WO2019134518A1 - 像素排布结构、其制作方法、显示面板、显示装置和掩模板 - Google Patents

像素排布结构、其制作方法、显示面板、显示装置和掩模板 Download PDF

Info

Publication number
WO2019134518A1
WO2019134518A1 PCT/CN2018/122063 CN2018122063W WO2019134518A1 WO 2019134518 A1 WO2019134518 A1 WO 2019134518A1 CN 2018122063 W CN2018122063 W CN 2018122063W WO 2019134518 A1 WO2019134518 A1 WO 2019134518A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
pixel
area
pixel arrangement
Prior art date
Application number
PCT/CN2018/122063
Other languages
English (en)
French (fr)
Inventor
王本莲
汪杨鹏
王杨
尹海军
邱海军
胡耀
代伟男
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/470,161 priority Critical patent/US11114507B2/en
Publication of WO2019134518A1 publication Critical patent/WO2019134518A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel arrangement structure, a method of fabricating the pixel arrangement structure, a display panel, a display device, and a mask.
  • organic electroluminescent (OLED) displays Compared with liquid crystal displays (LCDs), organic electroluminescent (OLED) displays have the advantages of low energy consumption, low production cost, self-illumination, wide viewing angle and fast response.
  • OLED display devices At present, in the field of flat panel display such as mobile phones, PDAs, and digital cameras, OLED display devices have begun to replace traditional liquid crystal displays.
  • An OLED display typically includes a base substrate and sub-pixels arranged in a matrix on the base substrate.
  • the sub-pixels are generally formed by vapor-depositing an organic light-emitting material on an array substrate using a high-definition metal mask (FMM).
  • FMM high-definition metal mask
  • a pixel arrangement structure including: a plurality of first group sub-pixels arranged in a first direction, each of the plurality of first groups including a plurality of alternately arranged a first sub-pixel and a plurality of third sub-pixels; and a plurality of second group sub-pixels arranged in a first direction, each of the plurality of second groups comprising a plurality of third sub-pixels alternately arranged and a plurality of second sub-pixels.
  • the plurality of first groups and the plurality of second groups are alternately arranged in a second direction perpendicular to the first direction.
  • the plurality of first groups and the plurality of second groups are arranged such that a plurality of third group sub-pixels arranged in the second direction and a plurality of fourth groups arranged in the second direction are formed a sub-pixel, the plurality of third groups and the plurality of fourth groups are alternately arranged in the first direction, each of the plurality of third groups including a plurality of first sub-pixels alternately arranged and a plurality of third sub-pixels, each of the plurality of fourth groups including a plurality of third sub-pixels and a plurality of second sub-pixels alternately arranged.
  • At least a portion of the plurality of third sub-pixels in each first group have a first shape, and at least a portion of the plurality of third sub-pixels in each second group There is a second shape different from the first shape.
  • each of the third sub-pixels has substantially the same area.
  • the first plurality of third sub-pixels of each of the third sub-pixels each have an area and the second plurality of third sub-pixels of each of the third sub-pixels have different Another area of the area.
  • each of the third sub-pixels is arranged such that each of the first plurality of third sub-pixels in each of the third sub-pixels is in the first direction and the second direction a first distance from a first sub-pixel directly adjacent to each of the first sub-pixels in one direction, and a second one of the second plurality of third sub-pixels in each of the third sub-pixels Having a second distance from the immediately adjacent first sub-pixel of each of the first sub-pixels in another of the first direction and the second direction, the first distance and the The ratio of the second distance is in the range of 1 to 1.5.
  • Each of the third sub-pixels is arranged such that each of the first plurality of third sub-pixels of each of the third sub-pixels has a distance in one of the first direction and the second direction a third distance of the immediately adjacent second sub-pixels of each of the second sub-pixels, and each of the second plurality of third sub-pixels of each of the third sub-pixels is in the first direction And a fourth distance from the immediately adjacent second sub-pixel of each of the second sub-pixels, and a ratio of the third distance to the fourth distance is In the range of 1 to 1.5.
  • each of the first sub-pixels, each of the second sub-pixels, and each of the third sub-pixels are disposed substantially equidistantly with respect to each other.
  • each of the third sub-pixels is disposed substantially equidistantly with respect to each other, and each of the first sub-pixels and each of the second sub-pixels are disposed substantially equidistantly with respect to each other.
  • each of the third sub-pixels of the plurality of first group of sub-pixels is directly adjacent to the first sub-pixel of each of the first sub-pixels in the first direction
  • the pixels have opposite sides that are substantially parallel to each other.
  • Each of the third sub-pixels of the plurality of second group sub-pixels and the second sub-pixels directly adjacent to each of the second sub-pixels in the first direction are substantially parallel to each other The opposite side.
  • Each of the third sub-pixels of the plurality of third group sub-pixels and the first sub-pixels directly adjacent to each of the first sub-pixels in the second direction have substantially parallel to each other The opposite side.
  • Each of the third sub-pixels of the plurality of fourth group sub-pixels and the second sub-pixels directly adjacent to each of the second sub-pixels in the second direction have substantially parallel to each other The opposite side.
  • the third sub-pixels of the plurality of first groups each have the first shape
  • the third sub-pixels of the plurality of second groups each have Said second shape
  • a first plurality of third sub-pixels of the third sub-pixels in each of the plurality of first groups have the first shape
  • the plurality of first groups The second plurality of third sub-pixels of the third sub-pixels in each of the first sub-pixels have the second shape, the first shape and the second shape being for the third in the first group
  • the sub-pixels appear alternately.
  • a first plurality of third sub-pixels of the third sub-pixels in each of the plurality of second groups each having the second shape, and each of the plurality of first groups
  • the second plurality of third sub-pixels of the third sub-pixels each have the first shape, the first shape and the second shape for the third sub-pixel in the second group It appears alternately.
  • the third set of sub-pixels have substantially the same pattern as the first set of sub-pixels, and the fourth set of sub-pixels have substantially the same pattern as the second set of sub-pixels.
  • each of the first sub-pixels has substantially the same area.
  • the first plurality of first sub-pixels of each of the first sub-pixels each have an area and the second plurality of first sub-pixels of each of the first sub-pixels each have a different Another area of the area.
  • each of the first sub-pixels has substantially the same shape.
  • the first plurality of first sub-pixels in each of the first sub-pixels each have a shape and the second plurality of first sub-pixels in each of the first sub-pixels each have a different Another shape of the shape.
  • each of the second sub-pixels has substantially the same area.
  • the first plurality of second sub-pixels of each of the second sub-pixels each have an area and the second plurality of second sub-pixels of each of the second sub-pixels have different Another area of the area.
  • each of the second sub-pixels has substantially the same shape.
  • the first plurality of second sub-pixels of each of the second sub-pixels each have a shape and the second plurality of second sub-pixels of each of the second sub-pixels each have a different Another shape of the shape.
  • the first sub-pixel is a red sub-pixel
  • the second sub-pixel is a blue sub-pixel
  • the third sub-pixel is a green sub-pixel.
  • the first sub-pixel is a blue sub-pixel
  • the second sub-pixel is a red sub-pixel
  • the third sub-pixel is a green sub-pixel.
  • the blue sub-pixels each have a first area
  • the red sub-pixels each have a second area that is smaller than the first area
  • the green sub-pixels each have less than the The third area of the second area.
  • the blue sub-pixels each have a first area, the green sub-pixels each having a second area that is smaller than the first area, wherein the red sub-pixels each have less than the The third area of the second area.
  • the red sub-pixel has a first total area
  • the green sub-pixel has a second total area
  • the blue sub-pixel has a third total area.
  • the first total area, the second total area, and the third total area have 1: (1.1 to 1.5): (1.2 to 1.7), and further 1: (1.2 to 1.35): (1.4 to 1.55) Or, further, a ratio of 1:1.27:1.46.
  • the ratio of each of the red sub-pixels, each of the green sub-pixels, and each of the blue sub-pixels is approximately 1:2:1.
  • the first shape and the second shape are selected from the group consisting of a rectangle, an ellipse, a convex polygon, a concave polygon, a triangle, and a circle.
  • a display panel including: a display substrate; and a pixel arrangement structure as described above, the pixel arrangement structure being formed on the display substrate.
  • the pixel arrangement structure is arranged such that each of the first direction and the second direction intersects about 45 degrees of a length direction of the display substrate.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel are organic electroluminescent sub-pixels.
  • a display device including the display panel as described above.
  • a set of masks for fabricating a pixel arrangement comprising: a first mask defining a plurality of first openings, the plurality of first openings a pattern arranged to have a pattern corresponding to a pattern of each of the first sub-pixels; a second mask defining a plurality of second openings, the plurality of second openings being arranged to have a second sub-pixel a pattern corresponding to the pattern; and a third mask defining a plurality of third openings, the plurality of third openings being arranged to have a pattern corresponding to the pattern of each of the third sub-pixels.
  • a method of fabricating a pixel arrangement using a set of reticle as described above comprising: providing a display substrate; evaporating the first electroluminescent material and by evaporating An electroluminescent material is deposited through the plurality of first openings of the first mask to deposit the evaporated first electroluminescent material onto the display substrate to form respective first sub-pixels; evaporating a second Electroluminescent material and depositing the evaporated second electroluminescent material onto the display substrate by passing the evaporated second electroluminescent material through the plurality of second openings of the second mask Forming each of the second sub-pixels; and evaporating the third electroluminescent material and passing the evaporated third electroluminescent material through the plurality of third openings of the third mask A third electroluminescent material is deposited onto the display substrate to form each of the third sub-pixels.
  • a pixel arrangement structure including: five first sub-pixels respectively located at a center position of a first virtual rectangle and four vertex positions; four second sub-pixels Located at respective center positions of the four sides of the first virtual rectangle; and four third sub-pixels located within the corresponding four second virtual rectangles, each of the second virtual rectangles a respective one of the four vertex positions of the first virtual rectangle, the four sides of the first virtual rectangle, and a corresponding center position of the two sides of the corresponding vertex position, And defining a center position of the first virtual rectangle, the four second virtual rectangles forming the first virtual rectangle.
  • a display panel including: a display substrate; and a plurality of adjacent pixel arrangement structures as described above, the pixel arrangement structure being formed on the display substrate.
  • Each of the two first virtual rectangles directly adjacent to each of the first virtual rectangles in the row direction has a common side such that the sub-pixels on the common side are shared by the two immediately adjacent first virtual rectangles.
  • Each of the two first virtual rectangles directly adjacent to each of the first virtual rectangles has a common side in the column direction such that the sub-pixels on the common side are shared by the two directly adjacent first virtual rectangles .
  • a pixel arrangement structure including: a plurality of first repeating units arranged in a first direction, each of the plurality of first repeating units including a plurality of alternately arranged a first sub-pixel and a plurality of third sub-pixels; and a plurality of second repeating units arranged in the first direction, each of the plurality of second repeating units comprising a plurality of third sub-pixels arranged alternately And a plurality of second sub-pixels.
  • the plurality of first repeating units and the plurality of second repeating units are alternately arranged in a second direction perpendicular to the first direction.
  • the plurality of first repeating units and the plurality of second repeating units are arranged such that each of the first sub-pixels and each of the third sub-pixels The pixels are directly adjacent and each of the second sub-pixels is directly adjacent to four of the third sub-pixels.
  • FIG. 1 is a schematic plan view of a pixel arrangement structure in accordance with an embodiment of the present disclosure
  • Figure 2 is a schematic plan view of a partial area of the pixel arrangement structure of Figure 1;
  • FIG. 3 is a schematic plan view of a localized area of a variation of the pixel arrangement structure of FIG. 1;
