WO2019134563A1 - 用于终端设备定位的方法、装置及系统 - Google Patents

用于终端设备定位的方法、装置及系统 Download PDF

Info

Publication number
WO2019134563A1
WO2019134563A1 PCT/CN2018/123748 CN2018123748W WO2019134563A1 WO 2019134563 A1 WO2019134563 A1 WO 2019134563A1 CN 2018123748 W CN2018123748 W CN 2018123748W WO 2019134563 A1 WO2019134563 A1 WO 2019134563A1
Authority
WO
WIPO (PCT)
Prior art keywords
function entity
positioning
measurement
measurement data
terminal device
Prior art date
Application number
PCT/CN2018/123748
Other languages
English (en)
French (fr)
Inventor
史桢宇
王艺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18898228.4A priority Critical patent/EP3726863B1/en
Publication of WO2019134563A1 publication Critical patent/WO2019134563A1/zh
Priority to US16/918,584 priority patent/US11125849B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0278Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves involving statistical or probabilistic considerations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0254Channel estimation channel estimation algorithms using neural network algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a positioning technology of a terminal device in a communication system.
  • LTE Long Term Evolution
  • the main challenge of positioning technology in wireless networks is brought about by the mobility of users and changes in the external environment.
  • the quality of the positioning technology is mainly measured by the accuracy of positioning and the time of positioning calculation.
  • the Global Positioning System (GPS) system is currently the most widely used technology, but GPS has high positioning accuracy mainly in outdoor and suburban areas, but in indoor and urban scenes, GPS positioning accuracy is Not very ideal. In current wireless communication systems, more than half of mobile devices are indoors.
  • TOA Time of Arrival
  • OOA time difference of arrival
  • UDOA Uplink Time Difference of Arrival
  • DOA Direction of Arrival
  • AOA Angle of Arrival
  • the positioning accuracy can only reach the positioning accuracy of several tens of meters, and it is difficult to achieve higher precision requirements, which can be developed along with the network business.
  • the accuracy of user positioning needs to be improved.
  • the specific positioning scenes such as the positioning information based on the distance information and the direction (angle) information
  • a specific positioning reference signal Positioning Reference Signal, PRS for short
  • TOA Time of Arrival
  • TDOA Time Difference of Arrival
  • DOA Degree of Arrival
  • the TOA and the TDOA represent the distances of the target users to different base stations, and the target users are located by the three-point positioning method when the position coordinates of the three base stations are known.
  • the DOA indicates the angle of the target user to the base station, and the user needs to be located by combining the distance from the target user to the base station.
  • the method needs to subdivide the entire area of the positioning into small areas, and then record the received signal strength of the user-specific reference signal received by multiple sensors in each area (received signal) Strength, referred to as RSS), generates a table.
  • RSS received signal Strength
  • the RSS received by the plurality of sensors can be compared with the previously generated table, and the corresponding area can be found by looking up the table.
  • the smaller the area is divided the higher the accuracy of positioning, but the higher the time and computational complexity of creating the table.
  • multiple base stations/sensors must be involved in the positioning, and additional reference signals must be transmitted.
  • the positioning measurement data used by the existing positioning technology mainly has a technical problem that the positioning accuracy cannot meet the requirements of the future network. Further, in the existing positioning technology, there are also multiple nodes involved in positioning, and there must be additional positioning reference signal transmission for positioning in the positioning process, which brings about a technical problem of limited positioning processing.
  • the present application provides a method, device, and system for positioning a terminal device, so as to achieve high-precision, low-limit terminal device positioning by adopting more effective measurement data.
  • a method and apparatus for terminal device location is provided.
  • the method is applied to a terminal device, and the positioning of the terminal device is realized by adopting more effective measurement data.
  • the method includes the terminal device transmitting measurement data to the location service function entity, where the measurement data is obtained according to the downlink reference signal received by the terminal device, where the measurement data is used by the location service function entity to perform location on the terminal device It is estimated that the measurement data includes at least one of the following: channel estimation, channel impulse response; positioning of the terminal device by using channel estimation and/or channel impulse response, which may not be limited to a scenario in which multiple access nodes are required,
  • the downlink reference signal in the application may be a downlink reference signal that is not specifically used for positioning, such as downlink reference signal for downlink channel quality measurement, downlink channel estimation, phase tracking, synchronization, and the like.
  • the Cell Reference Signal may be a dedicated additional positioning reference signal, such as a Positioning Reference Signal (PRS).
  • PRS Positioning Reference Signal
  • the present application is not limited to a specific positioning reference signal.
  • the positioning service function entity may perform location estimation on the terminal device to locate the terminal device based on the measurement data.
  • the terminal device sends the measurement data
  • the downlink reference signal has been received, and the measurement data is acquired according to the received downlink reference signal.
  • the terminal device can report the positioning data including the channel estimation and/or the channel impulse response obtained according to the downlink reference signal to the positioning service function entity for positioning of the terminal device, and can adopt more effective measurement data. Realize high-precision, low-limit terminal device positioning.
  • the terminal device further needs to enable the positioning service function entity to learn the positioning measurement capability supported by the terminal device, and adopt a corresponding positioning processing manner. Transmitting, by the terminal device, the second indication information to the positioning service function entity, to indicate a positioning measurement capability of the terminal device, such as whether to support positioning measurement based on the measurement data including channel estimation and/or channel impulse response the way.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the terminal device can support, so that the corresponding position estimation processing mode can be adopted, thereby effectively achieving positioning.
  • the terminal device before transmitting the measurement data, the terminal device further receives first indication information that is sent by the location service function entity and indicates measurement data that the terminal device needs to acquire, based on the indication. Information, the terminal device further acquires the corresponding measurement data and reports to the positioning service function entity.
  • the design enables the terminal device to perform the acquisition of the effective measurement data for the positioning according to the indication of the positioning service function entity, so that the terminal device cannot perform the positioning measurement and report the measurement data in a targeted environment in which multiple positioning measurement modes coexist.
  • the overhead of data processing and transmission enables the location service function entity to specify the location estimation processing method to be used, thereby effectively achieving positioning.
  • the terminal device further receives auxiliary information sent by the positioning service function entity before sending the measurement data, where the auxiliary information is used to assist the terminal device to receive the downlink reference signal.
  • the auxiliary information may be a cell number, configuration information of a downlink reference signal, etc., so as to assist the UE to know which base station or downlinks the downlink reference signal is sent, where the downlink reference signal is received, and the configuration of the following reference signal Information, etc., even if multiple access nodes are used for UE positioning, the UE can quickly determine the reception configuration of the downlink reference signal.
  • the auxiliary information may be sent by the positioning service function entity in the same message that the first indication information is carried, or carried in different messages by the positioning service function entity.
  • a measuring device for positioning of a terminal device which device can implement a corresponding positioning method in the first aspect.
  • the device is defined in a functional form, and may be a measurement function entity.
  • the specific implementation may be a measurement device, for example, a terminal device or a chip or a function module in the terminal device, and may be implemented by software, hardware, or The above method is implemented by executing corresponding software in hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may comprise a transmitting unit, wherein the transmitting unit is configured to send the measurement data to the positioning service function entity.
  • the device may further include a processing unit, where the processing unit is configured to acquire the measurement data to be sent; further the device may further include a receiving unit, configured to receive the downlink reference signal and/or the location service function entity Message.
  • a method and apparatus for terminal device location is provided.
  • the method is applied to a measuring device for terminal device positioning, and the positioning of the corresponding terminal device in the network is realized by adopting more effective measurement data.
  • the method includes the measurement device transmitting the measurement data to the positioning service function entity, the measurement data being obtained according to the uplink reference signal sent by the terminal device to be located received by the measurement device, the measurement data being used by the positioning service function entity pair
  • the terminal device performs location estimation, where the measurement data includes at least one of the following: channel estimation, channel impulse response, and location of the terminal device by using channel estimation and/or channel impulse response, which may not be limited to multiple access
  • the scenario of the node can also be implemented under the single access node.
  • the uplink reference signal may be an uplink reference signal that is not specifically used for positioning, such as an uplink reference for uplink channel quality measurement, uplink channel estimation, and phase tracking.
  • the signal such as a Sounding Reference Signal (SRS), may also be an uplink tracking reference signal sent by an inactive UE in a user-centered network, or may be a dedicated uplink positioning reference signal; Can also be a dedicated additional positioning reference signal, this application does not In specific positioning reference signals.
  • SRS Sounding Reference Signal
  • the positioning service function entity may perform location estimation on the terminal device to locate the terminal device based on the measurement data.
  • the measurement device has received the uplink reference signal and acquired the measurement data to be sent according to the received uplink reference signal.
  • the measurement device for terminal device positioning can be used for the location of the terminal device by reporting the measurement data including the channel estimation and/or the channel impulse response obtained based on the uplink reference signal to the positioning service function entity. More effective measurement data to achieve high-precision, low-limit terminal device positioning.
  • the measuring device further needs to make the positioning service function entity know the measurement capability supported by the measuring device, and adopt a corresponding positioning processing manner. Transmitting, by the measuring device or its corresponding capability information management device, the second indication information to the positioning service function entity to indicate a positioning measurement capability of the measuring device, such as whether to support based on including channel estimation and/or channel rushing A method of locating the measurement data of the response.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the measurement device can support, so that the corresponding position estimation processing mode can be adopted, thereby effectively achieving positioning.
  • the measuring device before the transmitting the measurement data, the measuring device further receives first indication information sent by the positioning service function entity to indicate measurement data to be acquired by the measurement device, based on the indication. Information, the measurement device in turn acquires the measurement data and reports it to the location service function entity.
  • the positioning service function entity needs to select one or more measuring devices to be used, and sends the first indication information to the selected measuring device.
  • the design enables the measuring device to perform the acquisition of the effective measurement data for positioning according to the indication of the positioning service function entity, so that the measurement device cannot perform the positioning measurement and report the measurement data in a targeted manner in a plurality of positioning measurement modes.
  • the overhead of data processing and transmission enables the location service function entity to specify the location estimation processing method to be used, thereby effectively achieving positioning.
  • the measurement function entity further receives auxiliary information sent by the positioning service function entity before transmitting the measurement data.
  • auxiliary information is used by the auxiliary measuring device to receive the uplink reference signal to obtain measurement data, where the auxiliary information may be a cell number where the terminal device to be located is located, configuration information of an uplink reference signal, etc., so as to assist the measuring device to know the uplink reference.
  • the auxiliary information may be sent by the positioning service function entity in the same message that the first indication information is carried, or carried in different messages by the positioning service function entity.
  • a measuring device for positioning of a terminal device which device can implement a corresponding positioning method in the second aspect.
  • the device is defined in a functional form, and may be a measurement function entity.
  • the specific implementation may be a measurement device, for example, it may be an access node device, or may be a chip or a function module in the access node device, and may be through software.
  • the above method is implemented by hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the second aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may comprise a transmitting unit, wherein the transmitting unit is configured to send the measurement data to the positioning service function entity; optionally, the device may further comprise a processing unit, the processing unit is configured to: Obtaining the measurement data to be sent; further the apparatus may further comprise a receiving unit, configured to receive an uplink reference signal and/or a message sent by the positioning service function entity.
  • a method and apparatus for terminal device location is provided.
  • the method can be applied to a positioning service function entity such as a positioning service center and an Enhanced Serving Mobile Location Centre (E-SMLC), by adopting more effective measurement data.
  • a positioning service function entity such as a positioning service center and an Enhanced Serving Mobile Location Centre (E-SMLC)
  • E-SMLC Enhanced Serving Mobile Location Centre
  • the method includes the positioning service function entity receiving measurement data sent by the positioning measurement function entity for the terminal device to be located, and the measurement data is used by the positioning service function entity to perform location estimation on the terminal device.
  • the measurement data can be obtained and reported by the positioning device to be located, or can be obtained and reported by the measurement device on the access side, so the positioning measurement function entity includes the terminal device to be located and/or The measurement device on the access side; the measurement data may be obtained based on a downlink reference signal received by the terminal device and/or an uplink reference signal sent by the terminal device to be located received by the measurement device.
  • the measurement data includes at least one of the following: a channel estimate, a channel impulse response.
  • the positioning service function entity obtains the measurement data including the channel estimation and/or the channel impulse response
  • the location of the terminal device can be estimated according to the measurement data.
  • the positioning service function entity pre-establishes a model of the correspondence between the measurement data and the location of the terminal device.
  • the positioning service function entity may perform location estimation of the terminal device based on the model.
  • the positioning service function entity receives the measurement data including the channel estimation and/or the channel impulse response obtained based on the uplink and/or downlink reference signals reported by the positioning measurement function entity, and uses the measurement data for the terminal device. Positioning enables high-precision, low-limit terminal device positioning by using more efficient measurement data.
  • the positioning service function entity also needs to know the measurement capability supported by the positioning measurement function entity to adopt the corresponding positioning processing mode.
  • the positioning service function entity receives the second indication information sent by the positioning measurement function entity or its corresponding capability information management apparatus to indicate the positioning measurement capability of the positioning measurement function entity, such as whether to support based on the channel estimation and/or Or a method of locating the measurement data of the channel impulse response.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the positioning measurement function entity can support, so that the corresponding position estimation processing mode can be adopted, thereby effectively achieving positioning.
  • the positioning service function entity further sends, to the positioning measurement function entity, first indication information indicating measurement data to be acquired by the measurement device, before receiving the measurement data, based on the indication information, The positioning measurement function entity then acquires the measurement data and reports it to the location service function entity.
  • the positioning service function entity needs to select one or more positioning measurement function entities to be used, and sends the first indication to the selected positioning measurement function entity. information.
  • the design enables the positioning measurement function entity to perform the acquisition of the effective measurement data for the positioning according to the indication of the positioning service function entity, so that the positioning measurement function entity cannot perform the positioning measurement in the environment where multiple positioning measurement modes coexist.
  • the reporting data is reported, which brings the overhead of data processing and transmission, so that the positioning service function entity can clearly determine the location estimation processing method to be used, thereby effectively achieving positioning.
  • the positioning service function entity sends the transmitted auxiliary information to the positioning measurement function entity before receiving the measurement data. It can be understood that when there is more than one positioning measurement function entity in the system, the positioning service function entity needs to select one or more positioning measurement function entities to be used, and sends the auxiliary information to the selected positioning measurement function entity. .
  • the auxiliary information is used to assist the positioning measurement function entity to receive the uplink and/or downlink reference signals to obtain measurement data, where the auxiliary information may be a cell number, configuration information of an uplink reference signal, etc., which can assist the positioning measurement function entity to know Which object is sent by the uplink/downlink reference signal, where is the reference signal received, and so on. It can be understood that the auxiliary information may be sent by the positioning service function entity in the same message that the first indication information is carried, or carried in different messages by the positioning service function entity.
  • a positioning device for positioning of a terminal device which device can implement a corresponding positioning method in the third aspect.
  • the device is defined in a functional form, and may be a location service function entity.
  • the specific implementation may be a positioning device or a location server, or may be a chip or a function module in the location service function entity, and may be implemented by software, hardware, or The hardware executes the corresponding software to implement the above method.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the third aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may comprise a receiving unit, wherein the receiving unit is configured to receive the measurement data sent by the positioning measurement function entity for the terminal device.
  • the device may further include a processing unit, configured to perform location estimation of the terminal device according to the measurement data; and further, the device may further include a sending unit, configured to send a message to the positioning measurement function entity.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
  • the present application also provides a chip for terminal device location in which instructions are stored that, when run on a communication device, cause the communication device to perform the corresponding methods described in the various aspects above.
  • the present application also provides an apparatus for terminal device positioning, comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the computer program to implement the above aspects The corresponding method described.
  • the present application also provides an apparatus for terminal device positioning, comprising a processor for coupling with a memory and reading instructions in the memory, and implementing the corresponding method described in the above aspects in accordance with the instructions.
  • a processor for coupling with a memory and reading instructions in the memory, and implementing the corresponding method described in the above aspects in accordance with the instructions.
  • the memory can be integrated into the process or can be independent of the processor.
  • the present application also provides an apparatus for terminal location, comprising a processor that implements a corresponding method as described in the above aspects when executing a computer program.
  • the present application further provides a system for terminal positioning, comprising the positioning service function entity provided by the above third aspect, and the measuring device provided by the first aspect and/or the measuring device provided by the second aspect, the system components are respectively implemented Corresponding methods described in the above aspects.
  • 1 is a network system architecture involved in the present application
  • FIG. 2 is a flow chart of a first embodiment of a method for positioning a terminal device provided by the present application
  • FIG. 3 is a schematic diagram of a neural network that can be used in the present application to establish a model for mapping a measurement data to a location of a terminal device
  • FIG. 4 is a flowchart of a second embodiment of a method for positioning a terminal device provided by the present application.
  • FIG. 5 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by a terminal device in the present application
  • FIG. 6 is a flowchart of another first embodiment of a method for positioning a terminal device provided by the present application.
  • FIG. 7 is a flow chart of another second embodiment of a method for positioning a terminal device provided by the present application.
  • FIG. 8 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by a measurement function entity on an access side in the present application
  • FIG. 9 is a flow chart of another embodiment of a method for positioning a terminal device in the present application.
  • FIG. 10 is a schematic structural diagram of a simplified terminal device provided by the present application.
  • FIG. 11 is a schematic structural diagram of a simplified network device provided by the present application.
  • FIG. 12 is a schematic structural diagram of another simplified network device provided by the present application.
  • Multiple in this application means two or more.
  • the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second”, and the like in this application are used to distinguish different objects, and do not limit the order of the different objects.
  • terminals may in some cases refer to mobile devices, such as mobile phones, personal digital assistants, handheld or laptop computers, and similar devices with telecommunications capabilities, in some cases.
  • the following may also be a wearable device or an in-vehicle device, etc., and include a terminal in a future 5G network or a terminal in a future evolved PLMN network.
  • Such a terminal may include a device and its associated removable storage module (such as, but not limited to, a Subscriber Identification Module (SIM) application, a Universal Subscriber Identification Module (USIM).
  • SIM Subscriber Identification Module
  • USIM Universal Subscriber Identification Module
  • terminal may include the device itself without such a module.
  • terminal may refer to a device that has similar capabilities but is not portable, such as a desktop computer, set top box, or network device.
  • terminal may also refer to any hardware or software component that can terminate a user's communication session.
  • terminal In addition, "user terminal”, “User Equipment”, “UE”, “site”, “station”, “STA”, “user equipment”, “user agent”, “User Agent”, “UA”, “user equipment” “,” “mobile device” and “device” are all alternative terms synonymous with “terminal” / "terminal device” herein.
  • the devices mentioned above are collectively referred to as user equipments or UEs.
  • the "access node” mentioned in the present application is a network device deployed in the radio access network to provide a wireless communication function for the terminal device, and can be responsible for scheduling and configuring downlink reference signals and other functions for the UE.
  • the access nodes may include various forms of macro base stations, micro base stations, relay stations, access points, etc., including as systems and devices that improve upon peer devices in conventional wireless telecommunications systems.
  • Such advanced or next generation equipment may be included in a Long Term Evolution (LTE) communication system, a 5G communication system, a future evolution system, or a plurality of communication convergence systems, for example, an evolved universal terrestrial radio access network node B (E- included in an LTE system).
  • LTE Long Term Evolution
  • 5G communication system a 5G communication system
  • future evolution system a future evolution system
  • E- evolved universal terrestrial radio access network node B
  • eNB UTRAN Node B
  • RTB Radio Access Node Node B
  • 5G new Radio Access Node B
  • the device name with the access node function may vary.
  • the above devices for providing wireless communication functions to the UE are collectively referred to as an access node.
  • the term "measurement function entity” refers to a functional entity that provides uplink positioning measurement for UE positioning on the access side, which may be a measurement function entity set on the access node, or may be independent of the access node setting. Measuring functional entities, one of which is implemented in a network that is user-centric and the network is followed by user movement.
  • the measurement function entity may be a measurement on a transmission and reception point (TRP) in the network.
  • TRP transmission and reception point
  • the entity names of the functional entity functions may be different in different systems and in different setting positions, such as “measurement unit”, “location measurement unit (LMU)", “measurement device” , “positioning measurement device”, “positioning measurement function entity” and so on.
  • the functional entities that provide the uplink positioning measurement for the UE positioning by the access side are collectively referred to as a measurement function entity.
  • location service function entity refers to a functional entity that provides a positioning service for a UE, which may be a service function entity or a high-level service function entity that is independent of an access node setting, or may be set on an access node.
  • the service function entity as long as the entity that implements the related function, belongs to the category of "location service function entity".
  • Entity names with location service function entity functions may be different in different systems and in different settings, such as "Location Business Service Center” and "Enhanced Serving Mobile Location Centre (E) -SMLC)" and so on.
  • E Enhanced Serving Mobile Location Centre
  • FIG. 1 shows a network system architecture involved in the present application, which is used for positioning of a UE, including a UE 100, at least one access node 200, and a positioning service function entity 300.
  • Two access nodes 200 are shown in FIG.
  • the system further includes at least one transmission and reception point 400 (TRP), and the transmission receiving point 400 has the same
  • TRP transmission and reception point 400
  • the area corresponds to some functions of the access node 200, and can monitor the uplink tracking reference signal sent by the inactive inactive user, and follow the user's movement to monitor the user.
  • the location service function entity 300 and the access node 200 provide a separate setting for facilitating the division of the function description, but this is not a limitation of the relationship, and the access node 200 can be configured with positioning.
  • the service function, the location service function entity 300 can also be set on the access node 200.
  • the location of the system for the UE 100 may be triggered by the UE 100 or may be triggered by the network side.
  • the public security system needs to track and locate certain users.
  • the data including the channel estimation and/or the channel impulse response may be obtained as the measured measurement data from the downlink reference signal sent by the access side, and the access side may also obtain the uplink reference signal sent by the UE 100.
  • the data of the channel estimation and/or the channel impulse response is used as the positioning measurement data.
  • the access side may be the access node 200 or the TRP 400 to receive the uplink reference signal to obtain the measurement data.
  • the UE 100 may be a UE that is not in the inactive state and is not connected to the access node 200 corresponding to the TRP 400.
  • the TRP 400 obtains the measurement data according to the uplink tracking reference signal sent by the monitored UE 100.
  • the measurement function entity of the UE 100 and/or the access side can report the measurement data obtained by the UE for positioning of the UE 100 to the location service function entity 300 (between the UE 100 and the location service function entity 300 through the access node 200) Make a communication connection).
  • the location service function entity 300 has previously established a correspondence model of the measurement data including the channel estimation and/or the channel impulse response with the location of the terminal device, and receives the report of the measurement function entity of the UE 100 and/or the access side. After the measurement data is described, the location service function entity 300 may estimate the location of the UE according to the measurement data according to the corresponding relationship model, and implement positioning of the UE.
