate data. Therefore, according to the baud rate of the device under test, the sampling frequency of the measured data is determined. For example, the user sets the baud rate of the device under test to 100 Baud (Baud is the baud rate).
  • the oscilloscope can receive an operation of setting a sampling frequency, thereby setting the sampling frequency of the oscilloscope to a value equal to the baud rate, that is, setting the sampling frequency to 100 Hz (Hz is The unit of frequency).
  • the sampling frequency and the baud rate are not much different or equal, the invalid data can be effectively eliminated, so as to improve the acquisition rate of the effective data, thereby saving space for the storage space.
  • the oscilloscope can receive image scaling instructions to effect scaling of the image.
  • the image scaling instruction may be generated based on a user's operation.
  • the oscilloscope can scale the image according to the image scaling instruction.
  • the entire image may be scaled, or some portion of the image may be scaled.
  • the oscilloscope provides a frame selection tool, and the frame selection tool can realize zoom display of the framed corresponding time period image, and when the image display of the time period is relatively dense, the image zoom instruction can be adopted.
  • the image of the time period is enlarged to facilitate observation; when the image display of the time period is relatively loose, the image of the time period may be reduced by the image scaling instruction, thereby adjusting the image to be suitable for the user.
  • the display range of the observation is a frame selection tool, and the frame selection tool can realize zoom display of the framed corresponding time period image, and when the image display of the time period is relatively dense, the image zoom instruction can be adopted.
  • the image of the time period is enlarged to facilitate observation; when the image display of the time period is relatively loose, the image of the time period may be reduced by the image scaling instruction, thereby adjusting the image to be suitable for the
  • the oscilloscope can receive an image drag command to effect dragging of the image.
  • the image drag instruction may be generated based on a user's operation.
  • the oscilloscope can drag the image according to the image dragging instruction.
  • the image may be dragged left and right, or the image may be dragged up and down. By dragging the image left and right, it is convenient for the user to observe images of different time periods as needed.
  • the steps 406-411 may not be mandatory steps in different embodiments, and in addition, those skilled in the art may understand that, according to the description of the embodiments of the present invention, In different embodiments, the steps 401-411 may have different execution orders without contradiction.
  • the measured data is saved in the storage space, so that related data is called from the storage space for observation, analysis, comparison, playback, and the like as needed.
  • the data is read and processed from the storage space by the at least one function module, respectively, to perform module processing on the measured data, thereby achieving the effect of outputting multiple modes.
  • multi-window display or single window display can be performed according to user needs.
  • FIG. 6 is a schematic diagram of an oscilloscope data processing apparatus according to an embodiment of the present invention.
  • An oscilloscope data processing device provided by one embodiment of the present invention is applied to an oscilloscope.
  • the apparatus 60 includes:
  • the data collection module 601 is configured to collect measured data.
  • the data collection module 601 can collect measured data from the device under test according to a sampling frequency.
  • the sampling frequency may be a default sampling frequency of the oscilloscope system, or may be a sampling frequency set by a user.
  • the device to be tested is an electronic component of an automobile or the like.
  • the data saving module 602 is configured to save the measured data in a storage space.
  • the data saving module 602 can save the measured data in the storage space.
  • the storage space includes a storage space of the oscilloscope and a storage space of a terminal device connected to an output end of the oscilloscope, and the measured data may be saved in a storage space of the oscilloscope.
  • the measured data may be saved in a storage space of a terminal device connected to an output end of the oscilloscope. Since the storage space of the oscilloscope is generally limited, the storable data is limited. Therefore, when the data amount of the measured data is greater than a preset data amount threshold, the data saving module 602 may save the measured data. In the storage space of other devices, to solve the problem that the oscilloscope can not save a large amount of data.
  • the storage space is a storage space of the oscilloscope, and when the amount of data of the measured data is small, the data saving module 602 stores the measured data in the oscilloscope.
  • the storage space is fine.
  • the request sending module 603 is configured to send a request for reading the measured data.
  • At least one function module 604 configured to receive the read data request, and read the measured data from the storage space according to the read data request, and perform the measured data deal with.
  • Each of the at least one function module 604 can read the measured data from the storage space according to the read test data request, and perform processing separately.
  • the at least one functional module may include, but is not limited to, a spectrum module, a mathematical operation module, a decoding module, and the like.
  • the spectrum module, the mathematical operation module, and the decoding module may respectively read the measured data from the storage space and perform processing respectively, and the spectrum module processes the measured data.
  • the mathematical operation module may perform mathematical operations (such as addition, subtraction, multiplication, and division) on the measured data to display and subtract the measured data on the interface. Multiplying and dividing the processed image; the decoding module may perform decoding processing on the measured data to display a decoding result after the decoded data is decoded by the interface.
  • Reading by the at least one function module 604, the measured data from the storage space according to the reading the measured data request, and processing the measured data, and dividing the measured data into Module processing to achieve multiple modes of output and playback. Moreover, when there are a plurality of functional modules, the measured data can be synchronized.
  • the processing result information receiving module 605 is configured to respectively receive processing result information returned by the at least one function module after processing the measured data.
  • the processing result information receiving module 605 can respectively receive the at least one function module to process the measured data.
  • the returned processing result information is used to realize the output in multiple modes, so that the user can simultaneously observe the waveforms in multiple modes.
  • the processing result information output module 606 is configured to output the processing result information.
  • the processing result information output module 606 may be specifically configured to: display the processing result information directly on the oscilloscope; or convert the processing result information into an image, and display the image in an image manner; or The information is transmitted to an external terminal device, and display or the like is performed on the terminal device.
  • the terminal device is any one of the following: a personal computer, a tablet, and a smart phone.
  • the oscilloscope data processing device 60 can perform the oscilloscope data processing method provided by Embodiment 2 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the oscilloscope data processing method provided by embodiment 2 of the present invention can perform the oscilloscope data processing method provided by Embodiment 2 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 7 is a schematic diagram of an oscilloscope data processing apparatus according to another embodiment of the present invention. Another embodiment of the present invention provides an oscilloscope data processing device for use in an oscilloscope.
  • the apparatus 70 includes:
  • the data collection module 701 is configured to collect measured data.
  • the data collection module 701 can collect measured data from the device under test according to a sampling frequency.
  • the device to be tested is an electronic component of an automobile or the like.
  • the data saving module 702 is configured to save the measured data in a storage space.
  • the data saving module 702 can save the measured data in the storage space.
  • the storage space includes a storage space of the oscilloscope and a storage space of the terminal device connected to the output end of the oscilloscope, that is, the data collection module 701 can save the measured data in the storage of the oscilloscope.
  • the measured data may also be saved in a storage space of the terminal device connected to the output end of the oscilloscope. Since the storage space of the oscilloscope is generally limited, the storable data is limited. Therefore, when the data amount of the measured data is greater than a preset data amount threshold, the data saving module 702 may save the measured data.
  • the measured data is stored in the storage space of the terminal device. That is, the data saving module 702 is specifically configured to: when the data amount of the measured data is greater than a preset data amount threshold of the storage space of the oscilloscope, save the measured data to the terminal device.
  • the terminal device is any one of the following: a personal computer, a tablet, and a smart phone.
  • the storage space is a storage space of the oscilloscope, and when the data amount of the measured data is small, the data saving module 702 stores the measured data in the oscilloscope.
  • the storage space is fine.
  • the measured data may be stored in a page.
  • the data saving module 702 is specifically configured to: save the measured data by paging according to a screen.
  • the screen in which the measured data is stored in a page by screen refers to a display area in the oscilloscope for displaying the measured data.
  • the display area can be customized by the user, such as defining 2/3, 1/3, etc. of the oscilloscope's screen as the display area, or defining the entire screen of the oscilloscope as the display area.
  • the step of saving the measured data by screen is specifically: pre-acquiring the resolution of the display area, and then calculating the amount of data displayed when the screen is full according to the resolution, and then according to the amount of data to be filled according to the full screen, Pagination is performed to facilitate the at least one function module to quickly read the measured data.
  • the request sending module 703 is configured to send a request for reading the measured data.
  • the reading the measured data request is generated based on reading the current data instruction or generated based on the playback instruction.
  • At least one function module 704, configured to receive the read data request, and read the measured data from the storage space according to the read data request, and perform the measured data deal with.
  • Each of the at least one function module 704 can read the measured data from the storage space according to the read test data request, and perform processing separately.
  • the at least one functional module 704 can include, but is not limited to, a spectrum module, a measurement module, a mathematical operation module, an analog module, a decoding module, and the like.
  • the spectrum module, the measurement module, the mathematical operation module, the analog module, and the decoding module may respectively read the measured data from the storage space and perform processing separately.
