WO2019134087A1 - 同时抑制lsd1和hdac靶点的化合物及其应用 - Google Patents

同时抑制lsd1和hdac靶点的化合物及其应用 Download PDF

Info

Publication number
WO2019134087A1
WO2019134087A1 PCT/CN2018/071317 CN2018071317W WO2019134087A1 WO 2019134087 A1 WO2019134087 A1 WO 2019134087A1 CN 2018071317 W CN2018071317 W CN 2018071317W WO 2019134087 A1 WO2019134087 A1 WO 2019134087A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
alkyl
cancer
Prior art date
Application number
PCT/CN2018/071317
Other languages
English (en)
French (fr)
Inventor
全军民
李勤凯
曾鑫
许正双
岳宏
张婷瑶
付佳苗
黄新仪
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to PCT/CN2018/071317 priority Critical patent/WO2019134087A1/zh
Priority to EP18898124.5A priority patent/EP3736266A4/en
Priority to CN201880084945.2A priority patent/CN111566086B/zh
Priority to JP2020537234A priority patent/JP2021510152A/ja
Publication of WO2019134087A1 publication Critical patent/WO2019134087A1/zh
Priority to US16/920,450 priority patent/US20200331882A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/34Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/04Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/301,4-Oxazines; Hydrogenated 1,4-oxazines not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of medicine, and particularly relates to a compound for simultaneously inhibiting LSD1 and HDAC targets and an application thereof.
  • Histone modifications include methylation, acetylation, phosphorylation, ubiquitination, and the like.
  • Histone methylation occurs on the arginine and lysine residues of histones H3 and H4 and can occur 1-2 times (arginine) or 1-3 times (lysine) by histone A
  • the regulation of basal transferase (HMT) and histone demethylase (HDM) is manifested by transcriptional activation or gene silencing.
  • the histone acetylation process is regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC).
  • HAT histone acetyltransferase
  • HDAC histone deacetylase
  • the histones in the transcriptional activation region are highly acetylated, while the deacetylation state usually shows gene silencing. . Abnormalities in histone modifications are also important contributors to cancer development.
  • HDACs histone deacetylases
  • the mechanism of action of histone deacetylases is to remove the acetyl group of nucleoprotein histone lysine residues, reduce the space between nucleosomes and DNA, and return histones to positive Sexuality enhances the electrostatic interaction between nucleosomes and DNA, allowing DNA to bind tightly to nucleosomes, thereby preventing transcription factors from binding to DNA and inhibiting the transcription process.
  • the level of histone acetylation is closely related to the development of cancer and the expression levels of oncogenes and tumor suppressor genes. Many cancers exhibit abnormal expression of histone acetyltransferases and deacetylases, usually manifested by overexpression or activation of HDACs and inhibition of expression of specific genes.
  • HDACs can also bind and regulate many other protein factors, including transcription factors p53, E2F1, nuclear factor NF- ⁇ B, protein factor ⁇ -tubulin, Ku70, heat shock protein Hsp90, etc. They can be deacetylated as targets and affect their activity.
  • HDACi histone deacetylation inhibitors
  • HDACi histone deacetylation inhibitors
  • thrombocytopenia nausea and fatigue, which in most cases are clinically controllable.
  • HDACi can induce apoptosis by blocking the cell cycle, and has anti-angiogenic, anti-proliferative and immunomodulatory activities. HDACi acts directly on cancer cells to enhance its immunogenicity, while also increasing the activity of immune cells and promoting the production of cytokines to enhance anti-tumor immunity.
  • LSD1 histone lysine demethylase
  • the irreversible view of protein methylation process also laid the foundation for the subsequent discovery of more histone demethylases and their functional studies.
  • Increased number of histone demethylases highlights the nature of dynamic regulation of histone methylation, a key chromatin modification involved in eukaryotic genome and gene regulation, in cell proliferation, adipogenesis, spermatogenesis, chromosomes It plays a wide range of roles in separation and embryo development.
  • LSD1 also promotes tumor growth by inhibiting the activity of the tumor suppressor p53. A series of studies have shown the specific biological effects of these enzymes and their potential links to human diseases.
  • LSD1 plays an indispensable role in the development and differentiation of mammals, regulating hormone levels, affecting the proliferation and differentiation of hematopoietic cells, and inhibiting energy expenditure and lipolysis.
  • Overexpression of LSD1 is closely related to the development and progression of prostate cancer, breast cancer, colon cancer, neuroblastoma, non-small cell lung cancer and bladder cancer, and has a significant role in stem cell and tumor stem cell self-renewal and differentiation. Inhibition of its expression or its function has an important role in the treatment of cancer. As a new tumor drug target LSD1 has broad research and development and clinical application prospects.
  • Histone demethylase LSD1 and histone deacetylase HDACs are key proteins of transcriptional repression complexes such as CoREST and NuRD, which are widely involved in the regulation of gene transcription activation and inhibition by synergistic action, and are highly correlated with the development of various tumors. It is highly expressed in various tumor cells and has various biological functions, including promoting tumor proliferation, promoting fat synthesis, inhibiting energy metabolism, inhibiting lipolysis, and regulating cell differentiation. Therefore, LSD1 and HDACs can be used as targets for anti-tumor drugs, and the research and discovery of inhibitors are of great significance for the development of new anti-tumor drugs.
  • the research of inhibitors is mainly to single-target LSD1 or HDACs, and does not fully utilize the synergistic effect of LSD1 and HDACs.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, to provide a compound which simultaneously inhibits LSD1 and HDAC targets and an application thereof, and aims to improve the synergistic effect of existing epigenetic regulatory drugs in tumor therapy.
  • the invention provides a compound having the structural formula of Formula I:
  • Y -NR 1 R 2 , wherein NR 1 R 2 is a substituted or unsubstituted 3 to 9 membered nitrogen-containing heterocyclic hydrocarbon group;
  • a and B are each independently selected from substituted or unsubstituted phenylene, substituted or unsubstituted diazenylene.
  • a compound of the present invention is a pharmaceutically acceptable salt.
  • composition comprising the above-described compound of the present invention and a pharmaceutically acceptable carrier.
  • the invention provides the use of a compound of the invention or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment and/or prevention of a tumor or cancer associated with LSD1 and/or HDAC.
  • the invention utilizes the method of computer aided design, combined with the experimental detection method, based on the crystal structure of the active pocket of LSD1 and HDAC1, fully utilizes the common structure of the active pockets of the two proteins, and designs and synthesizes a series of linkages which can simultaneously inhibit LSD1 and HDACs.
  • An aryl small molecule compound; the compound or a corresponding pharmaceutically acceptable salt thereof inhibits LSD1 and HDAC target proteins simultaneously, thereby inhibiting the proliferation of tumor cells, exhibiting a synergistic inhibitory effect in various tumor cells, and can be used Prevention and treatment of tumors or cancers associated with abnormalities in histone acetylation and methylation.
  • Alkyl means a straight or branched, monovalent, saturated aliphatic chain including, but not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, Isoamyl, hexyl and other similar groups.
  • Heteroalkyl means a straight or branched, monovalent, saturated aliphatic chain attached to at least one heteroatom, such as, but not limited to, methylaminoethyl or the like.
  • Alkenyl refers to a straight or branched chain hydrocarbon bearing one or more double bonds including, but not limited to, vinyl, propenyl, and the like.
  • Heteroalkenyl refers to a straight or branched hydrocarbon chain attached to at least one heteroatom bearing one or more double bonds, including but not limited to, for example, vinylaminoethyl or other similar groups.
  • Alkynyl means a straight or branched chain hydrocarbon bearing one or more triple bonds including, but not limited to, ethynyl, propynyl and the like.
  • Heteroalkynyl means a straight or branched chain hydrocarbon having one or more triple bonds attached to at least one heteroatom, including but not limited to, for example, ethynyl, propynyl, and the like.
  • Aryl means a cyclic aromatic hydrocarbon including, but not limited to, phenyl, naphthyl, anthryl, phenanthryl and the like.
  • Heteroaryl means a monocyclic or polycyclic or fused aromatic hydrocarbon wherein one or more of the carbon atoms have been replaced by a heteroatom such as nitrogen, oxygen or sulfur. If a heteroaryl contains more than one heteroatom, these heteroatoms may be the same or different.
  • Heteroaryl groups include, but are not limited to, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzopyranyl, furyl, imidazolyl, oxazolyl, Pyridazinyl, fluorenyl, isobenzofuranyl, isodecyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxadiazolyl, oxazinyl, oxazolyl, Pyridazinyl, pteridinyl, fluorenyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridine [3,4-b]decyl, pyridyl, pyrimidinyl, pyrrolyl, quinolizine Base, quinolyl, quinoxalinyl, thiadia
  • Cycloalkyl means a saturated monocyclic or polycyclic alkyl group which may be fused to an aromatic hydrocarbon group. Cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, indanyl, tetrahydronaphthyl, and the like.
  • Heterocycloalkyl means a saturated monocyclic or polycyclic alkyl group which may be fused to an aromatic hydrocarbon group wherein at least one carbon atom has been replaced by a hetero atom such as nitrogen, oxygen or sulfur. If a heterocycloalkyl contains more than one heteroatom, these heteroatoms may be the same or different.
  • Heterocycloalkyl groups include, but are not limited to, azabicycloheptyl, azetidinyl, indanyl, morpholinyl, pyrazinyl, piperidinyl, pyrrolidinyl, tetrahydrofuranyl, tetra Hydroquinolyl, tetrahydrocarbazolyl, tetrahydroindenyl, tetrahydroisoquinolinyl, tetrahydropyranyl, tetrahydroquinoxalinyl, tetrahydrothiopyranyl, thiazolidinyl, thio? A phenyl group, a thioxanyl group, a thioalkyl group, and the like.
  • Cycloalkenyl means an unsaturated, monocyclic or polycyclic alkenyl group bearing one or more double bonds, possibly fused to an aromatic hydrocarbon group including, but not limited to, cyclovinyl, cyclopropenyl or the like. group.
  • Heterocyclenyl means an unsaturated, monocyclic or polycyclic alkenyl group bearing one or more double bonds, possibly fused to an aromatic hydrocarbon group, wherein at least one carbon atom is such as nitrogen, oxygen or sulfur The hetero atom is replaced. If a heterocycloalkyl contains more than one heteroatom, these heteroatoms may be the same or different.
  • Cycloalkynyl refers to a monocyclic or polycyclic alkynyl group which is unsaturated, having one or more triple bonds, and may be fused to an aromatic hydrocarbon group including, but not limited to, cycloethynyl, cyclopropynyl or the like. Group.
  • Heterocyclic alkynyl means an unsaturated, monocyclic or polycyclic alkynyl group bearing one or more triple bonds, possibly fused to an aromatic hydrocarbon group, wherein at least one carbon atom is such as nitrogen, oxygen or sulfur The hetero atom is replaced. If a heterocycloalkyl contains more than one heteroatom, these heteroatoms may be the same or different.
  • the present invention provides a compound having the structural formula of Formula I:
  • Y -NR 1 R 2 , wherein NR 1 R 2 is a substituted or unsubstituted 3 to 9 membered nitrogen-containing heterocyclic hydrocarbon group;
  • a and B are each independently selected from substituted or unsubstituted phenylene, substituted or unsubstituted diazenylene.
  • a and B are each independently selected from:
  • R 3 , R 4 , R 5 , and R 6 are each independently selected from a substituted or unsubstituted C 1 -C 12 alkyl group, a substituted or unsubstituted C 1 -C 12 heteroalkyl group, Substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 3 -C 12 heterocycloalkyl, substituted or unsubstituted C 2 -C 12 alkenyl , substituted or unsubstituted C 2 -C 12 heteroalkenyl, substituted or unsubstituted C 3 -C 12 cycloalkenyl, substituted or unsubstituted C 3 -C 12 heterocyclic Alkenyl, substituted or unsubstituted C 2 -C 12 alkynyl, substituted or unsubstituted C 2 -C 12 heteroalkynyl, substituted or unsubstituted C 1