  • the calculation result of the location estimation may be more accurate, wherein there may be two types of measurement data: one is that the measurement data is determined by the UE and multiple measurement functions.
  • the uplink reference signal/downlink reference signal between the entities is obtained, and the second is that the measurement data is obtained by an uplink reference signal and a downlink reference signal between the UE and the at least one measurement function entity.
  • FIG. 1 is only an example of a network system architecture involved in the present application, and the application is not limited thereto.
  • the present application can also be applied in a system of IEEE 802.11, by using an access point (Access Point, AP for short) as an positioning measurement function entity or a measurement point and station (Station, referred to as STA) corresponding to an AP.
  • the measurement data including the channel estimation and/or the channel impulse response obtained between the uplink and/or downlink reference signals is used for STA positioning to improve the positioning accuracy of the indoor wireless fidelity (WiFi).
  • WiFi indoor wireless fidelity
  • FIG. 2 is a flowchart of a first embodiment of a method for positioning a terminal device according to an embodiment of the present application.
  • the present embodiment and the subsequent embodiments are all described from the perspective of interaction, but the improvement in the non-limiting system is that the steps on each side of the interaction must be performed together, and the technology proposed by the present application The solution has improvements on each side of the system.
  • the method includes:
  • the UE sends measurement data to the location service function entity, where the location service function entity receives the measurement data.
  • the measurement data is obtained before the UE sends the measurement data to the positioning service function entity.
  • the measurement data includes a channel estimation and/or a channel impulse response, which is according to the downlink reference signal received by the UE. obtain.
  • the channel estimation may further include the estimated corresponding channel coefficients, such as an angle of arrival AOA, a multipath number, and a delay extension channel characteristic parameter, where the channel estimation indicates a channel condition through which the signal is transmitted, and the signal is transmitted.
  • the phase and amplitude distortion will be caused by delay and multipath.
  • the channel condition through which the signal is transmitted that is, the channel estimation of the transmission channel, through the channel estimation, the receiver can obtain the impulse response of the channel, thereby providing the required cell state information for subsequent coherent demodulation (Cell State Information, referred to as CSI).
  • Cell State Information Cell State Information, referred to as CSI.
  • the channel impulse response describes the effect that the channel will have on the signal.
  • the signal is transmitted from the transmitter to the receiver through the channel.
  • the channel affects the signal so that the signal transmitted from the transmitter is different from the signal received at the receiver.
  • the channel impulse response describes such an effect, for example as a function of time, in particular, if a transient pulse (or "impulse") is transmitted from the transmitter, the channel impulse response will be the signal received at the receiver.
  • the receiver can determine the channel impulse response, then the receiver will typically be able to more accurately decode the symbols in the received signal because the receiver can consider the effect of the channel on the received signal.
  • the algorithm is divided into two types of methods: time domain and frequency domain.
  • the frequency domain method is mainly directed to a multi-carrier system; the time domain method is applicable to all single-carrier and multi-carrier systems, and estimates the fading coefficients of the multipath components in the fading channel by means of the statistical characteristics of the reference signal or the transmitted data. From the perspective of the prior information of the channel estimation algorithm, it can be divided into the following three categories: (1) estimation based on the reference signal.
  • the algorithm determines the parameters to be estimated according to certain estimation criteria, or performs step-by-step tracking and adjustment of the estimated values of the parameters to be estimated according to certain criteria. It is characterized by the need for reference signals, ie pilot or training sequences. Estimations based on training sequences and pilot sequences are collectively referred to as reference signal based estimation algorithms.
  • the channel estimation algorithm based on the training sequence is suitable for a system of burst transmission mode. The initial channel estimation is performed at the receiving end by transmitting a known training sequence, and when a useful information data is transmitted, a decision update is performed using the initial channel estimation result to complete real-time channel estimation. Pilot symbol based channel estimation is suitable for systems with continuous transmission.
  • the channel estimation result of the pilot position can be obtained; then, using the channel estimation result of the pilot position, the channel estimation result of the useful data position is obtained by interpolation, and the channel estimation is completed. .
  • Blind estimation The method of channel estimation is performed by using some features inherent in the modulated signal, which are independent of specific bearer information bits, or a method using decision feedback.
  • Semi-blind estimation A channel estimation method combining blind estimation with the advantages of both methods based on training sequence estimation. In general, methods for estimating by designing a training sequence or periodically inserting pilot symbols in data are more commonly used. The blind estimation and semi-blind channel estimation algorithms do not require or require a short training sequence, and the spectrum efficiency is high, so extensive research has been obtained.
  • the general blind estimation and semi-blind estimation methods have higher computational complexity, and there may be problems such as phase ambiguity (subspace-based method), error propagation (such as decision feedback method), slow convergence or local minimum. Longer observations, to a certain extent, limit their usefulness.
  • the present application uses channel estimation based on reference signals.
  • the UE may receive downlink reference signals sent by different network devices, for example, in a network that does not have a distributed transmission and reception point corresponding to the access node, the UE may receive the downlink sent by the access node.
  • the reference signal is in a network in which a distributed transmission receiving point TRP corresponding to an access node is set (one of which may be a user-centric network tracked by the user following the movement of the user), and the UE may receive the transmission and reception point TRP.
  • the downlink reference signal sent by the access node and the transmission receiving point TRP may be provided with an uplink positioning measurement unit.
  • the downlink reference signal for obtaining measurement data may have multiple designs, which may be non-specific additional use.
  • the downlink reference signal for positioning such as a downlink reference signal for downlink channel quality measurement, downlink channel estimation, phase tracking, synchronization, such as a cell reference signal (Cell Reference Signal, CRS for short); or a dedicated additional positioning reference Signal, such as Positioning Reference Signal (PRS).
  • the downlink reference signal may be corresponding to a single access node, or may be a corresponding multiple access node.
  • the positioning system of the present application does not have to use multiple access nodes, and the flexible select.
  • the UE performs positioning measurement by using the received downlink reference signal, and can obtain a channel estimation on each carrier.
  • the corresponding channel impulse response can be calculated by channel estimation on each carrier.
  • IFT Inverse Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the IDFT or IFFT of the L point is obtained, and the sequence of the same length L is obtained, that is, the channel impulse response.
  • the channel impulse response of length L may be filtered, and valid information is extracted and transmitted.
  • each channel estimation corresponds to one channel impulse response.
  • the UE may periodically report the measurement data to the positioning service function entity, and if the UE only supports positioning measurement based on channel estimation and/or channel impulse response, the default report includes channel estimation and/or channel impulse.
  • the measurement data of the response if the UE supports multiple positioning measurement modes including channel estimation and/or channel impulse response, the measurement data corresponding to the positioning measurement mode may be determined by default according to the preset priority condition, or all measurement modes may be reported.
  • Measuring data the present application relates to reporting of measurement data including channel estimates and/or channel impulse responses.
  • the UE may also report the corresponding measurement data including the channel estimation and/or the channel impulse response according to the indication of the network side, or the UE may start the positioning measurement according to the positioning request of the positioning service function entity.
  • the positioning service function entity estimates the location of the UE based on the received measurement data, and implements UE positioning.
  • a correspondence model between the measurement data and the UE location is first established, and the model can be trained in one-time training or periodically.
  • the machine learning algorithm is used to extract the feature information, and the relationship between the channel estimation, the channel impulse response and the user position is established.
  • the relationship model can be established by a neural network training method, and a large amount of input data and output data are learned through the neural network, and the input and output data are classified and summarized, and the machine learning algorithm is used to find the input and output. contact.
  • the output can be obtained from the trained neural network.
  • the output can be seen as a function of the input and weight coefficients.
  • the main purpose of multiple training is to find the appropriate weight coefficients so that the difference between the resulting output and the known output is minimal. Then the weight coefficient is the corresponding trained neural network model, and the process of continuously adjusting the weight coefficient is also an iterative process, and the neural network technology is not described here in the prior art.
  • This training phase is the process of machine learning, and the trained neural network can be used to obtain the output data from the new input data.
  • FIG. 3 shows a measurement that can be used in the present application.
  • a neural network example diagram of a data and terminal device location relationship model the neural network is divided into three layers, an input layer 31, a hidden layer 32, and an output layer 33, each layer having a certain number of neurons, which are nodes, wherein
  • the example shows that the input layer 31 has 4 neurons, the hidden layer 32 has 6 neurons, and the output layer 33 has 3 neurons.
  • the positioning is performed based on the channel estimation, according to the four inputs corresponding to the channel estimation, and the three outputs corresponding to the UE coordinates (ie, the corresponding three-dimensional coordinates), refer to the three outputs corresponding to the known UE coordinates.
  • Training using the trained model, in the positioning process, for the access node/transmission receiving point used in the model training, obtain 4 inputs corresponding to the downlink channel estimation between the UE and the UE, and input the same to the
  • the three outputs corresponding to the UE location that is, the three-dimensional coordinates of the UE, are finally obtained, and the positioning of the UE is implemented.
  • the model is only an example.
  • the input layer is not limited to four input neurons, and the hidden layer may have more than one layer and not limited to six neurons, and the output layer neurons may be The number of acquired neurons is adjusted according to the acquired location information of the UE. According to the need for positioning of the UE, if the three-dimensional coordinates of the UE are to be obtained for three-dimensional positioning, three output neurons may be selected, and if it is a two-dimensional positioning, the number of neurons may be selected. 2 output neurons.
  • the first is channel estimation
  • the second channel impulse response the third is channel estimation plus channel impulse response.
  • the above example is an example of 4 inputs, and the number of the input neurons is not limited to 4, and different number of inputs may be selected according to the situation during training.
  • N base stations communicate with one UE. If each base station has M subcarriers, NM channel estimates can be obtained for each location. If the channel estimation is input, since the channel estimation is complex, it is divided into real and virtual. In the two parts, the input neurons have 2NM, and the output neurons are 3, representing the three-dimensional coordinates of the target user.
  • the input is a channel impulse response
  • the input neurons are also 2NK
  • the output neurons are also three, indicating the target user. Three-dimensional coordinates. If the input channel estimation plus channel impulse response, then the input neurons are 2NM + 2NK, and the output neurons are also three, representing the three-dimensional coordinates of the target user.
  • the manner of establishing the input and output relationship model through the neural network is only an example, and is not limited to the present application.
  • the present application may also adopt other modes of input and output correspondence model establishment, for example, an algorithm capable of learning and training through feedback. Can be used in this application.
  • LTE existing AOA, TOA-based Weighted Least Squares (WLS) positioning accuracy is about 30m, using channel estimation for positioning can reach a positioning accuracy of about 11m, using channel impulse response The positioning accuracy can reach about 8m, and the measurement data of the present application is used for positioning, which is more than double the gain of the prior art.
  • WLS Weighted Least Squares
  • a method for locating a terminal device in the embodiment of the present application by using the UE to report the measurement data including the channel estimation and/or the channel impulse response to the interaction process of the positioning service function entity, realizing the positioning of the UE with high precision and low locality. .
  • FIG. 4 is a flowchart of a second embodiment of a method for positioning a terminal device according to the present application.
  • the difference between this embodiment and the first embodiment is that, in this embodiment, the process of the interaction measurement requirement indication information between the UE and the location service function entity is added, and what measurement data obtained by the UE is according to the indication of the location service function entity, and The same or similar content of the first embodiment will not be described in detail in this embodiment.
  • the method includes:
  • the positioning service function entity sends measurement requirement indication information indicating measurement data that the UE needs to acquire to the UE, and the UE receives the indication information;
  • the positioning service function entity may instruct the UE to obtain corresponding measurement data for effective positioning according to the selected positioning processing manner.
  • the positioning service function entity may also instruct the UE to acquire measurement data corresponding to one or more positioning modes that need to be used.
  • the indication information may be carried in a known message or in a new message, and may be indicated by a corresponding bit, for example, when the bit corresponding to the measurement data A takes a value of 1, it indicates that the UE needs to be acquired and reported.
  • the measurement data A, the value 0 indicates that the measurement data A is not required to be acquired, or the value 0 needs to obtain the measurement data A, and the value 1 indicates that the acquisition is not required. This example does not limit the application.
  • the positioning service function entity further sends auxiliary information to the UE, which is used to assist the positioning measurement of the UE, and the auxiliary information may include a cell number, configuration information of the downlink reference signal, etc., so as to assist the UE to know which or which downlink reference signal is
  • the base station sends, where the downlink reference signal is received, and the configuration information of the reference signal in the following line. Even if the multiple access nodes are used for UE positioning, the UE can quickly determine the receiving configuration of the downlink reference signal. If the UE has accessed an access node and performs positioning measurement based on the single access node and the configuration information of the downlink reference signal is known, the positioning service function entity may not be required to send the auxiliary information.
  • auxiliary information and the indication information may be carried in the same message, or carried in different messages.
  • the UE receives the downlink reference signal sent by the access node/transmission receiving point.
  • the UE After receiving the measurement request indication sent by the location service function entity, the UE performs corresponding measurement, and the UE obtains the measurement data corresponding to the measurement request indication by receiving the downlink reference signal, and if the location service function entity sends the auxiliary information, Then, the UE receives the downlink reference signal according to the auxiliary information.
  • the UE receives the downlink reference signal, and may receive the downlink reference signal from the access node. If the network has the transmission receiving point corresponding to the access node that is set by the access node, the UE may also receive the downlink reference signal from the corresponding transmission receiving point.
  • the measurement function entity of the access side for uplink positioning measurement may be set thereon, or the measurement function entity may not be provided.
  • the UE obtains the measurement data according to the received downlink reference signal according to the indication information.
  • the UE obtains measurement data corresponding to the measurement request indication according to the received downlink reference signal according to the measurement request indication sent by the positioning service function entity, and if the channel estimation and/or channel impulse response needs to be measured, the UE performs corresponding measurement to obtain Channel estimation and/or channel impulse response.
  • the UE sends the obtained measurement data to the positioning service function entity, and the positioning service function entity receives the measurement data.
  • the UE performs corresponding measurement according to the indication of the location service function entity, obtains corresponding measurement data, and feeds back to the location service function entity.
  • the positioning service function entity estimates the location of the UE according to the received measurement data, and implements positioning of the UE.
  • the location service function entity may calculate the location coordinates of the UE by inputting the received measurement data including the channel estimation and/or the channel impulse response according to the pre-established trained model.
  • the interaction process of the measurement request indication information is sent to the UE by the positioning service function entity in the scenario that the UE supports multiple measurement modes, so that the UE can perform positioning measurement and report measurement data to the location service.
  • Functional entity thereby realizing the effective estimation of the location of the UE by the positioning service function entity, and also reducing the UE's invalid location measurement and data transmission
  • the system default UE supports the positioning mode, and the positioning service function entity may select the default. All UEs have the ability to support positioning measurements based on channel estimation and/or channel impulse response. If, in the system, not all of the UEs have the capability to support positioning measurements based on channel estimation and/or channel impulse response, the positioning service function entity needs to determine the capability of the positioning measurements supported by the UE to determine whether to employ channel based estimation.
  • the positioning measurement method of the channel impulse response and/or channel impulse response locates the UE.
  • the positioning service function entity determines the capability of the positioning measurement supported by the UE, and can obtain the capability supported by the UE through the UE report, and determine whether the UE supports the positioning measurement based on the channel estimation and/or the channel impulse response, and the following is performed through a specific interaction process. description.
  • FIG. 5 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by a terminal device in the present application. As shown in FIG. 5, determining the positioning measurement capability supported by the UE includes the following steps:
  • the positioning service function entity sends a capability request of the UE to the UE.
  • the step is an optional step. It can be understood that the location service function entity determines the location measurement capability supported by the UE, and can be initiated by the sending capability request when needed, indicating the UE feedback, or can be initiated by the UE, for example, reporting and occurring when entering the network. Dynamic reporting when changing, can also be reported periodically. By sending a capability request by the location service function entity, the UE feedback can be triggered as needed, which reduces the overhead caused by frequent UE reporting.
  • the capability request is sent to the UE, optionally, it may be carried in an existing message, or may be carried in a new message.
  • steps S302 and S303 are not sequential steps in the process, and the two are two processing modes in which the UE has the positioning measurement capability in different situations.
  • the UE feeds back the capability supported by the UE to the positioning service function entity, wherein the UE is instructed to support measurement based on the channel estimation and/or the channel impulse response.
  • the UE may indicate whether the UE supports certain capabilities by using a specific field or a certain bit in the message fed back to the positioning service function entity. Optionally, if there are multiple positioning measurement modes in the system, the positioning mode is used. Corresponding indicator bits indicate whether the UE supports this capability by using value information such as 0, 1.
  • the UE if the capability of detecting the channel estimation and/or the channel impulse response is detected, after receiving the request, adding 1-bit information to the related capability information in the message, if the bit is taken A value of 1 indicates that the UE is capable of detecting a channel estimate and/or a channel impulse response. For example, this is not a limitation of the present application, and the value of the bit is 0 to indicate that the UE supports the capability.
  • the UE feeds back the capability supported by the UE to the positioning service function entity, wherein the UE is instructed not to support measurement based on the channel estimation and/or the channel impulse response.
  • the UE may indicate whether the UE supports certain capabilities by using a specific field or a certain bit in the message fed back to the positioning service function entity. Optionally, if there are multiple positioning measurement modes in the system, the positioning mode is used. Corresponding indicator bits indicate whether the UE supports this capability by using value information such as 0, 1.
  • the UE if the capability of detecting the channel estimation and/or the channel impulse response is not provided, after receiving the request, adding 1-bit information, such as the bit, to the related capability information in the message.
  • a value of 0 indicates that the UE is unable to detect the channel estimate and/or the channel impulse response.
  • This example is not a limitation of the present application, and the value of the bit may be used to indicate that the UE does not support the capability.
  • the positioning service function entity determines the capability of the UE according to the received UE capability feedback information.
  • the positioning service function entity can determine whether the UE supports the positioning measurement based on the channel estimation and/or the channel impulse response according to the UE capability feedback information, and further determines whether the location estimation of the UE is implemented in this manner.
  • the location estimation of the UE may be implemented in the manner of the foregoing embodiment 1 and the second embodiment: in combination with the first embodiment, the location service function entity may report the capability of reporting the UE before reporting the measurement data in step S101.
  • the information determining the positioning measurement capability of the UE may also determine the positioning measurement capability of the UE and simultaneously locate the UE when the UE reports the positioning measurement capability together with the related measurement data.
  • the positioning service function entity may be in the step S201.
  • the positioning measurement capability of the UE is determined before the measurement request indication information is sent, and the measurement requirement indication information is sent to the UE according to the positioning measurement capability of the UE.
  • the determination of the UE capability is not limited to the foregoing, and is determined by the UE report.
  • the capability supported by the UE may also be obtained by the management party (for example, the device capability registration function entity).
  • the location service function entity may choose to interact with the management to determine the location capability supported by the UE.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the UE can support, thereby effectively achieving positioning.
  • FIG. 6 is a flowchart of another first embodiment of a method for positioning a terminal device according to an embodiment of the present application.
  • the present embodiment and the subsequent embodiments are generally described from the perspective of interaction, but the steps of the interaction sides in the system must not be performed together.
  • the technical solution proposed by the present application Improvements are made on each side of the system. The explanations and details of the same contents as those of the foregoing embodiments are not disclosed and described herein.
  • the method includes:
  • the measurement function entity on the access side sends measurement data to the location service function entity, and the location service function entity receives the measurement data.
  • the measurement function entity may be set on the access node or may be separately configured from the access node, where one form may be set at a transmission receiving point corresponding to the access node. It can be understood that the measurement function has obtained the measurement data before sending the measurement data to the positioning service function entity.
  • the measurement function entity can perform positioning measurement according to an uplink reference signal sent by the UE, and obtain measurement data, specifically including a channel estimation and/or a channel impulse response.
  • the uplink signal sent by the UE may be an uplink reference signal sent by the activated UE for non-specific additional positioning, such as an uplink reference signal for uplink channel quality measurement, uplink channel estimation, phase tracking, etc., such as a channel sounding reference signal.
  • Sounding Reference Signal referred to as SRS
  • the channel estimation on each carrier can be calculated, and then the corresponding channel impulse response can be calculated.
  • the channel estimation and the channel impulse response refer to the first embodiment, and details are not described herein again.
  • the measurement function entity may periodically report the measurement data to a positioning service function entity, and if the measurement function entity only supports positioning measurement based on channel estimation and/or channel impulse response, the default report includes Measurement data of the channel estimation and/or channel impulse response, if the measurement function entity supports multiple positioning measurement methods including channel estimation and/or channel impulse response, the positioning measurement determined according to the preset priority condition may be determined by default
  • the measurement data corresponding to the mode, or the measurement data corresponding to all measurement modes, in the present application relates to the measurement data including the channel estimation and/or the channel impulse response.
  • the measurement function entity may also report corresponding measurement data including channel estimation and/or channel impulse response according to the indication of the network side.
  • the positioning service function entity estimates the location of the UE based on the received measurement data, and implements UE positioning.
  • the corresponding relationship between the measurement data and the location of the UE is first established.
  • the positioning service function entity obtains the measurement data obtained by performing positioning measurement according to the uplink reference signal sent by the UE, and the pre-established measurement data and the UE location correspondence model are obtained according to the measurement data.
  • the relevant output of the UE location implements UE positioning.
  • the measurement function includes reporting the measurement data including the channel estimation and/or the channel impulse response to the interaction process of the positioning service function entity, thereby realizing the positioning of the UE with high precision and low locality.
  • FIG. 7 is a flowchart of another second embodiment of a method for positioning a terminal device according to the present application.
  • the difference between this embodiment and the third embodiment is that, in this embodiment, the flow of the interaction measurement requirement indication information between the measurement function entity of the access side and the location service function entity is added, and what measurement data is obtained by the measurement function entity is based on The description of the location service function entity is the same as or similar to that of the third embodiment in the embodiment.
  • the method includes:
  • the positioning service function entity selects a measurement function entity of the access side that performs UE positioning measurement
  • This step is an optional step. If the measurement function entity used for UE positioning in the system is not defaulted to some measurement function entity, such as an access node that provides services to the UE and the UE has access (the measurement function entity is set on it). And, or the measurement device with the access node distribution setting (on which the measurement function entity is disposed), the positioning service function entity also needs to select which one or which measurement function entities to use, and the specific selection method is as follows: Select an access node that can then choose to serve the user and its corresponding measurement function entity. If multiple stations are selected, in addition to the access node serving the user, the other access nodes that receive the strongest user signal and their corresponding measurement and measurement function entities are selected, and then the indication information is sent to the corresponding measurement function entity. . The selection method is not limited to the above examples.
  • the positioning service function entity sends, to the measurement function entity of the access side, measurement requirement indication information indicating measurement data to be acquired by the measurement function entity of the access side, and the measurement function entity of the access side receives the indication information;
  • the measurement function entity of the access side obtains the measurement data, and the positioning service function entity can instruct the measurement function entity of the access side to obtain the corresponding measurement data for the effective positioning of the UE according to the selected positioning processing manner.