  • FIG. 4 is a schematic plan view of a local area of another variation of the pixel arrangement structure of FIG. 1;
  • Figure 5 is a schematic plan view of a localized area of another variation of the pixel arrangement of Figure 1;
  • FIG. 6 is a schematic plan view of a local area of another variation of the pixel arrangement of FIG. 1;
  • Figure 7 is a schematic plan view of a localized area of another variation of the pixel arrangement of Figure 1;
  • Figure 8 is a schematic plan view of a localized area of another variation of the pixel arrangement of Figure 1;
  • FIG. 9 is a schematic view generally showing a principle of color transfer of a pixel arrangement structure according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic plan view of a display device according to an embodiment of the present disclosure.
  • 11A, 11B, and 11C are schematic plan views of a set of reticle according to an embodiment of the present disclosure.
  • FIG. 12 is a flow chart of a method of fabricating a pixel arrangement structure in accordance with an embodiment of the present disclosure.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/ Some should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer Thus, a first element, component, region, layer, or section, which is discussed below, may be referred to as a second element, component, region, layer or section without departing from the teachings of the disclosure.
  • under and under can encompass both the ⁇ RTIgt; Terms such as “before” or “before” and “after” or “following” may be used, for example, to indicate the order in which light passes through the elements.
  • the device can be oriented in other ways (rotated 90 degrees or in other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a layer is referred to as “between two layers,” it may be a single layer between the two layers, or one or more intermediate layers may be present.
  • FIG. 1 is a schematic plan view of a pixel arrangement structure 100 in accordance with an embodiment of the present disclosure.
  • the pixel arrangement structure 100 includes a plurality of first group sub-pixels (also referred to as “first repeating units”) G1 arranged in the first direction D1 and more arranged in the first direction D2.
  • a second set of sub-pixels also referred to as “second repeating units” G2.
  • the plurality of first groups G1 and the plurality of second groups G2 are alternately arranged in a second direction D2 perpendicular to the first direction D1.
  • Each of the plurality of first groups G1 includes a plurality of first sub-pixels 101 and a plurality of third sub-pixels 103 that are alternately arranged. At least a portion of the plurality of third sub-pixels 103 in the first group G1 has a first shape. In this embodiment, the third sub-pixels 103 of the plurality of first groups G1 each have a first shape (elliptical in the example of FIG. 1).
  • Each of the plurality of second groups G2 includes a plurality of third sub-pixels 103 and a plurality of second sub-pixels 102 that are alternately arranged. At least a portion of the plurality of third sub-pixels 103 in the second group G2 has a second shape different from the first shape. In this embodiment, the third sub-pixels 103 of the plurality of second groups G2 each have a second shape (a rectangle in the example of FIG. 1).
  • the plurality of first groups G1 and the plurality of second groups G2 are also arranged such that a plurality of third group sub-pixels G3 arranged in the second direction D2 and a plurality of fourth group sub-pixels arranged in the second direction D2 are formed G4.
  • the plurality of third groups G3 and the plurality of fourth groups G4 are alternately arranged in the first direction D1.
  • Each of the plurality of third groups G3 includes a plurality of first sub-pixels 101 and a plurality of third sub-pixels 103 alternately arranged, and each of the plurality of fourth groups G4 includes a plurality of third sub-arrays arranged alternately A pixel 103 and a plurality of second sub-pixels 102.
  • each of the first sub-pixels 101 is directly adjacent to the four third sub-pixels 103
  • each of the second sub-pixels 102 is also directly adjacent to the four third sub-pixels 103.
  • the pixel arrangement structure 100 can allow the first sub-pixel 101, the second sub-pixel 102, and the third sub-pixel 103 to be more closely arranged under the same process conditions, thereby increasing as much as possible.
  • the area of a large single sub-pixel helps to reduce the drive current of the display device and increase the lifetime of the display device.
  • each of the first, second, and third sub-pixels 101, 102, and 103 are disposed substantially equidistantly with respect to each other.
  • the third sub-pixels 103 may be arranged differently.
  • each of the third sub-pixels 103 may be arranged substantially equidistant with respect to each other, and each of the first sub-pixels 101 and each of the second sub-pixels 102 are arranged substantially equidistant with respect to each other.
  • FIG. 2 is a schematic plan view of a partial area of the pixel arrangement structure 100 of FIG. 1.
  • each of the third sub-pixels 103 is arranged such that each of the first plurality of third sub-pixels in each of the third sub-pixels 103 is in one of the first direction D1 and the second direction D2 Having a first distance from a first sub-pixel directly adjacent to each of the first sub-pixels 101, and each of the second plurality of third sub-pixels in each of the third sub-pixels 103 is in a first direction D1 and The other direction in the second direction D2 has a second distance from the immediately adjacent first sub-pixel in each of the first sub-pixels 101.
  • the third sub-pixel 103A has a first distance d1 from the immediately adjacent first sub-pixel 101A in the second direction D2, and the third sub-pixel 103B has a direct distance in the first direction D1.
  • the ratio of the first distance d1 to the second distance d2 is in the range of 1 to 1.5, such as 1.1, 1.2, 1.3, 1.4, and the like.
  • Such a configuration takes into account the area of the sub-pixels and the limit distance that the process can achieve, enabling flexible pixel pattern design.
  • each of the third sub-pixels 103 is arranged such that each of the first plurality of third sub-pixels in each of the third sub-pixels 103 is in one of the first direction D1 and the second direction D2 Having a third distance from a directly adjacent second sub-pixel in each of the second sub-pixels 102, and each of the second plurality of third sub-pixels in each of the third sub-pixels 103 is in the first direction D1 and The other direction in the second direction D2 has a fourth distance from the immediately adjacent second sub-pixel in each of the second sub-pixels 102.
  • the third sub-pixel 103B has a third distance d3 from the immediately adjacent second sub-pixel 102A in the second direction D2, and the third sub-pixel 103A has a direct distance in the first direction D1.
  • the ratio of the third distance d3 to the fourth distance d4 is in the range of 1 to 1.5, such as 1.1, 1.2, 1.3, 1.4, and the like.
  • Such a configuration takes into account the area of the sub-pixels and the limit distance that the process can achieve, enabling flexible pixel pattern design.
  • the distance between each third sub-pixel 103 and the directly adjacent first sub-pixel 101 and the distance between the third sub-pixel 103 and the immediately adjacent second sub-pixel 102 need to be greater than or Equal to the process limit distance to meet the process requirements.
  • the distance between two sub-pixels is defined as the shortest distance among the respective distances between each of the two sub-pixels and each point of the other of the two sub-pixels.
  • the process limit distance depends on the manufacturing process used. In an embodiment in which a high precision metal mask (FMM) is used for etching, the minimum pitch is about 16 ⁇ m. In embodiments employing laser or electroforming, etc., the minimum spacing will be smaller.
  • Fig. 2 also shows a large rectangle (hereinafter referred to as "first virtual rectangle") defined by a broken line connecting the first sub-pixels 101 at four corners.
  • the first virtual rectangle includes four small rectangles (hereinafter referred to as “second virtual rectangles”) each of which is a corresponding one of the four vertex positions of the first virtual rectangle, the first A respective center position of two adjacent sides of the corresponding apex position and a center position of the first imaginary rectangle are defined in the four sides of a virtual rectangle.
  • the pixel arrangement structure of Fig. 2 is described below with reference to the first virtual rectangle and the second virtual rectangle.
  • the pixel arrangement structure includes: five first sub-pixels 101 respectively located at a central position of the first virtual rectangle and four vertex positions, at respective central positions of the four sides of the first virtual rectangle Four second sub-pixels 102, and four third sub-pixels 103 located within the respective four second virtual rectangles.
  • a sub-pixel is located at a certain location means that the sub-pixel overlaps the location without necessarily requiring the center of the sub-pixel to overlap the location.
  • the center of the sub-pixel may be the geometric center of the sub-pixel or the center of the light-emitting area of the sub-pixel.
  • each of the third sub-pixels 103 can have substantially the same area.
  • the first plurality of third sub-pixels in each of the third sub-pixels 103 may each have an area and the second plurality of third sub-pixels in each of the third sub-pixels 103 may each There is another area different from the area.
  • the third sub-pixel 103B may have a larger area than the area of the third sub-pixel 103A.
  • FIG. 3 is a schematic plan view of a localized region of a variation of the pixel arrangement structure 100 of FIG. 1.
  • each of the second sub-pixels 102 has substantially the same shape of a convex polygon
  • the third sub-pixels 103 of the first group G1 have substantially the same shape of the first concave polygon
  • the second group G2 The three sub-pixels 103 have substantially the same shape of the second concave polygon.
  • each of the third sub-pixels 103 of the plurality of first group sub-pixels G1 is directly adjacent to the first sub-pixel 101 of each of the first sub-pixels 101 in the first direction D1.
  • the pixels have opposite sides that are substantially parallel to each other.
  • the third sub-pixel 103B has first side pixels 101A directly adjacent to each other in the first direction D1 having opposite sides that are substantially parallel to each other.
  • each of the third sub-pixels 103 of the plurality of second sub-pixels G2 is directly adjacent to the second sub-pixel of each of the second sub-pixels 102 in the first direction D1.
  • the pixels have opposite sides that are substantially parallel to each other.
  • the third sub-pixel 103A and the second sub-pixel 102A directly adjacent in the first direction D1 have opposite sides that are substantially parallel to each other.
  • each of the third sub-pixels 103 of the plurality of fourth group sub-pixels G4 and the second sub-pixels of the second sub-pixels 102 in the second direction D2 are directly adjacent.
  • the pixels have opposite sides that are substantially parallel to each other.
  • the third sub-pixel 103B and the second sub-pixel 102A directly adjacent in the second direction D2 have opposite sides that are substantially parallel to each other.
  • Such a configuration provides a uniform width of a gap between the third sub-pixel 103 and the immediately adjacent first sub-pixel 101 and a gap between the third sub-pixel 103 and the immediately adjacent second sub-pixel 102. Uniform width helps to provide the desired display.
  • a pitch between the third sub-pixel 103 and the directly adjacent first sub-pixel 101 and a spacing between the third sub-pixel 103 and the directly adjacent second sub-pixel 102 equal.
  • the spacing between any two directly adjacent first sub-pixels 101 and second sub-pixels 102 is substantially equal.
  • the present disclosure is not limited thereto, and other alternative embodiments are possible.
  • FIG. 4 is a schematic plan view of a localized region of another variation of the pixel arrangement structure 100 of FIG. 1.
  • FIG. 1 An exemplary variation in shape of the third sub-pixel 103 is shown in FIG.
  • the third sub-pixels 103B of the first group G1 have substantially the same convex polygon shape
  • the third sub-pixels 103A of the second group G2 have substantially the same rectangular shape.
  • each of the third sub-pixels 103 of the plurality of third group sub-pixels G3 is directly adjacent to each of the first sub-pixels 101 in the second direction D2.
  • the first sub-pixel also has opposite sides that are substantially parallel to each other in this embodiment.
  • the third sub-pixel 103A and the first sub-pixel 101A directly adjacent in the second direction D2 have opposite sides that are substantially parallel to each other. This provides a uniform width of the gap between the third sub-pixel 103 and the immediately adjacent first sub-pixel 101 in both the first direction D1 and the second direction D2, and thus is advantageous in providing a desired display effect, As described above.
  • FIG. 5 is a schematic plan view of a localized area of another variation of the pixel arrangement structure 100 of FIG. 1.
  • each of the first sub-pixels 101 has a shape of a regular hexagon
  • each of the second sub-pixels 102 has a shape of a regular octagon
  • the third sub-pixel 103B of the first group G1 has an elliptical shape
  • first The third sub-pixel 103D in the group G1 has a shape of a convex polygon (specifically, a hexagon)
  • the third sub-pixels 103A, 103C of each of the second groups G2 have a rectangular shape.
  • elliptical and convex polygons alternately appear for the third sub-pixel 103. This provides a flexible pixel pattern design.
  • FIG. 6 is a schematic plan view of a localized region of another variation of the pixel arrangement structure 100 of FIG. 1.
  • each of the first sub-pixels 101 has a regular hexagonal shape
  • each of the second sub-pixels 102 has a regular octagonal shape
  • the third sub-pixels 103A, 103C of each of the second groups G2 have The shape of the rectangle.