  • R 3 , R 4 , R 5 , R 6 are each independently selected from substituted or unsubstituted C 1 -C 6 alkyl, substituted or unsubstituted C 1 -C 6 heteroalkane a substituted, unsubstituted C 3 -C 6 cycloalkyl group, a substituted or unsubstituted C 3 -C 6 heterocycloalkyl group, a substituted or unsubstituted C 2 -C 6 Alkenyl, substituted or unsubstituted C 2 -C 6 heteroalkenyl, substituted or unsubstituted C 3 -C 6 cycloalkenyl, substituted or unsubstituted C 3 -C 6 Heterocyclenyl, substituted or unsubstituted C 2 -C 6 alkynyl, substituted or unsubstituted C 2 -C 6 heteroalkynyl, substituted or unsubstituted C 3 -C 6
  • the structure of -AB- is selected from:
  • D is a halogen (such as fluorine, chlorine, bromine, or iodine).
  • Z is a substituted or unsubstituted C 1 -C 4 alkyl group or a hydroxyl group.
  • R 7 selects a substituted or unsubstituted C 1 -C 12 alkyl group, a substituted or unsubstituted C 1 -C 12 heteroalkyl group, a substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 3 -C 12 heterocycloalkyl, substituted or unsubstituted C 2 -C 12 alkenyl, substituted or unsubstituted C 2 - C 12 heteroalkenyl, substituted or unsubstituted C 3 -C 12 cycloalkenyl, substituted or unsubstituted C 3 -C 12 heterocycloalkenyl, substituted or unsubstituted C 2 -C 12 alkynyl group, a substituted or unsubstituted C 2 -C 12 alkynyl heteroaryl, substituted or unsubstituted C 3 -C 12 cycloalkynyl
  • Y is a substituted or unsubstituted 5 or 6 membered nitrogen-containing heterocyclic hydrocarbon group. More preferably, said Y is selected from the group consisting of:
  • the compound is selected from the group consisting of
  • the preferred 16 compounds are named as ZZY series compounds (i.e., sequentially shown as ZZY-001 to ZZY-016).
  • a pharmaceutical composition comprising the above compound of the present invention and a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier includes a diluent, a binder, an absorbent, a disintegrant, a dispersing agent, a wetting agent, a solubilizing agent, a buffering agent, a surfactant, and the like which are required when preparing a pharmaceutical composition.
  • the pharmaceutical composition can be used for the prevention and treatment of tumors or cancers associated with histone acetylation and methylation abnormalities.
  • the pharmaceutical composition further includes an anticancer drug.
  • the anticancer drug is an LSD1 inhibitor and/or an HDAC inhibitor.
  • the tumor or cancer is selected from the group consisting of: brain cancer, glioblastoma, leukemia, Ban-Zhou syndrome, Cowden's disease, cerebellar dysplastic ganglioneuroma, breast cancer, inflammatory breast cancer, Vir Tums, Ewing's sarcoma, rhabdomyosarcoma, ependymoma, medulloblastoma, colon cancer, head and neck cancer, kidney cancer, lung cancer, liver cancer, melanoma, kidney cancer, ovarian cancer, pancreatic cancer, prostate cancer, At least one of sarcoma, osteosarcoma, bone, and giant cell tumor of the thyroid gland.
  • the synthesis of the ZZY series of compounds was analyzed by inverse synthesis of ZZY-001 as shown below.
  • the synthesis of ZZY-001 can be carried out by the HWE reaction of intermediates 1 and 2 to complete the extension of the carbon chain.
  • the hydroxy acid of the carboxylic acid end can be realized by the amide bond, and the aldehyde group of the intermediate 2 can be conveniently oxidized to the carboxy group. Acid and derivatized.
  • the key to the synthesis of intermediate 2 is a biaryl structure which can be prepared by intermediates 3 and 4 using a Suzuki coupling reaction.
  • intermediate 3 depends on the different requirements of the substrate structure, and can be accomplished by the following ways:
  • N-alkylation is a key step
  • 1-(3-Nitrophenyl)piperazine 8 (1 equivalent) was dissolved in acetic acid, bromine (1.5 eq.) was added dropwise, and stirred at 75 ° C overnight. After completion of the reaction, the product was collected by filtration, and the filter cake was washed with n-hexane, then transferred to a round bottom flask, and methanol was added thereto, and the residual bromine was evaporated to dryness to give the product 9 in vacuo.
  • Compound 9 (1 eq.) was dissolved in dichloromethane, and triethylamine (3 eq.) and EtOAc (2 eq. After the reaction was completed, the reaction was quenched with EtOAc (EtOAc)EtOAc.
  • Intermediate 4 can be reacted with a commercially available boronic acid-based compound (for example, intermediate 4a), or can be obtained by a boronic acidification reaction of a suitably protected and substituted 4-bromobenzaldehyde under a transition metal catalysis, such as intermediate 4b.
  • boronic acid-based compound for example, intermediate 4a
  • intermediate 4b a boronic acidification reaction of a suitably protected and substituted 4-bromobenzaldehyde under a transition metal catalysis
  • the intermediate 17 (such as 17a-17p) was dissolved in methanol, and then a 2N solution of hydrogen chloride in methanol (2 equivalents) was added dropwise, and the mixture was stirred at room temperature for 30 minutes. After the end of the reaction by TLC, most of the methanol was removed by rotary evaporation, and the system remained clear. The solid was precipitated by adding diethyl ether, and allowed to stand, and the solvent was taken up and dried to give the product ZZY-001-ZZY-016 series.
  • the above procedure can also be carried out using trifluoroacetic acid and a dichloromethane system to give the final product molecule possessing different carboxylic acid pairing ions.
  • reaction formula generated by ZZY-001 is as follows:
  • ZZY-001 ⁇ ZZY-016 The structure and analysis data of ZZY-001 ⁇ ZZY-016 are as follows:
  • LSD1 activity was detected using an LSD1-HRP coupling reaction.
  • the principle is as follows: The reaction mechanism of demethylation of LSD1 catalyzed substrate shows that H 2 O 2 is produced as a by-product in this process, so horseradish peroxidase (HRP) can be used. Catalyzing the reaction of H 2 O 2 and Amplex Red (a dye) to produce Resorufin (a substance capable of generating strong fluorescence) and H 2 O, and indirectly knowing the inhibitory activity of the molecule to be tested on LSD1 by detecting the fluorescence intensity of the product . In the process in which H 2 O 2 is reduced to H 2 O, Amplex Red acts as an electron donor and is oxidized to Resorufin for detecting fluorescence.
  • HRP horseradish peroxidase
  • the human recombinant LSD1 protein having the enzyme activity was first expressed in Escherichia coli, and then the sample was prepared according to the 50 ⁇ l/well system: 10 ⁇ M HRP+50 ⁇ M Amplex Red+100 nM LSD1+buffer (25 mM Hepes, 250 mM NaCl, 5% Glycerol, pH 7.5), added to a 96-well plate; the gradient-differentiated molecule was added to the above 96-well plate, and the reaction was shaken at room temperature for 30 min; a starter solution was prepared according to a 50 ⁇ l/well system: 10 ⁇ M H3K4Me2peptide+buffer was added to the above 96-well plate; After a slight shaking, it was immediately detected by a multi-microplate microplate reader (Ex: 535 nM; Em: 595 nM).
  • Table 1 shows the inhibitory activity of the compound of the present invention for blocking the activity
  • HDAC1 inhibitory activity assay using FLUOR DE HDAC1 fluorometric drug discovery assay kit The principle is as follows: HDAC1 catalytic substrate FLUOR DE Substrate (containing an acetylated side chain) deacetylated, product available with FLUOR DE The Developer II reaction produces fluorescence (shown in the lower reaction scheme), and the inhibitory activity of the molecule to be tested on HDAC1 can be indirectly obtained by detecting the fluorescence intensity of the product. In this experiment, 360 nm was selected as the excitation wavelength and 460 nm was used as the emission wavelength for detection. FLUOR required for the experiment The HDAC1 fluorometricdrug discovery assay kit was purchased from EnzoBiochem.
  • the inhibitory activity of the compound series of the present invention (i.e., 16 kinds of ZZY-001 to ZZY-016) on the proliferation of tumor cells in vitro was examined by MTT colorimetry.
  • MTT 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium romide, also known as thiazole blue, which is a yellow dye.
  • the detection principle is: succinate dehydrogenase in living cell mitochondria can reduce MTT to water-insoluble blue-violet crystalline Formazan, while dead cells do not have this function.
  • DMSO can dissolve Formazan deposited in cells, and its absorbance can be measured at a wavelength of 490 nm using a microplate reader. In a certain number of cells, the amount of Formazan produced is proportional to the number of cells, so the number of viable cells can be estimated based on the measured OD value.
  • the selected cell lines were human breast cancer cells MDA-MB-231, BT-474, human colon adenocarcinoma cell line HCT116, murine colon cancer cell line CT26.WT, and mouse breast cancer cell line 4T1.
  • the cell suspension was inoculated into a 96-well plate at 100 ⁇ l/well and cultured in a constant temperature CO 2 incubator for 24 hours.
  • test drug was added, 100 ⁇ l/well, and cultured for 72 hours.
  • MTT was added to a 96-well plate at 20 ⁇ l/well and reacted for 4 h in an incubator.
  • the supernatant was aspirated, DMSO was added, 150 ⁇ l/well, and shaken on a plate shaker for 10 min.
  • the optical density (OD value) of each well was measured with a microplate reader at a wavelength of 490 nm.
  • Table 4 lists several implementation compounds ZZY-001, ZZY-002, ZZY-003, ZZY-011, and ZZY-012 for several human tumor cells HCT116, MDA-MB-231, BT.
  • the CellTiter-Glo (CTG) method was used to evaluate the effect of the inventive compound ZZY-003 on the cell proliferation of 50 cell lines, and the 50% inhibitory concentration was calculated by measuring the cell viability after treatment at different drug concentrations.
  • the cells are resuscitated and cultured in the respective culture broth.
  • Cells in the logarithmic growth phase were harvested and cell counts were performed using a cell counter.
  • Cell viability was measured by trypan blue exclusion method to ensure that the viability of each cell line was above 96%.
  • the cell concentration was adjusted by dilution with the culture medium, and 90 ⁇ L of the cell suspension was added to a 96-well cell plate (including the cell control T0 on the day of drug treatment) to bring the cell density to the specified concentration.
  • the cells in the 96-well plates were incubated overnight at 37 ° C, 5% CO 2 and 95% humidity. 10 ⁇ L of the culture solution was added to each well in the control cell culture plate.
  • the CellTiter-Glo reagent and cell culture plates were allowed to equilibrate for 30 minutes at room temperature. An equal volume of CellTiter-Glo reagent was added to each well. The cells were fully lysed by shaking on an orbital shaker for 2 minutes. The cell culture was allowed to stand at room temperature for 10 minutes. The chemiluminescence values were read using EnVision. The test compound was dissolved in a corresponding solvent to form a stock solution and subjected to gradient dilution to obtain a 10-fold working concentration solution; a 10-fold solution of the positive drug was also prepared. 10 ⁇ L of the drug solution was added to each well of the 96-well plate in which the cells were seeded, and three duplicate wells were set for each cell concentration.
  • the highest concentration of the test compound was 10/50 ⁇ M, 9 concentrations, and 3.16 times dilution.
  • the cells in the administrated 96-well plates were further cultured at 37 ° C, 5% CO 2 , 95% humidity for 72 hours.
  • the CellTiter-Glo reagent and drug treated cell culture plates were allowed to equilibrate for 30 minutes at room temperature.
  • An equal volume of CellTiter-Glo reagent was added to each well.
  • the cells were fully lysed by shaking on an orbital shaker for 2 minutes.
  • the cell culture was allowed to stand at room temperature for 10 minutes.
  • the chemiluminescence values were read using EnVision.
  • the Lum cell control-Lum medium control was set to 100%, and the LumMedium control value was set to 0%;
  • Amplification factor (LumNone treated - LumMedium control) / (LumNone treated - LumMedium control).
  • the data from Table 5 shows that the inventive compound ZZY-003 has significant inhibitory activity against 50 kinds of tumor cells, and the inhibitory activity against most of the detected tumor cells is stronger than that of the control chemotherapy drug Cisplatin (cisplatin).
  • the compounds of the invention have a broad spectrum of anti-tumor activity.