  • the location service function entity may also instruct the measurement function entity on the access side to obtain measurement data corresponding to one or more positioning modes to be used.
  • the indication information may be carried in a known message or in a new message, and may be indicated by a corresponding bit, for example, when the bit corresponding to the measurement data A takes a value of 1, it indicates that the access side is required.
  • the measurement function entity obtains and reports the measurement data A.
  • the value 0 indicates that the measurement data A is not required to be obtained, or the value 0 needs to obtain the measurement data A. When the value 1 is used, the measurement is not required. This example does not constitute the application. limit.
  • the positioning service function entity further sends auxiliary information to the measurement function entity of the access side, which is used to assist the positioning measurement of the measurement function entity on the access side
  • the auxiliary information may include the cell number where the UE is located and the configuration of the uplink reference signal.
  • Information, etc. can assist the measurement function entity on the access side to know which UE the uplink reference signal is sent, and where the uplink reference signal is received, such as the configuration information of the uplink reference signal. If the UE to be located has access to the access node corresponding to a measurement function entity, and performs positioning measurement based on the single access node, and is known to perform positioning and uplink reference signal configuration information on the UE, No need to locate the service function entity to send auxiliary information.
  • auxiliary information and the indication information may be carried in the same message, or carried in different messages.
  • the measurement function entity on the access side receives the uplink reference signal sent by the UE.
  • the measurement function entity on the access side After receiving the measurement request indication sent by the location service function entity, the measurement function entity on the access side performs corresponding measurement, and the measurement function entity on the access side obtains the corresponding reference measurement by receiving the uplink reference signal sent by the UE to be located. The indicated measurement data is requested. If the positioning service function entity sends the auxiliary information, the measurement function entity on the access side receives the uplink reference signal according to the auxiliary information.
  • the measurement function entity of the access side obtains the measurement data according to the received uplink reference signal based on the indication information.
  • the measurement function entity of the access side obtains measurement data corresponding to the measurement request indication according to the received uplink reference signal based on the measurement requirement indication sent by the location service function entity, and if it is required to measure the channel estimation and/or the channel impulse response, The measurement function entity on the access side performs corresponding measurements to obtain a channel estimate and/or a channel impulse response.
  • the measurement function entity on the access side sends the obtained measurement data to the location service function entity, and the location service function entity receives the measurement data.
  • the measurement function entity on the access side performs corresponding measurement according to the indication of the location service function entity, obtains corresponding measurement data, and feeds back to the location service function entity.
  • the positioning service function entity estimates the location of the UE according to the received measurement data, and implements positioning of the UE.
  • the location service function entity may calculate the location coordinates of the UE by inputting the received measurement data including the channel estimation and/or the channel impulse response according to the pre-established trained model.
  • the interaction process of the measurement request indication information is sent to the measurement function entity of the access side by the positioning service function entity in the scenario that the measurement function entity of the access side supports multiple measurement modes, so that the access side is
  • the measurement function entity can perform the positioning measurement and report the measurement data to the positioning service function entity, thereby realizing the effective estimation of the location of the UE by the positioning service function entity, and reducing the invalid positioning measurement and data transmission of the measurement function entity on the access side. s expenses.
  • the system default access side supports this.
  • the positioning service function entity can select the default measurement function entity of all access sides to have the capability of supporting positioning measurement based on channel estimation and/or channel impulse response. If in the system, not all of the measurement function entities of the access side have the ability to support positioning measurements based on channel estimation and/or channel impulse response, the positioning service function entity needs to determine the support of the measurement function entity on the access side. The ability to locate measurements to determine whether to locate the UE using a location measurement based on channel estimation and/or channel impulse response. The following describes the specific interaction process.
  • the measurement function entity of the access side may be set on the access node or set on the device that is distributed with the corresponding access node.
  • One implementation may be set on the transmission receiving point TRP corresponding to the access node.
  • the location service function entity determines the location capability supported by the measurement function entity on the access side, and the location service function entity can pass the measurement function entity for different setting mode scenarios of the measurement function entity, that is, whether or not it is set on the access node.
  • the corresponding access node ie, the access node that is the measurement function entity of the access side or the access node that manages the measurement function entity of the access side determines the positioning capability supported by the measurement function entity, and the following is the location service function entity.
  • FIG. 8 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by a measurement function entity on an access side in the present application. As shown in FIG. 8, determining the positioning measurement capability supported by the measurement function entity on the access side includes the following steps:
  • the positioning service function entity sends a positioning capability request to the access node corresponding to the measurement function entity of the access side.
  • the step is an optional step. It can be understood that the location service function entity determines the location measurement capability supported by the measurement function entity on the access side, and can initiate the request by sending the location capability request, indicating the feedback of the corresponding access node, or It is initiated by the corresponding access node, such as reporting when entering the network, dynamically reporting when there is a change, and reporting periodically. By sending a capability request by the location service function entity, the location capability feedback can be triggered as needed, which reduces the overhead caused by frequent reporting by the access node.
  • the capability request is sent to the access node, optionally, it may be carried in an existing message, or may be carried in a new message.
  • steps S602 and S603 are not sequential steps in the process, and the two are that the measurement function entity on the access side has two processing modes in different situations.
  • the access node corresponding to the measurement function entity of the access side feeds back to the positioning service function entity the capability supported by the corresponding measurement function entity, wherein the indication supports the measurement based on the channel estimation and/or the channel impulse response.
  • the access node may indicate whether the corresponding measurement function entity supports certain capabilities by using a specific field or some bits in the message fed back to the positioning service function entity, and optionally, if the system exists in multiple In the positioning measurement mode, the value corresponding to the positioning mode indicates whether the capability is supported by the value information such as 0 or 1.
  • the access node if the corresponding measurement function entity has the capability of detecting the channel estimation and/or the channel impulse response, after receiving the request, adding 1 to the related capability information in the message.
  • the bit information if the bit takes a value of 1, indicates that the channel estimate and/or the channel impulse response can be detected. This example is not a limitation of the present application, and the value can be indicated by the value of 0.
  • the access node corresponding to the measurement function entity of the access side feeds back the capability supported by the corresponding measurement function entity to the location service function entity, wherein the indication does not support the measurement based on the channel estimation and/or the channel impulse response.
  • the access node may indicate whether the corresponding measurement function entity supports certain capabilities by using a specific field or some bits in the message fed back to the positioning service function entity, and optionally, if the system exists in multiple In the positioning measurement mode, the value corresponding to the positioning mode indicates whether the capability is supported by the value information such as 0 or 1.
  • the access node if the corresponding measurement function entity does not have the capability of detecting the channel estimation and/or the channel impulse response, after receiving the request, adding the related capability information in the message 1-bit information, such as a value of 0, indicates that the channel estimate and/or channel impulse response cannot be detected.
  • adding the related capability information in the message 1-bit information such as a value of 0, indicates that the channel estimate and/or channel impulse response cannot be detected.
  • This example is not a limitation of the present application, and the value of 1 is also used to indicate that the capability is not supported.
  • the positioning service function entity determines the positioning capability of the measurement function entity on the access side according to the received capability feedback information.
  • the positioning service function entity can determine, according to the feedback information of the access node, whether the access node or its corresponding measurement function push supports the positioning measurement based on the channel estimation and/or the channel impulse response, and further determines whether the location of the UE is implemented by using the method. estimate.
  • the location estimation of the UE may be implemented in the manner of the foregoing Embodiment 3 and Embodiment 4: in combination with Embodiment 3, the positioning measurement capability determined by the positioning service function entity may be measured on the access side in step S401.
  • the positioning service function entity may determine the positioning measurement capability of the measurement function entity before selecting the measurement function entity in step S501, and select the measurement function entity according to the positioning measurement capability of the measurement function entity; It is not necessary to have the step of S501, then the positioning service function entity may determine the positioning measurement capability of the measurement function entity before sending the measurement request indication information to the measurement function entity at S502.
  • the determination of the capability of the measurement function entity on the access side is not limited to the above, and is determined by the access node of the measurement function entity that is the measurement function of the access side or the access node of the measurement function entity that manages the access side.
  • the capability of the access-side measurement function entity can be obtained by other management parties (for example, management entities such as Operation Administration and Maintenance (OAM)).
  • OAM Operation Administration and Maintenance
  • the location service function entity can choose other management.
  • the parties interact to determine the positioning capabilities supported by the measurement function entity.
  • the design enables the positioning service function entity to determine the positioning measurement mode supported by the measurement function entity on the access side, thereby effectively achieving positioning.
  • the UE location estimation in the above embodiment is to introduce the positioning measurement data based on the channel estimation and/or the channel impulse response from the UE side and the positioning measurement data based on the channel estimation and/or the channel impulse response transmitted by the access side, respectively.
  • the location estimation of the UE by the location service function entity may be based on the measurement data reported by the UE, or may be based on the measurement data reported by the access side, and may also perform UE location estimation according to the measurement data reported by the UE and the access side. .
  • the following focuses on the location estimation from the location service function entity.
  • FIG. 9 is a flow chart of another embodiment of a method for positioning a terminal device in the present application.
  • This embodiment is mainly based on a calculation method for performing location estimation by the positioning service function entity, and only describes the main steps related to transmitting the positioning measurement data, which is not limited to only these steps, and may further include the embodiment 2 and/or the embodiment.
  • the positioning service function entity may further include the embodiment 2 and/or the embodiment.
  • the method includes:
  • the measurement function entity on the access side obtains positioning measurement data based on channel estimation and/or channel impulse response.
  • the measurement function entity of the access side sends the positioning measurement data based on the channel estimation and/or the channel impulse response to the positioning service function entity, and the positioning service function entity receives the positioning measurement data.
  • S701 is similar to S504 in the foregoing embodiment, and S702 is similar to S401 and S505 in the foregoing embodiment, and reference may be made to the descriptions of S401, S504, and S505, and details are not described herein again.
  • the UE obtains positioning measurement data based on channel estimation and/or channel impulse response.
  • the UE sends the positioning measurement data based on the channel estimation and/or the channel impulse response to the positioning service function entity, and the positioning service function entity receives the positioning measurement data.
  • S703 is similar to S203 in the foregoing embodiment
  • S704 is similar to S101 and S204 in the foregoing embodiment, and reference may be made to the descriptions of S101, S203, and S204, and details are not described herein again.
  • S701 and S702 and S703 and S704 do not have a certain order, but only for objects that perform different actions. It does not have to exist either. In different scenarios, there may be no S701 and S702, or no S703 and S704.
  • the positioning service function entity estimates the location of the UE based on the received positioning measurement information, and implements positioning.
  • the positioning service function entity may perform location estimation of the UE based on measurement data reported by the measurement function entity of the UE and/or the access side. For the location estimation of the UE based on the measurement information reported by the measurement function entity of the UE or the access side, the location estimation of the UE may be performed by referring to the manner described in S102, S205 or S402, S506 in the foregoing embodiment; The measurement information reported by the measurement function of the side performs the location estimation of the UE. The location estimation of the UE may be performed in the manner described in S102, S205, and S402 and S506 in the foregoing embodiment.
  • the measurement data obtained by the UE side and the measurement data obtained by the access side are simultaneously considered, and according to the already established correspondence model, according to the UE side report.
  • the measurement data and the measurement data reported by the access side obtain the location estimation of the UE; optionally, when the measurement data and the UE location correspondence model are established, the measurement data obtained by the UE side and the measurement data obtained by the access side are respectively considered. That is, there is a corresponding relationship model for the UE side and the access side respectively, and the position estimation result obtained according to the measurement data reported by the UE and the position estimation result obtained according to the measurement data reported by the access side are averaged during positioning. , determine the final UE location.
  • the positioning system of the present application may be located for a measurement function entity of a single access node/access side, or may be a measurement function entity for a multiple access node/access side.
  • the positioning method based on the channel estimation and/or the channel impulse response is further illustrated by combining the previously given neural network examples for the two scenarios:
  • the downlink channel estimate or/and channel impulse response is used as the input quantity, and the output coordinates are expressed as the input quantity and the neural network.
  • the weight coefficient of each node and the function related to the offset coefficient The purpose of the training is to iteratively adjust the weight coefficient and the offset coefficient of each node in the neural network so that the position coordinates of the output obtained after training and the known position coordinates
  • the mean square error is as small as possible, and the iterative process can be stopped after a preset number of times or after the mean square error is less than a certain preset value.
  • the positioning center receives the downlink channel estimation or/and the channel impulse response, based on the trained neural network, the position coordinates of the output are obtained by the already trained weight coefficient and the offset coefficient, that is, The location coordinates of the user.
  • the training phase is the same as the measurement function entity of the single access node/access side, and the same number of inputs are used.
  • the positioning phase receives the measurement function entity of each access node/access side. a set of downlink channel estimation or / and channel impulse response, so each access node / access side measurement function entity can obtain a user's coordinates through the neural network, and then average the obtained position coordinates Get the location coordinates of the user.
  • the second method is, in the training phase, if there are N access node/access side measurement function entities, then the N sets of channel estimation or/and channel impulse response are taken as inputs, and the output is still a user's location. Coordinates, after training, get the weight coefficient and offset coefficient of each node of the neural network after training. Then, in the positioning phase, after receiving the downlink channel estimation or/and the channel impulse response of the measurement function entity of each access node/access side, the N group is taken as an input to obtain the location coordinates of the user.
  • the positioning method of the terminal device in the embodiment of the present application implements the interaction process of the positioning service function entity by using the measurement function entity of the UE and/or the access side to report the measurement data including the channel estimation and/or the channel impulse response. High precision, low locality positioning.
  • the embodiments of the present application may divide the function modules of the UE, the measurement function entity of the access side, and the location service function entity according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be used.
  • the functionality is integrated in a processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
  • the embodiment of the present application further provides a terminal device.
  • the terminal device can be used to perform the steps performed by the UE in any of the Figures 2, 4, 5, 7, and 9.
  • Figure 10 shows a simplified schematic diagram of the structure of a terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device 10 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the terminal device 10, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal equipment 10 may not have input and output devices.
  • the memory and the processor may be integrated or independently provided; in addition, the RF circuit and the processor may be integrated or independently.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal device 10
  • the processor having the processing function can be regarded as the processing unit of the terminal device 10.
  • the terminal device 10 includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit may also be referred to as a transceiver (including a transmitter and/or receiver), a transceiver, a transceiver, a transceiver circuit, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1001 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1001 is regarded as a sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the transceiver unit 1001 and the processing unit 1002 may be integrated or independently.
  • all the functions in the processing unit 1002 may be implemented in one chip, or may be partially integrated in one chip, and another part of the functions are integrated in one or more other chips, which is not limited in this application.
  • the transceiving unit 1001 is configured to perform the steps performed by the UE in S101 of FIG. 2, and/or other steps in the application.
  • the processing unit 1002 is configured to perform other related steps in the embodiment corresponding to FIG. 2, such as the step of the UE acquiring and determining the measurement data to be sent before the S101 sends the measurement data, and/or other steps in the application.
  • the transceiving unit 1001 is configured to perform the steps performed by the UE in S201, S202, and/or S204 of FIG. 4, and/or other steps in the present application.
  • Processing unit 1002 is operative to perform S203 of FIG. 4, and/or other steps in the application.
  • the transceiving unit 1001 is configured to perform the steps performed by the UE in S301, S302, and/or S303 of FIG. 5, and/or other steps in the present application.
  • the processing unit 1002 is configured to perform other related steps in the embodiment corresponding to FIG. 5, such as determining a positioning capability supported by the UE, and/or performing other steps in the present application.
  • the transceiving unit 1001 is configured to perform the steps performed by the UE in S503 of FIG. 7, and/or other steps in the present application.
  • Processing unit 1002 is for performing other steps in this application.
  • the transceiving unit 1001 is configured to perform the steps performed by the UE in S704 of FIG. 9, and/or other steps in the present application.
  • Processing unit 1002 is operative to perform S703 of FIG. 9, and/or other steps in the application.
  • the embodiment of the present application further provides a network device.
  • the network device can be used as a measurement function entity of the access side to perform the measurement function entity on the access side in any of the figures in FIG. 4, FIG. 6 to FIG. 9, or as an access node of the measurement function entity on the access side/ The steps performed by the transmission receive point.
  • Figure 11 shows a simplified schematic diagram of the structure of a network device.
  • the network device 11 includes a 1101 portion and a 1102 portion.
  • the 1101 part is mainly used for transmitting and receiving RF signals and converting RF signals and baseband signals; the 1102 part is mainly used for baseband processing, and controls the network device 11.
  • Section 1101 can generally be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the portion 1102 is generally a control center of the network device 11, and may be generally referred to as a processing unit, a control unit, a processor, or a controller, etc., for controlling the network device 11 to perform the measurement function entity on the access side in the above related embodiments, Or the step performed by the access node/transmission receiving point of the measurement function entity of the access side.
  • a processing unit a control unit, a processor, or a controller, etc.
  • the transceiver unit of the 1101 part which may also be referred to as a transceiver, or a transceiver, includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 1101 portion may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 1101 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 1102 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and to network devices 110 control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time.
  • the memory and the processor may be integrated or independently.
  • the 1101 portion and the 1102 portion may be integrated or may be independently arranged.
  • all the functions in the 1102 part can be implemented in one chip, or can be partially integrated into one chip, and another part of the functions are integrated in one or more other chips, which is not limited in this application.
  • the transceiving unit can be used to perform the steps performed by the access node/transmission receiving point in S202 of FIG. 4, and/or other steps in the application.
  • the processing unit is used to perform other steps in this application.
  • the transceiver unit is configured to perform the steps performed by the measurement function entity of the access side in S401 of FIG. 6, and/or other steps in the application.
  • the processing unit is configured to perform other related steps in the embodiment corresponding to FIG. 6, such as the step of acquiring and determining the measurement data to be sent before the measurement function entity of the access side sends the measurement data in S401, and/or other in the present application. step.
  • the transceiving unit is configured to perform the steps performed by the measurement function entity of the access side in S502, S503, and/or S505 of FIG. 7, and/or other steps in the present application.
  • the processing unit is operative to perform S504 of Figure 7, and/or other steps in the application.
  • the transceiving unit is configured to perform the steps performed by the access node in S601, S602, and/or S603 of FIG. 8, and/or other steps in the present application.
  • the processing unit is used to perform other steps in this application.
  • the transceiving unit is configured to perform the steps performed by the access node in S702 of FIG. 9, and/or other steps in the application.
  • the processing unit is operative to perform S701 of Figure 9, and/or other steps in the application.
  • the embodiment of the present application further provides another network device, which can be used as a location service function entity to perform the steps performed by the location service function entity in any of the Figures 2 and 4 to 9.
  • 12 is a schematic diagram showing another simplified network device structure.
  • the network device 12 includes a processor, a memory, a communication unit including a communication interface, and an optional input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the network device 12, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the communication unit is mainly used for transmission processing of network communication.
  • the communication interface performs interface processing on network communication, and is mainly used for transmitting and receiving messages and data.
  • Input and output devices such as indicators, touch screens, display screens, keyboards, etc.
  • Input and output devices are primarily used to receive data input by an operator and output data to an operator. It should be noted that some kinds of network devices may not have input and output devices.
  • the memory and the processor may be integrated or independently.
  • the processor When data needs to be sent, the processor processes the data to be sent, and outputs the data to the communication unit. After the communication unit performs the interface processing through the communication interface, the data is sent out. When data is transmitted to the network device 12, the communication unit receives the data through the communication interface, processes the data and outputs it to the processor, which further processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like. The memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the communication interface and the communication unit having the transceiving function can be regarded as the transceiving unit of the network device 12, and the processor having the processing function is regarded as the processing unit of the network device 12.
  • the network device 12 includes a transceiving unit 1201 and a processing unit 1202.
  • the transceiver unit may also be referred to as a transceiver (including a transmitter and/or receiver), a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1201 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1201 is regarded as a sending unit, that is, the transceiver unit 1201 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the transceiving unit 1201 and the processing unit 1202 may be integrated or independently.
  • all the functions in the processing unit 1202 may be implemented in one chip, or may be partially integrated in one chip, and another part of the functions are integrated in one or more other chips, which is not limited in this application.
  • the transceiving unit 1201 is configured to perform the steps performed by the location service function entity in S101 of FIG. 2, and/or other steps in the application.
  • Processing unit 1202 is operative to perform S102 of FIG. 2, and/or other steps in the application.
  • the transceiving unit 1201 is configured to perform the steps performed by the location service function entity in S201 and/or S204 of FIG. 4, and/or other steps in the application.
  • Processing unit 1202 is operative to perform S205 of FIG. 4, and/or other steps in the application.
  • the transceiving unit 1201 is configured to perform the steps performed by the positioning service function entity in S301, S302, and/or S303 of FIG. 5, and/or other steps in the present application.
  • Processing unit 1202 is for performing S304 of FIG. 5, and/or other steps in the application.
  • the transceiving unit 1201 is configured to perform the steps performed by the positioning service function entity in S401 of FIG. 6, and/or other steps in the present application.
  • Processing unit 1202 is for performing S402 of Figure 6, and/or other steps in the application.
  • the transceiving unit 1201 is configured to perform the steps performed by the location service function entity in S502 and/or S505 of FIG. 7, and/or other steps in the application.
  • Processing unit 1202 is operative to perform S501 and/or S506 of FIG. 7, and/or other steps in the application.
  • the transceiving unit 1201 is configured to perform the steps performed by the positioning service function entity in S601, S602, and/or S603 of FIG. 8, and/or other steps in the present application.
  • Processing unit 1202 is operative to perform S604 of FIG. 8, and/or other steps in the application.
  • the transceiving unit 1201 is configured to perform the steps performed by the positioning service function entity in S702 and/or S704 of FIG. 9, and/or other steps in the present application.
  • Processing unit 1202 is operative to perform S705 of FIG. 9, and/or other steps in the application.
  • the present application further provides a terminal positioning system, including the positioning service function entity in the above embodiment, and the measurement function entity of the UE and/or the access side.
  • the application also provides a computer program product that, when run on a computer, causes the computer to perform any of the methods provided above.
  • the present application also provides a communication chip in which instructions are stored, which, when run on respective management entities, cause each management entity to perform the methods provided above.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例公开了一种用于终端设备定位的方法、装置及系统。其中,通过终端侧的测量功能实体和/或接入侧的测量功能实体获得针对待定位终端设备的定位测量数据,其中,所述定位测量数据包括根据对应下行/上行参考信号获得的信道估计和/或信道冲激响应。终端侧的测量功能实体和/或接入侧的测量功能实体向网络中的定位功能实体报告所述定位测量数据,定位功能实体从而能够基于所述定位测量数据对所述终端设备进行位置估计,进而实现所述终端设备的定位,提高定位精度。该技术方案在基于单基站或多基站定位环境下均可应用来实现终端设备定位。