  • the spectrum module processes the measured data to display a frequency domain image, that is, a frequency spectrum image on the interface; the measurement module does not perform conversion processing on the measured data, so as to directly display the interface on the interface.
  • the mathematical operation module may perform mathematical operations (such as addition, subtraction, multiplication, and division) on the measured data to display an image obtained by adding, subtracting, multiplying, and dividing the measured data on the interface;
  • the module converts the measured data into an analog signal to display the analog signal directly on the interface;
  • the decoding module may decode the measured data to display the measured content on the interface The decoded result of the data after decoding.
  • the reading the measured data request is generated based on reading the current data instruction or based on the playback instruction.
  • the at least one function module is specifically configured to: when the read test data request is generated based on the read current data instruction, receive the read test data request, and request the slave data according to the read test data request Reading the measured data in real time, and processing the measured data to observe various waveforms in real time; receiving the reading when the reading of the measured data request is generated based on a playback instruction
  • the measured data is requested, and according to the reading the measured data request, the measured data in the page indicated by the playback instruction is read from the storage space, and the measured data in the page indicated by the playback instruction is performed. Processing, so that users can call up relevant data for observation, analysis and comparison, that is, playback.
  • the at least one function module 704 is configured to read the measured data from the storage space according to the reading the measured data request, and process the measured data, so that the measured data may be divided. Module processing to achieve multiple modes of output and playback. Moreover, when there are a plurality of functional modules, the measured data can be synchronized.
  • the processing result information receiving module 705 is configured to respectively receive processing result information returned by the at least one function module after processing the measured data.
  • the processing result information receiving module 705 can respectively receive the at least one function module to process the measured data.
  • the returned processing result information is used to realize the output in multiple modes, so that the user can simultaneously observe the waveforms in multiple modes.
  • the processing result information outputting module 706 is configured to output the processing result information.
  • the processing result information output module 706 includes: an image display module 7061, configured to convert the processing result information into an image, and display the image on the interface.
  • the image display module 7061 includes: a multi-window display module 7062, configured to convert the processing result information into an image, and perform multi-window display on the interface, and the image displayed by one of the multiple windows is based on An image obtained by converting the processing result information returned by one of the at least one function module; and/or a single window display module 7063, configured to convert the processing result information into an image and perform a single window on the interface Displaying, the image displayed by the single window is an image converted according to processing result information returned by all functional modules in the at least one functional module.
  • the user can select a multi-window viewing image or a single window to view the image as needed.
  • the baud rate acquisition module 707 is configured to receive an operation of setting a baud rate of the device under test, and obtain a baud rate of the device under test according to the operation of setting a baud rate of the device under test.
  • the baud rate refers to the amount of data generated per second by the device under test.
  • the baud rate can be customized according to the needs of the user.
  • the baud rate acquisition module 707 can obtain the baud rate of the device under test by receiving an operation of setting a baud rate of the device under test.
  • the sampling frequency determining module 708 is configured to determine, according to the baud rate of the device under test, a sampling frequency for collecting the measured data.
  • the sampling frequency refers to the amount of data collected by the oscilloscope per second. Since the amount of data generated per second by the device under test may be inconsistent or even very different from the amount of data collected by the oscilloscope per second, when the two are inconsistent or greatly different, the data collected by the oscilloscope may exist. a plurality of invalid duplicate data, therefore, the sampling frequency determining module 708 determines the sampling frequency of the collected measured data according to the baud rate of the device under test, for example, the user sets the baud rate of the device under test.
  • the sampling frequency determining module 708 can receive an operation of setting a sampling frequency, thereby setting the sampling frequency of the oscilloscope to be equal to the baud rate.
  • the value, that is, the sampling frequency is set to 100 Hz (Hz is the unit of frequency).
  • the image scaling instruction receiving module 709 is configured to receive an image scaling instruction.
  • the image scaling instruction receiving module 709 can receive an image scaling instruction to effect scaling of the image.
  • the image scaling instruction may be generated based on a user's operation.
  • the image scaling module 710 is configured to scale the image according to the image scaling instruction.
  • the image scaling module 710 can scale the image according to the image scaling instruction.
  • the entire image may be scaled, or some portion of the image may be scaled.
  • the image scaling module 710 provides a frame selection tool, by which the image of the framed corresponding time period is zoomed and displayed, and when the image of the time period is displayed densely, the An image scaling instruction, the image of the time period is enlarged to facilitate observation; when the image display of the time period is relatively loose, the image of the time period may be reduced by the image scaling instruction, thereby adjusting the image to A display range suitable for user observation.
  • the image dragging instruction receiving module 711 is configured to receive an image dragging instruction.
  • the oscilloscope can receive an image drag command to effect dragging of the image.
  • the image drag instruction may be generated based on a user's operation.
  • the image dragging module 712 is configured to drag the image according to the image dragging instruction.
  • the image dragging module 712 can drag the image according to the image dragging instruction.
  • the image may be dragged left and right, or the image may be dragged up and down. By dragging the image left and right, it is convenient for the user to observe images of different time periods as needed.
  • the oscilloscope data processing device 70 can perform the oscilloscope data processing method provided by Embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the oscilloscope data processing method provided by Embodiment 3 of the present invention can perform the oscilloscope data processing method provided by Embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 8 is a schematic structural diagram of an oscilloscope hardware according to an embodiment of the present invention. As shown in FIG. 8, the oscilloscope 80 includes:
  • One or more processors 801 and memory 802, one processor 801 is taken as an example in FIG.
  • the processor 801 and the memory 802 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 802 is a non-volatile computer readable storage medium, and can be used for storing non-volatile software programs, non-volatile computer-executable programs, and modules, such as the oscilloscope data provided by Embodiment 2 or Embodiment 3 of the present invention.
  • the program instruction/module corresponding to the processing method (for example, the data collection module 701, the data saving module 702, the request sending module 703, the at least one function module 704, the processing result information receiving module 705, and the processing result information output module shown in FIG. 7) 706.
  • the processor 801 executes various functional applications and data processing of the oscilloscope by running non-volatile software programs, instructions, and modules stored in the memory 802, that is, implementing the oscilloscope data provided by the method embodiment 2 or the
  • the memory 802 can include a storage program area and an storage data area, wherein the storage program area can store an operating system, an application required for at least one function; the storage data area can store data created according to the use of the oscilloscope, and the like.
  • memory 802 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory 802 can optionally include a memory remotely located relative to the processor 801 that can be connected to the oscilloscope via a network.
  • Embodiments of the network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules are stored in the memory 802, and when executed by the one or more processors 801, perform an oscilloscope data processing method provided by Embodiment 2 or Embodiment 3 of the present invention, for example, performing the above The method steps 401 to 411 in FIG. 4 are described, or the functions of the modules 701-712 in FIG. 7 are implemented.
  • the oscilloscope can perform the oscilloscope data processing method provided by the embodiment 2 or the embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the oscilloscope data processing method provided by Embodiment 2 or Embodiment 3 of the present invention.
  • An embodiment of the present invention provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instruction is When the oscilloscope is executed, the oscilloscope is caused to perform the oscilloscope data processing method provided by Embodiment 2 or Embodiment 3 of the present invention. For example, performing the method steps 401 to 411 in FIG. 4 described above, or implementing the functions of the modules 701-712 in FIG.
  • Embodiments of the present invention provide a non-transitory computer readable storage medium storing computer-executable instructions for causing an oscilloscope to perform Embodiment 2 or implementation of the present invention.
  • Example 3 provides an oscilloscope data processing method. For example, the method steps 401 to 411 in FIG. 4 described above are performed, or the functions of the modules 701-712 in FIG. 7 are implemented.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical. Modules can be located in one place or distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, by hardware.
  • One of ordinary skill in the art can understand that all or part of the process of implementing the embodiment method can be completed by computer program related hardware, the program can be stored in a computer readable storage medium, and the program is executed.
  • the flow of an embodiment of the methods as described may be included.
  • the storage medium may be a read-only memory (ROM) or a random access memory (RAM).