Abstract

一种化合物,所述化合物的结构通式如式I所示:X-AB-Y(式I);上述式I中,X选自-CO 2H、-CONHZ、-CH=CH-CO 2H、-CH=CH-CONHZ中的任意一种,其中,Z选自被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的芳基、羟基中的任意一种;Y=-NR 1R 2,其中,NR 1R 2为被取代的或未被取代的3元至9元的含氮杂环烃基;A、B分别独立选自取代的或未被取代的亚苯基、取代的或未被取代的氮杂亚苯基。该化合物或其相应的药用的盐的形式,可同时抑制LSD1和HDAC靶蛋白,从而抑制多种肿瘤细胞的增殖,具有很好的抗肿瘤作用。

Description

同时抑制LSD1和HDAC靶点的化合物及其应用 技术领域
本发明属于医药技术领域,具体涉及一种同时抑制LSD1和HDAC靶点的化合物及其应用。
背景技术
组蛋白修饰包括甲基化、乙酰化、磷酸化、泛素化等。组蛋白甲基化发生在组蛋白H3和H4的精氨酸和赖氨酸残基上,可发生1-2次(精氨酸)或1-3次(赖氨酸),受组蛋白甲基转移酶(HMT)和组蛋白去甲基化酶(HDM)调控,表现为转录活化或基因沉默。组蛋白乙酰化过程由组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)共同调控,转录活化区域组蛋白多表现出高度乙酰化状态,而去乙酰化状态通常表现为基因沉默。组蛋白修饰的异常也是癌症发生的重要诱因。
组蛋白去乙酰化酶(HDACs)的作用机制是移除核小体组蛋白赖氨酸残基的乙酰基,使核小体与DNA之间的空间减小,同时使组蛋白回归到正电性,增强核小体与DNA间的静电作用,使DNA紧密缠绕在核小体上,从而阻碍转录因子与DNA结合,抑制转录过程的发生。组蛋白的乙酰化水平与癌症的发生发展以及致癌基因和抑癌基因的表达水平有密切的关系。很多癌症都表现出组蛋白乙酰转移酶和去乙酰化酶的表达异常,通常表现为HDACs的过度表达或活化而抑制特定基因的表达。研究表明人类癌细胞核心组蛋白H4通常表现为整体水平的低乙酰化。此外,除了可以调控组蛋白的乙酰化水平,HDACs还可以结合和调控很多其它蛋白质因子,包括转录因子p53、E2F1、细胞核因子NF-κB、蛋白质因子α-tubulin、Ku70、热休克蛋白Hsp90等,并能够以它们为靶点进行去乙酰化,影响其活性。
研究证明,组蛋白去乙酰化抑制剂(HDACi)可以通过抑制HDACs的作用,从而使癌细胞组蛋白乙酰化水平提高,激活抑癌基因的表达,诱导癌细胞凋亡。因此,HDACs已经成为癌症药物研发领域的热点。同大部分抗癌药物一样,HDACi可以诱导癌细胞生物学及形态学上的凋亡。动物实验和临床研究都表明,HDACi表现出抗癌活性的浓度对宿主造成的毒性较小,剂量限制性毒性一般包括血小板减少、恶心和疲劳,在多数情况下这些副作用是临床可控的。HDACi可以通过阻碍细胞周期来诱导细胞凋亡,具有抗血管再生、抗扩散和免疫调节活性。HDACi可以直接作用于癌细胞使增强其免疫原性,同时也可以提高免疫细 胞的活性和促进细胞因子的生成,从而来增强抗肿瘤免疫。
组蛋白的甲基化/去甲基化同样是表观遗传学的重要研究方向,随着第一个组蛋白赖氨酸去甲基化酶(LSD1)的发现,修正了人们一直以为的组蛋白甲基化过程不可逆的观点,也为后续更多组蛋白去甲基化酶的发现及其功能研究奠定了基础。组蛋白去甲基化酶发现数量的增加突出了组蛋白甲基化动态调控的本质,是一个涉及真核生物基因组和基因调控的关键染色质修饰,在细胞增殖、脂肪形成、精子形成、染色体分离和胚胎发育等过程中起着广泛的作用。此外,LSD1还能通过抑制肿瘤抑制因子p53的活性促进肿瘤生长。一系列研究表明这些酶的特殊生物学作用及其与人类疾病的潜在联系。
LSD1在哺乳动物的发育和分化中起着不可缺少的作用,可以调节激素水平、影响造血细胞的增殖和分化、抑制能量消耗和脂解。LSD1的过表达与前列腺癌、乳腺癌、结肠癌、神经母细胞瘤、非小细胞肺癌和膀胱癌的发生和发展密切相关,并且在干细胞和肿瘤干细胞自我更新和分化中有显著作用。抑制其表达或其功能对于治疗癌症有重要的作用。作为新的肿瘤药物靶点LSD1具有广阔的研究开发和临床应用前景。
组蛋白去甲基化酶LSD1及组蛋白去乙酰化酶HDACs是转录抑制复合体如CoREST和NuRD的关键蛋白,通过协同作用广泛调控基因转录的激活和抑制,与多种肿瘤的发生发展高度相关,在多种肿瘤细胞中高表达并具有多种生物学功能,包括促进肿瘤增殖、促进脂肪合成、抑制能量代谢、抑制脂解、调控细胞分化等。因此,LSD1和HDACs可作为抗肿瘤药物的作用靶点,其抑制剂的研究和发现对于新型抗肿瘤药物的研发具有重要意义。目前抑制剂的研究主要是单一靶向LSD1或HDACs,没有充分利用LSD1和HDACs协同作用的特点。研究发现LSD1和HDACs小分子抑制剂组合用药对多种肿瘤的抑制活性具有显著的协同效应,但组合用药由于组合药物不同的药代动力学性质,以及可能药-药相互作用给临床研究带来巨大的挑战。因此,研究同时靶向LSD1/HDACs的双功能小分子抑制剂成为本领域的前沿研究方向。
技术问题
本发明的目的在于克服现有技术的上述不足,提供一种同时抑制LSD1和HDAC靶点的化合物及其应用,旨在提高现有表观遗传调控药物在肿瘤治疗中的协同效应。
技术解决方案
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种化合物,所述化合物的结构通式如式I所示:
X-AB-Y
式I
上述式I中,
X选自-CO 2H、-CONHZ、-CH=CH-CO 2H、-CH=CH-CONHZ中的任意一种,其中,Z选自被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的芳基、羟基中的任意一种;
Y=-NR 1R 2,其中,NR 1R 2为被取代的或未被取代的3元至9元的含氮杂环烃基;
A、B分别独立选自取代的或未被取代的亚苯基、取代的或未被取代的亚氮杂苯基。
相应地,一种本发明的上述化合物在药学上可接受的盐。
相应地,一种药物组合物,所述药物组合物含有本发明的上述化合物以及药学上可接受的载体。
最后,本发明提供一种本发明的上述化合物或其药用上可接受的盐在制备治疗和/或预防与LSD1和/或HDAC相关的肿瘤或癌症的药物中的用途。
有益效果
本发明利用计算机辅助设计的手段,结合实验检测方法,基于LSD1和HDAC1的活性口袋的晶体结构,充分利用两种蛋白质活性口袋的共性结构,设计合成一系列能同时较好抑制LSD1和HDACs的连芳基类小分子化合物;该化合物或其相应的药用的盐的形式,可同时抑制LSD1和HDAC靶蛋白,从而抑制肿瘤细胞的增殖,在多种肿瘤细胞中体现出协同抑制效应,可以用于与组蛋白乙酰化和甲基化异常相关的肿瘤或癌症的预防和治疗。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例中所涉及的化合物及其衍生物均是按照IUPAC(国际纯粹与应用化学联合会)或CAS(化学文摘服务社)命名系统命名的。因此,本发明实施例中具体涉及到的化合物基团做如下阐述与说明:
“烷基”是指直链或带有支链的、单价的、饱和脂肪链,包括但不限于如甲基、乙基、丙基、异丙基、丁基、异丁基、戊基、异戊基、己基以及其它类似基团。
“杂烷基”是指直链或带有支链的、单价的、与至少一个杂原子连接的饱和脂肪链,例如但不限于甲基氨基乙基或其它类似基团。
“烯基”是指带有一个或多个双键的直链或支链烃,包括但不限于如乙烯基、丙烯基以及其它类似基团。
“杂烯基”是指带有一个或多个双键的与至少一个杂原子连接的直链或支链烃,包括但不限于如乙烯基氨基乙基或其它类似基团。
“炔基”是指带有一个或多个三键的直链或支链烃,包括但不限于如乙炔基、丙炔基以及其它类似基团。
“杂炔基”是指带有一个或多个三键的与至少一个杂原子连接的直链或支链烃,包括但不限于如乙炔基、丙炔基以及其它类似基团。
“芳基”是指一种环状的芳香烃,包括但不限于如苯基、萘基、蒽基、菲基以及其它类似基团。
“杂芳基”是指单环或多环或稠环芳香烃,其中的一个或多个碳原子已被如氮、氧或硫等杂原子取代。如果杂芳基含有不止一个杂原子,则这些杂原子可能是相同,也可能是不同的。杂芳基包括但不限于如苯并呋喃基、苯并噻吩基、苯并咪唑基、苯并恶唑基、苯并噻唑基、苯并吡喃基、呋喃基、咪唑基、吲唑基、吲嗪基、吲哚基、异苯并呋喃基、异吲哚基、异喹啉基、异噻唑基、异恶唑基、萘啶基、噁二唑基、噁嗪基、噁唑基、酞嗪基、蝶啶基、嘌呤基、吡喃基、吡嗪基、吡唑基、哒嗪基、吡啶[3,4-b]吲哚基、吡啶基、嘧啶基、吡咯基、喹嗪基、喹啉基、喹喔啉基、噻二唑基、噻三唑基、噻唑基、噻吩基、三嗪基、三唑基、呫吨基以及其它类似基团。
“环烷基”是指饱和的单环或多环烷基,可能与芳烃基团稠合。环烷基包括但不限于如环丙基、环丁基、环戊基、环己基、环庚基、茚满基、四氢化萘基以及其它类似基团。
“杂环烷基”是指饱和的单环或多环烷基,可能与一芳烃基团稠合,其中至少有一个碳原子已被如氮、氧或硫等杂原子取替。如果杂环烷基含有不止一个杂原子,则这些杂原子可能是相同,也可能是不同的。杂环烷基包括但不限于如氮杂二环庚烷基、氮杂环丁烷基、二氢吲哚基、吗啉基、派嗪基、哌啶基、吡咯烷 基、四氢呋喃基、四氢喹啉基、四氢吲唑基、四氢吲哚基、四氢异喹啉基、四氢吡喃基、四氢喹喔啉基、四氢噻喃基、噻唑烷基、硫代吗啉基、噻吨基、噻恶烷基以及其它类似基团。
“环烯基”指不饱和的,带有一个或多个双键的单环或多环烯基,可能与芳烃基团稠合,包括但不限于环乙烯基、环丙烯基或其它类似基团。
“杂环烯基”指不饱和的,带有一个或多个双键的单环或多环烯基,可能与芳烃基团稠合,其中至少有一个碳原子被如氮、氧或硫等杂原子取替。如果杂环烷基含有不止一个杂原子,则这些杂原子可能是相同,也可能是不同的。
“环炔基”指不饱和的,带有一个或多个三键的单环或多环炔基,可能与芳烃基团稠合,包括但不限于环乙炔基、环丙炔基或其它类似基团。
“杂环炔基”指不饱和的,带有一个或多个三键的单环或多环炔基,可能与芳烃基团稠合,其中至少有一个碳原子被如氮、氧或硫等杂原子取替。如果杂环烷基含有不止一个杂原子,则这些杂原子可能是相同,也可能是不同的。
需要说明的是,在本发明实施例中,符号
Figure PCTCN2018071317-appb-000001
表示化合物中部分至该化合物的剩余部分的附接点。
一方面,本发明实施例提供一种化合物,所述化合物的结构通式如式I所示:
X-AB-Y
式I
上述式I中,
X选自-CO 2H、-CONHZ、-CH=CH-CO 2H、-CH=CH-CONHZ中的任意一种,其中,Z选自被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的芳基、羟基中的任意一种;
Y=-NR 1R 2,其中,NR 1R 2为被取代的或未被取代的3元至9元的含氮杂环烃基;
A、B分别独立选自取代的或未被取代的亚苯基、取代的或未被取代的亚氮杂苯基。
进一步地,在上述式I中,A、B分别独立选自:
Figure PCTCN2018071317-appb-000002
Figure PCTCN2018071317-appb-000003
中的任意一种;
其中,R 3、R 4、R 5、R 6分别独立选自被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的C 1-C 12杂烷基、被取代的或未被取代的C 3-C 12环烷基、被取代的或未被取代的C 3-C 12杂环烷基、被取代的或未被取代的C 2-C 12烯基、被取代的或未被取代的C 2-C 12杂烯基、被取代的或未被取代的C 3-C 12环烯基、被取代的或未被取代的C 3-C 12杂环烯基、被取代的或未被取代的C 2-C 12炔基、被取代的或未被取代的C 2-C 12杂炔基、被取代的或未被取代的C 3-C 12环炔基、被取代的或未被取代的C 3-C 12杂环炔基、被取代的或未被取代的芳基、被取代的或未被取代的杂芳基、芳基(C 1-C 12)烷基、杂芳基(C 1-C 12)烷基、C 2-C 12烯基(C 1-C 12)烷基、C 2-C 12炔基(C 1-C 12)烷基、羟基、氨基、硝基、磺基、卤素和氢原子中的任意一种。
更优选地,R 3、R 4、R 5、R 6分别独立选自被取代的或未被取代的C 1-C 6烷基、被取代的或未被取代的C 1-C 6杂烷基、被取代的或未被取代的C 3-C 6环烷基、被取代的或未被取代的C 3-C 6杂环烷基、被取代的或未被取代的C 2-C 6烯基、被取代的或未被取代的C 2-C 6杂烯基、被取代的或未被取代的C 3-C 6环烯基、被取代的或未被取代的C 3-C 6杂环烯基、被取代的或未被取代的C 2-C 6炔基、被取代的或未被取代的C 2-C 6杂炔基、被取代的或未被取代的C 3-C 6环炔基、被取代的或未被取代的C 3-C 6杂环炔基、被取代的或未被取代的芳基、被取代的或未被取代的杂芳基、芳基(C 1-C 6)烷基、杂芳基(C 1-C 6)烷基、C 2-C 6烯基(C 1-C 6)烷基、C 2-C 6炔基(C 1-C 6)烷基中的任意一种。更优选地,所述A和B中,R 3、R 4、R 5、R 6分别独立选自被取代的或未被取代C 1-C 4烷基。
进一步地,在上述式I中,-AB-的结构选自:
Figure PCTCN2018071317-appb-000004
Figure PCTCN2018071317-appb-000005
中的任意一种;其中,D为卤素(如氟、氯、溴、碘)。
进一步地,在上述式I中,Z为取代的或未被取代的C 1-C 4烷基或羟基。
进一步地,在上述式I中,Z的结构为
Figure PCTCN2018071317-appb-000006
或羟基;
其中,R 7选择被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的C 1-C 12杂烷基、被取代的或未被取代的C 3-C 12环烷基、被取代的或未被取代的C 3-C 12杂环烷基、被取代的或未被取代的C 2-C 12烯基、被取代的或未被取代的C 2-C 12杂烯基、被取代的或未被取代的C 3-C 12环烯基、被取代的或未被取代的C 3-C 12杂环烯基、被取代的或未被取代的C 2-C 12炔基、被取代的或未被取代的C 2-C 12杂炔基、被取代的或未被取代的C 3-C 12环炔基、被取代的或未被取代的C 3-C 12杂环炔基、被取代的或未被取代的芳基、被取代的或未被取代的杂芳基、芳基(C 1-C 12)烷基、杂芳基(C 1-C 12)烷基、C 2-C 12烯基(C 1-C 12)烷基、C 2-C 12炔基(C 1-C 12)烷基、羟基、氨基、硝基、磺基、卤素和氢原子中的任意一种。
进一步地,在上述式I中,Y为被取代的或未被取代的5元或6元含氮杂环烃基。更优选地,所述Y选自:
Figure PCTCN2018071317-appb-000007
中的任意一种。
具体地,在本发明优选实施例中,所述化合物选自
Figure PCTCN2018071317-appb-000008
Figure PCTCN2018071317-appb-000009
中的任意一种。本说明书实施例中,该优选的16种化 合物命名为ZZY系列化合物(即依次为ZZY-001~ZZY-016所示)。
相应地,本发明实施例中,还提供一种本发明实施例的上述化合物在药学上可接受的盐。
相应地,本发明实施例中,还提供一种药物组合物,所述药物组合物含有本发明实施例的上述化合物以及药学上可接受的载体。具体地,包括制备药物组合物时需要的稀释剂、粘合剂、吸收剂、崩解剂、分散剂、湿润剂、助溶剂、缓冲剂、表面活化剂等辅料。该药物组合物可以用于与组蛋白乙酰化和甲基化异常相关的肿瘤或癌症的预防和治疗。具体地,所述药物组合物还包括抗癌药物。所述抗癌药物为LSD1抑制剂和/或HDAC抑制剂。
最后,本发明实施例中,还提供一种本发明实施例的上述化合物或其药学上可接受的盐在制备治疗和/或预防与LSD1和/或HDAC相关的肿瘤或癌症的药物中的用途。具体地,所述肿瘤或癌症选自:脑癌、成胶质细胞瘤、白血病、班-佐综合征、考登病、小脑发育不良性神经节细胞瘤、乳腺癌、炎性乳腺癌、维尔姆斯瘤、尤因肉瘤、横纹肌肉瘤、室管膜瘤、髓母细胞瘤、结肠癌、头颈癌、肾癌、肺癌、肝癌、黑素瘤、肾癌、卵巢癌、胰腺癌、前列腺癌、肉瘤、骨肉瘤、骨和甲状腺的巨细胞瘤中的至少一种。