Description

用于终端设备定位的方法、装置及系统
本申请要求于2018年1月5日提交中国国家知识产权局、申请号为201810011910.8、发明名称为“用于终端设备定位的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信系统中的终端设备的定位技术。
背景技术
随着通信技术的发展和移动设备越来越高的普及,人们对自身位置的定位服务需求日益激增。随着自动驾驶,智慧城市,物联网等新兴产业的出现,通信技术也越来越多地与这些垂直行业进行融合,这些垂直行业也带来了对于定位的需求。在原先的长期演进(Long Term Evolution,简称为LTE)的系统中,定位可以达到20-30m左右的精度,基本可以满足一般的需求。由于垂直行业的融合,对于目前的定位提出了更高的要求,期望能够达到更快速的定位,更高精度的定位方式,这对下一代定位技术带来了不小的挑战。
定位技术在无线网络中的主要挑战是由用户的移动性和外部环境的变化带来的。定位技术的质量主要也是通过定位的准确性和定位计算的时间这两个指标来衡量。对于不同的场景(室外,室内,静止,移动),不同的应用下,对于这些指标也有着不同的需求。全球卫星定位系统(Global Positioning System,简称为GPS)系统作为目前应用最广泛的技术,但是GPS主要在室外和郊外有很高的定位准确性,但是室内和城市的场景中,GPS的定位精度却不是非常理想。而在目前的无线通信系统中,有一半以上的移动设备是工作在室内的。为了增强定位的准确性和满足定位应用于各个场景的需求,在LTE中,使用了不同的基于基站的定位技术的方法,主要有观测到达时间(Time of Arrival,简称为TOA)、到达时间差(Observed Time Difference of Arrival,简称为OTDOA),上行到达时间差(Uplink Time Difference of Arrival,简称为UTDOA),到达方向(Direction of Arrival,简称为DOA)或可称为到达角(Angle of Arrival,简称为AOA),为了进一步提升定位的精度,这几种方法也可以混合使用。
首先,通过分析前面提到的各项技术在定位精度方面的指标,可以发现,其定位精度也只能达到几十米的定位精度,难以达到更高的精度要求,可随着网络业务的发展,用户定位的精度迫切需要提高。
再进一步,具体的,常用的定位场景,如基于距离信息和方向(角度)信息的定位,主要通过特定的定位参考信号(Positioning Reference Signal,简称为PRS)测量到达时间(Time of Arrival,简称为TOA)、到达时间差(Time Difference of Arrival,简称为TDOA)、DOA来实现定位。具体的,TOA和TDOA表示的是目标用户到不同基站的距离,在已知这三个基站的位置坐标情况下,通过三点定位法来定位目标用户。DOA表示的是目标用户到基站的角度,需要通过结合目标用户到基站的距离,实现用户的定位。又如基于指纹识别来进行定位,该方法需要将定位的整体区域细分为各个小区域,然后在每个区域内记录下多个传感器收到的用户特定的参考信号的接收信号强度(received signal  strength,简称为RSS),生成一张表格。当要定位目标用户时,可以通过多个传感器接收到的RSS,与之前生成的表格进行比较,通过查表法,找到对应的区域。当然,区域划分地越小,定位的精度也会越高,但是建立表格的时间和计算的复杂度也会越高。以上两种常用的定位场景中,都必须多个基站/传感器参与定位,并且必须要传输额外的参考信号。
可见,现有的定位技术所采用的定位测量数据,主要存在使定位精度满足不了未来网络的需求的技术问题。更进一步地,现有的定位技术,还存在定位必须多节点参与,定位过程中必须有额外特定用于定位的定位参考信号传输,带来定位处理局限性大的技术问题。
发明内容
本申请提供一种用于终端设备定位的方法、装置及系统,用以通过采用更有效的测量数据,从而实现高精度、低局限性的终端设备定位。
第一方面,提供一种用于终端设备定位的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过采用更有效的测量数据进而实现对该终端设备的定位。该方法包括终端设备向定位服务功能实体发送测量数据,所述测量数据根据所述终端设备接收到的下行参考信号获得,所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计,所述测量数据包括以下至少一项:信道估计、信道冲激响应;采用信道估计和/或信道冲激响应进行终端设备的定位,可以不局限于必须多接入节点的场景,单接入节点下也能实现定位;此外,本申请中所述下行参考信号可以是非特定额外用于定位的下行参考信号,如用于下行信道质量测量、下行信道估计、相位跟踪、同步等下行参考信号,比如小区参考信号(Cell Reference Signal,简称为CRS),也可以是专用额外的定位参考信号,如定位参考信号(Positioning Reference Signal,简称为PRS),本申请不局限于特定的定位参考信号。所述定位服务功能实体收到所述测量数据后,基于该测量数据可以进行对所述终端设备的位置估计来定位所述终端设备。
可以理解的,所述终端设备发送所述测量数据之前,已经接收了下行参考信号,并根据接收的下行参考信号获取了所述测量数据。
在该设计中,终端设备能够通过向定位服务功能实体报告根据下行参考信号获得的包括信道估计和/或信道冲激响应的测量数据用以终端设备的定位,能够通过采用更有效的测量数据进而实现高精度、低局限性的终端设备定位。
在一种可能的设计中,所述终端设备还需使所述定位服务功能实体获知终端设备所支持的定位测量能力,采用对应的定位处理方式。终端设备通过向所述定位服务功能实体发送第二指示信息,用以指示所述终端设备的定位测量能力,如是否支持基于包括信道估计和/或信道冲激响应的所述测量数据的定位测量方式。在系统中终端设备支持多种定位测量的环境下,该设计能够使得定位服务功能实体确定终端设备所能支持的定位测量方式,从而能采用对应的位置估计处理方式,进而有效实现定位。
在一种可能的设计中,所述终端设备在发送所述测量数据之前,还接收所述定位服务功能实体发来的指示所述终端设备需获取的测量数据的第一指示信息,基于该指示信息,所述终端设备进而去获取对应的所述测量数据并报告给定位服务功能实体。该设计 能够使得终端设备根据定位服务功能实体的指示进行用于定位的有效测量数据的获取,避免在多种定位测量方式并存的环境下,终端设备不能有针对性的进行定位测量并上报测量数据,带来数据处理和传输的开销,使得定位服务功能实体能够明确需采用的位置估计处理方式,进而有效实现定位。
在一种可能的设计中,所述终端设备在发送所述测量数据之前,还接收所述定位服务功能实体发来的辅助信息,所述辅助信息用于辅助终端设备接收所述下行参考信号来获得测量数据,所述辅助信息可以是小区编号、下行参考信号的配置信息等,这样能够辅助UE知道下行参考信号是哪个或哪些基站发的,下行参考信号在哪里接收,如下行参考信号的配置信息等,即便使用多接入节点进行UE定位,UE能快速确定下行参考信号的接收配置。可以理解的,所述辅助信息可与所述第一指示信息被携带在同一消息中由所述定位服务功能实体发送,或被携带在不同消息中由所述定位服务功能实体发送。
相应的,提供一种用于终端设备定位的测量装置,该装置可以实现第一方面中的对应的定位方法。例如,该装置以功能形式限定,可以是测量功能实体,其具体实现形式可以是测量设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括发送单元,其中,发送单元,用于向定位服务功能实体发送所述测量数据。可选的,该装置还可以包括处理单元,该处理单元用于获取待发送的所述测量数据;进一步该装置还可以包括接收单元,用于接收下行参考信号和/或定位服务功能实体发来的消息。
第二方面,提供一种用于终端设备定位的方法和装置。
在一种可能的设计中,该方法应用于用于终端设备定位的测量装置上,通过采用更有效的测量数据进而实现对网络中相应终端设备的定位。该方法包括测量装置向定位服务功能实体发送测量数据,所述测量数据根据所述测量装置接收的待定位的终端设备发送的上行参考信号获得,所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计,所述测量数据包括以下至少一项:信道估计、信道冲激响应;采用信道估计和/或信道冲激响应进行终端设备的定位,可以不局限于必须多接入节点的场景,单接入节点下也能实现定位;此外,所述上行参考信号可以是非特定额外用于定位的上行参考信号,如用于上行信道质量测量、上行信道估计、相位跟踪等上行参考信号,比如信道探测参考信号(Sounding Reference Signal,简称为SRS);也可以是以用户为中心的网络中,非激活态的UE发送的上行跟踪参考信号,还可以是专用的上行定位参考信号;还可以是专用额外的定位参考信号,本申请不局限于特定的定位参考信号。所述定位服务功能实体收到所述测量数据后,基于该测量数据可以进行对所述终端设备的位置估计来定位所述终端设备。
可以理解的,发送所述测量数据之前,所述测量装置已经接收了上行参考信号并根据接收的上行参考信号获取了待发送的测量数据。
在该设计中,用于终端设备定位的测量装置能够通过向定位服务功能实体报告基于上行参考信号获得的包括信道估计和/或信道冲激响应的测量数据用以终端设备的定位,能够通过采用更有效的测量数据进而实现高精度、低局限性的终端设备定位。
在一种可能的设计中,所述测量装置还需使所述定位服务功能实体获知测量装置所支持的测量能力,采用对应的定位处理方式。通过所述测量装置或其对应的能力信息管理装置向所述定位服务功能实体发送第二指示信息,用以指示所述测量装置的定位测量能力,如是否支持基于包括信道估计和/或信道冲激响应的所述测量数据的定位测量方式。在系统中支持多种定位测量的环境下,该设计能够使得定位服务功能实体确定测量装置所能支持的定位测量方式,从而能采用对应的位置估计处理方式,进而有效实现定位。
在一种可能的设计中,所述测量装置在发送所述测量数据之前,还接收所述定位服务功能实体发来的指示所述测量装置需获取的测量数据的第一指示信息,基于该指示信息,所述测量装置进而去获取所述测量数据并报告给定位服务功能实体。可以理解的,系统中存在多于一个测量装置时,所述定位服务功能实体需选择要使用的一个或多个测量装置,并向选择的测量装置发送所述第一指示信息。该设计能够使得测量装置根据定位服务功能实体的指示进行用于定位的有效测量数据的获取,避免在多种定位测量方式并存的环境下,测量装置不能有针对性的进行定位测量并上报测量数据,带来数据处理和传输的开销,使得定位服务功能实体能够明确需采用的位置估计处理方式,进而有效实现定位。
在一种可能的设计中,所述测量功能实体在发送所述测量数据之前,还接收所述定位服务功能实体发来的辅助信息。可以理解的,在系统中存在多于一个测量装置时,所述定位服务功能实体需选择要使用的一个或多个测量装置,并向选择的测量装置发送所述辅助信息。所述辅助信息用于辅助测量装置接收所述上行参考信号获得测量数据,所述辅助信息可以是待定位终端设备所在的小区编号、上行参考信号的配置信息等,这样能够辅助测量装置知道上行参考信号是哪个UE发的,上行参考信号在哪里接收等。可以理解的,所述辅助信息可与所述第一指示信息被携带在同一消息中由所述定位服务功能实体发送,或被携带在不同消息中由所述定位服务功能实体发送。
相应的,提供一种用于终端设备定位的测量装置,该装置可以实现第二方面中的对应的定位方法。例如,该装置以功能形式限定,可以是测量功能实体,其具体实现形式可以是测量设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括发送单元,其中,发送单元,用于向定位服务功能实体发送所述测量数据;可选的,该装置还可以包括处理单元,该处理单元用于获取待发送的所述测量数据;进一步该装置还可以包括接收单元,用于接收上行参考信号和/或定位服务功能实体发来的消息。
第三方面,提供一种用于终端设备定位的方法和装置。
在一种可能的设计中,该方法可应用于如定位服务中心、增强服务移动定位中心(Enhanced Serving Mobile Location Centre,简称为E-SMLC)等定位服务功能实体上,通过采用更有效的测量数据进而实现终端设备的定位。该方法包括定位服务功能实体接收定位测量功能实体发送的针对待定位的终端设备的测量数据,所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计。测量数据可以由待定位的终端设备进行定位测量获得并报告,也可以由接入侧的测量装置进行定位测量获得并报告,因此所述定位测量功能实体包括待定位的所述终端设备和/或接入侧的测量装置;所述测量数据可以基于所述终端设备接收的下行参考信号和/或所述测量装置接收的待定位的终端设备发送的上行参考信号获得。所述测量数据包括以下至少一项:信道估计、信道冲激响应。
可以理解,在定位服务功能实体在获得包括信道估计和/或信道冲激响应的测量数据后,可以根据测量数据估计终端设备的位置。可选的,定位服务功能实体预先建立了测量数据和终端设备位置对应关系的模型,定位时,定位服务功能实体可基于模型进行终端设备的位置估计。
在该设计中,定位服务功能实体通过接收定位测量功能实体报告的基于上行和/或下行参考信号获得的包括信道估计和/或信道冲激响应的测量数据,将该测量数据用以终端设备的定位,能够通过采用更有效的测量数据实现高精度、低局限性的终端设备定位。
在一种可能的设计中,所述定位服务功能实体还需获知定位测量功能实体所支持的测量能力,以采用对应的定位处理方式。定位服务功能实体通过接收所述定位测量功能实体或其对应的能力信息管理装置发送的第二指示信息,用以指示所述定位测量功能实体的定位测量能力,如是否支持基于包括信道估计和/或信道冲激响应的所述测量数据的定位测量方式。在系统中支持多种定位测量的环境下,该设计能够使得定位服务功能实体确定定位测量功能实体所能支持的定位测量方式,从而能采用对应的位置估计处理方式,进而有效实现定位。
在一种可能的设计中,所述定位服务功能实体在接收所述测量数据之前,还向定位测量功能实体发送指示测量装置需获取的测量数据的第一指示信息,基于该指示信息,所述定位测量功能实体进而去获取所述测量数据并报告给定位服务功能实体。可以理解的,系统中存在多于一个定位测量功能实体时,所述定位服务功能实体需选择要使用的一个或多个定位测量功能实体,并向选择的定位测量功能实体发送所述第一指示信息。该设计能够使得定位测量功能实体根据定位服务功能实体的指示进行用于定位的有效测量数据的获取,避免在多种定位测量方式并存的环境下,定位测量功能实体不能有针对性的进行定位测量并上报测量数据,带来数据处理和传输的开销,使得定位服务功能实体能够明确需采用的位置估计处理方式,进而有效实现定位。
在一种可能的设计中,所述定位服务功能实体在接收所述测量数据之前,还向定位测量功能实体发送发送的辅助信息。可以理解的,在系统中存在多于一个定位测量功能实体时,所述定位服务功能实体需选择要使用的一个或多个定位测量功能实体,并向选择的定位测量功能实体发送所述辅助信息。所述辅助信息用于辅助定位测量功能实体接收所述上行和/或下行参考信号获得测量数据,所述辅助信息可以是小区编号、上行参考信号的配置信息等,这样能够辅助定位测量功能实体知道上行/下行参考信号是哪个对象 发的,参考信号在哪里接收等。可以理解的,所述辅助信息可与所述第一指示信息被携带在同一消息中由所述定位服务功能实体发送,或被携带在不同消息中由所述定位服务功能实体发送。
相应的,提供一种用于终端设备定位的定位装置,该装置可以实现第三方面中的对应的定位方法。例如,该装置以功能形式限定,可以是定位服务功能实体,其具体实现形式可以是定位设备或定位服务器,也可以为定位服务功能实体中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第三方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括接收单元,其中,接收单元,用于接收定位测量功能实体发送的针对所述终端设备的所述测量数据。可选的,该装置还可以包括处理单元,该处理单元用于根据所述测量数据进行终端设备的位置估计;进一步该装置还可以包括发送单元,用于向定位测量功能实体发送消息。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种用于终端设备定位的芯片,其中存储有指令,当其在通信设备上运行时,使得通信设备执行上述各方面所述的对应方法。
本申请还提供了一种用于终端设备定位的装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述各方面所述的对应方法。
本申请还提供了一种用于终端设备定位的装置,包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述各方面所述的对应方法。可以理解的,该存储器可以集成在处理中,也可以独立于处理器之外。
本申请还提供了一种用于终端定位的装置,包括处理器,所述处理器执行计算机程序时实现上述各方面所述的对应方法。
本申请还提供了一种用于终端定位的系统,包括上述第三方面提供的定位服务功能实体,以及第一方面提供的测量装置和/或第二方面提供的测量装置,这些系统组成分别实现上述各方面所述的对应方法。
可以理解地,上述提供的任一种装置、计算机存储介质、计算机程序产品、芯片、用于终端定位的系统均用于实现上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本申请 实施例的内容和这些附图获得其他的附图。
图1是本申请涉及的一种网络系统架构;
图2是本申请提供的一种用于终端设备定位的方法的第一个实施例的流程图;
图3是一种可用于本申请建立测量数据与终端设备位置对应关系模型的神经网络示例图,
图4是本申请提供的一种用于终端设备定位的方法的第二个实施例的流程图;
图5是本申请中确定终端设备支持的定位测量能力的交互流程示意图;
图6是本申请提供的另一种用于终端设备定位的方法的第一个实施例的流程图;
图7是本申请提供的另一种用于终端设备定位的方法的第二个实施例的流程图;
图8是本申请中确定接入侧的测量功能实体所支持的定位测量能力的交互流程示意图;
图9是本申请中另一种用于终端设备定位的方法的实施例的流程图;
图10是本申请提供的一种简化的终端设备结构示意图;
图11是本申请提供的一种简化的网络设备结构示意图;
图12是本申请提供的另一种简化的网络设备结构示意图。
具体实施方式
为使本申请解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将以实施例的形式结合附图对本申请的技术方案作进一步详细的描述。所述详细的描述通过使用方框图、流程图和/或示例提出了设备和/或过程的各种实施例。由于这些方框图、流程图和/或示例包含一个或多个功能和/或操作,所以本领域技术人员将理解可以通过许多硬件、软件、固件或它们的任意组合单独和/或共同实施这些方框图、流程图或示例内的每个功能和/或操作。
本申请中“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所提及的所有“终端”/“终端设备”,在一些情况下可以是指移动设备,例如移动电话、个人数字助理、手持或膝上型计算机以及具有电信能力的类似设备,有些情况下还可以是穿戴设备或车载设备等,并包括未来5G网络中的终端或者未来演进的PLMN网络中的终端等。这种终端可以包括设备及其相关联的可移除存储模块(例如但不限于:包括订户标识模块(Subscriber Identification Module,简称为SIM)应用、通用订户标识模块(Universal Subscriber Identification Module,简称为USIM)应用或可移除用户标识模块(Removable User Identity Module,简称为R-UIM)应用的通用集成电路卡(Universal Integrated Circuit Card,简称为UICC)))。备选地,这种终端可以包括没有这种模块的设备本身。在其它情况下,术语“终端”/“终端设备”可以是指具有类似能力但是不可携带的设备,例如,台式计算机、机顶盒或网络设备。术语“终端”/“终端设备”还可以是指可端接用户的通信会话的任何硬件或软件组件。此外,“用 户终端”、“User Equipment”、“UE”、“站点”、“station”、“STA”、“用户设备”、“用户代理”、“User Agent”、“UA”、“用户装备”、“移动设备”和“设备”等皆是与本文中“终端”/“终端设备”同义的替代术语。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。
本申请中提及的“接入节点”,是一种网络设备,部署在无线接入网中用以为终端设备提供无线通信功能的装置,能够负责调度和配置给UE的下行参考信号等功能。所述接入节点可以包括各种形式的宏基站、微基站、中继站、接入点等等,包括作为对传统无线电信系统中的对等设备改进的系统和设备。这种高级或下一代设备可以包含在长期演进LTE通信系统、5G通信系统、未来演进系统或者多种通信融合系统中,例如,LTE系统中包括的演进通用陆地无线接入网节点B(E-UTRAN Node B,简称为eNB)、5G包括的新无线接入网节点B(New Radio Access NodeB,简称为NR NodeB)、其他无线接入点或类似组件,在采用不同的无线接入技术的系统中,具备接入节点功能的设备名称可能会有所不同。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为接入节点。