  • the third sub-pixel 103B of the first group G1 has a rectangular shape
  • the third sub-pixel 103D of the first group G1 has a shape of a convex polygon (specifically, a hexagon).
  • a convex polygon specifically, a hexagon
  • rectangular and convex polygons alternately appear for the third sub-pixel 103. This provides a flexible pixel pattern design.
  • FIG. 7 is a schematic plan view of a localized area of another variation of the pixel arrangement structure 100 of FIG. 1.
  • An exemplary variation in shape of the first sub-pixel 101, the second sub-pixel 102, and the third sub-pixel 103 is shown in FIG.
  • the first sub-pixels 101A, 101C of the first group G1 have a regular hexagon shape, and the first sub-pixel 101B of the first group G1 has a circular shape.
  • a regular hexagon and a circle appear alternately for the first sub-pixel 101.
  • the second sub-pixels 102A, 102C of each of the second groups G2 have a shape of a regular octagon, and the second sub-pixels 102B, 102D of each of the second groups G2 have a rectangular (specifically, square) shape.
  • the regular octagon and square appear alternately for the second sub-pixel 102 in each of the second groups G2.
  • the third sub-pixel 103B of the first group G1 has an elliptical shape, and the third sub-pixel 103D of the first group G1 has a shape of a convex polygon (specifically, a hexagon). In each of the first groups G1, elliptical and convex polygons alternately appear for the third sub-pixel 103.
  • the third sub-pixel 103A of the second group G2 has a diamond shape, and the third sub-pixel 103C of the second group G2 has a rectangular shape. Although not shown, the rectangle and the diamond appear alternately for the third sub-pixel 103 in each of the second groups G2. This provides a flexible pixel pattern design.
  • FIG. 8 is a schematic plan view of a localized area of another variation of the pixel arrangement structure 100 of FIG. 1.
  • FIG. 1 An exemplary variation in shape of the third sub-pixel 103 is shown in FIG.
  • the third sub-pixel 103B of the first group G1 has a rectangular shape
  • the third sub-pixel 103D of the first group G1 has an elliptical shape.
  • a rectangle and an ellipse alternately appear for the third sub-pixel 103.
  • the third sub-pixel 103A of the second group G2 has a rectangular shape
  • the third sub-pixel 103C of the second group G2 has an elliptical shape.
  • a rectangle and an ellipse alternately appear for the third sub-pixel 103 in each of the second groups G2. This provides a flexible pixel pattern design.
  • the third group of sub-pixels G3 may have substantially the same pattern as the first group of sub-pixels G1, and the fourth group of sub-pixels G4 may have substantially the same pattern as the second group of sub-pixels G2.
  • the third group of sub-pixels G3 will coincide with the first group of sub-pixels G1 if rotated clockwise by 90 degrees, and the fourth group of sub-pixels G4 will be second if rotated clockwise by 90 degrees.
  • the group sub-pixels G2 coincide. This provides an even distribution of the sub-pixels, which is advantageous for the improvement of the display effect.
  • first sub-pixel 101 the second sub-pixel 102, and the third sub-pixel 103 are described above in connection with FIGS. 1-8, the present disclosure is not limited thereto.
  • the first sub-pixel 101, the second sub-pixel 102, and the third sub-pixel 103 may have a shape selected from at least one of a group consisting of a rectangle, an ellipse, a convex polygon, a concave polygon, a triangle, and a circle. Other irregular shapes are also possible.
  • each of the first sub-pixels 101 can have substantially the same area.
  • the first plurality of first sub-pixels in each of the first sub-pixels 101 may each have an area and each of the second plurality of first sub-pixels in each of the first sub-pixels 101 may each There is another area different from the area.
  • each of the second sub-pixels 102 can have substantially the same area.
  • the first plurality of second sub-pixels in each of the second sub-pixels 102 may each have an area and the second plurality of second sub-pixels in each of the second sub-pixels 102 may each There is another area different from the area.
  • the shape, area, orientation, and relative position of the first sub-pixel 101, the second sub-pixel 102, and the third sub-pixel 103 can be designed as needed.
  • the third sub-pixel 103 may be a green sub-pixel.
  • the first sub-pixel 101 can be a red sub-pixel and the second sub-pixel 102 can be a blue sub-pixel.
  • the first sub-pixel 101 may be a blue sub-pixel, and the second sub-pixel 102 may be a red sub-pixel. Since the human eye is more sensitive to green light, the area of the third sub-pixel 103 can be relatively small. In some embodiments, the area of the green sub-pixel is smaller than the area of the red sub-pixel, and the area of the red sub-pixel is smaller than the area of the blue sub-pixel.
  • the area of the red sub-pixel is smaller than the area of the green sub-pixel, and the area of the green sub-pixel is smaller than the area of the blue sub-pixel.
  • the red sub-pixel has a first total area
  • the green sub-pixel has a second total area
  • the blue sub-pixel has a third total area.
  • the first total area, the second total area, and the third total area have 1: (1.1 to 1.5): (1.2 to 1.7), and further 1: (1.2 to 1.35) A ratio of (1.4 to 1.55), or still further 1: 1:27: 1.46. This provides different levels of visual quality improvement compared to pixel patterns in which the red, green, and blue sub-pixels have the same total area.
  • the ratio of each of the red sub-pixels, each of the green sub-pixels, and each of the blue sub-pixels is approximately 1:2:1. This can be achieved by sufficiently extending the pattern of the pixel arrangement structure in the first direction D1 and the second direction D2.
  • the term "about” is intended to cover a certain range of error, such as ⁇ 10% (based on the number of red or blue sub-pixels). For example, 1:1.9:1 is considered to be "about 1:2:1".
  • FIG. 9 generally illustrates the principle of color borrowing of a pixel arrangement structure in accordance with an embodiment of the present disclosure.
  • the first sub-pixel 101 is a red sub-pixel
  • the second sub-pixel 102 is a blue sub-pixel
  • the third sub-pixel 103 is a green sub-pixel.
  • the area of the second sub-pixel 102 is the same as the area of the first sub-pixel 101, that is, the area of the red sub-pixel is the same as the area of the blue sub-pixel.
  • the green sub-pixel G, the red sub-pixel R, and the blue sub-pixel B located at the vertices of each of the broken triangles constitute one virtual pixel.
  • the first sub-pixel 101, the second sub-pixel 102, and the third sub-pixel 103 are allowed to be arranged more closely, thereby providing a larger sub-pixel area than the existing pixel arrangement.
  • FIG. 10 is a schematic plan view of a display device 1000 in accordance with an embodiment of the present disclosure.
  • the display device 1000 includes a display panel 1010, a scan driver 1020, a data driver 1030, and a timing controller 1040.
  • the display panel 1010 includes a display substrate 1012 and a pixel arrangement 1014 formed on the display substrate 1012.
  • the pixel arrangement 1014 can take the form of any of the pixel arrangement 100 described above with respect to Figures 1-9 and its various variations.
  • the pixel arrangement structure 1014 is arranged such that each of the first direction D1 and the second direction D2 (the configuration according to which the pixel arrangement structure 100 and its various modifications are described) and the length direction of the display substrate 1012 D3 intersects at approximately 45 degrees.
  • the term "about” is intended to cover a certain range of error, such as ⁇ 10%. For example, 40.5 degrees is considered to be "about 45 degrees.”
  • the sub-pixels in the pixel arrangement structure 1014 may be organic electroluminescence sub-pixels, although the disclosure is not limited thereto.
  • the pixel arrangement 1014 includes a plurality of adjoining first virtual matrices.
  • each of the two first virtual rectangles directly adjacent to each of the first virtual rectangles has a common side such that the sub-pixels on the common side are directly
  • the two first virtual rectangles of the neighbor are shared.
  • each of the two first virtual rectangles directly adjacent to each of the first virtual rectangles has a common side such that the sub-pixels on the common side are directly
  • the two first virtual rectangles of the neighbor are shared.
  • the scan driver 1020 outputs a gate scan signal to the display panel 1010.
  • scan driver 1020 may be directly integrated in display substrate 1012 as an array substrate row drive (GOA) circuit.
  • the scan driver 1020 may be connected to the display panel 1010 by a Tape Carrier Package (TCP). Implementations of scan driver 1020 may be known, and a detailed description thereof is thus omitted.
  • the data driver 1030 outputs a data voltage to the display panel 1010.
  • data driver 1030 can include a plurality of data driven chips operating in parallel.
  • the implementation of data driver 1030 may be known, and a detailed description thereof is thus omitted.
  • the timing controller 1040 controls the operations of the scan driver 1020 and the data driver 1030. Specifically, the timing controller 1040 outputs data control signals and image data to control the driving operation of the data driver 1030, and outputs a gate control signal to control the driving operation of the scan driver 1020. Data control signals and image data are applied to the data driver 1030. A gate control signal is applied to the scan driver 1020.
  • the implementation of the timing controller 1040 may be known, and a detailed description thereof is thus omitted.
  • the display device 1000 has the same advantages as the embodiment of the pixel arrangement described above with respect to FIG. 109, and will not be described herein.
  • the display device 1000 can be any product or component having a display function, such as a cell phone, a tablet computer, a television set, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • 11A, 11B, and 11C are schematic plan views of a set of reticle in accordance with an embodiment of the present disclosure.
  • the set of masks includes a first mask 1100A, a second mask 1100B, and a third mask 1100C.
  • the first mask 1100A defines a plurality of first openings 1112.
  • the plurality of first openings 1112 are arranged to have a pattern corresponding to the pattern of each of the first sub-pixels of any one of the pixel arrangement structures 100 described above with respect to FIGS. 1-9 or any of its various variations.
  • the plurality of first openings 1112 are arranged to have a pattern corresponding to the pattern of each of the first sub-pixels of the pixel arrangement structure 100 of FIG.
  • the reticle 1100A is a high precision metal reticle that can be used in an evaporation process to form a desired pixel pattern.
  • the second mask 1100B defines a plurality of second openings 1114.
  • the plurality of second openings 1114 are arranged to have a pattern corresponding to a pattern of each of the second sub-pixels of any one of the pixel arrangement structures 100 described above with respect to FIGS. 1-9 or variations thereof.
  • the plurality of second openings 1114 are arranged to have a pattern corresponding to the pattern of each of the second sub-pixels of the pixel arrangement structure 100 of FIG.
  • the reticle 1100B is a high precision metal reticle that can be used in an evaporation process to form a desired pixel pattern.
  • the third mask 1100C defines a plurality of third openings 1116.
  • the plurality of third openings 1116 are arranged to have a pattern corresponding to the pattern of each of the third sub-pixels of any one of the pixel arrangement structures 100 described above with respect to FIGS. 1-9 or any of its various variations.
  • the plurality of third openings 1116 are arranged to have a pattern corresponding to the pattern of each of the third sub-pixels of the pixel arrangement structure 100 of FIG.
  • the reticle 1100C is a high precision metal reticle that can be used in an evaporation process to form a desired pixel pattern.
  • the reticle 1100A, 1100B, and 1100C may provide the same advantages as the embodiment of the pixel arrangement described above with respect to Figures 1-9, which are not described herein.
  • FIG. 12 is a flow diagram of a method 1200 of fabricating a pixel arrangement in accordance with an embodiment of the present disclosure.
  • Embodiments of the pixel arrangement described above with respect to Figures 1-9 can be implemented using method 1200 and masks 1100A, 1100B, and 1100C.
  • a display substrate is provided.
  • the display substrate is typically a back sheet that has been provided with a driving circuit formed of, for example, a thin film transistor (TFT).
  • TFT thin film transistor
  • the first electroluminescent material is evaporated and the first electroluminescence evaporated by passing the evaporated first electroluminescent material through the plurality of first openings 1112 of the first reticle 1100A A material is deposited onto the display substrate to form a first sub-pixel 101.
  • the second electroluminescent material is evaporated and the second electroluminescence evaporated by passing the evaporated second electroluminescent material through the plurality of second openings 1114 of the second mask 1100B Material is deposited onto the display substrate to form a second sub-pixel 102.
  • the third electroluminescent material is evaporated and the evaporated third electroluminescence is passed through the plurality of third openings 1116 of the third mask 1100C by passing the evaporated third electroluminescent material. Material is deposited onto the display substrate to form a third sub-pixel 103.
  • Steps 1220 to 1240 are generally referred to as evaporation, and their pixel patterns will be formed at predetermined positions on the display substrate. It will be understood that steps 1220 through 1240 can be performed in an order different from that illustrated and described.
  • the electroluminescent material can be an organic electroluminescent material. Other electroluminescent materials are possible.