在本发明实施例中,ZZY系列化合物合成通式以ZZY-001的逆合成分析如下所示。ZZY-001的合成可以通过中间体1和2进行HWE反应完成碳链的延伸,其中羧酸端的羟肟酸可以利用接酰胺键的形式实现,而中间体2的醛基可以方便的氧化为羧酸并进行衍生。中间体2的合成关键是联芳基结构,可以利用Suzuki偶联反应通过中间体3和4制备。
Figure PCTCN2018071317-appb-000010
本发明先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
其中中间体3的合成根据底物结构不同要求,可以通过以下几种途径完成:
路线一:N-烷基化反应为关键步骤
Figure PCTCN2018071317-appb-000011
把对溴苯胺5(1.5当量),二(2-氯乙基)胺盐酸盐6(1当量)及催化量的对甲苯磺酸溶解在二甲苯中回流反应。TLC跟踪反应结束后,冷却到室温并过滤收集产物。滤饼用水洗涤,然后转移到圆底烧瓶中,加入水升温回流至溶解澄清,再冷却至室温,析出固体。过滤得到产品7。
化合物7(1当量)溶解在二氯甲烷中,依次加入三乙胺(3当量)和Boc酸酐(2当量)后室温搅拌过夜。反应结束后,加入水淬灭反应。用二氯甲烷萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到3b。
路线二:溴代-还原路线获得
Figure PCTCN2018071317-appb-000012
1-(3-硝基苯基)哌嗪8(1当量)溶解在醋酸中,滴加溴素(1.5当量),75℃下搅拌过夜。反应结束后,过滤收集产物,滤饼用正己烷洗涤,然后转移到圆底烧瓶,加入甲醇,旋转蒸发掉残留的溴素,真空干燥得到产物9。化合物9(1当量)溶解在二氯甲烷中,依次加入三乙胺(3当量)和Boc酸酐(2当量),室温搅拌过夜。反应结束后,加入水淬灭反应,然后用二氯甲烷萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到产物10。在圆底烧瓶中加入铁粉(3当量)和饱和氯化铵溶液,升温至100℃。化合物10(1当量)溶解在甲醇中,并滴加到圆底烧瓶中。回流搅拌2小时,反应结束后冷却到室温,加入水淬灭反应,然后用二氯甲烷萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到3a。
路线三:芳香氨基化反应作为关键步骤
Figure PCTCN2018071317-appb-000013
把吗啉12(1.1当量)、对二溴苯11(1当量)和2%碘化亚铜溶解在1,4-二氧六环中,再加入叔丁醇钾(2当量)和10%环己二胺,回流温度下搅拌过夜。用饱 和氯化铵淬灭反应,然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物3c。用相同方法可制备3d-3g。
中间体3的结构及其分析数据如下:
3a:
Figure PCTCN2018071317-appb-000014
1H NMR(500MHz,MeOH-d4)δ7.18-7.16(d,1H),6.46-6.44(d,1H),6.27-6.24(m,1H),3.53(sbr,4H),3.06-3.03(m,4H),1.49(s,9H)ppm;ESI-MS obsd 356.0965,calcd 356.0968[(M+H) +,M=C 15H 22BrN 3O 2].
3b:
Figure PCTCN2018071317-appb-000015
1H NMR(400MHz,CDCl 3)δ7.36-7.33(m,2H),6.80-6.77(m,2H),3.58-3.55(m,4H),3.11-3.07(m,4H),1.48(s,9H)ppm;ESI-MS obsd 341.0859,calcd341.0859[(M+H) +,M=C 15H 21BrN 2O 2].
3c:
Figure PCTCN2018071317-appb-000016
1H NMR(300MHz,CDCl 3)δ7.48-7.36(m,2H),6.71-6.52(m,2H),3.71(t,4H),2.99(t,4H)ppm;ESI-MSobsd 242.0177,calcd 242.0175[(M+H) +,M=C 10H 12BrNO].
3d:
Figure PCTCN2018071317-appb-000017
1H NMR(300MHz,CDCl 3)δ7.26(s,1H),7.27(s,1H),7.36-7.25(m,2H),7.67-7.60(m,2H),7.87(s,1H)ppm;ESI-MS obsd 222.9865,calcd 222.9865[(M+H) +,M=C 9H 7BrN 2].
3e:
Figure PCTCN2018071317-appb-000018
1H NMR(500MHz,CDCl 3)δ7.34-7.31(d,2H),6.79-6.73(d,2H),3.26-3.22(t,4H),2.59-2.51(t,4H),2.34(s,3H)ppm;ESI-MS obsd 254.0494,calcd 255.0491[(M+H) +,M=C 11H 15BrN 2].
3f:
Figure PCTCN2018071317-appb-000019
1H NMR(400MHz,CDCl 3)δ7.31-7.27(m,2H),6.81-6.77(m,2H),3.13-3.08(m,4H),1.74-1.67(m,4H),1.58-1.54(m,2H)ppm;ESI-MSobsd 240.0383,calcd 240.0382[(M+H) +,M=C 11H 14BrN].
3g:
Figure PCTCN2018071317-appb-000020
1H NMR(300MHz,CDCl 3)δ8.20(s,1H),7.56-7.54(d,1H),6.55-6.54(d,1H),3.53-3.50(m,8H),1.49(s,9H)ppm;ESI-MS obsd 342,calcd 342[(M+H) +,M=C 14H 20BrN 3O 2].
实施例2
中间体4可以利用商业可得的硼酸基化合物(例如中间体4a)参与反应,也可以通过适当保护和取代的4-溴苯甲醛在过渡金属催化下的硼酸化反应获得,如中间体4b的合成路线如下:
Figure PCTCN2018071317-appb-000021
4-溴-3-甲基苯甲醛13(1当量)溶解在甲苯中,依次加入乙二醇(4当量)和催化量的对甲苯磺酸,接上Dean-Stark装置,回流反应20小时。反应结束后冷却到室温,将反应混合物倒入到饱和碳酸氢钠溶液中,然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到产物14。化合物14(1当量)溶解于干燥的四氢呋喃中,氮气保护下冷却到-78℃,正丁基锂(1.2当量)滴加进去,搅拌半小时,再把硼酸三异丙酯(1.2当量)滴加到反应体系中,搅拌1小时后,慢慢恢复到室温并搅拌过夜。反应结束后,加入3N盐酸溶液并搅拌3小时彻底淬灭反应,然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到4b。
中间体4b的分析数据为: 1H NMR(500MHz,DMSO-d6)δ9.94(s,1H),8.27(s,2H),7.63-7.61(d,2H),7.59-7.58(d,1H),2.44(s,3H);ESI-MS obsd 187.0537,calcd 187.0537[(M+Na) +,M=C 8H 9BO 3].
中间体2的合成
Figure PCTCN2018071317-appb-000022
把中间体3(1当量)、中间体4(1.3当量)和碳酸钾(4.5当量)溶解在乙二醇二甲醚和水(V/V=1:1)的混合溶剂中,再加入5%双三苯基膦二氯化钯催化剂,氮气保护下,80℃反应6小时。结束后冷却到室温,用水淬灭反应,然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物2a-2l。
中间体2a-2l的结构和分析数据如下:
2a:
Figure PCTCN2018071317-appb-000023
1H NMR(400 MHz,MeOH-d4)δ9.96(s,1H),7.79(s,1H),7.75-7.73(m,1H),7.38-7.36(d,1H),7.27-7.24(m,2H),7.07-7.04(m,2H),3.60-3.59(m,4H),3.21-3.18(m,4H),2.35(s,3H),1.49(s,9H)ppm;ESI-MS obsd 381.2172,calcd 381.2173[(M+H) +,M=C 23H 28N 2O 3].
2b*:
Figure PCTCN2018071317-appb-000024
1H NMR(400 MHz,CDCl 3)δ10.07(s,1H),8.29-8.28(d,1H),7.86(s,1H),7.83-7.81(d,1H),7.77-7.75(d,1H),7.46-7.43(m,2H),7.36-7.34(d,2H),7.17-7.15(d,2H),7.08-7.05(d,1H),6.78-6.76(m,1H),3.63-3.60(m,4H),3.30-3.28(m,4H),2.35(s,3H),2.23(s,3H),1.50(s,9H)ppm;ESI-MS obsd 514.2701,calcd 514.2700[(M+H) +,M=C 31H 36N 3O 4].
2c:
Figure PCTCN2018071317-appb-000025
1H NMR(300 MHz,CDCl 3)δ10.04-10.02(d,1H),7.80-7.73(m,2H),7.43-7.28(m,3H),7.02-6.98(d,1H),6.86-6.83(d,1H),3.93-3.88(m,4H),3.27-3.20(m,4H),2.40-2.37(d,3H)ppm;ESI-MSobsd 282.1491,calcd 282.1489[(M+H) +,M=C 18H 19NO 2].
2d:
Figure PCTCN2018071317-appb-000026
1H NMR(300 MHz,CDCl 3)δ10.08-10.04(d,1H),7.98-7.93(m,2H),7.77-7.73(m,2H),7.63-6.61(m,1H),7.17-7.15(m,1H),7.04-6.98(m,2H),3.93-3.90(m,4H),3.28-3.25(m,4H)ppm;ESI-MS obsd 268.1330,calcd 268.1332[(M+H) +,M=C 17H 17NO 2].
2e:
Figure PCTCN2018071317-appb-000027
1H NMR(300 MHz,CDCl 3)δ8.07(s,1H),7.95(s,1H),7.82-7.78(m,2H),7.52-7.39(m,7H),2.39(s,3H)ppm;ESI-MSobsd 263.1180,calcd 263.1179[(M+H) +,M=C 17H 14N 2O].
2f:
Figure PCTCN2018071317-appb-000028
1H NMR(300 MHz,CDCl 3)δ10.07(s,1H),8.00-7.94(m,3H),7.84-7.41(m,4H),7.70-7.63(m,1H),7.53(s,1H),7.50-7.43(m,1H),7.35(s,1H)ppm;ESI-MS obsd 249.1026,calcd 249.1022[(M+H) +,M=C 16H 12N 2O].
2g:
Figure PCTCN2018071317-appb-000029
1H NMR(300 MHz,CDCl 3)δ10.03-10.01(d,1H),7.77-7.72(m,2H),7.42-7.38(m,1H),7.28-7.25(d,1H),7.02-6.95(m,2H),6.86-6.80(m,1H),3.33-3.27(m,4H),2.66-2.61(m,4H),2.40-2.36(m,6H)ppm;ESI-MSobsd 295.1806,calcd 295.1805[(M+H) +,M=C 19H 22N 2O].
2h:
Figure PCTCN2018071317-appb-000030
1H NMR(300 MHz,CDCl 3)δ10.07-10.03(d,1H),7.97-7.91(m,2H),7.77-7.72(m,2H),7.61-7.58(m,1H),7.41-7.34(m,1H),7.18-7.09(m,1H),7.04-7.01(m,1H),3.35-3.31(m,4H),2.67-2.62(m,4H),2.40(s,3H)ppm;ESI-MS obsd 281.1651,calcd 281.1648[(M+H) +,M=C 18H 20N 2O].
2i:
Figure PCTCN2018071317-appb-000031
1H NMR(300 MHz,CDCl 3)δ10.04-10.02(d,1H),7.79-7.73(m,2H),7.44-7.40(m,1H),7.36-7.31(m,1H),7.03-6.97(m,2H),6.88-6.77(d,1H),3.28-3.20(m,4H),2.41-2.38(d,3H),1.80-1.73(m,4H),1.65-1.61(m,2H)ppm;ESI-MSobsd 280.1695,calcd 280.1696[(M+H) +,M=C 19H 21NO].
2j:
Figure PCTCN2018071317-appb-000032
1H NMR(300 MHz,CDCl 3)δ10.07-10.03(d,1H),7.97-7.91(m,2H),7.78-7.73(m,2H),7.61-7.58(d,1H),7.40--7.18(m,1H),7.11-7.01(m,2H),3.30-3.24(m,4H),1.78-1.72(m,4H),1.66-1.63(m,2H)ppm;ESI-MSobsd 266.1541,calcd 266.1539[(M+H) +,M=C 18H 19NO].
2k:
Figure PCTCN2018071317-appb-000033
1H NMR(300 MHz,CDCl 3)δ10.02(s,1H),8.21(s,1H),7.79-7.74(m,2H),7.54-7.51(d,1H),7.39-7.36(d,1H),6.75-6.72(d,1H),3.61(s,8H),2.40(s,3H),1.51 (s,9H)ppm;ESI-MSobsd 382.2129,calcd 382.2125[(M+H) +,M=C 22H 27N 3O 3].
2l:
Figure PCTCN2018071317-appb-000034
1H NMR(300MHz,CDCl 3)δ10.01(s,1H),8.51(s,1H),7.93-7.91(d,2H),7.79-7.76(d,1H),7.68-7.66(d,2H),6.73-6.71(d,1H),3.63-3.56(m,8H),1.49(s,9H)ppm;ESI-MSobsd 368.1970,calcd 368.1969[(M+H) +,M=C 21H 25N 3O 3].
其中,中间体2b的制备在Suzuki偶联后仍需要一步酰胺化反应,如下:
Figure PCTCN2018071317-appb-000035
把Suzuki反应的产物2b’(1当量)溶解在乙腈中,加入碳酸钾(2当量),冷却到0℃后缓慢滴入对甲基苯甲酰氯(1.1当量),然后升温至80℃搅拌半小时,反应结束。冷却至室温,并用水淬灭反应。然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物2b。
实施例3
磷酰基乙酸三甲酯(1.1当量)溶解在干燥的四氢呋喃中,冷却至-20℃,滴入六甲基二硅基胺基钾(1.1当量)的四氢呋喃溶液(1.0M),搅拌20-30分钟,再滴入中间体2(1当量)的四氢呋喃溶液,搅拌1小时,反应结束。用水淬灭反应,然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物15a。用这一方法还可以制备15b-15c以及15g-15p,反应式如下:
Figure PCTCN2018071317-appb-000036