本申请中,术语“测量功能实体”是指接入侧为UE定位提供上行定位测量的功能实体,其可以是设置在接入节点上的测量功能实体,也可以是独立于接入节点设置的测量功能实体,其中一种实现方式比如在以用户为中心、网络跟着用户移动而追踪的网络中,测量功能实体可以是网络中的传输接收点(transmission and reception point,简称为TRP)上的测量功能实体。只要实现相关功能的实体,皆属于“测量功能实体”的范畴。在不同系统中、不同的设置位置上,具备该功能实体功能的实体名称可能会有所不同,如“测量单元”、“定位测量单元(Location Measurement Unit,简称为LMU)”、“测量装置”、“定位测量装置”、“定位测量功能实体”等。为方便描述,本申请中,上述接入侧为UE定位提供上行定位测量的功能实体统称为测量功能实体。
本申请中,术语“定位服务功能实体”是指为UE提供定位服务的功能实体,其可以是独立于接入节点设置的服务功能实体或高层服务功能实体,也可以是设置于接入节点上的服务功能实体,只要实现相关功能的实体,皆属于“定位服务功能实体”的范畴。在不同系统中、不同的设置位置上,具备定位服务功能实体功能的实体名称可能会有所不同,例如“定位业务服务中心”、“增强服务移动定位中心(Enhanced Serving Mobile Location Centre,简称为E-SMLC)”等。为方便描述,本申请中,上述为UE提供定位服务的实体统称为定位服务功能实体。
图1给出了本申请涉及的一种网络系统架构,该系统用于UE的定位,其包括UE100、至少一个接入节点200和定位服务功能实体300,图1中以两个接入节点200为示例,本申请的定位系统中,可以涉及多个接入节点200,也可以只涉及一个接入节点200。可选的,如果该网络是以用户为中心、网络跟着用户移动而追踪的网络,那么系统还包括至少一个传输接收点400(transmission and reception point,简称为TRP),这些传输接收点400具备其所在区域对应接入节点200的一些功能,能够监听未接入的非激活态用户发送的上行跟踪参考信号,以用户为中心,跟随用户的移动,进行监听。图1所示的系统中,为方便功能描述的划分,定位服务功能实体300与接入节点200给出了分离设置的示意,但这并非对其关系的限制,接入节点200上可以配置定位服务功能,定位服务功能实体300也可以设置于接入节点200上。
该系统对于UE100的定位,可以由UE100请求来触发,也可以由网络侧触发,如公安系统需要跟踪定位某些用户等。该系统中,可以从接入侧发送的下行参考考信号中获得包括信道估计和/或信道冲激响应的数据作为定位的测量数据,接入侧也可以从UE100发送的上行参考信号中获得包括信道估计和/或信道冲激响应的数据作为定位的测量数据,具体的,针对不同网络环境,接入侧可以是接入节点200或者TRP400来接收所述上行参考信号获得所述测量数据,在TRP400来接收的环境中,UE100可以是处于非激活态未接入、未与TRP400对应的接入节点200建立连接的UE,TRP400根据监听到的UE100发送的上行跟踪参考信号获得所述测量数据。
UE100和/或接入侧的测量功能实体,均能向定位服务功能实体300报告其所获得的用于UE100定位的所述测量数据(UE100与定位服务功能实体300之间是通过接入节点200进行通信连接)。定位服务功能实体300预先已经建立了包括信道估计和/或信道冲激响应的测量数据与终端设备位置的对应关系模型,在收到所述UE100和/或接入侧的测量功能实体报告的所述测量数据后,定位服务功能实体300可根据对应关系模型,根据所述测量数据对UE的位置进行估计,实现对UE的定位。如果定位服务功能实体300获得的所述测量数据包括多组,那么位置估计的计算结果会更精确,其中,多组测量数据可以有两种:一是这些测量数据是由UE与多个测量功能实体之间的上行参考信号/下行参考信号获得,二是这些测量数据是由UE与至少一个测量功能实体之间的上行参考信号和下行参考信号获得。
需要说明的是,图1所示的仅是本申请所涉及的一种网络系统架构的示例,本申请并不局限于此。类似的,本申请还可以在IEEE802.11的系统中应用,通过用作为定位测量功能实体的接入点(Access Point,简称为AP)或AP对应的测量点与站点(Station,简称为STA)之间的上行和/或下行参考信号获得的包括信道估计和/或信道冲激响应的测量数据进行STA定位,提高室内无线保真(Wireless Fidelity,简称为WiFi)的定位精度。
实施例一
根据本申请的实施例,图2为本申请提供的一种用于终端设备定位的方法的第一个实施例的流程图。为了便于方案理解,在描述时,本实施例及后续实施例皆从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S101.UE向定位服务功能实体发送测量数据,定位服务功能实体接收所述测量数据;
可以理解,UE向定位服务功能实体发送测量数据之前,已经获得所述测量数据,在本申请中,所述测量数据包括信道估计和/或信道冲激响应,是根据UE接收到的下行参考信号获得。其中,可选的,信道估计还可包括估计出的相应信道系数,如到达角AOA、多径数、时延扩展等信道特征参数,信道估计表示信号传输所经过的信道状况,针对信号在传输中会因为延迟和多径等因素造成相位和幅度畸变,对于信号接收端来说,要准确得到信号所携带的信息,就必须对已经发生畸变的信号进行均衡矫正,信号均衡矫正的前提是获得信号传输所经过的信道状况,即传输信道的信道估计,通过信道估计,接收机可以得到信道的冲激响应,从而为后续的相干解调提供所需的小区状态信息(Cell  State Information,简称为CSI)。信道冲激响应描述了信道将对信号产生的影响,信号通过信道从发射器被传输到接收器,信道会影响信号,使得从发射器发射的信号与在接收器接收的信号是不一样的,信道冲激响应描述了这样的影响,例如作为时间的函数,具体地,如果瞬时脉冲(或“冲激”)从发射器被发射,则信道冲激响应将是在接收器被接收到的信号,如果接收器可以确定信道冲激响应,那么接收器通常将能够更准确地解码接收信号中的符号,因为接收器可以考虑信道对接收信号的影响。对于信道估计,其算法从输入数据的类型来分,可以划分为时域和频域两大类方法。频域方法主要针对多载波系统;时域方法适用于所有单载波和多载波系统,其借助于参考信号或发送数据的统计特性,估计衰落信道中各多径分量的衰落系数。从信道估计算法先验信息的角度,则可分为以下三类:(1)基于参考信号的估计。该类算法按一定估计准则确定待估参数,或者按某些准则进行逐步跟踪和调整待估参数的估计值。其特点是需要借助参考信号,即导频或训练序列。基于训练序列和导频序列的估计统称为基于参考信号的估计算法。基于训练序列的信道估计算法适用于突发传输方式的系统。通过发送已知的训练序列,在接收端进行初始的信道估计,当发送有用的信息数据时,利用初始的信道估计结果进行一个判决更新,完成实时的信道估计。基于导频符号的信道估计适用于连续传输的系统。通过在发送的有用数据中插入已知的导频符号,可以得到导频位置的信道估计结果;接着利用导频位置的信道估计结果,通过内插得到有用数据位置的信道估计结果,完成信道估计。(2)盲估计。利用调制信号本身固有的、与具体承载信息比特无关的一些特征,或是采用判决反馈的方法来进行信道估计的方法。(3)半盲估计。结合盲估计与基于训练序列估计这两种方法优点的信道估计方法。一般来讲,通过设计训练序列或在数据中周期性地插入导频符号来进行估计的方法比较常用。而盲估计和半盲信道估计算法无需或者需要较短的训练序列,频谱效率高,因此获得了广泛的研究。但是一般盲估计和半盲估计方法的计算复杂度较高,且可能出现相位模糊(基于子空间的方法)、误差传播(如判决反馈类方法)、收敛慢或陷入局部极小等问题,需要较长的观察数据,这在一定程度上限制了它们的实用性。可选的,本申请采用基于参考信号的信道估计。
可选的,不同网络系统中,UE可以接收不同网络设备发送的下行参考信号,比如未设置分布式的与接入节点对应的传输接收点的网络中,UE可以接收接入节点发来的下行参考信号,在设置了分布式的与接入节点对应的传输接收点TRP的网络中(其中一种可以是以用户为中心、网络跟着用户移动而追踪的网络),UE可以接收传输接收点TRP发来的下行参考信号;接入节点和传输接收点TRP上可设置有上行定位测量单元;可选的,本申请中,获得测量数据的下行参考信号可以有多种设计,可以是非特定额外用于定位的下行参考信号,如用于下行信道质量测量、下行信道估计、相位跟踪、同步等下行参考信号,比如小区参考信号(Cell Reference Signal,简称为CRS);也可以是专用额外的定位参考信号,如定位参考信号(Positioning Reference Signal,简称为PRS)。此外,本申请中,可选的,所述下行参考信号可以是对应单接入节点的,也可以是对应多接入节点的,本申请的定位系统不是必须使用多接入节点,其可灵活选择。
UE通过接收的下行参考信号进行定位测量,可以计算获得各载波上的信道估计,
对于信道冲激响应的计算,现有技术中也有相关实现手段,可以采用各种能实现的方式,在此不做限定,本申请通过以下例子给出一个冲激响应计算的示例性说明,此示例不应理解为对本申请的限制:
通过各载波上的信道估计,进而可以计算出相应的信道冲激响应,对于信道冲激响应的计算,以下给出一种示例进行说明。假设用户在某一个位置某一时间获得的信道估计是h=[h 1,...,h m,...h M],其中h m表示在第m个子载波上的信道估计,而子载波的总数有M个。对信道估计进行离散傅里叶反变换(Inverse Discrete Fourier Transform,简称为IDFT)或者快速傅里叶反变换(Inverse Fast Fourier Transform,简称为IFFT),假设傅里叶变换的系数为L,并且L≥M。那么对于信道估计进行L点的IDFT或者IFFT,得到同样长度为L的序列,即为信道冲激响应。可选地,也可以为了减少发送量,可以对长度为L的信道冲激响应进行滤波,抽取出有效的信息进行传递。具体的过程可以如下:
1)从参考信号得到的信道估计是h=[h 1,...,h m,...h M]
2)对信道估计两边对称的补零,得到长度为L的信道估计序列h'=[0,...,0,h 1,...,h m,...h M,0,...,0]=[h' 1,...,h' l,...,h' L]
3)对补零后的序列h'进行IDFT,或者IFFT运算,得到同样长度为L的信道冲激响应序列f'=[f' 1,...,f l',...f L']。
4)如果需要进行带通滤波的话,找到f'中绝对值最大的那个点,然后将包含此点的连续K个点选出,得到序列f=[f 1,...,f k,...f K],即为经过滤波以后的信道冲激响应。
通过以上的方法,得到了信道估计和信道冲激响应后,每组信道估计对应一个信道冲激响应。
可选的,UE可以周期性地向定位服务功能实体报告所述测量数据,如果UE只支持基于信道估计和/或信道冲激响应的定位测量,则默认报告包括信道估计和/或信道冲激响应的测量数据,如果UE支持包括基于信道估计和/或信道冲激响应的多种定位测量方式,可以默认根据预设优先级条件确定定位测量方式对应的测量数据,或者报告所有测量方式对应的测量数据,本申请中涉及报告包括信道估计和/或信道冲激响应的测量数据。当然UE也可以根据网络侧的指示报告对应的包括信道估计和/或信道冲激响应的测量数据,或者UE根据定位服务功能实体的定位请求启动定位测量。
S102.定位服务功能实体基于收到的测量数据,对UE的位置进行估计,实现UE定位。
对于定位服务功能实体,会先建立所述测量数据和UE位置的对应关系模型,此模型可以预先一次性训练或周期性进行训练。其中,通过在训练阶段,将在不同位置得到的信道估计和/或信道冲激响应,利用机器学习的算法,提取特征信息,建立信道估计、信道冲激响应和用户位置的关系。可选的,可以通过神经网络的训练方法建立该关系模型,通过神经网络学习大量的输入数据和输出数据,对输入输出的数据进行分类和归纳,利用机器学习的算法找到输入与输出之间的联系。一旦有新的输入,就可以通过已经训练好的神经网络得到输出的结果。对于神经网络,输出量可以看出一个关于输入和权重系数的一个函数,多次训练的主要的目的就是找到合适的权重系数,使得得到的输出量和已知的输出量之间的差最小,那么这个权重系数就是对应的已经训练好的神经网络模型, 而这个不断调整权重系数的过程也是一个迭代的过程,神经网络技术为现有技术在此不展开描述。这个训练阶段就是机器学习的过程,而训练好的神经网络,就可以用于由新的输入数据,得到输出的数据。
在本申请中,通过预先建立好的所述测量数据和UE位置的对应关系模型,假设该模型是结构如图3所示的神经网络模型,图3给出了一种可用于本申请建立测量数据与终端设备位置对应关系模型的神经网络示例图,该神经网络分为三层,输入层31、隐藏层32和输出层33,每一层上均有一定数量的神经元,为节点,其中该模型中,示例给出输入层31有4个神经元,隐藏层32有6个神经元,输出层33有3个神经元。在训练过程中,如果基于信道估计进行定位,则根据信道估计对应的4个输入,和UE坐标对应的3个输出(即,对应三维坐标),参照已知的UE坐标对应的3个输出进行训练;利用训练好的该模型,在定位过程中,针对模型训练采用的接入节点/传输接收点,获得定位测量时其和UE间的下行信道估计对应的4个输入,将其输入到该训练好的模型中,最终获得UE位置对应的3个输出,即UE的三维坐标,实现UE的定位。该模型仅是示例,本申请的可用的模型,输入层不限于4个输入神经元,同时隐藏层可以有多层不止一层,也不限于6个神经元,此外输出层神经元可以根据要获取的UE位置信息的不同而调整输出的神经元个数,根据对UE定位的需要,如果要获得UE的三维坐标进行三维定位就可选择3个输出神经元,如果是二维定位就可选择2个输出神经元。
以上仅为示例,本申请中定位测量输入的测量数据有三种类型可选:第一种是信道估计、第二种信道冲激响应、第三种是信道估计加信道冲激响应。以上示例为4个输入的示例,该输入神经元的个数不限于4,训练时可以根据情况选定不同的输入个数。假设N个基站和一个UE通信,如果每个基站对应有M个子载波,则对于每个位置可以得到NM个信道估计,如果输入的是信道估计,由于信道估计是复数,分为实部和虚部两部分,那么输入的神经元就有2NM个,而输出的神经元是3个,表示目标用户的三维坐标。如果输入的是信道冲激响应,假设经过滤波以后有K个取样,同样信道冲激响应也是复数,那么输入的神经元也就是2NK个,同样,输出的神经元也是3个,表示目标用户的三维坐标。如果输入的是信道估计加信道冲激响应,那么输入的神经元就是2NM+2NK个,同样,输出的神经元也是3个,表示目标用户的三维坐标。
以上通过神经网络建立输入与输出关系模型的方式仅为示例,不作为对本申请的限制,本申请还可以采用其他输入与输出对应关系模型建立的方式,比如能通过反馈进行学习训练的算法方式都可用于本申请中。
通过基于信道估计、信道冲激响应进行定位的方式,经验证,在外场测试的环境下,仿真的结果如表1所示:
Parameters 定位精度平均值
信道估计 11m
信道冲激响应 8m
2WLS(LTE标准) 30m
表1
可见,LTE现有的如基于AOA、TOA的加权最小二乘(Weighted Least Squares,简 称为WLS)定位精度在大概30m左右,使用信道估计进行定位可以到达大概11m的定位精度,使用信道冲激响应的定位精度可以达到8m左右,本申请的测量数据用于定位,相比现有技术有一倍多的增益。
本申请实施例的一种终端设备的定位方法,通过UE把包括信道估计和/或信道冲激响应的测量数据报告定位服务功能实体的交互流程,实现了对UE高精度、低局限性的定位。
实施例二
图4为本申请提供的一种用于终端设备定位的方法的第二个实施例的流程图。本实施例与实施例一的区别在于,该实施例中,增加了UE与定位服务功能实体之间交互测量要求指示信息的流程,UE获得何种测量数据是根据定位服务功能实体的指示,与实施例一相同或类似的内容在本实施例中不再赘述。
该方法包括:
S201.定位服务功能实体向UE发送指示UE需获取的测量数据的测量要求指示信息,UE接收该指示信息;
UE获得哪些测量数据,可以由定位服务功能实体根据其选定的定位处理方式来指示UE获得对应的测量数据进行有效定位。在UE支持多种定位方式的场景中,定位服务功能实体还可指示UE获取需要使用的一种或多种定位方式对应的测量数据。可选的,该指示信息可以携带在已知的消息中或在新的消息中,可通过其中对应的比特位指示,比如,对应测量数据A的比特位取值1时表示需要UE获取并上报测量数据A,取值0则表示不需要获取该测量数据A,或者取值0需要获取该测量数据A,取值1时表示不需要获取,此为示例不对本申请构成限制。
可选的,定位服务功能实体还向UE发送辅助信息,用于辅助UE的定位测量,辅助信息可以包括小区编号、下行参考信号的配置信息等,这样能够辅助UE知道下行参考信号是哪个或哪些基站发的,下行参考信号在哪里接收,如下行参考信号的配置信息等,即便使用多接入节点进行UE定位,UE能快速确定下行参考信号的接收配置。如果UE已接入某接入节点,并且基于该单接入节点进行定位测量,且已知下行参考信号的配置信息,则也可以无需定位服务功能实体发送辅助信息。
可选的,辅助信息与所述指示信息可以携带在同一消息中发送,或携带在不同消息中发送。
S202.UE接收接入节点/传输接收点发来的下行参考信号;
UE在接收到定位服务功能实体发来的测量要求指示后,进行相应的测量,UE通过接收下行参考信号获得对应所述测量要求指示的测量数据,如果定位服务功能实体有发送所述辅助信息,则UE根据所述辅助信息接收下行参考信号。UE接收下行参考信号,可以从接入节点接收下行参考信号,如果网络中设置有与接入节点分布设置的接入节点对应的传输接收点,UE也可以从相应传输接收点接收下行参考信号。对于发送下行参考信号的接入节点/传输接收点,其上可以设置有用于上行定位测量的接入侧的测量功能实体,也可以未设置有该测量功能实体。
S203.UE基于所述指示信息根据接收到的下行参考信号,获得所述测量数据;
UE基于定位服务功能实体发来的测量要求指示,根据接收的下行参考信号获得对应所述测量要求指示的测量数据,如果需要测量信道估计和/或信道冲激响应,则UE进行 相应测量,获得信道估计和/或信道冲激响应。
S204.UE向定位服务功能实体发送获得的测量数据,定位服务功能实体接收测量数据。
UE根据定位服务功能实体的指示,进行相应的测量,获得对应的测量数据,反馈给定位服务功能实体。
S205.定位服务功能实体根据接收到的所述测量数据,估计UE的位置,实现对UE定位。
定位服务功能实体可以根据预先建立的已经训练好的模型,将收到的包括信道估计和/或信道冲激响应的测量数据作为输入,计算得到UE的位置坐标。
本实施例中,可在UE支持多种测量方式的场景下,通过定位服务功能实体向UE发送测量要求指示信息的交互流程,使得UE能有针对性的进行定位测量并报告测量数据给定位服务功能实体,从而实现定位服务功能实体对UE位置的有效估计,也减少了UE无效定位测量和数据传输的开
对于以上进行终端设备定位的实施例,如果在系统中,UE均支持基于信道估计和/或信道冲激响应的定位测量,系统默认UE均支持这种定位方式,那么定位服务功能实体可以选择默认所有UE具有支持基于信道估计和/或信道冲激响应的定位测量的能力。如果在系统中,并非默认所有UE具有支持基于信道估计和/或信道冲激响应的定位测量的能力,那么定位服务功能实体需确定UE所支持的定位测量的能力,以确定是否采用基于信道估计和/或信道冲激响应的定位测量方式对UE进行定位。定位服务功能实体确定UE所支持的定位测量的能力,可以通过UE报告来获知UE所支持的能力,确定UE是否支持基于信道估计和/或信道冲激响应的定位测量,下面通过具体交互流程进行描述。
图5为本申请中确定终端设备支持的定位测量能力的交互流程示意图。如图5所示,确定UE所支持的定位测量能力,包括以下步骤:
S301.定位服务功能实体向UE发送UE的能力请求。
该步骤为可选步骤,可以理解的,定位服务功能实体确定UE所支持的定位测量能力,可以在需要时通过发送能力请求发起,指示UE反馈,也可以由UE发起,比如入网时上报、发生变化时动态上报、也可以周期性地上报。通过定位服务功能实体发送能力请求,可以按需触发UE反馈,减少了UE频繁报告带来的开销。
如果该能力请求是发给UE,可选的,可以携带在已有消息中发送,也可以携带在新消息中发送。
需要说明的是,以下步骤S302和S303并非流程中的先后步骤,其二者是UE具备定位测量能力在不同情况下的两种处理方式。
S302.UE向定位服务功能实体反馈UE所支持的能力,其中指示UE支持基于信道估计和/或信道冲激响应的测量。
UE可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示UE是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示UE是否支持这种能力。
可选的,对于UE而言,如果具备检测信道估计和/或信道冲激响应的能力,则在接收到上述请求后,在消息中相关的能力信息中增加1比特信息,如该比特位取值1,表示 UE能够检测信道估计和/或信道冲激响应。此举例,并非对本申请的限制,也可通过该比特位取值0来指示UE支持该能力。
S303.UE向定位服务功能实体反馈UE所支持的能力,其中指示UE不支持基于信道估计和/或信道冲激响应的测量。