Abstract

一种像素排布结构(100),包括:在第一方向(D1)上排列的多个第一组子像素(G1),多个第一组子像素中的每一个包括交替排列的多个第一子像素(101)和多个第三子像素(103);以及在第一方向上排列的多个第二组子像素(G2),多个第二组子像素中的每一个包括交替排列的多个第三子像素和多个第二子像素(102)。多个第一组子像素和多个第二组子像素在垂直于第一方向的第二方向(D2)上交替排列。多个第一组子像素和多个第二组子像素被排列使得形成在第二方向上排列的多个第三组子像素(G3)和在第二方向上排列的多个第四组子像素(G4),多个第三组子像素和多个第四组子像素在第一方向上交替排列。多个第三组子像素中的每一个包括交替排列的多个第一子像素和多个第三子像素,多个第四组子像素中的每一个包括交替排列的多个第三子像素和多个第二子像素。

Description

像素排布结构、其制作方法、显示面板、显示装置和掩模板
相关申请的交叉引用
本申请要求2018年1月2日提交的中国专利申请No.201810002785.4的优先权,其全部公开内容通过引用合并于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种像素排布结构、制作该像素排布结构的方法、显示面板、显示装置及掩模板。
背景技术
与液晶显示器(LCD)相比,有机电致发光(OLED)显示器具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。目前,在手机、PDA、数码相机等平板显示领域,OLED显示器件已经开始取代传统的液晶显示屏。
OLED显示器典型地包括:衬底基板和制作在衬底基板上呈矩阵排列的子像素。子像素一般通过利用高精细金属掩模板(FMM)将有机发光材料蒸镀在阵列基板上而形成。
发明内容
根据本公开的一方面,提供了一种像素排布结构,包括:在第一方向上排列的多个第一组子像素,所述多个第一组中的每一个包括交替排列的多个第一子像素和多个第三子像素;以及在第一方向上排列的多个第二组子像素,所述多个第二组中的每一个包括交替排列的多个第三子像素和多个第二子像素。所述多个第一组和所述多个第二组在垂直于所述第一方向的第二方向上交替排列。所述多个第一组和所述多个第二组被排列使得形成在所述第二方向上排列的多个第三组子像素和在所述第二方向上排列的多个第四组子像素,所述多个第三组和所述多个第四组在所述第一方向上交替排列,所述多个第三组中的每一个包括交替排列的多个第一子像素和多个第三子像素,所述多个第四组中的每一个包括交替排列的多个第三子像素和多个第二子像素。
在一些实施例中,每个第一组中的所述多个第三子像素中的至少一部分具有第一形状,并且每个第二组中的所述多个第三子像素中的至少一部分具有不同于所述第一形状的第二形状。
在一些实施例中,各所述第三子像素具有基本相同的面积。
在一些实施例中,各所述第三子像素中的第一多个第三子像素每个具有一面积并且各所述第三子像素中的第二多个第三子像素每个具有不同于所述面积的另一面积。
在一些实施例中,各所述第三子像素被布置使得各所述第三子像素中的第一多个第三子像素中的每一个在所述第一方向和所述第二方向中的一个方向上具有距各所述第一子像素中的直接相邻的第一子像素的第一距离,并且各所述第三子像素中的第二多个第三子像素中的每一个在所述第一方向和所述第二方向中的另一个方向上具有距各所述第一子像素中的直接相邻的第一子像素的第二距离,所述第一距离与所述第二距离的比值在1~1.5的范围中。各所述第三子像素被布置使得各所述第三子像素中的第一多个第三子像素中的每一个在所述第一方向和所述第二方向中的一个方向上具有距各所述第二子像素中的直接相邻的第二子像素的第三距离,并且各所述第三子像素中的第二多个第三子像素中的每一个在所述第一方向和所述第二方向中的另一个方向上具有距各所述第二子像素中的直接相邻的第二子像素的第四距离,所述第三距离与所述第四距离的比值在1~1.5的范围中。
在一些实施例中,各所述第一子像素、各所述第二子像素和各所述第三子像素相对于彼此基本等距地布置。
在一些实施例中,各所述第三子像素相对于彼此基本等距地布置,并且各所述第一子像素和各所述第二子像素相对于彼此基本等距地布置。
在一些实施例中,所述多个第一组子像素中的所述第三子像素中的每一个与所述第一方向上各所述第一子像素中的直接相邻的第一子像素具有相互基本平行的相对的侧边。所述多个第二组子像素中的所述第三子像素中的每一个与所述第一方向上各所述第二子像素中的直接相邻的第二子像素具有相互基本平行的相对的侧边。所述多个第三组子像素中的所述第三子像素中的每一个与所述第二方向上各所述第一子像素中的直接相邻的第一子像素具有相互基本平行的相对的侧 边。所述多个第四组子像素中的所述第三子像素中的每一个与所述第二方向上各所述第二子像素中的直接相邻的第二子像素具有相互基本平行的相对的侧边。
在一些实施例中,所述多个第一组中的所述第三子像素每个具有所述第一形状,并且所述多个第二组中的所述第三子像素每个具有所述第二形状。
在一些实施例中,所述多个第一组中的每一个中的所述第三子像素中的第一多个第三子像素具有所述第一形状,并且所述多个第一组中的每一个中的所述第三子像素中的第二多个第三子像素具有所述第二形状,所述第一形状和所述第二形状对于第一组中的所述第三子像素而言交替地出现。所述多个第二组中的每一个中的所述第三子像素中的第一多个第三子像素每个具有所述第二形状,并且所述多个第一组中的每一个中的所述第三子像素中的第二多个第三子像素每个具有所述第一形状,所述第一形状和所述第二形状对于第二组中的所述第三子像素而言交替地出现。
在一些实施例中,所述第三组子像素具有与所述第一组子像素基本相同的图案,并且所述第四组子像素具有与所述第二组子像素基本相同的图案。
在一些实施例中,各所述第一子像素具有基本相同的面积。
在一些实施例中,各所述第一子像素中的第一多个第一子像素每个具有一面积并且各所述第一子像素中的第二多个第一子像素每个具有不同于所述面积的另一面积。
在一些实施例中,各所述第一子像素具有基本相同的形状。
在一些实施例中,各所述第一子像素中的第一多个第一子像素每个具有一形状并且各所述第一子像素中的第二多个第一子像素每个具有不同于所述形状的另一形状。
在一些实施例中,各所述第二子像素具有基本相同的面积。
在一些实施例中,各所述第二子像素中的第一多个第二子像素每个具有一面积并且各所述第二子像素中的第二多个第二子像素每个具有不同于所述面积的另一面积。
在一些实施例中,各所述第二子像素具有基本相同的形状。
在一些实施例中,各所述第二子像素中的第一多个第二子像素每 个具有一形状并且各所述第二子像素中的第二多个第二子像素每个具有不同于所述形状的另一形状。
在一些实施例中,所述第一子像素为红色子像素,所述第二子像素为蓝色子像素,并且所述第三子像素为绿色子像素。
在一些实施例中,所述第一子像素为蓝色子像素,所述第二子像素为红色子像素,并且所述第三子像素为绿色子像素。
在一些实施例中,所述蓝色子像素每个具有第一面积,所述红色子像素每个具有小于所述第一面积的第二面积,并且所述绿色子像素每个具有小于所述第二面积的第三面积。
在一些实施例中,所述蓝色子像素每个具有第一面积,所述绿色子像素每个具有小于所述第一面积的第二面积,其中所述红色子像素每个具有小于所述第二面积的第三面积。
在一些实施例中,所述红色子像素具有第一总面积,所述绿色子像素具有第二总面积,并且所述蓝色子像素具有第三总面积。所述第一总面积、所述第二总面积和所述第三总面积具有1∶(1.1~1.5)∶(1.2~1.7)、进一步地1∶(1.2~1.35)∶(1.4~1.55)、或更进一步地1∶1.27∶1.46的比率。
在一些实施例中,各所述红色子像素、各所述绿色子像素和各所述蓝色子像素在数量上的比率大约为1∶2∶1。
在一些实施例中,所述第一形状和所述第二形状选自矩形、椭圆形、凸多边形、凹多边形、三角形和圆形所组成的组。
根据本公开的另一方面,提供了一种显示面板,包括:显示基板;以及如上所述的像素排布结构,所述像素排布结构形成在所述显示基板上。所述像素排布结构被布置使得所述第一方向和所述第二方向中的每一个与所述显示基板的长度方向成大约45度相交。
在一些实施例中,所述第一子像素、所述第二子像素和所述第三子像素为有机电致发光子像素。
根据本公开的又另一方面,提供了一种显示装置,包括如上所述的显示面板。
根据本公开的再另一方面,提供了一组用于制作如上所述的像素排布结构的掩模板,包括:第一掩模板,其限定多个第一开口,所述多个第一开口被布置成具有与各所述第一子像素的图案对应的图案; 第二掩模板,其限定多个第二开口,所述多个第二开口被布置成具有与各所述第二子像素的图案对应的图案;以及第三掩模板,其限定多个第三开口,所述多个第三开口被布置成具有与各所述第三子像素的图案对应的图案。
根据本公开的再另一方面,提供了一种使用如上所述的一组掩模板制作像素排布结构的方法,包括:提供显示基板;蒸发第一电致发光材料并通过使所蒸发的第一电致发光材料穿过所述第一掩模板的所述多个第一开口而将所蒸发的第一电致发光材料沉积到所述显示基板上以形成各第一子像素;蒸发第二电致发光材料并通过使所蒸发的第二电致发光材料穿过所述第二掩模板的所述多个第二开口而将所蒸发的第二电致发光材料沉积到所述显示基板上以形成各第二子像素;并且蒸发第三电致发光材料并通过使所蒸发的第三电致发光材料穿过所述第三掩模板的所述多个第三开口而将所蒸发的第三电致发光材料沉积到所述显示基板上以形成各第三子像素。
根据本公开的另一方面,提供了一种像素排布结构,包括:五个第一子像素,分别位于第一虚拟矩形的中心位置处和四个顶角位置处;四个第二子像素,位于所述第一虚拟矩形的四条侧边的相应中心位置处;以及四个第三子像素,位于相应的四个第二虚拟矩形内,各所述第二虚拟矩形中的每一个由所述第一虚拟矩形的所述四个顶角位置中的一个相应顶角位置、所述第一虚拟矩形的所述四条侧边中包含该相应顶角位置的两条侧边的相应中心位置、以及所述第一虚拟矩形的中心位置限定,所述四个第二虚拟矩形构成所述第一虚拟矩形。
根据本公开的另一方面,提供了一种显示面板,包括:显示基板;以及多个邻接的如上所述的像素排布结构,所述像素排布结构形成在所述显示基板上。在行方向上各所述第一虚拟矩形中直接相邻的每两个第一虚拟矩形具有共用侧边,使得该共用侧边上的子像素被该直接相邻的两个第一虚拟矩形共用。在列方向上各所述第一虚拟矩形中直接相邻的每两个第一虚拟矩形具有共用侧边,使得该共用侧边上的子像素被该直接相邻的两个第一虚拟矩形共用。
根据本公开的另一方面,提供了一种像素排布结构,包括:在第一方向上排列的多个第一重复单元,所述多个第一重复单元中的每一个包括交替排列的多个第一子像素和多个第三子像素;以及在第一方 向上排列的多个第二重复单元,所述多个第二重复单元中的每一个包括交替排列的多个第三子像素和多个第二子像素。所述多个第一重复单元和所述多个第二重复单元在垂直于所述第一方向的第二方向上交替排列。所述多个第一重复单元和所述多个第二重复单元被排列使得各所述第一子像素中的每个第一子像素与各所述第三子像素中的四个第三子像素直接相邻并且各所述第二子像素中的每个第二子像素与各所述第三子像素中的四个第三子像素直接相邻。
根据在下文中所描述的实施例,本公开的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
在下面结合附图对于示例性实施例的描述中,本公开的更多细节、特征和优点被公开,在附图中:
图1为根据本公开实施例的像素排布结构的示意性平面图;
图2为图1的像素排布结构的局部区域的示意性平面图;
图3为图1的像素排布结构的一种变型的局域区域的示意性平面图;
图4为图1的像素排布结构的另一种变型的局域区域的示意性平面图;