Abstract

一种示波器数据处理方法、装置(60, 70)及示波器(20),示波器数据处理方法包括:采集被测数据(301, 401);将被测数据保存于存储空间(302, 402);发送读取被测数据请求至至少一个功能模块(604, 704),以使至少一个功能模块(604, 704)分别根据读取被测数据请求从存储空间读取被测数据,并对被测数据进行处理(303, 403);分别接收至少一个功能模块(604, 704)对被测数据处理后返回的处理结果信息(304, 404);输出处理结果信息(305, 405)。示波器数据处理方法、装置(60, 70)及示波器(20)能根据需要从存储空间调出相关数据进行观察、分析、对比或回放等,并能对被测数据进行分模块处理,实现多种模式的输出。

Description

示波器数据处理方法、装置及示波器
本申请要求于2018年1月5日提交中国专利局、申请号为201810010432.9、申请名称为“一种示波器数据处理方法、装置及示波器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及示波器技术领域,尤其涉及一种示波器数据处理方法、装置及示波器。
背景技术
示波器是电子行业里一种基础的测试测量设备,可以把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用示波器测量电信号的不同参数,如电压、电流、频率、相位和幅度等参数。
传统的示波器对于采集的数据会直接进行显示或者经过处理后再进行显示,并不会对采集的数据进行保存。由于未保存采集的数据,进而便无法对波形数据进行回放等。并且,对于数据的处理并不会分模块进行处理,进而无法实现多种模式的输出,使得用户无法同时观察多种模式下的波形。
发明内容
本发明的主要目的在于提供一种示波器数据处理方法、装置及示波器,能够实现对采集的数据进行保存,以便于用户根据需要调出相关数据进行观察、分析和对比,并且能够达到多种模式的输出效果。
本发明实施例公开了如下技术方案:
第一方面,本发明实施例提供了一种示波器数据处理方法,所述方法包括:
采集被测数据;
将所述被测数据保存于存储空间;
发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理;
分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果 信息;
输出所述处理结果信息。
在一些实施例中,所述将所述被测数据保存于存储空间,包括:
将所述被测数据按屏进行分页保存。
在一些实施例中,所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。
在一些实施例中,所述发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,包括:
当所述读取被测数据请求基于所述读取当前数据指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间实时读取所述被测数据,并对所述被测数据进行处理;
当所述读取被测数据请求基于所述回放指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述回放指令指示的页中的被测数据,并对所述回放指令指示的页中的被测数据据进行处理。
在一些实施例中,所述输出处理结果信息包括:
将所述处理结果信息转换为图像,并在界面上进行显示。
在一些实施例中,所述在界面上进行显示,包括:
在界面上进行多窗口显示,所述多窗口中的一个窗口显示的图像为根据所述至少一个功能模块中的一个功能模块返回的处理结果信息转换得到的图像;和/或,
在界面上进行单窗口显示,所述单窗口显示的图像为根据所述至少一个功能模块中的所有功能模块返回的处理结果信息转换得到的图像。
在一些实施例中,所述方法还包括:
接收设置被测设备的波特率的操作,并根据所述设置被测设备的波特率的操作,获取所述被测设备的波特率;
根据所述被测设备的波特率,确定采集被测数据的采样频率。
在一些实施例中,所述被测设备为汽车的电子元器件。
在一些实施例中,所述储存空间为示波器的存储空间。
在一些实施例中,所述储存空间包括示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间;
所述将所述被测数据保存于存储空间包括:
当所述被测数据的数据量大于所述示波器的存储空间的预设的数据量阈值时,将所述被测数据保存于所述终端设备的存储空间。
在一些实施例中,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
第二方面,本发明实施例提供了一种示波器数据处理装置,所述装置包括:
数据采集模块,用于采集被测数据;
数据保存模块,用于将所述被测数据保存于存储空间;
请求发送模块,用于发送读取被测数据请求;
至少一个功能模块,用于接收所述读取被测数据请求,并根据所述读取被测数据请求分别从所述存储空间读取所述被测数据,并对所述被测数据进行处理;
处理结果信息接收模块,用于分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息;
处理结果信息输出模块,用于输出所述处理结果信息。
在一些实施例中,所述数据保存模块具体用于:
将所述被测数据按屏进行分页保存。
在一些实施例中,所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。
在一些实施例中,所述至少一个功能模块具体用于:
当所述读取被测数据请求基于读取当前数据指令生成时,接收所述读取被测数据请求,并根据所述读取被测数据请求从所述存储空间实时读取所述被测数据,并对所述被测数据进行处理;
当所述读取被测数据请求基于回放指令生成时,接收所述读取被测数据请求,并根据所述读取被测数据请求从所述存储空间读取所述回放指令指示的页中的被测数据,并对所述回放指令指示的页中的被测数据进行处理。
在一些实施例中,所述处理结果信息输出模块包括:
图像显示模块,用于将所述处理结果信息转换为图像,并在界面上进行显示。
在一些实施例中,所述图像显示模块包括:
多窗口显示模块,用于将所述处理结果信息转换为图像,并在界面上进行多窗口显示,所述多窗口中的一个窗口显示的图像为根据所述至少一个功能模块中的一个功能模块返回的处理结果信息转换得到的图像;和/或,
单窗口显示模块,用于将所述处理结果信息转换为图像,并在界面上进行单窗口显示,所述单窗口显示的图像为根据所述至少一个功能模块中的所有功能模块返回的处理结果信息转换得到的图像。
在一些实施例中,所述装置还包括:
波特率获取模块,用于接收设置被测设备的波特率的操作,并根据所述设置被测设备的波特率的操作,获取所述被测设备的波特率;
采样频率确定模块,用于根据所述被测设备的波特率,确定采集被测数据的采样频率。
在一些实施例中,所述被测设备为汽车的电子元器件。
在一些实施例中,所述储存空间为示波器的存储空间。
在一些实施例中,所述储存空间包括示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间;
所述数据保存模块具体用于:
当所述被测数据的数据量大于所述示波器的存储空间的预设的数据量阈值时,将所述被测数据保存于所述终端设备的存储空间。
在一些实施例中,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
第三方面,本发明实施例提供了一种示波器,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的示波器数 据处理方法。
第四方面,本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被示波器执行时,使所述示波器执行如上所述的示波器数据处理方法。
第五方面,本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使示波器执行如上所述的示波器数据处理方法。
本发明实施例的有益效果是:与现有技术相比较,本发明实施例通过将所述被测数据保存于存储空间,以便根据需要从存储空间调出相关数据进行观察、分析、对比或回放等。并且,通过所述至少一个功能模块分别从存储空间中读取并处理数据,以对所述被测数据进行分模块处理,进而达到多种模式的输出的效果。
附图说明
图1是本发明实施例提供的示波器数据处理方法的应用环境的示意图;
图2是本发明实施例提供的示波器数据处理的具体实现原理的示意图;
图3是本发明其中一实施例提供的一种示波器数据处理方法的流程示意图;
图4是本发明另一实施例提供的一种示波器数据处理方法的流程示意图;
图5是本发明实施例提供的多窗口显示时,所述至少一个功能模块中的每个功能模块与窗口的对应关系示意图;
图6是本发明另一实施例提供的一种示波器数据处理装置的示意图;
图7是本发明另一实施例提供的一种示波器数据处理装置的示意图;
图8是本发明其中一实施例提供的示波器硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
本发明实施例提供了一种示波器数据处理方法、装置及示波器,所述示波器数据处理方法、装置及示波器对采集的数据进行保存,以便于用户根据需要调出相关数据进行观察、分析和对比,并且能够实现多种模式的输出。以下举例说明上述方法的应用环境。
请参阅图1,为本发明实施例提供的示波器数据处理方法的应用环境的示意图。其中,应用场景中包括:被测设备10及示波器20及终端设备30。使用时,所述示波器20分别与所述被测设备10及所述终端设备30连接。首先,所述示波器20采集所述被测设备10所产生的被测数据,并对该被测数据进行存储及处理(将所述被测数据保存于存储空间,并且将所述被测数据分模块进行处理),并将处理后的数据发送给所述终端设备30。
请参阅图2,为本发明实施例提供的示波器数据处理的具体实现原理示意图。其中,包括:
1、所述被测设备10产生的被测数据。
2、所述示波器20与所述被测设备10进行交互,从而采集得到所述被测设备10产生的被测数据。