UE可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示UE是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示UE是否支持这种能力。
可选的,对于UE而言,如果不具备检测信道估计和/或信道冲激响应的能力,则在接收到上述请求后,在消息中相关的能力信息中增加1比特信息,如该比特位取值0,表示UE不能够检测信道估计和/或信道冲激响应。此举例,并非对本申请的限制,也可通过该比特位取值1来指示UE不支持该能力。
S304.定位服务功能实体根据接收到的UE能力反馈信息,确定UE的能力。
定位服务功能实体能够根据UE能力反馈信息,确定UE是否支持基于信道估计和/或信道冲激响应的定位测量,进而确定是否采用该方式实现UE的位置估计。在确认UE支持该方式时,可分别结合上述实施例一和实施例二的方式实现UE的位置估计:结合实施例一,定位服务功能实体可在S101步骤UE报告测量数据之前通过UE报告的能力信息确定UE的定位测量能力,也可通过UE将定位测量能力和相关的测量数据一起上报时确定UE的定位测量能力并同时对UE进行定位;结合实施例二,定位服务功能实体可在S201步骤发送测量要求指示信息之前确定UE的定位测量能力,根据UE的定位测量能力向UE发送测量要求指示信息。
需要说明的,UE能力的确定,不限于以上由UE报告来确定,可选的,如果UE能力为静态固定的,还可以通过管理方(如,设备能力寄存功能实体)获得UE所支持的能力,定位服务功能实体可以选择跟管理方进行交互,确定UE所支持的定位能力。
该设计能够使得定位服务功能实体确定UE所能支持的定位测量方式,从而有效实现定位。
实施例三
根据本申请的实施例,图6为本申请提供的另一种用于终端设备定位的方法的第一个实施例的流程图。为了便于方案理解,在描述时,本实施例及后续实施例皆从交互多方的角度进行整体描述,但绝非限定系统中交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。其中,与前述实施例相同内容的解释和细节,在此不再展开和赘述。
该方法包括:
S401.接入侧的测量功能实体向定位服务功能实体发送测量数据,定位服务功能实体接收所述测量数据;
其中,该测量功能实体,可以设置在接入节点上,也可以与接入节点分离设置,其中一种形式可以是设置在接入节点对应的传输接收点上。可以理解的,所述测量功能实体向定位服务功能实体发送测量数据之前,已经获得所述测量数据。在本申请中,所述测量功能实体能够根据UE发来的上行参考信号,进行定位测量,获得测量数据,具体包括信道估计和/或信道冲激响应。UE发来的上行信号,可以是已经激活的UE发送的非特 定额外用于定位的上行参考信号,如用于上行信道质量测量、上行信道估计、相位跟踪等上行参考信号,比如信道探测参考信号(Sounding Reference Signal,简称为SRS);也可以是以用户为中心的网络中,非激活态的UE发送的上行跟踪参考信号,还可以是专用的上行定位参考信号;还可以是专用额外的定位参考信号。
通过接收的UE发来的上行参考信号,可以计算获得各载波上的信道估计,并进而可以计算出相应的信道冲激响应。对于信道估计和信道冲激响应的相关描述和获取方式,参见实施例一,在此不再赘述。
可选的,所述测量功能实体可以周期性地向定位服务功能实体报告所述测量数据,如果所述测量功能实体只支持基于信道估计和/或信道冲激响应的定位测量,则默认报告包括信道估计和/或信道冲激响应的测量数据,如果所述测量功能实体支持包括基于信道估计和/或信道冲激响应的多种定位测量方式,可以默认根据预设优先级条件确定的定位测量方式对应的测量数据,或者报告所有测量方式对应的测量数据,本申请中涉及报告包括信道估计和/或信道冲激响应的测量数据。当然所述测量功能实体也可以根据网络侧的指示报告对应的包括信道估计和/或信道冲激响应的测量数据。
S402.定位服务功能实体基于收到的测量数据,对UE的位置进行估计,实现UE定位。
对于定位服务功能实体,会先建立所述测量数据和UE位置的对应关系模型,相关建立方式举例说明参见实施例一的描述,在此不再赘述。定位服务功能实体根据所述测量功能实体报告的根据UE发来的上行参考信号进行定位测量获得的所述测量数据,通过预先建立的测量数据与UE位置对应关系模型,根据所述测量数据,得到UE位置的相关输出,实现了UE定位。
本申请实施例的终端设备的定位方法,通过测量功能实体把包括信道估计和/或信道冲激响应的测量数据报告定位服务功能实体的交互流程,实现了对UE高精度、低局限性的定位。
实施例四
图7为本申请提供的另一种用于终端设备定位的方法的第二个实施例的流程图。本实施例与实施例三的区别在于,该实施例中,增加了接入侧的测量功能实体与定位服务功能实体之间交互测量要求指示信息的流程,测量功能实体获得何种测量数据是根据定位服务功能实体的指示,与实施例三相同或类似的内容在本实施例中不再赘述。
该方法包括:
S501.定位服务功能实体选定进行UE定位测量的接入侧的测量功能实体;
该步骤为可选步骤,如果系统中,用于UE定位的测量功能实体不是默认为某些测量功能实体,如为UE提供服务、UE已接入的接入节点(测量功能实体设置于其上),或与该接入节点分布设置的测量装置(测量功能实体设置于其上),则定位服务功能实体还需选择用哪个或哪几个测量功能实体,具体的选择方法举例为:如果是选择一个那么可以选择为用户服务的接入节点及其对应的测量功能实体。如果是选择多站,则除了为用户服务的接入节点以外,选择收到用户信号最强的其他几个接入节点及其对应的测量测量功能实体,然后向相应的测量功能实体发送指示信息。选择方式不限于以上例举的几种。
S502.定位服务功能实体向接入侧的测量功能实体发送指示接入侧的测量功能实体 需获取的测量数据的测量要求指示信息,接入侧的测量功能实体接收该指示信息;
接入侧的测量功能实体获得哪些测量数据,可以由定位服务功能实体根据其选定的定位处理方式来指示接入侧的测量功能实体获得对应的测量数据进行UE的有效定位。在接入侧的测量功能实体支持多种定位方式的场景中,定位服务功能实体还可指示接入侧的测量功能实体获取需要使用的一种或多种定位方式对应的测量数据。可选的,该指示信息可以携带在已知的消息中或在新的消息中,可通过其中对应的比特位指示,比如,对应测量数据A的比特位取值1时表示需要接入侧的测量功能实体获取并上报测量数据A,取值0则表示不需要获取该测量数据A,或者取值0需要获取该测量数据A,取值1时表示不需要获取,此为示例不对本申请构成限制。
可选的,定位服务功能实体还向接入侧的测量功能实体发送辅助信息,用于辅助接入侧的测量功能实体的定位测量,辅助信息可以包括UE所在的小区编号、上行参考信号的配置信息等,这样能够辅助接入侧的测量功能实体知道上行参考信号是哪个UE发的,上行参考信号在哪里接收,如上行参考信号的配置信息等。如果该待定位的UE已接入某测量功能实体对应的接入节点,并且基于该单接入节点进行定位测量,且已知要对该UE进行定位及上行参考信号的配置信息,则也可以无需定位服务功能实体发送辅助信息。
可选的,辅助信息与所述指示信息可以携带在同一消息中发送,或携带在不同消息中发送。
S503.接入侧的测量功能实体接收UE发来的上行参考信号;
接入侧的测量功能实体在接收到定位服务功能实体发来的测量要求指示后,进行相应的测量,接入侧的测量功能实体通过接收待定位UE发来的上行参考信号获得对应所述测量要求指示的测量数据,如果定位服务功能实体有发送所述辅助信息,则接入侧的测量功能实体根据所述辅助信息接收上行参考信号。
S504.接入侧的测量功能实体基于所述指示信息根据接收到的上行参考信号,获得所述测量数据;
接入侧的测量功能实体基于定位服务功能实体发来的测量要求指示,根据接收的上行参考信号获得对应所述测量要求指示的测量数据,如果需要测量信道估计和/或信道冲激响应,则接入侧的测量功能实体进行相应测量,获得信道估计和/或信道冲激响应。
S505.接入侧的测量功能实体向定位服务功能实体发送获得的测量数据,定位服务功能实体接收测量数据。
接入侧的测量功能实体根据定位服务功能实体的指示,进行相应的测量,获得对应的测量数据,反馈给定位服务功能实体。
S506.定位服务功能实体根据接收到的所述测量数据,估计UE的位置,实现对UE定位。
定位服务功能实体可以根据预先建立的已经训练好的模型,将收到的包括信道估计和/或信道冲激响应的测量数据作为输入,计算得到UE的位置坐标。
本实施例中,可在接入侧的测量功能实体支持多种测量方式的场景下,通过定位服务功能实体向接入侧的测量功能实体发送测量要求指示信息的交互流程,使得接入侧的测量功能实体能有针对性的进行定位测量并报告测量数据给定位服务功能实体,从而实现定位服务功能实体对UE位置的有效估计,也减少了接入侧的测量功能实体无效定位测量和数据传输的开销。
对于以上由接入侧进行终端设备定位的实施例,如果在系统中,接入侧的测量功能实体均支持基于信道估计和/或信道冲激响应的定位测量,系统默认接入侧均支持这种定位方式,那么定位服务功能实体可以选择默认所有接入侧的测量功能实体具有支持基于信道估计和/或信道冲激响应的定位测量的能力。如果在系统中,并非默认所有接入侧的测量功能实体具有支持基于信道估计和/或信道冲激响应的定位测量的能力,那么定位服务功能实体需确定接入侧的测量功能实体所支持的定位测量的能力,以确定是否采用基于信道估计和/或信道冲激响应的定位测量方式对UE进行定位。下面通过具体交互流程进行描述。
接入侧的测量功能实体可以设置于接入节点上,或者设置于与对应接入节点分布设置的装置上,其中一种实现方式可以是设置在接入节点对应的传输接收点TRP上。定位服务功能实体确定接入侧的测量功能实体所支持的定位能力,针对所述测量功能实体的不同设置方式场景,即不论是否设置在接入节点上,定位服务功能实体均可通过测量功能实体对应的接入节点(即,作为接入侧的测量功能实体的接入节点或管理接入侧的测量功能实体的接入节点)确定测量功能实体所支持的定位能力,以下以定位服务功能实体与接入节点交互确定测量功能实体的定位测量能力为例进行描述。图8为本申请中确定接入侧的测量功能实体所支持的定位测量能力的交互流程示意图。如图8所示,确定接入侧的测量功能实体所支持的定位测量能力,包括以下步骤:
S601.定位服务功能实体向接入侧的测量功能实体对应的接入节点发送定位能力请求。
该步骤为可选步骤,可以理解的,定位服务功能实体确定接入侧的测量功能实体所支持的定位测量能力,可以在需要时通过发送定位能力请求发起,指示对应接入节点反馈,也可以由对应接入节点发起,如入网时上报、有变化时动态上报以及也可以周期性地报告。通过定位服务功能实体发送能力请求,可以按需触发定位能力反馈,减少了接入节点频繁报告带来的开销。
如果该能力请求是发给接入节点,可选的,可以携带在已有消息中发送,也可以携带在新消息中发送。
需要说明的是,以下步骤S602和S603并非流程中的先后步骤,其二者是接入侧的测量功能实体具备定位测量能力在不同情况下的两种处理方式。
S602.接入侧的测量功能实体对应的接入节点向定位服务功能实体反馈其或对应测量功能实体所支持的能力,其中指示支持基于信道估计和/或信道冲激响应的测量。
所述接入节点可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示其或对应测量功能实体是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示是否支持这种能力。
可选的,对于接入节点而言,如果其或对应测量功能实体具备检测信道估计和/或信道冲激响应的能力,则在接收到上述请求后,在消息中相关的能力信息中增加1比特信息,如该比特位取值1,表示能够检测信道估计和/或信道冲激响应。此举例,并非对本申请的限制,也可通过该比特位取值0来指示支持该能力。
S603.接入侧的测量功能实体对应的接入节点向定位服务功能实体反馈其或对应测量功能实体所支持的能力,其中指示不支持基于信道估计和/或信道冲激响应的测量。
所述接入节点可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示其或对应测量功能实体是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示是否支持这种能力。
可选的,对于接入节点而言,如果其或对应测量功能实体不具备检测信道估计和/或信道冲激响应的能力,则在接收到上述请求后,在消息中相关的能力信息中增加1比特信息,如该比特位取值0,表示不能够检测信道估计和/或信道冲激响应。此举例,并非对本申请的限制,也可通过该比特位取值1来指示不支持该能力。
S604.定位服务功能实体根据接收到的能力反馈信息,确定接入侧的测量功能实体的定位能力。
定位服务功能实体能够根据接入节点的反馈信息,确定接入节点或其对应的测量功能推是否支持基于信道估计和/或信道冲激响应的定位测量,进而确定是否采用该方式实现UE的位置估计。在确认支持该方式时,可分别结合上述实施例三和实施例四的方式实现UE的位置估计:结合实施例三,定位服务功能实体确定的定位测量能力,可在S401步骤接入侧的测量功能实体报告测量数据之前通过接入侧的测量功能实体或其对应的管理实体报告的能力信息来确定,也可以通过接入侧的测量功能实体或其对应的管理实体将定位测量能力和相关的测量数据一起报告来确定;结合实施例四,定位服务功能实体可在S501步骤选定测量功能实体之前确定测量功能实体的定位测量能力,根据测量功能实体的定位测量能力选定测量功能实体;如果不必有S501的步骤,那么定位服务功能实体可在S502向测量功能实体发送测量要求指示信息之前确定测量功能实体的定位测量能力。
需要说明的,接入侧的测量功能实体能力的确定,不限于以上由作为接入侧的测量功能实体的接入节点或管理接入侧的测量功能实体的接入节点报告来确定,可选的,还可以通过其他管理方(如,操作管理维护(Operation Administration and Maintenance,简称为OAM)等管理实体)获得接入侧的测量功能实体所支持的能力,定位服务功能实体可以选择跟其他管理方进行交互,确定测量功能实体所支持的定位能力。
该设计能够使得定位服务功能实体确定接入侧的测量功能实体所能支持的定位测量方式,从而有效实现定位。
以上实施例中UE位置估计是分别从UE侧发送基于信道估计和/或信道冲激响应的定位测量数据和接入侧发送基于信道估计和/或信道冲激响应的定位测量数据的角度进行介绍。可以理解的是,定位服务功能实体对UE的位置估计可以根据UE报告的测量数据,也可以根据接入侧报告的测量数据,还可以根据UE和接入侧都报告的测量数据进行UE位置估计。下面侧重从定位服务功能实体进行位置估计的角度进行介绍。
实施例五
图9为本申请中另一种用于终端设备定位的方法的实施例的流程图。该实施例以介绍定位服务功能实体进行位置估计的计算方法为主,仅描述与发送定位测量数据相关的主要步骤,其并非限定只涉及这些步骤,其还可以包括实施例二和/或实施例三中的其他相关步骤,具体可参考上述实施例,在此不再赘述。
该方法包括:
S701.接入侧的测量功能实体获得基于信道估计和/或信道冲激响应的定位测量数 据。
S702.接入侧的测量功能实体发送基于信道估计和/或信道冲激响应的定位测量数据给定位服务功能实体,定位服务功能实体接收该定位测量数据。
S701与上述实施例中S504类似,S702与上述实施例中S401、S505类似,可参考上述S401、S504和S505的描述,在此不再赘述。
S703.UE获得基于信道估计和/或信道冲激响应的定位测量数据。
S704.UE发送基于信道估计和/或信道冲激响应的定位测量数据给定位服务功能实体,定位服务功能实体接收该定位测量数据。
S703与上述实施例中S203类似,S704与上述实施例中S101和S204类似,可参考上述S101、S203和S204的描述,在此不再赘述。
需要说明的是,S701和S702与S703和S704并非存在必然的先后顺序,仅是针对不同执行动作的对象而言。其也不是必须都存在,在不同场景下,可以不存在S701和S702,或者不存在S703和S704。
S705.定位服务功能实体基于收到的定位测量信息,对UE的位置进行估计,实现定位。
定位服务功能实体,可以基于UE和/或接入侧的测量功能实体报告的测量数据进行UE的位置估计。针对基于UE或接入侧的测量功能实体报告的测量信息进行UE的位置估计,可分别参考上述实施例中S102、S205或S402、S506介绍的方式进行UE的位置估计;针对基于UE和接入侧的测量功能实体报告的测量信息进行UE的位置估计,可参考上述实施例中S102、S205和S402、S506介绍的方式进行UE的位置估计。可选的,可在建立测量数据与UE位置对应关系模型时,同时考虑UE侧获得的测量数据和接入侧获得的测量数据,定位时根据已经建好的对应关系模型,根据UE侧报告的测量数据和接入侧报告的测量数据获得UE的位置估计;可选的,也可以在建立测量数据与UE位置对应关系模型时,分别考虑UE侧获得的测量数据、接入侧获得的测量数据,即有分别针对UE侧和接入侧的对应关系模型,定位时将根据UE报告的测量数据所获得的位置估计结果,以及根据接入侧报告的测量数据所获得的位置估计结果取平均值,确定最终的UE位置。
本申请的定位系统进行定位可以是针对单接入节点/接入侧的测量功能实体的,也可以是针对多接入节点/接入侧的测量功能实体的。对于定位服务功能实体,基于信道估计和/或信道冲激响应的定位方法针对这两种场景,可结合之前给出的神经网络示例,分别进一步举例说明:
如果是单接入节点/接入侧的测量功能实体的情况,在训练阶段,用下行的信道估计或/和信道冲激响应作为输入量,将输出的坐标表示为与输入量和神经网络中每个节点的权重系数和偏移系数相关的函数,训练的目的就是通过迭代调整神经网络中每个节点的权重系数和偏移系数,使得训练后得到的输出的位置坐标和已知的位置坐标的均方差尽可能小,迭代的过程可以在预先设定的次数后或者均方差小于某个预设值后停止。之后在定位阶段,当定位中心接收到下行的信道估计或/和信道冲激响应后,基于已经训练好的神经网络,通过已经训练的权重系数和偏移系数,得到输出的位置坐标,即为该用户的位置坐标。
如果是多接入节点/接入侧的测量功能实体的情况,可以有两种方法。第一种,训练阶段和单接入节点/接入侧的测量功能实体情况一样,也用同样数量的输入,在定位阶段, 定位中心收到每个接入节点/接入侧的测量功能实体的一组下行的信道估计或/和信道冲激响应,所以每个接入节点/接入侧的测量功能实体都能通过神经网络得到一个用户的坐标,然后将得到的位置坐标平均后即可得该用户的位置坐标。第二种方法是,在训练阶段,如果有N个接入节点/接入侧的测量功能实体,那么将这N组信道估计或/和信道冲激响应,作为输入,输出还是一个用户的位置坐标,经过训练后得到训练后神经网络每个节点的权重系数和偏移系数。之后在定位阶段,在收到每个接入节点/接入侧的测量功能实体的下行信道估计或/和信道冲激响应后,将N组作为输入,得到用户的位置坐标。
本申请实施例的终端设备的定位方法,通过UE和/或接入侧的测量功能实体把包括信道估计和/或信道冲激响应的测量数据报告定位服务功能实体的交互流程,实现了对UE高精度、低局限性的定位。
上述主要从系统各实体之间交互进行终端设备定位的流程角度对本申请实施例提供的方案进行了介绍。可以理解的是,各实体,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对UE、接入侧的测量功能实体、定位服务功能实体进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供了一种终端设备。该终端设备可以用于执行图2、图4-图5、图7、图9任一附图中UE所执行的步骤。图10示出了一种简化的终端设备结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备10包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备10进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备设备10可以不具有输入输出装置。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的;此外,射频电路和处理器可以是集成在一起的,也可以是独立设置的。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备10时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者 存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备10的收发单元,将具有处理功能的处理器视为终端设备10的处理单元。如图10所示,终端设备10包括收发单元1001和处理单元1002。收发单元也可以称为收发器(包括发射机和/或接收器)、收发机、收发装置、收发电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。在一些实施例中,收发单元1001和处理单元1002可以是集成在一起的,也可以是独立设置的。另外,处理单元1002中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元1001用于执行图2的S101中UE所执行的步骤,和/或本申请中的其他步骤。处理单元1002用于执行图2对应的实施例中其他相关步骤,如UE在S101发送测量数据之前,获取和确定待发送的测量数据的步骤,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1001用于执行图4的S201、S202和/或S204中UE所执行的步骤,和/或本申请中的其他步骤。处理单元1002用于执行图4的S203,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1001用于执行图5的S301、S302和/或S303中UE所执行的步骤,和/或本申请中的其他步骤。处理单元1002用于执行图5对应的实施例中其他相关步骤,如确定UE所支持的定位能力的步骤,,和/或执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1001用于执行图7的S503中UE所执行的步骤,和/或本申请中的其他步骤。处理单元1002用于执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1001用于执行图9的S704中UE所执行的步骤,和/或本申请中的其他步骤。处理单元1002用于执行图9的S703,和/或本申请中的其他步骤。