图5为图1的像素排布结构的另一种变型的局域区域的示意性平面图;
图6为图1的像素排布结构的另一种变型的局域区域的示意性平面图;
图7为图1的像素排布结构的另一种变型的局域区域的示意性平面图;
图8为图1的像素排布结构的另一种变型的局域区域的示意性平面图;
图9为一般地示出根据本公开实施例的像素排布结构的借色原理的示意图;
图10为根据本公开实施例的显示装置的示意性平面图;
图11A、11B和11C为根据本公开实施例的一组掩模板的示意性平面图;并且
图12为根据本公开实施例的制作像素排布结构的方法的流程图。
在附图中,由同一数字和不同字母后缀组合而成的不同参考标记可以集体地由该数字引用。
具体实施方式
将理解的是,尽管术语第一、第二、第三等等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
诸如“在...下面”、“在...之下”、“较下”、“在...下方”、“在...之上”、“较上”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他元件或特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在...之下”和“在...下方”可以涵盖在...之上和在...之下的取向两者。诸如“在...之前”或“在...前”和“在...之后”或“接着是”之类的术语可以类似地例如用来指示光穿过元件所依的次序。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本 文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。
将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在...上”或“直接在...上”都不应当被解释为要求一个层完全覆盖下面的层。
本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
下面将结合附图详细描述本公开的实施例。
图1为根据本公开实施例的像素排布结构100的示意性平面图。
如图1所示,像素排布结构100包括在第一方向D1上排列的多个第一组子像素(也被称为“第一重复单元”)G1和在第一方向D2上排列的多个第二组子像素(也被称为“第二重复单元”)G2。多个第一组G1和多个第二组G2在垂直于第一方向D1的第二方向D2上交替排列。
多个第一组G1中的每一个包括交替排列的多个第一子像素101和多个第三子像素103。第一组G1中的所述多个第三子像素103中的至 少一部分具有第一形状。在该实施例中,所述多个第一组G1中的所述第三子像素103每个具有第一形状(在图1的示例中为椭圆形)。
多个第二组G2中的每一个包括交替排列的多个第三子像素103和多个第二子像素102。第二组G2中的所述多个第三子像素103中的至少一部分具有不同于所述第一形状的第二形状。在该实施例中,所述多个第二组G2中的所述第三子像素103每个具有第二形状(在图1的示例中为矩形)。
多个第一组G1和多个第二组G2还被排列使得形成在第二方向D2上排列的多个第三组子像素G3和在第二方向D2上排列的多个第四组子像素G4。所述多个第三组G3和所述多个第四组G4在第一方向D1上交替排列。多个第三组G3中的每一个包括交替排列的多个第一子像素101和多个第三子像素103,并且多个第四组G4中的每一个包括交替排列的多个第三子像素103和多个第二子像素102。如图1所示,每个第一子像素101与四个第三子像素103直接相邻,并且每个第二子像素102也与四个第三子像素103直接相邻。
与现有的像素排布结构相比,像素排布结构100在同等工艺条件下可以允许第一子像素101、第二子像素102和第三子像素103被更紧密地排列,从而尽可能增大单个子像素的面积。这进而有利于降低显示器件的驱动电流,增加显示器件的寿命。
在图1的示例中,各第一、第二和第三子像素101、102和103相对于彼此基本等距地布置。在一些变型中,第三子像素103可以被不同地布置。例如,各第三子像素103可以相对于彼此基本等距地布置,并且各第一子像素101和各第二子像素102相对于彼此基本等距地布置。将理解的是,在本文档中,与“等距”、“平行”、“相同”、“等于”等相结合使用的术语“基本”意图涵盖由于制造工艺导致的偏差。
图2为图1的像素排布结构100的局部区域的示意性平面图。
在该实施例中,各第三子像素103被布置使得各第三子像素103中的第一多个第三子像素中的每一个在第一方向D1和第二方向D2中的一个方向上具有距各第一子像素101中的直接相邻的第一子像素的第一距离,并且各第三子像素103中的第二多个第三子像素中的每一个在第一方向D1和第二方向D2中的另一个方向上具有距各第一子像 素101中的直接相邻的第一子像素的第二距离。在图2的示例中,第三子像素103A在第二方向D2上具有距直接相邻的第一子像素101A的第一距离d1,并且第三子像素103B在第一方向D1上具有距直接相邻的第一子像素101B的第二距离d2。第一距离d1与第二距离d2的比值在1~1.5的范围中,例如1.1、1.2、1.3、1.4等。这样的配置兼顾了子像素的面积和工艺能够达到的极限距离,使得能够实现灵活的像素图案设计。
在该实施例中,各第三子像素103被布置使得各第三子像素103中的第一多个第三子像素中的每一个在第一方向D1和第二方向D2中的一个方向上具有距各第二子像素102中的直接相邻的第二子像素的第三距离,并且各第三子像素103中的第二多个第三子像素中的每一个在第一方向D1和第二方向D2中的另一个方向上具有距各第二子像素102中的直接相邻的第二子像素的第四距离。在图2的示例中,第三子像素103B在第二方向D2上具有距直接相邻的第二子像素102A的第三距离d3,并且第三子像素103A在第一方向D1上具有距直接相邻的第二子像素102A的第四距离d4。第三距离d3与第四距离d4的比值在1~1.5的范围中,例如1.1、1.2、1.3、1.4等。这样的配置兼顾了子像素的面积和工艺能够达到的极限距离,使得能够实现灵活的像素图案设计。
将理解的是,每个第三子像素103与直接相邻的第一子像素101之间的距离和该第三子像素103与直接相邻的第二子像素102之间的距离需要大于或等于工艺极限距离以便满足工艺需求。此处,两个子像素之间的距离被定义为该两个子像素中的一个的各点与该两个子像素中的另一个的各点之间的各个距离中最短的距离。工艺极限距离取决于所使用的制作工艺。在采用高精度金属掩模板(FMM)配合刻蚀的实施例中,该最小间距约在16μm左右。在采用激光或电铸等的实施例中,该最小间距会更小。
图2还示出了由连接四个角落处的第一子像素101的虚线所限定的大矩形(下文中称为“第一虚拟矩形”)。该第一虚拟矩形包括四个小矩形(下文中称为“第二虚拟矩形”),其每一个由所述第一虚拟矩形的四个顶角位置中的一个相应顶角位置、所述第一虚拟矩形的四条侧边中包含该相应顶角位置的两条相邻侧边的相应中心位置、以 及所述第一虚拟矩形的中心位置限定。下面参考第一虚拟矩形和第二虚拟矩形来描述图2的像素排布结构。
该像素排布结构包括:分别位于第一虚拟矩形的中心位置处和四个顶角位置处的五个第一子像素101、位于所述第一虚拟矩形的四条侧边的相应中心位置处的四个第二子像素102、以及位于相应的四个第二虚拟矩形内的四个第三子像素103。将理解的是,短语“子像素位于某一位置处”是指子像素与该位置重叠而不一定需要子像素的中心与该位置重叠。子像素的中心可以为子像素的几何中心,也可以为子像素的发光区域的中心。
在一些实施例中,各第三子像素103可以具有基本相同的面积。在可替换的实施例中,各第三子像素103中的第一多个第三子像素每个可以具有一面积并且各第三子像素103中的第二多个第三子像素每个可以具有不同于所述面积的另一面积。在图2的示例中,第三子像素103B可以具有比第三子像素103A的面积更大的面积。
图3为图1的像素排布结构100的一种变型的局域区域的示意性平面图。
第二子像素102和第三子像素103在形状上的示例性变型在图3中被示出。在该示例中,各第二子像素102具有基本相同的凸多边形的形状,第一组G1中的第三子像素103具有基本相同的第一凹多边形的形状,并且第二组G2中的第三子像素103具有基本相同的第二凹多边形的形状。
在该实施例中,所述多个第一组子像素G1中的所述第三子像素103中的每一个与第一方向D1上各第一子像素101中的直接相邻的第一子像素具有相互基本平行的相对的侧边。在图3的示例中,第三子像素103B与第一方向D1上直接相邻的第一子像素101A具有相互基本平行的相对的侧边。
在该实施例中,所述多个第二组子像素G2中的所述第三子像素中103的每一个与第一方向D1上各第二子像素102中的直接相邻的第二子像素具有相互基本平行的相对的侧边。在图3的示例中,第三子像素103A与第一方向D1上直接相邻的第二子像素102A具有相互基本平行的相对的侧边。
在该实施例中,所述多个第四组子像素G4中的所述第三子像素 103中的每一个与第二方向D2上各第二子像素102中的直接相邻的第二子像素具有相互基本平行的相对的侧边。在图3的示例中,第三子像素103B与第二方向D2上直接相邻的第二子像素102A具有相互基本平行的相对的侧边。
这样的配置提供了一第三子像素103与直接相邻的第一子像素101之间的间隙的均匀宽度和该第三子像素103与直接相邻的第二子像素102之间的间隙的均匀宽度,有利于提供期望的显示效果。在一些实施例中,该第三子像素103与直接相邻的第一子像素101之间的间距(pitch)和该第三子像素103与直接相邻的第二子像素102之间的间距相等。在一些实施例中,任意两个直接相邻的第一子像素101与第二子像素102之间的间距基本相等。然而,本公开不限于此,并且其他可替换的实施例是可能的。
图4为图1的像素排布结构100的另一种变型的局域区域的示意性平面图。
第三子像素103在形状上的示例性变型在图4中被示出。在该示例中,第一组G1中的第三子像素103B具有基本相同的凸多边形的形状,并且第二组G2中的第三子像素103A具有基本相同的矩形的形状。
与图3的实施例相比,所述多个第三组子像素G3中的所述第三子像素103中的每一个与第二方向D2上各第一子像素101中的直接相邻的第一子像素在该实施例中也具有相互基本平行的相对的侧边。如图4所示,第三子像素103A与第二方向D2上直接相邻的第一子像素101A具有相互基本平行的相对的侧边。这在第一方向D1和第二方向D2两者上提供了一第三子像素103与直接相邻的第一子像素101之间的间隙的均匀宽度,并且因此有利于提供期望的显示效果,如上面所描述的。
图5为图1的像素排布结构100的另一种变型的局域区域的示意性平面图。
第一子像素101、第二子像素102和第三子像素103在形状上的示例性变型在图5中被示出。在该示例中,各第一子像素101具有正六边形的形状,各第二子像素102具有正八边形的形状,第一组G1中的第三子像素103B具有椭圆形的形状,第一组G1中的第三子像素103D具有凸多边形(具体地,六边形)的形状,并且各第二组G2中的第三 子像素103A、103C具有矩形的形状。在每个第一组G1中,椭圆形和凸多边形对于第三子像素103而言交替地出现。这提供了灵活的像素图案设计。
图6为图1的像素排布结构100的另一种变型的局域区域的示意性平面图。
与图5的实施例类似,各第一子像素101具有正六边形的形状,各第二子像素102具有正八边形的形状,并且各第二组G2中的第三子像素103A、103C具有矩形的形状。
不同于图5的实施例,第一组G1中的第三子像素103B具有矩形的形状,并且第一组G1中的第三子像素103D具有凸多边形(具体地,六边形)的形状。在每个第一组G1中,矩形和凸多边形对于第三子像素103而言交替地出现。这提供了灵活的像素图案设计。