3、获得所述被测数据后,所述示波器20将所述被测数据保存于存储空间。所述存储空间可以为所述示波器20的存储空间,可以为所述终端设备30的存储空间。由于通常示波器20的存储空间的大小有限,可存储的数据有限,而所述终端设备30相对于所述示波器20可存储的数据量更大,因此,当所述被测数据的数据量大于预设的数据量阈值时,可将所述被测数据保存于所述终端设备30的存储空间。将所述被测数据保存于所述终端设备30的存储空间,可以使得保存数据的大小只受终端设备30的内存的限制,而不受所述示波器20的内存的影响,从而有效解决大量数据的保存问题。
4、所述示波器20发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理。
其中,所述至少一个功能模块中的每个功能模块均可以根据所述读取被测 数据请求从所述存储空间中读取被测数据,并分别进行处理。例如,所述至少一个功能模块可以包括但不限于:频谱模块、数学运算模块、译码模块等。所述频谱模块、所述数学运算模块、所述译码模块可分别从所述存储空间中读取所述被测数据,并分别进行处理,所述频谱模块对所述被测数据进行处理,以便在界面上显示频域图像,也即频谱图;所述数学运算模块可对所述被测数据进行数学运算(如加减乘除),以便在界面上显示将所述被测数据经过加减乘除处理后的图像;所述译码模块可对所述被测数据进行译码处理,以便在界面上显示将所述被测数据经过译码处理后的译码结果。
所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。当所述读取被测数据请求基于所述读取当前数据指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间实时读取所述被测数据,并对所述被测数据进行处理,以便实时的观察各种波形;当所述读取被测数据请求基于所述回放指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述回放指令指示的页中的被测数据,并对所述回放指令指示的页中的被测数据进行处理,以便用户根据需要调出相关数据进行观察、分析和对比,也即进行回放。例如,所述回放指令指示第五页的被测数据,则根据所述读取被测数据请求从所述存储空间读取第五页的被测数据,并对第五页的被测数据进行处理。
通过发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,可以对所述被测数据进行分模块处理,以便实现多种模式的输出及回放。并且,当存在多个功能模块时,可对所述被测数据进行同步处理。
5、所述示波器20分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息,并输出所述处理结果信息。所述至少一个功能模块中的每个功能模块均会对所述被测数据进行处理并返回处理结果信息,也即每个功能模块均会返回一个处理结果信息,以实现多种模式下的输出,进而使得用户可以同时观察多种模式下的波形。所述示波器20输出所述处理结果信息可以包括:将所述处理结果信息发送至所述终端设备30。
6、所述终端设备30接收所述处理结果信息,并将所述处理结果信息转换为图像,在界面上进行显示。其中,在界面上进行显示可以包括:在界面上进行多窗口显示,所述多窗口中的一个窗口显示的图像为根据所述至少一个功能模块中的一个功能模块返回的处理结果信息转换得到的图像;和/或,在界面上进行单窗口显示,所述单窗口显示的图像为根据所述至少一个功能模块中的所有功能模块返回的处理结果信息转换得到的图像。例如,所述至少一个功能 模块可以包括但不限于:频谱模块、数学运算模块、译码模块等。在界面上进行多窗口显示时,由于所述至少一个功能模块包括3个功能模块,相应的,所述多窗口为3个窗口。其中,根据所述频谱模块返回的处理结果信息转换得到的频谱图显示于所述多窗口中的一个窗口;根据所述数学运算模块返回的处理结果信息转换得到的数学运算图像(经过加减乘除处理后的图像)显示于所述多窗口中的另一个窗口;根据所述译码模块返回的处理结果信息转换得到的译码结果显示于所述多窗口中的另一个窗口。并且,3个窗口同时显示于同一界面上。在界面上进行单窗口显示时,根据3个功能模块返回的处理结果信息转换得到的图像均显示于同一窗口。其中,根据所述频谱模块返回的处理结果信息转换得到的频谱图、根据所述数学运算模块返回的处理结果信息转换得到的数学运算图像(经过加减乘除处理后的图像)、根据所述译码模块返回的处理结果信息转换得到的译码结果显示于同一窗口上。用户可以根据需要选择多窗口观察图像或单窗口观察图像。
在一些其它实施例中,所述终端设备30还可以接收图像缩放指令,以实现对所述图像进行缩放。例如,所述终端设备30提供框选工具,通过该框选工具可实现对被框选的相应的时间段的图像进行缩放显示,当该时间段的图像显示比较密集时,可通过所述图像缩放指令,对该时间段的图像进行放大,以便于观察;当该时间段的图像显示比较松散时,可通过所述图像缩放指令,对该时间段的图像进行缩小,从而将图像调整为适于用户观察的显示范围。所述终端设备30可以接收图像拖动指令,以拖动所述图像,方便用户根据需要观察不同时间段的图像。
需要说明的是,在本发明实施例中,所述被测设备10可以是各种类型的电子元器件,例如,汽车的电子元器件等。所述终端设备30可以是个人计算机(Personal Computer,PC)、平板、智能手机等。
还需要说明的是,在一些其它实施例中,上述示波器20与上述终端设备30的功能可以集成到同一设备中,也即该设备可以实现上述示波器20与上述终端设备30的所有功能。
在本发明实施例中,通过将所述被测数据保存于存储空间,以便根据需要从存储空间调出相关数据进行观察、分析、对比等。并且,通过所述至少一个功能模块分别从存储空间中读取并处理数据,以对所述被测数据进行分模块处理,进而达到多种模式的输出的效果。而且,可以根据用户需要进行多窗口显示或单窗口显示。
实施例2:
图3为本发明其中一实施例提供的一种示波器数据处理方法的流程示意图。本发明其中一实施例提供的一种示波器数据处理方法应用于示波器,所述 方法可由图1中的示波器20执行。
参照图3,所述方法包括:
301:采集被测数据。
所述示波器可以按照采样频率从所述被测设备上采集被测数据。其中,所述采样频率可以为所述示波器系统默认的采样频率,也可以是用户设置的采样频率等。所述被测设备为汽车的电子元器件等。
302:将所述被测数据保存于存储空间。
在采集被测数据后,所述示波器可将所述被测数据保存于存储空间。其中,所述储存空间包括所述示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间,也即可将所述被测数据保存于所述示波器的存储空间中,也可以将所述被测数据保存于与所述示波器的输出端相连接的终端设备的存储空间。由于通常示波器的存储空间的大小有限,可存储的数据有限,因此,当所述被测数据的数据量大于预设的数据量阈值时,可以将所述被测数据保存于其它设备的存储空间内,以解决示波器不能保存大量数据的问题。
需要说明的是,在一些实施例中,所述储存空间为所述示波器的存储空间,当所述被测数据的数据量较小时,所述示波器的存储空间便可实现所述被测数据的存储。
303:发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理。
其中,所述至少一个功能模块中的每个功能模块均可以根据所述读取被测数据请求从所述存储空间中读取被测数据,并分别进行处理。例如,所述至少一个功能模块可以包括但不限于:频谱模块、数学运算模块、译码模块等。所述频谱模块、所述数学运算模块、所述译码模块可分别从所述存储空间中读取所述被测数据,并分别进行处理,所述频谱模块对所述被测数据进行处理,以便在界面上显示频域图像,也即频谱图;所述数学运算模块可对所述被测数据进行数学运算(如加减乘除),以便在界面上显示将所述被测数据经过加减乘除处理后的图像;所述译码模块可对所述被测数据进行译码处理,以便在界面上显示将所述被测数据经过译码处理后的译码结果。
通过发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,可以对所述被测数据进行分模块处理,以便实现多种模式的输出及回放。并且,当存在多个功能模块时,可对所述被测数据进行同步处理。
304:分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息。
所述至少一个功能模块中的每个功能模块均会对所述被测数据进行处理并返回处理结果信息,也即每个功能模块均会返回一个处理结果信息,以实现多种模式下的输出,进而使得用户可以同时观察多种模式下的波形。
305:输出所述处理结果信息。
所述示波器输出所述处理结果信息可以包括:直接在所述示波器上显示所述处理结果信息;或者将所述处理结果信息转换为图像,以图像的方式进行显示;或者将所述处理结果信息发送给外部的终端设备,在所述终端设备上进行显示等。其中,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
需要说明的是,本发明实施例中所述步骤301-305中未详尽描述的技术细节,可参考上述实施例的具体描述。
在本发明实施例中,通过将所述被测数据保存于存储空间,以便根据需要从存储空间调出相关数据进行观察、分析、对比或回放等。并且,通过所述至少一个功能模块分别从存储空间中读取并处理数据,以对所述被测数据进行分模块处理,进而达到多种模式的输出的效果。
实施例3:
图4为本发明另一实施例提供的一种示波器数据处理方法的流程示意图。本发明另一实施例提供的一种示波器数据处理方法应用于示波器,所述方法可由图1中的示波器20执行。
参照图4,所述方法包括:
401:采集被测数据。
所述示波器可以按照采样频率从所述被测设备上采集被测数据。其中,所述被测设备为汽车的电子元器件等。
402:将所述被测数据保存于存储空间。
在采集被测数据后,所述示波器可将所述被测数据保存于存储空间。其中,所述储存空间包括所述示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间,也即可将所述被测数据保存于所述示波器的存储空间中,也可以将所述被测数据保存于与所述示波器的输出端相连接的终端设备的存储空间。由于通常示波器的存储空间的大小有限,可存储的数据有限,因此,当所述被测数据的数据量大于预设的数据量阈值时,可以将所述被测数据保存于其它设备的存储空间内,以解决示波器不能保存大量数据的问题,例如,将所述被测数据保存于终端设备的存储空间内。也即所述将所述被测数据保存于存储空间可以包括:当所述被测数据的数据量大于所述示波器的存储空间的预设的数据量阈值时,将所述被测数据保存于所述终端设备的存储空间。其中,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