本申请实施例还提供了一种网络设备。该网络设备可以作为接入侧的测量功能实体用于执行图4、图6-图9任一附图中接入侧的测量功能实体,或作为接入侧的测量功能实体的接入节点/传输接收点所执行的步骤。图11示出了一种简化的网络设备结构示意图。网络设备11包括1101部分以及1102部分。1101部分主要用于射频信号的收发以及射频信号与基带信号的转换;1102部分主要用于基带处理,对网络设备11进行控制等。1101部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1102部分通常是网络设备11的控制中心,通常可以称为处理单元、控制单元、处理器、或者控制器等,用于控制网络设备11执行上述相关实施例中关于接入侧的测量功能实体,或作为接入侧的测量功能实体的接入节点/传输接收点所执行的步骤。具体可参见上述相关部分的描述。
1101部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将1101部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1101部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1102部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备110的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。在一些实施例中,1101部分和1102部分可以是集成在一起的,也可以是独立设置的。另外,1102部分中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元可用于执行图4的S202中接入节点/传输接收点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图6的S401中接入侧的测量功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图6对应的实施例中其他相关步骤,如接入侧的测量功能实体在S401发送测量数据之前,获取和确定待发送的测量数据的步骤,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图7的S502、S503和/或S505中接入侧的测量功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图7的S504,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图8的S601、S602和/或S603中接入节点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图9的S702中接入节点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图9的S701,和/或本申请中的其他步骤。
本申请实施例还提供了另一种网络设备,该网络设备可以作为定位服务功能实体用于执行图2、图4-图9任一附图中定位服务功能实体所执行的步骤。图12示出了另一种简化的网络设备结构示意图,图12中,网络设备12,包括处理器、存储器、包括通信接口的通信单元、以及可选的输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对网络设备12进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。通信单元主要用于网络通信的传输处理。通信接口执行关于网络通信的接口处理,主要用于收发消息和数据。输入输出装置,例如指示器、触摸屏、显示屏,键盘等主要用于接收操作者输入的数据以及对操作者输出数据。需要说明的是,有些种类的网络设备可以不具有输入输出装置。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。
当需要发送数据时,处理器对待发送的数据进行处理后,输出至通信单元,通信单 元通过通信接口进行接口处理后将数据向外发送。当有数据发送到网络设备12时,通信单元通过通信接口接收到数据,将数据进行处理并输出至处理器,处理器将数据进一步处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的设备中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的通信接口和通信单元视为网络设备12的收发单元,将具有处理功能的处理器视为网络设备12的处理单元。如图12所示,网络设备12包括收发单元1201和处理单元1202。收发单元也可以称为收发器(包括发射机和/或接收器)、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1201中用于实现接收功能的器件视为接收单元,将收发单元1201中用于实现发送功能的器件视为发送单元,即收发单元1201包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。在一些实施例中,收发单元1201和处理单元1202可以是集成在一起的,也可以是独立设置的。另外,处理单元1202中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元1201用于执行图2的S101中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1202用于执行图2的S102,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1201用于执行图4的S201和/或S204中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1202用于执行图4的S205,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1201用于执行图5的S301、S302和/或S303中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1202用于执行图5的S304,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1201用于执行图6的S401中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1202用于执行图6的S402,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1201用于执行图7的S502和/或S505中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1202用于执行图7的S501和/或S506,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1201用于执行图8的S601、S602和/或S603中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1202用于执行图8的S604,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1201用于执行图9的S702和/或S704中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1202用于执行图9的S705,和/或本申请中的其他步骤。
上述提供的任一种通信定位系统的装置中相关内容的解释及有益效果均可参考上文 提供的对应的方法实施例,此处不再赘述。
本申请还提供了一种终端定位系统,包括上述实施方式中定位服务功能实体,以及UE和/或接入侧的测量功能实体。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的任一种方法。本申请还提供了一种通信芯片,其中存储有指令,当其在各管理实体上运行时,使得各管理实体执行上述提供的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器/控制器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种用于终端设备定位的测量装置,其特征在于,所述测量装置包括:
    发送单元,用于向定位服务功能实体发送测量数据,所述测量数据根据接收的针对终端设备的下行参考信号获得;
    所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计;其中,所述测量数据包括以下至少一项:信道估计、信道冲激响应。
  2. 根据权利要求1所述的测量装置,其特征在于,所述测量装置,还包括:
    处理单元,用于根据接收的所述下行参考信号获得所述测量数据。
  3. 根据权利要求1所述的测量装置,其特征在于,所述终端设备,还包括:
    接收单元,用于接收所述定位服务功能实体发来的第一指示信息,所述第一指示信息用于指示所述测量装置需获取的测量数据。
  4. 根据权利要求3所述的测量装置,其特征在于,
    所述接收单元,还用于,接收所述定位服务功能实体发来的辅助信息,所述辅助信息用于辅助所述测量装置接收所述下行参考信号,所述辅助信息与所述第一指示信息被携带在同一消息中由所述定位服务功能实体发送,或被携带在不同消息中由所述定位服务功能实体发送。
  5. 根据权利要求1-4任一项所述的测量装置,其特征在于,
    所述发送单元,还用于向所述定位服务功能实体发送第二指示信息,所述第二指示信息用于指示所述测量装置的定位测量能力。
  6. 一种用于终端设备定位的测量装置,其特征在于,所述测量装置包括:
    发送单元,用于向定位服务功能实体发送测量数据,所述测量数据根据所述测量装置接收的待定位的终端设备发送的上行参考信号获得;
    所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计;其中,所述测量数据包括以下至少一项:信道估计、信道冲激响应。
  7. 根据权利要求6所述的测量装置,其特征在于,所述测量装置,还包括:
    处理单元,用于根据所述接收的上行参考信号获得所述测量数据。
  8. 根据权利要求6所述的测量装置,其特征在于,所述测量装置,还包括:
    接收单元,用于接收所述定位服务功能实体发来的第一指示信息,所述第一指示信息用于指示所述测量装置需获取的测量数据。
  9. 根据权利要求8所述的测量装置,其特征在于,
    所述接收单元,还用于接收所述定位服务功能实体发来的辅助信息,所述辅助信息用于辅助所述测量功能实体接收所述上行参考信号,所述辅助信息与所述第一指示信息被携带在同一消息中由所述定位服务功能实体发送,或被携带在不同消息中由所述定位服务功能实体发送。
  10. 根据权利要求6-9任一项所述的测量装置,其特征在于,
    所述发送单元,还用于向所述定位服务功能实体发送第二指示信息,所述第二指示信息用于指示所述测量装置的定位测量能力。
  11. 一种用于终端设备定位的定位装置,其特征在于,所述定位装置包括:
    接收单元,用于接收定位测量功能实体发送的针对待定位的终端设备的测量数据,所述测量数据用于所述定位装置对所述终端设备进行位置估计,所述测量 数据包括以下至少一项:信道估计、信道冲激响应;
    其中,所述定位测量功能实体包括待定位的所述终端设备和/或接入侧的测量装置;所述测量数据基于述终端设备接收的下行参考信号和/或所述测量装置接收的所述终端设备发送的上行参考信号获得。
  12. 根据权利要求11所述的定位装置,其特征在于,所述定位装置还包括:
    处理单元,用于根据接收到的所述测量数据,估计所述终端设备的位置。
  13. 根据权利要求12所述的定位装置,其特征在于,所述处理单元,还用于预先建立所述测量数据与终端设备位置对应关系的模型。
  14. 根据权利要求11所述的定位装置,其特征在于,所述定位装置还包括:
    发送单元,用于在所述接收单元接收测量数据之前,向所述定位测量功能实体发送第一指示信息,所述第一指示信息用于指示所述定位测量功能实体需获取的测量数据。
  15. 根据权利要求14所述的定位装置,其特征在于,所述发送单元,还用于在所述接收单元接收测量数据之前,向所述定位测量功能实体发送辅助信息,所述辅助信息用于辅助所述定位测量功能实体获得所述测量数据,所述辅助信息与所述第一指示信息被携带在同一消息中发送,或被携带在不同消息中发送。
  16. 根据权利要求11-15任一项所述的定位装置,其特征在于,
    所述接收单元,还用于接收所述定位测量功能实体或对应所述定位测量功能实体的能力信息管理实体发送的第二指示信息,所述第二指示信息用于指示所述定位测量功能实体的定位测量能力。
  17. 一种用于终端设备定位的方法,其特征在于,所述方法包括:
    终端设备向定位服务功能实体发送测量数据,所述测量数据根据所述终端设备接收的下行参考信号获得;
    所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计;其中,所述测量数据包括以下至少一项:信道估计、信道冲激响应。
  18. 根据权利要求17所述的方法,其特征在于,所述终端设备向定位服务功能实体发送测量数据之前,还包括:
    根据接收的所述下行参考信号获得所述测量数据。
  19. 根据权利要求17所述的方法,其特征在于,所述终端设备向定位服务功能实体发送测量数据之前,还包括:
    所述终端设备接收所述定位服务功能实体发来的第一指示信息,所述第一指示信息用于指示所述终端设备需获取的测量数据。
  20. 根据权利要求19所述的方法,其特征在于,所述终端设备向定位服务功能实体发送测量数据之前,还包括:
    所述终端设备接收所述定位服务功能实体发来的辅助信息,所述辅助信息用于辅助终端设备接收所述下行参考信号,所述辅助信息与所述第一指示信息被携带在同一消息中由所述定位服务功能实体发送,或被携带在不同消息中由所述定位服务功能实体发送。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,所述方法还包括:所述终端设备向所述定位服务功能实体发送第二指示信息,所述第二指示信息用 于指示所述终端设备的定位测量能力。
  22. 一种用于终端设备定位的方法,其特征在于,所述方法包括:
    接入侧的测量功能实体向定位服务功能实体发送测量数据,所述测量数据根据所述测量功能实体接收的待定位终端设备发送的上行参考信号获得;
    所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计;其中,所述测量数据包括以下至少一项:信道估计、信道冲激响应。
  23. 根据权利要求22所述的方法,其特征在于,所述接入侧的测量功能实体向定位服务功能实体发送测量数据之前,还包括:
    根据所述接收的上行参考信号获得所述测量数据。
  24. 根据权利要求22所述的方法,其特征在于,所述接入侧的测量功能实体向定位服务功能实体发送测量数据之前,还包括:
    所述测量功能实体接收所述定位服务功能实体发来的第一指示信息,所述第一指示信息用于指示所述测量功能实体需获取的测量数据。
  25. 根据权利要求24所述的方法,其特征在于,所述接入侧的测量功能实体向定位服务功能实体发送测量数据之前,还包括:
    所述测量功能实体接收所述定位服务功能实体发来的辅助信息,所述辅助信息用于辅助测量功能实体接收上行参考信号,所述辅助信息与所述第一指示信息被携带在同一消息中由所述定位服务功能实体发送,或被携带在不同消息中由所述定位服务功能实体发送。
  26. 根据权利要求22-25任一项所述的方法,其特征在于,所述方法还包括:所述测量功能实体向所述定位服务功能实体发送第二指示信息,所述第二指示信息用于指示所述测量功能实体的定位测量能力。
  27. 一种用于终端设备定位的方法,其特征在于,所述方法包括:
    定位服务功能实体接收定位测量功能实体发送的针对待定位的终端设备的测量数据,所述测量数据用于所述定位服务功能实体对所述终端设备进行位置估计,所述测量数据包括以下至少一项:信道估计、信道冲激响应;
    其中,所述定位测量功能实体包括待定位的所述终端设备和/或接入侧的测量装置;所述测量数据基于述终端设备接收的下行参考信号和/或所述测量装置接收的所述终端设备发送的上行参考信号获得。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述定位服务功能实体基于预先建立的所述测量数据与终端设备位置对应关系的模型,根据所述测量数据,估计所述终端设备的位置。
  29. 根据权利要求27所述的方法,其特征在于,所述定位服务功能实体接收定位测量功能实体发送的针对待定位的终端设备的测量数据之前,还包括:
    向所述定位测量功能实体发送第一指示信息,所述第一指示信息用于指示所述定位测量功能实体需获取的测量数据。
  30. 根据权利要求29所述的方法,其特征在于,所述定位服务功能实体接收定位测量功能实体发送的针对待定位的终端设备的测量数据之前,还包括:
    向所述定位测量功能实体发送辅助信息,所述辅助信息用于辅助所述定位测量功能实体获得所述测量数据,所述辅助信息与所述第一指示信息被携带在同一 消息中发送,或被携带在不同消息中发送。
  31. 根据权利要求27-30任一项所述的方法,其特征在于,所述方法还包括:
    所述定位服务功能实体接收所述定位测量功能实体或对应所述定位测量功能实体的能力信息管理实体发送的第二指示信息,所述第二指示信息用于指示所述定位测量功能实体的定位测量能力。
  32. 一种用于终端设备定位的系统,其特征在于,所述系统包括:
    如权利要求11至16任一项所述的定位装置,以及如权利要求1至5任一项所述的测量装置和/或如权利要求6至10任一项所述的测量装置。
  33. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求17至31中任一项所述的定位方法。
  34. 一种用于终端设备定位的装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求17至31中任一项所述的方法。
  35. 一种用于终端设备定位的装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求17至31中任一项所述的方法。
  36. 一种用于终端设备定位的装置,包括处理器,其特征在于,所述处理器用于执行计算机程序时实现如权利要求17至31中任一项所述的方法。
PCT/CN2018/123748 2018-01-05 2018-12-26 用于终端设备定位的方法、装置及系统 WO2019134563A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18898228.4A EP3726863B1 (en) 2018-01-05 2018-12-26 Method and system for positioning a terminal device
US16/918,584 US11125849B2 (en) 2018-01-05 2020-07-01 Method, apparatus, and system for positioning terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810011910.8 2018-01-05
CN201810011910.8A CN110022523B (zh) 2018-01-05 2018-01-05 用于终端设备定位的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/918,584 Continuation US11125849B2 (en) 2018-01-05 2020-07-01 Method, apparatus, and system for positioning terminal device