图7为图1的像素排布结构100的另一种变型的局域区域的示意性平面图。第一子像素101、第二子像素102和第三子像素103在形状上的示例性变型在图7中被示出。
第一组G1中的第一子像素101A、101C具有正六边形的形状,并且第一组G1中的第一子像素101B具有圆形的形状。在每个第一组G1中,正六边形和圆形对于第一子像素101而言交替地出现。
各第二组G2中的第二子像素102A、102C具有正八边形的形状,并且各第二组G2中的第二子像素102B、102D具有矩形(具体地,正方形)的形状。虽然未示出,但是正八边形和正方形在每个第二组G2中对于第二子像素102而言交替地出现。
第一组G1中的第三子像素103B具有椭圆形的形状,第一组G1中的第三子像素103D具有凸多边形(具体地,六边形)的形状。在每个第一组G1中,椭圆形和凸多边形对于第三子像素103而言交替地出现。第二组G2中的第三子像素103A具有菱形的形状,并且第二组G2中的第三子像素103C具有矩形的形状。虽然未示出,但是矩形和菱形在每个第二组G2中对于第三子像素103而言交替地出现。这提供了灵活的像素图案设计。
图8为图1的像素排布结构100的另一种变型的局域区域的示意性平面图。
第三子像素103在形状上的示例性变型在图8中被示出。在该示 例中,第一组G1中的第三子像素103B具有矩形的形状,并且第一组G1中的第三子像素103D具有椭圆形的形状。在每个第一组G1中,矩形和椭圆形对于第三子像素103而言交替地出现。而且,第二组G2中的第三子像素103A具有矩形的形状,并且第二组G2中的第三子像素103C具有椭圆形的形状。虽然未示出,但是矩形和椭圆形在每个第二组G2中对于第三子像素103而言交替地出现。这提供了灵活的像素图案设计。
在该实施例中,第三组子像素G3可以具有与第一组子像素G1基本相同的图案,并且第四组子像素G4可以具有与第二组子像素G2基本相同的图案。具体地,如图8所示,第三组子像素G3如果顺时针旋转90度则将与第一组子像素G1重合,并且第四组子像素G4如果顺时针旋转90度则将与第二组子像素G2重合。这提供了子像素的均匀分布,有利于显示效果的改善。
虽然在上面结合图1-8描述了第一子像素101、第二子像素102和第三子像素103的各种各样的变型,但是本公开不限于此。例如,第一子像素101、第二子像素102以及第三子像素103可以具有从矩形、椭圆形、凸多边形、凹多边形、三角形和圆形所组成的组中选择的至少一个的形状。其他不规则的形状也是可能的。在一些实施例中,各第一子像素101可以具有基本相同的面积。在可替换的实施例中,各第一子像素101中的第一多个第一子像素每个可以具有一面积并且各第一子像素101中的第二多个第一子像素每个可以具有不同于所述面积的另一面积。在一些实施例中,各第二子像素102可以具有基本相同的面积。在可替换的实施例中,各第二子像素102中的第一多个第二子像素每个可以具有一面积并且各第二子像素102中的第二多个第二子像素每个可以具有不同于所述面积的另一面积。在实践中,第一子像素101、第二子像素102和第三子像素103的形状、面积、取向和相对位置可以根据需要进行设计。
在上面描述的各实施例中,第三子像素103可以为绿色子像素。在一些实施例中,第一子像素101可以为红色子像素,并且第二子像素102可以为蓝色子像素。可替换地,第一子像素101可以为蓝色子像素,并且第二子像素102可以为红色子像素。由于人眼对绿光比较敏感,第三子像素103的面积可以相对较小。在一些实施例中,绿色 子像素的面积小于红色子像素的面积,且红色子像素的面积小于蓝色子像素的面积。替换地,红色子像素的面积小于绿色子像素的面积,并且绿色子像素的面积小于蓝色子像素的面积。所述红色子像素具有第一总面积,所述绿色子像素具有第二总面积,并且所述蓝色子像素具有第三总面积。在一些实施例中,所述第一总面积、所述第二总面积和所述第三总面积具有1∶(1.1~1.5)∶(1.2~1.7)、进一步地1∶(1.2~1.35)∶(1.4~1.55)、或更进一步地1∶1.27∶1.46的比率。与其中红色子像素、绿色子像素和蓝色子像素具有相同的总面积的像素图案相比,这提供了不同水平的视觉质量改善。在一些实施例中,各所述红色子像素、各所述绿色子像素和各所述蓝色子像素在数量上的比率大约为1∶2∶1。这可以通过在第一方向D1和第二方向D2上充分地延展像素排布结构的图案来实现。术语“大约”在此处意图涵盖一定的误差范围,例如±10%(以红色或蓝色子像素的数目为基准)。例如,1∶1.9∶1被认为是“大约为1∶2∶1”。
图9一般地示出了根据本公开实施例的像素排布结构的借色原理。
在该示例中,第一子像素101为红色子像素,第二子像素102为蓝色子像素,并且第三子像素103为绿色子像素。第二子像素102的面积与第一子像素101的面积相同,即红色子像素的面积与蓝色子像素的面积相同。
如图9所示,位于每个虚线三角形的顶点的绿色子像素G、红色子像素R和蓝色子像素B构成一个虚拟的像素。有利地,在直接相邻的虚线三角形之间总是存在公共的子像素。这提供了比物理分辨率更高的虚拟分辨率,从而改善了显示效果。此外,如上面描述的,第一子像素101、第二子像素102和第三子像素103被允许更紧密地排列,从而提供比现有的像素排布结构更大的每子像素面积。
图10为根据本公开实施例的显示装置1000的示意性平面图。
参照图10,显示装置1000包括显示面板1010、扫描驱动器1020、数据驱动器1030、以及时序控制器1040。
显示面板1010包括显示基板1012和形成在显示基板1012上的像素排布结构1014。像素排布结构1014可以采取上面关于图1-9描述的像素排布结构100及其各种变型中的任一个的形式。像素排布结构1014被布置使得所述第一方向D1和所述第二方向D2(根据其描述了像素 排布结构100及其各种变型的配置)中的每一个与显示基板1012的长度方向D3成大约45度相交。术语“大约”在此处意图涵盖一定的误差范围,例如±10%。例如,40.5度被认为是“大约45度”。像素排布结构1014中的子像素可以是有机电致发光子像素,尽管本公开不限于此。
从第一虚拟矩阵的视角来看,像素排布结构1014包括多个邻接的(adjoining)第一虚拟矩阵。在行方向(图10中,水平方向)上,各所述第一虚拟矩形中直接相邻的每两个第一虚拟矩形具有共用侧边,使得该共用侧边上的子像素被该直接相邻的两个第一虚拟矩形共用。在列方向(图10中,垂直方向)上,各所述第一虚拟矩形中直接相邻的每两个第一虚拟矩形具有共用侧边,使得该共用侧边上的子像素被该直接相邻的两个第一虚拟矩形共用。
扫描驱动器1020向显示面板1010输出栅极扫描信号。在一些示例性实施例中,扫描驱动器1020可以被直接集成在显示基板1012中作为阵列基板行驱动(GOA)电路。替换地,扫描驱动器1020可以通过带式载体封装(Tape Carrier Package,TCP)连接至显示面板1010。扫描驱动器1020的实现可以是已知的,其详细描述因此被省略。
数据驱动器1030向显示面板1010输出数据电压。在一些实施例中,数据驱动器1030可以包括多个并行操作的数据驱动芯片。数据驱动器1030的实现可以是已知的,其详细描述因此被省略。
时序控制器1040控制扫描驱动器1020和数据驱动器1030的操作。具体地,时序控制器1040输出数据控制信号和图像数据以控制数据驱动器1030的驱动操作,并且输出栅极控制信号以控制扫描驱动器1020的驱动操作。数据控制信号和图像数据被施加至数据驱动器1030。栅极控制信号被施加至扫描驱动器1020。时序控制器1040的实现可以是已知的,其详细描述因此被省略。
显示装置1000具有与上面关于图109描述的像素排布结构的实施例相同的优点,其在此不再赘述。作为示例而非限制,该显示装置1000可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
图11A、11B和11C为根据本公开实施例的一组掩模板的示意性平面图。该组掩模板包括第一掩模板1100A、第二掩模板1100B和第 三掩模板1100C。
参考图11A,第一掩模板1100A的仅一部分被示出。第一掩模板1100A限定多个第一开口1112。所述多个第一开口1112被布置成具有与上面关于图1-9描述的像素排布结构100或其各种变型中的任一个的各第一子像素的图案相对应的图案。在该示例中,所述多个第一开口1112被布置为具有与图1的像素排布结构100的各第一子像素的图案相对应的图案。在一些实施例中,掩模板1100A为高精度金属掩模板,其可以用于蒸镀工艺中来形成期望的像素图案。
参考图11B,第二掩模板1100B的仅一部分被示出。第二掩模板1100B限定多个第二开口1114。所述多个第二开口1114被布置成具有与上面关于图1-9描述的像素排布结构100或其各种变型中的任一个的各第二子像素的图案相对应的图案。在该示例中,所述多个第二开口1114被布置为具有与图1的像素排布结构100的各第二子像素的图案相对应的图案。在一些实施例中,掩模板1100B为高精度金属掩模板,其可以用于蒸镀工艺中来形成期望的像素图案。
参考图11C,第三掩模板1100C的仅一部分被示出。第三掩模板1100C限定多个第三开口1116。所述多个第三开口1116被布置成具有与上面关于图1-9描述的像素排布结构100或其各种变型中的任一个的各第三子像素的图案相对应的图案。在该示例中,所述多个第三开口1116被布置为具有与图1的像素排布结构100的各第三子像素的图案相对应的图案。在一些实施例中,掩模板1100C为高精度金属掩模板,其可以用于蒸镀工艺中来形成期望的像素图案。
掩模板1100A、1100B和1100C可以提供与上面关于图1-9描述的像素排布结构的实施例相同的优点,其在此不再赘述。
图12为根据本公开实施例的制作像素排布结构的方法1200的流程图。上面关于图1-9描述的像素排布结构的实施例可以利用方法1200和掩模板1100A、1100B和1100C来实现。
参考图12,在步骤1210处,提供显示基板。显示基板典型地是已经被提供有由例如薄膜晶体管(TFT)形成的驱动电路的背板。在步骤1220处,蒸发第一电致发光材料并通过使所蒸发的第一电致发光材料穿过第一掩模板1100A的所述多个第一开口1112而将所蒸发的第一电致发光材料沉积到所述显示基板上以形成第一子像素101。在步骤1230 处,蒸发第二电致发光材料并通过使所蒸发的第二电致发光材料穿过第二掩模板1100B的所述多个第二开口1114而将所蒸发的第二电致发光材料沉积到所述显示基板上以形成第二子像素102。在步骤1240处,蒸发第三电致发光材料并通过使所蒸发的第三电致发光材料穿过第三掩模板1100C的所述多个第三开口1116而将所蒸发的第三电致发光材料沉积到所述显示基板上以形成第三子像素103。步骤1220至1240通常被称为蒸镀,通过其像素图案将被形成在显示基板的预定位置上。将理解的是,步骤1220至1240可以以不同于所图示和描述的顺序被执行。在一些实施例中,电致发光材料可以为有机电致发光材料。其他电致发光材料是可能的。
通过研究附图、公开内容和所附的权利要求书,本领域技术人员在实践所要求保护的主题时,能够理解和实现对于所公开的实施例的变型。虽然各个操作在附图中被描绘为按照特定的顺序,但是这不应理解为要求这些操作必须以所示的特定顺序或者按顺行次序执行,也不应理解为要求必须执行所有示出的操作以获得期望的结果。在权利要求书中,词语“包括”不排除其他元件或步骤,并且不定冠词“一”或“一个”不排除多个。在相互不同的从属权利要求中记载了某些措施的仅有事实并不表明这些措施的组合不能用来获利。