需要说明的是,在一些实施例中,所述储存空间为所述示波器的存储空间, 当所述被测数据的数据量较小时,所述示波器的存储空间便可实现所述被测数据的存储。
为了便于所述至少一个功能模块快速读取所述被测数据,可以将所述被测数据进行分页保存。具体的,所述将所述被测数据保存于存储空间,包括:将所述被测数据按屏进行分页保存。其中,将所述被测数据按屏进行分页保存中的屏是指示波器中用于显示所述被测数据的显示区域。该显示区域可以由用户自定义,如将示波器的屏幕的2/3、1/3等定义为该显示区域,或者将示波器的整个屏幕定义为该显示区域。所述将所述被测数据按屏进行分页保存,具体为:预先获取显示区域的分辨率,然后,根据该分辨率计算满屏时显示的数据量,然后按照满屏需要填充的数据量,进行分页保存,以便于所述至少一个功能模块快速读取所述被测数据。
403:发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理。
其中,所述至少一个功能模块中的每个功能模块均可以根据所述读取被测数据请求从所述存储空间中读取被测数据,并分别进行处理。所述至少一个功能模块可以包括但不限于:频谱模块、测量模块、数学运算模块、模拟模块、译码模块等。所述频谱模块、所述测量模块、所述数学运算模块、所述模拟模块、所述译码模块可分别从所述存储空间中读取所述被测数据,并分别进行处理。其中,所述频谱模块对所述被测数据进行处理,以便在界面上显示频域图像,也即频谱图;所述测量模块对所述被测数据不作转换处理,以便直接在界面上显示所述被测数据;所述数学运算模块可对所述被测数据进行数学运算(如加减乘除),以便在界面上显示将所述被测数据经过加减乘除处理后的图像;所述模拟模块将所述被测数据转换为模拟信号,以便直接在界面上显示所述模拟信号;所述译码模块可对所述被测数据进行译码处理,以便在界面上显示将所述被测数据经过译码处理后的译码结果。
所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。所述发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,包括:当所述读取被测数据请求基于所述读取当前数据指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间实时读取所述被测数据,并对所述被测数据进行处理,以便实时的观察各种波形;当所述读取被测数据请求基于所述回放指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述回放指令指示的页中的被测数据,并对所述回放指令指示的页 中的被测数据进行处理,以便用户根据需要调出相关数据进行观察、分析和对比,也即进行回放。
通过发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,可以对所述被测数据进行分模块处理,以便实现多种模式的输出及回放。并且,当存在多个功能模块时,可对所述被测数据进行同步处理。
404:分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息。
所述至少一个功能模块中的每个功能模块均会对所述被测数据进行处理并返回处理结果信息,也即每个功能模块均会返回一个处理结果信息,以实现多种模式下的输出,进而使得用户可以同时观察多种模式下的波形。
405:输出所述处理结果信息。
所述示波器输出所述处理结果信息可以包括:将所述处理结果信息转换为图像,并在界面上进行显示。其中,所述在界面上进行显示,包括:在界面上进行多窗口显示,所述多窗口中的一个窗口显示的图像为根据所述至少一个功能模块中的一个功能模块返回的处理结果信息转换得到的图像;和/或,在界面上进行单窗口显示,所述单窗口显示的图像为根据所述至少一个功能模块中的所有功能模块返回的处理结果信息转换得到的图像。其中,多窗口显示中,所述至少一个功能模块中的每个功能模块与窗口的对应关系如图5所述,所述至少一个功能模块可以包括:频谱模块、测量模块、数学运算模块、模拟模块、译码模块。在界面上进行多窗口显示时,由于所述至少一个功能模块包括5个功能模块,相应的,所述多窗口为5个窗口。其中,根据所述频谱模块返回的处理结果信息转换得到的频谱图显示于所述多窗口中的窗口1;根据所述测量模块返回的处理结果信息转换得到的测量结果(直接获取的被测数据)显示于所述多窗口中的窗口2;根据所述数学运算模块返回的处理结果信息转换得到的数学运算图像(经过加减乘除处理后的图像)显示于所述多窗口中的窗口3;根据所述模拟模块返回的处理结果信息转换得到的模拟信号图像(将所述被测数据转换为模拟信号后的图像)显示于所述多窗口中的窗口4;根据所述译码模块返回的处理结果信息转换得到的译码结果显示于所述多窗口中的窗口5。并且,5个窗口同时显示于同一界面上。需要说明的是,在一些其它实施例中,所述至少一个功能模块可以包括但不限于上述5个功能模块,例如,所述至少一个功能模块还可以包括数字模块等,并且所述窗口的数量与所述功能模块的数量一一对应。在界面上进行单窗口显示时,根据5个功能模块返回的处理结果信息转换得到的图像均显示于同一窗口。其中,根据所述频谱模块返回的处理结果信息转换得到的频谱图、根据所述测量模块返回的处理结果 信息转换得到的测量结果、根据所述数学运算模块返回的处理结果信息转换得到的数学运算图像、根据所述模拟模块返回的处理结果信息转换得到的模拟信号图像、根据所述译码模块返回的处理结果信息转换得到的译码结果显示于同一窗口上。并且,用户可以根据需要选择多窗口观察图像或单窗口观察图像。
406:接收设置被测设备的波特率的操作,并根据所述设置被测设备的波特率的操作,获取所述被测设备的波特率。
所述波特率是指所述被测设备每秒产生的数据量。所述波特率可以根据用户的需要,自定义的进行设置。通过接收设置被测设备的波特率的操作,可以获取所述被测设备的波特率。
407:根据所述被测设备的波特率,确定采集被测数据的采样频率。
所述采样频率是指所述示波器每秒采集的数据量。由于所述被测设备每秒产生的数据量与所述示波器每秒采集的数据量可能存在不一致甚至相差很大的情况,当两者不一致或者相差很大时会导致所述示波器采集的数据存在许多无效的重复数据,因此,根据所述被测设备的波特率,确定采集被测数据的采样频率,例如,用户将所述被测设备的波特率设置为100Baud(Baud为波特率的单位),此时,可以所述示波器可以接收设置采样频率的操作,从而将所述示波器的采样频率也设置为与所述波特率相等的数值,也即将采样频率设置为100Hz(Hz为频率的单位)。所述采样频率与所述波特率相差不大或者相等时,可以有效的剔除无效数据,以提高有效数据的获取率,从而为存储空间节省空间。
408:接收图像缩放指令。
所述示波器可以接收图像缩放指令,以实现对所述图像的缩放。其中,所述图像缩放指令可以是基于用户的操作生成的。
409:根据所述图像缩放指令,对所述图像进行缩放。
所述示波器根据所述图像缩放指令,便可对所述图像进行缩放。其中可以对整个所述图像进行缩放,也可以对所述图像中的某部分进行缩放。例如,所述示波器提供框选工具,通过该框选工具可实现对被框选的相应的时间段的图像进行缩放显示,当该时间段的图像显示比较密集时,可通过所述图像缩放指令,对该时间段的图像进行放大,以便于观察;当该时间段的图像显示比较松散时,可通过所述图像缩放指令,对该时间段的图像进行缩小,从而将图像调整为适于用户观察的显示范围。
410:接收图像拖动指令。
所述示波器可以接收图像拖动指令,以实现对所述图像的拖动。其中,所述图像拖动指令可以是基于用户的操作生成的。
411:根据所述图像拖动指令,拖动所述图像。
所述示波器根据所述图像拖动指令,便可对所述图像进行拖动。其中可以 对所述图像进行左右拖动,也可以对所述图像进行上下拖动。通过对所述图像的左右拖动可以方便用户根据需要观察不同时间段的图像。
可以理解的是,在一些其它实施例中,所述步骤406-411在不同的实施例中,可以不是必选步骤,另外,本领域普通技术人员,根据本发明实施例的描述可以理解,在不同实施例中,在不矛盾的情况下,所述步骤401-411可以有不同的执行顺序。
需要说明的是,本发明实施例中所述步骤401-411中未详尽描述的技术细节,可参考上述实施例的具体描述。
在本发明实施例中,通过将所述被测数据保存于存储空间,以便根据需要从存储空间调出相关数据进行观察、分析、对比或回放等。并且,通过所述至少一个功能模块分别从存储空间中读取并处理数据,以对所述被测数据进行分模块处理,进而达到多种模式的输出的效果。而且,可以根据用户需要进行多窗口显示或单窗口显示。
实施例4:
图6为本发明其中一实施例提供的一种示波器数据处理装置的示意图。本发明其中一实施例提供的一种示波器数据处理装置应用于示波器。
参照图6,所述装置60包括:
数据采集模块601,用于采集被测数据。
所述数据采集模块601可以按照采样频率从所述被测设备上采集被测数据。其中,所述采样频率可以为所述示波器系统默认的采样频率,也可以是用户设置的采样频率等。所述被测设备为汽车的电子元器件等。
数据保存模块602,用于将所述被测数据保存于存储空间。
在所述数据采集模块601采集被测数据后,所述数据保存模块602可将所述被测数据保存于存储空间。其中,所述储存空间包括所述示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间,也即可将所述被测数据保存于所述示波器的存储空间中,也可以将所述被测数据保存于与所述示波器的输出端相连接的终端设备的存储空间。由于通常示波器的存储空间的大小有限,可存储的数据有限,因此,当所述被测数据的数据量大于预设的数据量阈值时,所述数据保存模块602可以将所述被测数据保存于其它设备的存储空间内,以解决示波器不能保存大量数据的问题。
需要说明的是,在一些实施例中,所述储存空间为所述示波器的存储空间,当所述被测数据的数据量较小时,所述数据保存模块602将被测数据存储于所述示波器的存储空间即可。
请求发送模块603,用于发送读取被测数据请求。