中间体15的结构及分析数据如下:
15a:
Figure PCTCN2018071317-appb-000037
1H NMR(500 MHz,CDCl 3)δ7.71-7.68(d,1H),7.41-7.40(m,2H),7.25-7.23(d,3H),7.00-6.96(d,2H),6.46-6.43(d,1H),3.81(s,3H),3.61-3.59(m,4H),3.21-3.20(m,4H),2.31(s,3H),1.49(s,9H)ppm;ESI-MSobsd 437.2442,calcd 437.2435[(M+H) +,M=C 26H 32N 2O 4].
15b*
Figure PCTCN2018071317-appb-000038
1H NMR(500 MHz,CDCl 3)δ8.32(sbr,1H),7.73-7.70(d,1H),7.59(s,1H),7.51(s,1H),7.49-7.45(m,4H),7.37-7.34(m,2H),7.29-7.27(d,1H),7.08-7.06(d,1H),6.77-6.75(m,1H),6.51-6.48(d,1H),4.31-4.27(m,2H),3.60(s,4H),3.28(s,4H),2.17(s,3H),1.50(s,9H),1.37-1.34(m,3H)ppm;ESI-MS obsd 570.2964,calcd 570.2962[(M+H) +,M=C 34H 39N 3O 5].
15c*:
Figure PCTCN2018071317-appb-000039
1H NMR(300 MHz,CDCl 3)δ8.34(sbr,1H),7.77-7.71(d,1H),7.59(s,1H),7.53-7.49(d,2H),7.39-7.37(d,2H),7.31(s,1H),7.19-7.16(d,2H),7.10-7.07(d,1H),6.78-6.75(d,1H),6.55-6.49(m,1H),4.35-4.28(m,2H),3.65-3.61(m,4H),3.31-3.28(m,4H),2.37(s,3H),2.18(s,3H),1.52(s,9H),1.41-1.36(m,3H)ppm;ESI-MS obsd 584.3121,calcd 584.3119[(M+H) +,M=C 35H 41N 3O 5].
15g:
Figure PCTCN2018071317-appb-000040
1H NMR(300 MHz,CDCl 3)δ7.76-7.70(m,1H),7.44-7.40(d,2H),7.35-7.27(m,2H),7.00-6.83(m,2H),6.86-6.83(d,1H),6.52-6.45(m,1H),3.93-3.88(m,4H),3.84-3.83(m,3H),3.26-3.20(m,4H),2.34-2.30(m,3H)ppm;ESI-MS obsd 338.1753,calcd 338.1751[(M+H) +,M=C 21H 23NO 3].
15h:
Figure PCTCN2018071317-appb-000041
1H NMR(300 MHz,CDCl 3)δ7.78(s,1H),7.72(s,1H),7.62-7.61(d,4H),7.57(s,1H),7.02-7.00(d,2H),6.51-6.46(d,1H),3.93-3.90(m,4H),3.84(s,3H),3.26-3.23(m,4H);ESI-MS obsd 324.1596,calcd 324.1594[(M+H) +,M=C 20H 21NO 3].
15i:
Figure PCTCN2018071317-appb-000042
1H NMR(300 MHz,CDCl 3)δ7.91(s,1H),7.72-7.67(d,1H),7.44-7.41(m,6H),7.33(s,1H),7.26-7.22(m,2H),6.50-6.44(d,1H),3.74(s,3H),2.39(s,3H)ppm;ESI-MSobsd 319.1440,calcd 319.1441[(M+H) +,M=C 20H 18N 2O 2].
15j:
Figure PCTCN2018071317-appb-000043
1H NMR(300 MHz,CDCl 3)δ7.94(s,1H),7.79-7.75(d,1H),7.74-7.73(d,1H),7.66(s,4H),7.50-7.49(m,4H),7.36(s,1H),6.55-6.49(d,1H),3.86-3.85(s,3H);ESI-MS obsd 305.1287,calcd 305.1285[(M+H) +,M=C 19H 16N 2O 2].
15k:
Figure PCTCN2018071317-appb-000044
1H NMR(300 MHz,CDCl 3)δ7.75-7.69(d,1H),7.43-7.40(d,2H),7.28-7.24(m,2H),7.01-7.00(d,2H),6.87-6.81(m,1H),6.51-6.44(m,1H),3.83(s,3H),3.40-3.26(m,4H),2.64-2.63(m,4H),2.40-2.39(m,3H),2.34-2.31(m,3H)ppm;ESI-MSobsd 351.2065,calcd 351.2067[(M+H) +,M=C 22H 26N 2O 2].
15l:
Figure PCTCN2018071317-appb-000045
1H NMR(300 MHz,CDCl 3)δ7.78-7.71(m,1H),7.61-7.57(m,4H),7.39-7.34(d,1H),7.15-7.10(m,1H),7.05-6.96(m,2H),6.52-6.44(m,1H),3.84-3.83(m,3H),3.40(s,4H),2.66-2.63(m,4H),2.40(s,3H)ppm;ESI-MSobsd 337.1911,calcd 337.1911[(M+H) +,M=C 21H 24N 2O 2].
15m:
Figure PCTCN2018071317-appb-000046
1H NMR(300 MHz,CDCl 3)δ7.77-7.71(m,1H),7.43-7.41(d,2H),7.31-7.27(m,2H),7.02-6.95(m,2H),6.89-6.77(m,1H),6.52-6.45(m,1H),3.84(s,3H),3.27-3.20(m,4H),2.54-2.52(s,3H),1.80-1.73(m,4H),1.67-1.61(m,2H)ppm;ESI-MSobsd 336.1960,calcd 336.1958[(M+H) +,M=C 22H 25NO 2].
15o:
Figure PCTCN2018071317-appb-000047
1H NMR(300MHz,CDCl 3)δ8.21-8.20(d,1H),7.74-7.69(d,1H),7.53-7.41(m,3H),7.25-7.23(d,1H),6.74-6.71(d,1H),6.50-6.45(d,1H),3.83(s,3H),3.60(s,8H),2.34(s,3H),1.52(s,9H)ppm;ESI-MSobsd 438.2387,calcd 438.2387[(M+H) +,M=C 25H 31N 3O 4].
15p:
Figure PCTCN2018071317-appb-000048
1H NMR(300MHz,CDCl 3)δ8.52-8.51(d,1H),7.75-7.70(m,2H),7.61-7.55(m,3H),7.30-7.28(m,1H),6.75-6.72(d,1H),6.52-6.46(d,1H),3.85(s,3H),3.62(s,8H),1.51(s,9H)ppm;ESI-MSobsd 424.2229,calcd 424.2231[(M+H) +,M=C 24H 29N 3O 4].
实施例4
将中间体15(1当量)溶解在四氢呋喃和水(V/V=1:1)的混合溶剂中,加入氢氧化锂(5当量),室温搅拌2-3小时,反应结束。旋转蒸发除去四氢呋喃,用1N盐酸溶液调节pH 2~3,然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物16。在圆底烧瓶中加入16(1当量)、O-(四氢-2H-吡喃-2-基)羟基胺(2当量)、EDCI(2当量)、HOBt(2当量),加入二氯甲烷使其溶解,再加入DIPEA(4当量),室温搅拌1.5小时。反应结束,用水淬灭反应,然后用二氯甲烷萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物17a。用这一方法还可以制备17b-17c以及17g-17p。
把中间体2c(1当量)和2-甲基-2-丁烯(20当量)溶解于叔丁醇中,亚氯酸钠(10当量)和20%的磷酸二氢钠混合溶液加入到反应体系中,室温搅拌过夜,反应结束。加入饱和亚硫酸钠淬灭反应,搅拌15分钟并监测pH至7,然后用乙酸乙酯萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物18。把中间体18(1当量)、邻苯二胺19(1.2当量)和HOBt(2当量)溶解于二氯甲烷中,DIPEA(4当量)滴加进去,然后加入EDCI(2当量),室温搅拌过夜。反应结束后,用饱和氯化铵溶液淬灭反应,然后用二氯甲烷萃取三遍,合并有机相,再用饱和食盐水洗涤,干燥,浓缩。柱层析分离得到化合物17d-17f,反应式如下:
Figure PCTCN2018071317-appb-000049
17a-17p的结构及其分析数据如下:
17a:
Figure PCTCN2018071317-appb-000050
1H NMR(500MHz,CDCl 3)δ8.32(sbr,1H),7.76-7.72(d,1H),7.40-7.37(d,2H),7.25-7.23(m,3H),6.98-6.96(d,2H),5.01(s,1H),4.00-3.96(m,1H),3.68-3.66(d,1H),3.61-3.59(m,4H),3.21-3.19(m,4H),2.31(s,3H),1.87-1.62(m,6H),1.49(s,9H)ppm;ESI-MS obsd 522.2966,calcd 522.2962[(M+H) +,M=C 30H 39N 3O 5].
17b:
Figure PCTCN2018071317-appb-000051
1H NMR(400MHz,CDCl 3)δ8.34-8.33(d,br,1H),7.83-7.71(m,2H),7.64-7.62(m,1H),7.57-7.47(m,3H),7.41-7.36(m,1H),7.28-7.25(m,5H),7.11-7.08(d,1H),6.80-6.77(m,1H),5.10-5.04(m,1H),4.70-3.91(m,6H),3.70-3.59(m,2H),3.35-3.25(m,2H),2.18-2.07(s,3H),1.80-1.62(m,2H),1.55-1.52(s,9H),1.50-1.32(m,4H)ppm;ESI-MS obsd 641.3334,calcd 641.3334[(M+H) +,M=C 37H 44N 4O 6].
17c:
Figure PCTCN2018071317-appb-000052
1H NMR(400MHz,CDCl 3)δ8.32-8.31(d,br,1H),7.80-7.76(d,1H),7.56(s,1H),7.49-7.46(m,2H),7.36-7.34(m,2H),7.28(s,1H),7.17-7.15(m,2H),7.07-7.05(d,1H),6.76-6.74(m,1H),5.04(s,1H),3.94-3.88(m,1H),3.70-3.67(m,1H),3.62-3.60(m,4H),3.29-3.26(m,4H),2.35(s,3H),2.15(s,3H),1.94-1.72(m,6H),1.50(s,9H)ppm;ESI-MS obsd 655.3497,calcd655.3490[(M+H) +,M=C 38H 46N 4O 6].
17d:
Figure PCTCN2018071317-appb-000053
1H NMR(500 MHz,CDCl 3)δ8.29(sbr,1H),7.92(s,2H),7.83-7.82(d,1H),7.52(s,1H),7.40-7.38(m,4H),7.19-7.17(d,2H),7.14-7.11(m,1H),7.07-7.05(d,1H),6.89-6.88(m,2H),6.78-6.76(m,1H),5.30(sbr,1H),3.62-3.60(m,4H),3.29-3.27(m,4H),2.36(s,3H),2.23(s,3H),1.50(s,9H)ppm;ESI-MSobsd 654.2849,calcd 654.2842[(M+H) +,M=C 37H 40ClN 5O 4].
17e:
Figure PCTCN2018071317-appb-000054
1H NMR(400 MHz,MeOH-d 4)δ7.89-7.88(d,1H),7.81-7.77(m,1H),7.53-7.50(d,2H),7.35-7.33(m,1H),7.23-7.18(m,3H),7.10-7.01(m,2H),6.91-6.89(m,1H),6.79-6.75(m,1H),6.72-6.68(m,2H),6.61-6.58(m,2H),3.72-3.57(m,4H),3.29-3.17(m,4H),2.35(s,3H),2.25(s,3H),1.49(s,9H)ppm;ESI-MSobsd 620.3235,calcd 620.3231[(M+H) +,M=C 37H 41N 5O 4].
17f:
Figure PCTCN2018071317-appb-000055
1H NMR(500 MHz,CDCl 3)δ7.86(sbr,1H),7.83-7.81(m,1H),7.75-7.72(m,1H),7.37-7.32(m,2H),7.28-7.24(m,2H),7.13-7.08(m,1H),7.01-6.96(m,2H),6.89-6.84(m,2H),3.92(sbr,2H),3.64-3.58(m,4H),3.25-3.17(m,4H),2.37(s,3H),1.50(s,9H)ppm;ESI-MSobsd 487.2707,calcd 487.2704[(M+H) +,M=C 29H 34N 4O 3].
17g::
Figure PCTCN2018071317-appb-000056
1H NMR(300 MHz,CDCl 3)δ9.04(sbr,1H),7.79-7.73(d,1H),7.41-7.28(m,3H),7.23(s,1H),6.98-6.90(m,2H),6.84-6.81(d,1H),6.49(m,1H),3.92-3.86(m,4H),3.70-3.60(m,2H),3.23-3.20(m,4H),2.31-2.28(d,3H),1.88-1.56(m,6H)ppm;ESI-MSobsd 445.2103,calcd 445.2098[(M+Na) +,M=C 25H 30N 2O 4].
17h:
Figure PCTCN2018071317-appb-000057
1H NMR(300 MHz,CDCl 3)δ8.77(sbr,1H),7.83-7.76(m,3H),7.44-7.32(m,2H),7.17-7.10(m,2H),7.05-6.90(m,2H),6.48(sbr,1H),5.05(br,1H),4.50-3.95(m,6H),3.90-3.60(m,4H),1.88-1.56(m,6H)ppm;ESI-MSobsd 409.2127,calcd 409.2122[(M+H) +,M=C 24H 28N 2O 4].
17i:
Figure PCTCN2018071317-appb-000058
1H NMR(300 MHz,CDCl 3)δ8.20(s,1H),7.67-7.62(d,1H),7.47-7.40(m,8H),7.28-7.26(d,2H),7.17-7.15(d,1H),,4.04(s,1H),3.88-3.85(m,2H),2.24(s,3H),1.70-1.62(m,6H)ppm;ESI-MSobsd 404.1889,calcd 404.1969[(M+H) +,M=C 24H 25N 3O 3].