Claims (43)

  1. 一种像素排布结构,包括:
    在第一方向上排列的多个第一组子像素,所述多个第一组中的每一个包括交替排列的多个第一子像素和多个第三子像素;以及
    在第一方向上排列的多个第二组子像素,所述多个第二组中的每一个包括交替排列的多个第三子像素和多个第二子像素,
    其中所述多个第一组和所述多个第二组在垂直于所述第一方向的第二方向上交替排列,并且
    其中所述多个第一组和所述多个第二组被排列使得形成在所述第二方向上排列的多个第三组子像素和在所述第二方向上排列的多个第四组子像素,所述多个第三组和所述多个第四组在所述第一方向上交替排列,所述多个第三组中的每一个包括交替排列的多个第一子像素和多个第三子像素,所述多个第四组中的每一个包括交替排列的多个第三子像素和多个第二子像素。
  2. 如权利要求1所述的像素排布结构,其中每个第一组中的所述多个第三子像素中的至少一部分具有第一形状,并且其中每个第二组中的所述多个第三子像素中的至少一部分具有不同于所述第一形状的第二形状。
  3. 如权利要求1所述的像素排布结构,其中各所述第三子像素具有基本相同的面积。
  4. 如权利要求1所述的像素排布结构,其中各所述第三子像素中的第一多个第三子像素每个具有一面积并且各所述第三子像素中的第二多个第三子像素每个具有不同于所述面积的另一面积。
  5. 如权利要求1所述的像素排布结构,
    其中各所述第三子像素被布置使得各所述第三子像素中的第一多个第三子像素中的每一个在所述第一方向和所述第二方向中的一个方向上具有距各所述第一子像素中的直接相邻的第一子像素的第一距离,并且各所述第三子像素中的第二多个第三子像素中的每一个在所述第一方向和所述第二方向中的另一个方向上具有距各所述第一子像素中的直接相邻的第一子像素的第二距离,所述第一距离与所述第二距离的比值在1~1.5的范围中;并且
    其中各所述第三子像素被布置使得各所述第三子像素中的第一多个第三子像素中的每一个在所述第一方向和所述第二方向中的一个方向上具有距各所述第二子像素中的直接相邻的第二子像素的第三距离,并且各所述第三子像素中的第二多个第三子像素中的每一个在所述第一方向和所述第二方向中的另一个方向上具有距各所述第二子像素中的直接相邻的第二子像素的第四距离,所述第三距离与所述第四距离的比值在1~1.5的范围中。
  6. 如权利要求1所述的像素排布结构,其中各所述第一子像素、各所述第二子像素和各所述第三子像素相对于彼此基本等距地布置。
  7. 如权利要求1所述的像素排布结构,其中各所述第三子像素相对于彼此基本等距地布置,并且其中各所述第一子像素和各所述第二子像素相对于彼此基本等距地布置。
  8. 如权利要求1所述的像素排布结构,
    其中所述多个第一组子像素中的所述第三子像素中的每一个与所述第一方向上各所述第一子像素中的直接相邻的第一子像素具有相互基本平行的相对的侧边;
    其中所述多个第二组子像素中的所述第三子像素中的每一个与所述第一方向上各所述第二子像素中的直接相邻的第二子像素具有相互基本平行的相对的侧边;
    其中所述多个第三组子像素中的所述第三子像素中的每一个与所述第二方向上各所述第一子像素中的直接相邻的第一子像素具有相互基本平行的相对的侧边;并且
    其中所述多个第四组子像素中的所述第三子像素中的每一个与所述第二方向上各所述第二子像素中的直接相邻的第二子像素具有相互基本平行的相对的侧边。
  9. 如权利要求2所述的像素排布结构,其中所述多个第一组中的所述第三子像素每个具有所述第一形状,并且其中所述多个第二组中的所述第三子像素每个具有所述第二形状。
  10. 如权利要求2所述的像素排布结构,
    其中所述多个第一组中的每一个中的所述第三子像素中的第一多个第三子像素具有所述第一形状,并且所述多个第一组中的每一个中的所述第三子像素中的第二多个第三子像素具有所述第二形状,所述 第一形状和所述第二形状对于第一组中的所述第三子像素而言交替地出现;并且
    其中所述多个第二组中的每一个中的所述第三子像素中的第一多个第三子像素每个具有所述第二形状,并且所述多个第一组中的每一个中的所述第三子像素中的第二多个第三子像素每个具有所述第一形状,所述第一形状和所述第二形状对于第二组中的所述第三子像素而言交替地出现。
  11. 如权利要求10所述的像素排布结构,其中所述第三组子像素具有与所述第一组子像素基本相同的图案,并且其中所述第四组子像素具有与所述第二组子像素基本相同的图案。
  12. 如权利要求1所述的像素排布结构,其中各所述第一子像素具有基本相同的面积。
  13. 如权利要求1所述的像素排布结构,其中各所述第一子像素中的第一多个第一子像素每个具有一面积并且各所述第一子像素中的第二多个第一子像素每个具有不同于所述面积的另一面积。
  14. 如权利要求1所述的像素排布结构,其中各所述第一子像素具有基本相同的形状。
  15. 如权利要求1所述的像素排布结构,其中各所述第一子像素中的第一多个第一子像素每个具有一形状并且各所述第一子像素中的第二多个第一子像素每个具有不同于所述形状的另一形状。
  16. 如权利要求1所述的像素排布结构,其中各所述第二子像素具有基本相同的面积。
  17. 如权利要求1所述的像素排布结构,其中各所述第二子像素中的第一多个第二子像素每个具有一面积并且各所述第二子像素中的第二多个第二子像素每个具有不同于所述面积的另一面积。
  18. 如权利要求1所述的像素排布结构,其中各所述第二子像素具有基本相同的形状。
  19. 如权利要求1所述的像素排布结构,其中各所述第二子像素中的第一多个第二子像素每个具有一形状并且各所述第二子像素中的第二多个第二子像素每个具有不同于所述形状的另一形状。
  20. 如权利要求1所述的像素排布结构,其中所述第一子像素为红色子像素,其中所述第二子像素为蓝色子像素,并且其中所述第三子 像素为绿色子像素。
  21. 如权利要求1所述的像素排布结构,其中所述第一子像素为蓝色子像素,其中所述第二子像素为红色子像素,并且其中所述第三子像素为绿色子像素。
  22. 如权利要求20或21所述的像素排布结构,其中所述蓝色子像素每个具有第一面积,其中所述红色子像素每个具有小于所述第一面积的第二面积,并且其中所述绿色子像素每个具有小于所述第二面积的第三面积。
  23. 如权利要求20或21所述的像素排布结构,其中所述蓝色子像素每个具有第一面积,其中所述绿色子像素每个具有小于所述第一面积的第二面积,并且其中所述红色子像素每个具有小于所述第二面积的第三面积。
  24. 如权利要求20或21所述的像素排布结构,其中所述红色子像素具有第一总面积,所述绿色子像素具有第二总面积,并且所述蓝色子像素具有第三总面积,并且其中所述第一总面积、所述第二总面积和所述第三总面积具有1∶(1.1~1.5)∶(1.2~1.7)、进一步地1∶(1.2~1.35)∶(1.4~1.55)、或更进一步地1∶1.27∶1.46的比率。
  25. 如权利要求20或21所述的像素排布结构,其中各所述红色子像素、各所述绿色子像素和各所述蓝色子像素在数量上的比率大约为1∶2∶1。
  26. 如权利要求2所述的像素排布结构,其中所述第一形状和所述第二形状选自矩形、椭圆形、凸多边形、凹多边形、三角形和圆形所组成的组。
  27. 一种显示面板,包括:
    显示基板;以及
    如权利要求1-26中任一项所述的像素排布结构,所述像素排布结构形成在所述显示基板上,
    其中所述像素排布结构被布置使得所述第一方向和所述第二方向中的每一个与所述显示基板的长度方向成大约45度相交。
  28. 如权利要求27所述的显示面板,其中所述第一子像素、所述第二子像素和所述第三子像素为有机电致发光子像素。
  29. 一种显示装置,包括如权利要求27或28所述的显示面板。
  30. 一组用于制作如权利要求1-26中任一项所述的像素排布结构的掩模板,包括:
    第一掩模板,其限定多个第一开口,所述多个第一开口被布置成具有与各所述第一子像素的图案对应的图案;
    第二掩模板,其限定多个第二开口,所述多个第二开口被布置成具有与各所述第二子像素的图案对应的图案;以及
    第三掩模板,其限定多个第三开口,所述多个第三开口被布置成具有与各所述第三子像素的图案对应的图案。
  31. 一种使用如权利要求30所述的一组掩模板制作像素排布结构的方法,包括:
    提供显示基板;
    蒸发第一电致发光材料并通过使所蒸发的第一电致发光材料穿过所述第一掩模板的所述多个第一开口而将所蒸发的第一电致发光材料沉积到所述显示基板上以形成各第一子像素;
    蒸发第二电致发光材料并通过使所蒸发的第二电致发光材料穿过所述第二掩模板的所述多个第二开口而将所蒸发的第二电致发光材料沉积到所述显示基板上以形成各第二子像素;并且
    蒸发第三电致发光材料并通过使所蒸发的第三电致发光材料穿过所述第三掩模板的所述多个第三开口而将所蒸发的第三电致发光材料沉积到所述显示基板上以形成各第三子像素。
  32. 一种像素排布结构,包括:
    五个第一子像素,分别位于第一虚拟矩形的中心位置处和四个顶角位置处;
    四个第二子像素,位于所述第一虚拟矩形的四条侧边的相应中心位置处;以及
    四个第三子像素,位于相应的四个第二虚拟矩形内,各所述第二虚拟矩形中的每一个由所述第一虚拟矩形的所述四个顶角位置中的一个相应顶角位置、所述第一虚拟矩形的所述四条侧边中包含该相应顶角位置的两条侧边的相应中心位置、以及所述第一虚拟矩形的中心位置限定,所述四个第二虚拟矩形构成所述第一虚拟矩形。
  33. 如权利要求32所述的像素排布结构,其中所述四个第三子像素的第一子集每个具有第一形状,并且其中所述四个第三子像素的第 二子集每个具有不同于所述第一形状的第二形状。
  34. 一种显示面板,包括:
    显示基板;以及
    多个邻接的如权利要求32-33中任一项所述的像素排布结构,所述像素排布结构形成在所述显示基板上,
    其中在行方向上各所述第一虚拟矩形中直接相邻的每两个第一虚拟矩形具有共用侧边,使得该共用侧边上的子像素被该直接相邻的两个第一虚拟矩形共用,并且
    其中在列方向上各所述第一虚拟矩形中直接相邻的每两个第一虚拟矩形具有共用侧边,使得该共用侧边上的子像素被该直接相邻的两个第一虚拟矩形共用。
  35. 如权利要求34所述的显示面板,其中所述第一子像素为红色像素,其中所述第二子像素为蓝色像素,并且其中所述第三子像素为绿色像素。
  36. 如权利要求34所述的显示面板,其中所述第一子像素为蓝色像素,其中所述第二子像素为红色像素,并且其中所述第三子像素为绿色像素。
  37. 如权利要求35或36所述的显示面板,其中所述蓝色子像素每个具有第一面积,其中所述红色子像素每个具有小于所述第一面积的第二面积,并且其中所述绿色子像素每个具有小于所述第二面积的第三面积。
  38. 如权利要求35或36所述的显示面板,其中所述蓝色子像素每个具有第一面积,其中所述绿色子像素每个具有小于所述第一面积的第二面积,并且其中所述红色子像素每个具有小于所述第二面积的第三面积。
  39. 如权利要求35或36所述的显示面板,其中所述红色子像素具有第一总面积,所述绿色子像素具有第二总面积,并且所述蓝色子像素具有第三总面积,并且其中所述第一总面积、所述第二总面积和所述第三总面积具有1∶(1.1~1.5)∶(1.2~1.7)、进一步地1∶(1.2~1.35)∶(1.4~1.55)、或更进一步地1∶1.27∶1.46的比率。
  40. 如权利要求35或36所述的显示面板,其中各所述红色子像素、各所述绿色子像素和各所述蓝色子像素在数量上的比率大约为1∶2∶1。
  41. 一种像素排布结构,包括:
    在第一方向上排列的多个第一重复单元,所述多个第一重复单元中的每一个包括交替排列的多个第一子像素和多个第三子像素;以及
    在第一方向上排列的多个第二重复单元,所述多个第二重复单元中的每一个包括交替排列的多个第三子像素和多个第二子像素,
    其中所述多个第一重复单元和所述多个第二重复单元在垂直于所述第一方向的第二方向上交替排列,并且
    其中所述多个第一重复单元和所述多个第二重复单元被排列使得各所述第一子像素中的每个第一子像素与各所述第三子像素中的四个第三子像素直接相邻并且各所述第二子像素中的每个第二子像素与各所述第三子像素中的四个第三子像素直接相邻。
  42. 如权利要求41所述的像素排布结构,其中每个第一重复单元中的所述多个第三子像素中的至少一部分具有第一形状,并且其中每个第二重复单元中的所述多个第三子像素中的至少一部分具有不同于所述第一形状的第二形状。
  43. 一种显示面板,包括:
    显示基板;以及
    如权利要求41或42所述的像素排布结构,所述像素排布结构形成在所述显示基板上,
    其中所述像素排布结构被布置使得所述第一方向和所述第二方向中的每一个与所述显示基板的长度方向成大约45度相交。
PCT/CN2018/122063 2018-01-02 2018-12-19 像素排布结构、其制作方法、显示面板、显示装置和掩模板 WO2019134518A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/470,161 US11114507B2 (en) 2018-01-02 2018-12-19 Pixel arrangement, manufacturing method thereof, display panel, display device and mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810002785.4A CN109994507B (zh) 2018-01-02 2018-01-02 一种像素排布结构及相关装置
CN201810002785.4 2018-01-02