Publications (1)

Publication Number Publication Date
WO2019134563A1 true WO2019134563A1 (zh) 2019-07-11

Family

ID=67143844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123748 WO2019134563A1 (zh) 2018-01-05 2018-12-26 用于终端设备定位的方法、装置及系统

Country Status (4)

Country Link
US (1) US11125849B2 (zh)
EP (1) EP3726863B1 (zh)
CN (1) CN110022523B (zh)
WO (1) WO2019134563A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11561277B2 (en) 2020-09-30 2023-01-24 Nokia Solutions And Networks Oy Device positioning
EP4195600A4 (en) * 2020-08-05 2024-04-24 Spreadtrum Semiconductor (Nanjing) Co., Ltd. METHOD AND APPARATUS FOR REPORTING AI NETWORK MODEL SUPPORT CAPABILITY, METHOD AND APPARATUS FOR RECEIVING AI NETWORK MODEL SUPPORT CAPABILITY, AND STORAGE MEDIUM, USER EQUIPMENT AND BASE STATION

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11006384B2 (en) * 2019-03-28 2021-05-11 Qualcomm Incorporated Methods and systems for using bandwidth parts information during positioning of a mobile device
CN111953448B (zh) * 2019-05-17 2024-04-30 株式会社Ntt都科摩 无线通信系统中的终端和基站
WO2021196099A1 (zh) * 2020-04-01 2021-10-07 华为技术有限公司 终端定位方法及装置
US11785421B2 (en) * 2020-04-14 2023-10-10 Qualcomm Incorporated Neural network based line of sight detection for positioning
CN113543305A (zh) * 2020-04-22 2021-10-22 维沃移动通信有限公司 定位方法、通信设备和网络设备
CN113973260B (zh) * 2020-07-22 2023-08-01 大唐移动通信设备有限公司 上行信号定位的方法、通信基站和测量基站及ue
CN111983560B (zh) * 2020-08-05 2022-12-30 北京理工大学 一种双可重构智能表面辅助的毫米波单基站定位方法
US20220070028A1 (en) * 2020-09-01 2022-03-03 Qualcomm Incorporated Neural network based line of sight detection and angle estimation for positioning
CN114642020A (zh) * 2020-10-15 2022-06-17 北京小米移动软件有限公司 请求发送方法和装置、测量结果发送方法和装置
US20230417864A1 (en) * 2020-11-13 2023-12-28 Beijing Xiaomi Mobile Software Co., Ltd. Angle processing method and apparatus, and communication device
EP4309383A1 (en) * 2021-03-15 2024-01-24 Sony Group Corporation Method for generating location information in a wireless network
CN113050032B (zh) * 2021-03-17 2024-06-04 西京学院 一种基于终端簇非测距的室内三维定位系统及方法
US20220303159A1 (en) * 2021-03-18 2022-09-22 San Diego State University (SDSU) Foundation, dba San Diego State University Research Foundation Systems and methods for optimization and estimation of nonlinear mimo systems with deep neural networks
JP2024514504A (ja) * 2021-04-02 2024-04-02 華為技術有限公司 測位情報報告方法及び装置
US11630181B2 (en) 2021-04-05 2023-04-18 Qualcomm Incorporated Systems and methods for storage of UE positioning capabilities in a network
CN113727432A (zh) * 2021-07-22 2021-11-30 河南科技大学 基于单个5g基站的波束测量用户设备定位信息的方法
CN115811765A (zh) * 2021-09-15 2023-03-17 维沃软件技术有限公司 定位方法、装置及终端
WO2023097634A1 (zh) * 2021-12-03 2023-06-08 Oppo广东移动通信有限公司 定位方法、模型训练方法和设备
WO2023184112A1 (en) * 2022-03-28 2023-10-05 Nec Corporation Methods, devices, and computer readable medium for communication
CN116939819A (zh) * 2022-03-29 2023-10-24 索尼集团公司 用于无线通信的方法和电子设备以及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052192A (zh) * 2006-04-04 2007-10-10 大唐移动通信设备有限公司 移动通信系统中的测量上报方法
CN102111709A (zh) * 2009-12-25 2011-06-29 中兴通讯股份有限公司 在含有家用基站的网络中实现终端定位的方法和装置
CN103139905A (zh) * 2011-11-29 2013-06-05 华为技术有限公司 对用户设备进行定位的方法和装置
US20150133157A1 (en) * 2012-07-27 2015-05-14 Huawei Technologies Co., Ltd. Positioning Method, Control Device, and Mobile Communications System

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706328B2 (en) * 2006-01-04 2010-04-27 Qualcomm Incorporated Methods and apparatus for position location in a wireless network
US8098590B2 (en) * 2008-06-13 2012-01-17 Qualcomm Incorporated Apparatus and method for generating performance measurements in wireless networks
US8744481B2 (en) * 2008-06-24 2014-06-03 Telefonaktiebolaget L M Ericsson (Publ) Method for providing geographical position related information in a wireless network
US20110034189A1 (en) * 2009-08-05 2011-02-10 Qualcomm Incorporated Methods and systems for identifying transmitters in a single frequency network broadcast system
US8340683B2 (en) * 2009-09-21 2012-12-25 Andrew, Llc System and method for a high throughput GSM location solution
JP2013520922A (ja) * 2010-02-25 2013-06-06 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信ネットワークにおける方法及びノード
WO2011139201A1 (en) * 2010-05-03 2011-11-10 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for positioning measurements in multi-antenna transmission systems
BR112012028758A2 (pt) * 2010-05-10 2016-07-19 Ericsson Telefon Ab L M métodos e aparelho para suporte de configuração de medição
WO2012174716A1 (en) * 2011-06-22 2012-12-27 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for selecting a positioning solution
WO2013040772A1 (zh) * 2011-09-21 2013-03-28 中兴通讯股份有限公司 一种基于信道估计的定位方法及装置
KR20130050718A (ko) * 2011-11-08 2013-05-16 한국전자통신연구원 기상 데이터를 토대로 하는 채널 예측 방법 및 그 장치
CN104702387B (zh) * 2013-12-05 2018-04-10 华为技术有限公司 导频信号发送、接收方法及装置
WO2015199392A1 (ko) * 2014-06-23 2015-12-30 엘지전자(주) 무선 통신 시스템에서 포지셔닝(Positioning)을 수행하기 위한 방법 및 이를 위한 장치
US9763216B2 (en) * 2014-08-08 2017-09-12 Wisconsin Alumni Research Foundation Radiator localization
FR3027193B1 (fr) * 2014-10-17 2016-12-09 Dbapparel Operations Bas du corps masculin regroupant plusieurs tailles
TWI602462B (zh) * 2015-01-30 2017-10-11 財團法人資訊工業策進會 使用者裝置、裝置對裝置使用者裝置、後端裝置及其定位方法
KR102284044B1 (ko) * 2015-09-10 2021-07-30 삼성전자주식회사 무선 통신 시스템에서 위치 추정 방법 및 장치
CN105472735B (zh) * 2015-12-10 2018-08-21 成都希盟泰克科技发展有限公司 一种基于lte移动端定位的时延估计误差补偿方法
CN107294884B (zh) * 2016-04-11 2020-12-29 中国移动通信有限公司研究院 一种基于位置的信道估计方法及装置
US11606705B2 (en) * 2018-10-05 2023-03-14 Qualcomm Incorporated System and methods for rapid round-trip-time measurement distribution
US11277747B2 (en) * 2019-04-03 2022-03-15 Google Llc Base station location authentication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052192A (zh) * 2006-04-04 2007-10-10 大唐移动通信设备有限公司 移动通信系统中的测量上报方法
CN102111709A (zh) * 2009-12-25 2011-06-29 中兴通讯股份有限公司 在含有家用基站的网络中实现终端定位的方法和装置
CN103139905A (zh) * 2011-11-29 2013-06-05 华为技术有限公司 对用户设备进行定位的方法和装置
US20150133157A1 (en) * 2012-07-27 2015-05-14 Huawei Technologies Co., Ltd. Positioning Method, Control Device, and Mobile Communications System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726863A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4195600A4 (en) * 2020-08-05 2024-04-24 Spreadtrum Semiconductor (Nanjing) Co., Ltd. METHOD AND APPARATUS FOR REPORTING AI NETWORK MODEL SUPPORT CAPABILITY, METHOD AND APPARATUS FOR RECEIVING AI NETWORK MODEL SUPPORT CAPABILITY, AND STORAGE MEDIUM, USER EQUIPMENT AND BASE STATION
US11561277B2 (en) 2020-09-30 2023-01-24 Nokia Solutions And Networks Oy Device positioning

Also Published As

Publication number Publication date
EP3726863A4 (en) 2020-11-11
EP3726863B1 (en) 2023-02-01
US20200333424A1 (en) 2020-10-22
EP3726863A1 (en) 2020-10-21
CN110022523B (zh) 2022-04-12
CN110022523A (zh) 2019-07-16
US11125849B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2019134563A1 (zh) 用于终端设备定位的方法、装置及系统
US20220321293A1 (en) Signal communication method and device
US11009582B2 (en) Method, apparatus, and system for positioning terminal device
US9435876B2 (en) Autonomous muting indication to enable improved time difference of arrival measurements
KR101923262B1 (ko) 측정 노드를 포함하여 구성되는 시스템 내에서 다중 수신 포인트로 위치 결정하는 방법
US20110176440A1 (en) Restrictions on autonomous muting to enable time difference of arrival measurements
US20220330198A1 (en) Signal transmission method and apparatus
US10656241B2 (en) Methods and apparatus for reporting RSTD values
WO2014056172A1 (zh) 定位方法和装置
US11949621B2 (en) System and method for phase noise-based signal design for positioning in a communication system
US11337028B2 (en) Combined fine timing measurement (FTM) and non-FTM messaging for position determination
WO2019062868A1 (zh) 一种发送定位信号的方法及设备
WO2023284457A1 (zh) 终端设备的定位方法、装置及存储介质
WO2022194144A1 (zh) 定位方法、终端及网络侧设备
WO2017071136A1 (zh) 辅助定位的方法及装置
US11864150B2 (en) Uplink coordinated multipoint positioning
JP2023513291A (ja) データ伝送方法及び装置
CN115087097A (zh) 终端的定位方法、系统、处理设备及存储介质
US20140355466A1 (en) Locationing Determination Using Pilots Signals in a Wireless Local Area Network (WLAN)
CN111818552B (zh) 一种基于cu-du架构的定位方法及装置
Shih et al. Angle-of-Arrival Estimation with Practical Phone Antenna Configurations
WO2017063177A1 (zh) 一种信号确定方法及装置
CN115902768A (zh) 终端设备的定位方法、装置及存储介质
WO2021056355A1 (zh) 定位方法、设备、系统、芯片及存储介质
EP4397055A1 (en) Positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898228

Country of ref document: EP

Effective date: 20200714