至少一个功能模块604,用于接收所述读取被测数据请求,并根据所述读 取被测数据请求分别从所述存储空间读取所述被测数据,并对所述被测数据进行处理。
其中,所述至少一个功能模块604中的每个功能模块均可以根据所述读取被测数据请求从所述存储空间中读取被测数据,并分别进行处理。例如,所述至少一个功能模块可以包括但不限于:频谱模块、数学运算模块、译码模块等。所述频谱模块、所述数学运算模块、所述译码模块可分别从所述存储空间中读取所述被测数据,并分别进行处理,所述频谱模块对所述被测数据进行处理,以便在界面上显示频域图像,也即频谱图;所述数学运算模块可对所述被测数据进行数学运算(如加减乘除),以便在界面上显示将所述被测数据经过加减乘除处理后的图像;所述译码模块可对所述被测数据进行译码处理,以便在界面上显示将所述被测数据经过译码处理后的译码结果。
通过所述至少一个功能模块604分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,可以对所述被测数据进行分模块处理,以便实现多种模式的输出及回放。并且,当存在多个功能模块时,可对所述被测数据进行同步处理。
处理结果信息接收模块605,用于分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息。
所述至少一个功能模块604中的每个功能模块均对所述被测数据进行处理后,所述处理结果信息接收模块605便可分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息,以便实现多种模式下的输出,进而使得用户可以同时观察多种模式下的波形。
处理结果信息输出模块606,用于输出所述处理结果信息。
所述处理结果信息输出模块606可具体用于:直接在所述示波器上显示所述处理结果信息;或者将所述处理结果信息转换为图像,以图像的方式进行显示;或者将所述处理结果信息发送给外部的终端设备,在所述终端设备上进行显示等。其中,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
需要说明的是,在本发明实施例中,所述示波器数据处理装置60可执行本发明实施例2提供的示波器数据处理方法,具备执行方法相应的功能模块和有益效果。未在示波器数据处理装置60的实施例中详尽描述的技术细节,可参见本发明实施例2提供的示波器数据处理方法。
实施例5:
图7为本发明另一实施例提供的一种示波器数据处理装置的示意图。本发明另一实施例提供的一种示波器数据处理装置应用于示波器。
参照图7,所述装置70包括:
数据采集模块701,用于采集被测数据。
所述数据采集模块701可以按照采样频率从所述被测设备上采集被测数据。其中,所述被测设备为汽车的电子元器件等。
数据保存模块702,用于将所述被测数据保存于存储空间。
在所述数据采集模块701采集被测数据后,所述数据保存模块702可将所述被测数据保存于存储空间。其中,所述储存空间包括所述示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间,也即数据采集模块701可将所述被测数据保存于所述示波器的存储空间中,也可以将所述被测数据保存于与所述示波器的输出端相连接的终端设备的存储空间。由于通常示波器的存储空间的大小有限,可存储的数据有限,因此,当所述被测数据的数据量大于预设的数据量阈值时,所述数据保存模块702可以将所述被测数据保存于其它设备的存储空间内,以解决示波器不能保存大量数据的问题,例如,将所述被测数据保存于终端设备的存储空间内。也即所述数据保存模块702具体用于:当所述被测数据的数据量大于所述示波器的存储空间的预设的数据量阈值时,将所述被测数据保存于所述终端设备的存储空间。其中,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
需要说明的是,在一些实施例中,所述储存空间为所述示波器的存储空间,当所述被测数据的数据量较小时,所述数据保存模块702将被测数据存储于所述示波器的存储空间即可。
为了便于所述至少一个功能模块快速读取所述被测数据,可以将所述被测数据进行分页保存。具体的,所述数据保存模块702具体用于:将所述被测数据按屏进行分页保存。其中,将所述被测数据按屏进行分页保存中的屏是指示波器中用于显示所述被测数据的显示区域。该显示区域可以由用户自定义,如将示波器的屏幕的2/3、1/3等定义为该显示区域,或者将示波器的整个屏幕定义为该显示区域。所述将所述被测数据按屏进行分页保存,具体为:预先获取显示区域的分辨率,然后,根据该分辨率计算满屏时显示的数据量,然后按照满屏需要填充的数据量,进行分页保存,以便于所述至少一个功能模块快速读取所述被测数据。
请求发送模块703,用于发送读取被测数据请求。
其中,所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。
至少一个功能模块704,用于接收所述读取被测数据请求,并根据所述读取被测数据请求分别从所述存储空间读取所述被测数据,并对所述被测数据进行处理。
其中,所述至少一个功能模块704中的每个功能模块均可以根据所述读取被测数据请求从所述存储空间中读取被测数据,并分别进行处理。所述至少一个功能模块704可以包括但不限于:频谱模块、测量模块、数学运算模块、模 拟模块、译码模块等。所述频谱模块、所述测量模块、所述数学运算模块、所述模拟模块、所述译码模块可分别从所述存储空间中读取所述被测数据,并分别进行处理。其中,所述频谱模块对所述被测数据进行处理,以便在界面上显示频域图像,也即频谱图;所述测量模块对所述被测数据不作转换处理,以便直接在界面上显示所述被测数据;所述数学运算模块可对所述被测数据进行数学运算(如加减乘除),以便在界面上显示将所述被测数据经过加减乘除处理后的图像;所述模拟模块将所述被测数据转换为模拟信号,以便直接在界面上显示所述模拟信号;所述译码模块可对所述被测数据进行译码处理,以便在界面上显示将所述被测数据经过译码处理后的译码结果。
所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。所述至少一个功能模块具体用于:当所述读取被测数据请求基于读取当前数据指令生成时,接收所述读取被测数据请求,并根据所述读取被测数据请求从所述存储空间实时读取所述被测数据,并对所述被测数据进行处理,以便实时的观察各种波形;当所述读取被测数据请求基于回放指令生成时,接收所述读取被测数据请求,并根据所述读取被测数据请求从所述存储空间读取所述回放指令指示的页中的被测数据,并对所述回放指令指示的页中的被测数据进行处理,以便用户根据需要调出相关数据进行观察、分析和对比,也即进行回放。
通过所述至少一个功能模块704分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,可以对所述被测数据进行分模块处理,以便实现多种模式的输出及回放。并且,当存在多个功能模块时,可对所述被测数据进行同步处理。
处理结果信息接收模块705,用于分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息。
所述至少一个功能模块704中的每个功能模块均对所述被测数据进行处理后,所述处理结果信息接收模块705便可分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息,以便实现多种模式下的输出,进而使得用户可以同时观察多种模式下的波形。
处理结果信息输出模块706,用于输出所述处理结果信息。
所述处理结果信息输出模块706包括:图像显示模块7061,用于将所述处理结果信息转换为图像,并在界面上进行显示。其中,所述图像显示模块7061包括:多窗口显示模块7062,用于将所述处理结果信息转换为图像,并在界面上进行多窗口显示,所述多窗口中的一个窗口显示的图像为根据所述至少一个功能模块中的一个功能模块返回的处理结果信息转换得到的图像;和/或,单窗口显示模块7063,用于将所述处理结果信息转换为图像,并在界面上进行单窗口显示,所述单窗口显示的图像为根据所述至少一个功能模块中的所有功能模块返回的处理结果信息转换得到的图像。用户可以根据需要选择多 窗口观察图像或单窗口观察图像。
波特率获取模块707,用于接收设置被测设备的波特率的操作,并根据所述设置被测设备的波特率的操作,获取所述被测设备的波特率。
所述波特率是指所述被测设备每秒产生的数据量。所述波特率可以根据用户的需要,自定义的进行设置。所述波特率获取模块707通过接收设置被测设备的波特率的操作,可以获取所述被测设备的波特率。
采样频率确定模块708,用于根据所述被测设备的波特率,确定采集被测数据的采样频率。
所述采样频率是指所述示波器每秒采集的数据量。由于所述被测设备每秒产生的数据量与所述示波器每秒采集的数据量可能存在不一致甚至相差很大的情况,当两者不一致或者相差很大时会导致所述示波器采集的数据存在许多无效的重复数据,因此,采所述样频率确定模块708根据所述被测设备的波特率,确定采集被测数据的采样频率,例如,用户将所述被测设备的波特率设置为100Baud(Baud为波特率的单位),此时,可以所述采样频率确定模块708可以接收设置采样频率的操作,从而将所述示波器的采样频率也设置为与所述波特率相等的数值,也即将采样频率设置为100Hz(Hz为频率的单位)。所述采样频率与所述波特率相差不大或者相等时,可以有效的剔除无效数据,以提高有效数据的获取率,从而为存储空间节省空间。
图像缩放指令接收模块709,用于接收图像缩放指令。
所述图像缩放指令接收模块709可以接收图像缩放指令,以实现对所述图像的缩放。其中,所述图像缩放指令可以是基于用户的操作生成的。
图像缩放模块710,用于根据所述图像缩放指令,对所述图像进行缩放。
所述图像缩放模块710根据所述图像缩放指令,便可对所述图像进行缩放。其中可以对整个所述图像进行缩放,也可以对所述图像中的某部分进行缩放。例如,所述图像缩放模块710提供框选工具,通过该框选工具可实现对被框选的相应的时间段的图像进行缩放显示,当该时间段的图像显示比较密集时,可通过所述图像缩放指令,对该时间段的图像进行放大,以便于观察;当该时间段的图像显示比较松散时,可通过所述图像缩放指令,对该时间段的图像进行缩小,从而将图像调整为适于用户观察的显示范围。
图像拖动指令接收模块711,用于接收图像拖动指令。
所述示波器可以接收图像拖动指令,以实现对所述图像的拖动。其中,所述图像拖动指令可以是基于用户的操作生成的。