Publications (1)

Publication Number Publication Date
WO2019134518A1 true WO2019134518A1 (zh) 2019-07-11

Family

ID=67128934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122063 WO2019134518A1 (zh) 2018-01-02 2018-12-19 像素排布结构、其制作方法、显示面板、显示装置和掩模板

Country Status (3)

Country Link
US (1) US11114507B2 (zh)
CN (1) CN109994507B (zh)
WO (1) WO2019134518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774674C1 (ru) * 2020-09-01 2022-06-21 Боэ Текнолоджи Груп Ко., Лтд. Панель отображения и устройство отображения

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994505A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 一种像素排布结构及相关装置
US11355556B2 (en) * 2018-02-01 2022-06-07 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel
US11889719B2 (en) * 2018-02-01 2024-01-30 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel
US11522019B2 (en) * 2018-02-01 2022-12-06 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel
CN110137211A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构、高精度金属掩模板及显示装置
CN208753326U (zh) * 2018-11-05 2019-04-16 北京京东方技术开发有限公司 显示基板和显示装置
CN112802884B (zh) * 2018-12-13 2023-10-31 昆山国显光电有限公司 像素排列结构、显示面板及显示装置
KR20200106589A (ko) 2019-03-04 2020-09-15 삼성디스플레이 주식회사 표시 장치, 표시 장치의 제조장치 및 표시 장치의 제조방법
US11557635B2 (en) * 2019-12-10 2023-01-17 Samsung Display Co., Ltd. Display device, mask assembly, and apparatus for manufacturing the display device
CN110867481B (zh) * 2019-12-17 2022-12-06 武汉天马微电子有限公司 像素排列结构、显示面板及显示装置
CN111863889B (zh) * 2020-07-07 2022-07-12 武汉华星光电半导体显示技术有限公司 像素排列结构、显示面板以及显示装置
CN112018160B (zh) * 2020-08-27 2023-12-05 合肥维信诺科技有限公司 一种像素结构和显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282727A (zh) * 2014-09-30 2015-01-14 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
CN106486513A (zh) * 2015-08-31 2017-03-08 昆山国显光电有限公司 像素结构以及oled显示面板
KR20170116598A (ko) * 2017-09-28 2017-10-19 삼성디스플레이 주식회사 유기 발광 표시 장치의 화소 배열 구조
CN107275359A (zh) * 2016-04-08 2017-10-20 乐金显示有限公司 有机发光显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615332B1 (ko) 2012-03-06 2016-04-26 삼성디스플레이 주식회사 유기 발광 표시 장치의 화소 배열 구조
KR102127762B1 (ko) * 2013-10-02 2020-06-30 삼성디스플레이 주식회사 평판 표시 장치
TWI509336B (zh) 2013-10-23 2015-11-21 Au Optronics Corp 畫素單元、畫素陣列以及液晶顯示面板
KR20150067624A (ko) 2013-12-10 2015-06-18 삼성디스플레이 주식회사 유기발광표시장치
CN105826349B (zh) 2015-01-09 2019-04-23 联咏科技股份有限公司 显示面板
CN107275360B (zh) 2016-04-01 2020-10-16 乐金显示有限公司 有机发光显示装置
KR101700558B1 (ko) 2016-04-20 2017-01-31 엘지디스플레이 주식회사 유기 발광 표시 장치
CN106298851B (zh) 2016-08-12 2018-06-29 京东方科技集团股份有限公司 一种像素结构、显示面板及其驱动方法
CN106920832B (zh) 2017-05-12 2019-02-15 合肥鑫晟光电科技有限公司 一种像素结构、其制作方法及显示面板
CN110264898B (zh) 2017-06-12 2022-02-15 Oppo广东移动通信有限公司 像素阵列及显示器
US20180357953A1 (en) 2017-06-12 2018-12-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Pixel array and display having the same and electronic device
CN109994505A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN207966987U (zh) * 2018-01-02 2018-10-12 京东方科技集团股份有限公司 一种像素排布结构及相关装置
WO2019134522A1 (zh) * 2018-01-02 2019-07-11 京东方科技集团股份有限公司 像素排布结构、其制作方法、显示面板、显示装置和掩模板
US10909901B2 (en) * 2018-01-02 2021-02-02 Boe Technology Group Co., Ltd. Pixel arrangement, manufacturing method thereof, display panel, display device and mask
CN207966985U (zh) 2018-01-02 2018-10-12 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN207966995U (zh) 2018-02-09 2018-10-12 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN207966994U (zh) 2018-02-09 2018-10-12 京东方科技集团股份有限公司 一种像素排布结构及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282727A (zh) * 2014-09-30 2015-01-14 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
CN106486513A (zh) * 2015-08-31 2017-03-08 昆山国显光电有限公司 像素结构以及oled显示面板
CN107275359A (zh) * 2016-04-08 2017-10-20 乐金显示有限公司 有机发光显示装置
KR20170116598A (ko) * 2017-09-28 2017-10-19 삼성디스플레이 주식회사 유기 발광 표시 장치의 화소 배열 구조

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774674C1 (ru) * 2020-09-01 2022-06-21 Боэ Текнолоджи Груп Ко., Лтд. Панель отображения и устройство отображения
RU2779136C1 (ru) * 2020-09-10 2022-09-01 Боэ Текнолоджи Груп Ко., Лтд. Пиксельный массив и устройство отображения

Also Published As

Publication number Publication date
US11114507B2 (en) 2021-09-07
CN109994507A (zh) 2019-07-09
CN109994507B (zh) 2020-08-04
US20200357861A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019134514A1 (zh) 像素排布结构、其制作方法、显示面板、显示装置和掩模板
WO2019134518A1 (zh) 像素排布结构、其制作方法、显示面板、显示装置和掩模板
WO2019134521A1 (zh) 像素排布结构、其制作方法、显示面板、显示装置和掩模板
WO2019134522A1 (zh) 像素排布结构、其制作方法、显示面板、显示装置和掩模板
WO2019134515A1 (zh) 像素排布结构、其制作方法、显示面板、显示装置和掩模板
WO2019134439A1 (zh) 一种显示面板、高精度金属掩模板组及显示装置
JP7295117B2 (ja) 画素配列構造、有機電界発光ディスプレイパネル、表示装置及びマスクユニット
JP6657127B2 (ja) 画素構造、その表示方法、及び表示装置
WO2019153951A1 (zh) 像素排列结构、显示基板、显示装置和掩模板组
JP6752156B2 (ja) 画素構造、その表示方法、及び関連表示装置
CN109994503B (zh) 一种像素排布结构及相关装置
TWI585968B (zh) 顯示裝置
WO2019153950A1 (zh) 像素排列结构、显示基板、显示装置和掩模板组
US11545527B2 (en) Pixel arrangement structure, high-precision metal mask, and display apparatus with hexagon pixel arrangement
US11367752B2 (en) Pixel layout structure, metal mask, and display apparatus
US10727439B2 (en) Display panel for maintaining parallel substrates with constant space and display device including the same
WO2019148678A1 (zh) 有机发光二极管像素排列结构及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18898446

Country of ref document: EP

Kind code of ref document: A1