17g:
Figure PCTCN2018071317-appb-000059
1H NMR(300 MHz,CDCl 3)δ7.82-7.74(m,2H),7.70-7.62(m,4H),7.60-7.55(m,3H),7.36-7.26(m,3H),6.78-6.73(m,1H),5.04-4.95(m,1H),4.10-3.78(m,2H),1.71-1.60(m,6H)ppm;ESI-MSobsd 390.1815,calcd 390.1812[(M+H) +,M=C 23H 23N 3O 3].
17k:
Figure PCTCN2018071317-appb-000060
1H NMR(300 MHz,CDCl 3)δ7.87-7.84(d,1H),7.75-7.63(d,2H),7.35-7.32(d,1H),7.15-7.13(d,2H),6.87-6.78(m,2H),6.56(s,1H),5.08(s,1H),4.00(s,1H),3.62(s,1H),3.37(m,4H),3.05-3.01(m,4H),2.66-2.62(m,3H),2.22(s,3H),1.85-1.59(m,6H)ppm;ESI-MSobsd 436.2599,calcd 436.2595[(M+H) +,M=C 26H 33N 3O 3].
17l:
Figure PCTCN2018071317-appb-000061
1H NMR(300 MHz,CDCl 3)δ7.86-7.83(d,1H),7.76-7.71(d,1H),7.65-7.63(d,1H),7.50-7.46(d,4H),7.10-7.02(m,1H),6.87-6.84(d,1H),6.59(s,1H),5.09(s,1H),4.00(s,1H),3.61(s,1H),3.40(s,4H),3.14(s,4H),2.72-2.70(s,3H),1.85-1.60(m,6H)ppm;ESI-MSobsd 422.2438,calcd 422.2438[(M+H) +,M=C 25H 31N 3O 3].
17m:
Figure PCTCN2018071317-appb-000062
1H NMR(300 MHz,CDCl 3)δ8.61(sbr,1H),7.79-7.74(d,1H),7.41-7.39(d, 1H),7.33-7.30(d,1H),7.26-7.21(m,2H),7.01-6.93(m,2H),6.87-6.76(m,1H),5.04(s,1H),4.04-3.93(m,1H),3.71-3.63(m,1H),3.26-3.21(m,4H),2.33-2.31(s,3H),1.89-1.85(m,2H),1.79-1.70(m,6H),1.63-1.56(m,4H)ppm;ESI-MS obsd 421.2424,calcd 421.2486[(M+H) +,M=C 26H 32N 2O 3].
17n:
Figure PCTCN2018071317-appb-000063
1H NMR(300MHz,CDCl 3)δ8.82(sbr,1H),7.80-7.73(m,1H),7.60-7.56(d,4H),7.54-7.51(d,1H),7.36-7.33(m,1H),7.07-6.95(m,2H),6.54-6.46(m,1H),5.05(s,1H),4.01-3.92(m,1H),3.71-3.61(m,1H),3.23(s,4H),1.89-1.85(m,2H),1.75-1.74(m,6H),1.63-1.61(m,4H)ppm;ESI-MS obsd 407.2325,calcd 407.2329[(M+H) +,M=C 25H 30N 2O 3].
17o:
Figure PCTCN2018071317-appb-000064
1H NMR(300MHz,CDCl 3)δ9.30(sbr,1H),8.17(d,1H),7.77-7.71(d,1H),7.50-7.47(m,1H),7.40(s,2H),7.20-7.17(d,1H),6.72-6.69(d,1H),6.49(s,1H),5.05(s,1H),4.04-3.98(m,1H),3.68-3.65(d,1H),3.53(s,8H),2.34(s,3H),1.87-1.62(m,6H),1.50(s,9H)ppm;ESI-MS obsd 545.2720,calcd 545.2734[(M+Na) +,M=C 29H 38N 4O 5].
17p:
Figure PCTCN2018071317-appb-000065
1H NMR(300MHz,CDCl 3)δ8.49(d,2H),7.81-7.78(d,1H),7.75(s,1H),7.61-7.54(m,4H),6.75-6.72(d,1H),5.04(s,1H),4.04-3.98(m,1H),3.71-3.67(d,1H),3.60(s,8H),1.89-1.66(m,6H),1.51(s,9H)ppm;ESI-MS obsd 531.2564,calcd 531.2578[(M+Na) +,M=C 28H 36N 4O 5].
实施例5
将中间体17(如17a~17p)溶解于甲醇中,然后滴入2N氯化氢的甲醇溶液(2当量),室温搅拌30分钟,TLC监测反应结束后旋转蒸发除去大部分甲醇,体系保持澄清状态,加入乙醚析出固体,静置,吸出溶剂,干燥,得到产物ZZY-001~ZZY-016系列分子。上述操作也可以用三氟乙酸和二氯甲烷体系完成,得到终产物分子拥有不同的羧酸配对离子。
例如,ZZY-001生成的反应式如下:
Figure PCTCN2018071317-appb-000066
ZZY-001~ZZY-016的结构及其分析数据如下:
ZZY-001:
Figure PCTCN2018071317-appb-000067
1H NMR(500MHz,MeOH-d4)δ7.90(sbr,1H),7.61-7.58(d,1H),7.46-7.42(m,2H),7.29-7.27(d,2H),7.22-7.20(d,1H),7.13-7.12(m,2H),6.50-6.47(d,1H),3.50-3.49(m,4H),3.43-3.42(m,4H),2.28(s,3H)ppm;ESI-MS obsd 338.1862,calcd 338.1863[(M+H) +,M=C 20H 23N 3O 2].
ZZY-002:
Figure PCTCN2018071317-appb-000068
1H NMR(500MHz,MeOH-d4)δ7.58-7.54(m,3H),7.52-7.48(m,3H),7.44-7.37(m,3H),7.24-7.20(m,2H),7.06-7.03(m,1H),6.49-6.45(d,1H),3.54-3.51(m,4H),3.43-3.40(m,4H),2.17(s,3H)ppm;ESI-MS obsd 457.2235,calcd 457.2234[(M+H) +,M=C 27H 28N 4O 3].
ZZY-003:
Figure PCTCN2018071317-appb-000069
1H NMR(500MHz,MeOH-d4)δ7.74(s,1H),7.64-7.60(d,1H),7.48-7.42(m,4H),7.32-7.26(m,2H),7.23-7.15(m,3H),6.57-6.54(m,1H),3.77(s,4H),3.60(s,4H),2.31(s,3H),2.14(s,3H)ppm;ESI-MS obsd 471.2390,calcd 471.2391[(M+H) +,M=C 28H 30N 4O 3].
ZZY-004:
Figure PCTCN2018071317-appb-000070
1H NMR(400MHz,MeOH-d4)δ7.61-7.18(m,15H),3.48-3.37(m,8H),2.36(s,3H),2.28(s,3H)ppm;ESI-MS obsd 554.2235,calcd 554.2317[(M+H) +,M= C 32H 32ClN 5O 2].
ZZY-005:
Figure PCTCN2018071317-appb-000071
1H NMR(500 MHz,MeOH-d4)δ7.94(sbr,1H),7.86-7.85(d,1H),7.53-7.51(d,2H),7.38-7.33(m,4H),7.30-7.27(m,2H),7.23-7.20(m,2H),7.09-7.07(m,1H),5.49(sbr,1H),3.54-3.52(m,4H),3.43-3.40(m,4H),2.35(s,3H),2.26(s,3H)ppm;ESI-MS obsd 520.2708,calcd 520.2707[(M+H) +,M=C 32H 33N 5O 2].
ZZY-006:
Figure PCTCN2018071317-appb-000072
1H NMR(400 MHz,MeOH-d4)δ7.95(sbr,1H),7.89-7.86(d,1H),7.38-7.29(m,5H),7.26-7.20(m,2H),7.14-7.12(m,2H),3.49-3.48(m,4H),3.42-3.39(m,4H),2.36(s,3H)ppm;ESI-MS obsd 387.2183,calcd 387.2179[(M+H) +,M=C 24H 26N 4O].
ZZY-007:
Figure PCTCN2018071317-appb-000073
1H NMR(300 MHz,MeOH-d4)δ7.91-7.82(m,2H),7.61-7.48(m,5H),7.32-7.24(m,1H),6.59-6.54(d,1H),4.20(s,4H),3.82(s,4H),2.32-2.29(d,3H)ppm;ESI-MS obsd 339.1715,calcd 339.1703[(M+H) +,M=C 20H 22N 2O 3].
ZZY-008:
Figure PCTCN2018071317-appb-000074
1H NMR(300 MHz,MeOH-d4)δ8.07(sbr,1H),7.91-7.88(m,2H),7.82-7.79(d,1H),7.76-7.74(d,2H),7.71-7.62(m,4H),6.60-6.55(d,1H),4.17-4.16(d,4H),3.82-3.76(m,4H)ppm;ESI-MS obsd 325.1549,calcd 325.1547[(M+H) +,M=C 19H 20N 2O 3].
ZZY-009:
Figure PCTCN2018071317-appb-000075
1H NMR(300 MHz,MeOH-d4)δ9.59(sbr,1H),8.18(s,1H),7.87-7.84(d,3H),7.65-7.50(m,5H),7.32-7.29(d,1H),6.59-6.54(d,1H),2.33(s,3H)ppm; ESI-MS obsd 320.1390,calcd 320.1394[(M+H) +,M=C 19H 17N 3O 2].
ZZY-010:
Figure PCTCN2018071317-appb-000076
1H NMR(400 MHz,MeOH-d4)δ9.54(sbr,1H),8.15(s,1H),7.95-7.91(m,3H),7.85-7.81(m,4H),7.76-7.74(d,3H),7.70-7.68(m,3H),7.64-7.60(d,1H),6.59-6.55(d,1H)ppm;ESI-MS obsd 306.1231,calcd 306.1237[(M+H) +,M=C 18H 15N 3O 2].
ZZY-011:
Figure PCTCN2018071317-appb-000077
1H NMR(300 MHz,MeOH-d4)δ7.65-7.60(d,1H),7.48-7.42(m,2H),7.29-7.11(m,2H),7.16-7.13(m,2H),7.02-6.92(m,1H),6.57-6.52(d,1H),3.96-3.64(m,4H),3.33-3.19(m,4H),3.01-3.00(s,3H),2.28(s,3H)ppm;ESI-MS obsd 352.2020,calcd 352.2020[(M+H) +,M=C 21H 25N 3O 2].
ZZY-012:
Figure PCTCN2018071317-appb-000078
1H NMR(300 MHz,MeOH-d4)δ7.70-7.59(m,6H),7.43-7.38(m,1H),7.30-7.23(m,1H),7.14-7.06(m,1H),6.57-6.49(m,1H),3.97-3.91(m,2H),3.68-3.61(m,2H),3.34-3.29(m,2H),3.21-3.13(m,2H),3.01-3.00(s,3H)ppm;ESI-MS obsd 338.1865,calcd 338.1863[(M+H) +,M=C 20H 23N 3O 2].
ZZY-013:
Figure PCTCN2018071317-appb-000079
1H NMR(300 MHz,MeOH-d4)δ7.83-7.80(d,1H),7.74-7.71(m,2H),7.61-7.50(m,5H),7.32-7.25(m,1H),6.74-6.55(m,1H),3.75-3.72(m,4H),2.33-2.30(s,3H),2.13-2.11(m,4H),1.87(s,2H)ppm;ESI-MS obsd 337.1916,calcd 337.1911[(M+H) +,M=C 21H 24N 2O 2].
ZZY-014:
Figure PCTCN2018071317-appb-000080
1H NMR(300 MHz,MeOH-d4)δ7.88-7.71(m,9H),6.73-6.59(m,1H),3.71(sbr,4H),2.12(sbr,4H);1.86(brs,2H)ppm;ESI-MS obsd 323.1761,calcd 323.1754[(M+H) +,M=C 20H 22N 2O 2].
ZZY-015:
Figure PCTCN2018071317-appb-000081
1H NMR(300MHz,MeOH-d4)δ8.21-8.18(d,1H),8.07(s,1H),7.60-7.50(d,4H),7.33-7.31(d,1H),6.59-6.54(d,1H),4.15(sbr,4H),3.81(sbr,4H),2.04(s,3H)ppm;ESI-MS obsd 339.1812,calcd 339.1816[(M+H) +,M=C 19H 22N 4O 2].
ZZY-016:
Figure PCTCN2018071317-appb-000082
1H NMR(300MHz,MeOH-d4)δ8.50-8.46(m,1H),8.38-8.37(d,1H),7.77-7.69(m,4H),7.63-7.59(d,1H),7.58-7.56(d,1H),6.59-6.54(d,1H),4.11-4.07(m,4H),3.55-3.51(m,4H)ppm;ESI-MS obsd 325.1656,calcd 325.1659[(M+H) +,M=C 18H 20N 4O 2].
实施例6 体外LSD1抑制活性检测
利用LSD1-HRP偶联反应检测LSD1活性。其原理见如下反应式:由LSD1催化底物去甲基化的反应机理可看出,在此过程中产生了副产物H 2O 2,因此可利用辣根过氧化物酶(horseradish peroxidase,HRP)催化H 2O 2和Amplex Red(一种染料)反应产生Resorufin(一种能产生很强荧光的物质)和H 2O,通过检测产物的荧光强度间接得知待测分子对LSD1的抑制活性。在该H 2O 2被还原成H 2O的过程中,Amplex Red作为电子供体,氧化变成Resorufin,用于检测荧光。本实验选取535nm作为激发波长,595nm作为发射波长进行检测。实验所需Ampliflu TMRed、peroxidase,from horseradish购自SIGMA公司;H3K4Me2底物肽购自吉尔生化(上海)有限公司。
Figure PCTCN2018071317-appb-000083