图像拖动模块712,用于根据所述图像拖动指令,拖动所述图像。
所述图像拖动模块712根据所述图像拖动指令,便可对所述图像进行拖动。其中可以对所述图像进行左右拖动,也可以对所述图像进行上下拖动。通过对所述图像的左右拖动可以方便用户根据需要观察不同时间段的图像。
需要说明的是,在本发明实施例中,所述示波器数据处理装置70可执行本发明实施例3提供的示波器数据处理方法,具备执行方法相应的功能模块和有益效果。未在示波器数据处理装置70的实施例中详尽描述的技术细节,可参见本发明实施例3提供的示波器数据处理方法。
实施例6:
图8为本发明其中一实施例提供的示波器硬件结构示意图,如图8所示,所述示波器80包括:
一个或多个处理器801以及存储器802,图8中以一个处理器801为例。
处理器801和存储器802可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器802作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例2或实施例3提供的示波器数据处理方法对应的程序指令/模块(例如,附图7所示的数据采集模块701、数据保存模块702、请求发送模块703、至少一个功能模块704、处理结果信息接收模块705、处理结果信息输出模块706、波特率获取模块707、采样频率确定模块708、图像缩放指令接收模块709、图像缩放模块710、图像拖动指令接收模块711以及图像拖动模块712)。处理器801通过运行存储在存储器802中的非易失性软件程序、指令以及模块,从而执行示波器的各种功能应用以及数据处理,即实现所述方法实施例2或实施例3提供的示波器数据处理方法。
存储器802可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据示波器使用所创建的数据等。此外,存储器802可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器802可选包括相对于处理器801远程设置的存储器,这些远程存储器可以通过网络连接至示波器。所述网络的实施例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器802中,当被所述一个或者多个处理器801执行时,执行本发明实施例2或实施例3提供的示波器数据处理方法,例如,执行以上描述的图4中的方法步骤401至步骤411,或实现图7中的模块701-712的功能。
所述示波器可执行本发明实施例2或实施例3提供的示波器数据处理方法,具备执行方法相应的功能模块和有益效果。未在示波器实施例中详尽描述的技术细节,可参见本发明实施例2或实施例3提供的示波器数据处理方法。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储 在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述示波器执行时,使所述示波器执行本发明实施例2或实施例3提供的示波器数据处理方法。例如,执行以上描述的图4中的方法步骤401至步骤411,或实现图7中的模块701-712的功能
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使示波器执行本发明实施例2或实施例3提供的示波器数据处理方法。例如,执行以上描述的图4中的方法步骤401至步骤411,或实现图7中的模块701-712的功能。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现所述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如所述各方法的实施例的流程。其中,所述的存储介质可为只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种示波器数据处理方法,其特征在于,所述方法包括:
    采集被测数据;
    将所述被测数据保存于存储空间;
    发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理;
    分别接收所述至少一个功能模块对所述被测数据处理后返回的处理结果信息;
    输出所述处理结果信息。
  2. 根据权利要求1所述的方法,其特征在于,所述将所述被测数据保存于存储空间,包括:
    将所述被测数据按屏进行分页保存。
  3. 根据权利要求1或2所述的方法,其特征在于,所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。
  4. 根据权利要求3所述的方法,其特征在于,所述发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述被测数据,并对所述被测数据进行处理,包括:
    当所述读取被测数据请求基于所述读取当前数据指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间实时读取所述被测数据,并对所述被测数据进行处理;
    当所述读取被测数据请求基于所述回放指令生成时,发送读取被测数据请求至至少一个功能模块,以使所述至少一个功能模块分别根据所述读取被测数据请求从所述存储空间读取所述回放指令指示的页中的被测数据,并对所述回放指令指示的页中的被测数据进行处理。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述输出处理结果信息包括:
    将所述处理结果信息转换为图像,并在界面上进行显示。
  6. 根据权利要求5所述的方法,其特征在于,所述在界面上进行显示, 包括:
    在界面上进行多窗口显示,所述多窗口中的一个窗口显示的图像为根据所述至少一个功能模块中的一个功能模块返回的处理结果信息转换得到的图像;和/或,
    在界面上进行单窗口显示,所述单窗口显示的图像为根据所述至少一个功能模块中的所有功能模块返回的处理结果信息转换得到的图像。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    接收设置被测设备的波特率的操作,并根据所述设置被测设备的波特率的操作,获取所述被测设备的波特率;
    根据所述被测设备的波特率,确定采集被测数据的采样频率。
  8. 根据权利要求7所述的方法,其特征在于,所述被测设备为汽车的电子元器件。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述储存空间为示波器的存储空间。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述储存空间包括示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间;
    所述将所述被测数据保存于存储空间包括:
    当所述被测数据的数据量大于所述示波器的存储空间的预设的数据量阈值时,将所述被测数据保存于所述终端设备的存储空间。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
  12. 一种示波器数据处理装置,其特征在于,所述装置包括:
    数据采集模块,用于采集被测数据;
    数据保存模块,用于将所述被测数据保存于存储空间;
    请求发送模块,用于发送读取被测数据请求;
    至少一个功能模块,用于接收所述读取被测数据请求,并根据所述读取被测数据请求分别从所述存储空间读取所述被测数据,并对所述被测数据进行处理;
    处理结果信息接收模块,用于分别接收所述至少一个功能模块对所述被测 数据处理后返回的处理结果信息;
    处理结果信息输出模块,用于输出所述处理结果信息。
  13. 根据权利要求12所述的装置,其特征在于,所述数据保存模块具体用于:
    将所述被测数据按屏进行分页保存。
  14. 根据权利要求12或13所述的装置,其特征在于,所述读取被测数据请求基于读取当前数据指令生成或者基于回放指令生成。
  15. 根据权利要求14所述的装置,其特征在于,所述至少一个功能模块具体用于:
    当所述读取被测数据请求基于读取当前数据指令生成时,接收所述读取被测数据请求,并根据所述读取被测数据请求从所述存储空间实时读取所述被测数据,并对所述被测数据进行处理;
    当所述读取被测数据请求基于回放指令生成时,接收所述读取被测数据请求,并根据所述读取被测数据请求从所述存储空间读取所述回放指令指示的页中的被测数据,并对所述回放指令指示的页中的被测数据进行处理。
  16. 根据权利要求12-15任一项所述的装置,其特征在于,所述处理结果信息输出模块包括:
    图像显示模块,用于将所述处理结果信息转换为图像,并在界面上进行显示。
  17. 根据权利要求16所述的装置,其特征在于,所述图像显示模块包括:
    多窗口显示模块,用于将所述处理结果信息转换为图像,并在界面上进行多窗口显示,所述多窗口中的一个窗口显示的图像为根据所述至少一个功能模块中的一个功能模块返回的处理结果信息转换得到的图像;和/或,
    单窗口显示模块,用于将所述处理结果信息转换为图像,并在界面上进行单窗口显示,所述单窗口显示的图像为根据所述至少一个功能模块中的所有功能模块返回的处理结果信息转换得到的图像。
  18. 根据权利要求12-17任一项所述的装置,其特征在于,所述装置还包括:
    波特率获取模块,用于接收设置被测设备的波特率的操作,并根据所述设置被测设备的波特率的操作,获取所述被测设备的波特率;
    采样频率确定模块,用于根据所述被测设备的波特率,确定采集被测数据的采样频率。
  19. 根据权利要求18所述的装置,其特征在于,所述被测设备为汽车的电子元器件。
  20. 根据权利要求12-19任一项所述的装置,其特征在于,所述储存空间为示波器的存储空间。
  21. 根据权利要求12-19任一项所述的装置,其特征在于,所述储存空间包括示波器的存储空间以及与所述示波器的输出端相连接的终端设备的存储空间;
    所述数据保存模块具体用于:
    当所述被测数据的数据量大于所述示波器的存储空间的预设的数据量阈值时,将所述被测数据保存于所述终端设备的存储空间。