测试时,先在大肠杆菌表达得到具有酶活的人重组LSD1蛋白,然后按照50μl/孔体系制备样本:含10μM HRP+50μM Amplex Red+100nM LSD1+buffer(25mM Hepes,250mM NaCl,5%Glycerol,pH 7.5),加入96孔板;取梯度稀释的待测分子加入上述96孔板后,室温下振荡反应30min;按照50μl/孔体系制备启动液:含10μM H3K4Me2peptide+buffer,加入上述96孔板;轻微振荡后用多功能微孔板酶标仪立即检测(Ex:535nM;Em:595nM)。结果如下表1所示:表 1为本发明化合物体外阻断LSD1酶活的抑制活性。
表1
Figure PCTCN2018071317-appb-000084
通过表1的IC 50(nM)值可以看出实施化合物ZZY-001至ZZY-016对LSD1的抑制能力远超LSD1阳性抑制剂TCP(反苯环丙胺)和HDAC阳性抑制剂Vorinostat(伏立诺他),故化合物ZZY-001至ZZY-016属于LSD1的高效抑制剂。
实施例7 体外HDAC1抑制活性检测
HDAC1抑制活性检测使用了FLUOR DE 
Figure PCTCN2018071317-appb-000085
 HDAC1 fluorometric drug discovery assay kit试剂盒。其原理见如下反应式:HDAC1催化底物FLUOR DE 
Figure PCTCN2018071317-appb-000086
 Substrate(包含一个乙酰化的侧链)去乙酰化,产物可与FLUOR DE 
Figure PCTCN2018071317-appb-000087
 Developer II反应产生荧光(下反应过程所示),通过检测产物的荧光强度可间接得到待测分子对HDAC1的抑制活性。本实验选取360nm作为激发波长,460nm作为发射波长进行检测。实验所需FLUOR 
Figure PCTCN2018071317-appb-000088
 HDAC1 fluorometricdrug discovery assay kit购自EnzoBiochem公司。
Figure PCTCN2018071317-appb-000089
测试时,按照下表2本发明化合物体外阻断HDAC1酶活的具体实验条件,制备样品。待第三步结束后轻微振荡后用多功能微孔板酶标仪立即检测(Ex:360nM;Em:460nM)。结果如下表3所示,表3为本发明化合物体外阻断HDAC1酶活的抑制活性。
表2
Figure PCTCN2018071317-appb-000090
Figure PCTCN2018071317-appb-000091
表3
Figure PCTCN2018071317-appb-000092
通过表3的IC 50(nM)值可以看出实施化合物ZZY-001至ZZY-016对HDAC1的抑制能力和HDAC阳性抑制剂vorinostat相当,远超LSD1阳性抑制剂TCP,故化合物ZZY-001至ZZY-016属于HDAC1的高效抑制剂。
综合表1和表3的IC 50(nM)值可以看出:实施化合物ZZY-001至ZZY-016能同时抑制LSD1和HDAC1的活性,属于LSD1和HDAC的双功能抑制剂。
实施例8 本发明化合物体外肿瘤细胞抑制活性测试
采用MTT比色法,检测本发明实施例化合物系列(即ZZY-001~ZZY-016共16种)对体外肿瘤细胞增殖的抑制活性。MTT全名为3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium romide,又称噻唑蓝,为一种黄色染料。检测原理为:活细胞线粒体中的琥珀酸脱氢酶能将MTT还原为不溶于水的蓝紫色结晶Formazan,而死细胞无此功能。DMSO可以溶解沉积在细胞中的Formazan,用酶标仪在490nm波长处可测定其光吸收值。在一定细胞数范围内,Formazan的生成量与细胞数成正比,因而可根据测得的OD值来推测活细胞数量。
本实施例的实验中,所选细胞株为人乳腺癌细胞MDA-MB-231、BT-474,人结肠腺癌细胞HCT116,鼠结肠癌细胞CT26.WT,鼠乳腺癌细胞4T1。测试时,取处于对数生长期、且状态良好的细胞一皿,加入浓度为0.25%的胰蛋白酶消化液消化使贴壁细胞脱落,计数2~4×10 4个/ml,制成细胞悬液(悬浮细胞无需胰酶消化)。取细胞悬液接种于96孔板上,100μl/孔,置恒温CO 2培养箱中培养 24h。然后加入受试药物,100μl/孔,培养72h。将MTT加入96孔板中,20μl/孔,培养箱中反应4h。吸去上清液,加入DMSO,150μl/孔,平板摇床上振摇10min。用酶标仪在波长为490nm处测定每孔的光密度(OD值)。结果如下表4所示:表4列出几种实施化合物ZZY-001、ZZY-002、ZZY-003、ZZY-011、ZZY-012对几种人源肿瘤细胞HCT116、MDA-MB-231、BT-474、和鼠源肿瘤细胞CT26.WT和4T1有明显的抑制活性,其中LSD1的阳性抑制剂TCP(反苯环丙胺)和HDAC的阳性抑制剂Vorinostat(伏立诺他)作为对照。
表4
Figure PCTCN2018071317-appb-000093
实施例9 发明化合物ZZY-003对50株细胞系的细胞增殖
用CellTiter-Glo(CTG)法评估发明化合物ZZY-003对50株细胞系的细胞增殖影响,通过检测在不同药物浓度处理后的细胞活力,计算50%抑制浓度。
细胞复苏并培养于各自的培养液中。收获处于对数生长期的细胞并采用细胞计数仪进行细胞计数。用台盼蓝排斥法检测细胞活力,确保各细胞系活力在96%以上。用培养液稀释调整细胞浓度,添加90μL细胞悬液至的96孔细胞板中(包括药物处理当天细胞对照T0)使细胞密度达到指定的浓度。96孔板中的细胞置于37℃、5%CO 2和95%湿度条件下培养过夜。在对照细胞培养板中每孔加入10μL培养液。将CellTiter-Glo试剂和细胞培养板放置于室温平衡30分钟。每孔加入等体积的CellTiter-Glo试剂。在定轨摇床上振动2分钟使细胞充分裂解。将细胞培养放置于室温平衡10分钟。用EnVision读取化学发光值。用相应溶剂溶解被测化合物形成储存液并进行梯度稀释,得到10倍工作浓度溶液;同样制备阳性药的10倍溶液。在已接种细胞的96孔板中每孔加入10μL药物溶液,每个细胞浓度设置三个复孔。被测化合物最高浓度为10/50μM,9个浓度,3.16倍稀释。将已加药的96孔板中的细胞置于37℃、5%CO 2、95%湿度条件下继续培养72小时。将CellTiter-Glo试剂和药物处理细胞培养板放置于室温平衡30分钟。每孔加入等体积的CellTiter-Glo试剂。在定轨摇床上振动2分钟使细胞充分裂解。 将细胞培养放置于室温平衡10分钟。用EnVision读取化学发光值。
数据处理:使用GraphPad Prism 5.0软件分析数据,利用非线性S曲线回归来拟合数据得出剂量-效应曲线,并由此计算IC 50值,具体数据结果见表5,表5为化合物ZZY-003对50株细胞系的IC 50值和最高浓度抑制率。
细胞存活率(%)=(Lum待测药-Lum培养液对照)/(Lum细胞对照-Lum培养液对照)×100%;
Lum细胞对照-Lum培养液对照设为100%,LumMedium control值设为0%;
扩增倍数=(第五天LumNone treated-LumMedium control)/(第二天LumNone treated-LumMedium control)。
表5
Figure PCTCN2018071317-appb-000094
Figure PCTCN2018071317-appb-000095
从表5的数据显示:发明化合物ZZY-003对50种肿瘤细胞具有显著的抑制活性,而且对绝大多数检测的肿瘤细胞的抑制活性均比对照化疗药物Cisplatin(顺铂)强,充分说明本发明化合物具有广谱的抗肿瘤活性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种化合物,其特征在于,所述化合物的结构通式如式I所示:
    X-AB-Y
    式I
    上述式I中,
    X选自-CO 2H、-CONHZ、-CH=CH-CO 2H、-CH=CH-CONHZ中的任意一种,其中,Z选自被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的芳基、羟基中的任意一种;
    Y=-NR 1R 2,其中,NR 1R 2为被取代的或未被取代的3元至9元的含氮杂环烃基;
    A、B分别独立选自取代的或未被取代的亚苯基、取代的或未被取代的氮杂亚苯基。
  2. 如权利要求1所述的化合物,其特征在于,所述式I中,A、B分别独立选自:
    Figure PCTCN2018071317-appb-100001
    Figure PCTCN2018071317-appb-100002
    中的任意一种;
    其中,R 3、R 4、R 5、R 6分别独立选自被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的C 1-C 12杂烷基、被取代的或未被取代的C 3-C 12环烷基、被取代的或未被取代的C 3-C 12杂环烷基、被取代的或未被取代的C 2-C 12烯基、被取代的或未被取代的C 2-C 12杂烯基、被取代的或未被取代的C 3-C 12环烯基、被取代的或未被取代的C 3-C 12杂环烯基、被取代的或未被取代的C 2-C 12炔基、被取代的或未被取代的C 2-C 12杂炔基、被取代的或未被取代的C 3-C 12环炔基、被取代的或未被取代的C 3-C 12杂环炔基、被取代的或未被取代的芳基、被取代的或未被取代的杂芳基、芳基(C 1-C 12)烷基、杂芳基(C 1-C 12)烷基、C 2-C 12烯基(C 1-C 12)烷基、C 2-C 12炔基(C 1-C 12)烷基、羟基、氨基、硝基、磺基、卤素和氢原子中的任意一种。
  3. 如权利要求2所述的化合物,其特征在于,所述式I中,R 3、R 4、R 5、 R 6分别独立选自被取代的或未被取代的C 1-C 6烷基、被取代的或未被取代的C 1-C 6杂烷基、被取代的或未被取代的C 3-C 6环烷基、被取代的或未被取代的C 3-C 6杂环烷基、被取代的或未被取代的C 2-C 6烯基、被取代的或未被取代的C 2-C 6杂烯基、被取代的或未被取代的C 3-C 6环烯基、被取代的或未被取代的C 3-C 6杂环烯基、被取代的或未被取代的C 2-C 6炔基、被取代的或未被取代的C 2-C 6杂炔基、被取代的或未被取代的C 3-C 6环炔基、被取代的或未被取代的C 3-C 6杂环炔基、被取代的或未被取代的芳基、被取代的或未被取代的杂芳基、芳基(C 1-C 6)烷基、杂芳基(C 1-C 6)烷基、C 2-C 6烯基(C 1-C 6)烷基、C 2-C 6炔基(C 1-C 6)烷基中的任意一种。
  4. 如权利要求2所述的化合物,其特征在于,所述式I中,-AB-的结构选自:
    Figure PCTCN2018071317-appb-100003
    Figure PCTCN2018071317-appb-100004
    中的任意一种;其中,D为卤素。
  5. 如权利要求1所述的化合物,其特征在于,所述式I中,Z为取代的或未被取代的C 1-C 4烷基或羟基。
  6. 如权利要求1所述的化合物,其特征在于,所述式I中,Z的结构为
    Figure PCTCN2018071317-appb-100005
    或羟基;其中,R 7选择被取代的或未被取代的C 1-C 12烷基、被取代的或未被取代的C 1-C 12杂烷基、被取代的或未被取代的C 3-C 12环烷基、被取代的或未被取代的C 3-C 12杂环烷基、被取代的或未被取代的C 2-C 12烯基、被取代的或未被取代的C 2-C 12杂烯基、被取代的或未被取代的C 3-C 12环烯基、被取代的或未被取代的C 3-C 12杂环烯基、被取代的或未被取代的C 2-C 12炔基、被取代的或未被取代的C 2-C 12杂炔基、被取代的或未被取代的C 3-C 12环炔基、被取代的或未被取代的C 3-C 12杂环炔基、被取代的或未被取代的芳基、被取代的或未被取代的杂芳基、芳基(C 1-C 12)烷基、杂芳基(C 1-C 12)烷基、C 2-C 12烯基(C 1-C 12)烷基、C 2-C 12炔基(C 1-C 12)烷基、羟基、氨基、硝基、磺基、卤素和氢原子中的任意一种。
  7. 如权利要求1所述的化合物,其特征在于,所述式I中,Y为被取代的或未被取代的5元或6元含氮杂环烃基。
  8. 如权利要求7所述的化合物,其特征在于,所述Y选自:
    Figure PCTCN2018071317-appb-100006
    中的任意一种。
  9. 如权利要求1所述的化合物,其特征在于,所述化合物选自
    Figure PCTCN2018071317-appb-100007
    Figure PCTCN2018071317-appb-100008
    中的任意一种。
  10. 如权利要求1-9任一项所述的化合物在药学上可接受的盐。
  11. 一种药物组合物,其特征在于,所述药物组合物含有权利要求1-9任一项所述的化合物以及药学上可接受的载体。
  12. 如权利要求11所述的药物组合物,其特征在于,所述药物组合物还包括抗癌药物。
  13. 如权利要求12所述的药物组合物,其特征在于,所述抗癌药物为LSD1抑制剂和/或HDAC抑制剂。
  14. 如权利要求1-9任一项所述的化合物或其药学上可接受的盐在制备治疗和/或预防与LSD1和/或HDAC相关的肿瘤或癌症的药物中的用途。
  15. 如权利要求14所述的用途,其特征在于,所述肿瘤或癌症选自:脑癌、成胶质细胞瘤、白血病、班-佐综合征、考登病、小脑发育不良性神经节细胞瘤、乳腺癌、炎性乳腺癌、维尔姆斯瘤、尤因肉瘤、横纹肌肉瘤、室管膜瘤、髓母细胞瘤、结肠癌、头颈癌、肾癌、肺癌、肝癌、黑素瘤、肾癌、卵巢癌、胰腺癌、前列腺癌、肉瘤、骨肉瘤、骨和甲状腺的巨细胞瘤中的至少一种。
PCT/CN2018/071317 2018-01-04 2018-01-04 同时抑制lsd1和hdac靶点的化合物及其应用 WO2019134087A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2018/071317 WO2019134087A1 (zh) 2018-01-04 2018-01-04 同时抑制lsd1和hdac靶点的化合物及其应用
EP18898124.5A EP3736266A4 (en) 2018-01-04 2018-01-04 COMPOSITION FOR THE SIMULTANEOUS INHIBITION OF LSD1 AND HDAC TARGETS AND THEIR APPLICATION
CN201880084945.2A CN111566086B (zh) 2018-01-04 2018-01-04 同时抑制lsd1和hdac靶点的化合物及其应用
JP2020537234A JP2021510152A (ja) 2018-01-04 2018-01-04 Lsd1とhdacとを標的として同時に阻害する化合物及びその用途
US16/920,450 US20200331882A1 (en) 2018-01-04 2020-07-03 Compound for simultaneously inhibiting lsd1 and hdac targets and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071317 WO2019134087A1 (zh) 2018-01-04 2018-01-04 同时抑制lsd1和hdac靶点的化合物及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/920,450 Continuation US20200331882A1 (en) 2018-01-04 2020-07-03 Compound for simultaneously inhibiting lsd1 and hdac targets and application thereof