  22. 根据权利要求21所述的装置,其特征在于,所述终端设备为以下任意一种:个人计算机、平板、智能手机。
  23. 一种示波器,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-11任一项所述的方法。
PCT/CN2019/070478 2018-01-05 2019-01-04 示波器数据处理方法、装置及示波器 WO2019134685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/920,824 US20200348342A1 (en) 2018-01-05 2020-07-06 Method and apparatus for processing oscilloscope data and oscilloscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810010432.9A CN108107250B (zh) 2018-01-05 2018-01-05 一种示波器数据处理方法、装置及示波器
CN201810010432.9 2018-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/920,824 Continuation US20200348342A1 (en) 2018-01-05 2020-07-06 Method and apparatus for processing oscilloscope data and oscilloscope

Publications (1)

Publication Number Publication Date
WO2019134685A1 true WO2019134685A1 (zh) 2019-07-11

Family

ID=62219763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070478 WO2019134685A1 (zh) 2018-01-05 2019-01-04 示波器数据处理方法、装置及示波器

Country Status (3)

Country Link
US (1) US20200348342A1 (zh)
CN (1) CN108107250B (zh)
WO (1) WO2019134685A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107250B (zh) * 2018-01-05 2020-10-09 深圳市道通科技股份有限公司 一种示波器数据处理方法、装置及示波器
CN112362939A (zh) * 2020-11-17 2021-02-12 深圳市道通科技股份有限公司 一种信号记录方法、装置、下位机、上位机及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271580A (ja) * 2006-03-31 2007-10-18 Toshiba Corp デジタルオシロスコープ、信号表示方法及び信号表示プログラム
CN101666820A (zh) * 2009-07-21 2010-03-10 秦轲 数字示波器及其数据处理方法
CN104280586A (zh) * 2014-09-04 2015-01-14 安徽华盛科技控股股份有限公司 一种具有存储功能的示波器
CN205749621U (zh) * 2016-06-12 2016-11-30 华东师范大学 一种频谱分析及波形显示的数字示波器
CN106443115A (zh) * 2016-09-26 2017-02-22 广州致远电子股份有限公司 一种基于深度存储的示波器
CN107290577A (zh) * 2017-08-14 2017-10-24 武汉虹信通信技术有限责任公司 一种示波器数据处理系统及方法
CN108107250A (zh) * 2018-01-05 2018-06-01 深圳市道通科技股份有限公司 一种示波器数据处理方法、装置及示波器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2938113Y (zh) * 2006-08-24 2007-08-22 王悦 一种数字示波器
CN101488167A (zh) * 2009-01-22 2009-07-22 清华大学 图像导入、处理、存储与显示装置及其方法
CN101706363A (zh) * 2009-11-20 2010-05-12 哈尔滨工程大学 自动同步超越离合器状态监测记录仪
TWI452465B (zh) * 2010-08-19 2014-09-11 Zeroplus Technology Co Ltd Method of arranging and processing the electronic measuring device and its tandem parallel data
CN102605860B (zh) * 2011-01-25 2014-04-16 上海市建筑装饰工程有限公司 木梁柱荷载传递变形网格化信息监控方法
CN102184624B (zh) * 2011-03-11 2012-08-15 湖南五舟检测科技有限公司 振动数据无线同步采样方法及采样系统
CN106020777B (zh) * 2016-04-29 2018-08-07 杭州华橙网络科技有限公司 一种数据处理方法、装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271580A (ja) * 2006-03-31 2007-10-18 Toshiba Corp デジタルオシロスコープ、信号表示方法及び信号表示プログラム
CN101666820A (zh) * 2009-07-21 2010-03-10 秦轲 数字示波器及其数据处理方法
CN104280586A (zh) * 2014-09-04 2015-01-14 安徽华盛科技控股股份有限公司 一种具有存储功能的示波器
CN205749621U (zh) * 2016-06-12 2016-11-30 华东师范大学 一种频谱分析及波形显示的数字示波器
CN106443115A (zh) * 2016-09-26 2017-02-22 广州致远电子股份有限公司 一种基于深度存储的示波器
CN107290577A (zh) * 2017-08-14 2017-10-24 武汉虹信通信技术有限责任公司 一种示波器数据处理系统及方法
CN108107250A (zh) * 2018-01-05 2018-06-01 深圳市道通科技股份有限公司 一种示波器数据处理方法、装置及示波器

Also Published As

Publication number Publication date
CN108107250A (zh) 2018-06-01
US20200348342A1 (en) 2020-11-05
CN108107250B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
US11280809B2 (en) Method and apparatus for processing oscilloscope signal and oscilloscope
CN106802935A (zh) 一种页面流畅度的测试方法和装置
CN109459130B (zh) 一种基于智能手机的建筑结构舒适度测试系统
CN104834597A (zh) 应用响应时长的测量方法和系统
WO2019134685A1 (zh) 示波器数据处理方法、装置及示波器
US11595591B2 (en) Method and apparatus for triggering special image effects and hardware device
JP3359251B2 (ja) リアルタイム信号アナライザ
US20230032417A1 (en) Game special effect generation method and apparatus, and storage medium and electronic device
JP2010175557A (ja) 測定機器
CN115047022B (zh) 一种热扩散过程的时域重构方法及系统
US20230336878A1 (en) Photographing mode determination method and apparatus, and electronic device and storage medium
CN109445882B (zh) 一种频谱三维显示装置、方法及计算机可读存储介质
CN110069641B (zh) 图像处理方法、装置和电子设备
CN111598813B (zh) 人脸图像处理方法、装置、电子设备及计算机可读介质
WO2023231918A1 (zh) 图像处理方法、装置、电子设备及存储介质
CN116723353A (zh) 一种视频监控区域配置方法、系统、装置及可读存储介质
CN107450774B (zh) 触控检测方法、电路、存储介质、处理器和终端
JP5299511B2 (ja) 輪郭抽出装置およびプログラム
CN111510714B (zh) 一种重显率确定方法、装置、终端及存储介质
CN112666561B (zh) 超声扫查系统、设备、方法及终端
CN114071127A (zh) 直播视频延迟的测试方法、装置、存储介质及电子设备
CN106846433B (zh) 一种信号变化图绘制方法及装置,电子设备
CN204971214U (zh) 心脑血管疾病在线实时分析仪
JP6290743B2 (ja) 情報処理装置及びプログラム
CN210138132U (zh) 一种视力检测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19736102

Country of ref document: EP

Kind code of ref document: A1