Publications (1)

Publication Number Publication Date
WO2019134087A1 true WO2019134087A1 (zh) 2019-07-11

Family

ID=67143594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071317 WO2019134087A1 (zh) 2018-01-04 2018-01-04 同时抑制lsd1和hdac靶点的化合物及其应用

Country Status (5)

Country Link
US (1) US20200331882A1 (zh)
EP (1) EP3736266A4 (zh)
JP (1) JP2021510152A (zh)
CN (1) CN111566086B (zh)
WO (1) WO2019134087A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023222115A1 (zh) * 2022-05-20 2023-11-23 四川汇宇制药股份有限公司 一种羟基酰胺类衍生物及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805357B (zh) * 2021-01-21 2023-12-19 四川大学 一种靶向setdb1-ttd的小分子抑制剂及其制药用途
CN113444069B (zh) * 2021-07-07 2022-05-03 新乡医学院 一类2-芳基-4-(1h-吡唑-3-基)吡啶类lsd1/hdac双靶点抑制剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425026A (zh) * 2000-02-21 2003-06-18 藤泽药品工业株式会社 环六肽衍生物
CN101198586A (zh) * 2005-06-28 2008-06-11 希格马托制药工业公司 联苯基和萘基-苯基异羟肟酸衍生物
CN101296897A (zh) * 2005-10-26 2008-10-29 盖尔德马研究及发展公司 Ppar-调节性双芳族化合物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1108395A (en) * 1993-12-07 1995-06-27 Smithkline Beecham Plc Heterocyclic biphenylylamides useful as 5ht1d antagonists
TWI319387B (en) * 2002-04-05 2010-01-11 Astrazeneca Ab Benzamide derivatives
GB0415367D0 (en) * 2004-07-09 2004-08-11 Astrazeneca Ab Pyrimidine derivatives
AR050926A1 (es) * 2004-09-03 2006-12-06 Astrazeneca Ab Derivados de benzamida como inhibidores de la histonadesacetilasa(hdac)
CN101405265A (zh) * 2006-01-31 2009-04-08 因塞特公司 酰氨基化合物及其作为药物的应用
WO2008069619A1 (en) * 2006-12-08 2008-06-12 Legochem Bioscience Ltd. Novel oxazolidinone derivatives, process for preparing thereof and pharmaceutical composition containing the same
JPWO2013180066A1 (ja) * 2012-05-28 2016-01-21 興和株式会社 Tlr阻害作用を有するピリジン誘導体
CN105153007B (zh) * 2015-09-07 2017-10-27 北京理工大学 一种荧光点亮型检测爆炸物的荧光材料、制备方法及应用
EA038109B1 (ru) * 2016-03-01 2021-07-07 Пропеллон Терапьютикс Инк. Ингибиторы связывания белка wdr5 с белками
CA3022561A1 (en) * 2016-05-09 2017-11-16 Sridharan Rajagopal Cyclopropyl-amide compounds as dual lsd1/hdac inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425026A (zh) * 2000-02-21 2003-06-18 藤泽药品工业株式会社 环六肽衍生物
CN101198586A (zh) * 2005-06-28 2008-06-11 希格马托制药工业公司 联苯基和萘基-苯基异羟肟酸衍生物
CN101296897A (zh) * 2005-10-26 2008-10-29 盖尔德马研究及发展公司 Ppar-调节性双芳族化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAFFAELLA CINCINELLI ET AL.: "Influence of the Adamantyl Moiety on the Activity of Biphenylacrylohydroxamic Acid-based HDAC Inhibitors", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 79, 8 April 2014 (2014-04-08), pages 251 - 259, XP028652731, DOI: doi:10.1016/j.ejmech.2014.04.021 *
SABRINA DALLAVALLE ET AL.: "Design, Synthesis, and Evaluation of Biphenyl-4-yl- acrylohydroxamic Acid Derivatives as Histone Deacetylase (HDAC) Inhibitors", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 44, 19 November 2008 (2008-11-19), pages 1900 - 1912, XP026029592, DOI: doi:10.1016/j.ejmech.2008.11.005 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023222115A1 (zh) * 2022-05-20 2023-11-23 四川汇宇制药股份有限公司 一种羟基酰胺类衍生物及其应用

Also Published As

Publication number Publication date
CN111566086A (zh) 2020-08-21
EP3736266A4 (en) 2021-01-06
EP3736266A1 (en) 2020-11-11
US20200331882A1 (en) 2020-10-22
CN111566086B (zh) 2023-08-01
JP2021510152A (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
CN111138301B (zh) 联苯类化合物、其中间体、制备方法、药物组合物及应用
Eldehna et al. Novel indolin-2-one-based sulfonamides as carbonic anhydrase inhibitors: Synthesis, in vitro biological evaluation against carbonic anhydrases isoforms I, II, IV and VII and molecular docking studies
Guan et al. Design, synthesis and preliminary bioactivity studies of 1, 3, 4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors
Yang et al. 4, 6-Substituted-1H-Indazoles as potent IDO1/TDO dual inhibitors
CN106916101A (zh) Nampt/hdac双靶点抑制剂及其制备方法
US20200331882A1 (en) Compound for simultaneously inhibiting lsd1 and hdac targets and application thereof
WO2018157843A1 (zh) 2-(取代苯杂基)芳香甲酸类fto抑制剂,其制备方法及其应用
Li et al. Imidazolone–amide bridges and their effects on tubulin polymerization in cis-locked vinylogous combretastatin-A4 analogues: Synthesis and biological evaluation
Zhang et al. Design, synthesis and biological evaluation of novel benzofuran derivatives as potent LSD1 inhibitors
Debnath et al. Synthesis, biological evaluation, in silico docking, and virtual ADME studies of 2-[2-Oxo-3-(arylimino) indolin-1-yl]-N-arylacetamides as potent anti-breast cancer agents
Wang et al. Design, synthesis and preliminary bioactivity studies of imidazolidine-2, 4-dione derivatives as Bcl-2 inhibitors
CN114685382B (zh) 具有HDACs抑制活性的喹唑啉-4-胺衍生物及其制备方法与用途
Zang et al. Development of N-hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity
Mushtaque et al. Synthesis, Characterization, Molecular Docking, and Anticancer Evaluation of 4‐Thiazolidinone Analogues
Cui et al. Design, synthesis, bioactivity, and DFT calculation of 2-thiazolyl-hydrazone derivatives as influenza neuraminidase inhibitors
Li et al. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors
Bolakatti et al. Novel series of benzo [d] thiazolyl substituted-2-quinolone hybrids: Design, synthesis, biological evaluation and in-silico insights
Rabal et al. Design and synthesis of novel epigenetic inhibitors targeting histone deacetylases, DNA methyltransferase 1, and lysine methyltransferase G9a with in vivo efficacy in multiple myeloma
Rinaldi et al. A versatile and practical synthesis toward the development of novel HIV‐1 integrase inhibitors
Han et al. Design, synthesis and preliminary bioactivity studies of 1, 2-dihydrobenzo [d] isothiazol-3-one-1, 1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors
EP2794009B1 (en) Bisarylsulfonamides useful in the treatment of inflammation and cancer
Demidov et al. Oxidative SNH amidation of acridine and tautomerism of N-(acridin-9-yl) benzamides
JP5530939B2 (ja) Hdac阻害剤としてのスルホニルピロールの新規製造法
Zhang et al. Identification of 3, 4-disubstituted pyridine derivatives as novel CDK8 inhibitors
CN102010348A (zh) 水杨酰胺酯类衍生物、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898124

Country of ref document: EP

Effective date: 20200804